Best Available

Copy
for all Pictures



AD/A-004 968

A SUBDIVISION ALGORITHM FOR COMPUTER
DISPLAY OF CURVED SURFACES

Edwin Catmull

Utah University

Prepared for:

Advanced Research Projects Agency

December 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE



UNCLASSIFIED

SECURITY CLASSIFICATION CF THIS PAGE (When Data Enl=red) A\D/A 00 4-7/ ?é ?

REPORT DOCUMENTATION PAGE BEF%%%DCISSEEE%;‘%N:ORM
[T, REPORT NUMBER 2. GOVT ACCESSION NO.| 3. REC(PIENT'S CATALOG NUMBER
UTEC-CSc-74-133
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
A SUBDIVISION ALGORITHM FOR COMPUTER DISPLAY Technical Report
OF CURVED SURFACES 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(a)
Bdidish Cataull DAHC15-73-C-0363
9. PERFORM'NG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Computer Science Department A CEME O e

University cof Utah

Salt Lake City, Utah 84112 ARPA Order #2477
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency December 1974
1400 Wilson Blvd. 1. NUMIER-%F PAGES
Arlington, Virginia 22209 ST <
14. MONITORING AGENCY NAME & ADDRESS(!{ dillerent from Controiling Ollice) 18. SECURITY CLASS. (ol thie report)
UNCLASSIFTEI
1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public
release and sale; its distribution is uniimited.

17. DISTRIBUTION STATEMENT (ol tha abatract entered in Block 20, i different from Report)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dezeriment of Commerce
Springlield, VA, 22151

16. SUPPLEMENTARY NOTES

(B s . 1 e e e,

Fractd Subst(l T CHANGE

19. KEY WORDS (Continue on reversa side il neceasary and Idantily by block numbar)

curved surfaces, surfaces, hidden-surface, subdivision, shaded nicture,

frame- -buffer, z- -buffer, patches bicubic patches ub1c subdivision,
mapping pictures, shadows

20. ABSTRACT (Continue on reverss sida |i necessary and identily by block numbar)

This report presents a method for producing computer shaded pictures of
curved surfaces. Three-dimensional curved patches are used, as .ontrasted
with conventional methads usins, polygons. The method subd1v1dcs a patch into
successively smaller subpatche= until a subpatch is as small as a raster-
element, at which time it can be displayed. In general this method could be
very time consuming because of the great number of subdivisions that must
take place; however, there is at least one very useful class of patches--the

R)) ‘52:”}’3 1473 EDITION OF 1 NOV 65 IS OBSOLETE ,

UNCLASSIFIED (4%

'c SECURITY CLASSIFICATION OF THIS PAGE (When Dafa Entered)

i s e e e e i s e e e o e R



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Jntered)

20. Abstract (Continued)

bicubic patch--that can be subdivided very quickly. Pictures produced with
the method accurately portray the shading and sjiihouette of curved surfaces
In addition, photographs can be 'mapped" onto patches thus providing a
means for putting textur: on computer-generated pictures.

¢

L

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)




A SUBDIVISION ALGORITHM FOR COMPUTER

DISPLAY OF CURVED SURFACES

by

Edwin Catmull

e Nv—

December 1974 UTEC-CSc-74-133

This research was supported by the Advanced Research Projects Agency of the

Department of Defence under Contract No. DAHCI5-73-C-0363 and Contract No.
F30602-70-C-0300.

Sl

D

|
—




TABLE OF CONTENTS

Abstract tii
Chapter 1  Introduction 1
Chapter 2 A General Algorithm for Displaying Curved Patches 4
Chapter 3  Subdividing a Cubic Curve 13
Chapter 4  Extension of Cubic Subdivision to Surfaces 22
Chapter 5 The Hidden Surface Problem 31
Chapter 6 Intensity 34

<

Chapter 7  Sampling, Rastering, and Aiiasing 40

Chapter 8 Conclusion 50
Appendix A The Bic;.u‘b'n'c‘ Equation 53
Appendix B Relationship of Correction Factors to Bszier Control Points 62
Appendix C Approximating the Bicubic Normal Equation 64
Appendix D Pictures 69
References 76
Acknowledgment 77

0D1473 78



ABSTRACT'

This report presents a method for producing computer shaded pictures of curved
surfaces. Three-dimensional curved patches are used, as contrasted with conventional
metho<s using polygons. The method subdivides a patch into successively smaller
subpatches until a subpatch is as small as a raster-element, at which time it can be
displaysd. In general this method could be very time consuming because of the great
number of . ubdiv sions that must take place; however, there is at least one very useful
class of patches — the bicubic patch - that can be subdivided very quickly. Pictures
produced with the method accurately portray the shading and silhouette of curved
surfaces. In addition, photographs can be "mapped” onto patches thus providing a

I means for putting texture on computer-generated pictures.

1. This report reproduces a dissertation of the same title submitted to the Department
of Computer Science, University of Ltah, in partial {ulfiliment of the requirements for
the degree of Doctor of Philosophy.
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CHAPTER ONE

INTRODUCTION

A method for cresting shaded pictures of curved surfaces is presented in this
report. A motivation for the method is that we wish to produce high quality
computer-generated images of surfaces and curved solid objects on a raster-scan
output device. We would not only like the images to accurately represent the surfaces
we choose but in addition w* would like control over shading and texture. There has
already been significant research directed toward these ends, especially on the
hidden-surface [1,2] and shading [3,4] aspects of the problem. All such methods must

must address the questions of how to model objects and then how to render them.

Polygons, and sometimes quadric patches, are used to model objects in current
shaded-picture methods . There sre some difficulties with using these simple pieces to
model or approximate free-form curved surfaces. Approximation with polygons gives
a faceted effect and a silhouette made up of straign’-line segments. Quadric patches
[5,6], while smooth in appearance, are not suitable for modelling arbitrary forms, since
they dor't provide enough degrees of freedom to satisfy slope continuity between

patches.

There are two significant methods used for reducing or eliminating the undesirable

visual effects that occur when polygons are used to approximate curved surfaces. The

first method for getting rid of the faceted effect is that of Henri Gouraud |3]. With

[,




e s e E e

this method a scalar light intensity valus is associated with each vertex of a polygon.
Gouraud does linear interpolation of the intensity value between vertices and then
subsequently across scan-lines. |f adjoining polygons have the same intensities at the
common vertices then this method yields continuous shading across the surface;
however, the first derivative of the shading is discontinuous. Gouraud’s method has
been implemented by different groups making shaded-pictures. It is a simple and
successful method but has a few shortcomings: the discentinuity of the derivative is
noticable (the "Mach band effect"), it is difficult to do highligh's, the shading is a‘fected

by the orientation of the polygon in the picture, and the silhouette is still made up of

straight-line segments.

The tecond method developed to improve the appear:ince of the polygon

approximation is that of Phong [4]. Since current methods of generating intensities for

—

polygon surfaces include calculating a surface normal at the ver(ices, Phong decided to

interpolate the entire surface narmal vector between vertices and edges instead of the

o

J scalar intensity values that Gouraud used. This yields a normal at every display point
which can be used to calculate the intensity. Although this normal may not be the
mathematically correct one, it is close enough to use for intensity and highlight
calculations. As Phong has noted, although there is still a discontinuity in the first
derivative of the shading, the discontinuity is smaller than for Gouraud’s method and
hence less noticeable. Phong’s method has been used to make some visually attractive

photographs, but the problem of straight-line segments at the silhouette still remains.

Curved surface segments or “"patches" can be used instead of polygons to model

free~form curved surfaces.

It such patches can be joined together with slope

e i R S LT e e



continuity across the bouncaries then a picture of a surface can be made to appear
"smooth" both ?n shading and at the silhouette. For patches to be useful in mouelling a
curved surface, techniques must be found for describing and manipulating the patches
and for connecting them together with slope continuity across boundaries. One such
patch is the bicublc patch, which is widely used (see Appendix A). Most cf the ideas in
this report will be applied to the bicubic patch, but this is not intended to imply a

limitation on generality.

Generating pictures of curved patches requires techniques for
1) establishing a correspondence between points on the surface and the elements of
the display raster,

2) rer~oving hidden or, more generally, the "not seen” parts of patches, and

3) calc stating light intensities to be displayed on the raster.
Chapter two will deal with the first item: it will present a technique for establishing the
correspondence between points on the surface ond the raster elements, Chapters
three and four will describe a specific method for quickly making the correspondence
when bicubic patches are used. Chapter five will deal with item two: it will discuss the
"hidden-surface” problem for patches. Item three -- calculating light intensities -- will

be discussed in chapters six and seven.




