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Abst rac t .  Consider a situation in which the transmission of encrypted 
messages is intercepted by an adversary who can later ask the sender to 
reveal the random choices (and also the secret key, if one exists) used in 
generating the ciphertext, thereby exposing the cleartext. An encryption 
scheme is deniable if the sender can generate 'fake random choices' that 
will make the ciphertext 'look like' an enczyption of a di~erent cleartext, 
thus keeping the real cleartext private. Analogous requirements can be 
formulated with respect to attacking the receiver and with respect to 
attacking both parties. 
In this paper we introduce deniable encryption and propose constructions 
of schemes with polynomial deniability. In addition to being interesting 
by itself, and having several applications, deniable encryption provides a 
simplified and elegant construction of adaptirely secure multiparty com- 
putation. 

1 I n t r o d u c t i o n  

The traditional goal of encryption is to  main ta in  the privacy of communicated 
data  against passive eavesdroppers. T h a t  is, ~ s u m e  that  Alice wants to com- 
municate private information to Bob over a channel where Eve can eavesdrop. 
Alice obtains Bob's (public) encryption key of an asymmetr ic  encryption scheme 
and uses it, together with local randomness,  to encrypt  her messages. Now only 
Bob, who possesses the decryption key, should be able to decrypt. Semantic se- 
curity [15] captures the security requirements  tha t  this setting imposes on the 
encryption function. Basically, semantic security means that  Eve learns nothing 
from the ciphertexts she hears: whatever  she can compute  having heard the ci- 
phertexts she can also compute from scratch. It  follows that  Alice must use local 
randomness in order to achieve semantic  security. 

While (passive) semantic security appropr ia te ly  captures the security needed 
against passive eavesdroppers, there are sett ings in which it falls short of pro- 
viding the desired degree of protection. Such settings include protection against 
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chosen ciphertext attacks (e.g., [17, 18]), non-malleable encryption [8], and pro- 
tection against adaptive adversaries [7]. 

We investigate the additional properties required to protect the privacy of 
transmitted data in yet another hostile setting. Assume that the adversary Eve 
now has the power to approach Alice (or Bob, or both) af/er the ciphertext 
was transmitted, and demand to see all the private information: the cleartext, 
the random bits used for encryption and any private keys Alice (or Bob) have. 
Once Alice hands over this information, Eve can verify that the cleartext and 
randomness provided by Alice indeed mat~.h the transmitted ciphertext. Can the 
privacy of the communicated data be still somehow maintained, in face of such 
an attack? 

We first concentrate on the case where Eve attacks only Alice in the above 
way. Certainly, if Alice must hand Eve the real cleartext and random bits then 
no protection is possible. Also if Eve approaches Alice before the transmission 
and requires Alice to send specific messages there is no way to hide information. 
However, in case Eve has no direct physical access to Alice's memory, and Alice 
is allowed to hand Eve fake cleartext and random bits, is it possible for Alice 
to maintain the privacy of the transmitted data? That is, we ask the following 
question. Assume Alice sent a ciphertext e = E(ml , r ) ,  where ml is some mes- 
sage, E is the public encryption algorithm and r is Alice's local random input. 
Can Alice now come up with a fake random input r' that will make e 'look like' 
an encryption of a different message m2? We call encryption schemes that have 
this property deniable. 

The following valid question may arise at this point: if Eve has no physical 
access to Alice's memory, then why should Alice present Eve with any data 
at all? That is, why not have Alice tell Eve: 'Sorry, I erased the cleartext and 
the random bits used'. Indeed, if Eve will be willing to accept such an answer, 
then deniable encryption is not needed. But there may well exist cases where 
being able to provide Eve with convincing fake randomness will be valuable to 
Alice. (Presenting convincing data is almost always more credible than saying 'I 
erased', or 'I forgot'.) In fact, there may be cases where Alice is required to record 
all her history including the randomness used, and can be punished/prosecuted 
if she claims to have destroyed the "evidence", i.e. any part of her history. 
Furthermore, the mere fact that  Alice is able to 'open' any ciphertext in many 
ways makes it impossible for Alice to convince Eve in the authenticity of ar~y 
opening. This holds even if Alice wishes to present Eve with the real data. In 
this sense, the privacy of Alice's data is protected even from the ~ture behavior 
of Alice herself. 

Standard encryption schemes do not guarantee deniability. Indeed, typically 
there do not exisg two different messages that may result in the same ciphertext 
(with any random input). In fact, encryption is often conceived of as a com- 
mit$ing process, in the sense that  the ciphertext may serve as a commitment to 
the cleartext. (This is a common use for encryption schemes, e.g. in [13, 14].) 
Deniable encryption radically diverges from this concept. 

D~niable encryption may seem impossible at first glance: consider a cipher- 
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text c sent from Alice to Bob. If, using two different random choices, Alice could 
have generated c both as an encryption of a message ml and as an encryption 
of a different message, m2, then how can Bob correctly decide, from c alone, 
whether Alice meant to send ml or m2? A more careful inspection shows that 
such schemes can indeed be constructed, based on trapdoor information unavail- 
able to Eve. 

