the international bank of knowledge

2009

ARTeam eZine Issue IV

k‘“\\m\‘ tsi““

g he¥
et ﬂih@m
otid) so
Su

ARTeam E:-Zine issue Iy

Editor: Shub-Nigurrath

ARTeam
3/25/2009

A EXTERNALIST

y

BY EHNTHEII\

il ‘ // / R 7

BY wmn_uﬁ'ﬁs, SUNTZL

lf\;\[

BY EYVERTS \l K

BYARGY | / /
el /
/

Shub-Nigurrath

ARTnam

=
!FlF!TEFNTI EZINE ISS5UE I'—.—'J

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

TABLE OF CONTENTS

FOREWORDS 6
Disclaimer/License 8
Supplements 8
Verification 8
1 REVERSING BINARY 500 BY EXTERNALIST 9
11 Introduction 9
1.2 Tools needed 9
13 Exploring the Binary 9
14 Reversing the Binary 16
1.5 Conclusions 47
1.6 References 48
1.7 Greetings 48
2 HANDY PRIMER ON LINUX REVERSING BY GUNTHER 49
2.1 Forewords 49
2.2 Abstract 49
2.3 Target 50
2.4 Examining our target 50
2.5 Searching for more clue 56
2.6 Analysing the contents of specific parts of the file 56
2.7 Retrieving Symbol table 57
2.8 Reversing the program 58
2.9 Reverse Engineering 58
2.10 Conclusions 65

Forewords

[

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2.11 Greetings 65
3 USING .NET PROFILING API FOR A CUSTOM .NET PROTECTION BY KURAPICA 66
3.1 What is profiling? 66
3.2 How does the protection work? 67
3.3 The Profiling APIs 68
3.4 The workflow 69
3.5 Implementation 70
3.6 Preparing the Assembly: 76
3.7 Conclusion 79
3.8 References 79
3.9 Greetings 79

4 PRIMER ON REVERSING PALMOS APPLICATIONS EXTENDED EDITION BY,

WAST3D_BYTES, SUNTZU 80
4.1 Forewords 80
4.2 Few words on Palm OS 80
4.3 Filling our Reversing Laboratory 82
4.4 Reversing with PRCExplorer and PRCEdit 86
4.5 Reversing with POSE and SouthDebugger 94
4.6 Advanced Reversing 104
4.7 Conclusions and Further Readings 115
4.8 Greetings 116

5 REVERSING THE PROTECTION’S SCHEME OF ALEXEY PAJITNOV’S GAME DWICE BY

GYVER75 117
5.1 Introduction 117
5.2 Target and tools used to reverse it 117

Forewords

53

5.4

5.5

5.6

5.7

5.8

6.1

7

ARTEAM EZINE ISSUE IV

Analysis

Identification of Check’s routines
Suggestions to program a Keygen
Addendum - Exercise
References

Greetings

!FlF!TEFNTI EZINE ISS5UE T

I Reversing : I'm lust doing'my hobby. 1

118

121

149

150

152

152

LIVE DEBUGGING SYMBIAN APPLICATIONS USING OR NOT USING IDA BY ARGV 153

Some FAQ

INTERVIEW WITH SHUB BY GUNTHER

ARTEAM EZINE #5 CALL FOR PAPERS

154
155

160

Forewords

ARTEAM EZINE ISSUE I'—.—'i

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

FOREWORDS

suoewX

EVOLUTION

Hi all,

It’s a long time since | promised the new ARTeam issue. As usual | had to postpone this new issue for a long
time due to a lot of things happened in the meantime. As anyone following us probably knows we had to
change hosting, rebuild the database of the forums and re-create the web site. All those stuffs have not been a
snap and | must excuse with authors who sent to me their contributions some months ago. Anyway we are
back now and hopefully we are here to stay. Now we are hosted at www.accessroot.com write it down!

This issue is then dedicated to the *EVOLUTION®. Evolution ... means a lot of things indeed..

First of all, evolution of the reverse engineering world, this is evolving under the pressure of different issues.
One is the appearance of new post-pc devices and the increasing interest in reversing non Windows worlds,
the second is the augmented number of professionals involved in this area, on both sides of the barricades.
The result is that the reversing skills required to stay at the edge are increasing each and every day. It’s not as
simple to be original and to release new things, to follow all the possible directions. To stay on top requires
constant study and updating and this can be done only in two situations: when you are a kid without a work, or
a student, when you are paid by someone (either from black or white reversing worlds). Moreover the
economical crisis affecting most parts of the world is not helping! So what to happen? As with all things, we
also have to evolve somehow...

The scene is rapidly changing; everyone would really have to agree
that cracking is slowly fading away, but not away to oblivion, away to

something else. The amount of protections or cool ideas is becoming The reverse engineering world, is
less frequent, yet on the other hand the protections are becoming evolving under the pressure of
more and more complex. different issues. One is the

appearance of new post-pc
A few vyears ago, the software industry created new official devices, the second is the
competences: the Secure Software Development Lifecycle developer, augmented number of

professionals involved in this area,
on both sides of the barricades

the Security Architect and the Professional Reverse Engineer. This
was due to the fact that finally reversing for security needs was
recognized as a necessity and has been regulated by laws (since year

http://www.accessroot.com/�

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2000), so it's now possible to build a career based solely upon reversing. This was not possible at the times of
+Fravia or +HCU, so the industry suffered with a lack of professionals figures for reversing/protecting
applications. The effect of this change of scenario is under everyone eyes: a big and constant rising of the bar
under economic pressure. New protections (Themida, SecuROM,...) and malware witness a change of attitude
(you may think that they are complex or not, but they are surely a breaking evolution compared to older
things). How many crackers can handle them fully? Not many and those who are keep their secrets for their
own clubs.

Which is the solution, | am not sure. | do know what it should be: share and work together, adopting the same
methods used by the "official" scientific reversing community. I'll call it scientific reversing, it publishes papers,
ezines, forums, conferences... but most of all collaboration is the keyword!