CHAPTER TWO

A GENERAL ALGORITHM FOR DISPLAYING CURVED PATCHES

An algorithm for establishing a correspondence between points on a patch and
raster elements is described in this chapter. It applies to patches and surface sections
in general, hence the algorithm presented will not be specific at the outset. Later on,
when a specific kind of patch is used, more detail will be given. Before presenting

that algorithm, however, some terms must be defined.

DEFINITIONS

A "raster-scan device" or "raster-display” is th2 device that we will consider for
final output of an image. The rectangular array of “dots" that is produced on a
raster-display is callead the ‘“raster.” Each dot will usually be called a
"raster-element.” The raster element covers a very small area of the raster; however,
it should not be thought of as a point. A row of raster-elements is a “"scan-line."
Scan-lines are usually produced in sequential order, termed “scan-line-order.” Each
raster-element has a brightness that is determined by the intensity value for that
raster-element. The process of taking the intensity valuss and putiing the dots on the

raster with the corresponding intensities is called “displaying.”

3 i " .-
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A “frame-buffer" is a memory large enough to store all of the intensity values
prior to displaying. An intensity value in the frame-buffer can be addressed in a way
that corresponds to the position where the value will be displayed on the raster.
Locations In the frame-buffer will also be called “raster-elements” since there is a
strong one-to-one correspondence between those locations and the geometric
locations of the raster-elements and because the distinction between the two is not
important here. For our purposes, the frame-buffer is made with random-access
memory so that values can be written into it in any order, as opposed to scan-line
crder only. The size of the frame-buffer is determined by the resolution of the
raster-display and the number of "bits" used to store intensity values. For example, if
the raster has 512 scan-lines and 512 raster-elements per line and each element has 8
bits for the intensity value, then the frame-buffer requires a storage capacity of
512x512x8 bits. For the most part we will ignore the raster-display and address

ourselves to the issue of putting the right intensity values in the rasisr-elements of

the frame-buffer.

The terms relating the original description of an object to its image will now be
defined. "Object-space" is the three-dimensional space in which objects will ordinarily
he described. In order to generate realistic pictures of objects we make a perspective
transformation [1,7,8] of the object from object-space to “image-space." Image-space
is also three-dimensional but the objects have undergone a perspective distortion so
that an orthogonal projection of the object onto the x-y plane would result in the
expectad perspective image. We want the image-space to be three-dimensional in

order to preserve depth information which will later be used to solve the
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hidden-surface problem. The orthogonal projection of the image-space object onto
the x-y plane is called the “projected image." That part of the v~y plane which will be

associated with the raster is called the "screen.”

We must define the relationship between the image-space and the raster in order
to transfer information from the projected image to the raster. Recall that the screen
Is the portion of the x-y plane of the image-space that corresponds to the raster. The
area of the screen is divided into small squares called "raster-element squares." There
is, of course, a one-to-one correspondence between raster-element squares and raster
elements. The center of each rastar-element square will be called a "sample-point."

A diagram depicting the reiationships of the above terms is shown in figure 2-1.

THE SUBDIVISION ALGORITHM

The algorithm for establishing the correspondence between a patch and the
raster-elements will now be presented. The algorithm, hereafter called the
"subdivision algorithm," works for either patches or segments of patches, called
"subpatches." Figure 2-2 \llustrates a portion of the screen where the dots represent
the sample-points. (The outlines of the raster-element squares are not shown.) The
curved lines rc..resent the edges of a projected patch. Even though only the
projection is shown, we assume that enough information about the patch is maintained

so that the light intensity for any location on the patch can be calculated.

A statement cf the algorithm is:

If the patch (subpatch) is small enough so that its projection covers only




one sample-point, then compute the intensity of the patch and write it

into the corresponding element of the frame-buffer; otherwise, subdivide

the patch into smaller subpatches; and repeat the process for each

subpatch.
Figure 2-3 shows a patch subdivided Into four subpatches where most of the
subpatches still cover more than one sample-point. In figure 2-4 the subpatches that
are too large are again subdivided. Subdivision continues until no subpatch covers

mora than one sample-point.

Readers familiar with other computer-generated shaded-picture efforts will

recognize a similarity between the method presented here and Warnock’s hidden

surface algorithm [9]. Warnoci solved the hidden surface problem for polygons by

recursively subdividing the screen space into successively smaller sections until all
questions about the rrdering of polygons left in a section were easy to answer.
Warnock's algorithm differs from the one presented here in that the former subdivides

the screen, while the latter subdivides the surface beirg rendered.

The patch subdivision algorithm as stated is very simple but some questions
remain: How is (h2 subdivision process terminated? What if a patch cuvers no
sample-points? What if part of the patcii intersects the edge of the screen or is
behind the eye? How many times must o patch be subdivided? Finally, what kinds of
problems does the discrete sampling introduce? Each of these issues will be discussed

in turn.
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TERMINATION

The decision as to whether or not a subpatch should be subdivided is based on
termination conditions. Two termination conditions will be discussed -- size and
clipping. For the purpose of this discussion we note that the terms "patch" and

“subp#tch” can be used interchangeably, hence we will usually use the word "patch.”

As specified in the s/gorithm, subdivision terminates when a patch covers only one

sample-point. Since the adnes of a patch are curved, the test as to whether or not a

Sample-
point

\

Approximating
polygon

Figure 2-5

patch covars only one sample-point may be time consuming. However, for the purpose
of this test, a patch can be approximated by a polygon formed by connecting the four
corners of the patch with straight line segments. The size of that polygon can then be
checked to determine whether or not it covers at most one sample-point. This

approximation should usually be adequaie for patches that are approaching the size of

P -




the raster-elements. It may not be adequate if the patch is very curved (see figure
2-5). If this case can be detected because of special characteristics of the patch

geometry, then the patch can be subdivided again. If it cannot be detected then a

local error may occur.

CLIPPING

A second termination condition might be a check to see if the patch is on the
! screen. If part of the projection of a patch in image-space onto the x-y plane lies off
the screen or the patch is behind the eye ihen that part of the projection should not

be displayed. The process of eliminating the portion of the projection that should not

be on the screer: is called clipping[7,8]. A clipping termination condition requires that
there be some method for determining if a patch is totally on or totally off the screen.
If the patch is totally on the screen then subdivision may proceed for that patch with
3 no further need of clipping checks for the subpatches generated from that patch. If

the patch is totally off the screen then that patch may be discarded. If it cannot be

determined that the patch is totally on or totally off the screen then that patch should

be subdivided and the clipping check should be made for each new patch resulting from

the subdivision.

NUMBER OF SUBDIVISIONS

The number of times a patch nust be subdivided to get down to the size of a
raster-element is proportional to the area of the patch on the screen. Consider the |

best case: a square two-by-two raster-elements needs only one subdivision, or 4°% a



square 2° by 27 needs 4'+4° subdivisions; a square 2" by 2" needs 3,4 subdivisions.

This is a geometric series equivalent to (4"-1)/3 which is approximately 4"/3. The

area of the square is 2" or 4" Therefore, the ratio of number of subdivisions tc area

is sbout 1/3. This analysis is most accurate for nearly square patches. For curved

patches arJ skewed orientations the ratio may be somewhat larger.

THE SAMPLING PROBLEM

There are some problems encountered when using sample points. The most

obvious is the "staircase-effect" or “jaggies” seen on the silhouettes of objects. In
addition, a patch might be so small that it doesn’t cover any sample-point, causing it to

disappear. The latter problem can be solved by assigning a patch to the nearest

czimple-point if it doesn’t cover any sample-point. The problems of sampling are
inherent with the use of a raster display. Chapter seven will discuss the problems

further as well as a means to alleviate them.

APPLICATION

The subdivision algorit'm presented above was first applied to bicubic patches.
Bicubic patches are convenient on several counts: they are widely used, they can be
compactly specified in several different ways (see Appendix A), they can be easily
joined with first derivative continuity at the boundaries and they can be subdivided
very easily. The next two chapters will present a method for fast subdivision of such
patches. It should be emphasized at this point however that the subdivision algorithm

is by no means limited to bicubic patches but can be applied to other kinds of surfaces.
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CHAPTER THREE

SUBDIVIDING A CUBIC CURVE

A method for quickly subdividing a cubic curve is presented in this chapter; the
extension to patches is developed in the next chapter. The method uses a new kind of
difference equation for obtaining the midpoint of a curve segment. The resulting
ability to quickly subdivide a curve makes the application of the subdivision algorithm

practical,

=

SUBDIVIDING THE CUBIC CURVE

Subdivision is easy because, as we shall see, the midpoint of a cubic curve is the
average of its two endpoints minus a correction term. One result of this is tha' the

cubic can be subdivided with only three adds. A similar method can be used to tind

it DT D DR e

the derivative at the midpoint.