Deniable encryption has applications to the prevention of vote-buying in 
electronic voting schemes [4, 10, 11, 19], storing encrypted data in a deniable 
way, and uncoercible multiparty computation [5]; it also yields an alternative 
solution to the adaptive security problem [7]. We elaborate on these applications 
in the sequel. 

We classify deniable encryption schemes according to which parties may be 
coerced: a sender-deniable scheme is resilient against coercing (i.e., demanding 
to see the secret data) of the sender of the ciphertext; receiver-deniable and 
sender-and-recelver-deniable schemes axe defined analogously. We also distinguish 
between shared-key schemes, in which the sender and receiver initially share 
some information, and public-key deniable encryption schemes, in which no prior 
communication is assumed. Another issue is the time at which the coerced party 
must decide on the fake message: at time of attack (preferable) or at time of 
encryption. 

Let us informally sketch the requirements for a one-round public-key, sender- 
deniable, bit-by-bit encryption scheme (Section 2 contains a more general defi- 
nition). Let EL be the sender's encryption algorithm with public key h. First, a 
deniable encryption scheme should be semantically secure in the sense of [15]. 
In addition we require that the sender have a (publicly known) faking algorithm. 
Given a bit b, a random input r, and the resulting ciphertext c = E~(b, r), the 
faking algorithm generates a fake random input p = r r, c) that cmakes c look 
like an encryption of b'. That is, given b, p, c, the adversary should be unable to 
distinguish between the following cases: 
(a) p is uniformly chosen and c - E~(b, p) 
(b) c was generated as c :- E~(b,r)  where r is independently and uniformly 
chosen, and p : r r, c). 
We say that  a scheme is 6-deniable if the adversary can distinguish between cases 
(a) and (b) with probability at most 6. 

We construct a sender-deniable public-key encryption scheme based on any 
trapdoor permutation (Section 3). However, our scheme falls short of achiev- 
ing the desired level of deniability. Tha t  is, while we can construct a 6-deniable 
scheme for arbitrarily small 6, the length of the ciphertext is linear in 1/6. 
Consequently, if we want 6 to be negligible, we end up with ciphertexts of 
super-polynomial length. (The semantic security of our scheme against passive 
eavesdroppers holds in the usual sense.) We present evidence that  constructing 
substantially better one-round schemes requires a different approach (Section 4). 

We also consider a more flexible notion of deniability than the one sketched 
above. An encryption scheme for encrypting a single bit can be generally viewed 
as defining two distributions on ciphertexts: a distribution To of encryptions of 
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0, and a distribution 2"1 of encryptions of 1. Here, in contrast, the sender chooses 
the ciphertext according to one of four distributions, To, T1, Co, C1. Distribution 
Tb is used by a sender who wishes to send the binary value b and does not wish to 
have the ability to open dishonestly when attacked. Distribution C, is also used 
to send the bit value b, but  by a sender who wishes to preserve both the ability to 
open "honestly" and the ability to open dishonestly when attacked. (This choice 
can be made at t ime of at tack.)  In particular,  if the sender encrypts according to 
distribution C~ then, when at tacked,  the sender can appear to have chosen either 
from To or T1. This alternative not ion allows us to construct efficient deniable 
schemes with negligible 6. 

Section 6 shows, via simple constructions,  how to transform any sender- 
deniable encryption scheme into a receiver-deniable scheme, and vice-versa. We 
also show how a scheme resihent against corrupting both the sender and the 
receiver can be constructed based on a scheme resilient against corrupting the 
sender. This last construction requires the help of other parties in a network, 
and works as long as at least one other party remains unattacked. In Section 5 
we review some shared-key deniable schemes. 

APPLICATIONS AND RELATED WORK A natural application of deniable en- 
cryption is to prevent coercion in electronic secret voting schemes [10]: a coercer 
may offer bribe in exchange for proof of a person's vote, after hearing the cor- 
responding ciphertext. The coercion problem in the context of voting has been 
studied in the past [4, 19, 11]. However, these previous works assume that, for a 
crucial part of the conversation, the communicating parties share a physically se- 
cure channel; thus, the coercer hears no ciphertext and the 'deniability problem' 
disappears. 5 Deniable encryptions may be incorporated in these works to replace 

these physical security assumptions. (One still has to make sure, as before, that 
the voters are not coerced pr/or to the elections.) 

Based on the public-key, sender-deniable construction presented here, [5] de- 
scribe a general multiparty protocol permitting a set of parties to compute a 
common function of their inputs while keeping their internal data private even 
in the presence of a coercer. 

