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Abstract—Tor is a distributed onion-routing network used
for achieving anonymity and resisting censorship online. Because
of Tor’s growing popularity, it is attracting increasingly larger
threats against which it was not securely designed. In this paper,
we present the Sniper Attack, an extremely low cost but highly
destructive denial of service attack against Tor that an adversary
may use to anonymously disable arbitrary Tor relays. The attack
utilizes valid protocol messages to boundlessly consume memory
by exploiting Tor’s end-to-end reliable data transport. We design
and evaluate a prototype of the attack to show its feasibility and
efficiency: our experiments show that an adversary may consume
a victim relay’s memory by as much as 2187 KiB/s while using
at most only 92 KiB/s of upstream bandwidth. We extend our
experimental results to estimate the threat against the live Tor
network and find that a strategic adversary could disable all of
the top 20 exit relays in only 29 minutes, thereby reducing Tor’s
bandwidth capacity by 35 percent. We also show how the attack
enables the deanonymization of hidden services through selective
denial of service by forcing them to choose guard nodes in control
of the adversary. Finally, we discuss defenses against the Sniper
Attack that provably render the attack ineffective, and suggest
defenses against deanonymization by denial-of-service attacks in
general that significantly mitigate the threat.

I. INTRODUCTION
Large scale Internet censorship by state-level authorities [1]

has spurred the development of new privacy enhancing tech-
nologies that circumvent the censor, followed by new tech-
niques to recognize and block these circumvention tools [2].
As this censorship arms race proceeds, more resilient circum-
vention technologies will be developed in order to increase
the cost of detection using traditional methods. We argue
that as these circumvention technologies improve and the cost
of detection increases, alternative techniques for disruption
will become increasingly viable. As such, understanding these
alternatives is paramount not only to the successful design of
future technologies, but also to the security of current systems.

Tor [3] is the most popular deployed system for fight-
ing censorship and online privacy encroachments, currently
supporting several hundreds of thousands of users daily and
transferring roughly 3 GiB/s in aggregate [4]. Tor uses onion
routing [5] to route clients’ traffic through a circuit of geo-
graphically diverse relays, preventing any single relay from
linking the client to its Internet destination. This work focuses
on Tor due to its practical relevance as an adversarial target.

In this paper, we present, analyze, and evaluate a novel and
destructive denial of service (DoS) attack against Tor that may
be used to anonymously and selectively disable arbitrary Tor
relays with very low cost to the attacker: our attack is efficient
to the extent that an adversary interested in censorship could

disable instead of block Tor by simply disabling all relays
or intelligently targeting crucial subsets of relays, e.g., those
providing high network throughput or authoritative directory
services. The attack may be undetectably carried out on any
machine with moderate computational and memory resources
and presents severe security implications for Tor and its users.
In addition to threatening network availability, we show how
the attack can be used to deanonymize hidden services by
selectively disabling relays, heavily influencing paths to those
in control of the adversary. Our attack thus imposes real,
significant threats to Tor’s users,1 and we believe it constitutes
the most devastating attack against the Tor network to date.

The attack, which we call the Sniper Attack since the
attacker remains hidden while disabling relays in a targeted
manner, works by utilizing Tor’s application level congestion
and flow control mechanisms to cause a Tor relay to buffer an
arbitrary amount of data in application queues. In particular, an
adversarial client builds a normal Tor circuit using the target
relay as the entry, commands the exit to start downloading
a large file through the circuit, and then continuously sends
SENDME cells to the exit without reading from the target entry.
The SENDME cells signal the exit to increase its congestion
windows, after which it will continue to pull data from the
external data source and push it into the circuit. This process
may be repeated in parallel on many circuits using the same
target entry for each. The remote Tor process on the target
relay will queue the data and eventually exhaust its host’s
memory, resulting in termination by its operating system’s
memory manager (e.g. the oom-killer on Linux [9]).

Using Shadow [10], we demonstrate the destructiveness
of the Sniper Attack and the effectiveness of our defenses
by evaluating them in a safe, private, simulated Tor net-
work. The evaluation of our attack prototype indicates that
an adversary may consume a target relay’s memory by as
much as 2187 KiB/s (903 KiB/s in the median), while the
adversarial bandwidth costs are at most 92 KiB/s upstream
and 39 KiB/s downstream, (46 KiB/s upstream and 14 KiB/s
downstream in the medians). Using these results, we estimate
that sequentially disabling each of the fastest 20 exit relays
takes a cumulative total of only 29 minutes. In addition, we
explore using Tor to anonymously disable relays by utilizing
a separate anonymous tunnel through which we launch our
attacks, and find that doing so does not increase the adversarial
bandwidth requirements.

1We disclosed our attack to The Tor Project [6] in February 2013. We have
worked with them to develop and deploy a short term defense [7], and continue
to work with them in developing long term solutions [8]. As a result, Tor is
no longer vulnerable since version 0.2.4.14-alpha.



We analyze the security threat that the Sniper Attack
poses and present novel techniques for deanonymizing hidden
services. We utilize the Sniper Attack’s ability to kill arbitrary
relays in a selective denial of service attack against the guard
relays of hidden services, influencing the paths chosen by the
hidden services to those in control of the adversary. We find
that it enables the complete deanonymization of hidden ser-
vices within days by an adversary with only modest resources
or within hours by a more powerful adversary.

This paper also explores defense strategies against the
Sniper Attack. We discuss how simple hard-coded queue
size limits and end-to-end authenticated signals affect the
adversary’s attack strategy, but do not completely prevent the
attack. We then present an algorithm that adaptively reacts to
high memory pressure indicative of the attack. Our adaptive
defense utilizes queuing delay as a metric to identify and kill
malicious circuits in order to prevent the process from being
killed. We derive resource bounds with our defense mechanism
in place, showing that it cannot reasonably be leveraged by
attackers to cause relays to destroy honest clients’ circuits.
Our evaluation shows that our adaptive circuit killing defense
detects and stops the Sniper Attack with no false positives.

Finally, we present and analyze path restrictions that miti-
giate the threat of DoS deanonymization. By restricting the
relays it uses for sensitive circuit positions, a client will fail
closed to an unavailable but safe state instead of an avaliable
but potentially compromised one. We analyze the security and
availability cost of such changes under a variety of parameters
and find acceptable security/availability trade-offs.

Our main contributions may be summarized as follows:
• a dangerous and destructive DoS attack capable of

disabling arbitrary Tor relays (Section II);
• an evaluation of a prototype of the attack and our

defenses in a safe, virtual Tor network (Section III);
• a security analysis showing how the attack may be

used to deanonymize hidden services (Section IV);
• practical defenses against the Sniper Attack that re-

duce Tor’s vulnerability to attacks that exploit Tor’s
queuing mechanisms (Section V); and

• practical defenses against DoS-based deanonymization
attacks that improve security by limiting network
exposure (Section VI).

II. THE SNIPER ATTACK
In this section, we develop a DoS attack against the Tor

network that can be used to anonymously disable arbitrary
Tor relays by killing the Tor process on its host machine. To
facilitate an understanding of the exploited protocol features,
we first describe two basic attack variants that require the
adversary to run both a Tor client and either a Tor exit relay or
an Internet service. We then describe a more efficient variant
that only requires a Tor client and therefore significantly
reduces the resources required by the adversary. Finally, we
discuss strategies that disguise the adversary’s identity.

A. Background
Tor is an application-level overlay network enabling anony-

mous communication between clients and arbitrary Internet
destinations. Tor clients are responsible for path selection
at the overlay layer, and form virtual circuits through the
overlay network by selecting three relays from a public list
for each: an entry; a middle; and an exit. Once a circuit is

established, the client creates streams through the circuit by
instructing the exit to connect to the desired external Internet
destinations. Each pair of relays communicate over a single
onion routing connection that is built using the Transmission
Control Protocol (TCP). The application layer protocols rely
on this underlying TCP connection to guarantee reliability and
in-order delivery of application data, called cells, between each
relay. As a result of using hop-by-hop TCP at the network
layer, Tor does not allow relays to drop or re-order cells at the
application layer. Streams are multiplexed over circuits, which
themselves are multiplexed over connections.

Tor implements an end-to-end sliding window mechanism
to control the amount of data directed into the network. For
every circuit, each edge node (i.e. client and exit) manages
a package window counter that is initialized to 1000 and
decremented by one for every data cell it directs into the
circuit, and a delivery window counter that is initialized to
100 and decremented by one for every data cell it removes
from the circuit. Analogous counters also exist at the stream
level, respectively initialized to 500 and 50. The packaging
edge (PE) of a circuit will stop injecting cells from any
multiplexed stream whose package window reaches zero, and
will stop injecting cells from all multiplexed streams when
the circuit packaging window reaches zero. The delivery edge
(DE) of a circuit will send a feedback signal, called a SENDME
cell, to the PE whenever the circuit delivery window or any
stream delivery window reaches zero. These SENDME cells
cause the DE to increment the associated delivery window by
its initialized value, and the PE to increment its packaging
window by the same amount.2 Thus, there will not be more
than 500 data cells in flight on a stream, and not more than
1000 on a circuit.

B. Basic Attacks
The Sniper Attack exploits Tor’s reliable application-level

queuing. Our assertion is that a DE that stops reading from
a connection will cause the next hop node to buffer a full
package window worth of data (1000 cells) from the PE for
every active circuit multiplexed over the connection, under the
assumptions that there are at least two streams multiplexed
on each circuit and that the streams transfer enough data in
aggregate to reduce the PE’s circuit package window to zero.
When a DE with incoming data stops reading from its TCP
socket on the connection to an adjacent relay, the DE’s TCP
receive buffer will fill, its TCP flow control window will empty,
and it will announce a zero window to the other end of the
TCP connection. The adjacent relay will then no longer be
able to forward cells to the DE, causing its TCP send buffer
to fill. With a full TCP send buffer, the adjacent relay will
buffer cells in the application layer circuit queue (recall that
Tor does not allow relays to drop cells in the application layer)
until the PE’s stream or circuit package window reaches zero.
The PE will then stop sending data into the circuit, and stop
reading from the data source.