Consider the cubic:

f(t) = at> + bt? + ¢t + d.

The problem is to find f(t) when f(t+h) and f(t-h) are alreacy known. Note first that:




#tzh) = a(tth)® + b(tzh)’ + c(tth) + d

= a(t? £ 3ht? + 3h%t £ h?) + b(t? £ 2th + h?) + c(t £ h) +d.

It the points f(t+h) and f(t-h) are added thei:

f(t+h) + f(t-h) = 2a(t> + 3h’) + 2b(t? + h?) + 2ct + 2d

= 2f(t) + 2h(3at + b);

therefore f(t)=[f(t+h) + f(t-h)]/2 - h¥3at + b).

The midpoint then is the average of the two endpoints minus the correction term,
h?(3at+b). The correction term is a linear function of t and h. If h=1/2" then since h

is a power of two it can be calculated on a computer with a simple binary shift.

The correction term at t can similarly be found from the correction terms at t+h
and t-h. If g(t) = h%3at + b) then g(tth) = h*(3a(tth) + b). Again by adding:
g(t+h) + g(t-h) = 2h*(3at) + 2bh? = 2g(t)
and so

(3-1) g(t) = [g(t+h) + g(t-h)]/2.

Let hy = 1/2" where n can be considered a level of subdivision. Then hy,, = hy/2 and

h’h, = h?n/4 and since g(t) = h*(3at + b) then

(3-2) gnat) = gnlt)/4.

and (3~1) can be rewritten as




(3-3) 8n(t) = [an(t"'hn) + 8n(t'hn)]/2

Therefore:

(3-4) f(t) = [fiteh) + f(t-h)}/2 - [galt+h) + gn(t-R)]/2.

Equation (3-4) is the subdividing difference equation for a cubic and equations (3-2)

and (3-3) are used to get the right correction term as h, is made smaller by powers of

two.

Equations 3-2, 3-3, and 3-4 can be expressed diagrammatically as as shown in
figure 3-5. At each end point there are two values -- the values of the function and
the correction term. Those values can be put into two registers. The contents of the
registers for the midpoint can be found by the indicated combination of the registers at
the endpoints. in order to subdivide one of the new halves it is necessary to update
the correction term at the end points since h, will be half as big and the correction
terms are functions of h, In terms of the diagram in figure 3-1, the subdivision

process cascades downward. The correction terms are functions of the level of

subdivision. The initial values in the registers can be found by solving f(t) and gt).

Since n=0 then h’=] and f(0)=d, g,(0)=b, f(l)=a+b+c+d, and g (1)=3a+b.

It may be useful sometimes to compute the derivative. The derivative can be
found as a simple function of the endpoints and a correction term that is dependent

only upon the depth of subdivision. Instead of adding f(t+h" and f(t-h), subtract them:




|
|
|
|
|
1
0

f0) ga(0) (1) gall)

€n(0) H1/2) @nul1/2) (1) gnil1)

Figure 3-1

f(t+h) - f(t-h) = 2a(3ht?* + h?) + 2b(2th) + 2ch

= 2h3at? + 2ah’ + 3h2bt + 2hc
Note that the derivative is: f(t) = 3at? + 2bt + ¢
therefore f(t+h) - f(t-h) = 2ht’(t) + 2ah’ so
(3-5) f(t) = [f(t+h) - f(t-h)]/2h - ah’

Note that ah’ is a function only of the level of subdivision.

level n+l




A MATRIX REPRESENTATION

The subdivision method can be put in matrix form and hence related to the matrix
methods for ganerating bicubic patches presented in Appendix A. The matrix form of

a simple cubic is:

fH) =[t2 t* t 1]

Qo oge

The correction terms and function values for the simple cubic can also be put in matrix

form. Let that matrix be called the correction matrix C and it contents be:

f(t-h)
C= [8n(t-h)
f(t+h)
gnlt+h

Recall that the correction factor is gn(t)=h?(3at+b). At the zeroth level of subdivision
h?’=1/2?"=1. So #{0)=d, g40)=b, f(l)=a+b+c+d, and gl)=3a+b. If we put these

values that {it in C then

d
C= b
a+b+c+d
3a+b
Next let

>
L}
ac ow

We can get the values in C by using the matrix:
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0 001
S«=|0 1 0 ¢
1111
3100

The relation is

(3-8) C = SA

The object of subdivision is to find the C matrix {or each half of a segment. Let
those two matrices be C, and Cp for C left and C right. There are matrices L and R
such that Ci = LC and Cp = RC. The operation on the values of C have already been

defined. They require that:
‘ 1 0o o 0O
' L=|O 1/4 O O
|
|

1/2-1/8 1/2-1/8
0o 1/8 0 1/8

1/2-1/8 1/2-1/8
R=|O 1/8 0 1/8
0 0 1-0
0 0 0 1/4

As an example, the second quarter C’ of a segment can be found by C° = RLC. Note
that all entries in the L and R matrices are powers of two. The hicubic subdivision

method is merely a fast way of doing a matrix multiply taking advantage of the values

inlL and R.
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| SUBDIVISION APPLIED TO POLYNOMIALS

The subdivision notion can be extended to polynomials in general. A polynomial of
A
; degree n can be written as:
]

f(t) = Jhoat'

‘ therefore
)

f(tzh) = Yi.altzh)

The binomial expansion for (tzh) is

(tzh) = Zd(OtNzh)*

!

Again, as in the cubic case, add f(t+h) and f(t-h). Consider just one term (tzh)

(t+h)* + (t-h)' = 23,5(N*h"  (k even)

Since a, are only coefficients,

fteh) + tt-h) = 2T L.a, et (k even)

but Theat' = f(t)




r—————
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80 we can take the first element out of the series:

fiteh) + f(t-h) = 2f(t) + 2T%,a, T (k even)

and 1 a1y

f(t) = [f(t+h) + f(t-))/2 - Ti,a, T LHOt*h (k even)

) The correction term is a polynomial of degree n-2. One can apply the same

method to the correction term to reduce it to a function of the endpoints and their

separation, h,

TAYLOR SERIES

A further extension of the subdivision concept applies to Taylor series. This last
discussion should point the way to finding appropriate solutions for functions other
inan simplie polynomials. Recall that the Taylor series is:

f(x) = f(a) + (x-a)f(a) + (x-a)(a)/2! + ... + (x-a)™/n! + R,

and if Ry~0 as n=oo then

f(x) = Zf"™(a)x-a)/n!
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Let a = (xth)

then

f(x) = F(th)"f"(xth)/n!

Again h, can be of the form 1/2% |If for some k the truncated series is a good
approximation to f(x) in the interval of h, then the function can be found in any
subinterval of h,. This differs from the polynomial case in that information for a

segment can be thought of as being at one end rather that at both ends.




CHAPTER FOUR

EXTENSION OF CUBIC SUBDIVISION TO SURFACES

The method of subdiviaing cubic curves can be extended to bicubic surfaces. With
a cubic curve there is a value and a correction term at each end; with a bicubic patch
there is a value und three correction terms at each corner. Subdivision of the patch
into four pieces means finding the midpoint of each of the sides and the midpoint of the

patch.

There may be several components to the vector that describes a three dimensional
patch. The surface has three purely geometric components X(u,v), Y(uwv), and Z(u,v).
There may be additional components for other information such as shading and color.
Each component is treated the same so we need only consider one component of the

patch here.