Collaboration is the keyword: software and protection industry collaborates; malware industry collaborates
(on both sides). A friend wrote little time ago “reversers should be more of a team, rather than acting like a
loosely knitted group of individuals. That is not to say that we shouldn't have our own individual
projects/desires, but there isn't really a sense of direction or purpose, other than to share what we find on our
journeys... Sometimes we are blindsided by our own singlemindedness, and fail to see new opportunities that
are there...At the same time as achieving this, you then get an improvement in everybodies skills and
knowledge, because ALL get taken along together.” Ask yourself, what made +HCU what it was? | think that
were two things: a truly sense of wonder and a team thinking (all together aiming at a final result).

For these reasons | want to raise my hand and call for quality contributors and reversers willing to share
original new tutorials and experiences. Sharing for what? To keep this experience alive. ARTeam is not our
child, is an instrument you may use or not.

So if you want to contribute with tutorials about reversing *anything* or describing original attacks and
advanced approaches you are invited to contact us/me.

Coming to this issue, it is focused on non-windows reversing, or better
on non-win32 reversing. There are insights into the Linux world
(Externalist, Gunther) and the Palm (wast3d_bytes has released
independently another Palm issue, which has been extended exclusively
for this eZine, | also added an interesting video tutorial from Suntzu).
There are also two interesting contributions into .NET advanced concepts

and one about classical reversing from Gyver75, which | added for the

passion for reversing it clearly shows, besides quality of the work. This

walkthrough is completed by a series of video tutorials prepared by argv

about live debugging Symbian systems, not only using IDA. The non-
win32 tutorials are just a completion of the activity we had already started a long time ago, investigating new
reversing worlds like the already known Symbian, iPhone, .NET and Mac. Finally, | decided to add an interview
Gunther prepared for me. It was requested a long time ago, you may skip it ;-)

Anyway as you can see the result is another extremely long issue, probably the longest one till now. All the
times it happens to write such a big issue | ask myself: how many of you will read or appreciate it, how many
will appreciate these “forewords” —hehe-. | really don’t know. One thing | must say is that each chapter can be
printed separately, which is especially true for this issue, because each one belongs to completely different
worlds.

Your Favourite Neighbourhood Shubby

Forewords

[HF!TEF’I\I'I'I EZINE ISS5UE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

DISCLAIMER/LICENSE

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it.
This eZine is also free to distribute in its current unaltered form, with all the included supplements.

We have potentially illegal stuff inside. All the commercial programs used within our tutorials have been
used only for the purpose of demonstrating the theories and methods described. These documents are
released under the license of not using the information inside them to attack systems of programs for
piracy. If you do it will be against our rules. No distribution of patched applications has been done under any
media or host. The applications used were most of the times already been patched by other fellows, and
cracked versions were available since a lot of time. ARTeam or the authors of the papers shouldn’t be
considered responsible for damages to the companies holding rights on those programs. The scope of this
document as well as any other ARTeam tutorial is of sharing knowledge and teaching how to patch
applications, how to bypass protections and generally speaking how to improve the RCE art. We are not
releasing any cracked application. We are not at all encouraging people to release cracked applications;
damages if there will be any have to be claimed to persons badly using information, not under our license.

This disclaimer applies to all ARTeam releases and tutorials!

SUPPLEMENTS

This eZine is distributed with Supplements for each paper; the supplements are stored in folders with the same
title of the paper. Almost all the papers have supplements, check it.

VERIFICATION

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

http://releases.accessroot.com/�

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

1 REVERSING BINARY 500 BY EXTERNALIST

1.1 INTRODUCTION

This tutorial is about reversing Binary500 from DEFCON CTF Pre-quals 2008. Binary500 runs on a FreeBSD
server and has a keyfile associated with it. A keyfile is simply a text file that contains a secret password. The
goal of this challenge is to somehow retrieve the contents of this keyfile

. Nobody knows how the binary interacts with the keyfile, so
dynamic or static reverse engineering of the binary might be required, and considering that this is the most
difficult out of all 5 binary challenges, it could be hard and require a lot of
work. | will try to thoroughly explain through the steps, but there is still some knowledge required for the
reader to get everything out of this tutorial. The reader is recommended to

— be familiar with IDA

— know how to use IDA Python

— have basic knowledge of the common reversing tools on a non Windows platform
— be familiar with the shell commands used on linux, freebsd, etc.

— know how to program

If you have never done any reversing on a non-windows platform and get stuck somewhere, always do a
search on google instead of just giving up. | myself haven’t had that many reversing sessions on FreeBSD and
google happened to be my best friend. This tutorial is targeted to people who aren’t that confident in
reversing in FreeBSD so the content might seem a little over explained in some parts. If you feel so, you can
just skip the parts on the basic usage of tools for fast reading.

1.2 TOOLS NEEDED

e |IDApro

e |DA python

e A FreeBSD machine
e GNU binutils

1.3 EXPLORING THE BINARY

You might think reversing a binary on a non-windows platform is somewhat alien, but the fundamentals don’t
really differ greatly. It’s just as simple as following certain known procedures like one would do on a windows
binary, which is what I’'m going to demonstrate here.

First off, let’s look at the text that comes with the binary.

500: We're running this. Ask it for the key *very* nicely and it may give it to you ;):
ihatedns.allyourboxarebelongto.us:2600 file

Reversing binary 500 by Externalist _

http://nopsr.us/ctf2008qual/reversing500-cf3f218b2331845ae68b2a4a53b9cb28�

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

It seems like the binary is running on the server and we have to connect to it. Since the binary is no longer
available on the server, it would be necessary to set up a custom FreeBSD server and run the binary there. If
you don’t already have a FreeBSD machine installed, then you could easily get a vmware image from here.

After you’re done downloading and booting the FreeBSD machine, get the binary(which | renamed as
binary500) using the wget command, and have it running on the machine. You would have to supply a text file
as an argument, which | named ‘keyfile’. The keyfile will contain some sort of password that we must retrieve.
It would be better to run the binary in the background by entering ‘binary500 keyfile & so we could later on
analyze the binary without having to kill the binary500 process all the time.