Using the mechanism described above, an adversary that
controls a client and a relay may attack a target relay as
shown in Figure 1. The adversarial client constructs a circuit
by selecting the target relay as the entry and the adversarial

2In practice, circuit and stream delivery windows are respectively initialized
to 1000 and 500. When they reach 900 and 450, SENDMEs are sent and they
are incremented by 100 and 50. Therefore, the delivery windows will not fall
below 900 and 450 under normal operation.



Fig. 1: In the basic version 1 of the Sniper Attack, the adversary controls
the client and the exit. (a) The client creates a circuit using the target as the
entry. (b) The exit generates, packages, and sends data through the circuit,
ignoring package window limits. (c) The client stops reading from the TCP
connection to the target entry. (d) The target entry buffers the data until the
Tor process is terminated by the OS.

Fig. 2: In the basic version 2 of the Sniper Attack, the adversary controls
the client and the server. (a) The client creates a circuit using the target as the
exit, and connects to a colluding server. (b) The client generates, packages,
and sends data through the circuit, ignoring package window limits. (c) The
server stops reading from the TCP connection to the target exit. (d) The target
exit buffers the data until the Tor process is terminated by the OS.

relay as the exit.3 The client signals the exit to start the
attack by issuing an arbitrary request over the custom attack
circuit, and then stops reading from the TCP connection to
the target entry. The exit simply ignores the empty package
windows and continuously sends data it arbitrarily generates,
increasing the amount of memory consumed by the entry to
queue the cells. Note that it is not necessary for the malicious
exit to produce correctly encrypted Tor cells since they will
never be fully decrypted by the client (though correct circuit
IDs are required). Eventually, the Tor process on the entry
node depletes all of the available memory resources and is
terminated by the operating system. On Linux systems, this
job is handled by the out-of-memory (oom) killer [9].

A variation of the basic attack described above is shown in
Figure 2. In this variant, the adversary controls a client and a
file server. The client generates arbitrary data and packages it
for delivery to the target exit. The adversarial server avoids
reading from the TCP connection to the target exit, again
resulting in memory exhaustion and death of the Tor process
on the target relay’s host machine. Note that the cells must be
encrypted in this attack variant because they will be decrypted
by a machine which is not under the adversary’s control.

Note that the adversary may choose any relay as its target
entry in version 1 of the basic attack, and should choose the file
server’s port according to the exit relay’s exit policy in version
2. However, choosing relays without the Guard flag for a
circuit’s entry position will raise suspicion since Tor’s default
path selection algorithm will not choose entries in that manner.
Alternatively, basic versions 1 and 2 may be slightly modified
to target any middle node: in version 1 the adversary may
additionally run an adversarial entry relay that stops reading
from the connection to a target middle relay; in version 2 the

3The Tor software provides parameters, EntryNodes and ExitNodes,
to specify a list of nodes for the respective roles; one could also use the Tor
control protocol [11] to build custom circuits.

Fig. 3: In the efficient version of the Sniper Attack, the adversary controls a
client only and repeats the following several times in parallel. (a) The client
creates a circuit using the target as the entry. (b) The client initiates a large
file download from an external file server through the circuit. (c) The client
stops reading from the TCP connection to the target entry. (d) The client
sends SENDME cells to the exit, causing it to continue sending data through
the circuit. The rate of SENDMEs is low enough to avoid exceeding the exit’s
package window size. (e) The target entry buffers the data until the Tor process
is terminated by the OS.

adversary may run an adversarial exit that stops reading from
the connection to a target middle relay instead of running an
external file server.

We assert that the TCP connection from the client to
the target must remain open from the victim’s perspective to
prevent the attack circuit from being closed and its queue
cleared, but the cost of doing so is insignificant (and it can
be done without maintaining state [12]). Also, the adversary
may slightly reduce the required bandwidth by minimizing the
size of its TCP receive buffer, e.g., by using setsockopt.

C. Efficient Attack
We now describe an efficient Sniper Attack that eliminates

the necessity of generating and uploading data, thereby signifi-
cantly reducing resource demands. This efficient version of the
Sniper Attack exploits Tor’s end-to-end flow control signals.
Our assertion is that the SENDME flow signals expected by the
PE (so that it may continue packaging data and sending it into
the circuit) only imply that a DE received data and a DE may
send SENDMEs to the PE without actually receiving any data.

The efficient sniper attack works by combining the
SENDME signal mechanism described above with the stop
reading mechanism from the basic versions of the attack. As
shown in Figure 3, the adversary must only control a single
malicious client. This client first builds a custom circuit by
selecting the target as the circuit entry, and then initiates the
download of two large files (e.g., large Linux distributions)
over the circuit to ensure that the two streams will empty the
exit’s circuit package window. The client then stops reading
from the connection to the target entry, and begins maliciously
sending SENDMEs to the exit to ensure that the exit’s package
window does not reach zero and it continues injecting pack-
aged data into the circuit. These packaged cells will continue
to flow to and be buffered by the entry in its application queue,
continuously consuming memory until the entry’s Tor process
is selected and killed by the OS.

1) Avoiding Detection: To launch a successful Sniper At-
tack, the adversary must circumvent a protective mechanism
that Tor employs to prevent protocol violations, e.g., by clients
who try to cheat by sending more SENDME cells to get more
data earlier. When the exit relay receives a SENDME that
causes its circuit window to go above 1000 cells, it detects
the violation, closes the circuit, and sends a DESTROY cell
backwards. The middle hop converts the link-level DESTROY
cell into a RELAY cell of type truncate and sends it to the
entry, who just passes it back to the client. When the client



extracts the DESTROY cell (that originated at the exit) from
the RELAY cell, it closes the circuit and sends a DESTROY cell
forward to the entry. The entry closes the circuit (clearing the
circuit queue) and forwards the DESTROY cell to the middle,
who also closes the circuit.

In order for the attack to succeed, the adversary ideally
would (a) prevent the exit’s package window length from
exceeding its size; and (b) in case it does, the client would
avoid sending out the final DESTROY cell to ensure the entry
does not clear its queue. Note that since the malicious client
will not be reading from the target entry, the adversary will
not be able to determine if (a) occurred, and therefore does not
need to handle (b) in practice. However, we note it here for
completeness. Also note that, as will be discussed in the next
section, even if the adversary fails at (a) and the exit detects a
protocol violation, the attack circuit will continue to consume
the target’s memory until the TCP connection is destroyed.

The adversary may avoid the exit’s protective mechanism
by sending SENDMEs to the exit at a rate low enough so
that the exit’s package window never exceeds 1000 cells.
One approach to estimating such a rate is to consult the
Tor metrics portal [4] and use recent relay byte histories to
estimate the throughput of the custom circuit. However, given
the dynamics of the Tor network and its usage, this approach
would likely result in a high failure rate. Instead, a malicious
client may account for real time congestion by performing file
download probes through the same nodes that were chosen
for the target circuit. If each probe downloads σ KiB in ∆
seconds, then we can estimate the circuit throughput as σ/∆
KiB/s, or 2σ/∆ cells/s (all Tor cells are 512 bytes in size).
Now recall that stream and circuit level SENDMEs are sent for
each 50 and 100 downloaded cells, respectively. Thus, using
our probe we estimate that stream and circuit level SENDMEs
be sent every Tss = 25∆/σ seconds and Tcs = 50∆/σ
seconds, respectively. The malicious client may update ∆ by
periodically performing an additional probe, and larger values
of σ are more costly but will produce more accurate estimates
over time. Probing requires additional adversarial bandwidth,
but this cost may be significantly reduced.

2) Parallelizing the Attack: Recall that the exit will close a
circuit if the package window exceeds its size, and this circuit
closure will be undetectable by the client once it stops reading
from the target entry. Although a circuit closed by the exit
will not cause the target entry to clear its application queue
(and therefore free any memory consumed by that circuit),
the circuit may no longer be utilized to increase memory
consumed by the target entry. This situation may occur even if
the adversary probes the circuit to find a good SENDME rate,
since relay congestion and path throughput are highly dynamic.

To improve the attack’s resilience to circuit closures while
at the same time speeding up the rate at which the target’s
memory is consumed, the adversary may parallelize the attack
by using multiple teams of multiple circuits. One circuit in
each team is assigned throughput probing duties (in order to
measure ∆ as described in the previous section), while the
remaining circuits are assigned SENDME sending duties (to
cause the exit to push data toward the target). The ∆ computed
by a team’s probing circuit is used to dynamically inform the
rate at which that team’s sending circuits send SENDMEs. Each
team is assigned a Tor path using the target as the entry relay
and uses that path to build each of its circuits.

We now consider how these circuits are constructed. Recall

that once the attack begins and the adversary has stopped
reading from the onion-routing TCP connection to the target, it
will be unable to determine which circuits on that connection
have closed and which ones have not, and will also be unable
to create new circuits over that connection. Since a separate
connection is required for the probing circuits (because it must
communicate bi-directionally), the adversary will need at least
two connections to the entry for each team if the attack is
to be successful. With this in mind, we consider three viable
attack strategies: 1) use one Tor client instance for each circuit
of each team; 2) use one Tor client instance per team that
creates a new onion-routing connection to the target whenever
one is needed; and 3) use two Tor client instances per team:
one that controls the probing circuit and one that controls the
sending circuits. Note that unique onion-routing connections
are guaranteed by using separate Tor client instances. Although
each of the above strategies are viable, we reject 1) because
there is a high resource cost associated with running many Tor
instances, and we reject 2) because multiple connections from
a single Tor client instance would be easy for the entry to
detect and would require significant code changes. Therefore,
we assume the adversary uses strategy 3) where all circuits are
operating in parallel.