Since we are considering only one component of the surface let that component be:

a, a, a, a,|[y
f(uv) = [u? W u 1]|b, b, by bajly2
€y, € € Cujlv
d, d, d: d. 1

It we multiply the u matrix by the coefficient matrix this equation becomes
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V’

Fluv) = [F, F, F, FJ|V
\Y

P

| 1

where

-n
| ]

au+bu’ +cu+d

-n
~
L]

a,u + bu’ +cu+

-
=
1

a,u’ + byu’ +cyu + d,

F, = a,u’ + bu’ +c.u +d,

Since each Fp is a cubic we observe that there is a correction term for each F. Call

this correction term Gy,

The final value of the component is
fuy) = VIF, + ViF, + vF,y + F,
Consider v*.F:

VvIF, = (a v + (bvIu? + (cv)u + (dv)

A M T AEIIR SR e e

So v can be considered as a coefficient in the u equation. In that case v'.G, is a
correction term for v>.F,. Similarly, V2.G, is the correction term for V’.F,, etc. If we
sum the Fp and Gy

f = VIF, + VIF, + wF, + F,

g = V.G, + V.G, + v.G, + G,

Now g is the correction term for  along constant v. This reduction to two numbers
when v is constant is exactly as expected since the curve along constant v is simple

cubic. Therefore, for any v, the function and its correction terms along u can be

found.




24

Next suppose v changes while u is constant. In this case F, and G, are constants
and can be thought of as just coefficients in the above equations. Let the correction
term for f be ¢¢ and the correctinn term for g be cg. Since g is a correction term for f,

then cg is a correction term for cy.

These four numbers can be arranged in a square as shown in figure 4-1. This

reresentation will be calied a "register-square.”

f g
C¢ cs
Figure 4-1

in the register-square, f is the value of the function at u,v, and g, cf, and cg are
correction terms. If we move in the v direction then c¢ corrects f and cg corrects g. |If
we move in the u direction, g corrects f and cg corrects ¢4 Inserting u, v, and the

coefficients yields:

v¥(ula, + u?b, +uc, +d,)
+v¥(u'a, + u’b, + uc, + d,)
+ v(u’a, + uby + uc, + dy)
+ (u%a, + Uu'b, + uc, +d,)

h[v¥(Ba,u + b))
+v(3a,u + b,)
+v(B3a,u + b,)
+ ((3a,u + b,)]

k?[3v(u'a, + u’b, + uc, +d,) h?k¥[3v(3a,u + b))
e 7+ '+ )]  @o + b

L= g L i



where h? and k? apply to the u and v directions respectively and have the same

meaning as h in chapter three. As in the cubic polynomial case they can be calculated

on a computer with a shift.

A register-square makes it easy to think about an algorithm for subdividing a
patch. A register-square can be associated with each corner of a patch (see figure

4-2).

0l 1
Register-

square

Figure 4-2

The subdivision algorithm can be applied to the register squares either vertically
or horizontally depending on whether u or v is constant. Figure 4-3 shows a notation
for horizontal subdivision. The top two values of the left and right register-squares
are used to create the top two values of the middie square using the same subdivision
algorithm presented in chapter three. The same applies to the bottom two values of
t each square. Vertical subdivision works in a similar manner. The notation of figure
4-3 can be used for the entire patch as shown in figure 4-4. The center square can
be derived from two of the newly created edge squares. There are now four squares

for each quarter of the patch so subdivision can again take place for each quarter.
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It is important to note that the concept of level of subdivision still applies. This
means that the correction terms must be adjusted each subdivision. One could think of
each square as extending in two directions. When two squares are combined to create
a new one then its correction terms in that direction are divided by four as required
by the subdivision algorithm. The extension in the other direction is the same for the
new square as for the two end ones and is unaffected by subdivision. This depth

correction will be called "reduction.”

A full patch subdivision can be clarified with figure 4-5. The letters in the four

small boxes represent the initisl values in the register-squares. The next nine boxes

depict the subsequent values in each register-square after subdivision.

o

if the initial values of u and v are (0,0), (1,0), (1,1), and (0,1) then the initial square

values are as shown in figure 4-6.

b Ml e EE o

PERSPECTIVE

Perspective presents a problem for patch subdivision since the above method
works only for components that are simple bicubics and the perspective transformation
results in rational bicubics. In order to cCisplay a perspective view of a surface the

mathematical definition of a patch must go through a perspective transfoi nation which

results in a surface equation of F(uy) = [X(uy) Y(uyv) Z(uv) Wluv)] W(uv) is called
the homogeneous coordinate [7,8] and is generated by the perspective transformation.

Three ways of displaying a perspective surface are:

P e — e
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d,+d,+d,+d,

b,+b,+b,+b,

3d,+d,

SR

3b,+b,

(sum of all
coefficients)

3(a,+a,+ay+a,)
+(b,+b,+by+b,)

3(a,+b,+c,+d)
+(a,+b,+c,+d,)

3(3a,+b))
+3a,+b,

a,+h,+C,+d, 3a,+b,

a,+b,+c,+d, 3a,+b,

Figure 4-6

Get the equation of the perspective surface by dividing by the homogeneous

coordinate. This results in a rational cubic wich does not fit into the

subdividing scheme.

Subdivide X, Y, Z, and W and do the perspective division at every point. This
requires extra space for subdividing W and time to do the subdivision and
perspective division.

Take only the defining points of the patch (See appendix A) through the
The

perspective transformation and recreate the cubic in perspective space.

defining points are correctly recreated, although the surface they now define is
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not the "correct" surface (as defined in (1)) but, in the subjective opinion of
the author, is a very close approximation. The pictures in this report were

made using this method.
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CHAPTER FIVE

THE HIDDEN SURFACE PROBLEM

In order to display surface patches it is necessary to determine which surfaces are
visible. Two methods that can be used to solve the hidden surface problem for bicubic

patches are the "modified Newell algorithm" and the "z-buffer algorithm."

THE MODIFIED NEWELL ALGORITHM

Newell, Newell, and Sancha [10] have devised an algorithm for displaying polygons
that sorts the polygons in z order and paints the polygons in that order into a frame
buffer; the polygon farthest away from the eye is written first. Subsequent polygons
may be written over those already in the buffer thus eliminating obscured polygons. |f
two polygons intersect or are situated so that it is not easy to sort them in z order,

they are split into smaller pieces until they can be correctly sorted.

There are two parts to the z sort in the Newell algorithm. The first is a simple,
quick 2 sort of all the polygons based on their farthest vertex. It does not guarentee
that the polygons are in the correct order to be written into the buffer. The second is

a time-consuming sort that guarentees that the polygons are in the right order.

Martin Newell of the University of Utah has noted in private discussion that that

algorithm can be extended to patches and that the Bezier control points (see appendix




A) can be used for ordering. Since a patch is constrained to lie within the convex hull
of its defining points, the defining points can be used to sort the patches. |If the order
between two patches can not be determined then the patches can be subdivided until
the correct sort can be done. With the fast subdivision of bicubic patches one can
keep subdividing the patches until the z order is resolved and then render the curved
pieces as shown earlier. The relationship between Bezig! control points and the

correction factors is shown in Appendix B.

THE Z-BUFFER

The z-buffer is an extension of the frame-buffer idea in that the z value from the
image-space of the visible object is stored at every raster-element as well as the
intensity. The z value of any new point to be written into the buffer is compared with
the z value of the point already there. If the new point is behind, it is discarded. If it

is in front it replaces the old value.

There are several advantages to using the z-buffer. Hidden surface problems and
intersection of arbitrary surfaces are handled trivially. Pictures can be of any
complexity. Except as noted below, surfaces may be written into the buffer in any

order, thus saving the time-consuming sorting of highly complex surfaces.

There are of course some disadvantages to the z-buffer. A 512 by 512 buffer
with 8 bits of intensity and 20 bits of z uses a quarter of a million 28 bit words. At
the current cost of memory this means an expensive implementation. A more serious

problem is that of "anti-aliasing,” or getting rid of the "staircase effect” (;ee Chapter




33

7). Any algorithm for getting rid of the staircase effect requires that on the sithouette
of objects the intensity at the corresponding raster-elements will be some combination
of intensities from at least two objects -- namely, the object being displayed and the
object being partially obscured, which may of course be simply background. If all of
the objects have been rendered in random order then it is possible that the intensities
from the wrong objects will be combined, giving a local error. This means that it may

sometimes be necessary to sort the objects to eliminate the staircase effect.

The author implemented the z-buffer algorithm by paging the z-buffer onto disk.
Thirty-two pages could be resident in ~ore where each page contained a i6 by 16
square section of the raster. The time needed for swapping was small compared to
the time spent by the software implementation of the subdivision algorithm. Al of the

pictures in this report were made using the z-buffer.

A combination z-buffer-Newell algorithm coun! be developed where a simple z sort
puts the patches in approximately the right order and the z-buffer guarentees that
they are in the right order. The only error that would occur would be a local
"staircase error” on sn edge if the associated patch were written in the wrong order.
We have traded off the time-consuming sort for the increased memory and the

possibility of a small error.




