ARTeam _ .
e/ine

CNE

SERIAL BUS
(6-PIN FEMALE DIA

CONTROL PORTZ
(MALE DBY)
CNE

CONTROL PORT/
(MALE DBY)
CN9

KEYBOARD
(20-PIN MALE)
CN 1

USER PORT
CNZ2

(24 -PIN MALE EDGE)

#1

KNOWLEDGE

HTTP://CRACKING.ACCESSROOT.COM

)

CN3

ég
CASSETTE

(&-PN MALE EDSE

fov 30
7&3 192

C36
(6./@ MHE -N7SC) T 20/
(7.0 MWL - PAL)

* sov

DISCOVERY
REVERSING
+9 WAEG
KA v S
p " -
;. DAL)_J +5

CLK *+ 5
$[Azn oL ey 7S Vo
3 sor> XL L 4
2 = 2v= E 3 :'.

- 2[3klo *F ce7 T ﬁ
U280 LLL . A
aose WL erl’;
EiE, -
6050 1 = CR/04 :;‘,‘1]_
. | CRIOS
' N I A7 CA
e :
Yz N S
Qe v ——
.. - .
Y Ier7 7 —— 651 N
¢ 3arke
3[1ara3 MP
His = e
]

i] o
_ ?,}’"l_“
& [EarAx el mﬁ:
S|RIAY DopF— FBS
7 [Haxdo RPI 92 1t
2 laxdl 33K zt.v -

3 T k) M

JOYAY ek
¢ [arnazcP [e 2 A
Dr—_L I =)

L rC 20 =
R 5 ¢ H D7L_\ﬁ—
gL] [
IrEoLT [P psf——
TaLeak e g o
5 S
"reoc P4 ozl —J
s4feat 7l Ul i
/5 1T Bloag pofR]

#4534 HHE 6526
© nciBore CIA rs3 A
12| RauQ - reo - A
nmn%‘« 1 — 7] pgy (DCOO- o7
10 IIQ?!]}\/J lpa2 DCFF) 'i"i’ ~
5,A T 33 ‘02 20
Ol maws - Lilaes
Y-S 161 rad ~w
g |z la i c3 ——1[—1
=5 REsT C""

3 5 N CR
2|—(k&Y)
7 Reg e 1 ca 3 !
= '3 r30 W T '
1K AAA— H /
RP3
RrR20 TION Al 07
3.9K 1K 7
PAS RIOO)—1a—— ’0 ad
a|SNTL cri02d— 14— 0N m
H w7 12 Y
e > ar U2
N
Avros K 6526
M-L2AZ loyd C/A
c & L)
yd — g
Mz
E
F
WBAL
J
Keaz
p|ELAET
2
3 |BESET
ol DAC~
" VAL ~
1
/2|
A
N

CARTR/DGE EXPANSION
CN6

TABLE OF CONTENTS

INTERVIEW WITH ARMADILLO DEVELOPERS « « « ¢ « o ¢ « o ¢ o o ¢ o o « «
ImMPROVING STRACENT : ADDING ANTI—DEBUGGING FUNCTIONALITY . . .
REVERSING SWITCHES « « o « o o o o o o ¢ o o 0 ¢ ¢ o o 0 e eeooees
QUICK NAG REMOVAL ¢ ¢ v v v v e e e e et e oo et eoeeeeeeeas

JOPENING THOUGHTS ¢ & ¢ ¢ o o o o o o o o o oo oo oo oooooeceaeeeeas
INTERVIEWED : NILREM OF ARTEAM. ¢ v v v vttt ittt it e e e e e
UNPACKING ASProTECT v2 .1 SKE wiTH ADVANCED IMPORT PROTECTION .
DEMYSTIFYING TLS CALLBACK « « « « o « o o o o o o o o o o o o oo oeeeeoaos

DEVELOPING A RINGO LiOADER ¢ ¢ v ¢ 4 o o o o o o o o o o o o oo oo oeeeeeeoeeaes

BreEAKING PrROTOCOL ¢ REVERSING AND EXPLOITING CLIENT SIDE COMMUNICATIONS .

JCALL FOR P AP RS e v 4 v e e e e e et e e ot oo eeeeeececeeeeeeececeees

.17
.25
.34
.34
.38
.52
.63

Opening Tlyounlts

The idea for this project was to provide a means of publication for interesting articles. Not everyone likes to write
tutorials, and not everyone feels that the information they have is enough to constitute a publication of any sort.
We all run across interesting protections, new methods of debugger detection, and inventive coding techniques.
We just wanted to provide the community with somewhere to distribute interesting, sometimes random, reversing
information.

While the title of this ezine says ARTeam, we prefer to think that we are acting as a conduit. We really hope that
you find this project interesting, and we really want this to be a community project. So if you have an idea for an
article, or just something fascinating you want to share, let us know and hopefully we will see a ezine #2.

It soon became apparent that the scope of this project went well beyond what we had predicted. A big thanks
goes out to all the contributors. Without you this would be a blank page. We also need to thank everyone who
has viewed, refined and commented on the production of this ezine. Hopefully we have been able to provide the
reversing community something interesting.

The reversing community has been very dynamic in the past few years. We’ve seen a ring3 GUI debugger grow
in startling popularity. We’ve seen protection authors dig deeper into the OS in an effort to deter crackers. Unique
protections have provided months of analysis for reversers. New inventive tools have been developed in the re-
versing community in an effort to effectively analyze and understand software protection. And ironically we see
some of these tools move back to ring0.

None of these changes and achievements would have been possible without the amazing and talented reversers
that take the time to share their knowledge and teach others. No matter what team you belong to, what level you
reverse at, what language you speak, you all make up the same community. A group of people who constantly
strive for discovery. None of us are content with accepting things “as they are” we need to know why. We are the
scientists of software. We dig deeper than the average user, we see code where everyone else see flashy presenta-
tion. We learn this code so well that we can rewrite it, manipulate it, and even improve on it.

Since these are my thoughts, I just want to thank every single member of the reversing community. I couldn’t even
begin to name every single person who has provided a contribution. We are all spread out among many boards,
many teams, even many countries. But I like to think that we all share a certain camaraderie.

Please enjoy the information included among these pages, we had some talented people give us some great sub-
missions.

Gabri3l[ARTeam]

nterviewed: iz v

‘What first started your interest in Reverse Engineering?

Oh my! What a tricky question, there are numerous factors, however these other factors are actually the reasoning
|that kept my interested ignited but wasn’t the initial fuel for the fire. If I’'m been honest, I’d been using cracks
serial/keygens since I’d gotten the internet (1998), it was only when there was no crack out there for a certai
Frogram that I hit a brick wall. Do I wait a couple of days/weeks/months for a fairly obscure piece of software t§|

e cracked? No of course not, I need it and I need it now, aha! I better go learn how to crack. That’s what starte
my interest - my neediness.

How long have you been active in reverse engineering?

Since the questionis how long I have been active in reverse engineering and not when did | initially start. The
ElOSt accurate date I can give you for that question is when I wrote my first tutorial (obviously I would have

een active before this because, of course, I had to learn how to crack before I could start tutorial writing). My
first tutorial ever written was “Finding a hardcoded serial and patching the program to except any serial 01”’,and]
|this was written on the 11th of August 2003. So take 11th of August 2003 as the answer the question.

'What made you decide to form ARTeam?

A girl, a girl named Kyrstie, we had split up so I decided to start writing tutorials because of all the free time]
[now had.

When I first started writing tutorials I was publishing them on exetools. Which at the time was recieving little to
[no tutorial submissions as a result of this I started recieving a fair bit of attention. One of the people interestedl
in me and what [was doing was PompeyFan (who subsequently became the Co-Founder heh). He sent me pms|
saying [had helped him on the road to Reverse Engineering and had asked me something along the lines of:
“Hi, Nilrem, your tutorials are great. When I am good enough can I join your team please?”

[’m guessing you can imagine my reaction, team... TEAM?! I don’t have no team.. uhh, hang on a minute, brain-
storm!!

That’s how it happened, that is how ARTeam was born, someone liked my tutorials wanted to join my team so [
started ARTeam so he could join, and the rest as they say, is history.

How did you end up with the original founders/members?

'Well since my memory isn’t the best, and I’'m probably going to annoy a few staff members here by forgetting
|the order in which they joined. If I remember correctly the next addition to the family (no I’m not doing my Don|

4

Corleone impression), was Ferrari. Who was actually reluctant to join because he didn’t deem himself at an ac-
ceptable level of Reverse Engineering to join the team (damn what is it with these people heh).

So I had to wait for him to finish his ‘training’ from el-kiwi before he would join.

Now this is where it get’s really hazy (Davy and Killer Joe?), the next few members to join where, MaDMAn
H3rCuL3s, Kruger, EJI2N, Enforcer, and Shub Nigurrath, these members became the initial core of ARTeam.
Now how did they actually start with ARTeam? That is a very tricky question, so I’ll avoid it. I do however know
where I met them all (except Shub, we met on the ARTeam board through word of mouth), which is Exetools, so
praise be to (Yevon?) Exetools.

What is your opinion on the ethical aspect of cracking / reversing?

Well I’ll try not to write an essay alone on this question, not because I don’t want to, but because there are numer-
ous (to say the least) debates on this specific question.

You see you have put a slash between ‘cracking’ and ‘reversing’, whereas I see them as two different (similar but
different) things. They differ because cracking to me implies everything that ARTeam is (no longer) not about,
and ‘reversing’ is exactly what ARTeam is about (one facet of our ideoligies anyways). You see cracking (and
label me hypocritical if you wish) is wrong and Reverse Engineering is right! That is if you see only in black and
white which thankfully I don’t (and even then RE would probably be deemed wrong, if so virii anaylzers please
stop reverse engineering those virii).

First allow me to define cracking and Reverse Engineering.

Cracking (to me) just means releasing cracks (even by stealing other peoples work) to gain notoriety for oneself
and ones group without giving (accept from the cracks) anything back to the community of which they learnt there
appropriate skills.

Now Reverse Engineering entails the same process, we Reverse Engineer various softwares and their correspond-
ing protection schemes and we then compile them into tutorials for people to learn. We actually give back to the
community that gave us so much. Isn’t this changing the question? No it is allowing me to start to answer (you
like to ramble don’t you? Yes, and coincidentally talk to myself) the question properly. Now you know my views
on cracking and Reverse Engineering, you can now see (hopefully) why things aren’t as black and white as the
media, authorities, and software companies like to make out.

I personally do believe it is wrong to release cracks, then on the otherhand I don’t believe it is wrong for a poor
student to crack thousands of pounds worth of software so he can learn for free (Visual Studio for example). |
certainly do not deem Reverse Engineering wrong, in fact what we are doing is helping people, and there is ab-
solutely nothing wrong with that. We at ARTeam teach people to share their knowledge and to help others in a
friendly and polite manner. What is wrong with that? Absolutely nothing! Once people understand that we are
similar to anti-virus companies, in that we both Reverse Engineer to help people (our help isn’t as obvious that’s
all), and that we aren’t out to hurt anyone or their livelihood, then one day we might actually be praised by people
outside of our communities (don’t hold your breath though).

What do you find most interesting about the web scene right now?

If I understand your question correctly then you are referring to the cracking scene’s websites.

What do I find most interesting, well I’ll just pick one thing since it gives me an ego boost, and that is many dif-
ferent groups with forums are following suit with ARTeam. By this I mean they have turned into a tutorials only
group. Actually that isn’t an ego boost is it? No of course it isn’t, we changed our policies for a different reason
to the other groups I’m referring to. In fact it is quite saddening, they have changed their policies because their
communities were starting to turn into war zones (exaggeration yes, but only because they changed their policies

5

just in time before things could escalate uncontrollably).

So you see it’s interesting to see how the scene is changing, no longer is it “ahh thankyou for giving me that re-
lease”, it is more like “You haven’t cracked it within 35 seconds, you suck! I hate you!!”, of course this is a obvi-
ous re-enactment because I used correct grammar. 8-)

Has anything you’ve learning during RE become useful in real life?

Yes and no. No not in any obvious ways, yes in obscure ways as a result of studying Reverse Engineering.

I have learnt how to program in assembly, which I never would have done without learning Reverse Engineering
(because I needed it).

I have learnt how to communicate and express my ideas to others as a result of numerous discussions on ARTeam
and tutorial writing.

I become more logic minded in the way I approach different problems which will no doubt help me with my
games development studies.

I have met (virtually) lots and lots of talented people, but how does that help you Merlin?? Well if we meet in
person one day hopefully they have a nice looking sister who will become my bride?

Ok ok so it’s getting a bit far-fetched now, but as you can see it has helped me, just not in any blatant way until
you start looking at it more in-depth.

What do you see the future of software protection being?

Longer sentences? Perhaps even the death penalty? I just really can’t see how they will stop the ‘crackers’, even
the death penalty wouldn’t stop everybody. I believe they’ll start using more hardware protection actually, but the
question was software protection so I’1l try to address that accordingly. Maybe they’ll employ Reverse Engineers
from certain teams (hint hint). All jokes aside, I believe software protection will get harder but that will only add
more fuel to the fire of the Reverse Engineers out there. Basically I really have no idea on what the next step will
be, but before Arma and Aspr no-one said. “Ahh yes this new protection will be [insert Arma and Aspr character-
istics here].”

Hopefully that answers the question.

We’ve seen people all across the scene come and go, have you ever thought of “getting out”?

Yes you’re right we have, some of those people were ARTeam members too, so the reality of people quitting or
‘retiring’ is very prominent. Have I ever thought of “getting out”? Yes, I have, and I did. It was last Summer, I
was having personal issues and wanted to address them, and with a second life there I decided it would be easier
to manage just one life.

As aresult I did one of the hardest things I have ever had to do, not only say goodbye to the dream I started, but
say goodbye to my new family, a very close-knit family at that as well.

But we never heard anything????!!! Ahh you see I did it quietly and privately with no public announcements.
It also was a good thing my departue from ARTeam because it put to the test one of my theories. You see when
ARTeam started I have always said that it was to be run as a true Democracy were every major change had to go
through a majority vote wins scenario. So when I left the team carried on as normal and even went from strength
to strength without me. Of course this made me sad and happy at the same time, my baby was no longer a baby
and I wasn’t needed, at the other end of the spectrum I had created something that could live and survive without

6

me. Not many other groups can make that claim when the founder leaves.
But you’re here now? Yes I came back, I couldn’t leave my family, not for long anyways. 8-)

Are there any comments you would like to add?

Yes, can’t believe I’ve come to the end of the interview! Ha! It’s been a pleasure it really has, I’'m a lot more hun-
gry then I was when I started the interview so I’'m going to have to go eat. 8-P

I just want to say a big thankyou to everyone that has contributed to, and, helped in some way this very first issue
of the Ezine. You have all worked incredibly hard (accept from me 8-P) and it shows.

Readers, thanks for, well, erm, reading. Look out for the next issue!

-Merlin

UNPACKING ASPROTECT V2.1 SKE
WITH ADVANCED IMPORT PROTECTION
e _MaDMAN_H3RCUL3s[ARTEAM)

Todays target will deal with DVDCopy Machine v2.0.2.220

Hopefully this is a worth while adventure as most people have trouble unpacking this protection. The first step
we must accomplish is find the OEP. We start up inside the EP of the protections code, like usual in aspr we are
at the PUSH, CALL startup code.

Address |Hen dump Disassembly
t 68 B148EAEE | FUSH DUDCopwH. BBEA4EE]
AE4E1AA5 [. ES @la@@nEE | CALL DUDCopwH. BE48106E
HEd4Eiaan(k, C3 RETH
Aa4a188E(§ C3 RETH
BE4E 1 aac 45 OE 45
BE4E 1860 [315] DE AA
AE4E 1 BEAE 43 OE 43
AE4E 1 BEAF 1] OE =8
AE4E1818 25 OE 25
HE4E1E11 ve OE 7S
AE4E1812 Ea OE 59
BR4E1813 23 OE =23

The usual stuff....

Then in order to get as close as we can to the OEP, we will use this breakpoint:

Command : | bp hispew Of File Ex| [v]

Then we will break on it twice then return to user code.

BEDESEES &R @4 FLUSH 4

BEDEZEEA Al 14B40108 MO ERX, DWORD PTR DS:CO1E4143]
BE0EZEEF =15) FUSH ERH

BEOESETE Al E4970188 MO ER:, OWORD FTR DOS: [O137E4]
BEOESE TS SE40 B3 MOL ERE, OWORD FTR DS5: [EAK+E]
FEDESE TS FFOE CHLL ERH

HEOEEEFH SBED2 HMOL EB®, EAX

BEOEEEFT {=15] FUSH ERX

BEOESE D ES 4AE1E8E8 CHLL HEDag7Ce

BEOESES2 E& FUSH ESI

BEOESEES CICE 99 ROR ESI, 29

BEDESESE BE ZAFD47@E MOL ESI, 47FD2A

BE0EZESE SEvdz4 18 MOW ESI, DWORD FTR S5: [ESP+1G]
oo0oieor| e et | SHORT Gabesssa T

‘We are here..

Now we must get to the point where aspr has decrypted the code section and we can enter it. So we search our
string ref’s for the following:

BE0DEASES [PUSH BOBASEC ASCII "34",CR,LF
BE0EABCE [PUSH @O0BEZCE ASCII "1@8™,CR,LF
BEDOEESS0 | PUSH BOBESERA ASCII "158™,CR,LF
BEDEESFA | MOY EDX, 43EEEE HSCII "= s:|FeF™
BEOREFEZ [PUSH BOBCAIEA ASCII "158"™,CR,LF
BADACACE [MOU EDY, 43EEEE HSCII "= s*[L2F™
HEDBCEFE| MOU EDX, BOB0198 ASCII ".key'
GE0DACESA | PUSH ahah0ifa ASCII "regfile™
BADACES] [MOW EDX, 8080128 ASCII ".kew™
BE0OEESEF [MOW ECH, BOBESED ASCII "ProductTwpe"™
HEOBESES | MOW EDX, BOBESF4 ASCII "Swster~CurrentControlSet~Con
HEDBESF 3| MOU EDX, BOREGZC ASCII "WIHHMT™
AANAFERR ML Fhk . ANRFAE ASCTT "SFRUFRNT™

Then hit “Enter” on this string and then scroll a bit below it.