Next, we want to know the IP address of the FreeBSD machine we’re using so type ‘ifconfig’. Mine turned out
as 192.168.1.131 so that’s what’s going to be used throughout the tutorial.

Ok, first off, use nmap to scan for open ports on the server. 2600 turns out to be opened as tcp. Now let’s try
to simply connect to the server to see what happens. Just type as the following:

externalist@Externalist:~$ nmap 192.168.1.131

Starting Nmap 4.53 (http://insecure.org) at 2008-07-10 00:16 KST
Interesting ports on 192.168.1.131:

Not shown: 1713 closed ports

PORT STATE SERVICE

2600/tcp open zebrasrv

Nmap done: 1 IP address (1 host up) scanned in 10.290 seconds
externalist@Externalist:~S nc 192.168.1.131 2600

OHH\H B

We get sent some weird hex bytes that obviously don’t look like ascii characters. Let’s dump it into a file and
use the hexdump utility to dump the contents.

externalist@Externalist:~$ nc 192.168.1.131 2600 > temp
externalist@Externalist:~$ hexdump -C temp

00000000 fe 00 00 00 d2 00 00 00 21 01 000096 030000 |........1......
00000010 59 02 00 00 [Y...]

00000014

We see that a total amount of 20 bytes were sent from the server just by simply connecting to it. If repeated,
then do we get the same results?

externalist@Externalist:~$ nc 192.168.1.131 2600 > temp

externalist@Externalist:~$ hexdump -C temp

Reversing binary 500 by Externalist

http://www.thoughtpolice.co.uk/�

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

00000000 87 02 00004010000 b301000049030000 |............ l...]
00000010 52 01 00 00 [R...]
00000014

No. And by the looks of it, the server sends 5 Words expanded to Dwords. The meaning of this data is still
unclear. After receiving 20 bytes, the server is waiting for the client to send some data. | just randomly typed
anything and found out that the connection closes. | got curious and did the same thing, but this time typed in
only a few characters, and the server still waited to receive more data. This was a clue that the server may be
expecting only a certain amount of bytes to be received, so | just basically kept typing a couple of characters to
find out how many bytes the server was expecting.

externalist@Externalist:~S nc 192.168.1.131 2600
O H]#HH @ @asdf

asdlfkjaklsdjflkasdf

externalist@Externalist:~S nc 192.168.1.131 2600
pH7#Hw# @ # add kfjasikdfjasldkfjlkasidflasf
externalist@Externalist:~S nc 192.168.1.131 2600
X#(# #O#s#1234567890

q999qqqqqqq

externalist@Externalist:~S nc 192.168.1.131 2600
O Q21 1412345678901

For brevity, some of the repetitive parts were deleted. Sending only a few characters doesn’t seem to do
anything, but if you send exactly 12 bytes to the server, then the server breaks the connection. So that must be
one condition of this binary. The user must initially send no more or less than 12 bytes.

What next? When reversing in Windows, one would open up PEID or any other Packer Identifier and
determine the packer first. But on Linux or FreeBSD, it is very hard to see a file wrapped up with a
packer/protector when most of the distributed software is Open Source. There is simply no need. One way to
test if a program is packed is to compress the file and compare it with the original file. If the file was packed,
then the file size will almost be the same.

-rwxr-xr-x 1 externalist externalist 26300 Jun 30 11:30 binary500
-rw-r--r-- 1 externalist externalist 19751 Jun 30 12:33 binary500.tar.gz
-rw-r--r-- 1 externalist externalist 16 Jun 30 11:32 keyfile

-rw-r--r-- 1 externalist externalist 0 Jun 30 12:33 temp

-rw-r--r-- 1 externalist externalist 17 Jun 30 12:29 test

Reversing binary 500 by Externalist

[HETEHN EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

The compression rate is hard to tell whether it’s packed or not, but we could probably safely assume that the
file is not packed since it’s not a Windows PE. The next thing to do is see the characteristics of the file, what
function it uses, and what strings are contained.

$ file binary500

binary500: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD), for FreeBSD 6.3, dynamically
linked (uses shared libs), stripped

$ objdump -R binary500

binary500: file format elf32-i386-freebsd
DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE
0804e0c8 R_386_JUMP_SLOT waitpid
0804eBcc R_386_JUMP_SLOT getgid
0804e0d0 R_386_JUMP_SLOT printf
0804e0d4 R_386_JUMP_SLOT random
0804e0d8 R_386_JUMP_SLOT recv
0804e0dc R_386_JUMP_SLOT geteuid
0804e0e@ R_386_JUMP_SLOT getegid
0804e@e4 R_386_JUMP_SLOT usleep
0804e0e8 R_386_JUMP_SLOT memcpy
0804e@ec R_386_JUMP_SLOT perror
0804e0f0 R_386_JUMP_SLOT getuid
0804e0f4 R_386_JUMP_SLOT socket
0804e0f8 R_386_JUMP_SLOT send
0804e@fc R_386_JUMP_SLOT accept
0804€100 R_386_JUMP_SLOT calloc
0804e104 R_386_JUMP_SLOT write
0804e108 R_386_JUMP_SLOT bind
0804e10c R_386_JUMP_SLOT chdir
0804e110 R_386_JUMP_SLOT initgroups
0804e114 R_386_JUMP_SLOT setsockopt
0804e118 R_386_JUMP_SLOT setgid
0804ellc R_386_JUMP_SLOT signal

0804e120 R_386_JUMP_SLOT read

Reversing binary 500 by Externalist

0804e124
0804128
0804el2c
0804e130
0804el134
0804e138
0804el3c
0804el140
0804el144
0804e148
0804el4c
0804el150
0804el154
0804e158
0804el5c
0804e160
0804el164
0804e168
0804el6c¢C