CHAPTER SIX

INTENSITY

When a patch has been subdivided into subpatches small enough to cover anlv one
samnie point it is necessary to associate an intensi'y with the corresponding point.
Ther a are several ways of getting the intensity at each paint.

1. Use the normal to the surface to calculate intensity.

2. Use some intensity function of u and v.

3. Map the intensities from some picture.

4, Modify existing intensities for shadows or transparency.

There are good examples where each of the above might be applicable, so they will

each be discussed.

USING SURFACE NORMALS

The norma: to a surface is frequently needed to calculate the intensity. Phong has

already shewn [4] several ways of calculating intensity f the surface normal and the

light sources are known. A typical way of doing it would be to use ac the intensity

the dot product of a light vector and the surface normal. One needs to use the normal
from the object-space surface before the perspective transformation is performed
instead of the image-space surface because perspective distorts the surfaze and hence

falsifies the intensity. Unfortunately, finding the normal is complicated by the fact that
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the equation of the normal to a bicubic patch is a fifth degree polynomial.

Three ways of finding the normal are:

1. Use a fifth degree subdivision equation to solve the normal surface equ~tion.
This seems impractical because of the increased space, time, and complexity

required.

N

Approximate the normal equation with a cubic equation and then subdivide the
components of that equation just as the surface equation is subdivided.
Appendix C explains how to approximate the normal equation. This method

was used to make the pictures for this report. Six components of the patch

were subdivided to make the pictures -- the three components of the surface
and the three components of the normal.

3. Take the cross product of the tangents at every point to get the surface
normal. We have already shown in chapter three that the tangent at the
midpcint of a line can readily be found. Therefore the three components of
the object-space patch can be subdivided (in addition to the perspective patch)
and the normal can be found by taking the cross product of the u direction
tangent and the v direction tangent at each sample point. This method
requires a little extra information in order to get the tangents and, of course, it

requires the extra work involved in taking a cross product at every point.

USING AN INTENSITY FUNCTION

The intensity at a raster element is represented by a number and any useful way

of deriving that number is legitim.te. Instead of being a function of the orientation of




the surface, the intensily might be a function of pressure, strain, height, density,
artistic whim, etc. It these can be expressed in a bicubic equation then thev fit into
the subdividing scheme. Color components could also be calculated as bicubic

equations.

One must use care to ensure that the calculated intensity values stay within
required bounds for the display. Three ways of doing this are:
1. Check each calculated value and clip it if too large or too small.

2. If using normals, renormalize at every point.

3. Solve for the Bezie‘;' control points of the patch (see Appendix A) and normalize

those points so that none of them are out of range, then recalculate the patch.
Since the patch is contrained io lie within the convex hull of the points they
will be in the required bounds. First derivative continuity across patch

boundaries may be lost with this method.

MAPPING

Photographs, drawings, or any picture can be mapped onto bivariate patches. This
is one of the most interesting consequences of the patch splitting algorithm. It gives a
method for putting texture, drawings, or photographs onto surfaces. It also allows one

to have reflections in pictures, as in flat or curved mirrors.

One can make a correspondence between any point on a patch and an intensity on
a picture. If a photograph is scanned in at a resolution of x times y then every

element can be referenced by ux and v-y where Osu,vsl. In general, one could think
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of the intensity as a function I(u,v) where | references a picture. In keeping with the
bicubic method, the picture does not need to be rectangular but can have edges that

are cubic curves.

In practice the above method for geiting intensities from pictures can fall afoul of
sampling errors. This will occur when the number of points to be displayed on a patch
is less than the number of elements in the stored picture, resulting in less information

being put on the patch than is in the picture.

One way to alleviate this is to map areas onto areas rather than points onto points.
Every time the patch is subdivided, the picture is also subdivided. When the algorithm
determines that a subpatch is to be displayed, the corresponding area on the picture is
known. The average intensity of that area can be found and used as the intensity of
the piece. While this reduces considerably the sampling problem it does not

completsly solve it.

The sampling problem cen be better understood by considering figure 6-1.
Suppose that the algorithm subdivides the patch up as shown and that the squares in
the figure represent raster-element squares. Since in general the pieces of the patch
do not mesh well with the raster grid there will be times when more than one piece of
the patch logically belongs to one display element, ie., pieces a, b, and ¢ would be
painted in element one. However, a, b, and c are not usually created in time sequential
order so combining them would be difficult. If only one of the pieces is chosen for
display then some information would be lost. A solution to the problem is presented in

chapter Seven.
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Raster-
element -
square

Figure 6-1

INTENSITY MODIFICATION

Once an intensity is in the buffer there may be several reasons to modify it; for
example, transparency and shadows. I|f a new surface is transparent [10] then the
intensity to be put into the buffer is some combination of the new intensity and the
one alrcady in the buffer. A typical formula might be New + (Old - New) * T
where T is the transmittance which ranges from O for opaque to 1 for tranparent. Ad
hoc variations on this formula can be made to get acceptable looking transparency.
Transparent objects must be written into the buffer in the correct order, ie., close

objects are written last.

Shadows can be made with the z buffer using "shadow-patches." A shadow-patch

can be made by finding the silhouette of an object from the point of view of the light.
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(See figure 6-2) The silhouette can be used to create shadow-patches that extend from

T ~ Light contour
——— N
i3 Light
;H,f”"
=T ~
“— Shadow patches
Flgure 6-2

the sithouette away from the light. Front and back shadow-patches can then be paired
up. Any object that lies between the two shadow-patches is in the shadow of the
object. After the picture has been created the shadow-patch pairs can be split as
bicubic patches with x, y, z-front, and z-back components. If the visible element in the
Z buffer lies in the shadow range then its intensity can be attenuated. The difficulties
with this method are that one must find the silhouette, that the front and back
shadow-patches must be matched up, and that diminishing the intensity does not
correctly eliminate a highlight that should not appear in a shadow. It should be clear

that although shadows can be made, it is not an easy problem.
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CHAPTER SEVEN

SAMPLING, RASTERING, AND ALIASING

There are some inherent limitations with using a raster-display. The raster display
cannot produce images with clean sharp edges or small (compared to the
raster-zlement size) detail. Unfortunately, these limitations frequen'ly lead to
disturbing visual effects. We shall try to explain here the nature of these limitations
and show steps that can be taken to alleviate the undesirable effects, especially with

regard to the subdivision algorithm,

ALIASING

There are two different kinds of unwanted visual effects that -esult when using a
raster-display -- "aliasing” and "rastering." The first -- aliasing -- is used to denote
effects that resuit from sampling. Five manifestations of aliasing are

1. A "staircase effect” appears at the silhouettes of objects.

2. Small objects fall between the sample points and disappear.

3. In a motion picture, the slow smooth movement of an object appears as discrete

jumps.

>

An image of a picket fence or similar regular pattern causes a moire pattern to
appear.

5. If a picture is mapped onto a surface then all of the above occur over the entire
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surface.
As noted previously, a raster display cannot produce images of sharp edges or small
detail. Aliasing occurs because we are sampling an image' wnich has information that

the raster-display cannot possibly reproduce.

The phenomenon of aliasing can be better understood by considering a stagecoach
movie . Note first that a movie camera car sample the real world 24 times a second.
Suppose the camera views a stage coach as it starts and accelerates; the wheels
moving faster and faster. Most readers will have witnessed that when the coach
begins tc move, the wheel appears to rotate in the right direction but as the wheel
rotates faster it appears to go backwards, then stop, and finally to rotate forwards
again even though the coach is always moving forwards. It is easy to understand that
the wheel has a frequency of rotation. The movie film can accurately reproduce a
rotational frequency of not more than twelve spokes per second. As the wheel
rotates faster than that, the higher frequency is "aliased” as a low frequency which can
be reproduced. The analog with sampled images is that an image may have intensity
undulations that vary faster than the sampling rate and Fence alias themselves as

undulations that can be reproduced.

The field of signal-processing helps us understand aliasing even better. If a
two-dimensional fourier transform of an image is taken prior to sampling, the result is a

"picture” of the frequencies present in the image. Sharp edges and small objects

1. This image we are sampling exists only as a high resolution description in the
computer, as contrasted with an actual photograph.

dCan o o
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result in high frequencies. The raster display can reproduce only low frequencies; the
upper limit on the frequency is determined by the resolution of the raster display.
During the process of sampling, frequencies that are higher than those that can be
reproduced are "folded” back onto those that can be and become indistinguishable from

them; hence the term “aliasing.”