Address |Hex dump

Disassembly

Camment

BEDECEFE| EA 2801088A
BS pE8aa82a
ES ZED3FEFF
63 RE01088a

2309

EA 2801088:
B2 BEEAEE2R
EZ 42D3FEFF
2045 D&

EA 24888888

MOL EDG<, B0ED 196

MaL - ERF, 28880088

CALL BACFALES

FUSH B0Oa01AG

H®OR ECk, ECH

MaL ED, A0E01 26

MOL - ER-, SEBEEEEE

CALL BACFALESR

LEA ER:,OWORD PTR S5:[CEEBP-2A1
MO ED, 24

ASCII ".kew'™

RASCII "reafile™

ASCII ".keu™

Rt Tt ol el el] FE L e e

Now scroll down a bit.

Address |Hex dump Dizassembly Coamr
GE0A0ESE =] FOF ERH BACFE
BEOA0ESC SE FOF ESI BACFE
BEDE0E20 SA FOF ED BECFE
BEOADESE F3: FREFI¥ REF: Supe

BE0a0E3F |~ EE B2
BE0A0EA1 CO za

JHF SHORT EB0E0EAS
INT 2@
OR_EA, FFFFFFFF

BE0A0ARZ| 2302 FF
BEDA0EAS| 46 IMC ERX
BE0A0EAY| C32 FETH
-~ EB @1 JHMP SHORT @@0a0EAE

Fa FREFIX REF: Sume
This code is obfuscated.. so you must use the jmps above this in order to see it..

Once you find it you can set a BP (F2) on the “OR EAX, FFFFFFFF” instruction.

Address |Hex durmp Disassembly
=] FOF ER:
EE FOF ESI
=g FOFP EDA
F3: FREFI¥ REFP:
« EB B2 JHMF SHORT @@0E0EAR3
CO 28 INT 28
EERENEEE] =:3C8 FF OF EAY,FFFFFFFF
IMC ER:
c3 RETH
-« EB @1 JHMP SHORT @aDalDEnE
F3: FREFIX REFP:
1Dl 73 RCL_ECK, 73 _

And now we have broken on it.

Set a BP on the Code section and viola!!!

Address |Hex dump
LEEEEI[EEJ -~ -EB 18

EEIEZ3A

Dizassembly

JHF SHORT DUDCopui. 884681502
?HHHD OI,0OWORD FTR DS:[EDX]

43 EB¥
ZBZE SUB EBP.DWORD PTR DS:[ERX]
42 DEC ERX

. | 4F DEC EDI

. | 4F DEC EDI

. | 4B DEC EBX

We made it!

Now we must see exactly what our protection options are here. Since this is just a quick article on the subject |

. |28

.~ E? S92FBSCAR

» +A1 SBFRASCAR

. CIEB B2
H2 2FFESCER
=

. &R B8

. E2 FaCo1Co0
SEDE

ES 4ECZ1AEA

=1]

EZ2 ACC11AEA

JMF - BE8308EEH
MOU ERX,.DWORD PTR DS:[ECFEZE]

ERX, 2
MOU DWORD PTR DS: [ECFE2F], ERK

5]
CHLL DUDCopwH. @2SCOFDA
MOU EDH . ERA
CALL DUDCDDHH BASADSEC
FOF EDX
CALL DUDCopwH.BE5A07AG

will skip the finding, and searching.. and go straight to the good stuff.

Use CTRL+G and go here:
Address |Hex dump Disassembly Comment
HHSCOEYE L] HOF
HESCOEYC] . 8320 &80SSEQN SUE OWORD PTR O5: [SEDS5S], 1
HHSCOESS| . C3 RETL:
HESCOES4] 5 E8 vrz2lllod |CALL BHSEDHEH RegClosekey
HHSCOESS 14 OE 14
HESCOESA] 5 ES v1211100 |CALL BHSEDHER RegCreatekevwERA
HHSCOESF| . EC IM AL, D" I-0 command
HESCOESH] & ES &6B211100 | CALL HHSEHRHER FegF lushkey
HHSCOESS A9 OE A9
HESCOESS] 5 ES 65211100 | CALL HHSERHER FeglpenkewERA
HHSCOESE &F OE &F CHAR "of
HESCOESC] & ES SF211100 | CALL HHSEDHER RegtiuerullalusExA
HHSCOEA] RS OE A=
HESCOEAZ] & ES 59211100 |CALL HHSERRER RegSetllalu=ERA
BHSCOEAY| . 9C FUSHFDO
HESCOEAS| $— FF25 SE8@35FON JHMP OWORD PTR O5: [SFH3S5E] kernel32.CloseHandle
HESCOERE| %— FF25 SCH3SFEN JHMP OWORD PTR O5: [SFH3EC] kernel3z2. CompareStringd
HESCOEE4] 5 ES 4v211100 |CALL BHSEDHEE
HHSCOEES 21 OE Z21 CHAR "t*
HESCOEEA] 5 ES 41211100 |CALL BHSERHEH
HHSCOEEF g5 OB 25
HESCOECH| 5— FF25 &E8035FEN JHMP OWORD PTR O5: [SFH3GE] kernel32.CreateFileA
HESCOECE| .— FF25 GCHSSFEN JHMP OWORD PTR O5: [SFHE3GC] kernel32. CreateFilell
HESCOECC] & ES 2F211100 | CALL HHSERRER
HHSCOED] FF OE FF
HESCOEDZ| %5— FF25 v4@35FOy JHMP OWORD PTR O5: [SFESY4] kernel32. DebugBrealk
HESCOEDS]| %$— FF25 vE035FEN JHMP OWORD PTR DO5: [SFH3YE] ntdll.Rtl0=leteCriticalSect ion
HESCOEDE] & ES 10211100 | CALL HHSEDHER
HESCOEES] .~ E1 FF LOOFOE SHORT OLOCopwH. BHSCOEES JMP to kernel3z2.0eleteFilell
HESCOEES] . 25 BPHSSFOE | AMD EAX, SFE3EH
HESCOEEA| %$- FF25 S4@35FOy JHMP OWORD PTR O5: [SFE3S4] kernel3z2.0eviceloControl
HESCOEFH| 5— FF25 S8035FON JHMP OWORD PTR O5: [SFH3EE] ntdll.RtlEnterCritical5ection

AACCNFFEA

OUCH!

FR AE211166

mal - ARAFARRR

We see what our option is. Advanced Import Protection. Try and use IMPREC and you might on a good day
get 20-30 API’s. We are missing a ton of them. Well the gist of this article is to show you how to recover
the API’s without restarting over and over again. I like to do things by hand, and I hate scripts. So you wont
get one from me. All you get is how to fix them. So... Since our Table is totally screwed, lets start with the
Kernel32 API’s. So go to the line:
005CDEB4 $ E847211100 CALL 006E0000

then what you will do is right click on it and set new origin here:

Then you see we are now set at this line.

Now we need to trace aspr out a bit, but only one time ©

10

HHLLULUEHS| . I FI=SHEL
AEECOERS| $- FF25 5SGS5FE(JHP DWORD F Assemble Space B.Clos
AEECOERE| $- FF25 ECHSEFE(JMP DWORD F Label : 2. Caomp
BESCOEE4| 5 ES 47211188 |CALL BEEEDE I
BASCOEES z1 CE 21 Carment H i
AESCOEEA| $ ES 41211188 |CALL @BGERE)
BESCOEEF 26 OB 56 Ereakpaint 3
AEECOECH| $- FF25 6S@35FE(JMP DWORD F) B.Cre:
AEECOECE| .- FF2E ECBSEFE(JMP DWORD F o Hik trace b B Cre:
GOECOECC| & ES 2F21118@ |CALL BREEGE . ,
@BRSCOEDL FF OE FF un trace
AESCOEDZ| $- FF25 74@35Fel JHP DWORD F £, Det,
BESCOECS(%= FF25 7B@3SFE| JHP DWORD F kojiow Enter ELDeLe
AEECOEDE| § ES 10211188 |CALL ABEERE
@ESCOEES| .~ E1 FF LOOPDE SHOR [Ty sy bernel
AEECOEES| . 55 SBESSFEE |AMD ERW, SFE drigin nere
BEECOEEA| %— FF25 S4B35FEN JMP DWORD F 5 pq b 2.D0eui
AESCOEFE| $- FF25 S2GS5FE(JMP DWORD F ELEnte

BASCOEAT| . 9t FISHFD

BASCOERS| $- FF25 S8@3SFel JHE DWORD FTR DS:[SFESSS] ker

GEASCOERE| §- FF2S SCE3SFE| JHP DWORD FTR DS:[SFGSSC] ker

£ ES 47211168 |CALL ©E&ESHHE

BESCOEES o1 OE =1 CHA

GASCOEEA| § ES 41211166 |CALL G@sEQEEE

GESCOEEF g6 OE =6

GASCOECHE| $- FF2S &2@35FE| JHP DWORD PTR DS:[SFB3EE] ker

So hit F7 on the CALL and lets enter aspr land.

Oizassembly
JMF SHORT BESERBES
IMT 28

BESERARES [ED 208

BESEARES| 50 FUSH ERX

BECEAEES| 26:EB 81 JHMP SHORT HESERBEA

BRSEAEET F@A:93C LOCK PUSHFD

BEEERAEE| 234424 82 #0R ER,OWORD PTR S5:[CESP+21
gEcEBEEF|] ClCs 5D ROR ERX, S0

EEcEEAETZ)] S3EC 28 SUE ESF,z28

BEcEAA1S| F3: FREFIx REF:

HEEERELS]~ EB B2 JMF SHORT BBEEBE1A

Now use F8 until you get to code like this at the end of this function.

[l l=] A7 =) = e = = e P 2OUn D DRDCeLr L
BESER1EF CO 28 INT 28
FEHSER] V1 ZBECY SUE ERH,EDI
BESEAL VS FFOD& CALL ERX
BESER] VS SH 48 FUSH 48
BESERLTT &5:EE A1 JMP SHORT GRSEELVE
HESEBALTYA BFC1EB #“ADD ERA,ESP
AACER 70 an rhinE
Enter the CALL EAX.
Dizassembly
FUSH EEF
Moy EBF,ESF
AOD ESP, —2C
FUSH EEX
PUSH ESI
FUSH EDI

AOR ERX,ERR

MOU DWORD PTR 55: [EEF-221,ERX
MOU DWORD PTR S5: [EBP-2C1, ERX
AEM ERE1 a945 Nr MO MNRM PTR S5: TFRP-241.FAX

Then use F8 for most of this part as well... until you get to this.. you need to pay attention or else you miss it.

ML] SHL sSeqU 1L MUY ELE, UNUED FIHE =S5 LEEF+1L]
BE01ER4F 2BELE 18 MOU ED, DWORD PTR S5:[EBP+181
HED] EHE: 2BCZ MOL ERE, EBH

E2 DF@8a8EE CALL aanise3s
BE8015AS9~ EB 81 JIMP SHORT 8aD1SASC
Ba015ASE ES 3047R450 CALL SAOSA1ED
BE01SHEE SB45 14 Mou EAE, DWORD PTR S5: [EEP+141]

Okay. We are almost there now ©

Use again F8 until you get to here. You will know when its right ©
Believe me.

e I

BA015CTE é?g%‘acarnma EEEL”EE'F&'DHEE&”FTE D5: [ECH+D1976C], BADG

BEDISCTF ERx . EEF

BE01ECE1 2286 AHD ERX.OWORD PTR DOS:[ESI]
BE01ECE2 Baaa ADD BYTE PTR D5: [EAXI, AL
BED1SCEE 2B45 F4 MOU ERX,.OWORD PTR S5: [EEP-C]
aapisCes SES0 EBQBEE00 | MOU ERX,DWORD PTR DS: [ERK+ES]
BE01SCEE A345 E4 ADD ERH.OWORD FTR 55: CEEP-1C1

FAO1ECT 1 8945 FC MO OWORD FTR S55: [EEP-<41,ERX kernel32.CreatelirectoryAd
HEO15C34 33CAE #OR ERX, ERX kernel32.Createlirectoryd
BADIECIE SAC3 HMoL AL, BL

BEO1ECTS 6145 18 AOD OWORD PTR SS:[EEP+181,ERX kernel32.CreatelirectoryA
BA01EC9E &7 FUSH EDI

BEO1ECIC &A BE FUSH @

And theres our API for this particular call. BE SURE TO SET A HWBP on the instruction, so all we gotta do is
hit F9 each time from now on, then just fix the pointers.

Now we must fix the CALL 00XX0000 to one that looks like this:
JMP DWORD PTR DS:[POINTER]

Since we are only dealing with the JMP table here, everyone will only be a JMP DWORD, and not a CALL.
So lets go back to our original caller, then alter him a bit.

MUSLUEHS| % B SPSL11EE | LHLL MEBEREE

AESCOERT] . 9C FUSHFD

BASCOERS| %- FF25 SS8A3SFEY JMP DWORD PTR DOS: [SFE3SS]
BESCOERE| %- FF2S SCHSSFEY JMF OWORD FTR OS5: [SFE3EC]
BESCOEE4| £ E2 47211100 |CALL BRcERBRE

BEECOEES 21 OB 21

11

Now we see that the 2 prior JMP’s are in a certain order.. the Order of 4. I really hope you understand this. If
not, then it might be better off you leave this alone.

Our first IMP is:

005CDEAS $- FF25 58035F00 JMP DWORD PTR DS:[5F0358]

Followed by:
005CDEAE $- FF25 5C035F00 JMP DWORD PTR DS:[SF035C]

So lets use a brain here.
The JMP should be:
JMP DWORD PTR DS:[5F0360]

This would follow in sequence the other 2.

So make it read that.

ESUEHT - F raanaro

BEECOERS| %- FF2E S2@35FE JMP DWORD PTR D5: [EFE252] kernel32.CloseHandle
GEECOERE[%- FF2E5 SCB3EFEY JMF DWORD PTR DS: [EFE3EC] kernel32. CompareStringR
BESCOEB4| - FF25 e883SFEy JHP DWORD PTR DS: [SFE36@]

BESCOEEH| § ES 41211168 |CALL GEcEARSE

But now we must fix the pointer. Since it still uses the aspr crap code.
So use your CommandBar and type in the APL

Like so:

Command : | 7 CreateDirectory A M HEH: TCa26219 - DEC: 2088919577 - A5CI: LbO

Now in the pointers position edit it to be the API.

ot o o LA T - AR ARk A AR

BBECOER?

Tl AR LY VS HA T e WS L e

s FUSHFD
BESCDERR] 5~ FFZES S2025FBl JMP DWORD PTR DS: [SFE3581] kernel32.CloseHandle
GEECOERE| - FF25 SCAZSFO| JMP DWORD PTR DS: [EFB2SC] kerne |32, CompareStrinaf
=:FF25 JHF DWORD. FTR DS: [EF@S&8] kerne |52 Createlirectaryi
r.*rIaEE[DEFn £ EB 41211100 EELJ. BREEQR0
BRECDEEF a6 Ll

& TECE| $= FFZE &E02SFH : e
e WE Sl | dit data at 005F0360 !
t_‘if_.it,r: IEIIEIEL 5 :F:F' 2Fziiiea |
BAECDEDS 7
BEECOEDZ| 3- FF25 74essrd ASCH [4b |
BaECDEDE] $= FFES ToE35FY icalSeotio
EEEIEEIEEE ¥ EB éDElllElﬁ UNICODE - I
SCOEE3| .~ El FF Etefilel
BasSCOEER] . 25 SB035Faa I
BBEL’DEEE' 5~ ;-;:';'EE 34935'512 htrol
IEF@] &= 25 FalSect io
Boccorrel ¢ Fagesinian] HEX+03 [19 62 82 7C S aidlen

[{ I'!!Il
DS [BRSFE36a]=7LE826219 ()
Local calls fromn oodusiDH

YBE] 197
B80Z8ERL
D1FDCE4:
2835FFFI
FE21B5EL

CoAS T

FE &2 28|EA E7| 85 05 &2 7C|P.w+nliE nbBzvefe!

mn CC oNn CNlD2> CC 42 COIOC O DO AC] MG Il el ;s | 280 M

And now your API is resolved, and IMPREC can pick it up ©

MACCG] A A

This trick works the same for the CALL DWORD’s also. Hopefully this cleared up a bit of confusion about
aspr and the Import Protection.

12

I=MIPSTIFYING TILS CALILBACIS
— DEROHO (ARTEAM)

|Oki, I’ve planned to write small tutorial about ExeCryptor where I would
show muping of ExeCryptor manually w/o need to use my oepfinder vX.Y.Z
introduced in my tut about muping ExeCryptor, but since it would take

too much time to show this little trick I decided to write small txt for

ezine :D
S verom u Boga, deroko/ARTeam

ExeCryptor developers think that storing unpacking code in TLS callback is
good thing to do? Well I don’t think so.

In this short document I will show you how to gain advantage over TLS and
|other callbacks(DIlEntry for example).

'What is callback? [1]
“A callback is a means of passing a procedure(or function) as a parameter

into another procedure, so that when a certain event occurs in the procedure
[hat you called, the callback function is called (being passed any parameters

that you need) when the callback procedure has completed, control is passed
ack to the original procedure.”

OKki this tells us that callback is procedure that is called when certain
event occurs, and after execution callback returns to it’s caller.

The easiest example is Structured Exception Handling:

1. install Exception Handler

2. Exception occurs

3. KiUserExceptionDispatcher gains control after exception is processed
in _KiTrapXX procedures stored in ntoskrnl.exe

4. KiUserExceptionDispatcher calls installed Exception Handler

5. our handler returns to KiUserExceptionDispatcher which is responsible
for calling NtContinue or NtRaiseException if our handler didn’t handle

exception.

Same thing happens to TLS callback, during process initialization, prior to
Iprimary thread creation TLS callback will be called, no meteer how it looks
obsfucated and hard to trace it must return to code that actually called it:

Let have simple snippet from sice and ExeCryptor crackme, (to break at TLS
|callback we will use tlsbande loader [2]):

13

First we break at TLS callback of ExeCryptor:

001B:00526918 CALL 00526808
001B:0052691D ADD EAX, OOOO5EES
001B:00526922 JMP EAX
001B:00526924 CALL 0052692D

001B:00526929 1INVALID
001B:0052692B INVALID
001B:0052692D POP ESI

001B:0052692E RET

then exmine stack:

:dd esp
0010:0013F9BO 7C9011A7 00400000 00000001 00000000 §.0]..@.........