Finally, our work on deniable encryption provides a conceptually simple and 
elegant alternative solution to the problem of general secure multiparty com- 
putation in the presence of an adaptive adversary - one that chooses whom to 
corrupt during the course of the computation, based on the information seen as 
the execution unfolds. Protocols for securely computing any function in a mul- 
tiparty scenario in the presence of a non-adaptive adversary were shown in [14]. 
Almost a decade passed before the restriction to non-adaptive adversaries was 
lifted [7]. s These protocols are based on another type of encryption protocol, 

s In [11] a slightly different physical security assumption is made, namely that the 
random choices used for encryption are physically unavailable. The result is the 
same: the 'deniability problem' disappears. 
[9, 3] obtain solutions for this problem under the assumption that the parties are 
trusted to keep erasing past information. Such solutions are unsatisfactory in a set- 
ting where parties aren't trusted since erasing cannot be externally verified. Further- 
more, the physical design of computer systems makes erasing information difficult 
and unreliable [16]. 



94 

called non-committing encryption. Non-committing encryptions have the same 
flavor as deniable encryptions, in that there exist ciphertexts that can be opened 
as encryptions of, say, both q' and '0'. However, non-committing encryptions are 
strictly weaker than deniable ones. For example, in non-committing encryptions 
the parties z~sing the scheme are, in general, not able to generate ciphertexts 
that can be opened both ways; such ciphertexts can only be generated by a sim- 
ulator (which is an artifact of the [7] model). In contrast, in deniable encryption 
each ciphertext generated by parties using the scheme has unique decryption, 
and at the same time can be opened in several ways for an adversary (thus, 
the non-committing encryption scheme in [7] is not deniable). The key insight is 
that any deniable encryption scheme resilient against attacking both the sender 
and the receiver is non-committing. Indeed, applying the transformation of Sec- 
tion 6 to the basic scheme described in Section 3 yields a complete solution to 
the adaptive security problem. See [6] for more details. 

2 D e f i n i t i o n s  

Let us first recall the definition of computational distance of distributions. Here 
and in the sequel a function 6 : N --* [0, I] is negligible if it approaches zero faster 
than any polynomial (when its argument approaches infinity). 

Definition1. Let .4 = {A,~},~eN and B = {B~}neN be two ensembles of prob- 
ability distributions, and let 6 : N --* [0, 1]. We say that .4 and B are 6(n)- 
close if for every polynomial time distinguisher D and for all large enough n, 
[Prob(D(A,~) = i)- Prob(D(B,~) = i)[ < 6(n). 

If 6(n) is negligible then we say that .4 and B are computationally indistin- 
guishable and write ,4 ~ B. 

2.1 Public-key encryptlon 

Consider a sender S and a receiver R .that, a priori, have no shared secret in- 
formation. They engage in some protocol in order to transmit a message from 
S to R. (If a standard public key encryption scheme is used then this proto- 
col may consist of the receiver sending his public encryption key to the sender, 
who responds with the encrypted message.) Intuitively, we desire: (1) the re- 
ceiver should be able to decrypt the correct value (except, perhaps, with negligi- 
ble probability of error); (2) the protocol should be semantically secure against 
eavesdroppers; and (3) the sender should have a faking algorithm ~b such that, 
given (ml, ~'s, c, m2) (where rnl is the transmitted message, rs  is the sender's 
random input, c is a transcript of the conversation between S and R for trans- 
mitting rr~t, and rn2 is the required fake message), ~ generates a fake random 
input for the sender, that makes c look like a conversation for transmitting rn2. 
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More precisely, let M be the set of all possible messages to be sent from S to 
R (M can be {0, 1}' for some s). Let ~r be a protocol for transmitting a message 
rr~ E M from S to R. Let COM,(m, rs ,  rR) denote the communication between 
S and R for transmitting m, when S has random input rs and R has random 
input rR. Let coM~ (ra) denote the random variable describing COM~ (m, rS, rR) 
when rs and rR are uniformly and independently chosen. 

Def in i t ion2.  A protocol ~r with sender S and receiver R, and with security 
parameter n, is a 6(n)-sender-deniable encryption protocol if: 

Correctness: The probability that  R's  output is different than S's input is neg- 
ligible (as a function of n). 

Security: For any ml, m2 E M we have coM~(ml) ~ coM,(m2). 
Deniability: There exists an efficient faking algorithm $ having the following prop- 

erty with respect to any ml,  ra2 E M. Let rs,  rR be uniformly and indepen- 
dently chosen random inputs of S and R, respectively, let c - coM,(m1, rs, rR), 
and let ?s = $(ml, rs,  c, m2). Then, the random variables 

(m2, rs, COM, (mr, rs,  rR)) and (m2, rs,  coM~ (m2, rs, rR)) (1) 

are 5(n)-close. 

The right hand side of (1) describes the adversary's view of an honest encryption 
of m2 according to protocol 7r. The left hand side of (1) describes the adversary's 
view when c was generated while transmitting ml, and the sender falsely claims 
that c is an encryption of m2. The definition requires that the adversary c~nnot 
distinguish between the two cases with probability more than 6(n). 
REMARKS: 1. When the domain of messages is M = {0, 1} the definition may 
be simplified. In the sequel we concentrate on such schemes, encrypting one bit 
at a time. 
2. Definition 2 requires the parties to choose new public keys for each message 
transmitted. The definition can be modified in a natural way to capture schemes 
where a 'long-lived' public key is used to encrypt several messages, requiring the 
sender to be able to 'fake' each message independently of the other messages 
encrypted with the same public key. The scheme described in the sequel indeed 
enjoys this additional property. 
3. Schemes in which the coerced party chooses the fake message m2 at time of 
encryption are called plan-ahead deniable encryption schemes. Some modifica- 
tions of the constructions described below yield plan-ahead deniable encryption 
schemes with negligible 6(n). 