"Anti-aliasing" will be used here to denote the process of reducing or eliminating
the aliasing effects. An effective method for anti-aliasing is to eliminate from the
image, prior to sampling, those components that cannot be reproduced or, in terms of
signal processing, to filter out the high frequencies with a “low-pass filter." This
filtering of an image could be thought of as a "smearing” operation. Sharp edges are
smeared so that they are no longer sharp and therefore won’t cause severe aliasing
problems. The filtered image can then be sampled. The filtering and sampling process

can be expressed in a diagram (see figure 7-1).

Filtered raster-
Original O 5 or display
image smeared samples image
filter image
Figure 7-1

One method of filtering is to "convolve” the original image with a "two-dimensional
fourier window" or "box window." With this method we in effect take a "box" that can
cover one raster-element square and is one unit high and put the box on the original
image. The box is mu'tiplied by the intensities in the image -- which results in zero’s

everywhere but at the box -- and the resulting values are then integrated. This
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yields one value ior that position of the box. The value in effect is the average of the

intensities under the box. The box can be moved and a value calculated for some
other poirt. As the box is moved over the entire image a new filtered image is "
created. The process of moving the box window over the image, multiplying, and
integrating to form a new image is called “convolution” and can also be used with 3
windows other th n a bax. The filtered image that results from using a box window no !

longer has sharp clean lines; much, but not all of the high frequency information is

gone. Even though some of the high frequency information remains, a box filter is still

good enough for most computer graphics purposes.

AREA SAMPLING

Since the filtered image will be samplec only at discrete points corresponding to
the raster-elements it is necessary to calculate the filtered image only at those points.
In other words, we can think of a raster-element as corresponding to some small
square area of the original ir1age and we only need to find the average intensity of the
visible surfaces in that square. We shall call this particular form of filtering and

sampling "area-sampling.”

Area-sampling is the technique wusually used in computer graphics to do
anti-aliasing. Typically, when an edge of a polygon passes through a raster-element 1
square, the intensity for the corresponding raster-element is some average of the
polygon intensity and the intensity of polygon behind, weighted by their respective
visible areas in the square. Most methods for anti-aliasing have been applied at the

edges of polygons since the aliasing effects in the center of a polygon have usually
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been negligible.

Since there are several ways of filtering it is natural to ask "what is the best
achievable anti-aliasing?™ One should not be misled into thinking that area-sampling is
the best anti-aliasing possible even though it is a considerable improvement over
point-sampling of an unfiltered image. A better method, for example (aithough how
much better is not known) would be to use a pyramid with a base that could cover four
raster-element squares as a window for corvolution instead of a box window.
Unfortunately, "perfect” anti-aliasing is also undesirable becaus.e the filter necessary to
make this possible also modifies the image in an undesirable way. The reasons for tkis
and the answer to the above question are beyond the scope of this report. Methods

for anti-aliasing are part of on-going research at the University of Utah.

RASTERING

Rastering occurs during the process of display regardless of the intensity values at
each raster-element.? Rastering occurs when we can see the individua' dots or
scan-lines on the raster display. An example of rastering occurs in television where
we frequently can see the scan-lines. If we can see the dots or scan-lines, then we
are seeing something that is an artifact of the raster display and is undesirable

information, thus the name "rastering.”

2. There are actually two kinds of rastering -- "static" and "dynamic." The distinction
between the two is beyond the scope of this report.
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The meaning of the word “"rastering” used here is not universal and in computer
graphics it is frequently used to denote what we call here “aliasing." However in
order to be consistent with the use of the word by the signal-processing research
group at the University of Utah we shall take it to mean the effect that occurs in the

process of actually displaying the raster.

"Anti-rastering” is the process of reducing or eliminating rastering. The practical
method for anti-rastering is to defocus the CRT beam enough so that adjacent dots on
the raster-display just merge. A picture of a "flat-field" on a raster-display should

appear to be of uniform intensity with no dot or line structure.

ANTI-ALIASING FOR THE SUBDIVISION ALGORITHM

“he subdivision algorithm can be modified to allow for area-sampling. Such a
mod ication requires techniques for determining what is visible in each raster-element
square and some method for storing and combining intensity values at each square to
get the average. The modified algori'hm has some drawbacks which will be discussed
at the end of the chapter. Before presenting the modification, some groundwork needs

to be laid and an “area-averaging algorithm" must be described.

One of the termination conuitions described in chapter two required that a patch
be approximated by a polygon to see if it was small enough. This same polygon can
be used to do the area-sampling. After the finest subdivision, *he polygon will be
very small. We will require that no polygon cover more than four raster-element

squares (see figure 7-2). In each square then, there will be some “"piece” of the

polygon.




e o e T R e PP ) A s I

46

The average intensity of all pieces visible in a square is needed to do
area-sampling. Unfortunately, the pieces that logically belong to a square are not
derived in immediate sequential order; that is, after one piece ic found for a square,
other areas of the screen may be worked on before finding another piece for that
square. Some mechanism must be found for storing the piece intensities so that the

average intensity can be found.

The problem is simplified if we make use of the following observations. In the
large majority of raster-element squares all visible pieces come from the same patch.
In a smaller, but still significant, number of squares, the pit;ces come from two patches
-- namely at silhouettes and patch boundaries. A very small number have three or
more patches visible in a single square. The method to be presented will do
area-sampling for the first two cases correctly but is not guarenteed to be correct if

more than two patches are visible in a single square.

The above implies that each piece must be identified with some patch. A patch
code will be introduced for this purpose. The problem of identification is complicated
by the fact that a patch may obscure itself; and in general it will, in regions near the
silhouette. We can, however, differentiate between front and back-facing pieces by
using an area-calculation method that gives negative or positive area depending on
which way the piece faces. A bit can be set for a piece which indicates its facing

direction.

The area-averaging algorithm requires that pieces be processed in z order. That

requirement holds even within patches, ie., the four subpatches of a patch are sorted
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so that subdivision continues first with the more distant subpatch. If the z-buffer is
used and the order is wrong, then the error will show up only at the silhouette where

a staircase effect might become visible.

A large frame-buffer will bn needed for the area-averaging algorithm. At every

raster-element, storage wili be needed for two intensities, |, and |, area, a facing

1 direction bit, and a patch coce. If the alger thm is used in conjunction with the
z-buffer then storage for z is also needed. We shall describe values already in the
buffer as “old" and the new values to be written as "new." The area of a single
raster-element square will be taken to be unity so that is the largest value that can be
stored in the area part of the raster-element. |Initially |, will have the background

intensity, the area bits will contain one’s and the patch code will be zero.

The area-averaging algorithm is: A new piece is found with its area, code, direction
bit, and 'intensity value which is weighted by the area. Then its corresponding
raster-element is retrieved. The following are the possibilities.

1. If the new code is the same cs the old and the direction bits are the same then
the pieces come from the same patch. Add the areas and the new weighted
intensity to the old value in I,

2. If the two codes are the same and the direction bits are different then the
silhouette has been encountered and the accumulated area from that patch is
about to be obscured by the new and subsequent pieces. Set the area to be
the new area, the intensity |, to be the new weighted intensity, and the direction
bit to the new direction value.

3. |f the codes are different then a new piece or pitces will partially or completely

- B PRI, . T o pC T W e g
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obscure the old pieces. Put the value of i, divided by area (to unweight it) into
l, set |, to the new weighted inlansity, sut the area value, and set the patch
code and direction bit. For displaying, the intensity will be I,-l ¥(1.-area).

This algorithm has solved two problems: all of the pieces have been put together to

allow mapping and at the silhouettes and boundaries *ihe intensity is a combination from

the two visible objects.

The subdivision algorithm of chapter two can now be mcdified to allow for

area-sampling instead of point-.ampling. Consider figure 7-°. Each square

raster-element
square

vertices

R

Figure 7-2
represents a raster-element square. Recall that a raster-element square is the area
on the screen corresponding {0 one raster-element. The crossings of the horizontal
and vertical lines which bound the squares will be called “vertices." The modification
to the algorithm is that the patches will be subdivided until they cover at most one
vertex (as opposed to a sample-point). An additional constraint on the termination

condition is that the approximating polygon (the dotted lines in figure 7-2) lie within

the area of the four squares adjoining the vertex.
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The polygon that approximates the patch (the dotted lines in figure 7-2) will be
used for the area calculations. The polygon must be divided into pieces that belong to

each of the four squares. Each piece then is used with the area-averaging aigorithm.