The use of multiple circuits within each team will increase
the throughput acheived by that team from its assigned path
due to the circuit scheduling policies employed at each relay
and will prevent a single sending circuit failure from stalling
the attack. Using a consistent path within each team ensures
that the sending rate ∆ is accurate for all of that team’s
members. Assigning middle and exit relays indepently for each
team further utilizes Tor’s distributed resources by reducing
the effect of throughput bottlenecks while also increasing the
robustness to node failures. Finally, as there is no circuit
feedback, the adversary may also pause the attack on existing
teams and rotate to new ones over time to ensure that the target
entry’s memory consumption continues to increase.

3) Hiding the Sniper: For simplicity, we have thus far
discussed the Sniper Attack as if the adversary is directly
connecting to the target entry. Here, C denotes client, G denotes
entry,M denotes middle, E denotes exit, and S denotes server,
while the subscripts A and V denote adversary and victim,
respectively. The path of the attack as previously described
may then be represented as:

CA ↔ GV ↔M↔ E ↔ S

In this situation, the victim GV knows the adversary CA’s IP
address since they are directly connected. GV may have enough
information to blame CA, either during or after the attack,
because of the anomalous behavior. Extra protections may be
desired to avoid this exposure.

a) Stealth with Tor: Tor itself is a useful tool to provide
such protections. One way the adversary could use Tor is by
also running a Tor exit node:

EACA ↔ GV ↔M↔ E ↔ S

This situation provides the adversary plausible deniability: GV
will not be able to distinguish an attack by CA from one
launched through a circuit in which EA is merely serving as



the exit.4 However, drawbacks to this approach are that EA
will need to serve as an honest exit, which consumes far more
resources than required by the attack and also results in the
adversary appearing in the public Tor directory. The adversary
then has to ensure that EA has the characteristics of other
honest exits (has the right consensus flags for its activities,
has the right amount of traffic for its consensus weight, etc).
Further, GV will still know the IP address and may use it as a
starting point when looking for someone to blame.

Alternatively, the adversary may use a full Tor circuit:

C2AC1A ⇔ G1 ⇔M1 ⇔ E1 ↔ G2V ↔M2 ↔ E2 ↔ S

This provides the adversary anonymity. It will prevent A’s IP
address from being known by anyone except G1, who will be
oblivious to the attack. In this scenario, C1A stops reading on
the connection to G1 but C2A sends SENDMEs to E2 through
the C1A proxy tunnel. A drawback to using a separate circuit
in this way is that it may slightly increase the latency and
length of the attack, because G2V will not start depleting its
memory resources until E1’s package window reaches zero. It
may also be more difficult to estimate a good SENDME rate
when concatenating two circuits, and the adversary must now
run twice as many Tor client instances to ensure that each team
has two anonymous tunnels. Finally, a circuit that exits back
into Tor may draw unwanted suspicion.

b) Stealth without Tor: Alternatives to using Tor to
hide include using public open wireless access points, briefly
renting a small botnet, or using a cloud computing system.
However, more entities will then know about the adversary’s
actions, increasing the risk of discovery: access points and
cloud services will be collecting logs; and some number of
bots could be part of a honeypot. The adversary may want
to connect to these services through Tor anyway to remain
anonymous to them, and the composition of services will make
it easier to make a mistake. By using Tor as described above,
the adversary does not need knowledge of botnets or cloud
systems, drastically simplifying the attack.

III. EVALUATION
We implemented a prototype of the Sniper Attack in order

to evaluate its feasibility and efficacy. We evaluated it using
Shadow [10], a discrete event network simulator that runs Tor
code in a private Tor network, after testing its functionality
in a minimal private Tor network in our lab. Shadow enables
a safe development and evaluation environment that does not
harm the security and privacy of the operational Tor network
or its users, while also providing realistic results since it runs
authentic Tor code. In this section, we detail our private Tor
network configuration, describe our prototype implementation,
evaluate the attack’s efficiency and resource costs, and analyze
our results in the context of the live Tor network.

A. Private Tor Network
Tor nodes running in Shadow communicate over a simu-

lated network. Therefore, Shadow requires models of down-
stream and upstream node bandwidths as well as link latency,
jitter, and packet loss rates. The Shadow distribution [13]
includes these models, and also includes tools to generate

4GV can distinguish CREATE cells from EXTEND cells, but it is plausible
that a CREATE cell originated from some client in a separate circuit terminat-
ing at EA rather than from CA, e.g., if that client is using Tor’s Socks4Proxy
or Socks5Proxy options.

private Tor network configurations for running Shadow sim-
ulations. Using these tools and real network data published
by Tor5 [4], we configure a private Tor network consisting
of 4 directory authorities, 400 relays, 500 file servers, and
2800 clients. This private network consumes roughly 60 GiB
of memory on our Linux host during each experiment. The
clients generate background traffic during the experiments by
downloading variously sized files from the servers through our
private Tor, causing congestion and performance characteristics
indicative of conditions in the live Tor network. All of these
nodes run in the Shadow simulator and communicate only with
one another. Our configuration follows the methodologies from
recently published and validated research on modeling private
Tor networks [14], which describes in detail the modeling
choices made by Shadow’s configuration generation tool.

B. The Sniper Attack Prototype
We implemented the parallel version of the efficient Sniper

Attack as described in Section II-C, including multiple parallel
circuits but without the rotating circuits enhancement. In our
C prototype implementation, a manager manages all workers,
each of which use the Tor control protocol [11] to command
and control the associated Tor client instance and its circuits.
The workers run a modified Tor client instance, based on stable
release 0.2.3.25, that adds: a STOPREADING controller
command which instructs Tor to stop reading from the onion
routing connection to the target; SENDSTREAMSENDME and
SENDCIRCUITSENDME commands which instructs Tor to
send a stream-level and circuit-level SENDMEs on the spec-
ified streams and circuits; and an IGNOREPACKAGEWINDOW
command that instructs the client to ignore package windows
when sending data upstream.

We implemented both direct and anonymous Sniper Attack
modes. In direct mode, each worker connects to the Tor
client over the controller port, waits for it to become fully
bootstrapped into the Tor network, and builds its custom
Tor circuits using the same path as the other workers on
its team. Once the attack circuits are ready, the probing
workers begin circuit measurement probes by downloading
files through their attack circuit; the remaining workers request
an extremely large file through the attack circuit, command
Tor to stop reading, and send two stream SENDMEs and
one circuit SENDME for every completed probe download.
In anonymous mode (see Section II-C3a), each worker runs
two Tor client instances instead of one: the first is used to
create an anonymous tunnel through Tor; the second is used
as in direct mode, except that all communication with relays is
done over the anonymous tunnel using the Socks4Proxy Tor
configuration option. Note that the client instances that create
the anonymous tunnels ignore their package windows using
the IGNOREPACKAGEWINDOW command, because otherwise
the SENDMEs that are being forwarded from the attack circuits
upstream through the tunnel will evetually drain the windows
and stall the attack (the tunnel’s normal downstream SENDMEs
which increment the package window will not be received
because of the stop reading attack behavior). The sniper
manager and worker logic was packaged as a Shadow plug-in
consisting of 1416 lines of code, while our Tor modifications
included 253 lines of code.

5We use the server descriptors and extra info documents from 2013-06, and
the Tor consensus from 2013-06-30-23-00-00



TABLE I: Sniper Resource Usage
Max RAM (MiB) and Mean BW (KiB/s)

Direct Anonymous
RAM Tx Rx RAM Tx Rx

C
on

fig
. 10 Teams, 100 Circs 283 56.0 20.9 564 56.6 17.0

5 Teams, 50 Circs 141 30.0 9.5 283 27.7 8.5
1 Teams, 10 Circs 28 6.1 2.6 57 9.4 2.1
1 Team, 5 Circs 28 4.0 2.3 56 3.6 1.8

C. Experiments and Results
We experiment with our prototype implementation of the

Sniper Attack to explore the target memory consumption and
sniper resource tradeoffs when conducting the attack against
target relays of various capacities. Our Tor network model
is configured as described above, with the addition of an
adversarial sniper node that runs the Tor clients and the sniper
manager that controls the attack. Unless otherwise specified,
our experiments use 100 circuits configured as 10 teams of 10
circuits each, while each probing circuit downloads σ=50 KiB
files, pausing for 60 seconds between each probe. Every team
uses a unique Tor path for their circuits chosen following Tor’s
weighted path selection algorithm. Our sniper is configured
with a 100 MiB/s symmetric bandwidth access link so as not
to result in a bandwidth bottleneck during the experiment for
measurement purposes. Each experiment runs for 60 virtual
minutes, during the first 30 of which we allow the network
to bootstrap and during the last 30 of which the attack is
executed. We run one attack against a single target relay in
each experiment, and measure the RAM used over time by
the target and the sniper as well as the bandwidth consumed
by the sniper.

We tested the feasibility of the Sniper Attack, arbitrar-
ily choosing the highest weighted non-authoritative, non-exit
guard node in our network as the target. This node had a 9
MiB/s symmetric bandwidth access link and otherwise served
as an ordinary relay in our experiment. We tested the Sniper
Attack with each of 100, 50, 10, and 5 attack circuits. As can
be seen in Figure 4a, the number of circuits directly affects
the rate at which the sniper is able to consume the target’s
memory. While the target’s memory consumed in each scenario
increases approximately linearly, there is a dramatic difference
between 10 and 50 circuits: the 10 circuit experiment was
configured with 1 team, meaning that all 10 circuits are
configured with the same path through Tor; the 50 circuit
experiment was configured with 5 teams, meaning that there
are 5 paths chosen through Tor. Choosing multiple paths in
this way more effectively utilizes Tor’s capacity and prevents
the attack from stalling due to a poorly chosen circuit that may
contain a tight bottleneck.