0804e170

$ strings
/libexec/
FreeBSD
libc.so.6
fabs
waitpid
getgid
random
recv
geteuid
_DYNAMIC
getegid

usleep

EHF!TEF’I\I'I'I EZINE ISS5UE

ARTEAM EZINE ISSUE IV

R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT
R_386_JUMP_SLOT

R_386_JUMP_SLOT

binary500

ld-elf.so.1

I Reversing : I'm lust doing'my hobby. 1

memcmp
listen
fork
setresuid
memset

err
_init_tls
seteuid
getpwnam
atexit
setresgid
exit
strlen
open
setegid
srandomdev
vasprintf
setuid
close

free

Reversing binary 500 by Externalist

=]

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

memcpy
perror
getuid
socket
send

_init
accept
calloc
write
environ
bind
__deregister_frame_info
chdir
initgroups
setsockopt
__progname
setgid
signal
read
memcmp
listen
fork
setresuid
memset
_init_tls
seteuid
getpwnam
_fini
atexit
setresgid
_GLOBAL_OFFSET_TABLE _
strlen
open

setegid

Reversing binary 500 by Externalist

[HF!TEF’I\I'I'I EZINE ISS5UE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

_Jv_RegisterClasses
srandomdev

vasprintf

setuid
__register_frame_info
close

free

_edata

__bss_start

_end

$FreeBSD: src/lib/csu/i386-elf/crti.S,v 1.7 2005/05/19 07:31:06 dfr Exp $
Unable to set SIGCHLD handler

Unable to create socket

Unable to set reuse

Unable to bind socket

Unable to listen on socket

Failed to find user %s

drop_privs failed!

setgid current gid: %d target gid: %d
setuid current uid: %d target uid: %d
open for save failed

Usage: ./MathIsHarD <keyfile>

N@$FreeBSD: src/lib/csu/i386-elf/crtn.S,v 1.6 2005/05/19 07:31:06 dfr Exp $

The first result indicates that the file has no symbols but was dynamically linked, therefore we will be able to
see the function names when debugging/disassembling. The second results shows all the functions used in the
program, and random/srandomdev sort of explains why the 20 bytes sent was always different. Strings
doesn’t show anything really useful other than the fact that the original file name might have been
MathlsHarD. Looks like we’re going to have some headaches solving math problems later on. :)

Next, we want to see what functions are being called, and Itrace will be used for this.

S Itrace -f ./binary500 test

atexit(0x28053b88) =0

Reversing binary 500 by Externalist

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

atexit(0x804dc28) =0

open("test", 0, 05001245611) =3

read(3, "abcdefghijklmnop\n", 1024) =17
signal(20, 0x804b10f) = NULL
socket(2, 1, 0) =4

setsockopt(4, 65535, 4, Oxbfbfecb8, 4) =0
bind(4, Oxbfbfeca0, 16, 0, 0x280a0200) =0
listen(4, 20, 16, 531, 0x280a0200) =0
accept(4, Oxbfbfeca0, Oxbfbfecb8, 0x804b56¢, 4) =5
fork() =885

[pid 884] close(5) =0

[pid 884] accept(4, Oxbfbfeca0, Oxbfbfecb8, 0x804b56¢, 4 <unfinished ...>
[pid 885] +++ exited (status 255) +++

--- SIGTSTP (Child exited: 20) -

waitpid(-1, Oxbfbfe940, 1) =885

waitpid(-1, Oxbfbfe940, 1) =-1

The program reads the keyfile(test is just a temporarily created one) and probably stores the contents in
memory. Then it gets ready to accept connections from clients. When a client connects, it forks and waits for
more connections. Nothing really interesting.

It looks like we won't get any further by dynamic analysis, so now is the time to fire up IDA and do some real
reversing. :)

1.4 REVERSING THE BINARY

This section focuses more on the analysis of the binary, than the reverse engineering process itself. Explaining
every little detail on how the reversing process is done is out of the scope of this tutorial, so if you’re not that
confident in reversing, then | highly recommend to read this book before going any further. The analysis will
start from the Entrypoint.

Reversing binary 500 by Externalist

http://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1215235877&sr=8-1�

ARTERM EZINE IESSLUE I".-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm'lust doing'my hobby. 1

Although I’'m writing this document in linux, | tend to use IDA in windows cause the graphical view facilitates
reversing in many situations(It saves a few seconds. :P). The picture above shows the entry point of the binary,
which obviously looks like some kind of Startup code. We immediately skip to the main function below.

sub_88498901

This is the main(argc, argv) function after the startup code. When you enter the function, you will see
something like this.

Reversing binary 500 by Externalist

IHF-!TEFH'I'I EZINE ISSLE I".-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm'lust doing'my hobby. 1

Looks like the entry point is obfuscated to scare away newbie reversers. This doesn’t seem to be a big problem

at first, but if you keep following the jmps/rets until you get tired, then you will notice that it’s not just the

Reversing binary 500 by Externalist

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

entrypoint that’s obfuscated, but the whole program. And what’s even worse is the program is broken up into
tiny pieces and scattered all over the place that it makes it impossible to create a graphical view of the binary.

Graphical view is indeed a great concept and speeds up the reversing process, but it is not essential; one could
still live without it. However, there are some obstacles to overcome in order to successfully reverse with
minimum amount of fuss. For instance, in this particular binary, IDA has failed to define functions, and stack
variables depend on functions in IDA. You could try to manually define a function but IDA will get confused
very easily because of the way the binary is constructed, which is exactly what the obfuscation scheme was
implemented for; Anti-Disassembling. However, it is still possible to define stack variables with other means,
such as structure offsets. The reason why this is possible is because the binary is just shattered, and nothing
more. It still uses the traditional ebp based stack frame scheme, which is noticable in the 3" picture above.

This is exactly what | did when | first started analyzing this piece of binary. Jumping back and forth wasn’t such
a big deal for a long time, and things were running very smoothly, but by the time the binary was analyzed
halfway, some unexpected problems started to arise. Everything was fine when there were a couple of jcc
branches, and only one loop, but later on loops/breaks/returns within loops started to emerge, and
memorizing all those variants became very tiring and writing them all down while referencing them one by one
was also a very tedious task. That’s when | decided to make some sort of tool that would glue all those broken
parts into one piece.