Next we define a somewhat weaker notion of deniability, called flexible deni- 
ability. 

Defini t ion3.  A protocol ~r with sender S and receiver R, binary Preserve pa- 
rameter P, and security parameter n, is a 6(n)-flexible-sender-deniable encryption 
protocol if: 
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Correctness: The probability that R's output  is different than S's input is neg- 
ligible (as a function of n). 

Security: For any rat, ra2 E M and for any P E {T, C} we have COM,~(P, ral) ~, 
COM. (P, ra2) 
(encryptions of rat and ra2 are indistinguishable independent of P). 

Weak Oeniability: There exists an efficient 'faking' algorithm r having the fol- 
lowing property with respect to any rat, m2 E M. Let rs,  rR be uniformly 
chosen random inputs of S and R, respectively, let c = COM,~(C, rat, rs,  ra), 
and let rs  = r rs,  c, m2). Then, the random variables 

(m~, rs,  c) and (rn2, r~, COM,r (T, ra2, r~, r~)) (2) 

are 6(n)-close, where r~, r~ are independent, uniformly chosen random in- 
puts of S and R, respectively. 

The left-hand side of Equation 2 describes the view of the adversary when the 
sender, having preserved the ability to open dishonestly when sending rat, opens 
with value ra2 (which might or might not equal mr).  The right-hand side of 
Equation 2 describes the adversary's view when the sender, not having preserved 
the ability to open dishonestly, opens an encryption of ra2. 

Schemes resilient against attacking the receiver, or simultaneous attack of 
both the sender and the receiver, are defined analogously. They appear in [6]. 

2.2 Sha red -key  e n c r y p t i o n  

In a shared-key scenario, the sender and receiver share a random, secret key 
about which the adversary is assumed to have no a priori information. Con- 
sequently, here the parties can also present the adversary with a fake shared 
key, on top of presenting fake random inputs. This is captured as follows. The 
communication between the parties now depends also on a shared key k, and is 
denoted COM,(m, k, rs, rR) (where ra, rs ,  r a  are the same as before). Below we 
define sender-deniability. 

Def in i t ion4 .  A protocol lr with sender S and receiver R, and with security 
parameter n, is a shared-key 6(n)-sender-denlable encryption protocol if: 

Correctness: The probability that R's output  is different than S's input is neg- 
ligible (as a function of n). 

Security: For any rat, m2 E M and for a shared-key k chosen at random, we have 
COM.(rat, k) ~ COM.(ra2, k). 

Deniabillty: There exists an efficient 'faking' algorithm r having the follow- 
ing property with respect to any rni, ra2 E M. Let k, rs,  rR be uniformly 
chosen shared-key and random inputs of S and R, respectively, let c - 
coM,(rat ,  k, rs, rR), and let (k, Fs) -- r k, rs,  c, ra2). Then, the random 
variables 

(ra2, k, ~s, c) and (ra2, k, rs, COM~ (ra2, k, rs,  rR)) 

are 6(n)-close. 
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Note that Definition 4 also covers the case where the same key is used to 
encrypt several messages: let m i  (resp., ra2) in the definition denote the concate- 
nation of all real (resp., fake) messages. In Section 5 we mention some shared-key 
schemes. 

3 Public-key Deniable Encryption 

OVERVIEW. We describe two public-key deniable encryption schemes. The first, 
called the basic scheme, is only a partial solution to the problem. We use it as a 
building-block to construct our main scheme. (It can also be used to construct 
a non-committing encryption scheme, as described in [6].) Our main scheme, 
called the Parity Scheme, is ~-sender-deniable according to Definition 2. Roughly 
speaking, this means tha t  the probabili ty of successful attack vanishes linearly in 
the security parameter. (By a simple renaming of parameters this scheme can be 
regarded as 0-sender-deniable for any c > 0. Yet, the probability of successful 
attack vanishes only linearly in the amount  of work invested in encryption and 
decryption.) 

The schemes are sender-deniable. Receiver-deniable and Sender-and-receiver- 
deniable schemes can be constructed from these using the techniques of Section 6. 
Our schemes encrypt one bit at  a time. Here they are described in the standard 
terms of encryption and decryption algorithms. In terms of Definition 2, the 
interaction consists of the receiver sending the public encryption key to the 
sender, who responds with the encrypted message. 
THE BASIC APPROACH. Our schemes are based on the following simple idea. 
Assume that  the sender can pick an element in some domain either randomly, 
or according to some pse~dor~ndom distribution. Assume further that the re- 
ceiver, having some secret information, can tell whether the element was chosen 
randomly or pseudorandomly; other parties cannot tell the difference. Then, the 
sender can proceed as follows: to encrypt a 1 (resp., 0) send a pseudorandom 
(resp., random) element. The receiver will be able to decrypt correctly; but if 
a pse~dorandom element e was t ransmit ted,  then when attacked the sender can 
claim that  e was randomly chosen - -  and the adversary will not be able to tell 
the difference. 