The memory and bandwidth requirements for the sniper
in our feasibility experiments can be seen in Table I. Shown
are the maximum total memory (RAM, in MiB) used by the
sniper at any point during the attacks and the mean total
bandwidth (BW, in KiB/s) consumption, for both the direct and
anonymous experiments. The RAM used by the sniper depends
almost entirely on the number of Tor instances being used: in
all cases, the mean RAM used per Tor client instance was
approximately 14 MiB. As expected, the anonymous attack
consumes roughly twice as much memory as the direct attack
since it is using twice as many Tor client instances. The
resource requirements for our prototype are quite reasonable:
the maximum memory required in any of our experiments

was less than 600 MiB and the maximum upstream and
downstream bandwidth required was 56.6 and 20.9 KiB/s,
respectively. Further, the sniper’s 60 second bandwidth burst
remained below 500 KiB/s throughout the experiment. We
expect an adversary willing to launch this type of attack can
easily satisfy these requirements. Note that probing less often
may further reduce the bandwidth costs.

Our feasibility experiments tested the Sniper Attack against
an arbitrarily chosen relay. We expanded this evaluation to
determine how the Sniper Attack performs against a variety of
relays with unique congestion, load, and bandwidth capacities.
To do this, we chose a set of 50 relays from our private
network, again using Tor’s weighted path selection algorithm.
Using the default settings outlined above, we ran our prototype
Sniper Attack against each relay twice: once in direct mode
and once in anonymous mode. We measured the memory
consumed by the target and the bandwidth consumed by the
sniper during each experiment.

We computed the mean target memory consumption rate
and mean sniper bandwidth consumption rate achieved during
each experiment (recall that each experiment targets a different
relay). Figures 4b and 4c show the cumulative distribution
of these rates for each mode over the 50 experiments; each
experiment produces one data point in each of the two figures.
As shown in Figure 4b, the median computed mean target
RAM consumption rate was 903.3 KiB/s in the direct attack
and 849.9 KiB/s in the anonymous attack. Further, the direct
mode of the attack was only slightly more effective in our
experiments: in the maximum the sniper was able to consume
the target’s RAM at 2186.8 KiB/s, roughly 1.4 times as fast as
the maximum of 1541.8 KiB/s in anonymous mode. Although
this difference is only seen in the tail of the CDF, the reason
is likely due to the additional length of the attack circuit
path in anonymous mode (the cells must traverse 6 Tor relays
in this case), which may lead to less accurate probing and
extra latency when sending the SENDME cells through the
anonymous Tor tunnel to the the opposite edge of the attack
circuit. Further, the longer path increases the chance that a
bottleneck exists on the path which may cause some of the
attack circuits to fail. Figure 4c shows that the bandwidth
requirements in both modes are similar: the mean upstream
bandwidth measured was 45.9 and 43.0 KiB/s in the median for
the direct and anonymous attacks, while the mean downstream
bandwidth was respectively 13.6 and 17.6 KiB/s in the median.
Our experiments show that the Sniper Attack enables the
adversary to relatively easily trade its bandwidth resources for
a victim relay’s memory resources.

D. Analysis
We now analyze the practical effect the Sniper Attack has

on the operational Tor network by considering how realistic
adversaries might choose to disable relays. The adversary
may prioritize as targets the relays with low RAM but high
consensus weights: this will have the largest impact on users
since Tor’s load balancing algorithm is tuned so that the
probability that a client chooses a relay is in proportion to
the bandwidth capacity that relay contributes to the network.
However, since relay memory resources are not public, we con-
sider an adversary that chooses relays based on the consensus
weight alone and explore the time to disable them according
to various potential memory configurations. Because of the
load balancing algorithm and the fact that currently the relays
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Fig. 4: The Sniper Attack resource consumption. Shown in (a) is the target relay’s memory usage over time in direct and
anonymous attack modes. Compared are attacks with 1 team of 5 and 10 circuits, 5 teams of 10 circuits each (50 circuits total),
10 teams of 10 circuits each (100 circuits total), and no attack. The shaded area indicates the time during which the attack is
active. Shown in (b) and (c) are the distributions of the mean consumption rate of the target relay’s RAM per experiment and
mean sniper’s bandwidth cost per experiment, respectively, over 50 experiments each of direct and anonymous Sniper Attacks.
The sniper in each experiment is configured to use 10 teams of 10 circuits each (100 circuits total).

TABLE II: Combined Path Selection Probability of and Ex-
pected Time to Disable Selected Groups of Relays

Time (H:M) to Consume RAM
Direct Anonymous

Sel % 1 GiB 8 GiB 1 GiB 8 GiB

R
el

ay
G

ro
up

s

Top FAST Guard 1.7 0:01 0:18 0:02 0:14
Median FAST Guard 0.025 0:23 3:07 0:23 3:07
Bottom FAST Guard 1.9e-4 1:45 14:03 1:45 13:58

Top FAST Exit 3.2 0:01 0:08 0:01 0:12
Median FAST Exit 0.01 1:45 14:03 1:22 10:53
Bottom FAST Exit 6e-5 1:45 14:03 1:48 14:20

Top 5 Guards 6.5 0:08 1:03 0:12 1:37
Top 20 Guards 19 0:45 5:58 1:07 8:56

Top 5 Exits 13 0:05 0:37 0:07 0:57
Top 20 Exits 35 0:29 3:50 0:44 5:52
All Dir Auths N/A 17:34 140:32 17:44 141:49

with the top 100 weights constitute 40 percent of the selection
probability, the adversary may have significant impact on the
network by disabling a relatively small group of relays.

We utilize the results from our 100 experiments discussed
above to estimate memory consumption rates that an adversary
may achieve on live Tor network relays. To do this, we
compute the correlation between the observed mean memory
consumption rate of each target relay in our experiments and
that relay’s consensus weight using a linear regression. This
results in parameters that we use to estimate the memory
consumption rate of any relay for which we have a consensus
weight. Negative rate estimates were replaced with the mini-
mum observed rate. We then use these rates to compute the
time to disable various groups of relays: we consider the top,
median, and bottom guard and exit relay by the probability of
selection by clients out of those with the FAST flag, as relays
without the FAST flag are only selected if no FAST relays are
available. We also consider the top 5 and 20 of both guards
and exits as those relays will be selected most often by clients
and represent the most attractive targets for the adversary. We
consider the 10 directory authorities as the final group, as the
network will not function over time without the authoritative
documents they collectively produce and distribute.

Shown in Table II is the total selection probability for each
relay group, and the estimated total length of time to disable all
relays in the group when the Sniper Attack is synchronously

launched on a single relay at a time. We consider memory
consumption rates for both direct and anonymous attacks, and
consider the length of time to disable relays with 1 and 8 GiB
of RAM as examples of relay memory capacities. Note that
these results scale linearly to other RAM sizes.

Our analysis shows that the fastest guard and fastest exit
with 1 GiB of RAM can be disabled in just one minute
when using the direct attack, thereby disabling an expected
1.7 and 3.5 percent of paths in the Tor network, respectively.
When allotting 8 GiB of RAM for these relays, they can be
disabled in under 20 minutes in both attack modes. Perhaps
more strikingly, the entire group of the fastest 20 exits can
be disabled in just 29 minutes if each relay has only 1 GiB
of RAM, and in just under 4 hours if each relay has 8
GiB of RAM. (The anonymous attack takes slightly longer
in both cases.) This would be extremely disruptful to the
Tor network, causing roughly 35 percent of all paths to fail
and increasing load and congestion on the remaining relays.
Similarly, the group of the fastest 20 guards can be disabled
in just 45 minutes if allotting 1 GiB of RAM for each relay,
and just under 6 hours if allotting 8 GiB of RAM for each
(again, the anonymous attack takes slightly longer). This would
cause 19 percent of Tor paths to fail. Finally, the attack
takes significantly longer on the group of directory authorities,
since their lower bandwidth weights result in lower RAM
consumption rates than the fastest relay groups. Note that
relays will likely be rebooted by their operators some time
after going down, however, all circuits they were carrying will
be lost and the attack could be relaunched against a relay as
soon it is available. This may effectively cause a relay to be
marked as unstable and not chosen by clients for their circuits.

IV. DEANONYMIZATION IN TOR
The Sniper Attack is more than just a threat to Tor’s avail-

ability: it can also be used as an attack on anonymity. Because
Tor accepts any willing relay into the network, an adversary
that runs relays can deanonymize a victim by controlling the
entry and exit relays and correlating the observed timing and
volume of a user’s traffic entering the network with that leaving
the network shortly afterwards [15], [16].

To prevent an adversary running relays from eventually



being chosen for these positions, a user chooses a small set
of entry guards (Tor defaults to 3 guards), and begins all
circuits at one of these guards. This protects the user from
being directly observed as long as adversarial relays are not
chosen as guards. A guard is used for 30–60 days, at which
point a replacement is selected [17].

Thus a user’s guards are an attractive target for the Sniper
Attack. If few enough of a user’s guards are responsive (at most
1 in Tor), the user will select new guards as replacements. By
disabling the user’s guards, the adversary can cause the user
to choose new guards and hope that an adversarial relay is
among them. This process can be repeated until the adversary
succeeds.

This attack requires the adversary to identify the target’s
guards and to force her to choose new ones as soon as the
old ones are disabled. Doing so is particularly easy with
hidden services [18] because they create circuits on demand.
Therefore, we will describe and analyze the attack applied to
hidden services.

Deanonymizing Tor clients using the Sniper Attack is less
straightforward because they generally do not respond on
demand. However, in some significant cases guards could be
identified and guard reselection initiated. For example, a user
downloading a large file could give the adversary enough time
to discover the guard using a congestion side channel [19]–
[21]. Furthermore, download managers and BitTorrent clients
generally automatically restart an interrupted download, which
would prompt guard reselection by Tor.

Finally, we note that in addition to deanonymization, the
adversary could use the Sniper Attack to attack Tor privacy
in other ways. For example, he could attack the exits of long-
lived circuits, such as IRC connections, in order to be chosen
as the replacement exit and discover the destination. He could
also attack exit relays that allow connections to certain ports
in order for adversarial relays to observe a larger fraction of
exit traffic to such ports.