The algorithm presented is unsatisfactory in some ways: it requires a lot of
memory, there is a lot of computation required, it .s applied at every point instead of
just where needed, it does not work with transparency, and there are several cases
where it fails. On the other hand, mapping requires the ability to area-sample over
the entire surface. It is not clear at this time just how much or how little is required

to do acceptable anti-aliasing. Hopefully, 1@ above discussion will ,ead to some

cheaper or better methods for doing area-sam.ling.
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CHAPTER EIGHT

CONCLUSION

The subdivision algorithm has been implemented in software on a PDP-10 at the
University of Utah. Several pictures generated by the program are included in this

report in Appendix D.

Table 7-1 lists some timing information about the generation of a few of the
pictures. The initialization of the frame-buffer took about 7 seconds and displaying
the frame buffe:r took about 28 seconds. The times hsted below do not include

initialization and display time.

OBJECT PICTURE TIME (minutes:seconds)
single patch 2 1:17
glass 1 1:55
bottle 1 4:15
klein bottle 14 15:00
TABLE 7-1

It is natural to consider a hardware implementation because of the simplicity of the
algorithm and the tremendous number of times those simple steps must be performed.

The four components of such an implementation are:
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1. The subdivider.
2. The stack.
3. The tester.

4. The shader.

The subdivider can split the patch into four pieces. Since subdividing a cubic
takes three adds, the number of adds to subdivide a bicubic component is 30. The
values must travel through the edges to the center so the values must pass through
four adders. The fastest possible implementation would have a subdivider for each

component.

There are several ways of trading off speed with cost. One subdivider could be
used to subdivide each componen. sequentially. The system would just run slower. In
addition, since each subdivider can be broken up into modules that combine
register-squares, one could use just one module and give it two register-squares at a

time to get a new square. Then the system would run even slower.

A stack would be needed to push the new squares onto. It needs to be large

enough to handle the maximum leve! of subdivision, probably no greater than 15.

The tester must decide whether to display the patch or subdivide. It would check
the x and y values at the corners. In addition, it may sort the four new patches if
necessary either for the Newell algorithm or to do transparency. It is possible at some

leve! of recursion to determine that no more sorting needs to be done.
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The shader picks out the surface normal components, normalizes them, takes some
dot products, and calculates the intensity for each raster-element. If the
area-sampling me “0d is used then the area of the patch in each raster-element square
must also be calculated and the results merged with the information in the

frame-buffer.

PROBLEMS

The most imraediate problem is that of aliasing. One would hope that there is a
cheaper or faster solution than the one presented here. For example, one might
detect the silhouette by using the tangents and then area sample only at the silhouette
of objects to calculate the right combination of intensities. An advantage of the
subdivision algorithm is that a lot of information about the patch is available. The

problem is to find a way to use that information to solve the aliasing problem.

Another problem is that bicubic patches may not adequately fill the needs of some

people working with curved surfaces. It seems likely that the notion of subdividing

can be applied to other curved surface schemes.




x(t) = [t* t7 t 1]
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F(t) = [x(t) y(t) 2(t)).

component x(t).

x(uyv) = [u @ u 1]

x(t) = a'? 4+ pbt? + ct + d

APPENDIX A

THE BICUBIC EQUATION

is useful on different occasions.

Consider the simple cubic:

A curve in space can be

There are several different methods for generating bicubic patches. Each method

Bicubic equations are widely us»d in computer aided

This can be vxpressed in matrix notation:

geometric design. Some good references are [11,12,13,14] with the article by George

Peters in [11] being specially devoted to the bicubic patch.

represented by the parametric vector equation

Since each compcnent is a parametric function of t and is

a,
.ll
8,
ay)

aIl

treated the same as the other omponents, it is only necessary for us to consider one

A patch is a function of two variables, u and v. Fluv) = [x(uv) y(uv) z(u,v)]

Again only one component needs to de considered. The matrix notation for x{u,v) is:

P T e - v
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where the a, are the coefficients of the equation just as a, b, ¢, and d were

coefficients in the univariate case.

The problem then is to find the coefficients. There are many ways of doing this.
We shall consider here only those ways that are local, that is, the changing of data oniy
affects the coefficients of nearby patches. In order to find t-e coefficients of the
simple cubic it is necessary to have four items of information. We can then transform

that information into the coefficients by some four-by-four matrix M. ¥

a P,

b -M P)

c P,

d P.

therefore
P,
P,

x(ity=[t> 2 t 1]M P
3
P,

The Ps can be some physically relevant items of information such as points or slopes.
The matrix M is a constant matrix that corresponds to the particular kind of infc ‘matior

chosen as the P’s. it is important to note that this concept can be trivially extended

to the bivariate case:

Py P Py Pu v?

elu? u? u 11MI|P2r Paz Py Pau|M
X(U'V) [U U ] P’| p’z P’, le V

P.. P., P.’ PII 1

where the P, are relevant data such as points or slopes. For example the P, might be

a four-by-four grid of points.
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The balance of this appendix shall be devoted to showing what the M matrices are
for different kinds of P's. When the P's are points they may be referred to as “control
points." The examples shall be given using the univariate case so recall that the

extension to bivariate patches is shown above.

1. SIMPLE CUBIC THROUGH 4 POINTS

Consider the four points P, P, Py, and P,. The cubic will pass through each point

and x(0)=P,, x(1/3)=P,, x(2/:)=P,, and x(1)=P,. Then:

P e

P,
, x(t) = [t t2 t 1IM, [P,
i ]

Pa
and for this particular choice of the values of the independent variable,

-9 27-27 9
M, = (1/2)| 18 -45 36 -9
-11 18 -9 2
2 0 00

it is difficult with this scheme to connect two cubics at some point with ¢' continuity.




THE BEZIER OR BERNSTEIN CUBIC

Consider the four points P, P,, P, and P,. The curve will pass through P, and P,.
The line from P, to P, is tangent to the curve at P, and the line from P, to P, is tangent
at P,. The length of the tangent vector at P, is three times the length of the line from
P, to P,. Sisularly the length of the tangent vector at P, is three time the length of
the line irom P, to P,. The curve is constrained to lie with the convex hull of the

defining points.

P,
x(t) = [* 17 t 1]M, P,
P
P,

-1 3 -3
M,=|3 -6 3

-3 3 0
1 0 O

O OO

Two cubics can be joined with C, continuity if the control points at the joint are
the same (quite obviously) and the two control points of both connecting ends are all

colinear, ie,, in the following diagram P,, P,=Q,, and Q, are colinear.



3. THE HERMITE INTERPOLANT

Q | Q,

oS

Consider two points and two tangents, then:

P,
x(t) = [t2 t2 t 11M, [P:
Q
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Two cubics can be connected easily with C' continuity if the tangents at the connecting

points are the same.

The extension to a bivariate patch is not as straightforward as in the other cases.
The bivariate patch is frequently called a bicubic Coons patch and sometimes the

"hermite tensor-product bicubic surface." The elements of the P matrix are:
Q0,00 Q(o,1) : Q00 Q.0,1)]
ALO QLD QL0 QU1,1)
Q0,0) Q«0,1) :l Q.(0,0) Qu(0,1)

Q10 QULD | Qu(L0) Qu1,D)]

which corresponds to the patch

Q.(1,0)

Qu(l'O) Qu(l'l)
QA1,1)
Q(1,0) Q(1,1)
Qu(l,1)
Q..(0,0)

!

Q.(0,0)

The Q are the corner points, the Q, are the tangent vectors in the u direction, the Q,
are the tangents in the v direction, and the Q.. are the cross derivatives which are
frequently called the twist vectors. The twist vectors are sometimes set to zero which

may cause "pseudo-flats" at the corners.




4. THE B-SPLINE

The cubic B-spline gives very nice looking curves and provides continuity of the
second derivative. In general it does not interpolate its control points, but rather
approximates them. The generated cubic is also constrained to lie within the convex

hull of its defining points. Consider the four points P, P,, P,, and Py:

A cubic curve can be generated that in general does not pass through any of its four

control points. Now consider a fifth point P,

P

Another section of curve can be generated using points P,, Py, P, and P, The two

curved pieces will be connacted with ¢? continuity at the joint. The equation to

generate a section is



. P|

x(t) = [t* t2 t 11M, |Ps

Py

P,

wHere

-1 3 -3 1
= 3 6 3 0
IV S.CL/8) 3 0 3 0
1 1 1 0

5. THE CATMULL-ROM CUBIC SPLINE

This spline interpolates its control points and has continuity of the first derivative.

