
JavaScript Malware for a
Gray Goo Tomorrow!
Billy Hoffman (bhoffman@spidynamics.com)

Lead Researcher, SPI Labs

A Moment of Clarity

JavaScript – (noun) A client side computer programming language,
largely misunderstood by the general public, that can be used to
create malicious, cross platform, and self-replicating software.

Gray Goo – (noun) A hypothetical end-of-the-world scenario
involving nanotechnology in which out-of-control, self-replicating
robots consume all matter on Earth, destroying life as we know it.

JavaScript Nastiness Circa 1999

JavaScript Nastiness Circa 2006

Why JavaScript, why now?

• Why didn’t Web 2.0 happen in 2000?

– Lack of standards compliant browsers

• JavaScript implementations all different

• DOM manipulation/Eventing all different

• CSS support lacking

– Lower connection speeds/processing power

Ajax succeeds because
it’s cross browser!

Now is the time for JavaScript
malware

• Homogenous platform
– Same browsers
– Different devices (PC, Sidekick, iPhone, embedded)

• JavaScript is much more powerful
– OO, extendable: String.prototype.foo = function() {…}
– Dynamic code execution
– RegExs
– Very rich interface to/from browser/plugins

• If JavaScript can’t do it, Flash/Java can…
– Large number of “networking” functions

Current State-of-the-Art
JavaScript Malware

Cross Site Scripting (XSS) And Ajax

• Cross Site Scripting (XSS) is injection of a script (Javascript or
VBScript) into the page that is returned to the user’s browser

• These scripts gets executed by the user’s browser, exposing them
to a variety of threats

– Session hijacking

– Information leakage

– Content manipulation

– Keylogging/Screen scraping

• With Ajax, XSS can make requests hidden HTTP requests!

Why does this matter?

HTTP Requests

• HTTP requests made by Ajax look identical to requests made by
user

– Headers

– Statekeeping/Authentication tokens

• Server cannot discern Ajax requests from browser requests!

Ajax Amplifies XSS Attacks

• In other words

– XSS can make requests for resources

– Request is hidden from user

– Happens in background while you are using the computer

– Browser automatically adds authentication information

– XSS can read response, send derived requests

– Server thinks you initiated the request

Ajax Amplifies XSS

Self Propagating XSS

• XSS payload can now autonomously inject itself into pages

• Easily re-inject same host with more XSS

• Can do all this seamlessly (no hard refresh)

• Can send multiple requests using complex HTTP methods to
accomplish propagation

Analysis of MySpace.com Virus

• Web virus

• October 2005: Infected 5th largest domain on the Internet

• JavaScript with Ajax

• Attack vector: XSS exploit allowed <SCRIPT> into user’s profile

• Propagation:

– Used Ajax to inject virus into the user profile of anyone who viewed
an infected page

• Payload:

– Used Ajax to force viewing user to add user “Samy” to their friends
list

– Used Ajax to append “Samy is my hero” to victim’s profile

XSS+Ajax on a Bank

Port Scanning in JavaScript

• JavaScript can make HTTP connections to arbitrary hosts
– Cannot see the response (Ajax restriction)

• Not always true… Images, iFrames
– Can detect if successful
– Can detect if there was an error
– Can set timers and see if any event fired

• JavaScript can use load events, error events and timeouts to
detect the presence of HTTP servers on arbitrary hosts and ports!
… even on intranets

Step 1: Implementing Ping with
JavaScript

• Use Image object with
onLoad() and onError() events
and a timer

• Setting src on Image causes
an HTTP GET

• Start timer

• If host exists, onError() or
onLoad() will fire

• If host doesn’t exist, timer fires

Step 2: Detecting HTTP content in
JavaScript

• Image’s onError() fires if its
HTTP traffic or not

• To confirm HTTP traffic, use
iFrame with onLoad() event
and a timer

• Set src on iFrame
• Start timer
• If host is HTTP server,

onLoad() fires
• If host is not HTTP server,

timer fires

Step 3: Fingerprinting Web Servers in
JS

• Fingerprint by requesting images
unique to a web server or
application

• Use Image object with onLoad()
• Send requests for known images
• If image exists, check the

dimensions
• If dimensions match, found

fingerprint successful
• If not, move to next image
• Can also check for existence of

style sheets or JavaScript files

Stealing Browser History

• In the beginning, visited links looked different
than unvisited

• This styling was performed by the user agent

• With Cascading Style Sheets (CSS), users
could style links

• With JavaScript it is possible to determine the
style of any DOM element on the page,
including links

• JavaScript + CSS = theft of URL history!

Stealing Browser History

From the W3C Cascading Style Sheet Standard:

Note. It is possible for style sheet authors to abuse
the :link and :visited pseudo-classes to determine
which sites a user has visited without the user's

consent.

(http://www.w3.org/TR/CSS21/selector.html#link-pseudo-classes)

Stealing Browser History

• How it’s done

– Use JavaScript to dynamically create a new link to any URL

– Apply a style attribute to the link, defining different styles for
:link and :visited

– Browser automatically renders link with appropriate style

– Use JavaScript to check style on the link

Stealing Browser History

• Browser history = giant hash table
– Cannot enumerate through it
– Can ask it yes/no questions

• Can perform thousands of look ups a second!
• Just have to know what questions to ask it… more on this

in a minute.
• JavaScript can now detect very specific URLs
• Sometimes URLs are different for everyone

– In URL session state/authentication tokens

What else can we do?