If you jump back and forth the broken pieces for quite a while, you will notice that a certain pattern exists on
the code where once piece jumps to another.

BN Ll

sub_ 8049891 proc near

push offset loc_BB4BBEE
retn

sub_B049891 endp

pushf push eCx
stc mou ecx, offset sub_ 8849917
jb loc_8B4AE16 ’ call BCX : sub_8849917 '

Those are the only 3 patterns that exist in this binary. If there was a way to manually add cross references for
all those 3 patterns, then it would be possible to define functions, and also navigate through a whole function
in a graph, instead of mindlessly jumping back and forth basic blocks in the text view. For this, | used the
internal functions in IDA with IDA Python. The following Python script will work as a ‘gluer’ which combines all
the broken pieces into one nice function. This is only a ‘Semi Automatic’ version. | tried to construct one that
does everything automatically, but failed gracefully. :) For that reason, | admire the guys at Sexy Pandas team
who were able to make an automatic deobfuscator, which doesn’t only attach all the pieces together, but also
takes out all the irrelevant instructions, then reconstructs the whole binary in one perfect piece! After that,
Hex-Rays can do the rest of the job. That is just truly amazing, | must say. :D

Reversing binary 500 by Externalist

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Anyways, back to the python script. | tried to comment everything thoroughly so it would be easier to
understand. However, please forgive me if the code looks very messy and lame. | only just started learning
python recently btw. :P

- Header Note -

If you see any functions you are unsure of, then refer to the headers files in IDA sdk,
specifically bytes.hpp and

functions.hpp. Most of the functions used here belong to those two header files. And also, some
IDC functions

are used so the internal IDA help file may also be useful.

This function takes care of re-attaching the blocks when they break apart for some reason.
Since the blocks are forced to be attached, they sometimes break apart because of their nature of
being
seperated. That's when this function will be used.
def Reanalyze_Cross_References():
func_iter = func_tail_iterator_t(get_func(ScreenEA()))
Initializes a function tail iterator class. With a function iterator, one could iterate through
function tails(basic blocks that belong to a function)
that belong to a particular function.
status = func_iter.main()
Status is initialized. Status is @ when there are no more functions to iterate.
while status:
chunk = func_iter.chunk()
Fetching the next function chunk
status = func_iter.next()
code = Heads(chunk.startEA, chunk.endEA)
Generating a list(array) of all the address of the codes that belong to the chunk
last_instruction = code[len(code)-1]
getting the address of the last instruction
next_instruction = last_instruction + 5
getting the address of the instruction after the last instruction

if (GetMnem(last_instruction) == 'mov') and (GetOpnd(last_instruction,®) == ‘ebx')\
and ((GetOperandValue(last_instruction,1l) & OxFFO00000) == ©x8000000)\
and (GetMnem(next_instruction) == ‘retn'):

if the code at the last instruction matches (mov ebx, Ox8******: petn), then proceed
AddressFrom = last_instruction
AddressTo = GetOperandValue(last_instruction,1)
AddCodeXref (AddressFrom,AddressTo,fl_JF)
SetManuallInsn(last_instruction, 'jump' + ' loc_%x'
%(GetOperandValue(last_instruction,1)))
MakeComm(last_instruction,"")
Add a cross reference from the source to the destination, and overwrite the irrelevant
instruction with
a more meaningful manual instruction
if (GetMnem(last_instruction) == 'mov') and (GetMnem(last instruction-1) ==
"push’)\
and ((GetOperandValue(last_instruction,1l) & OxFFO00000) == ©x8000000)\
and (GetMnem(next_instruction) == ‘call'):
if the code at the last instruction matches (push reg; mov reg,@x8******; call const), then
proceed
AddressFrom = last_instruction
AddressTo = GetOperandValue(last_instruction,1)
AddCodeXref (AddressFrom,AddressTo,fl_JF)
SetManualInsn(last_instruction, 'jump' + ' loc_%x'
%(GetOperandValue(last_instruction,1)))
SetManualInsn(last_instruction-1, ‘nop")
DestAddress = GetOperandValue(last_instruction,1)
SetManualInsn(DestAddress, 'nop")
SetManualInsn(DestAddress+1, 'nop")
MakeComm(last_instruction,"")
Add a cross reference from the source to the destination, and overwrite the irrelevant
instruction with
a more meaningful manual instruction

Choice = AskLong(5,'1l : reanalyze, 2 : remove tail, 3 : delete function\n\
4 : append tail generic, 5: append tail custom, 6 : Add Cross Reference\n\

Reversing binary 500 by Externalist

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

7 : Add Cross Reference custom, 8 : testing functions')
Ask the user which option he/she wants to choose

if Choice == 1:
reanalyze_function(get_func(ScreenEA()))
reanalyzing a function would sometimes(I don't know why not all the time but that's how it is :/
) make IDA recognize
local variables. It requires a function to be already constructed.

if Choice == 2:
remove_func_tail(get_func(ScreenEA()),ScreenEA())
Removing function tails that obviously don't belong to a function will result in less confusion.

if Choice == 3:

del_func(ScreenEA())
Delete a function only when you are sure about it. Deleting a function will make all the function
tails get deleted also.
If you have put together many function tails, and accidentally delete a function, then all your
work will be lost.

if Choice == 4:
TailStart = AskAddr(9, 'Enter the tail start :');
TailEnd = AskAddr(9, 'Enter the tail end :');
append_func_tail(get_func(ScreenkEA()),TailStart,TailEnd)

Manually add a function tail by entering the tail start and end addresses.

if Choice == 5:
This is the default choice, and the most used one. Putting the cursor on a correct line, this
function will
attach the basic blocks that are not already attached to each other. You will have to use this
function numerous times
because of the reason stated above; this is only a 'Semi automatic' script. :P Don't blame me
for not completing it.
I was simply too tired, lazy. :P

OriginalPosition = ScreenEA()

AddressFrom = ScreenEA()

AddressTo = GetOperandValue(ScreenEA(),0)

if AddressTo == 0:

AddressTo = GetOperandValue(ScreenEA(),1)

Retrieving the source/destination addresses to use when adding cross references.