Consider the four points P, P,, P,, and P,.

.

| F:

P, Pa

| I B S

A cubic can ba generated that passes from point P, to P, Now consider a fifth point

pbl
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Another piece of curve can be generated using points P, P, P, and P.. The two

sections will be connected with c' continuity. The equation to generate a section is:

. .
x(t) = [ t2 t 1]M, |,

Ps
P.
where

-1 3 -3 1
2 -5 4 -i

M, = (1/2
UL S
0O 2 0 O
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APPENDIX B

RELATIONSHiP OF CORRECTION FACTORS TO BEZIER CONTROL PC**

We can find the Bezier control points for a patch since the corner values and
correction terms can be expressed in matrix form as shown in chapter three. Recall
that the patch generated by the '6 control points is constrained to lie within the
convex hull of those points. This is useful for clipping and cetermining when two

patches might intersect.

Recall equation (3-5) C = SA where A is the matrix of coefficients. Of course we

can go the other way by noting A = S-'C. If we have four points d, d,, d;, and ¢, and

then the coefficients for the Bezier cubic for those points are A=BD where B is the
four-by-four matrix given in Appendix A in the section on Bezier cubics. If we put the

relationship into equation 3-5 then C=SA=S8D. Therefore:

(B-2) D = B'S'C

giving the control points D as a function of the correction matrix C.

This analysis can be extended to surfaces. Let C be the four-by-four coirection
mairix for a patch. We expect it to contain the same values listed in figure 4-6. Let

M be the four-by-four matrix of coefficients for the bicubic patch. Then
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(8-3) C ~ SMS™

Let P be the four-by-four matrix of the 16 Bezier control points for the patch. Then

M = BPBT and it follows that C = SBPB'S™. Therefore:

(3-4) P = B'S'C(STYY(BT)!

where

0 0 O
B'=|0 ©01/3
0 1/32/3

1 1 1

— bt Pt

1 0 0 ©
g = |2/3-2/9 1/3-1/9
1/3-1/9 2/3-2/9

0o 0 1 ©
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APPENDIX C

APPROXIMATING " 'HE BICUBIC NORMAL EQUATION

The normal vector to a bicubic patch can be found by taking the cross product of
the targent vector in the the u direction and the tangent vector in the v direction and
can be shown to be quintic. It is desirable to approximate :he quintic normal equation

with a bicubic equation because a bicubic equation is easier to work with.

The x component of the surface vector is:

v3
x = [ U u 1]M, |V
v
1

where M, is the matrix of coefficients for x. The derivative in the u direction is:

v!
x.=[3u" 2u 1 O |V
v
1

and the derivative in the v direction is:

3v?
x, = (U’ U u.1]M|2v

1

0

For simplicity we shall define:
U= [uuvul]

W= [30 2u 1 0]

U” = [6u 2 0 0]

s o L S R B e R i
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V' =

vll -

oOoONO

Therefore X, = UM,V and X, = UM.V’. The y and z components are treated similarly
of course. The tangent in the u direction is [x, y. 2,] and the tangent in the v

direction is [x, y. z.)

We need to find the normal vector [xn yn 2n]. The normal vector can be feund by
taking the cross product:
xpluyv) = yaz, - y.2,
yaluv) = 2, = Z.X,

Zp(uv) = Xy, - Xy

but since x, = UMV, x, = MV’, y. = UMV, etc, we can write: !
(A-1) xplu,v) = UMVUMV - UMV UMV
(A-2) yaluy) = UMVUMV’ - UMV UMV

(A-3) zn{uy) = UMVUMV - UMV UMV 1
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it should be apparent on close examination of the equations Al-A3 that each
component is, as asserted, a fifth aegree polynomial in u and v. Let us consider only
the x component ot the normal. In order to approximate the normal vector equation
with a bicubic normal vector equation we require that the bicubic normal have the

- same:

1. values at the corners, xp(u,v)
2. derivatives in the u direction at the corners, dx,(u,v)/du
3. derivatives in the v direction at the corners, dxa(u,v)/dv
4. cross derivatives at the corners, d’xq(u,v)/dudv.

if we group this data in a matrix we have:

r)(,,(0,0) xa(0,1) ! dxn(0,0) dxs(0,1)
| dv dv
|
xn(1,0) xn(L,1) | dxn(1,0) dxn(1,1)
P‘ - ] dV v
dx4(0,0) dxn(0,1) ' d?x4(0,0) d’xn(0,1)
du dv " “dudv dudv
|
dxa(1,0) dxa(l,1) ' dxa(1,0) d?xn(1,1)
du du : dudv dudv ]

The form of this matrix is the same form as the data matrix for a bicubic Coons patch.

Therefore we can use Coons magic matrix:

2 -2 1 1
Cai(3 3 -2 -1
0o 01 0
1 0 0 O

So the x component of the bicubic normal is:
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(A-5) x = CPCT

| The quintic function and its derivatives can be written more explicitly as:

(A-6) xp{uv) = U'M,VUM,V’ - UM,VUM,V

(A-7) dxp(u,v)/du = U"M,VUM,V’ + UM, VUMV’

-UMV'UM,V - UM,VU"M,V

(A-8) dx(uv)/dv = UM VUM,V + UM,VUM,V”

- WAVZUMY - UM VUM,V

(A-9)  dx(uv)/dudv = U"MVUMV’ + U“M,VUM,V”
+ UMVUMY + UMVUMV”

- UMVUMNV - UMVUMV’

TR T e

- UMVU"MV - UM VUM, V’

The values of these equations at u=0,1 and v=0,1 can then be substituted into the

appropriate places in equation A-4,

Rather than rewrite equations A-4 through A-9 for the y and z components just
note that for y we can use the substitutions
1. y replaces x

2. zreplacesy

3. x replaces 2
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.L and for 2
1. z replaces x

] 2. xeplacesy

3. yreplaces 2

TSRS AT e wmm——
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APPENDIX D

PICTURES

The pictures in this appendix were made on the high-precision CRT at the
University of Utah. All pictures were made ut 512 resolution. The b~am was slightly

overfocused.

The discontinuities in the shading on the everting spheres are caused by first
derivative discontinuities in the surface description and not by the algorithm. The
roughness at the intersections are a result of insufficient z resolution. The front

clipping plane was miuch too close to the eye.

The area-sampled klein bottle clearly illustrates deficiencies in the area-sampling
algorithm presented in chapter seven. However, the algorithm works very well for

mapping.

The photographs used for mapping were scanned into the computer with a
scanning device at the University of Utah. Only lack of time prevented a more

elaborate demonstration of the power of mapping.

The shading discontinuities in the brick cylinder occur because the original brick

wall was not evenly lit.
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Picture 2

A single patch demonstrating the
aliasing that results from point-
sampling. Observe the edges.

Picture 1

A bottle and glass. The bottle
has 32 patches.

Picture 3

A patch demonstrating area-
sampling. Again observe the
edges.

Picture 4

Point-sampled and over-focused. Area-sampled and over-focused.




Picture 6 Picture 7

A spiral tube. A transparent spiral tube.

Picture 8 Picture 3
A sphere midway through its An er view of ar rertir
eversion Designed by Dr. Nelson spher

Max at Carnegie-Mellon University
using bicubic Coons patches.



Picture 10 Picture 11

Two bottles and a glass. 142 bottles and glasses.

Picture 12 Picture 13
The bottles with simulated
The bottles scene mapped onto a The bottl with simulated
reflect

curved patch.
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Picture 14

Klein bottle. Designed by Dr.
James Clark using B-Splines.

Picture 16

Klein bottle with transparency.

Picture 15

Klein bottle with area-sampling
used. Notice the occasional
failure at the silhouette to do
the anti-aliasing correctly.

Picture 17



Picture 18

The brick image mapped
respectively onto a single
rounded patch, a stretched patch,
an S curved patch, and a cylinder
of four patches.
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Picture 19 Picture 29

A picture of the author's family A picture of the author's wife
mapped onto several patches. mapped onto a cylinder.

Picture 22

Picture 21

A photograph of a hill Winnie the Poo and Tigger
mapped onto a curved patch. on a curved patch.
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