NANNNANNANAN NAANANANANNANAN ANNANANANANN ANNANANANANN

|
return address --+ | | |
imagebase @ @ ------------- + | |
reason = e mmmmmmmmmmemmeeeoo o + |
FASEAIYEE cccccccocccaccccccccccascccocooooe +

Now we know where TLS callback will return once it has finished with
it’s execution, so we examine : 7C9011A7h :

:u *(esp)

001B:7C9011A7 MOV ESP,ESI

001B:7C9011A9 POP EBX

001B:7C9011AA POP EDI

001B:7C9011AB POP ESI

001B:7C9011AC POP EBP

001B:7C9011AD RET 0010

snippet from IDA:

.text:7C901193 ; stdcall LdrpCallInitRoutine(x,x,Xx,Xx)

.text:7C901193 LdrpCallInitRoutine@l6 proc near ; CODE XREF: LdrpInitializeThread(
x)+C6 p

.text:7C901193 ; LdrShutdownThread()+E8 p

.text:7C901193
.text:7C901193 arg 0
.text:7C901193 arg 4
.text:7C901193 arg 8
.text:7C901193 arg C
.text:7C901193

dword ptr 8

dword ptr 0OCh
dword ptr 10h
dword ptr 14h

.text:7C901193 push ebp

.text:7C0901194 mov ebp, esp

.text:7C901196 push esi

.text:7C901197 push edi

.text:7C901198 push ebx

.text:7C901199 mov esi, esp

.text:7C90119B push dword ptr [ebp+14h] reserved
.text:7C90119E push dword ptr [ebp+10h] reason
.text:7C9011A1 push dword ptr [ebp+0Ch] imagebase
.text:7C9011A4 call dword ptr [ebp+8] call TLS callback

14

.text:7C9011A7 mov esp, esi

.text:7C9011A9 pop ebx
.text:7C9011AA pop edi
.text:7C9011AB pop esi
.text:7C9011AC pop ebp
.text:7C9011AD retn 10h

.text:7C9011AD LdrpCallInitRoutine@l6 endp
.text:7C9011AD

Also you may see that this proc is called from 2 places in ntdll.dlIl:
LdrplnitializeThread
LdrShutdownThread

so that’s how TLS callback is baing executed prior to starting thread, and
is also called when thread exit.

So we can easily step over TLS callback withut even knowing what the hell is
going on in it:

tlsbande will give us this output if we run it:

stolen byte from TLS callback : E8
TLS callback : 0x00526918
entry point : 0x0052690C

Ok, type bpint 3 or i3here on in sice and you are ready:
once you break at entry of TLS callback just type:
:bpx *esp (setting BPX at 7C9011A7)

and run code

Break due to BP 01: BPX ntdll!LdrInitializeThunk+0029 (ET=96.58 milliseconds)
001B:7C9011A7 MOV ESP,ESI

001B:7C9011A9 POP EBX
001B:7C9011AA POP EDI
001B:7C9011AB POP ESI
001B:7C9011AC POP EBP
001B:7C9011AD RET 0010

001B:7C9011BO NOP
001B:7C9011B1 NOP

now set BPX at entrypoint of packer:

:bpx 52690c

Break due to BP 00: BPX 001B:0052690C (ET=27.13 milliseconds)
001B:0052690C CALL 1500526808

001B:00526911 ADD EAX,0000668B

001B:00526916 JMP EAX

001B:00526918 CALL 1500526808

001B:0052691D ADD EAX, O0005EE5

001B:00526922 JMP EAX

001B:00526924 CALL 0052692D

001B:00526929 INVALID

15

voila, you are at EntryPoint of ExeCryptor packer withtout even knowing
what the hell did they put in TLS callback and yours worst nightmare is
over.

Same thing might be applied to find OEP of packed DLLs. Last time I’ve
checked one aspr 2.11 packed dll oep was maybe 20 instructions from
packers entry.

DLL entry is called several times:
1. process_attach

2. thread attach

3. thread detach

4. process_detach

so packer starts working on process_attach and it is pointless for you

to trace at this point because it might take a while, simpler solution

is to set BP at entry of packer and once we hit it (probably thread attach)
then simple trace till OEP, because packer will not unpack/decrypt/resolve
imports at this point, it’s task is to call oep of dll, and as I’ve mentioned
in aspr 2.11 it was 20-30 instructions from packers code...

That’s all in this small article for ARTeam eZine...

S verom u Boga, deroko/ARTeam

Greetingz: ARTeam, 29a vx, and all great coders

References:

[1] Implementing Callback procedures - http://www.programmersheaven.com/search/LinkDetail.
asp?Typ=2&ID=12600

[2] tlsbande - http://omega.intechhosting.com/~access/forums/index.php?act=Attach&type=post&id=1496

16

 http://www.programmersheaven.com/search/LinkDetail.asp?Typ=2&ID=12600
 http://www.programmersheaven.com/search/LinkDetail.asp?Typ=2&ID=12600
http://omega.intechhosting.com/~access/forums/index.php?act=Attach&type=post&id=1496

Interview with Armadillo evelopers

Interviewers Note: (please include)This was originally conducted for a senior thesis. The original topic had to be changed because it
was too broad to cover. Because of that, this interview never saw the light of day. It was conducted about a year ago but I still think
that the protection and reversing communities may find it interesting. This was answered by two members of the Armadillo team that
is why you will often see 2 responses. I really want to thank these guys for the time they spent answering my questions, and I feel bad
that I was unable to use much of the information in my thesis. Hopefully their responses will cause some discussion among the revers-

ing communities.

1.What advantage does licensing out security to a third party offer
|lover developing software security in-house?

Developing a good security system in house takes a lot of knowledge
and constant monitoring of the latest cracker tactics. The advantage is
|that we devote 100% of our time perfecting the security and licensing
and those that use a third party can devote all of their time on what
|they do well instead of creating a half baked protection scheme./

Software Security isn’t something you learn in a few days.

It takes a lot of years of experience in the field to be able

to create something solid, and you have to dedicate a lot of time

on it, especially to stay up to date, with latest cracking techniques
and cracking tools. Something you can’t do when you are already
spending all your time on your new incoming product.

The advantage is, they don’t have to waste their time on their

own protection, which will most likely get cracked anyway because
its not their area of expertise, and can concentrate on their job.

2. Do you plan to progress to a point where your software becomes the
|only security needed? Or do you feel more effective as one step in the
security cycle among cripple-ware, online key validations, etc...

Actually, we believe that with our current software and the coding
suggestions we give to our customers that we are a single point of
security. We provide customers with key validation software if they
want to host that on a web site. Or, for the small shops (or low volume
sales) it is built in to Armadillo.

The security is only as strong as its implementation.

'We provide a full sets of techniques and features to protect a
software from beeing cracked, but it will never be crackproof.

Most of the time, because of miss implementation, the security is

a lot weaker than it should be. I personally think, the programmer
should add a few hidden / subtle checks above the use of our product.

17

If well done, it can be quite challenging.

The best security is the demo version of a software, where the code

is actually missing from the application. And of course, the missing
code shouldn’t be obvious, like a simple “Save to File” feature,

or something like that. Missing code that should be using a proprietary
and/or complex algo is more suitable in that case.

3. Companies such as yourself and Safedisc released an SDK to allow
developers integrate security into their programs at development time.
Do you feel like that this is an advantage for you?

The advantage of that is that it gets the developer in the mindset of
protection. Doing the subtle things he can do to enhance the protection
and licensing. An example would be variable licensing scheme where he
could have one exe file and depending upon what license his user pays
for that license key will unlock certain section in his code.

3.1 Or is it easier
to be the final step in software security?

Yes, it is easier to be the final step, but not always the best

solution for a popular program. That is why we offer things the
developers can do during the development phase, such as Nanomites and
Secured Sections..

The advantage is that the customer can choose where to add special protections, special checks, and can opti-
mize the usage of the protection. Some features can slow down an application, so its

a lot more useful, if the programmer can protect his application

without too much performance decrease.

SDK allows very targeted protection and it allows a better merge
of the protection and the software beeing protected. The more
the application is dependant of the protection, the better it is.

4. Outside of security, you need to worry about file size, speed of
execution, compatibility, and ease of use. How do you handle these
issues? Do they end up restricting your creativity?

File size:

Nowadays, every computers have really big hard drives, so size isn’t

as important as it used to be in the past. However we try to optimize our
code in order to keep it as small and compact as possible.

Speed of execution:

As micro processors become faster and faster this becomes less of an issue. I personally, have been in the busi-

18

ness long enough to where we’d tweak our ASM code to make it run faster and be smaller. Memory and disk
space was a premium, where now it is rather cheap.

Nowadays, computers are very fast, and CPU aren’t going to stop their speed grow.However, we always try our
protection on old systems, to

make sure it is useable even if you don’t have a recent computer.

speed of execution is an important issue, and we do our best to

have something as quick as possible. We sometimes use Assembly

programming to optimize our routines.

Compatibility:

We have every Windows OS and we test our product on all of them
to make sure its 100% compatible with old versions.

Ease of use:

As far as restricting creativity.... not really, you just have to find
other ways to use creativity.

The most restricting issue so far, is the compatibility one.

We sometimes find nice protection tricks, but they aren’t
compatible on all OS, or aren’t working inside Virtual Machines.
We end up not using those features, or checking the OS version
before testing them.. It makes things weaker, but we have to do
that to keep a 100% compatibility level.*

5. With the proliferation of internet access, online key validation

has become more popular. Do you think that this is where security is
going to eventually move or do you feel there is something else that
will prove more effective?

Not sure if I completely understand... because security is already
there. We do that, and Digital River (our mother company) sells a lot
of protected software via the internet. Protection will have to keep up
with technology until the technology can protect itself... or is so
prevalent that protection is not needed.

I personally think Server Based checks are the future, only if they
are well implemented. The only problem with those is that with

the proliferation of internet worms, spywares and other malwares,
customers aren’t ready to accept that an application phones home

in order to check the license. Online key validation has to

be well implemented, and shouldn’t just be a validation process.

The internet server should be used as a token to decrypt parts of
code on the fly only and should be part of a strong wrapping scheme.
I think the future is a combination of various techniques, which
aren’t yet very well accepted by the public or because the technology

19

involved isn’t yet available everywhere. Eg: People needs internet
to check their license, but not everyone has internet those days.

6. People and communities, many of them quiet intelligent,
continuously work to understand, and sometimes defeat, the protection
you create. Logically, without them, there would not be a strong a
demand for your product. What is your view on the reverse engineering
community?

If it wasn’t for them there would be no need for our product. A

simple key could be used to keep honest people honest. One has to
admire the knowledge of some of the better crackers. Though what they
do is illegal and it is hard to admire someone for breaking the law.

In my opinion, the Reverse Engineering community is important.
Reverse Engineering isn’t only used to crack softwares, as most

people tend to think. RE is used by anti virus compagnies to analyse
viruses and other malwares, and such community allows developpment
of tools, techniques etc that can be used for good purpose.

RE is also used to find holes in Closed source softwares, which

at the end will lead to more secure softwares.

My point of view is, we should diffentiate the Reverse Engineering
community from the Cracking Community. A lot of the people in the RE
community does it for fun and learning purpose without ever harming
anyone. Yet, they will share their knowledge on boards. I think

Software protectionist have a lot to learn from “underground” research
and shouldn’t see them as pirates. (most of the times anyway)

7. Outside of legality how do you react when you find your protection
has been defeated? Do you hold any respect for a person who creatively
removes your protection?

Yes, there is an amount of respect that must be shown I suppose, my
colleagues may dis-agree. But I believe they’d get more respect from
this side of the fence if they wouldn’t publish methods, stolen keys,
etc. But of course that is not what they are after.

I personaly have respect for people breaking our protection, as long

as its smart and not a thief act, such as stealing credit cards

to obtain a software. I have respect for people spending days
disassembling and debugging our code in order to find a way to bypass
it , because its a lot of work. I have no respect for the egocentric

kids that brag about their work, and insult us. They tend to forget

we were doing this before they even started to use a computer, and
that there are a lot more things to consider when you are protecting,
than when you are deprotecting.

20

8. What do you think is your greatest security option? Example:
Address Table destruction, anti-debugging techniques, child processes.

Our highest level key system. As well as our Strategic Code splicing
and Memory patching protections

I think Nanomites are our greatest security option. It has weaknesses
(what doesn’t?), but its really effective against the majority of
crackers. The Import Table Eliminitation is very nice too.

As for Licensing, the Level 10 of our key system will keep crackers
away from making a keygen for your application.

9. Which part of your security do you plan to improve on to increase
protection for the future?

We are always improving our security methods and key strength. 64 Bit
windows application protection is next on our plate.

We constantly improve our security features, and we watch with great
attention the cracking boards, and update our protection as soon

as something bad has been found to attack us. We are constantly
trying to make the protection hard to remove, that’s the hardest
challenge.

10. Is there anything you would like to ask or tell the reversing communities?

I assume some of the newbie crackers are pretty young. Do they realize
what they are doing is breaking federal law? Not that they’d care but
some that are just trying to be cool may not realize this. And, there

are becoming much easier ways to pin-point who they are (the old Big
Brother syndrome).

Nothing particular. I wish some of them could be more respectful and
stop the rebel (and retarded) attitude of bashing protection authors

with no real reasons. It also funny to read them bragging on boards
saying we stole their ideas, or that we learned things from them,

while we have been doing this kind of things for a lot longer than them.

11. Outside of your product, what do you think is one of the most
effective ways to ensure software security. A few examples: Personal
builds, watermarking, refusal of technical support and/or updates.

Those are all good examples. The best way to do it on your own is to
get into the mindset of protection. Maybe only turn on certain parts of
your program if a checksum of some previous code is valid. Many
programs require a CD to be present in order to run the program. The

21

companies check for a CD in the drive one time and then allow the
application to operate. This is one of the easiest defeated

protections. If those companies added to that, even just to make it
difficult by trying to access the CD numerous times in various places
during execution it would discourage several but the most diligent of
the crackers.

Virtual Machines are very good ways to ensure software security.
Its a lot longer and harder to analyse Pcode, than analysing
Assembly code. Its a new trend in software protection nowadays,
to use Virtual Machine as a protection mean.

Hidden/delayed checks are a very good way to ensure software
security too. You will see half cracked software released on

the internet, and product working very badly because of that.
They can be very hard to track down, and crackers missing checks
look stupid in front of their community.

Watermarking doesn’t ensure software security, but it allows you
to track leaks and find the culprit, if one of your customers

have given his license to someone else. Its something worth
having.

12. Physical security, such as dongles, have not become popular in the
average consumer market. It seems that security that makes itself
intrusive to the consumer is unpopular. Do you think that security
needs to be intrusive? Example: installation of drivers, registration
requirements, dongles. Or should security be more transparent?
Example: hardware fingerprinting, online key validation.

Yes, I know that dongles have not caught on. They are very intrusive

and I believe that things that have to be phyiscally plugged in cause

stress for some users. Dongles have advanced a bit in that they now can
utilize USB ports which are almost a no-brainer to attach. The older

parallel port ones were a pain.... and then for each protected program

you might have to add another etc. then physical room becomes a challange.

I don’t think that security needs to be intrusive. We can set up a
project in Armadillo that can auto-inject a key for registration and
provides little or no hassle for the end user. I would think that
should be preferable to most people.

I think online key validation is intrusive. It requires Internet Access
and the customer will see it as intrusive. Who knows what kind of
date is beeing transfered to the web server? a lot of people will
think you are some kind of spyware.

Security doesn’t need to be intrusive, but intrusive security offers
more possibility in my opinion. Time will tell us, if the customers
are ready for it.

22

13. Do you think that companies are still uneducated about software
security, holding it as an afterthought?

Absolutely. Just take a look at M*cro$oft *the* giant in the

industry. Think of how many copies of an O/S install CD you have seen?
And, in my opinion their security is not bad. Many of the other bigger
companies have never thought about it or just write it off as a cost of
doing business. the shareware community is what has really pushed
security. In that their life blood so to speak is on the line if they

loose sales they could be out of business. Bigger companies are

starting to get smart about it. Digital River (my employer) is trying

its best to promote Digital Rights Management in which security is the
first and major part.

14. Do you think developers need to understand how their software is
being protected to improve the integration between software
development and security? Should they know what happens to their
resources, how their API calls are redirected, why a child process is
created?

Need? Probably not. But as a developer yes I want to understand what
is going on the best I can understand it. It just helps when trying to
uncover a subtle bug or flaw.

15. In your own opinion what programming language do you prefer? Do
you believe that it creates the most secure code?

The programming language that I prefer is C. Only because I have used
it for many years. Secure.... no not by itself. There are lots of

tools on the market that can disassemble that code and pretty much any
other. Some of the tricks in ASM or any lower level code can make it
much easier to trick a would be cracker. So, I would have to say its

the most secure. Again... unless the programmer is thinking of
protection the language makes no difference.

I personally prefer Assembly Programming. I like to control
everything i write. Beside, you can write very hard to follow routines,
with fancy code flow. What is “Secure Code” ?

The code is as secure as the programmer’s skills in software security.
A code can be secure in pretty much any language as long as its well
written.

16. Do you think profits for popular software are reinforced by good
protection? Or will their popularity ultimately force the defeat of

the protection, making protection more important for smaller software
companies.

23

Yes, I do. If there was a scenario of a popular program that was

never in need of an upgrade and the protection was defeated... that
would be bad. But luckily that is very rare. Even though (for example)
protection may have been defeated for a popular program at version 1.0,
the protection software as well as the popular programs’ developer have
likely been improved upon for revision 2.0.

It is true that its kind of a sign that your program is popular if a
cracker spends time on it to defeat the protection.

And, Yes it seems very important for small companies to utilize a
protection scheme if they do have a program that will be widely
distributed. The loss of income and theft of technology could destroy
some very small shops.

17. Are there any comments you would like to add?

Note that I can think of.