A. Deanonymizing Hidden Services
Hidden services provide responder anonymity for a persis-

tent service. Users are able to connect to the service through
Tor without knowing its location. Let H be a hidden service
and C be a client. H chooses a set I of Tor relays as
introduction points and creates persistant circuits to them. The
protocol for using a hidden service is (1) C chooses a Tor
relay R to serve as a rendezvous point and creates a circuit to
it; (2) C chooses an introduction point I , creates a Tor circuit
to it, and sends R to H through I; (3) H creates a circuit to
R; and (4) C and H communicate to each other over their
respective circuits to R.

To perform the anonymity attack on a targeted hidden
service, the adversary will need to control at least one relay that
can serve as a guard, and he will need to control another relay
that can serve as a rendezvous point. For an adversary’s relay
to be used as a guard, it must satisfy minimum uptime and
bandwidth requirements (roughly, its uptime must be at least
that of the median relay, and its bandwidth must be at least
the minimum of the median bandwidth and 250 KB/s [22]).
Any relay in the Tor network can serve as a rendezvous point.

The deanonymization attack proceeds in three phases:
1) Identify the guards of the hidden service;
2) Disable the guards with the Sniper Attack; and
3) Test if the hidden service selected an adversarial relay

as a replacement guard, and repeat from 1) if not.

To describe these phases in detail, let GA be the adversarial
relay that can be used as a guard, RA be the adversarial relay
intended to be used as a rendezvous point, CA be an adversarial
Tor client, and H be the target hidden service.

Phase 1 (Identify Guards): A user can force H to select
a new circuit by requesting a new connection through a
rendezvous point. H chooses the circuit’s relays other than
the guard roughly at random weighted by bandwidth. Thus, by
requesting enough connections, the adversary will eventually
cause H to choose circuits such that, for every guard of H ,
in some of those circuits the adversarial relay GA is the hop
after that guard. For these circuits, the adversary can directly
observe the guards’ identities, although he may not realize it.

Biryukov et al. describe an efficient technique for the
adversary to recognize when he is in such a situation [23]. The
rendezvous point RA sends a pattern of 50 PADDING cells to
H down the rendezvous circuit followed by a DESTROY cell.
If GA observes a pattern of 2 cells on a rendezvous circuit
from a hidden service and 52 cells on the same circuit to
the hidden service (the cells in excess of 50 are from circuit
construction), followed by a DESTROY cell shortly after one
is sent by RA, it concludes that the relay one hop closer to H
on the circuit is a guard of H . During experiments on the live
Tor network, Biryukov et al. observed no false identifications
using this method. They also note that the attack could be
performed without an adversarial rendezvous point, although
it would slow the attack because the rendezvous circuit must
extend to CA.

Using this method, the adversary can quickly, efficiently,
and perfectly identify all guards of H . Moreover, the discovery
process looks fairly innocuous to H , which only sees a series
of normal rendezvous requests. Of course, all such requests
are to the same rendezvous point, the connections may appear
abnormally fast, and no data is ever carried on the circuits. If
stealthiness is a goal, the attack could be mounted from CA

with normal rendezvous point selection, at a slower rate, and
including some typical data requests as cover. This would come
at the cost of some speed and efficiency. Note also that Øverlier
and Syverson [18] describe a less-efficient method of guard
identification that depends on performing traffic correlation
that is less precise but is more robust to countermeasures.

Phase 2 (Disable Guards): Once H’s guards have been
identified, the adversary can use the Sniper Attack to cause
the Tor process of each guard to be killed. The attack can
be run against all guards in parallel to reduce the time of the
attack to the time to kill just one guard. Moreover, attacking
the guards at the same time increases the length of time that
the guards remain simultaneously unavailable. Eventually, we
would expect the relay operator to notice that the Tor process
was killed and restart it.

Phase 3 (Test for Guard Selection): Once the hidden
service’s guards are disabled, the adversary can easily cause
new ones to be selected simply by connecting normally to the
service. Then he can determine if his guard GA was selected
by H using techniques very similar to those used to identify
guards in Phase 1. A difference is that he would look on the
circuits of GA for those with 3 cells from the circuit origin and
53 cells towards it before destruction. This step requires only
enough circuits that any given guard of H is sufficiently likely
to be used for at least one (e.g. with 35 circuits, the probability



TABLE III: Speed of Guard Identification
Selection Prob. Tor BW Avg # of Cxns to t∗1 (min),

as Middle (MiB/s) Identify All Guards ` = 10
0.0026 8.41 598.00 10.65
0.0052 16.65 357.33 6.37
0.010 31.97 227.94 4.06
0.021 66.04 141.74 2.53
0.030 96.61 118.40 2.11

of such a selection failing to occur is at most (2/3)35 ≤ 10−6).

B. Evaluation
The DoS Deanonymization Attack executes a number of

three-phase rounds until it succeeds. To estimate the time to
complete round i of the attack on hidden service H , let ti1 be
the time to identify the guards of H (Phase 1), ti2 be the time
to disable the guards of H (Phase 2), and ti3 be the time to
test if H selected a malicious relay as a guard (Phase 3). Let r
be the number of rounds needed for the attack. Then the total
attack time t can be expressed as t =

∑r
i=1 t

i
1 + ti2 + ti3. We

estimate t for the actual Tor network and various sizes of the
adversary. Our data about the Tor network is taken from Tor
Metrics [4].

1) Time for Phase 1 (ti1): To identify the guards of H ,
the adversary runs a malicious relay MA and creates enough
connections to H such that, for each guard G, a resulting
circuit from H to the rendezvous point uses MA as the middle
relay and G as the guard. The connections to H can be created
in parallel to speed up this phase. Let tc be the time from
initiating a connection to H until MA observes the cell pattern
that indicates its presence on a rendezvous circuit of H . Let
ci be the number of connections that are needed for MA to
observe all guards of H . Let ` be the number of connections
created in parallel. The time for this phase is then ti1 = tcc

i/`.
To estimate tc and ci, we ran a hidden service experiment

in Shadow. During the experiment, a client repeatedly created
new connections to a hidden service and sent the 50-cell traffic
signature used to recognize relays on the resulting circuit. Note
that we used the version of the attack in which the client
sends these cells rather than the rendezvous point. We recorded
the paths of these circuits and the time from initiation of the
connection until the service received the traffic signature. Our
experiments were performed in two sessions, each with 10
client-server pairs run in parallel and with background traffic.

During these experiments, 8319 connections to hidden
services were created. The average time between starting a
connection at the client and receiving the inserted cell pattern
at the server was 10.69s. The minimum time was 1.45s and the
maximum time was 319.87s. Thus we expect that tc = 10.69.

Our expectation for ci depends on the bandwidth of MA.
The higher the bandwidth is, the more likely that MA is
selected in a circuit and the lower that ci is. Thus we consider
a range of capacities for MA. Table III shows the average
number of connections that clients had to make to identify the
guards of H when we consider relays of different sizes to be
the malicious relay MA. The relays we select were chosen
middle relays with probabilities that range from 0.0026 to
0.030. We estimate the bandwidth a Tor relay would need to be
to be selected with those probabilities using a linear regression
on the consensus weights and the estimated relay capacity. The
regression is on network data from 6/30/13. We can see that
for relays with bandwidth in the range of 8–100 MiB/s, the
average number of connections c∗ needed to identify all guards

TABLE IV: Speed of DoS Deanonymization Attack
GA BW Guard Avg # Avg # Avg Time (hr) Avg Time (hr)
(MiBps) Prob. Rounds Sniped 1GB GiB 8GB GiB

8.41 0.0048 65.66 132.33 45.50 278.24
16.65 0.0097 38.55 78.09 22.45 148.57
31.97 0.019 23.03 47.05 12.02 83.82
66.04 0.038 12.33 25.67 5.95 43.20
96.61 0.054 8.75 18.50 4.13 30.37

ranges from 598 to 118. c∗ is a good estimate for c1, and as
the attack progresses through additional rounds the expectation
for ci only decreases as relays are disabled and the malicious
relay becomes a larger fraction of the active network. Thus we
can conservatively use c∗ as the estimate for all ci.

We can then use t∗1 = tcc
∗/` as a conservative estimate for

the time ti1 to complete Phase 1 in round i. Table III shows this
time for ` = 10 parallel connections. We use this value of `
because our experiments consisted of 10 clients simultaneously
connecting to hidden services. However, we expect that many
more connections could be created in parallel without increas-
ing the connection time tc much because the time is dominated
by network latency and creating a connection uses relatively
little network bandwidth. This could potentially decrease t∗1 to
as little as tc = 10.96s.

2) Time for Phase 2 (ti2): During the ith round of a given
attack, the relay will have selected a set of guards (Tor uses
at most 3). We suppose that the Sniper Attack can be run in
parallel on all of these, and thus the time ti2 to disable all of
them is the longest time it takes to disable any one of them.
Given a set of guards, we can use the linear regression of
Section III to estimate the memory consumption rate from the
Tor consensus weight. Then we can consider the time to fill
each guard’s memory for varying memory capacities.

3) Time for Phase 3 (ti3): During Phase 3, the adversary
creates enough connections to H that if GA has been chosen
as a guard of H , it will be detected on a resulting rendezvous
circuit. We suppose that the adversary creates 35 connections
so that if GA is a guard it fails to be used as a guard on
one of the resulting rendezvous connections with probability
less than 6.87 × 10−7. We use our previous estimate for the
expected circuit construction time of 10.69s and suppose that
the adversary makes 10 parallel circuits. We thus estimate that
ti3 = 4 ∗ 10.69 = 42.76s for all i.