Previous_Mnemonic = GetMnem(ScreenEA()-1)
Current_Mnemonic = GetMnem(ScreenEA())
Next_Mnemonic = GetMnem(ScreenEA()+5)

Retrieving mnemonics to use in the comparison.

if (((Current_Mnemonic == 'push') and ((GetOperandValue(ScreenEA(),0) & OxFFO00000) ==
0x8000000))\

or ((Current_Mnemonic == 'mov') and ((GetOperandValue(ScreenEA(),1) & OxFF000000) ==
0x8000000)))\

and (Next_Mnemonic == 'retn'):

Does the instruction under the cursor match (push/mov const; retn) ?
func_setend(ScreenEA(),ScreenEA()+5)
PatchByte(ScreenEA(),0xBB)
Then change the function end, and patch the 'push' to 'mov'. Why patch? Cause if you leave it as
push, then IDA
will have trouble adding cross references.
if (Current_Mnemonic == 'mov') and (Previous_Mnemonic == ‘push')\
and ((GetOperandValue(ScreenEA(),1) & OxFF000000) == 0x8000000) and (Next_ Mnemonic ==
‘call'):
Does the instruction under the cursor match (push reg; mov @x8******: call const) ?
func_setend(ScreenEA(),ScreenEA()+5)
Then change the function end.
autoWait ()
Wait till the analysis finishes, so the script won't screw up.
if (get_func_num(AddressTo) != get_func_num(AddressFrom)) and (get_func_num(AddressFrom) !=
-1):
If the source function matches the destination function, then proceed.
temp = get_item_end(AddressTo)
temp = prev_head(temp,temp-1000)
If the current address is in the middle of an item(code or data), then Make**** functions will

Reversing binary 500 by Externalist

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

fail.
This was not documented, hence, caused a lot of headaches. The above code sets the current
address to the beginning
of the item. Why didn't I use get_item_start? Because sadly, IDA Python doesn't import that
function.
if temp != AddressTo:
MakeUnkn (temp,©)
autoWait ()
MakeCode (AddressTo)
autoWait ()
Sometimes, the destination address will be right in the middle of an instruction or data. That's
because of the
nature of this kind of obfuscation. IDA confuses code from data, and data from code. The above
code will define
code at the location even if it's in the middle of an item. It will make it possible to define a
function on that location.
if get_func_num(AddressTo) == -1:
If no function exists in the destination location
add_func (AddressTo,AddressTo+10)
temp = get_item_end(AddressTo+10)
temp = prev_head(temp,temp-1000)
MakeComm(temp, 'Warning! This might not\nbe the end of the block\nUse "e" to
set end")
Arbitrarily add a function to the destination location, and add a comment there so the user can
fix it later.
add_func(AddressTo, BADADDR)
fchunk = get_fchunk(AddressTo)
StartAddress = fchunk.startEA
EndAddress = fchunk.endEA
del_func(get_func(AddressTo).startEA)
append_func_tail(get_func(ScreenEA()),StartAddress,EndAddress)
Create a function tail and add it to the main function.
autoWait()
AddCodeXref(AddressFrom,AddressTo,fl_JF)
Add a cross reference to it, so it will be connected when viewed in graph mode.
autoWait ()
Reanalyze_Cross_References()
Jump(OriginalPosition)
Blocks will break apart after adding cross references, because IDA forces a reanalysis.
Using the Reanalyze_Cross_References() to put them back together.

if Choice == 6:
AddressFrom = ScreenEA()
AddressTo = GetOperandValue(ScreenEA(),1)
AddCodeXref(AddressFrom,AddressTo,fl_JF)

Automatically add a cross reference below the cursor that needs to be added.

if Choice == 7:
OriginalPosition = ScreenEA()
Reanalyze_Cross_References()
Jump(OriginalPosition)

This function will be used to unite the separated blocks.

if Choice == 8:
func_setend(ScreenEA(),ScreenEA())
Testing function. Currently used to set a function end.

Pretty crappy piece of code, isn’t it? :P If you have read through and understood the code above, then you will
know how to use it. Nevertheless, | will explain just in case someone didn’t feel like reading through all those
messy codes and comments.

Reversing binary 500 by Externalist

IF|F!TEF|‘I'I1 EZINE ISSWE T4

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Let’s start from the main function.

sub_8049891 proc near The code beside is one of the obfuscation patterns. Put your cursor on
push | offset loc_8O04BBEE . . .
Fetn the push instruction and load the python script.

sub_8849891 endp

Python file to run |E”E|

Lok jr: |&} Crackmes V|) ¥ e M-

My Becent
Documents

‘EEE

Deszktop

®

ty Documents

i

tdy Computer

File harme: |reversin50|] Auilany Functions. py hd | [Open]

@

by Network, Files of twpe: |"_p_|,J v| [Cancel]

The default will be set to 5, which acts as the attaching function.

Please enter a number

1: reanalyze, 2 : remove tall, 3 delete function
4 : append tail genenc, 5 append tail cuztom, B Add Crozs Reference

ﬁnp'utl'| w |

| cancel |

Press OK and the source should be attached with the destination.

Reversing binary 500 by Externalist

IHF-!TEFH'I'I EZINE ISSLE I".-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm'lust doing'my hobby. 1

This only works one at a time as mentioned earlier. If you want to fully automize it, feel free to edit the code.

In the above code, IDA thinks that jb will lead to both paths, when it always goes to one path. Therefore, you
must set the function end with the ‘e’ key at jb, and IDA will fix the cross references so it will only lead to one
path.

Reversing binary 500 by Externalist

ARTERM EZINE IESSLUE I".-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm'lust doing'my hobby. 1

However, the graph will break apart cause IDA forces a function reanalysis. Reunite it with the 7" option in the
python script.