24

Improving StraceNT:

|Keywords
anti-debugging, tracing

Adding Anti-Debugging Functionality

1. ABSTRACT «etteeeeeeeeeeeee ettt
2. EXTENDING THE FUNCTIONALITY OF A PROGRAMccvvnneennnnn.
2.1. POINT 1: FIND WHERE TO INSERT OUR MODIFICATIONS
2.2. POINT 2: FIND A PROPER CANVAS........ceeeeiiiiiiiiiieeeereeeeeeennannn
2.3. POINT 3: CODE A PROPER PLUGIN DLL........ccovvvineeeieiiiinnnnn.
2.4. POINT 4: INSERT THE PLUGIN DLL INTO STRACENT
2.5. POINT 5: FILL THE CANVAS WITH THE NEW CODE...............u....
2.6. POINT 6: TESTING THE NEW CODE.......uuuveeeeeeiiiinnnneeeeeereennnnns
3 REFERENCES ... ueeeeeeeeeeeeeeee s
4. CONCLUSIONS ...vtttttttiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeerseseararanane
5 HISTORY vt
6. GREETINGS ...vvvvvvtetttssaeneneeeeeeeeeeeeeeeeeeseeeeseeeeeseeeeseesssssesssnennne

Shub-Nigurrath[ARTeam]

25

1. Abstract

This time we are going to improve the functionalities of an existing program. StraceNT [1] is a System Call Tracer
for Windows. It provides similar functionality as of strace on Linux. It can trace all the calls made by a process to
the imported functions from a DLL. StraceNT can be very useful in debugging and analyzing the internal working
of a program.

StraceNT uses IAT patching technique to trace function calls, which is quite reliable and very efficient way for
tracing. It also supports filtering based on DLL name and function name and gives you a lot of control on which
calls to trace and helps you to easily isolate a problem.

As usual I will provide sample code with this tutorial, and non-commercial sample victims. All the
sources have been tested with Win2000/XP and Visual Studio 6.0.

The techniques described here are general and not specific to any commercial applications. The whole
document must be intended as a document on programming advanced techniques, how you will use
these information will be totally up to your responsibility.

It is indeed a good program (see also [2] to understand how it works), but has a flaw, saw with reverser and not
with bug-solver eyes.

For example Figure 1 is what we get if we try to use original StraceNT with an asprotected program.

Debugger detected - please close it down and restart!
1 gg p
.

Windows NT users: Please note that having the

Winlce/Softlce service installed means that you are
running & debugger!

Figure I - StraceNT has been detected by AsProtect

What we want to do is then add our own anti-debugging support to this tool, we want to do it generic enough to
allow also extensibility through plugins.

Have phun,
Shub-Nigurrath

26

2. Extending the Functionality of a program

As explained above we want to improve StraceNT adding the possibility to hide itself to the anti-debugging
checks of the victim program.

StraceNT indeed uses a technique (see [2]) which involves the debugging API, so the victim program is debugged,
this makes impossible to use it with protected programs.

Fortunately we already learnt (see [3]) how to hide debugger loaders to target code and then we will apply here
that knowledge. The only thing we still do not know is how to add the required code into StrateNT.

This is our roadmap:
1. Find where to insert our modifications
Find a proper canvas (free space) where to divert the program’s execution and add some code
Code a proper plugin DIl
Insert the plugin dll into StraceNT and let it be able to call it.
Fill the canvas with the new code
Testing the new code

SANRANE Il

2.1. Point 1: find where to insert our modifications

We learnt in [3] that all the modifications to the debugged process must be done after a successful call to
CreateProcess. In [3] we were calling our own written HideDebugger function just after the CreateProcess call.
We have then to find where StraceNT calls the CreateProcess API and see if there’s space to add our code?.

B10106E3|| . 5O PUSH EAX rpProcessInfo = NULL

G10T00E4|] . 8D4S RAC LEA EAX,[LOCAL.2[J]

B10100ET(| . 5@ PUSH ERX pStartupInfo = NULL

010100E8(| . 56 PUSH ESI CurrentDir = FFFFFFFF 7?7
010100ES(| . 56 PUSH ESI pEnvironment = FFFFFFFF
G10100EA|] . 68 02080000 PUSH 802 CreationFlags = DEBUG_ONLY_THIS_PROCESS|CREATE_SEPARA1
O10100EF (| . 56 PUSH ESI InheritHandles = TRUE
gio1geFa(|l . 56 PUSH ESI pThreadSecurity = FFFFFFFF
B10100F1|] . 56 PUSH ESI pProcessSecurity = FFFFFFFF
010100FZ|] . 8D8S AYFDFFFF LER EAX,[LOCAL.151]

010100F8(| . 5@ PUSH ERX CommandLine = NULL

010100F9(] . 56 PUSH ESI ModuleFileName = FFFFFFFF ?7?
g1e1eeFA|]l . FF15 78110001 CALL DWORD PTR DS:[<&KERNEL32.CreatlCreateProcessll

oleielee(|l . 8SCe TEST ERX,EAX

e1e1e102|] .. 75 0A JNZ SHORT StraceNt.0101010E

Figure 2 - Original call to CreateProcessW

Figure 2 reports the original call to CreateProcessW. As you can see there’s no space for adding even a single bit
here, everything is filled of working code. So the solution is to find a canvas into the program and then move there
the call to CreateProcessW and add also our code.

2 We will report code snippet of the StraceNT windows GUI version, by this point of view the DOS ver-
sion looks almost the same.

27

2.2. Point 2: find a proper canvas

We are using for our purpose a tool called ToPo [4], pretty simple to use and fast. Figure 3 reports the initial
settings: we want to search space only in the executable sections, to backup the original file and to not add space
to the existing program: we want to find if there’s an existing canvas, rather than creating a new one.

I =l0lx]
—Selectfile..
COpen | I
Bytes to be added: Scan [v Backupfile
l— (" All sections [~ Redirect Entrypoint
@ Execonly [Make code witable
Result:

B

Help About

Exit

Figure 3 - ToPo initial settings

We will choose to find a canvas large around 1000 bytes. Figure 4 reports how the canvas will look like, just after
the creation.

B1011B78 a0 NOP
01011B79 90 NOP
B1011BYA 90 NOP
01011BYB 90 NOP
B1811B7C 90 NOP
01011BYD 90 NOP
B1011BYE 90 NOP
01811BYF 90 NOP
81011B80 90 NOP
01011881 90 NOP
g1011B82 a0 NOP
01011B83 90 NOP

Figure 4 - New empty canvas

2.3. Point 3: code a proper plugin DIl

At this stage we have a version of StraceNT which is still unchanged but we have space to write some code.

At this point it’s better to stop and think how you want to implement the anti-debugging functionality. You have
two options indeed:

1. directly write it inside StrateNT into the canvas

2. write it externally and let StraceNT call it, for example from an additional DII.

The canvas space is limited so it’s easier to follow the second method: external dll. This moverover will allow us
to modify StraceNT only once and then write external Dlls how we want: we gain upgradeability of the code.

Generally speaking what an external DIl needs in order to apply anti anti-debugging patches to a program, is the
PROCESS INFORMATION structure or a pointer to it.

The DIl we want to code then has an unique export called HavePhun which will receive a pointer to the PROCESS
INFORMATION.

28

The code of our DII is pretty simple then:

<mmmmmmm e Start Code Snippet ------------————-—-———-— >
extern “C” int HavePhun (PROCESS_INFORMATION *pPTI) ;

BOOL HideDebugger (HANDLE hThread, HANDLE hProc)

{
CONTEXT victimContext;
victimContext.ContextFlags = CONTEXT_SEGMENTS;

// char b[10247];
// sprintf (b, «hThread=%X, hProc=%X», hThread, hProc);
// : :MessageBox (NULL, b, «Shub-Nigurrath», MB_OK) ;

if (!GetThreadContext (hThread, &victimContext))
return FALSE;

LDT_ENTRY sel;

if (!GetThreadSelectorEntry (hThread, victimContext.SegFs, &sel))
return FALSE;

DWORD fsbase = (sel.HighWord.Bytes.BaseHi << 8| sel.HighWord.Bytes.BaseMid)
DWORD RVApeb;

SIZE_T numread;

<< 16 | sel.BaseLow;

if (!ReadProcessMemory (hProc, (LPVOID) (fsbase + 0x30), &RVApeb, 4, &numread) || numread != 4)
return FALSE;

WORD beingDebugged;

if (!ReadProcessMemory (hProc, (LPVOID) (RVApeb + 2), &beingDebugged, 2, &numread) || numread != 2)
return FALSE;

beingDebugged = 0;

if (!WriteProcessMemory (hProc, (LPVOID) (RVApeb + 2), &beingDebugged, 2, &numread) || numread != 2)

return FALSE;
return TRUE;
}

extern “C” int HavePhun (PROCESS_INFORMATION *pPI) {
char coded[256];
sprintf (coded, “Coded by SHub-Nigurrath of ARTeam.”);

return HideDebugger (pPI->hThread, pPI->hProcess);

The HideDebugger function is that already used in [3].

The function modified StraceNT will have to call is the following one:

int HavePhun (PROCESS INFORMATION *pPI);

The dll is called “plugin.dll”

2.4. Point 4: Insert the plugin dll into StraceNT

First of all we have to modify StraceNT to be aware of the existence of our new dll. What we have to do is to add

the DIl to the StraceNT IAT. To do this there’s an extremely useful tool called IIDKing [5].

You can on the other hand use the approach described in [6] which does not alter the IAT of the program just
a more elegant approach, but requires a lot

because it loads dynamically the external DIL. It’s by my point of view
of additional ASM code. IIDKing simplify the work.

Figure 5 reports how I used it, pretty simple.

What this program does is to add one or more entries into the target program IAT and write out on a text file how

to call from assembler the entries just added.

29

Below are the calls you can make to access your added functions...
Format style is: DLL Name::API Name->Call to API

plugin.dll::HavePhun->call dword ptr [10300e4]

FTIID King v2.01 by SantMat/RET/ID = =) x|

3
[IDKing v2.01 by SantMat
WwWw.teteam.og

piokatie |
T —

plugin.dil HavePhun

Figure 5 - IIDKing initial settings

2.5. Point 5: fill the canvas with the new code
Now it’s time to fill the canvas we created at Point 2.

First of all it’s better to move to the new destination the whole CreateProcessW call so as to have all the required
things in the destination space.

Looking at Figure 6 we cut away the whole call to CreateProcessW and substituted it with a JMP to the beginning
of the new canvas. The following NOPs being a code that is never executed can be left there, I simply removed
it to help you reading.

The new routine starting at 0x010100E3 will return to the original program’s path at 0x01010100.

I chose to use a direct JMP to the new code and not a CALL because this help to not worry of the activation frame
each CALL pushes on the stack: the stack integrity is easier.

“MPTistraceNt. 010118781

010108E8 20) NOP

010100E9 90 NOP

010100EA 920 NOP

010100EB 90 NOP

010100EC 920 NOP

010100ED 90 NOP

010100EE 920 NOP

010100EF 90 NOP

010100F0 920 NOP

010100F1 90 NOP

010100F2 920 NOP

010100F3 90 NOP

010100F4 920 NOP

010100F5 90 NOP

010100F6 920 NOP

010100F7 90 NOP

010100F8 920 NOP

010100F9 90 NOP

010100FA 920 NOP

010100FB 90 NOP

010100FC 920 NOP

010100FD 90 NOP

010100FE 920 NOP

010100FF 90 NOP

01010100 > | 85C0 TEST EAX,ERX
01010102 ..| 75 OA JNZ SHORT StraceNt.0101010E
g1e101e4| . |FF15 70100001 CALL DWORD PTR DS:[<8KERMEL32.GetLa[GetLastError

Figure 6 - CreateProcessW moved to the canvas

30

Figure 7 reports how the new canvas looks like.

01811B77 00 DB 08

01011B78| > 50 PUSH ERX

g1e11B79| . 50 PUSH ERX rpProcessInfo

g1e11erA| . 8D45 AC LEA EAX,DWORD PTR $S:[EBP-54]

e1e11B7D| . 5@ PUSH ERX pStartupInfo

01011BTE| . 56 PUSH ESI CurrentDir

Q1M1BTF| . 56 PUSH ESI pEnvironment

01011BE0| . 68 02080000 PUSH 802 CreationFlags = DEBUG_ONLY_THIS_PROCESS|CREATE_SEPARATE_WOW_UDM
01011B8S| . 56 PUSH ESI InheritHandles

gl1e11B8s| . 56 PUSH ESI pThreadSecurity

81811B87| . 56 PUSH ESI pProcessSecurity

01011888 . 8D8S AYUFDFFFF LEA EAX,DWORD PTR $S:[EBP-25C]

01011B8E| . 50 PUSH ERX CommandLine

01011B8F| . 56 PUSH ESI ModuleFileName

@1e11B98| . FF15 78110001 CALL DWORD PTR D$:[<&KERNEL32.CreatlCreateProcessl

01011B96| . 50 PUSH ERX push EAX on the stack to save its value
g1e11B97| . SE POP ESI ESI is not used from the program here, We can store EAX there
01011B98| . FF15 E4000301 CALL DWORD PTR DS:[<&plugin.HavePhu plugin.HavePhun

01011BSE| . 58 POP EAX throw away the return of HauePhun
01011BSF| . 56 PUSH ESI

B1811BAB| . 58 POP EAX restore previous EAX

01811BA1| . 33F6 XOR ESI,ESI set to @ ESI as it was at the beginning
81011BA3| ." E9 S8ESFFFF JHP StraceNt.01010100 jmp back to original code

01011BAS 90 NOP

081011BAY 90 NOP

©1811BAA 20 NOP

Figure 7 - Filled Canvas

The canvas contains the original call to CreateProcessW and the new code I added which gets the pointer to
PROCESS INFORMATION from the registers and give it to the HavePhun plugin function.

Before the call there is a new PUSH EAX at address 0x01011B77 which will come handy.

After the call to the HavePhun function I will manage to fix registers and stack as the program had before my
modifications. The rule is that before returning on the original path the program must find registers and stack
untouched, as nothing happened.

2.6. Point 6: testing the new code

We wrote all the code above and we are then ready to test in on a target. Take any asprotected program you
have in hands and try to launch it from StraceNT, but before place a Breakpoint at the CreateProcessW call at
0x01011B90.

Figure 8 reports how the Data Stack looks like. Please note the address of the last parameter pProcessInfo. This is
what we need to give to the function HavePhun.

CARNGR:I3:] 00000000 || HoduleFileName = NULL
0117F864| ©117F898|| CommandLine = "\"D:%\
0117F862| 00OEOOBO || pProcessSecurity = NULL

0117F86C| 00000000 || pThreadSecurity = NULL

0117F870| 00000000 | InheritHandles = FALSE

0117F874| 00000802|| CreationFlags = DEBUG_ONLY_THIS_PROCESS|CREATE_SEPARATE_WOW_UDM
B117F878| 000EOOB6 || pEnvironment = NULL

0117F87C| 00000000 || CurrentDir = NULL

B117F880| O117FAAB|| pStartupInfo = B0117FAAG

G117F884| O121FAEY |LpProcessinfo = O121FAEY

Figure 8 - Data Stack just before calling CreateProcessW

The stack also contains the EAX value we pushed on the stack at 0x01011B77.
Figure 9 shows how that pProcessInfo address looks like just after the call to CreateProcessW.

0121FAEY —5.8402 00 00|[F% 061 0P 00|[fC OE 00 00
P121FAFY|9C FF 21 01 F9 4B 00 01 (52 68 8F 00|00 00 00 00

hProcess hThread dwProcessld dwThreadd

PEOCESS INFORMATION

Figure 9 - PROCESS INFORMATION structure

31

Figure 10 instead shows how the Data Stack looks just after the CreateProcessW: the first value on the stack is
the address of the PROCESS INFORMATION structure (we pushed on the stack at 0x01011B77), exactly what
we need to call HavePhun.

B11AF888

O11AFSEC| 0O1TH200
B11AFES50| 0ODBBBOZ
O11AFS94| 0ODOBROO
B11AFS98| 00440022

Figure 10 - Stack just after call to CreateProcessW

For this example we were lucky because the required information was easy to recover, otherwise you would have
had to code a little more ASM here.

If you follow the new call you will land at the entrypoint of the DIl export. The corresponding data stack is
reported in Figure 11.
RETURN to StraceNt.@1011B9E from plugin.HavePhun

CARNER::E] 01011BSE
0117F888 0O121FAEY
0117F88C, OOOD3410 :f

Figure 11 - data stack at the beginning of HavePhun

If you did all correctly the code works and you are no more bugged with anti-debugging nags.

The advantage of having written the external dll with an higher level language is that the only thing you have
to worry inside StraceNT is to keep the stack integrity, to give to the new function the correct parameters and to
handle return values. All the following details are left to the compiler which compiles the DII.

emember that your addresses might be different, depending on the system status

3. References

[1T “StraceNT”, http://www.intellectualheaven.com

[2] “StraceNT — System Call Tracer for Windows NT”, Pankaj Garg, http://www.intellectualheaven.com/
Articles/StraceNT.pdf

[3] “Cracking with Loaders: Theory, General Approach and a Framework, Version 1.2”, Shub-Nigurrath,
ThunderPwr, http://tutorials.accessroot.com or on Code-Breakers Journal Vol.1 No.1 (2006)

[4] ToPo 1.2 by MrCrimson, version modified by RicNar

[5] IIDKing 2.01 by SantaMat, http://www.reteam.org/tools.html

[6] ‘“Adding functions to any program using a DLL”, Dracon, CodeBreakers Journal, Vol.1 No.3 (2003)

4. Conclusions

Well, this is the end of this story,I explained a possible way to improve and extending existing applications using
existing tools and writing a mixture of assembler.

32

http://www.intellectualheaven.com
http://www.intellectualheaven.com/Articles/StraceNT.pdf
http://www.intellectualheaven.com/Articles/StraceNT.pdf
http://tutorials.accessroot.com
http://www.reteam.org/tools.html

5. History

= Version 1.0 — First public release!

6. Greetings

I wish to tank all the ARTeam members of course and who read the beta versions of this tutorial and contributed,..
and of course you, who are still alive at the end of this quite long and complex document!