4) Time for DoS Deanonymization Attack (t): To provide
an estimate for t, we simulate the selection of guards by H
during the attack using the TorPS tool [24]. As input to TorPS,
we use a Tor consensus and server descriptors from 6/30/13.
We perform 10,000 simulations of the attack. During each
simulation, guards are selected by H in each round until GA

is chosen. We estimate the total time t for a simulation by
adding the given phase estimates in each round.

Table IV shows the results of these simulations. For each
bandwidth capacity of the malicious guard GA, we can see the
resulting probability p of being chosen during an individual
guard selection. This directly affects the expected number of
rounds needed for deanonymization, which we can see ranges
from 8.75 to 65.66. These values can in general be roughly
estimated as 1/(2p) because Tor only replaces the sniped
guards in each round with two new guards. The number of
guard sniped during the attack, shown next, ranges from 18.50
to 132.33 and is also simply 2r + 1. The total time t for the
attack has a range of 4.13–45.50 hrs. if all Tor relays have 1



TABLE V: Defense Capabilities
Attacks

Basic V1 Basic V2 Efficient Parallel

D
ef

en
se

s Authentication No No Yes No
Length Limit Yes Yes Yes No
Circuit Killer Yes Yes Yes Yes

GiB of free memory and a range of 30.37–278.24 hrs. if Tor
relays have 8 GiB free. Clearly, the time to snipe the guards
dominates t, and so we can approximate it simply with t ≈ rt12.
Thus, the adversary can significantly reduce t by running a
guard or guards with a large amount of total bandwidth, which
decreases r in expectation.

Finally, we note that it is quite possible that some guard
operators become aware that their guards have crashed and
restart them while the attack is still executing. Tor will go
back to using such guards once they become available again.
Thus, it may be necessary during the attack to snipe guards
multiple times to keep them down.

V. DEFENSES AGAINST SNIPER ATTACKS
The Sniper Attack exploits two fundamental problems with

Tor’s design: a lack of enforcement to follow the flow control
protocol; and unchecked, unbounded application queues. In
this section, we address these problems by exploring defense
strategies (summarized in Table V) and their costs, limitations,
and practical operational deployment issues.

A. Authenticated SENDMEs
One problem exploited by the Sniper Attack is that the

packaging edges are unable to verify that the delivery edges
actually received any cells. One solution to this problem is
adding a challenge-response puzzle to every 100th cell. Each
packaged cell currently includes a hash digest of its contents
so that bit errors may be detected by the client. A package
edge can require that the digest of each packaged cell be in-
cluded in the corresponding SENDME feedback signal cell. To
prevent the delivery edge from pre-computing this digest when
downloading a known file, the package edge could include a 1
byte nonce in every 100th cell. This nonce will randomize
the digest that must be returned in the SENDME, and can
only be guessed with probability 1/256. If the response digest
doesn’t match the challenge, the exit can drop the circuit.
Authenticated SENDMEs prevent clients from subverting the
1000 cell in-flight limit, including those who attempt to “cheat”
by preemptively sending SENDMEs to the exit in order to
download data faster.

This defense provides an elegant solution to detecting
protocol violations. It defends against a single client using
the efficient version of the Sniper Attack. However, using
this approach alone has some limitations. First, it does not
completely stop the attack: each circuit will still be able to
cause the target to queue 1000 cells (500 KiB), and so the
target can still be taken down using the parallel attack from
Section II-C2. Second, relays are relying on honest circuit
members to perform the authentication protocol correctly, and
therefore this defense does not protect against either of the
basic versions of the Sniper Attack where the packaging edge
is malicious. We could improve the situation by allowing
intermediate relays to read and detect unexpected SENDME
cells and destroy the circuit, but we note that a self-defense
strategy is preferred to one that relies on other circuit members.
Finally, this approach has a longer transition phase, since all

clients and at least all exit relays need to be aware of the
authentication protocol.

B. Queue Length Limit
Another problem exploited by the Sniper Attack is that

Tor’s application queues may grow without interference by
the relay. Therefore, a simple defense is for each relay to
enforce a maximum queue size to limit the amount of memory
each circuit may consume. If the queue length becomes greater
than the allowed size, then the relay may assume a protocol
violation and destroy the circuit to inhibit malicious activities.

To find a good candidate queue size, we consider that
Tor’s flow control algorithm already enforces a limit on the
number of cells that may be in transit (1000, plus some
tolerance for control messages). One approach would be to use
a similar limit as a queue length limit, which provides a self-
defense mechanism while also protecting against adversaries
who control multiple nodes in a circuit. However, as with the
authenticated SENDMEs defense, a queue length limit does not
prevent an adversary that uses the parallel Sniper Attack from
circumventing the memory limitations, since memory con-
sumption from its multiple circuits in aggregate can still crash
the relay with relatively low overhead. Further, a maximum
queue length would obstruct future development. Considering
that the Tor Project anticipates custom transport protocols with
dynamic feedback mechanisms, a hard threshold on the queue
length may complicate migrations. Finally, we note that the
queue length limit defense enables a new attack in which
webservers could inject page objects that require new streams
and cause benign circuit queues to grow beyond the limit and
therefore be destroyed [25].

C. Adaptive Circuit Killing
To overcome the limitations of the previous defenses and

protect against the parallel Sniper Attack, we now develop
a more sophisticated, adaptive mechanism which is incre-
mentally deployable and has strong security properties. A
clever attacker against both of the previous defenses can use
a sufficiently high number of parallel circuits, each with a
short queue, to exhaust a relay’s memory. To prevent memory
exhaustion, a relay can begin and continue to kill circuits
while the total memory consumption remains above a critical
memory threshold. This technique will guarantee that a relay
process will not terminate due to an out-of-memory condition.

1) Selecting Circuits: The central question to be solved is
to decide which circuit should be killed if memory becomes
scarce. This question is not as simple to answer as it might
seem at a first glance. For instance, the most straightforward
approach would be to kill the circuit with the longest queue.
This, however, can be leveraged for a new attack: an adver-
sary could set up a large number of circuits with relatively
short queues on a given relay, so that this relay’s memory
consumption is very close to critical. Whenever a benign
circuit temporarily builds up a long queue, the threshold will
be exceeded and a benign circuit will be killed, while the
adversary’s (shorter) circuits will remain in place. The relay is
therefore manipulated in such a way that it will regularly kill
benign circuits—without any need for the attacker to spend
resources beyond initially setting up the circuits. While the
relay will not crash due to running out of memory, this is still
highly undesirable.

We must therefore aim for a decision criterion which
cannot be abused by an attacker to make a relay kill benign



circuits. Here, we propose to use the time of arrival of the
frontmost cell in the queue as the basis for our decision: if
memory becomes scarce, the circuit killing mechanism will
kill the circuit with the currently oldest cell at the front of
its queue. We require that each incoming cell be tagged with
a timestamp upon arrival at a relay, but note that this already
happens in the current versions of Tor in order to compute cell
delay statistics. Therefore, this mechanism is almost trivial to
implement. In the remainder of this section, we will argue why
it is also effective.

To gain an intuitive understanding, observe that an
attacker—in order to avoid that his circuit is killed when
memory becomes scarce—will have to keep the frontmost cell
in the circuit’s queue “fresh”. Since Tor circuit queues are strict
FIFO queues, the frontmost cell in any given circuit queue will
have spent more time in this queue than any other cell. The
attacker is therefore forced to continuously read from all his
circuits; otherwise, the cell at the attack circuit’s head will
soon be older than the frontmost cells in the queues of benign
circuits. Thus, by deriving bounds on the share of the relay’s
available bandwidth that is required in order to make a relay
kill a benign circuit, we will be able to prove the effectiveness
of the defense strategy.

2) Proof Sketch: Consider a specific relay which offers a
total bandwidth B for relaying Tor circuits. We assume that
B is available both in incoming and in outgoing direction
(substantially imbalanced incoming and outgoing bandwidths
do not make sense for a relay which essentially forwards all
incoming data). Furthermore, assume that this relay is currently
used by a total of n active circuits. We define an active circuit
as a circuit which currently has at least one cell in its queue.

If the outgoing bandwidth of the relay were assigned to
the active circuits in a perfectly fair manner, then each circuit
would experience an outgoing data rate of

rfair =
B

n
. (1)

Of course, in practice, the distribution will not be perfectly fair;
in fact, there are certain known artifacts with respect to inter-
circuit fairness [26]. But Tor relays include mechanisms which
will still result in bandwidth allocations to circuits that are
not arbitrarily unfair: there is a round-robin scheduler which
picks cells from circuit queues for transmission. Moreover,
circuits are carried over TCP connections, and TCP, too,
strives for a fair distribution of available bandwidth to multiple
connections. Both of these mechanisms are controlled by the
relay and are thus outside the sphere of influence of an attacker.
We will discuss the case of an attacker who is able to claim
a huge fraction of the relay bandwidth for himself later. For
now, we may reasonably assume that there is a fairness factor
0 < α ≤ 1 such that each active circuit receives a bandwidth
share of at least

r ≥ αB
n
. (2)

As we will see, the exact value of α is not critical for our
scheme, as long as an active circuit’s bandwidth share does
not become arbitrarily small for a longer period of time.

Now observe that benign circuits will typically have queues
which are bounded above by a relatively small size Q. Q is,
as discussed before, in the order of 1000 cells in the current
Tor protocol. Even if possible future protocol versions do not
enforce a hard upper limit, observe that high values of Q imply

long queues in the relays and thus poor circuit performance. In
practice, any reasonable future protocol design will therefore
also result in reasonable queue lengths. Note that while we
assume that such an upper bound Q exists in our analysis,
its value need not be known and is not used to decide which
circuit to kill. The exact value is thus much less critical than
in the previously discussed queue length defense.

Based on these assumptions we make a central observation
for our argument: if a benign circuit’s queue length does not
exceed Q and its mean rate is at least r, then the maximum
time for which a cell can remain queued is bounded above by

dmax =
Q

r
=
Qn

αB
. (3)

Therefore, if tnow is the current point in time, the cells at the
heads of all benign circuits’ queues will have a timestamp later
than tnow − dmax.