Now if you ever see the (push const; retn) or (pushf; stc; jb const)sequence, then you could always fix it with
the above method.

Reversing binary 500 by Externalist

IFiF-ETEFH'I'I EZINE ISS5UE I'A.-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

While analyzing, if you see any function tails that obviously don’t belong to a function like above, then you
could delete it with the second option in the python script. It's not necessary, but it makes the graph look a

little cleaner.
BNl

If you see any Jmps or Jccs that IDA didn’t correctly resolve, you could also manually resolve them with the
default 5" option in the script.

Reversing binary 500 by Externalist

ARTERM EZINE IESSLUE I".-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm'lust doing'my hobby. 1

This is another kind of pattern. Put the cursor on the mov instruction above the call and Alt + F7(Python script
shortcut), Enter, Enter(Default selection 5), and it should properly resolve the cross references.

Sometimes you will see that IDA has mis-analyzed the end of a function chunk like below.

We already know that ‘e’ will renew the function end, but in some occasions, just setting the function end
won’t solve the problem.

Reversing binary 500 by Externalist

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

s START OF FUHCTION CHUHKE FOR sub_8849891

loc_8BB84C572: s CO
popf
push BAZ28h
call sub 884C3DA

add esp, 18h

mou [ebp-4], eax

sub esp, 8

pushf

stc

jb near ptr dword_ 864A5

EHD OF FUHCTION CHUME FOR sub_ 8849891

In this example, the function end was set to a correct address, but IDA split the chunk into two pieces. This is
because the function sub_804C3D0 is marked as ‘doesn’t return. This could be fixed by unchecking the
‘function doesn’t return’ checkbox in the function properties dialogbox.

Mame of function | sub_204C300 b

Stataddiess | 1est0B04CID0 v |

End addiess | lestB04CID5 v

Lolor DEFALILT [] Ear function
[Libramy func
Enter size of fin bytes] [Static func

BP bazed frame

Lacal vanables area| Ouxd W

[JBP eguals ta SP
Saved registers (x4 W
Purged bytes 00

II

Frame pointer delta | 00 L4

(]S [Cancel l [Help

IDA analyzes the function as ‘does not return’ because it contains an _exit() function. After unchecking the
option, the chunk will now be in one piece now.

Okay, before this tutorial turns into a ‘How to use IDA’ tutorial, I'll stop talking about IDA and start focusing on
the binary itself. Understanding everything explained so far, and with a decent knowledge of using IDA, you
will be able to successfully construct a full set of functions out of all those broken/shuffled basic blocks. | know
it's quite a boring task to do all that work by hand, but like | said, feel free to update the code to a fully
automized version. And hey, at least it’s better than nothing. :D

Reversing binary 500 by Externalist

ARTEAM EZINE ISSUE I'—.—'J‘

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

We have two options now. You could either

1. Add the cross references along the way, while reversing at the same time. However, stack variables
cannot be used, so structure offsets will have to be used instead.

2. Add cross references until a full function is made, and after that, stack variables will be accessible.
Loops will also be easily recognizable.

What | did is use 1 on functions that seemed to be long, and use 2 on the rest. It would be preferable to use
the later if you have more patience so everything will be in your sight, instead of not knowing what will come
up next. Don’t forget to save frequently because the script sometimes screws up(!), and when that happens,
all your work will be gone. :o0

Having this all in mind, let’s start to analyze the program from beginning to end. If you feel hard to follow, then
you can use the idb file that comes with this tutorial.

; FUHCTION CHUNMK AT B8BLCYBB SIZE 00000068 BYTES
; FUNCTION CHUHK AT 6864D756 SIZE 880068817 BYTES

jump loc_884bBee
Main endp

Graph overview

loc_884AE16
; END OF FUHCTIDH CHUN

8
esp, OFFFFFFFBh

This is the main function. Since the functions are all broken into pieces, | couldn’t copy/paste the text of the
whole function, neither make a screenshot of the entire function, so | will only write down the summary of
what each functions do. But as mentioned before, you could open up the idb file supplied with this tutorial if
you feel hard to follow up. The following is the summary of the main things this function does.

1. It checks if there is an Argument supplied. If there is no argument, it calls a function [NeedKeyFile].
NeedKeyFile function just prints out the string “Usage: ./MathlsHarD <keyfile>\n” and exits.

2. Then it calls [ReadKeyFile]. As the name implies, the function treats the supplied argument as a text
file name and reads it’s contents, then stores it in a global variable. If there are any issues, such as the
keyfile can’t be opened, then [NeedKeyFile] is called again.

Reversing binary 500 by Externalist

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

3. If all goes well, then the [InitializeNetwork] function initializes the network variables and calls network
functions so it can later accept connections from clients. Nothing important in this function.

4. If the network is all set up properly, it calls the [AcceptAndFork] function to accept incoming
connections.

Now let’s see what this AcceptAndFork function does.

; FUHCTION CHUNK AT @864D7/E SIZE 80080883 BYTES
; FUNCTION CHUNK AT B8884DAB4 SIZE B0BHHBAC BYTES

jump loc 884cB13
Accept_And_Fork endp

Graph overview

jump loc 86494ab
; END OF FUNCTION CHU

;5 START OF FUNCTION CHUHK FOR Accept_And_Fork

As you can see in the picture, there are 3 loops in this function. Right in the middle of the first loop, there is an
accept() function which waits for connections from clients. If a client connects, but the accept function fails for
some reason, then it loops back and waits for other connections. If a socket is successfully created, then it
enters the second loop, where the program forks(Creates a copy of the process), and checks if the fork()
function succeeded. If so, then it goes into the third loop. Otherwise, it loops back and waits for other
connections. In the third loop, it checks if the current process executing the loop is the parent process, or the
forked process. To explain fork for people coming from Windows, when fork is executed, both the parent
process and the child process resume execution from the code right after fork(), with the child process having
the exact same context of the parent process. One thing different is that the child process will have a return
value of 0, while the parent process has a value of the child process ID. (Btw, If you ever get lost not knowing a
meaning of a certain function, use this site as a reference.)