All the code provided with this tutorial is free for public use, just
make a greetz to the authors and the ARTeam if you find it useful to
use. Don’t use these concepts for making illegal operation, all the info
here reported are only meant for studying and to help having a better
knowledge of application code security techniques.

http://cracking.accessroot.com

33

http://cracking.accessroot.com

eversing Switches
gabri3l[ARTeaml|

Reversing tutorials often cover how to change a conditional jump to affect the result of a program.

This works well when the software compares a variable to determine a registered or unregistered result.

But what happens if the program compares a variable against multiple results, many of the results leading to
legitimate ends? A window’s message handler is a good example, comparing what type of action the program
should take dependent on what event just took place.

There are different ways to compare a variable against many constants. Most often times the author will use a
switch for the comparison routine.

In this article we are going to examine how a switch functions, and how to effectively reverse it.

Switches work as such. * Quickly Remove a Nag - Lunar Dust[ARTeam]

I pulled this trick a long time ago against Armadillo.

'You have a variable, lets call is X

Now lets say when X is 1 you want to call Function A
And if X is 2 you want to call Function B

And if X is 3 then you want to call Function C.

And if X is anything else you want to call Function D

Let’s this time focus on ACProtect.

ant to use the demo to protect your recent release
but hate getting that “Trial” nag?
Just open up your newly protected EXE and look
for the first occurence of “MessageBoxA”.

So you could do a bunch of nested if then statements: : :
Change it to “GetMessageA” and save it.

If x==1 Poof! Nag is forever gone.
Call FunctionA (Note: if you are unsure which MessageBoxA to
[Else change then check out the import table with a PE
I x==2 Editor to see where the string is)
Call Function B &
Else ' .
If x == y does it work? Well that’s simple,
Call Function C Both MessageBoxA and GetMessageA take the
Else _ same amount of arguments. During the function
Call Function D s DAt .
EndIF execution, it will remove the same amount of vari-
EndIf ables from the stack as MessageBoxA would. So on
|[Endif return on the program your stack is not corrupted.

ow you know a quick and easy way to remove a
IOR you can use a Switch. ag that uses the MessageBoxA function. You can
A Switch statement (often called Switch Case statement) #apply this to programs other than just Acprotect.

evaluates the variable and tests it against constant values #Personally, stay away from this protector ‘cause it
(called Cases). The Cases can be any constant expressionhas many bugs. But if you wish to use it well now

So in this example our cases are the constants 1,2,3. ou can.
'We can also have a default case in the event that the
variable does not equal any of the constants. or more detailed information on removing Pro-

gram Nags such as ACProtect see:
Acprotect Nagremover Tutorial By Shub-nigurrath
at http://tutorials.accessroot.com

34

Switch(X)
{

case 1:

Call Function A

case 2:

Call Function B

case 3:

Call Function C

default:

Call Function D

So what does this mean when Reversing??

Well it means that we cannot simply change a JNZ to a JMP.
Here is an example of a Switch in Olly:

(Depending on what language the program was written in the way a Switch functions can be different)

00453580 /$ 8B4424 14

00453584
00453585

48
83F8 04

EAX IS COMPARED AGAINST 4
OF87 94000000 JA Cerberus.00453622

00453588

GREATER THAN 4

0045358E

FF2485 283645>JMP NEAR DWORD PTR DS:[EAX*4+453628]

CASE IS COMPARED

00453595
00453584
00453599
0045359D
004535A1
004535A3
004535A8
004535A9
004535AD
004535AE
004535AF
004535B0
004535B5
004535B8
004535B9
00453584
004535BD
004535C1
004535C5
004535C7
004535CC
004535CD
004535D1
004535D2
004535D3
004535D4
004535D9
004535DC
004535DD
00453584
004535E1
004535E5

| >

8B4424 08

8B4C24 10
8B5424 0C
6A 02

68 342A4700
50

8B4424 10
51

52

50

E8 EB25FFFF
83C4 18

C3

8B4C24 08

8B5424 10
8B4424 0C
6A 01

68 C0264700
51

8B4C24 10
52

50

51

E8 872BFFFF
83C4 18

C3

8B4424 10

8B4C24 04
6A 03

MOV EAX, DWORD PTR SS:[ESP+14]
DEC EAX
CMP EAX, 4

MOV EAX, DWORD PTR SS:[ESP+8]

MOV ECX, DWORD PTR SS:[ESP+10]
MOV EDX, DWORD PTR SS:[ESP+C]
PUSH 2

PUSH Cerberus.00472A34

PUSH EAX

MOV EAX, DWORD PTR SS:[ESP+10]
PUSH ECX

PUSH EDX

PUSH EAX

CALL Cerberus.00445BA0

ADD ESP, 18

RETN

MOV ECX, DWORD PTR SS:[ESP+8]

MOV EDX, DWORD PTR SS:[ESP+10]
MOV EAX, DWORD PTR SS:[ESP+C]
PUSH 1

PUSH Cerberus.004726C0

PUSH ECX

MOV ECX, DWORD PTR SS:[ESP+10]
PUSH EDX

PUSH EAX

PUSH ECX

CALL Cerberus.00446160

ADD ESP, 18

RETN

MOV EAX, DWORD PTR SS:[ESP+10]

MOV ECX, DWORD PTR SS:[ESP+4]
PUSH 3

35

r

SWITCH (EAX) {
OUR VARIABLE IN

JUMP IF X IS
HERE IS WHERE THE

Case 2 of switch

ASCII “xsd:byte”

Case 1 of switch

ASCII “xsd:int”

Case 5 of switch

004535E7 |
004535E9 |
004535ED |
004535EE |
004535EF |.
004535F4 |.
004535F5 |
004535FA |
004535FD |
004535FE |
00453584
00453602 |
00453606 |
00453608 |
0045360D |
00453611 |
00453612 |.
00453616 | .
00453617 |
00453618 |
00453619 |
0045361E |
00453621 |.
00453622 |>

6A 00
8D5424 10
52

50

68 90274700
51

E8 1627FFFF
83C4 18

C3

8B4424 10

8B4C24 0C
6A 03

68 E0264700
8D5424 10
52

8B5424 10
50

51

52

E8 F226FFFF
83C4 18

C3

33C0

switch 00453584

00453624 \.

C3

PUSH 0

LEA EDX, DWORD PTR SS:[ESP+10]
PUSH EDX

PUSH EAX

PUSH Cerberus.00472790

PUSH ECX

CALL Cerberus.00445D10

ADD ESP, 18

RETN

MOV EAX, DWORD PTR SS:[ESP+10]

MOV ECX, DWORD PTR SS:[ESP+C]
PUSH 3

PUSH Cerberus.004726E0

LEA EDX, DWORD PTR SS:[ESP+10]
PUSH EDX

MOV EDX, DWORD PTR SS:[ESP+10]
PUSH EAX

PUSH ECX

PUSH EDX

CALL Cerberus.00445D10

ADD ESP, 18

RETN

XOR EAX, EAX

RETN

’

’

’

’

ASCII “QName”

Case 3 of switch

ASCII “xsd:string”

Default case of

Now lets just Pretend that Case 3 is goodboy message, Case 2 is BadBoy message, and Case 5 is an About Box.
This means that you cannot just patch the Switch to always jump to Case 3 because then the About Box would

never be shown.

We need to patch within the case to get the result we desire.
To solve the problem and always show the GOOD BOY message we can add a JMP within Case 2 to jump to

Case 3.

00453584
00453585 |.

48
83F8 04

EAX IS COMPARED AGAINST 4
OF87 94000000 JA Cerberus.00453622

00453588 |.

GREATER THAN 4

0045358E | .

FF2485 283645>JMP NEAR DWORD PTR DS:[EAX*4+453628]

CASE IS COMPARED

00453595

2 TO CASE 3***

00453597
00453598
00453599
0045359D
004535A1
004535A3
004535A8
004535A9
004535AD
004535AE
004535AF
004535B0
004535B5
004535B8

EB 63

90

90

8B4C24 10
8B5424 0C
6A 02

68 342A4700
50

8B4424 10
51

52

50

E8 EB25FFFF
83C4 18

C3

DEC EAX
CMP EAX, 4

JMP SHORT Cerberus.004535FA

NOP

NOP

MOV ECX, DWORD PTR SS:[ESP+10]
MOV EDX, DWORD PTR SS:[ESP+C]
PUSH 2

PUSH Cerberus.00472A34

PUSH EAX

MOV EAX, DWORD PTR SS:[ESP+10]
PUSH ECX

PUSH EDX

PUSH EAX

CALL Cerberus.00445BA0

ADD ESP, 18

RETN

36

r

SWITCH (EAX) {
OUR VARIABLE IN

JUMP IF X IS
HERE IS WHERE THE

***REDIRECTED CASE

ASCII “xsd:byte”

004535B9
00453584
004535BD
004535C1
004535C5
004535C7
004535CC
004535CD
004535D1
004535D2
004535D3
004535D4
004535D9
004535DC
004535DD
00453584
004535E1
004535E5
004535E7
004535E9
004535ED
004535EE
004535EF
004535F4
004535F5
004535FA
004535FD
004535FE
00453584
00453602
00453606
00453608

8B4C24 08

8B5424 10
8B4424 0C
6A 01

68 C0264700
51

8B4C24 10
52

50

51

E8 872BFFFF
83C4 18

C3

8B4424 10

8B4C24 04
6A 03

6A 00
8D5424 10
52

50

68 90274700
51

E8 1627FFFF
83C4 18

C3

8B4424 10

8B4C24 0C
6A 03
68 E0264700

MOV ECX, DWORD PTR SS:[ESP+8]

MOV EDX, DWORD PTR SS:[ESP+10]
MOV EAX, DWORD PTR SS:[ESP+C]
PUSH 1

PUSH Cerberus.004726C0

PUSH ECX

MOV ECX, DWORD PTR SS:[ESP+10]
PUSH EDX

PUSH EAX

PUSH ECX

CALL Cerberus.00446160

ADD ESP, 18

RETN

MOV EAX, DWORD PTR SS:[ESP+10]

MOV ECX, DWORD PTR SS:[ESP+4]
PUSH 3

PUSH 0

LEA EDX, DWORD PTR SS:[ESP+10]
PUSH EDX

PUSH EAX

PUSH Cerberus.00472790

PUSH ECX

CALL Cerberus.00445D10

ADD ESP, 18

RETN

MOV EAX, DWORD PTR SS:[ESP+10]

MOV ECX, DWORD PTR SS:[ESP+C]
PUSH 3
PUSH Cerberus.004726E0

’

Case 1 of switch

ASCII “xsd:int”

Case 5 of switch

ASCII “QName”

Case 3 of switch

ASCII “xsd:string”

Now when Case 2 is Called you will get Case 3, Case 5 remains untouched so the About Box will work prop-

erly.

Redirection is the simplest way to manage a switch.

Hope you enjoyed this small article and that it helps give you a better grasp on how to effectively reverse.

37

Developing a Ring® Loader

Deroko[ARTeam]

1. Introduction

2. Required knowledge
3. Practice

4. Conclusion

5. References

|6. Appendix

1. Introduction

'Why should we write ring0 loader? For fun, of course. Advantage
of ring0 loader is speed. Also ring0 loader may work only as Debug Loader,
ecause we have to singal ring0 code somehow that we want something to
e patched on certain address. Crackme that I will use is simple ASPack
crackme with NAG screen. The reason why I chose ASPack is because ASPack
is simple to unpack, and we are dealing here with ring0 loader...

2. Required Knowledge

First we have to know how debugger works, but from ring0 point
|of view.

'Whenever some exception occurs in debugged process ring0 code
|receives control via various IDT entries:

1idt

Int Type Sel:0ffset Attributes Symbol/0wner
IDTbase=8003F400 Limit=07FF

0000 IntG32 0008:804D8BFF DPL=0 P KiTrap00

0001 IntG32 0008:FO3FA760 DPL=0 P icextension!.text+62E0
0002 TaskG 0058:00000000 DPL=0 P KiTrap02

0003 IntG32 0008:FO3F9FBO DPL=3 P icextension!.text+5B30
0004 IntG32 0008:804D92EQ DPL=3 P KiTrap04

0005 IntG32 0008:804D9441 DPL=0 P KiTrap05

0006 IntG32 0008:804D95BF DPL=0 P KiTrap06

0007 IntG32 0008:804D9C33 DPL=0 P KiTrap07

0008 TaskG 0050:00000000 DPL=0 P KiTrap08

0009 IntG32 0008:804DA06O DPL=0 P KiTrap09

000A IntG32 0008:804DA185 DPL=0 P KiTrapOA

000B IntG32 0008:804DA2CA DPL=0 P KiTrapOB

000C IntG32 0008:804DA530 DPL=0 P KiTrapOC

000D IntG32 0008:804DA827 DPL=0 P KiTrapOD

OOOE IntG32 0008:804DAF25 DPL=0 P KiTrapOE

00OF IntG32 0008:804DB25A DPL=0 P KiTrapOF

0010 IntG32 0008:804DB37F DPL=0 P KiTrapl®

38

Of course, SoftICE is hiding from our eyes that some entries in IDT
are hooked by SoftICE itselfs:

:lidt

0000 IntG32 0008:FO5B6A2E DPL=0 P NTice!.text+O008A6AE
0001 IntG32 0008:FO3FA760 DPL=0 P icextension!.text+62EO
0002 IntG32 0008:FO60AF97 DPL=0 P NTice!.data+9297

0003 IntG32 0008:FO3F9FBO DPL=3 P icextension!.text+5B30
0004 IntG32 0008:804D92E0 DPL=3 P KiTrap04

0005 IntG32 0008:804D9441 DPL=0 P KiTrap05

0006 IntG32 0008:FO60AFA6 DPL=0 P NTice!.data+92A6

0007 IntG32 0008:804D9C33 DPL=0 P KiTrap07

0008 TaskG 0050:00001178 DPL=0 P

0009 IntG32 0008:804DAG6O DPL=0 P KiTrap09

000A IntG32 0008:804DA185 DPL=0 P KiTrapOA

000B IntG32 0008:804DA2CA DPL=0 P KiTrapOB

000C IntG32 0008:FO6OAFB5 DPL=0 P NTice!.data+92B5

000D IntG32 0008:FO60AFC4 DPL=0 P NTice!.data+92C4

000E IntG32 0008:FO60AFD3 DPL=0 P NTice!.data+92D3

000F IntG32 0008:804DB25A DPL=0 P KiTrapOF

0010 IntG32 0008:804DB37F DPL=0 P KiTraplO

If you look at output of Ice-Ext !idt command you may see that
IDT entries are hooked by SoftICE. Why?

Simple, debugger MUST catch exception and process it, when Fault
or Trap occurs SoftICE gains control over his hooks in IDT and
decides what to do.

Well we are going to do same thing. We are going to hook some
entries in IDT (Interupt Descriptor Table) and decide if exception
occured under our conditions, if not, pass exception to default
handler.

To hook IDT entries, first we have to know how to get them,
Address of IDT we receive with sidt instruction.

<++>
.data
idttable dq ?
.code

sidt fword ptr[idttable]

mov eax, dword ptr[idttable+2]
<++>

sidt needs 6 bytes to store data. in low word it stores limit field, and
address of IDT is stored in high 4 bytes:

R o e +
| LIMIT | Virtuelna Adresa |
R o e +
0 15 16 47

39

Here is sample of obsfucated code in themida protector to get IDT base
without usage of any variable:

Note: this is garbage code due to 2 push/pop combo

push edi ;save edi

push edi ;ESP - 4

sidt fword ptrlesp-2] ;don’t care about limit
pop edi ;EDI will hold IDT base
pop edi ;restore edi

Well this is junk code, but it is nice example on how to get IDT base,
and GDT base with minimum effort =)

Ok, once we obtain IDT address we may hook some entries. IDT is nothing
more than table of 8 byte long entries.
Each entry looks like this:

31 16 15 13 12 8 7 54 0
e +---t----- Fo-mmm oo +------ R +
| Offset 31..16 | P | DPL | ©D1 11| 00 0f |
e +---t----- Fo-mmm oo +------ R +
31 16 15 0
I i +
| Segment Selector [Offset 15..0 |
I i +

To hook entry, frist we have to know which one to hook, in our small
loader, we are going to hook int 3 or IDT entry number 3.

.data
idttable dq ?
.code
sidt fword ptr[idttable]
mov ebx, dowrd ptr[idttable+2]
lea eax, [ebx+3*8] ;offset to 3rd entry
mov cx, [eax+6] ;we are taking High Word
rol ecx, 16
mov cx, [eax] ;and we are taking Low Word

After this code we will have in ECX address of current int3h handle. We have
to save this address because we have to call default handler if exception
doesn’t meat our conditions.

After we have saved oldhandle, we have to hook int03 handle:

mov ecx, offset mynewint3h
mov [eax], cx

rol ecx, 16

mov [eax+6], cx

40

and that’s all about IDT hooking.
Next thing is to disable Write Protection in cr(register so we can write
wherever we want w/o causing PageFault. Note that IDT is writable from ring0,

so we don’t have to disable WP prior to hooking IDT (don’t know about w2k3)

Disabling/Enabling Write Protection is very simple on IA32 CPUs and consist of
clearing and setting bit 16 in cr0:

Disable WriteProtection:

mov eax, cro
and eax, OFFFEFFFFh
mov cro, eax

After we are done with writing we may set Write Protection on:

mov eax, cro
or eax, 10000h
mov cr0, eax

Simple, isn’t it?