Here the sender could fake its message only in one direction (from 1 to 0). 
Using simple tricks one can come up with schemes that  allow faking in both 
directions. We now describe the schemes in detail. 
TRANSLUCENT SETS. Our schemes are based on a construct that can be infor- 
mally described as follows. (Formal definitions can be extracted from this descrip- 
tion.) We assume that  there exists a family {8~}teN of sets, where St C {0, 1} ~, 
together with secret ' t rapdoor information '  dr, such that:  
1. St is small: [St[ _( 2 ~-~ for some sufficiently large k(~). 
2. It is easy to generate random elements z E ~qt, even without the secret d~. 
3. Given z E {0, 1} * and dt it is easy to decide whether z E S~. 
4. Without dr, values chosen uniformly from 8~ are indistinguishable from values 

chosen uniformly from {0, i} ~. 
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We first present two simple constructions of translucent sets. Both use a trap- 
door permutation f : {0, 1} s --* {0, 1} s, and its hard-core predicate/3 : {0, 1} s -* 
{0, I} (say, use the Goldreich-Levin predicate [12]). 
Construction I: Let t = sk. Represent each z E {0,1} ~ as a vector z = 
zi . . .z~ where each zi E {0, I} ~. Then let 8t : {z i . . . z~  E {O,l}Sk[Vi = 
l..k, B(/-t(z~)) -- 0}. Here [S, I ~ 2(s-t) ~ -- 2 '-~. 

Construction If: Let t : s + k. Represent each x E {0, I} t as z - Zo, bt...b~ 
where ~0 E {0, 1}' and for i >_ i each bi E {0, I}. Then let S~ : {z0, bt...bt e 
{0, I} s+t l Vi = l..k, B(f-i(Zo)) = b~}. Here lS, l = 2 = 2 
It is easy to verify that both constructions satisfy requirements 1-4. Construction 
II is more efficient in that, given a trapdoor permutation on {0, 1} ~, the length 
of z is only t -- s + k instead of t = sk. 

A third construction relies on the latticed-based public-key cryptosystem 
described in [2]. Roughly speaking, the secret information is an n-dimensional 
vector u of length at most 1. Let/C denote the cube 2"l~ where U (") is the 
n-dimensional unit cube. The vector u induces a collection of (n- 1)-dimensional 
hyperplanes as follows: for integer i the i~h hyperplane is the set of all vectors 
v whose inner product with u is equal to i. Let X be the intersection of the 
hyperplanes with/C. The public key consists of a collection of m -- n c points 
vt,..., v,~, each of which is a small perturbation of a randomly chosen point 
in X. The encryption procedure makes use of a certain parallelepiped 7 ), com- 
putable from the public key. An encryption of zero is a point chosen uniformly 
at random from K N 2 -~:r'~. An encryption of one is ~'~i~=t 6~v~ rood ~P, where 
each 6~ ER {0, i}. Thus, encryptions of one are close to hyperplanes in X, while 
encryptions of zero, typically, are not. Decryption of the ciphertext is performed 
by computing the distance of the ciphertext from the nearest hyperplane in X: 
if the distance is sufficiently small the ciphertext is decrypted as one (there is 
a polynomial probability of error). This construction yields a translucent set in 
which t is the length of a ciphertext (t ~ n2), and, once the public key has been 
chosen, S~ is the set of encryptions of one, and 7~t is the set of encryptions of 
zero. 

THE BASIC SCHEME. The public encryption key is a method for generating 
uniformly at random a member of a translucent set S~ C {0, I} t. The private 
decryption key is the corresponding secret d. 
Encryption: To encrypt 1, send a random element of S~. To encrypt O, send a 
random element in {0, 1} ~. 
D e c r y p t i o n :  I f  the ciphertext z is in S~ then output  1. Else output O. 
O p e n i n g  an  e n c r y p t i o n  h o n e s t l y :  r e v e a / t h e  true random choices used. 
O p e n i n g  an  e n c r y p t i o n  d i s h o n e s t l y :  I f  the encrypted bit is 1, i.e., the ci- 
phertext z is a random element in S,, then cla/rn that z was chosen at random 
from {0, 1} ~ and thus z is an encryption o f  O. I f  the encrypted bit is 0 then Iying 
wi]] be infeasible since the ciphertext x is in St on]y with negligible probability 
2 -k.  Analysis: Correctness: An encryption of i is always decrypted correctly. An 
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encryption of 0 may be decrypted as 1 with probability 2 -t. Standard security 
against e~vesdroppers is straightforward. Deniability: the faking algorithm ~ and 
its validity are described above. Since lying is possible only in one direction, this 
is only a partial solution to the problem. Next we describe a scheme where lying 
is possible in both directions. 
THB PARITY SCHEME. Let S: C {0, i): be a translucent set. We call elements 
drawn uniformly from S (resp., from {0, I}') S-elements (resp., ~-elements). 
E n c r y p t l o n :  To encrypt 0 (reap., 1), choose a random even (resp., odd) number  
i E 0 , . . . ,  n. Construct a ciphertex't consisting of i ~q-elements followed by n - i 
~-elements.  
D e e r y p t i o n :  Output the parity of  the number of  elements in the received ci- 
phertext that belong to G. 
O p e n i n g  a n  e n c r y p t i o n  h o n e s t l y :  ReveM the reM random choices used in 
generating the ciphertext. 
Opening a n  e n c r y p t i o n  d i s h o n e s t l y :  Let i be the number chosen by the 
sender. The sender claims tha t  she has chosen i -  1 rather than i. (Conse- 
quently, the parity of i flips.) For th/s, she claims that the ith element in the 
ciphertext is an T~-element (whereas it was chosen as an S-element). If  there are 
no ~q-elements (i.e., i = 0) then cheating fails. 