Stealing Search Engine Queries?

• Has the user been to the results URL of a search engine?

• Hmmm… Can we steal search engine queries?

• Research shows there are a few problems

Stealing Search Engine Queries?

Problem 1: Results page for search query can have different URLs

• Problem 2: search query letter case produces different URLs

• Problem 3: word order of query produces different URLs

Stealing Search Engine Queries?

Stealing Search Engine Queries?

What if we solve all the problems by brute force?
Given query Q with x number of words:

There are 2x combinations where first letter is upper or lowercase
There are x! ways to order search words

If there are y number of unique result URLs

Num URLs = (2x * x!) * y
To see if user searched Google for some variation of “secure handshake

Diffie Hellman”

(24 * 4!) * 3 = 1152 URLs!
…and what if they don’t use Google?

Stealing Search Engine Queries!!!

• Don’t Panic!

• We can do thousands of look ups a second!

• SearchTheft.js

– Detects what search engines are used

– Tries all combinations of letter case and word order

– Reports if user has searched for a term

Demo of SearchTheft.js
http://www.spidynamics.com

What Queries to Check for?

• How do you know what queries to check for?

• User supplied

– billysbooks.com can see if you also searched for something
on a competitor’s site

• Precomputed List

– FBI can check for common kiddie porn queries, JavaScript
automatically reports you!

– DoubleClick could use a list of terms relevant to the topics for
each site that uses their ads

Future JavaScript Malware

• Cross Domain XSS Web worms

– MySpace.com and Yamanner never hopped hosts

– Google’s AJAX Search API

• Create a SCRIPT Tag with the SRC pointing to Google

• The query string of SCR contains your search query

• Google returns JavaScript containing the results of query

– XSS can now call Google to find other vulnerable hosts

– XSS can then use blind GETs and POSTs to infect these new
hosts

Future JavaScript Malware

Steps towards a JavaScript web
crawler

• HTML can open content from Site2.com

• JavaScript from Site1.com cannot access
the content!

• This is the Same Origin Policy!

– Basis of entire JavaScript security model

• Prohibited from accessing each others
content

Google Translate to the rescue!

• Google Translate (GT) can fetch pages from anywhere (ie, proxy)

• Content is in GT’s domain

• Allows content from separates sites to be in the same domain!

Jikto: JavaScript Web Vuln Scanner

• Written entirely in JavaScript (~875 lines)

• Can crawl and audit third party site

• Results can be displayed or sent to a different user

• Based heavily on the work of pdp’s crawler (http://gnucitizen.org)

– He used iframes, cross iframe communication

– Nifty proof of concept but not viewed as realistic

• Slow! (timers + iframe onloads = bottleneck)

• Ajax >>>>= iframes

– Can we stop this silly “Ajax doesn’t change security bit”

iFrames vs. XmlHttpRequest

• Both iFrames and
XmlHttpRequest can be used
to fetch content

• iFrames are a dirty hack!

• Hooks onload event

• iFrame’s onload doesn’t fire
until entire page has loaded.

• Normally an order of
magnitude slower.

How Jikto works

• Our JavaScript needs to be in same domain as website we are
scanning

• We load an iframe to Google Translate (GT), and point GT to site
with Jikto code

• Jikto code is now in GT’s domain, so it can use Ajax to tell GT to
get any public page from any site. Ajax *much* faster than
iFrames here!

• Jikto can analyze response, send derived requests, make attacks,
etc.

Jikto Pros and Cons

Pros
• Very, very fast
• No application install required
• Cross browser
• Cross platform

• For attackers:
– Now can find exploits!
– Weaponizable/XSS-able
– XSS + Jikto + Social

Networking = Botnets

Cons
• Proxy can limit you

– Does it forward HTTP
headers?

– Cookies?
– Thru POSTs or lame?
– Rate limiting?

• XmlHttpRequest auto follow
3xx with no input

More About Jikto

• Requests a page from Request Queue

• Processes response

– Scraps out hyperlinks

– Creates Requests from FORM tags

– If Requests was an attack…

• Score attack according to RegEx

– Pass Response to attack library

• Generates new attack requests for the Request

• Currently some Backup file checks and XSS/SQL checks

More About Jikto

• ~875 lines of JavaScript (heavily commented)
– ~500 lines of parsing code

• Url parsing, resolving relative links, extracting, etc
• Form parsing for inputs, HTTP methods, etc

– ~220 HTTP glue code
• XmlHttpRequest, proxy management
• Request and Response objects

– ~20 lines GUI interface
– ~40 lines attack library
– Misc stuff: debugging, rot13, global variables

Jikto Architecture

• Abstracted into 4 parts

– Add new proxies

– Add new attacks

• Not all 4 parts on same
machine!

– Controller and Reporting can
be on remote host

– Allows distributed
Requestors and Analyzers
controlled by central system

Future Advances for Jikto

• Exploitation

– Check XSS attack execution with browser’s JavaScript
interpreter!

– Wormable?

• Yep

• I can now find and confirm XSS vulns in other sites

– Exact data from verbose SQL Injection

JavaScript Malware for a
Gray Goo Tomorrow!
Billy Hoffman (bhoffman@spidynamics.com)

Lead Researcher, SPI Labs