One more condition is left to go over. We have to know when exception occured
in our process. We have two choices:

1. PsGetCurrentProcessld
2. use cr3 to identify our process

Disassembly of PsGetCurrentProcessld:

.text:804DE245 PsGetCurrentProcessId@® proc near
.text:804DE245 mov eax, large fs:124h
.text:804DE24B mov eax, [eax+1ECh]
.text:804DE251 retn

.text:804DE251 PsGetCurrentProcessId@® endp

in ring0, fs should point to KPCR:

kd> dt nt! KPCR

+0x000 NtTib : NT TIB

+0x01c SelfPcr : Ptr32 KPCR
+0x020 Prcb : Ptr32 KPRCB
+0x024 Irql : UChar

+0x028 IRR : Uint4B

+0x02c IrrActive : Uint4B

+0x030 IDR : Uint4B

+0x034 KdVersionBlock : Ptr32 Void
+0x038 IDT : Ptr32 KIDTENTRY
+0x03c GDT : Ptr32 KGDTENTRY
+0x040 TSS : Ptr32 KTSS
+0x044 MajorVersion : Uint2B

+0x046 MinorVersion : Uint2B

+0x048 SetMember : Uint4B

41

+0x04c StallScaleFactor : Uint4B

+0x050 DebugActive : UChar
+0x051 Number : UChar
+0x052 Spare0 : UChar
+0x053 SecondLevelCacheAssociativity : UChar
+0x054 VdmAlert : Uint4B
+0x058 KernelReserved : [14] Uint4B
+0x090 SecondLevelCacheSize : Uint4B
+0x094 HalReserved : [16] Uint4B
+0x0d4 InterruptMode : Uint4B
+0x0d8 Sparel : UChar
+0x0dc KernelReserved2 : [17] Uint4B
+0x120 PrchData : _KPRCB
kd>
offset +124 is :
kd> dt nt! KPRCB
+0x000 MinorVersion : Uint2B
+0x002 MajorVersion : Uint2B
+0x004 CurrentThread : Ptr32 KTHREAD <---- fs:[124h]

and offset 1ECh in KTHRED is(to be more accurate ETHREAD):

+0x1e0 ActiveTimerListLock : Uint4B
+0x1e4 ActiveTimerListHead : LIST ENTRY

+0xlec Cid : CLIENT ID
Ox1ec is nothing more then PID.

But to make this work we have to load fs with 30h, because fs should
point to KPCR.

The secong and the simplest way to accomplish this is to use cr3 as process ID.
Since all processes in Windows NT family have their own address space we are
sure that each process will have unique content of cr3. cr3 register hold

Physical Address of PDE (Page Directory Entries) and is mapped at 0C0300000h.
There are some nice articles and books that explain paging on IA32 CPUs, so

I won’t go in detail here. [1,4]

To accomplish this task we are going to use 4 DDIs exported from ntoskrnl.exe

PsLookupProcessByProcessld
ObDereferenceObject
KeStackAttachProcess
KeUnstackDetachProcess

prototype:

PsLookupProcessByProcessId (PID, ptr EPROCESS)
ObDereferenceObject (IN POBJECT BODY)
KeStackAttachProcess (PEPROCESS, PTR KAPC STATE)
KeUnstackDetachProcess(PTR KAPC STATE)

42

note that we may use KeAttachProcess and KeDetachProcess instead of
KeStackAttachProcess nad KeUnstackDetachProcess but we are advised to
use KeStackAttachProcess with simple explanation :

“The KeAttachProcess routine is obsolete and is exported to support
existing driver binaries only.”

Since 10 or more lines of code will show more than 1000 words I will
show code snippets immidiately:

.data
eprocess dd ?
.code:
push offset eprocess
push pid
call PsLookupProcessByProcessId

If PsLookupProcessByProcessld fail, then eax != 0, if eax == 0 then
eveything went fine and we got our ptr to EPROCESS. Also note that we
must call ObDereferenceObject, since PsLookupProcessByProcessld will
increment reference count in object header. Yep, everyhing is object

on winNT family. If you don’t use ObDereferenceObject, you can terminate
it but still, when you type ADDR in softice to display all tasks, you

will see your process. Why? Simple, windows will not delete object as

long as it’s ReferenceCount isn’t zero.

For this little experiment I’ll be using driver w/o ObDereferenceObject.
Process is “terminated” at this point(not visible in task manager nor
Process Explorer).

raddr

CR3 LDT Base:Limit KPEB Addr PID Name
130FA000 81CCEDAO® 0490 kd
0482F000 81CD93A0 0C8C CMD
07DD1000O 81CA8BF8 0398 crackme
*00039000 80552580 0000 Idle

Now let see what livekd has to say about this:

kd> !process 398
Searching for Process with Cid == 398

PROCESS 81ca8bf8 SessionId: 0 Cid: 0398 Peb: 7ffda@00 ParentCid:

kd> dt nt! OBJECT HEADER 81lca8bf8-18

+0x000 PointerCount . <--- Here is reference count
+0x004 HandleCount : 0

+0x004 NextToFree : (null)

+0x008 Type : Ox81lfcaca0

43

0784

For detailed dump plese refer to Appendix.
For more detailed information on Object Manager please reffer to [2,3].

So our code till now will look like like this:

<++>
push offset eprocess
push pid
call PsLookupProcessByProcessId
test eax, eax
jnz __sh fail
push eprocess
call ObDereferencelObject

Next thing that we have to do is to attach to process and force PDE/PTE
swithing (cr3 reloading with new value). We accomplish this by using
KeStackAttachProcess:

KeStackAttachProcess takes 2 args and those are ptr to EPROCESS struct,
and ptr to KAPC_STATE. We are not interested in KAPC_STATE at all but
here it is anyway:

kd> dt nt! KAPC STATE
+0x000 ApcListHead : [2] LIST ENTRY
+0x010 Process : Ptr32 KPROCESS
+0x014 KernelApcInProgress : UChar
+0x015 KernelApcPending : UChar
+0x016 UserApcPending : UChar

kd>

Since we are not going to use this struct, we may simply allocate buffer
large enough (size of struct = 18h) to hold data:

<++>
.data
apcstate db 20h dup(0)
eprocess dd ?
.code
push offset eprocess
push pid
call PsLookupProcessByProcessId
test eax, eax
jnz __error
push eprocess
call ObDereferencelObject
push offset apcstate
push eprocess
call KeStackAttachProcess
mov eax, cr3
mov c_cr3, eax
<inserting first int3h at this point>
push offset apcstate
call KeUnstackDetachProcess
<++>

44

One more trick that is very very importan, PDE/PTE won’t be reloaded
by simple changing value of cr3 to point to new PDE. I’ve examined
values of PDE/PTE right after cr3 switching and those were filled with

0.
switch context

mov eax, 401000h

shr eax, 22

mov eax, [eax*4+0CO300000h]
and

mov eax, 401000h

shr eax, 12

mov eax, [eax*4+0CO000000N]

resulted in eax == 0!?!1?

So little shortcut had to be taken to force reloading (refreshing?),

by simple reading one byte from our process, at this point I had

PTE of requested page in data window of SoftICE and I was supprised
how by reading one byte from target process forced PTE reloading.

I don’t have explanation for this, so I wrapped my code in SEH:

init ringd seh safe
mov eax, insertint3h

mov ebx, [eax]
mov byte ptr[eax], Occh

__safe: remove ring0 seh

init_ring0_seh and remove ring0 seh are just 2 simple macros definied
in ring0.inc to set seh with one line in source file.

Also we may use MmProbeAndLockPages to lock pages in Physical Memory

prior to storing our int 3h, and MmUnlockPages once we are done with
writing.

Ok, now we know all we need to write loader, now is time to code our
driver:

3. Practice

Load our crackme.exe in your favorite debugger, of course, SoftICE =):

001B:00406001 PUSHAD

001B:00406002 CALL 0040600A
001B:00406007 JIMP 459D64F7
001B:0040600C PUSH EBP
001B:0040600D RET

001B:0040600E CALL 00406014
001B:00406013 JMP 00406072
001B:00406015 MOV EBX, FFFFFFED

45

; PDE

;PTE

Finding OEP in ASPack is not very hard so let’s find magic addresses:

001B:004063B0 JINZ 004063BA

001B:004063B2 MOV EAX, 00000001

001B:004063B7 RET 000C

001B:004063BA PUSH 00401000

001B:004063BF RET <--- we are gona set int 3h here (ret oep)
001B:004063CO0 MOV EAX, [EBP+00000426]

001B:004063C6 LEA ECX, [EBP+0000043B]

001B:004063CC PUSH ECX

and crackme:

001B:00401000 PUSH 00

001B: 00401002 CALL KERNEL32!GetModuleHandleA
001B:00401007 PUSH 00

001B:00401009 PUSH 00401022

001B:0040100E PUSH 00

001B: 00401010 PUSH 000003E7

001B:00401015 PUSH EAX

001B:00401016 CALL USER32!DialogBoxParamA
001B:0040101B PUSH 00

001B:0040101D CALL KERNEL32!ExitProcess
001B:00401022 ENTER 0000, 00

001B:00401026 PUSHAD

001B:00401027 XOR EAX, EAX

001B:00401029 CMP DWORD PTR [EBP+0C],00000110
001B:00401030 JZ 00401049

001B:00401032 CMP DWORD PTR [EBP+0C],10
001B:00401036 INZ 00401062

001B: 00401038 PUSH 00

001B:0040103A PUSH DWORD PTR [EBP+08]
001B:0040103D CALL USER32!EndDialog
001B:00401042 MOV EAX, 00000001
001B:00401047 JMP 00401062

001B:00401049 PUSH 00

001B:0040104B PUSH 00402004 ; “nag”
001B:00401050 PUSH 00402000 ; “NAG”
001B:00401055 PUSH DWORD PTR [EBP+08]
001B:00401058 CALL USER32!MessageBoxA <-- NAG
001B:0040105D MOV EAX, 00000001
001B:00401062 MOV [ESP+1C], EAX

001B: 00401066 POPAD
001B:00401067 LEAVE

001B:00401068 RET 0010

001B:0040106B JIMP [KERNEL32!ExitProcess]
001B:00401071 JMP [KERNEL32!GetModuleHandleA]
001B:00401077 JMP [USER32!DialogBoxParamAl
001B:0040107D JMP [USER32!MessageBoxA]
001B:004010683 JMP [USER32!EndDialog]

We are gona kill our NAG by simple passing OxFF as 4th argument to
MessageBoxA.

46

Great we have 2 addresses:

1. 004063BFh where we will store our int3h prior to resuming primary thread
2.0040104Ah where we will store our patch (OFFh)

I’ve shown you how to store 1st int 3h in target process using PDE/PTE reloading.
Now is time for my simple int 3h handler:

Don’t be confused by it’s size, there is some prolog and epilog code and it is
very simple:

initint and restoreint are just macros to make code smaller, all they do is
save all registers on stack, and load fs with 30h so it will point to KPCR.

<++>
myint3h: initint
mov eax, cr3
cmp eax, c cr3 ;first we check if this is
jne __passdown ;our process
mov eax, [esp.int eip] ;then we take saved EIP from
dec eax ;stack and compare it with our
cmp eax, insertint3h ;int3h
jne __passdown
mov eax, patchme ;now we are checking if page
shr eax, 22 ;1s present in physical memory
test dword ptr[eax*4+0C0300000h], 1 ;is PTE present?
jz __passdown
mov eax, patchme
shr eax, 12
test dword ptr[eax*4+0C0000000h], 1 ;is page present
jz __passdown
mov eax, cro
and eax, OFFFEFFFFh
mov cr0, eax
mov eax, patchme
mov byte ptr[eax], 0ffh ;write our patch
mov eax, cro
or eax, 10000h
mov cr0, eax
mov [esp.int_eip], 401000h ;and simple redirect eip
;to oep
restoreint ;restore registers
iretd ;return from interrupt
__passdown: restoreint
jmp cs:[oldint3h]
insertint3h equ 004063BFh
patchme equ 0040104Ah
<++>

47

If you run loader.exe you will see that NAG is killed, but if you run crackme.exe
w/o loader then it will crash:

001B:004063B0 INZ 004063BA
001B:004063B2 MOV EAX, 00000001
001B:004063B7 RET 000C
001B:004063BA PUSH 00401000
001B:004063BF INT 3

001B:004063CO MOV EAX, [EBP+00000426]
001B:004063C6 LEA ECX, [EBP+0000043B]
001B:004063CC PUSH ECX

If you take a look at 004063BFh, you will see that int 3h is still there!?
Why? simple, to speedup loading of process from disc, process is being
loaded from cache, so to eliminate this int 3h simpply recompile your
code, flush cache or edit instruction manually :D

Well that’s it...
4. Conclusion

Hmmm Conclusion? Can you write faster debug loader? I don’t think so :D

Greetzing: to all my mates in ARTeam, 29a for great e-zine, havok, Papillion
and all great coders out there...

S verom u Boga, deroko/ARTeam

5. References

[1] Microsoft® Windows® Internals - Mark E. Russinovich, David A. Solomon
[2] Undocumented Windows 2000 Secrets - Sven B. Schreiber
[3] Playing with Windows /dev/(k)mem - crazylord, Phrack 59
[4] Raising The Bar For Windows Rootkit Detection - Sherri Sparks,
Jamie Butler
Phrack 63

This article includes supplemental sources and files. They have been included with the ezine
archive and can be found in the Supplements folder. Within the Supplements folder you will find|
a folder for each article that contains sources and files.

48

6. Appendix

kd> !process 398

Searching for Process with Cid == 398

PROCESS 81ca8bf8 SessionId: 0 C(Cid: 0398 Peb: 7ffda000 ParentCid: 0f84
DirBase: 07dd1000 ObjectTable: 00000000 HandleCount: <Data Not Accessible>

Image: crackme.EXE
VadRoot 00000000 Vads 0 Clone O Private 0. Modified 10. Locked 0.
DeviceMap e26¢3c40

Token €2d9d900

ElapsedTime 0:04:21.0046

UserTime 0:00:00.0031

KernelTime 0:00:00.0000
QuotaPoolUsage[PagedPool] 0
QuotaPoolUsage[NonPagedPool] 0

Working Set Sizes (now,min,max) (4, 50, 345) (16KB, 200KB, 1380KB)
PeakWorkingSetSize 528

VirtualSize 13 Mb

PeakVirtualSize 17 Mb

PageFaultCount 613

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 0

kd> dt nt! EPROCESS 81ca8bf8

+0x000 Pcb : _KPROCESS
+0x06c ProcessLock : EX PUSH LOCK
+0x070 CreateTime : LARGE INTEGER 0x1c6512f 7ff0ca7c
+0x078 ExitTime : LARGE INTEGER 0x1c6512f"82093b96
+0x080 RundownProtect : EX RUNDOWN REF

+0x084 UniqueProcessId : 0x00000398
+0x088 ActiveProcessLinks : LIST ENTRY [0x8lccee28 - 0x81cd9428]

+0x090 QuotaUsage : [31 0

+0x09c QuotaPeak : [3] Ox6b8
+0x0a8 CommitCharge 1 0

+0x0ac PeakVirtualSize : 0x114e000
+0x0b0 VirtualSize : Oxd18000
+0x0b4 SessionProcessLinks : LIST ENTRY [O0xf8a55014 - 0x81cd9454]
+0x0bc DebugPort : (null)
+0x0cO ExceptionPort : Oxel5c51e0
+0x0c4 ObjectTable : (null)
+0x0c8 Token : EX FAST REF
+0x0cc WorkingSetLock : FAST MUTEX
+0x0ec WorkingSetPage : 0x1fd36

+0x0f0 AddressCreationLock : FAST MUTEX
+0x110 HyperSpacelLock 0
+0x114 ForkInProgress (
+0x118 HardwareTrigger : 0O
+0x11c VadRoot to(
+0x120 VadHint (
+0x124 CloneRoot to(
+0x128 NumberOfPrivatePages : 0
+0x12c NumberOfLockedPages : 0O

+0x130 Win32Process (null)
+0x134 Job : (null)
+0x134 Job : (null)
+0x138 SectionObject (null)

+0x13c SectionBaseAddress : 0x00400000
+0x140 QuotaBlock : 0x81bab®7b8

49

+0x144 WorkingSetWatch : (null)
+0x148 Win32WindowStation : 0x00000028
+0x14c InheritedFromUniqueProcessId : 0x00000f84

+0x150 LdtInformation : (null)

+0x154 VadFreeHint : (null)

+0x158 VdmObjects : (null)

+0x15c DeviceMap : Oxe26c3c40

+0x160 PhysicalVadList : LIST ENTRY [0x81ca8d58 - 0x81ca8d58]
+0x168 PageDirectoryPte : HARDWARE PTE

+0x168 Filler 1 0

+0x170 Session : Oxf8a55000

+0x174 ImageFileName : [16] “crackme.exe”

+0x184 JobLinks : LIST ENTRY [0x0 - 0x0]

+0x18c LockedPagesList : (null)

+0x190 ThreadListHead : LIST ENTRY [0x81ca8d88 - 0x81ca8d88]
+0x198 SecurityPort : (null)

+0x19c PaeTop : (null)

+0x1a0 ActiveThreads : 0

+0x1lad GrantedAccess : Ox1fOfff

+0x1a8 DefaultHardErrorProcessing : 1

+0xlac LastThreadExitStatus : ©

+0x1b0 Peb : Ox7ffdab0o0O

+0x1b4 PrefetchTrace : EX FAST REF

+0x1b8 ReadOperationCount : LARGE INTEGER 0x0
+0x1cO WriteOperationCount : LARGE INTEGER 0x0
+0x1c8 OtherOperationCount : LARGE INTEGER 0x3c
+0x1d0 ReadTransferCount : LARGE INTEGER 0x0
+0x1d8 WriteTransferCount : LARGE INTEGER 0x0
+0x1e0 OtherTransferCount : LARGE INTEGER 0x54
+0x1e8 CommitChargeLimit : 0O

+0xlec CommitChargePeak : Ox5f

+0x1f0 AweInfo : (null)
+0x1f4 SeAuditProcessCreationInfo : SE AUDIT PROCESS CREATION INFO
+0x1f8 Vm : _MMSUPPORT
+0x238 LastFaultCount : 0

+0x23c ModifiedPageCount : Oxa

+0x240 NumberOfVads : 0

+0x244 JobStatus : 0

+0x248 Flags : Oxc082c
+0x248 CreateReported : 0y0

+0x248 NoDebugInherit : 0y0

+0x248 ProcessExiting 1 Oyl

+0x248 ProcessDelete : Oyl

+0x248 Wowb64SplitPages : 0y0

+0x248 VmDeleted : Oyl

+0x248 OutswapEnabled : 0y0

+0x248 Outswapped : 0y0

+0x248 ForkFailed : 0y0

+0x248 HasPhysicalVad : 0y0

+0x248 AddressSpaceInitialized : 0yl0
+0x248 SetTimerResolution : 0y0
+0x248 BreakOnTermination : 0y0
+0x248 SessionCreationUnderway : 0y0
+0x248 WriteWatch : 0y0