Note that an attacker using a single circuit will thus have
to make sure that the cell at the front of the queue does not
become older than dmax, i. e., the cell must have arrived at a
point in time later than tnow−dmax. Only then can the attacker
hope that a benign circuit will be killed instead of the attacker’s
circuit. If the attacker uses multiple circuits in parallel, the
same criterion must hold for all these circuits. Consequently,
all the cells in the attacker’s circuits must have arrived within
a time interval of length dmax.

Let the amount of free memory at the relay be denoted by
M . The attacker must (roughly) build up queues with a total
size of M bytes in order to make the relay kill circuits. Since,
as seen before, the attacker must inject all these cells within a
time span of length dmax, the attacker needs to send cells into
the relay at a mean rate of at least

ra =
M

dmax
=
M

Q
· αB

n
=
M

Q
· r. (4)

This is a factor of M/Q higher than the minimum outgoing
rate r which we assumed for benign circuits above in (2).
Observe that M/Q can easily be made a very large number
if sufficient memory is provided. We recommend an order of
magnitude of a few hundred megabytes, which is not a problem
on today’s relays (also on machines with a 32 bit address
space) and results in a factor M/Q in the order of 1000.

The attacker would therefore have to claim the incoming
relay bandwidth virtually entirely for himself in order to mount
a successful attack that results in a benign circuit being killed.
Although such an attack is possible if an adversary has enough
bandwidth, we consider it practically unrealistic for two key
reasons: first, fairness mechanisms are in place also on the
incoming side of a relay, making it very hard to achieve this in
the first place; and second (and much more important), observe
that consuming almost all of a relay’s bandwidth constitutes by
itself a far more devastating attack on the relay. An adversary
with enough bandwidth to succeed in this attack and cause a
relay to drop a few benign circuits would do more damage
using its bandwidth in a classic DoS attack, or in a selective
DoS attack [27] launched while running malicious relays. (A
bandwidth attack on a relay may in fact kill benign circuits
anyway, e. g., due to TCP connections timing out.)

3) Evaluation: We implemented the described out-of-
memory (oom) circuit killing as a Tor software patch. It
introduces a new configuration parameter MaxQMem, which
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Fig. 5: The circuit killer renders the Sniper Attack ineffective.

specifies the maximum amount of memory usable by Tor’s cir-
cuit queues. Every second the algorithm checks for violations
to this threshold and kills a circuit if necessary. We re-run the
experiments from Section III (the results of which are shown
in Figure 4a) with the oom circuit killer deployed on all relays,
using a MaxQMem of 500 MiB for the direct and 250 MiB for
the anonymous Sniper Attack (we chose different values solely
for a clearer presentation). The results in Figure 5 contrast the
memory consumption with and without our defense. With our
defense in place, it depicts a horizontal line around the config-
ured MaxQMem during the attack, showing that the consumed
memory is bounded by our new parameter. Closer examination
shows a microscopic oscillation around the threshold, i.e. first
surpassing it, then freeing memory, and then rising again due
to the other sniper circuits. It successfully protects the process
from arbitrarily increasing the memory consumption and thus
from being killed. During the experiments of the direct and
the anonymous attack the circuit killer intervened 43 and 32
times respectively, and in all cases only attacking circuits were
killed. Thus this defense resulted in a 100% identification rate
with no false positives.

The above results reveal insights into the interplay between
fairness and the robustness against the Sniper Attack when
such a mechanism is in place. An attacker needs a lower rate
and thus fewer resources either if the queues of benign circuits
become longer (higher value of Q) or if the distribution of relay
bandwidth to the circuits becomes less fair (smaller value of
α). Approaches that bound the queue lengths based on per-link
feedback [28], or improve transmission scheduling in Tor [26]
would therefore complement this defense strategy.

In summary, we believe that adaptive circuit killing based
on the queuing duration of the cells at the heads of the
queues constitutes a strong defense. Not only does it prevent
a relay from crashing due to insufficient memory, it is also
very resilient against being abused to make relays kill benign
circuits. It is simple to implement and easily deployable: the
mechanism need only be implemented on the relays, and it is
immediately effective on all relays where it is deployed.

VI. DEFENSE AGAINST DOS DEANONYMIZATION
Our proposed defenses against the Sniper Attack protect

against memory exhaustion but do not protect against brute
force network or CPU overloading. In addition, other DoS
attacks on Tor continue to be discovered [29], [30], and a Tor
relay is vulnerable to all DoS attacks on the host platform. The
Deanonymization DoS Attack can be performed using any DoS

attack on a Tor relay and thus is still a serious problem.
As a defense against it, we suggest that the Tor client limit

the number of relays that it chooses for the most sensitive
positions in its circuits. In the following we describe this
proposal in detail, and we evaluate its security and its cost
in terms of network performance.

A. Limiting Network Exposure
The key vulnerability in Tor path selection that we exploit

is that a client is willing to choose an unlimited number of
entry guards in a period of time. We propose the simple
fix of limiting the rate at which clients will add relays to
their entry guard list. In addition, hidden services make guard
discovery fast for the adversary by selecting new circuits for
each connection. To slow this down, we suggest that hidden
services use two levels of guards for their rendezvous circuits.

Our first proposed change to the path-selection algorithm
limits entry-guard selection. This change applies to any new
circuit, including exit circuits, rendezvous circuits, and intro-
duction circuits. It tries to maintain a certain number ag of
active guards, that is, guards that are currently responding. For
improved security, though, it puts a hard limit r on the number
of recent guards, that is, guards selected more recently than t
time ago. Specifically, the algorithm for circuit guard selection
is as follows: if there are at least ag active guards, return a
random one; else if there are fewer than r recent guards, select
new guards until either ag active guards or r recent guards exist
and then return a random active guard; else if there are any
active guards, return a random one; else return an error. Note
that guard expiration, that is, removal from the guard list, is a
separate procedure handled on a time schedule as Tor currently
does [17].

If no active guards are available but the rate limit has been
reached, circuit selection cannot proceed. There are a couple
of reasonable options for handling this at the user level: (i)
indicate to the user that Tor will be temporarily unavailable to
prevent a possible security attack but allow a manual override,
or (ii) use a configuration setting for desired security level to
determine if circuit construction should be halted.

This algorithm isn’t a strict generalization of Tor’s current
procedure. However, a close approximation is that currently
Tor uses ag = 2 and infinite r (Tor prefers 3 guards if possible
but only enforces that 2 are active). We consider a range of
parameter values in our evaluation. Of course, it only makes
sense to have the recent time t less than the expiration time.

Our second proposed change is for hidden services to use
middle guards for their entry guards when creating rendezvous
circuits. A hidden service H maintains a middle-guard set of
relays MG for each of its guards G. After choosing a guard
G for a new rendezvous circuit, H adds relays to MG as
necessary to maintain am active relays in the set. Then H
chooses an active middle guard randomly from MG to use in
the circuit. Middle guards expire either after some time chosen
uniformly from [e0, e1] or when their guard expires, whichever
occurs first.

The purpose of these middle guards is to increase the
time and effort needed for the discovery of hidden-service
entry guards, which is otherwise quite fast and cheap. Hid-
ing the identity of the guard helps prevent any DoS-based
deanonymization attack. In addition, it frustrates other guard-
based attacks. For example, currently a Tor adversary can very
easily monitor guard use by a targeted hidden service and



TABLE VI: Unavailability from Rate-Limiting Entry Guards
ag r t (days) Prob. Down Med. Down Time (hrs)
1 3 7 0.0004 77.2
1 4 28 0.0008 840.5
1 5 28 0 N/A
2 4 14 0.0004 10.9
2 5 28 0.0004 224.4

notice the use of a guard—even for just a short time—run
by an entity or in a jurisdiction for which the adversary can
easily set up surveillance or obtain logs.

The design choices in our middle-guard algorithm are made
specifically to prevent such attacks. We do not suggest apply-
ing rate-limiting to middle-guard selection, as an adversary
could then achieve the effect of the entry-guard DoS just by
attacking the am middle guards. We rather force him to attack
enough middle guards to observe the entry guard directly and
then be forced to attack it as well. We also do not suggest
extending the guard concept beyond the second circuit hop.
This would further reduce load balancing, and because guard
identification can be achieved via attacks other than DoS [19]–
[21], there is a limit to the benefit of raising its cost. Finally, we
only apply middle guards to rendezvous circuits because client
and introduction circuits already have longer lifetimes, and
middle guards increase circuit linkability, which is especially
a concern for client circuits. Thus we conservatively limit
this proposed change to where it seems like an unambiguous
improvement.

B. Analysis
Both entry-guard rate-limiting and the use of middle guards

sets up a tradeoff between security and performance. We
consider this tradeoff separately for each defense.

1) Entry-Guard Rate-Limiting: The main performance cost
from rate limiting entry guards is that a client may be left at
times with no active guards, even just due to benign guard
failure. Depending on how the limiting is implemented, this
could mean that Tor is unavailable to the user for a period of
time or that the user must consider if he is willing to allow a
less restrictive rate-limiting than is recommended by default.
To evaluate how often this might happen, we simulated rate-
limited guard selection. Our simulator selected a new guard
using the same constraints and weighting as Tor 6, and it used
data from Tor Metrics [4] to determine past network states. We
required that the desired number of active guards be available
at every time instant, a conservative approximation—especially
for individual users, who likely only use Tor intermittently.

Table VI shows results of simulations from February to
March 2013 (after two months all guards will have expired),
where each row represents 5000 simulations. For each setting
of ag and r, we include the largest t for which the fraction of
simulations with any period of guard unavailability was at most
0.001, if any. The table includes this probability of a period of
“down time” as well as the median length among such periods.
We can see that with even fairly strict rate limiting, a client
almost never experiences down time, and when it does it can
recover as fast as within half a day. Guard reselection due to
expiration happens at a rate of 1 relay every 15 days, and so
we could, for example, set a limit at double this existing rate
by setting ag = 1, r = 4, and t = 28 and still obtain very
high availability.