T h e o r e m  5. Assume trapdoor permutations ezisL Then the Parity Scheme is a 
4/n-sender-denz'able enc~yption scheme. 

P r o o f  ( S k e t c h ) :  The probabil i ty  of erroneous decryption is at most n2 -~. Se- 
curity of the Pari ty Scheme against  eavesdroppers that  see only the ciphertext 
is straightforward. We show deniability. Assume that  n is odd, and let c be an 
encryption of 1. Let i be the number  chosen for generating c. Then, i was chosen 
at random from 1, 3, ...n. Consequently,  the value i - 1 is uniformly distributed 
over 0, 2 .... , n - 1. Thus, when the sender claims that  she has chosen i - 1, she 
demonstrates the correct dis tr ibut ion of i for encrypting 0. Thus, cheating in this 
direction is undetectable (as long as S-elements cannot be distinguished from 
T~-elements). Assume now tha t  c is an encryption of 0. Thus i is chosen uni- 
formly from 0, 2, ..., n -  1. Now, i - 1 is distr ibuted uniformly in - 1 ,  1, 3, ..., n - 2 
(where - 1  is interpreted as "cheating impossible").  It is easy to verify that  the 
statistical distance between the dis tr ibut ion of i in the case of an honest opening 
(i.e., uniform on 1, 3, ..., n) and the distr ibution of { in the case of fake opening 
(i.e., uniform on - 1 ,  1, 3, ..., n - 2) is 4 /n .  It  follows that ,  as long as S-elements 
cannot be distinguished f rom k-e lements ,  cheating is detectable with probability 
at most 4/n. [] 

The Parity Scheme can be modified to let the sender first choose a vector 
v uniformly out of all vectors in {0, I~ '~ with the parity of the bit to be en- 
crypted. Next the ciphertext is constructed by replacing each I entry in v with 
an S-element, and replacing each 0 with an 7~-element. Here the probability of 
i = 0 (i.e., the probability of the case where cheating is impossible) is negli- 
gible. Now, however, the statistical distance between i's distribution in honest 
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/ '7 - .  
and fake openings grows to f2(~/~). A 'hybrid' scheme, omitted from this ab- 

stract, achieves both negligible probability of impossible cheating and probability 
O(1/n) of detection. 

The unique shortes~ vector problem for lattices is: =Find the shortest non~.ero 
vector in an n dimensional lattice L where the shortest vector v is unique in the 
sense that any other vector whose length is at most n'llvll is parallel to v." The 
unique shortest vector problem is one of the three famous problems listed in [1]. 
There, a random method is given to generate hard instances of a particular lattice 
problem so that if it has a polynomial time solution then all of the three worst- 
case problems (including the unique-shortest vector problem) has a solution. 
The cryptosystem in [2] outlined above is secure provided the unique shortest 
vector problem is hard in the worst case. From this and the proof of Theorem 5 
we have." 

T h e o r e m 6 .  Assume that the unique shortest vector problem is hard in the worst 
case. Then the Parity Scheme is a 4/n-sender-deniable enc~!/ption scheme. 

A FLEXIBLY DENIABLE SCHEME. Let To = {7~, 7~}, T1 = C1 = {S, 7~}, and 
c0 = { s ,  s ) .  
Encryp t lon :  To encrypt b without preserving the ability to open dishonestly 
(that is, if  Preserve = 0), send V 6a Tb. To encrypt b preserving the ability to 
open dishonestly (Preserve = 1), send V Ea Cb. 
Deeryp t ion :  Output the parity" of the number of elements in V that belong to 
S. 
Open ing  an enc ryp t ion  d r a w n  f r o m  Tb: Reread the true random choices 
used. 