+0x248 ProcessInSession : 0y0

+0x248 OverrideAddressSpace : 0y0
+0x248 HasAddressSpace : 0yl

+0x248 LaunchPrefetched : 0yl

+0x248 InjectInpageErrors : 0y0
+0x248 VmTopDown : 0y0

50

+0x248 Unused3 : 0y0

+0x248 Unused4 : 0y0

+0x248 VdmAllowed : 0y0

+0x248 Unused : Oy00000 (0)
+0x248 Unusedl : 0y0

+0x248 Unused2 : 0y0

+0x24c ExitStatus 1 0

+0x250 NextPageColor : 0x81d9

{7

+0x252 SubSystemMinorVersion : 0xa
+0x253 SubSystemMajorVersion : 0x3 ‘'’
+0x252 SubSystemVersion : 0x30a

+0x254 PriorityClass T Ox2

+0x255 WorkingSetAcquiredUnsafe : 0 ‘'

+0x258 Cookie : Ox5dcadl19b
kd> dt nt! OBJECT HEADER 8lca8bf8-18

+0x000 PointerCount 1

+0x004 HandleCount 0

+0x004 NextToFree : (null)

+0x008 Type : Ox81lfcaca0

+0x00c NameInfoOffset 10

+0x00d HandleInfoOffset : 0 ‘'’

+0x00e QuotaInfoOffset : 0 ‘'’

+0x00f Flags : Ox20 * !
+0x010 ObjectCreateInfo : 0x81bad7b8
+0x010 QuotaBlockCharged : 0x81ba07b8
+0x014 SecurityDescriptor : Oxeldfe65d

+0x018 Body : _QUAD
kd> dt nt! OBJECT TYPE 81lfcacal
+0x000 Mutex : ERESOURCE
+0x038 TypelList : LIST ENTRY [0x81fcacd8 - 0x81fcacd8]
+0x040 Name : UNICODE STRING “Process”
+0x048 DefaultObject : (null)
+0x04c Index : 5

+0x050 TotalNumberOfObjects : 0x2c
+0x054 TotalNumberOfHandles : 0x98
+0x058 HighWaterNumberOfObjects : 0Ox2e
+0x05¢c HighWaterNumberOfHandles : 0x9e

+0x060 TypeInfo : OBJECT TYPE INITIALIZER
+0x0ac Key : Ox636f7250
+0x0b0O ObjectLocks : [4] ERESOURCE

kd>

51

)7

1. Tools You Need to Begin

2. Introduction

3. Examining the Target

4. Analyzing the Communication
5. Reversing the CRC

|6. Exploiting TeamSpeak Protocol
7. Conclusion

1. Tools You Need to Begin:

Target and Tools for Analyzing the Protocol:

TeamSpeak Client
|http://goteamspeak.com/index.php?page=downloads

PeiD
http://www.secretashell.com/codomain/peid/download.html

Ollydbg
http://www.ollydbg.de/download.htm

WPE Pro
|http://pimpsofpain.com/wpe.zip (some anti-virus detect this as a “hack-tool”)

Resources for Building an Application to Exploit Protocol:
C# Express 2005 Edition
http://go.microsoft.com/fwlink/?LinkId=51411&clcid=0x409

NET Framework 2.0
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856 EACB-4362-4B0D-8EDD-AAB15C5E04F

S&displaylang=en

2. Introduction:

In this article I am going to cover how to capture and reverse-engineer a closed-source protocol. I will then show
you how to exploit that protocol in the form of a brute forcing program. The analysis of a protocol is becoming
more and more important as software becomes more “online” aware. There are more key checks that occur
over the internet and there is often communication between client software with the owners server. As reverse-
engineers we need to be able to understand what is happening when our software accesses the Internet. We can|
then figure out how to modify or exploit such communications.

Our target in this article is TeamSpeak. TeamSpeak is a closed-source voice-chat client/server combo that uses
the UDP protocol for transfer of data between the server and client. We will capture and analyze the UDP packets
so we can figure out how this program communicates with a server. We can then build a program to mimic the

TeamSpeak protocol.

52

http://goteamspeak.com/index.php?page=downloads
http://www.secretashell.com/codomain/peid/download.html
http://www.ollydbg.de/download.htm
http://pimpsofpain.com/wpe.zip
http://go.microsoft.com/fwlink/?LinkId=51411&clcid=0x409
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en

3. Examining the Target:

Firstly, we examine the target using PEiD. (Portable Executable Identifier
% PEID v0.93

File: | E:\Program Files\Teamspeak? RC2\TeamSpeak.exe -
Entrypoint: | 001153184 EF Section: | CODE 2]
File Offset: [00117584 FirstBytes: [55,8B,EC,83 | > |
Linker Info: [2.25 Subsystem: [Win326UI | > |

Borland Delphi 5.0 - 7.0
Multi Scan Task Viewer Options About | Exit |

[+ Stay on top ﬂ ﬂ

A very good feature of PEiD is its Krypto Analyzer plugin, KANAL.
This plugin can shed some light on if TeamSpeak’s protocol is encrypted.

Sa KANAL v2.82

File E:'\Program Files\TeamspeakZ_RC2\TeamSpea

BEBASES table :: 000ATA44 :: 00448644
Referenced at 00S1B288

= CRC32Z :: 00118FAB :: 003147 A8
Referenced at 00484534

About Close

BASEE4 enceding (used e.g. in e-mails - MIME)

PEiD detects no encryptions - just BASE64 and CRC32 routines, lucky for us

Base64 is used to convert binary data to an ASCII string, usually with characters only in the range of A-Z, a-z, and
0-9. The resulting string is usually about 33% bigger than the binary input so base64 is rarely used on any good
protocols. Some email programs use it to encode their attachments though.

CRC stands for cyclic redundancy check. It’s a type of hash function that is used for, guess what? Internet Traffic!
The CRC32 hash function takes binary input and returns a hash of 32 bits or 4 bytes. It’s used on internet traffic
to verify the integrity of data.

A simple example is a program sending a packet out consisting of a 4 byte CRC hash followed by the data that
was hashed. When the server receives the packet, it can hash the data (5" byte to the end) and compare it to the
hash (1% - 4™ bytes of the packet) which reveals whether the data was received only partially or became corrupted
on the way. The TCP protocol already is very reliable so crc32 is rarely used for it...but the UDP protocol isn’t,
and guess what? TeamSpeak uses the UDP protocol for data transfer between the client and server.

53

If we didn’t have KANAL, we would have to search for signature byte patterns of common encryption and hash

functions.

For example, the crc32 hash function uses a lookup array that starts off with these elements:
0x00000000, 0x77073096, 0OXxEEOE612C, 0x990951BA

To find the crc32 routines in an application, we would start it up with olly, and then search (Search For- Constant)
for one of the signature constants (0x77073096 perhaps).
After we find the address of the signature constant, we backtrack (minus some bytes) to get the address of the start

of the lookup table.

Then, we can use Olly’s constant search again to search for references to our lookup table.
Those references would be located within the crc32 procedures.

4. Analyzing the Communication

|ﬁ| Connect To Server

Local Addresshook web Server List l
Server Mame |T_l,l|:-e |F'assw. |Users |Country |Server Addres -
2nd Ranger Battalion Clan Mo 104 50 United States | B3.210.145.2:8788
245 STUNT CLaN Clan Mo 14200 United States B9.162.144.183:720
~aw ZATREME Clan Mo 2415 United States 209.246.143.232:88
328th Air Clan Mo 0/ 25 United States | £9.28.220.95:8761
325th Falcon Brigade Clan Mo 0/ 25 Urited States BE.17E.220.192:877
32nd Bergaders Clan Mo o0f 20 Urited States E7.18.58.10:8776
F3rd Infantry Divisian Clan Mo 1/ 32 United States 129.21.61.65:90E5
3815t SP5 TS Game Server | Clan Mo 0/ 50 United States 24.21.45.68:8766
£:3ke > Publiczerver ;) Clan Mo 0/ 25 Urited States | 209.190.1E.162:396
IR0 Front TeamSpeak Server Clan Mo o0f 75 Urited States | 216.164.30.144:878
3rdRecon Clan Mo 2420 United States 64.192.196.3:8733
=[3rd]= Clan Clan Mo 0/ 20 United States 209.190.16.162:877
[3Ten] Clan Tomance, Cé Clan Mo 0/ 16 Urited States B4.27.28 2278777
420 teamspeak. Public Mo 4/ 30 Urited States £9.28.242 998767
=[420]=50UAD Clan Mo 1422 United States £9.93.194.226:3067
42nd Kazakh Guards Clan Mo 0/ 30 United States 209.130.113.30:201
45th Infatitry Divisiot Clan Mo 25 24 Urited States 63.210.145.43:8307
=[dth]= Clan Server Clan Mo 0/ &0 Urited States 209.190.16.162:877
5 ColorM addness Public |MNo 8412 United States £3.12.30.142:9159
5.55-Panzer-Division "Wiking' Clan Mo 3/ 18 Urited States | 82.165.163.223:830
50 Cal Tactical Comms Server|Clan [No | | 216.97.37.214:8767
501zt Legion Chat Server Clan Mo 0/ B4 United States | 24.242 213136:876
S0Gth PIR Realizm Unit Public |MNo 0/ 16 United States 209.190.16.162:873 ¥
< >
Connhect ‘ Cancel ‘ Update List | Change Filter | | Copy to local Addressbock, |

54

Our packet sniffer comes into use now. We open up TeamSpeak and add a random server to our address book
- make sure the server isn’t password protected and make sure it has some people in it.

I8 Connect To Server

Local Addressbook. | wieh Server List]

—]- Servers

.50 Cal Tactical Comms Server
glins
therubysguare - elite

Label:

|.5EI Cal T actical Commes Server

Server Address:
|21 6.97.37.214.8767

Mickname:
|Testing1 23

[Allow zerver to assign a nickname

(% Anonymous " Reqistered

After adding it to our address book, we need to go to the address book and select the server. We will need a
nickname, you can just enter something like “Testing123”. The rest of the information can be left alone.

&= WPE PRD

Now we will attach WPE Pro to TeamSpeak

Start sniffing IT—, and connect to the server with TeamSpeak.

File View Help

»

Target program

SMss, EXe
winlogon. exe
services.exe
|sass, exe
svchost.exe
svchost.exe
spoolsy, exe
Explarer EXE
Tunnelier. exe

N am.exe

mirc. exe
gychost,exe
WIMNWORD,.EXE
winamp.exe
mspaint.exe

TeamSpeak.exe
WPE PRO.exe

-
“h

Trace C

%

LIS

] Filter &
O Filker 5

M rn.. -

% Filters A Send /

55

After connecting to the server, we can stop sniffing with wpe, , and view the captured login packet.

00000000 F4 BE 03 00 00 00 00 OO0 00 00 00 00 01 00 00 00 .eeevnnnnnnnnnnn
00000010 28 FF 3D 25 09 54 &5 &1 &0 53 70 &5 &1 &B 00 00 (.=%.TeamSpeak..
00000020 00 Q0 00 OO0 00 00 OO0 00 00 Q0 00 00 00 00 00 00 seeevnnnncnnnnns
00000030 00 00 OR 57 &9 gE &4 &F 77 73 20 58 50 00 00 00 ...Windows XP...
00000040 00 Q0 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 seeevnnnncnnnans
00000050 02 00 00 00 20 00 3C 00 00 01 00 00 00 00 00 00 .s.eee w€euennnnnn
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seessansnmansans
00000070 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 seeessnsnmannnns
00000050 00 00 OO0 OO0 00 00 OO0 OO0 00 Q0 00 00 00 00 00 00 .ceeeennennnnnann
00000050 00 00 00 00 00 00 OR 54 &5 73 74 89 gE &7 31 32 TeatinglZ2
000000&0 33 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 3.eeeeenenennnnns
000000BO 00 OO0 00 o0

Clearly, this packet isn’t encrypted (as foreshadowed earlier by using KANAL)
By using some common sense (well I’d like to think it is) , we can map almost every important part of this packet
down to what it represents.

00000000 F4 BE 03 00 00 OO0 00 00 OO0 OO0 OO0 00 Ol OO0 00 00 waeessvansnsnnnan
00000010 28 FF 30D 25 09|54 &5 &1 &0 53 70 &5 &1 &B 00 00 (.=%.TeamSpeak..
0oooo020 00 00 00 OO0 OO0 OO0 00 00 OO0 00 OO0 00 00 00 00 00 seeevesnonvnnnan
00000030 00 00 OA(57 &9 &E &4 &F 77 73 20 58 50 00 00 00 ...Windows XP...
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weesvesnonnnnnan
00000050 200N OE A OSSO FESOANAaEIs 00 00 00 00 00 00 s.ees e€eewvonnan
00000060 00 00 00 OO0 OO0 OO0 00 00 OO0 00 OO0 00 00 00 00 00 weesvesnonnnnnan
00000070 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 00 wveeewwnemoemoossss
00000080 00 00 00 OO0 00 OO0 00 OO0 OO0 00 00 00 00 00 00 00 &veeeewnemommoossss
00000090 00 00 00 00 00 OO0 ESENESINENTENESNCENETINEIES Testingls

00000020 BBE00 00 00
000000B0 00 00 00 o0

00 00 00 00 00 OO0 OO0 00 00 00 00 3

- Maybe with the 4" byte (0x00) is a CRC?

- Maybe is a CRC?

- This is an easy one - the first part is the length of the client string (TeamSpeak), and the 2™ part is the actual
client string.

- Our operating system - structured in the same way as the previous.

- This one took a bit more thinking. It’s the version of the client (2.0.32.60). Each integer of the version string
is a short stored in little-endian (least-significant bit first.)

- The nickname we chose - structured the same way the client string and OS were.

We login again while sniffing - this time with the nick of “Testing124.” We then might be able to figure out what

the yellow and orange bytes are for.

D0000000 F4 BE 03 00 00 00 00 00 00 00 00 00 01 00 00 00 wevueeennnnaennn
pocooo10 BB 59 79 C4 9 5S4 65 61 6D 53 70 65 61 6B 00 00 .Y¥y..TeamSpeak..
00000020 0 00 00 00 OO0 00 OO0 00 00 00 00 00 wevveennnnnanennn
DO000030 00 00 OR 57 69 6E 64 6F 77 73 20 58 50 00 00 00 ...Windows XP...
00000040 00 00 00 00 00 OC 00 00 00 00 00 00 00 00 00 00 wevveeemnnnaennn
00000050 02 00 00 00 20 00 3C 00 00 01 00 00 00 00 00 00 wevs efeveneenns
DOCOOO0ED 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wevveennnnneenna
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeveeennnnaennn
DO0O0OB0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wevveeennnnaennn
DO0000S0 00 00 00 00 00 00 OR 54 65 73 74 69 6E 67 31 32 Testingl2
DOCOOORD 34 00 00 OO0 OO0 OC 00 00 OO0 00 OO0 OO0 00 00 00 00 duvveennnnnannnn
DOOOOOBO 00 00 00 00

56

The only thing that has now changed is the orange bytes. We can conclude the orange bytes must be the CRC, and
the yellow bytes are the identifier for a command (LOGIN perhaps?) You may want to run a few more tests like
I did to be sure.

Now, we will login again while sniffing, but this time WITH a test username and pw.
We shade in the bytes that have changed for easy comparison.

10000000 F4 BE 03 00 00 00 00 00 00 00 00 00 01 00 00 00 weeevennnnnnnnna
Jooooolo of 22 12 02 09 54 &5 61 &D 53 70 &5 €1 &B 00 00 .{...TeamSpeak..
10000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seeevennnnnnnnna
10000030 00 00 OR 57 65 6E €4 &F 77 T3 20 58 50 00 00 00 ...Windows EF...
10000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seeevennasnasana
10000050 02 00 00 00 20 00 3T 00 00 - 02 54 &5 T3 T4 5% ..., . €aana183tT
10000060 T3 &5 T2 &E £1 &0 &5 00 00 00 00 00 00 00 00 00 sername.........
10000070 00 00 00 00 00 00 00 OO0 o2 Sd 85 s 9 5006l V5 TestPBas
Joooooso ST eE e 64 00 00 00 00 00 00 00 00 00 00 00 sword.....eeenan
10000090 00 00 00 OO0 00 00 OR 54 &5 73 74 €9 6E &7 31 32 Testingld
J00000&0 34 00 00 OO0 00 0O 00 00 00 00 00 OO0 00 00 00 00 4.....eeeennnnnn
J00000Bd 00 00 00 ad

- The CRC bytes that changed as they should have.

- We cannot immediately narrow this down, but the fact that it is right before the username and password,
and that it changed from 1 to 2 indicates it might be a byte that tells whether we are logging in registered or
unregistered.

- The username structure.

- The password structure.

Just a note:

We can notice that each string field (Client, OS, Username, Password, and Nick) has 30 bytes for its data:
1 for the length of the sting

29 for the string

If we continue to login unregistered and registered we will see that the byte stays 0x01 for unregistered and 0x02
for registered. So, we were right
0x01 == LOGIN_UNREGISTERED and 0x02 == LOGIN_REGISTERED!

We got almost everything documented. The only thing to do? Figure out what is being inputted for CRC32.

The most common way to CRC a packet (also known as a datagram for UDP) is as follows:

The place where the CRC would be is first written in with something static - for example: 0x00 0x00 0x00 0x00,
or the string “JAGX.” Then the CRC is calculated and the resulting hash is written in, over-writing the static
string.

The server must also know the static string the client used in order to calculate the CRC.

5. Reversing the CRC:

Olly comes into play now. Fire up Olly and debug TeamSpeak from it.

We know TeamSpeak isn’t packed from earlier examination of PEiD; no unpacking is required.

There will be some exceptions; we can just pass those to TeamSpeak’s exception handler by using Shift + F9.
From KANAL, we know the address in TeamSpeak.exe that referenced a crc32 lookup table was 0048 A931.