6The simulator is based on Tor 0.2.3.25.

With rate-limiting in place, it becomes much more difficult
for an adversary to push a target client into using a malicious
guard using a DoS attack. At most the client can be forced to
choose another r guards every t time. Suppose that the mali-
cious guards have probability p of being selected as a guard.
During the Deanonymization DoS Attack, the probability that
target client chooses a malicious relay within in the first i
periods of time t is 1−(1−p)ri ≈ rip, ignoring that p increases
slightly as the targeted relays are taken down. For example,
consider r = 4, t = 28 days, and suppose that p = 0.017 (this
is the top guard probability on 6/30/13). Let the adversary run a
DoS every t days against all observed guards of the target that
may be unexpired (the maximum expiration time is public).
Note that the DoS need only last briefly, and the attack works
even if relays come back online shortly afterwards; thus this
is not an implausible attack. The probability that the target
client selects the malicious guard with 3 months is 0.19. This
compares to virtual certainty without guard rate-limiting and
to a probability of 0.10 over the same time period without a
DoS attack just due to guard expiration.

Clearly, however, over time the DoS Deanonymization
Attack will eventually succeed. For users facing a persistant
adversary, the only option may be to limit guards to a deliber-
ately chosen set using the relevant Tor configuration options.
We can also imagine a more sophisticated automated defense
scheme in which multiple guard failures in a short time period
are handled with increasing suspicion, but we leave such an
improvement to future work.

2) Middle Guards: A potentially significant performance
issue with the use of middle guards is that traffic will not be
load balanced as effectively because: (i) the capacity of an
entry guard is higher than the capacity of its middle guards;
(ii) traffic from different services gets concentrated by chance
on middle-relay “hot spots”; or (iii) relays join the network
but aren’t chosen quickly as middle guards.

(i) can be mitigated by setting am large enough. By
looking at the recent 6/30/2013 consensus as an example,
we observe that the observed bandwidth of relays weighted
by their probability of being selected as an entry guard is
9669.89 KiB/s, and the observed relay bandwidth weighted
by the probability of selection as a middle relay is 7721.50
KiB/s. Therefore we could prevent middle-guard bottlenecks
in expectation by setting am ≥ 2. In addition, load from all
traffic other than hidden services would be load balancing as
usual, making the capacities available to hidden-service traffic
even more similar between guard and middle relays.

(ii) and (iii) can both be mitigated by making the average
middle-guard expiration short enough that hot spots don’t
develop and new relays are quickly used. Middle guards
need only slow down guard discovery to the speed of other
known methods for identifying guards, such as throughput
fingerprinting [20] or the long-path congestion attack [19],
which are each effective within hours. Their complexity and
resource cost is significantly higher than passive observation
at a relay, however, and so the speeds of the attacks need not
be equalized. Moreover, because most Tor traffic continues to
be load-balanced effectively, the net imbalance from middle
guards seems likely to be small.

The defense offered by middle guards is that an adversary
running malicious relays cannot quickly discover hidden-
service entry guards by sending the service many rendezvous
requests. Instead, an adversary trying to directly observe the



entry guard must wait to be selected either as the entry guard
itself or as a middle guard. With am middle guards and an
average expiration of e = (e0 + e1)/2 days, an adversary with
a probability p of being selected as a relay will expect to
wait (1/(1− (1− p)agam)− 1)e days until being selected as
the middle guard of some entry guard. Suppose that ag = 1,
am = 2, e0 = 30 and e1 = 60 (i.e. middle-guard expiration is
the same as current entry-guard expiration), and p = 0.021 (the
largest middle-relay selection probability on 6/30/13). Then
the expected time for the adversary to be selected as a middle
guard is 1037.79 days.

VII. RELATED WORK
Internet DoS attacks, those that make an Internet service

unavailable for longer than the intended waiting time [31], have
been extensively studied in the literature. Although unique in
this space, the Sniper Attack is most closely related to low
rate and slow read DoS attacks, which are variants of the
well-known SYN flood DoS attack [32], [33]. The goal of
these attacks is to exhaust resources in order to prevent the
victim from processing new incoming connection requests.
Transport layer low rate attacks [34] exploit TCP’s retrans-
mission timeout (RTO) dynamics. An attacker repeatedly sends
short high-rate packet bursts, which produce packet losses (i. e.,
timeouts) and thus make the victim double the RTO of other
TCP connections [35]. Transport layer slow read attacks [12]
send legitimate data requests, advertise a small TCP receive
window, and then slowly empty the receive buffer. As a result,
the victim’s send buffer remains full over a long time span, thus
blocking resources. Similar low rate and slow read techniques
have been described to exploit web server weaknesses on the
application layer [36]–[38]: sending partial HTTP requests or
slowly reading responses to requests will prolong the HTTP
session and extends the time in which the availability of the
web server’s connection pool is reduced.

Although the Sniper Attack shares the general goal of
preventing new incoming connections with low rate and slow
read attacks, it is achieved as a byproduct of the more direct
goal of exhausting system memory resources. In particular,
we consume memory from the application layer using valid
overlay network protocol messages without reading from the
victim. Therefore, our attack may be characterized as a no
read attack. Another important distinction is that, unlike the
attacks described above, our attack does not require several
simultaneous connections to the target and continued effort
in order to maintain the effect of the attack. Finally, our
attack destroys existing established connections in addition to
preventing new ones.

The Sniper Attack may also be categorized as a permanent
DoS attack, as it exploits application layer overlay network
protocol semantics to consume system memory and crash the
process. It is distinguished from similar attacks, such as the
Ping of Death [39], in that it utilizes valid messages to exploit
the protocol design. Fixing it is therefore not simply a matter
of correcting a broken protocol implementation.

Our attack is also similar to those that rely on misbehaving
receivers and optimistic ACKs to bypass flow control protocol
mechanisms [40]–[42]. In particular, the opt-ACK attack [41]
is similarly challenged to adjust a feedback signal rate in such
a way that it still appears legitimate to the communication
partner. Our attack differs in that we target application layer
protocols of overlay networks in order to exhaust the available

memory, rather than targeting network layer protocols for the
purposes of consuming the available bandwidth. As such, the
Sniper Attack is a no read memory exhaustion attack.

DoS attacks against the Tor overlay network have been
studied before, building upon a fundamental observation first
made by Syverson et al. [15]: if the first and the last relay
along a Tor path are compromised, an adversary can link the
source and destination by correlating traffic patterns. Øverlier
and Syverson first demonstrated how an adversary could lie
about the available bandwidth of compromised relays in order
to inflate the probability of being selected for a hidden service
circuit [18], and Bauer et al. extended the attack to increase
the probability of end-to-end compromise of general purpose
circuits [16]. Borisov et al. [27] describe a selective DoS attack
on Tor where malicious relays terminate circuits of which they
are a part but do not control both ends. This forces clients to
re-build circuits and similarly increases the probability of end-
to-end compromise by the adversary. Danner et al. show how
selective DoS attacks can be provably detected by exhaustively
probing potential paths [43], while Das and Borisov reduce the
cost of detection using probabilistic inference [44].

Resource consumption attacks that may also be used to in-
crease an adversary’s probability of end-to-end circuit compro-
mise include the Packet Spinning attack [30] and the CellFlood
attack [29]. In the Packet Spinning attack, the adversary
crafts special packets that cause them to continuously “spin”
through circular circuits composed of the target relays. In the
CellFlood attack, the adversary uses special handshake packets
to efficiently build a large number of circuits through the target
relays. Both of these attacks effectively make relays appear
busy by forcing them to spend resources doing unnecessary
work. Honest clients’ circuits through these relays will then be
more likely to time out, causing them to choose new circuits
containing malicious relays with higher probability. The Sniper
Attack also causes relays to perform unnecessary work, but
focuses on consuming memory resource rather than bandwidth
or computational resources.

Our hidden service deanonymization attack builds upon
techniques developed in previous work. In particular, Øverlier
and Syverson first identified that hidden services could be
located quickly and easily [18] because rendezvous circuits
are created on demand using new relays for each circuit. The
adversary could therefore continue to make new connections
to a hidden server until traffic correlation indicated that the
hidden server built a circuit that directly connected to one of
the adversary’s nodes. They further described how a hidden
server using guard nodes would still be insecure against an
adversary using the attack to identify the hidden server’s
guards and then DoS them: this process could be repeated until
one of the adversary’s nodes was chosen as a new guard. They
outlined layered guards, or guard nodes for the guard nodes,
to help defend against such an attack. Biryukov et al. showed
how the adversary may detect its position on a rendezvous
circuit by simply counting cells instead of performing traffic
correlation [23]. Finally, Øverlier and Syverson introduced
Valet Service nodes to improve the resilience of introduction
points against DoS attacks [45].

VIII. CONCLUSIONS AND FUTURE WORK
In this paper we presented a novel and destructive DoS

attack against Tor that may be used to anonymously disable
arbitrary Tor relays by exploiting the protocol’s reliable end-



to-end data transport. We outlined several ways to carry out
the Sniper Attack and assessed its resource and time profiles
in large scale simulations. We performed an in-depth security
analysis, showing how the attack may be used to deanonymize
hidden services. We developed a defense that identifies and
kills malicious circuits in out-of-memory (oom) situations
and showed that it renders the attack ineffective. Finally, we
suggested alternative guard and path selection policies that
enhance Tor users’ security.

Although the Sniper Attack is tuned for Tor, our mecha-
nisms may generalize to systems that do hop-by-hop reliability
and end-to-end flow control. We leave it to future work to
analyze the extent to which this generalization applies. Further,
although our defenses prevent memory exhaustion, they do not
stop the Sniper Attack from consuming a large amount of Tor’s
bandwidth capacity at low cost. Future work should consider
this and other bandwidth consumption attacks and defenses
against them.
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