Open ing  an enc ryp t ion  d r a w n  f r o m  Co as value  v: Let b be the number of 
elements in the ciphertext drawn from S . i f  v = 0 then claim that V was chosen 
as {TO, T~ }. I f  v = 1 then c/aim that V was chosen as {S, 7~}. 
Open ing  an enc ryp t ion  d r a w n  f r o m  Cl as value  v: If v = 0 then cladm 
that V was chosen as {~,T~}. I fv  = 1 then revea2 the read random choices used 
in generating V. 
Analysis: Security against eavesdroppers seeing only the ciphertext is straightfor- 
ward. The probability of erroneous decryption is at most 2 -~. Weak deniability 
with negligible 6(n) is immediate by inspection, assuming polynomial time in- 
distinguishability of S and 7~. 

4 E f f i c i e n c y  V s .  D e n i a b i l i t y  

In this section we describe an attack suggesting that  no one-round scheme of 
the type presented above can enjoy negligible 6(n). The attack works against all 
schemes that we describe as separable (the reason for the name will become clear 
shortly). Roughly, in a separable scheme the decryption key is the trapdoor of 
some translucent set S C {0, 1}t; a ciphertext consists of a sequence of elements 
yl .... Ym in {0, 1} t. The sender chooses some of the y~'s at random, and the rest 
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at random from S. The encrypted bit is encoded in the number and placement 
of the yi's that are in the translucent set 8. To fake the value of the cleartext 
the sender claims that one (or more) of the yi's was randomly chosen, whereas 
this y~ was chosen from S. 

For any separable scheme, and for each value b E {0, i}, one can compute the 
expected number of Vi'S in 8 in an encryption of b. Denote this number by Eb. 
Now, since the faking algorithm always decreases the number of yi's for which 
the sender claims to know the preimage, the adversary decides that the sender 
is lying if the sender claims to have sent b but the number of yi's which the 
sender claims to have chosen from S is less than Eb. It is shown below that this 
strategy succeeds with probability at least ;2(~). 

A more precise (and somewhat more general) description follows. 

D e f i n i t i o n  7 .  A -~-sender-deniable public key encryption scheme 7r is m-separable 
if there exists an efficient, deterministic classification algorithm C that, on any 
input p (interpreted as a claimed random input  of the sender), outputs a number 
C(p) E 1 , . . . ,  m. Furthermore: 

1. For a value p (interpreted as a random input for the sender), let p(b) be 
the random variable describing r p, e), where r is the sender's faking 
algorithm, b E {0, 1}, rR is the receiver's random input, and and e - 
coM,(b, p, rR) is the resulting communication.  Let EC(b)(p) denote the ex- 
pected value (over the choices of rR) of C(p(b)). 
Then for any value p such that  C(p) > 1, either EC(~ _< C(p) - 1 or 
EC(1)(p) <_ C(p) - I. 

2. If the sender's random input p satisfies C(p) = i then the faking algorithm 
fails, i.e. it outputs a special symbol denoting that no suitable fake random 
input was found. 

Claim 8 For any m-separable, ~--sender-deniable public key encryption scheme we 
have 2m > k. 

REMARKS: 

- Using the terminology of the above informal description of separable schemes, 
the coercer will use the classification algorithm that outputs the number of 
yi's which the sender claims to have chosen as S-elements. It follows that 
any such scheme with only m yi's is m-separable. 

- In all the n'~-separable schemes that  we know of, the length of the cipher- 
text grows linearly with m. This seems to be inherent in our approach for 
constructing deniable schemes. 

Proof. Consider an m-separable deniable scheme lr with faking algorithm r We 
show an Mgorithm A that  for some b E {0, 1} distinguishes between 

(b, r (b), COM~ (b, rs, rR)) and (b, rs, COM. (b, rs ,  rR)) (3) 
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with probability ~, where rs,rR axe random inputs for the sender and the 

receiver respectively, and r (b) = r rs, COM,r(b, rs, rR)). 
Let C be the classification algorithm. For b 6 (0, i}, let DC denote the 

distribution of C(rs) where rs is chosen at random from the domain of random 

inputs of the sender, and let DC (b) denote the distribution of C(r (b)) when ra 
is chosen at random. Let EC, EC (b) denote the expected values of DC, DC (b), 
respectively. It follows from Definition 7 that either EC - EC (~ >_ �89 or EC - 

EC(Z) > ! 
Let SD(DI,D2) denote the statistical distance between two distributions 

Dz, D2 over 1,..., rn, r and let El, E2 denote the corresponding expected values. 
It can be verified that IEI - E21 < rn-SD(Dz, D2). In our case this implies that 
either SD(DC, DC (~ > ~ or SD(DC, DC(X)) > -~.  

The distinguisher A is now straightforward. Assume that SD(DC, DC (~ > 
Then A distinguishes between (0, r(s), COM~(1, rs ,  ra))  and 2~'n" 

(0, rs, COM~(0, rs, rR)) as follows. Let Z C 1...m be the set of numbers that have 
higher probability under DC (~ than under DC. Then, given a triplet (0, p, c), 
first check that the ciphertext c is consistent with 0 and p. Next, if C(p) = 1 
then by Definition 7 above A can distinguish between the two distributions of (3). 
Otherwise, say that the triplet describes an honest encryption of 0 iff C(p) E Z. 
By definition of statistical distance, A distinguishes correctly with probability 
at least 1 (Since Z is a subset of 1...rn, it can be found by sampling.) y~- 

5 S h a r e d - k e y  d e n i a b l e  e n c r y p t i o n  

In this section we briefly remark on some shared-key deniable schemes. Cleaxly, 
a public-key deniable scheme is also deniable in the shared-key setting. Thus the 
public key constructions described in previous sections apply here as well. Yet 
better shared-key deniable schemes may be easier to find than public-key ones. 