57

At 0048A931 we are in the middle of the procedure...the crc32 procedure in C# would look like this

readonly static uint[] crcLookup = new uint[] {
0x00000000, 0x77073096, OXEEOE612C, ©x990951BA,
0x076DC419, O0x706AF48F, OxE963A535, Ox9E6495A3,
0xOEDB8832, 0x79DCB8A4, OxEOD5E91E, ©x97D2D988,
0x09B64C2B, Ox7EB17CBD, OxE7B82D07, ©x90BF1D91,
0x1DB71064, Ox6AB0O20F2, OxF3B97148, 0x84BE41DE,
0x1ADAD47D, Ox6DDDE4EB, 0OxF4D4B551, ©x83D385(7,
0x136C9856, 0x646BA8CO, OxFD62F97A, ©x8A65CIEC,
0x14015C4F, 0x63066CD9, OxFAOF3D63, 0x8DO8ODF5,
0x3B6E20C8, 0x4C69105E, OxD56041E4, 0xA2677172,
0x3CO3E4D1, 0x4B04D447, 0xD20D85FD, ©xA50AB56B,
0x35B5A8FA, 0x42B2986C, OxDBBBCI9D6, OxACBCF940,
0x32D86CE3, 0x45DF5C75, OxDCD6ODCF, ©xABD13D59,
0x26D930AC, Ox51DEOO3A, 0xC8D75180, 0xBFD06116,
0x21B4F4B5, 0x56B3C423, OxCFBA9599, ©xB8BDA5OF,
0x2802B89E, 0x5F058808, 0OxC60CDI9B2, OxB1lOBE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, OXEFD5102A,
0x71B18589, 0x06B6B51F, Ox9FBFE4A5, ©xE8B8D433,
0x7807C9A2, OxOFOOF934, 0x9609A88E, OxE10E9818,
0x7F6AGDBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, OxF262004E,
0x6C0695ED, O0x1BO1A57B, 0x8208F4C1l, OxF50FC457,
0x65BOD9C6, Ox12B7E950, OxB8BBEBBEA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, OxA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, ©xD3D6F4FB,
0x4369E96A, 0x346EDIFC, OxAD678846, 0xDA60B8DO,
0x44042D73, 0x33031DE5, OxAAOA4C5F, 0xDDOD7CC9,
0x5005713C, 0x270241AA, OxBEOB1010, 0xC90C2086,
0x5768B525, 0x206F85B3, 0xB966D409, OxCE61E49F,
OX5EDEF90E, 0x29D9C998, 0xBOD09822, 0xC7D7A8B4,
0x59B33D17, Ox2EB40D81, 0xB7BD5C3B, ©xCOBA6CAD,
O0xEDB88320, O0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
OxEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
O0xE3630B12, 0x94643B84, OxOD6D6A3E, 0x7A6A5AAS,
OXE40ECFOB, 0x9309FF9D, OxOAOOAE27, 0x7DO79EB1,
O0xFOOF9344, 0x8708A3D2, Ox1E01F268, 0x6906C2FE,
0xF762575D, 0x806567CB, 0x196C3671, Ox6E6BO6E7,
OxFED41B76, 0x89D32BEG®, Ox10DA7A5A, 0x67DD4ACC,
OxFOBIDF6F, Ox8EBEEFF9, 0x17B7BE43, 0x60BO8EDS,
0xD6D6A3E8, O0xA1D1937E, 0x38D8C2C4, Ox4FDFF252,
0xD1BB67F1, OxA6BC5767, Ox3FB506DD, 0x48B2364B,
0xD80OD2BDA, OxAFOA1B4C, 0x36034AF6, 0x41047A60,
OxDF6OEFC3, OxA867DF55, Ox316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCCOC7795, OxBBOB4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
0xC2D7FFA7, OxB5DOCF31, 0x2CD99E8B, Ox5BDEAE1D,
0x9B64C2B0O, OxEC63F226, Ox756AA39C, 0x026D930A,
0x9C0906A9, OxEBOE363F, 0x72076785, 0x05005713,
0x95BF4A82, O0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, OxE5D5BEOD, Ox7CDCEFB7, ©x0BDBDF21,
0x86D3D2D4, OxF1D4E242, 0x68DDB3F8, Ox1FDA836E,
0x81BE16CD, OxF6B9265B, Ox6FBO77El, 0x18B74777,
0x88085AE6, OxFFOF6A70, 0x66063BCA, 0x11010B5C,
Ox8F659EFF, OxF862AE69, Ox616BFFD3, 0x166CCF45,
OxAOOAE278, OxD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, OxDO6016F7, 0x4969474D, Ox3E6E77DB,
OXAED16A4A, 0xD9D65ADC, 0x40DFOB66, ©x37D83BFO,
O0xA9BCAE53, OxDEBBOEC5, 0x47B2CF7F, ©x30B5FFE9,
0xBDBDF21C, OxCABAC28A, 0x53B39330, 0x24B4A3A6,
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, OxC30C8EAl, Ox5A05DF1B, ©x2DO2EF8D
+
public static uint crc32(byte[] by)
{ uint ulCRC = poly;
for (uint i = 0; i < by.Length; i++)
{ulCRC = (ulCRC >> 8) ™ crcLookup[(ulCRC & OxFF) ~ by[i]]; We are here}
return (ulCRC ~ poly);

58

As seen from Olly, the procedure begins at 48A904. Let’s set a breakpoint there.
| BEdERTES

rs 53 FLUSH EBX
HE43A9R5) . 56 PUSH ESI
AA42A965|) . 57 PUSH EDI
AE4zA9E7 | . 8309 FF 0OR ECH,FFFFFFFF
EAE42A2964) - 21FA FIFFeEEd| CHMP EDX, BFFF1
aa42A918 ~7r 25 JA SHORT TeamSpea.dB42A947
HE42A912 2eDS MOU EEX, EAX
aa42A214)) . 8BC2 MOY EREF, EOX
HE4sA915] « 6638508 TEST RAX.AH
ARGS9 19| o 7FE 2R JEBE SHORT TeamSpea.BE4SA945
AE42A91E|| . EE:ER B188 MOW D, 1
HAE42A91F | > BFEFF2 FHMOUZ Y EST, DX
AE4zA9221) o BFBEF422 FF MOUZX ESILENMTE PTR DS: [EEBX+ESI-11]
Aa42A227) . SBF9 MOU EDI,ECH
EE42A929() o 81EV FFABBBEA|] AND EDI, BFF
Ba42A92F || « 33FF #wOR ESILEDI
HAE43A221 | « 8B34BS ASATS1N) MOV ESIL,DWORD PTR DS: [ESI#4+51AFAS]
BE43A932 C1E9 @3 SHR ECH, &
BA42A92E 23F1 #0R ESI.ECH
aa42R920 SECE MOW ECH,ESI
BE42A92F 42 IMC ED¥
Ba42A9468 &&:FFC2 DEC Ax
HE42A94 3 ~75 DA L. HZ SHORT TeamSpea.@@423A91F
aa42A245)11 » FPDL MOT ECH
AE4sAs47 | » BBCL MO ERE,.ECH
BE43A949 5F FOFP EDI
AEA42A94R7 EE FOFP ESI
Aa42A94E|11 . 5B POF EEB®
BE42A94C . C2 RETH

The CRC32 Procedure

Now if we connect, Olly should break and the EAX register should hold the address of the binary input parameter
passed to the CRC32 procedure.

Sure enough, Olly breaks, and if we follow EAX in the dump we see:

Hddress |Hex dump
BEE1D9A4
BEE1D9AC
BEE1D9E4
BEELDIEC
BEE1DICE
BEELDACT
BEE1D04
BEE1D90C
HEE1D9E4
BEELOSEC
BEELD9F 4
BEELDIFC
BEE1DAES
BEE1DOAEC
BEELIOA14
BEELOALC
BEE1DAZ4

. TestPas
swWord. . .

Aye, so the place where the crc hash would be is left as 4 0x00’s.
Our work is almost done.

We must figure out what kind of responses the server gives back. What is the “BAD LOGIN” response, and what
is the “CORRECT PW” response?

You’ll have to obtain an account at a server to get the sample packets for a correct login.
By doing a couple trials and sniffing the responses the server sends back, it’s easy to see that the 19th byte (byte

right after the CRC - server does a CRC to its own packets too) of the server’s response equals 0x00 when the
password is not correct, and contains the length of the server’s name when the password IS correct.

59

Bad Login response:
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000030
000000R0
000000B0
000000C0
00000000
000000EQ
000000F0
00000100

Good Login response:

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000R0
000000B0
000000C0
00000000
000000EQ
000000FO
00000100

Fd
0E
aa
a0
a0
aa
aa
a0
ao
aa
aa
77
a0
aa
aa
a0
ao

F4
1B
6l
oo
a0

-
£

a0
a0
&80
94
a0
1B
&l

72

a0
a0
a0

EE
&B
a0
a0
a0
oo
a0
a0
a0
a0
a0
a0
a0
oo
a0
a0
a0

BE

-
£

aD
a0
a0
aa
aa
aa
7D
aa
42
a0
a5
T8
aa
aa
aa

04
BB
a0
a0
0o
oo
a0
a0
a0
a0
a0
a0
0o
oo
a0
a0
a0

04
EE
33
05
0o
aa
aa
aa

T8
04
aa
aa

-
=

&5
aa
aa
aa

ao
3B
aa
a0
a0
aa
aa
a0
ao
aa
aa
a0
a0
aa
aa
a0
ao

a0
CE
70
a7
a0
a0
ao
ao

e
—

a0

o
=]

o
6l

72

a0
ao
a0

00
aa
a0
a0
a0
oo
a0
a0
a0
a0
a0
a0
a0
oo
a0
a0
a0

a0
19 |
a5
a9
a0
14
&
a0
aao
aao
aao

-
‘£

~
1"

-
“

aa
a0
aao

aa
aa
aa
aa
a0
a0
a0
aa
aa
aa
aa
aa
a0
a0
a0
aa
aa

a0
41
a1
GE
a0
a0
a0
EO
04
a0
0z
43
aC
649
a0
a0
a0

aa
aa
aa
aa
aa
aa
0o
aa
aa
aa
aa
aa
aa
aa
0o
aa
aa

a0
6E
6B
33
a0
01
a7
TF
a0
6E
a0
aF
ZE
73
a0
a0
a0

ao
a0
a0
a0
o
oo
a0
a0
ao
a0
a0
a0
o
oo
a0
a0
ao

aa
79

-
‘£

-
=

aa
a0
FF

TC

aa
aa
a0
aD

-
=

-
“

a0
ao
aa

L
aao
aao
aao
a0
EE
a0
aa
a0
aao
aao
aao
a0
aa
a0
aa
a0

7B

-
£

33
oo
a0
01
FF
3E
a0
a0
a4
85

-
<

68
a0
a0
a0

a0
a0
a0
a0
a0
FF
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0

aa
47
&5
aa
a0
aa
aF
aa
aa
aa
aa

-
‘£

54
aF
aa
aa
aa

a0
a0
a0
a0
0o
FF
a0
a0
a0
a0
a0
a0
0o
oo
a0
a0
a0

a0
61

L b

12
a0
a0
a0

04
a0
a0
a0
aF

o
(=]

72

a0
a0
a0

ao
aa
aa
a0
a0
FF
aa
a0
ao
aa
aa
a0
a0
aa
aa
a0
ao

a0
aD
76
oo
a0
a0
FF
a0
a0
14
a0
6E
a9

-
<

a0
a0
a0

-
£

a0
a0
a0
a0
oo
a0
a0
a0
a0

o
(=]

a0
a0
oo
a0
a0
a0

-
£

a5
a5
aa
aa
F7

ao
aa
aa
EQ
a5
T3
74
a0
ao
aa

aa
aa
aa
aa
a0
a0
a0
aa
aa
aa

o
[}

aa
a0
a0
a0
aa
aa

20
aa

12
oo
a0
a7
FF
a0
a0
a0

-
£

-
L4

-
<

&F
a0
a0
a0

aa
aa
aa
aa
aa
aa
0o
aa
aa
aa

i~
e

aa
aa
aa
0o
aa
aa

aa
54
a0
a0
a0
aa
a3
aa
aa
aa
F1
43
T3
75
aa
aa
aa

a5
aa
aa
0o
aa
FE
aa
aa
aa
aa
aF
a5
21

.. ROV GEme Te
gmSpeak Jerver..

Y duvuunlun
{«..+Come one Co
me &ll. This se
rver i3 for you!

Alternatively, rather than sniffing, you could use Olly to find references to the “Bad Login (name and/or
password wrong)” string then go from there - see what TeamSpeak looks at in the server’s response to tell if the

login was accepted.

With all this information we received about how the login packet is constructed and how the server responds, we

can build a damned good brute-forcer.

6. Exploiting TeamSpeak Protocol:
The first step in building a brute-forcer is to decide whether the brute-forcer will use systematic bruting, or

dictionary bruting.

Systematic (this involves all POSSIBLE combinations of a type)

example: all 8 character alphanumeric (a-z 0-9) passwords

Dictionary:

example: a list of all words from webster’s abridged dictionary

60

It’s not hard to realize that systematic bruting is only realistic if you are bruting something with tremendous speed
(server on your lan, or a hashed pw on your own computer).

So, our bruter will use dictionary bruting, it will take the path to the dictionary file as one of its command line
parameters.

Next, we will want to write the code to build the “base packet.”

A base packet is necessary for fast bruting - in our case the base packet should have the static data already in it
- the only thing that should be left out is the crc and the password since those will change every time on a new
attempt. Some bad bruters will make a new array every attempt which is slow and inefficient - allocating memory
is time-consuming. Other bad bruters will have a “base packet” but rewrite the static content (command identifier,
0s, nick, etc) over and over again though it doesn’t need to be.

If we are making a multi-threaded bruter, each thread should get its own base packet.

Here’s the snippet of code from the src files used to make the base packet with comments about each line:

packet = new byte[180]; Our packet size is 180 bytes
MemoryStream stream = new MemoryStream(packet);
BinaryWriter writer = new BinaryWriter(stream);
//C# has no pointers - we use MemoryStream & BinaryWriter to write larger-than-

byte data to the packet
writer.Write(new byte[]{
OxF4, OxBE, 0x03 We write the LOGIN command identifier

1)
stream.Seek(80, SeekOrigin.Begin); goto offset 80
writer.Write((ulong)0x3C00020000002000); write version
stream.Seek(90, SeekOrigin.Begin);
stream.WriteByte(0x02); write registered flag
stream.WriteByte((byte)user.Length); write user length
writer.Write(user.ToCharArray()); write user string bytes
stream.Seek (150, SeekOrigin.Begin); goto offset 150
stream.WriteByte((byte)nick.Length); write nick length
writer.Write(nick.ToCharArray()); write nick string bytes

In addition, when we were reversing the login packet we discovered that a string structure had 30 bytes - 1 for its
length - 29 for its data.
This means any passwords from the password list with length greater than 29 should be dismissed.

The code for the TeamSpeak bruter I made in C# .NET (I used C# Express 2005 - it’s free) is in the src folder that
you should have received with this article

On some servers I get over 500 tries per second - UDP is fast! (http://en.wikipedia.org/wiki/User Datagram
Protocol)

7. Conclusion:

Knowing how to reverse a protocol can be very useful whether you want to patch an online check or get the
password of someone’s X account. It can also provide an alternate way of cracking a prog: Instead of patching a
program that implements an online check, you can write a loader that hooks onto the winsock api to modify the
data the program receives from the server. This may result in a bad serial being accepted as a good serial.

You should now know:
- A protocol usually has an identifier for every type of action.
- The identifier is almost always the first few bytes of the packet.

61

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol

- If the lower-level protocol used is UDP, the protocol most likely implements a checksum of sorts such as the
CRC32.

- A secure protocol should have flood protection and SHOULD be encrypted by server-client key exchange.

- TeamSpeak’s protocol is shit - reason being: we can write a bruter that is extremely fast and never gets banned
for sending too many requests.

Be sure to checkout my AIM/AOL screenname bruter:
http://pop.pimpsofpain.com/showthread.php?t=5603 &page=1&pp=10
and the included C# Project, UnTeamSpeak, a TeamSpeak bot that supports a variety of functions.

*Stay tuned for my next article in the ARTeam ezine which will feature an article on Reversing Gunbound’s login
protocol. Gunbound is a closed-source game that uses an encrypted protocol.

This article includes supplemental sources and files. They have been included with the ezine
archive and can be found in the Supplements folder. Within the Supplements folder you will find|
a folder for each article that contains sources and files.

62

http://pop.pimpsofpain.com/showthread.php?t=5603&page=1&pp=10

ARTEAM EZINE #2 CALL FOR PAPERS

ARTeam members are asking for your article submissions on subjects related Reverse-Engineering.

'We wanted to provide the community with somewhere to distribute interesting, sometimes random, reversing
information. Not everyone likes to write tutorials, and not everyone feels that the information they have is enough|
|to constitute a publication of any sort. I’m sure all of us have hit upon something interesting while coding/revers-|
ing and have wanted to share it but didn’t know exactly how. Or if you have cracked some interesting protection|
|but didn’t feel like writing a whole step by step tutorial, you can share the basic steps and theory here. If you have
an idea for an article, or just something fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat a debugger detection. Or how to}
defeat an interesting crackme. The ezine is more about sharing knowledge, as opposed to teaching. So the articles
can be more generic in nature. You don’t have to walk a user through step by step. Instead you can share informa-
tion from simple theory all the way to “sources included”

'What we are looking for in an article submission:

1. Clear thought out article. We are asking you to take pride in what you submit.

2. It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.
3. Any format is fine.

4. If you include pictures please center them in the article. If possible please add a number and label below each]
image.
5. If you include code snippets inside a document other than .txt please use a monospace font to allow for better
formatting

|6. Anonymous articles are fine. But you must have written it. No plagiarism!
7. Any other questions you may have feel free to ask

'We are accepting articles from anyone wanting to contribute. That means you. We want to make the ezine more
of a community project than a team release. If your article is not used, its not because we don’t like it. It may just

need some work. We will work with you to help develop your article if it needs it.

|Questions or Comments please visit http://forum.accessroot.com

63

http://forum.accessroot.com

	ARTeam eZine #1
	Table of Contents
	Opening Thoughts
	Interview
	Unpacking Asprotect v2.1 SKE with Advanced Import Protection
	Demystifying TLS Callback
	Armadillo Developer's Interview
	Improving StraceNT: Adding Anti-Debugging Functionality
	Reversing Switches
	Quickly Remove a Nag
	Developing a Ring0 Loader
	Breaking Protocol: Reversing and Exploiting Client Side Communications