A one-time-pad is a shared-key deniable encryption scheme: Assume that the 
sender and the receiver share a sufficiently long random string, and each message 
rn is encrypted by bitwise xoring it with the next unused [m[ bits of the key. Let 
k denote the part of the random key used to encrypt rn, and let c = m@ k denote 
the corresponding ciphertext. Then, in order to claim that c is an encryption 
of a message m' ~ m, the parties claim that the shared key is k' - c ~ m'. It 
is easy to verify that this trivial scheme satisfies Definition 4. Here the message 
m' can be chosen as late as at time of attack. However, using a one-time pad is 
generally impractical, since the key has to be as long as all the communication 
between the parties. 

Recall that in plan-ahead sender-deniability the sender chooses the fake mes- 
sage(s) at time of encryption. Although restrictive, this notion can be useful, 
e.g. for maintaining 'deniable records' of data, such as a private diary, that may 
be publicly accessible but is kept private using a deniable encryption scheme 
(alternative examples include a psychiatrist's or lawyer's notes.) The records are 

r That is, SD(D~, D2) = ~e* ..... [ProbD,(i) = ProbD~(i)l. 
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deniable if, when coerced to reveal the cleartext and the secret key used for en- 
cryption and decryption, the owner of the record can instead "reveal" a variety 
of fake cleartexts of her choice. 

Plan-ahead shared-key deniability is trivially solved: given l alternative mes- 
sages to encrypt, use I different keys, and construct the ciphertext as the con- 
catenation of the encryptions of all messages, where the ith message is encrypted 
using the ith key. When coerced, the party simply claims that the key he used 
is the one that corresponds to the message he wishes to open. 

One problem with this simple scheme is that the size of the ciphertext grows 
linearly in the number of different messages to be encrypted. It is possible (details 
omitted for lack of space) to transform any given shared key encryption to a 
deniable one, without any increase in the message length, and with a key of 
length 1 - } times the length of the message. The shared-key deniable schemes 
can also be used to make public-key deniable schemes more efficient by way 
of first sending (using public-key deniable scheme) a deniable shared key and 
then switching to a private-key (deniable) scheme. We omit the details from this 
abstract. 

6 Coercing the Sender  vs. Coercing the Receiver 

We describe simple constructions that  transform sender-deniable schemes into 
receiver-deniable schemes and vice-versa. If there are other parties that can help 
in transmitting the data, we also construct a sender-and-receiver-deniable scheme 
from any sender-deniable scheme. We describe the constructions with respect to 
schemes that encrypt only one bit at a time. Generalizing these constructions 
to schemes that encrypt arbitrarily long messages is straightforward. These con- 
structions apply to both shared-key and public-key settings. 
RECBIVBI~-DBNIABILITY FROM SBNDER-DBNIABILITY. Assume a sender-deniabl( 
encryption scheme .4, and construct the following scheme •. Let b denote the 
bit to be transmitted from S to R. First R chooses a random bit r, and invokes 
the scheme .4 to send r to S. (That is, with respect to scheme ,4, R is the sender 
and S is the receiver.) Next, S sends b ~ r to R, in the clear. 

If scheme ,4 is sender-deniable then, when attacked, R can convincingly claim 
that the value of r was either 0 or 1, as desired. Consequently R can claim that 
the bit b was either 0 or 1, at wish, and scheme B is receiver-deniable. 
SENDER-DENIABILITY FROM RECEIVER-DENIABILITY. ~N'e use the exact same 
construction. It is easy to verify that  if .4 is receiver-deniable then B is sender- 
deniable. 
SENDI~P~-AND-RECEIVER-DENIABILITY. Assume that S and R can use other 
parties Ii, ..., I,~ as intermediaries in their communication. The following scheme 
is resilient against attacking the sender, the receiver and some intermediaries, as 
long as at least one intermediary remains unattacked. 

In order to transmit a bit b to R, S first chooses n bits bi...bn such that 
Gibi -- b. Next, S transmits b~ to each intermediary I~, using a sender-deniable 
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scheme. Next, each I~ transmits b~ to R using a receiver-deniable scheme. Finally 
R computes ~ b i  = b. 

When an intermediary I~ is attacked, it reveals the true value of hi. However, 
as long as one intermediary I i remains unat tacked,  both S and R can convinc- 
ingly claim, when attacked, that  the value of b i (and consequently the value of 
b) is either 0 or 1. 

Note that  this scheme works only if the part ies  can 'coordinate their stories'. 
(This is further treated in [5].) 
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