If the case is a parent process, then the execution will loop back and accept connections again. But in the client
process case, the execution will fall to the left side, and call some kind of function that was supplied as an
argument. After that function is executed, the program will close the connection and exit. This is only the child
process being exited, so the parent will still be in the loop waiting for more connections. Let’s see what that
unknown function does.

Reversing binary 500 by Externalist

http://www.nixdoc.net/�

lHHTEHm EZINE ISS5UE IU‘

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

BNl
Initializing Buffers
and the random seed.

El N1l

Storing 5 times.
Done storing?

EiN1Ld = El N1l =
Store 5 random DWORDs in Sending the 5 random DWORDs to client.
the RandomHumberStorage. Then Reading BCh bytes from client.

Read bytes get stored in Recw_Buffer.
Is read successful?

BNl
Comparing the [First DWORD] from
Recu_Buffer with Bx46464952.

Is it the same value?

Although this function doesn’t look that complicated at first sight, if you unhide all the grouped nodes, then

the function will turn huge. | had to group most of the nodes little bits at a time to not get easily drowned in
the ocean of basic blocks.

The part of the function shown above is where the function generates 5 random Dwords ranging from 0xC8 to
0x3E8 using a random seed generated by srandomdev(), and then sends those 5 Dwords to the client. This
explains why we received 5 randomized Dwords that looked like Words expanded to Dwords.

After that, it receives exactly 12 bytes, or more like 3 Dwords from the client, and compares the first Dword
with the value 0x46464952. From here on now, most of the red arrow paths will lead to (return -1), which is

the path we don’t want to follow. We want the first Dword to exactly match 0x46464952 so the function will
go to the left path. Let’s see the code that follows.

Reversing binary 500 by Externalist

lHHTEHm EZINE ISS5UE IU‘

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Recv_Buffer with Bx45564157.
Is it the same value?

Recv_Buffer with 25808.
Is it lower than 258087

from Recv_Buffer with 3.
Is it higher than 3?2

You can see that the 3™ Dword must equal 0x45564157, otherwise the function will exit and nothing will
happen. The second Dword only has to be within a specific range (3 < Dword < 25000). With all those
conditions satisfied, we can move on to the next code.

space and storing the address in
Allocated1. {Recv_Buffer? is the
Second DWORD in Recv_Buffer)

Is calloc successful?

This indicates that the Second Dword in Recv_Buffer is the size of Recv_Buffer2. Allocated1 is a local variable.
The rest should be self explanatory.

allocated buffer in Allocatedd.
0f course the size is the size
of Allocatedd.

Is recu successful?

loop of finding 2 specific DWORDs
stored in allocated. Is the index address ouver|
the Allocated space limit?

The program receives data from the client in the newly allocated buffer called ‘Allocatedl’. Then it searches
for 2 specific Dwords from the received data.

Reversing binary 500 by Externalist

lHHTEHm EZINE ISS5UE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

BN i
Is the Second Dword pointed by
the index lower than or equal Bx61A87

lower than or equal to
(sizeof{Allocated1) - RecuCounter - 8)7

Is the first DWORD pointed by index
equal to Bx28746D667

equal to Bx617461647

EHHL EHHNiL
Save the Index to Bx28746D66_locall (Save the Index to a Bx61746164 local

Update the RecvCounter by
adding the Second Dword pointed by
the Index and adding 8 to it again.

This is the searching loop. The search starts from the beginning of Allocated1 which gets updated in each loop
iteration. | will call this index ‘IndexAddress’(dword ptr). The loop first checks if (IndexAddress[1] < 25000).
Then it checks if (IndexAddress[1] < remaining bytes to search — 8). If the 2" condition is satisfied, then the 1%
condition is automatically satisfied, so the 1* condition could be considered redundant. Then it is searching for
2 specific Dwords 0x20746D66 and 0x61746164. The data layout would look something like this.

Buffer
Some Data
82208746066
Some Data
Bx61706164 I
3ome Data

If it successfully finds those two Dwords, then it stores the address where the Dwords are located in 2 local
variables for later use. After each loop operation is done, IndexAddress is updated by (IndexAddress[1]+8). The

Reversing binary 500 by Externalist

lHHTEHm EZINE ISS5UE IU‘

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

loop stops when IndexAddress passes or equals the buffer end. One thing we learned from this function is that
the function treats Addressindex as a structure pointer. The structure would look something like this:

Struct MagicStructure

{
long MagicDword; // could be either 0x20746D66 or 0x61746164

long size;

BINw 3hls)
Is B8x20746D66_local empty?

T E
Is 8261746164 local empty?

Checks some conditions on the
index stored in Bx666D7420_ local.

= dword ptr Bx61746164 local[k]
£ word ptr 0x20746D66_local[28]
Stores temp in Calc_Result.
Calc_Result1 must be over or equal 2800.

This is the code after the loop. It checks if the two locals that store addresses are empty, then calls a function
called CheckConditionl. CheckConditionl checks some conditions on the structure pointed by
0x20746D66_local. Just to refresh your memory, 0x20746D66_local points to the structure that has
0x20746D66 as the first Dword. | will call this structure ‘SpecialStructl’, and the 0x61746164 struct
‘SpecialStruct2’ from now on. We already know that the second Dword is some kind of size, but if you analyze
CheckCondition1, then you’ll know that some other members exist in this structure.

Reversing binary 500 by Externalist

lHHTEHm EZINE ISS5UE IU‘

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

BN fys) |
Initializing.

Is the word at offset +8
equal to 17

BN 0 |
Is the Dword at offset +C
lower than or equal to 88887

[E LI " S

Is the Dword at offset +c
above or equal 48887

(LD " E

Is the WYord at offset +16
equal to Bx187?

Several conditions exist in this function.
1. word ptr [SpecialStruct1+8] ==
2. 4000 <= dword ptr [SpecialStruct1+12] <= 8000
3. word ptr [SpecialStruct1+22] == 0x10

These conditions must be satisfied. We can expand Structurel to have some new members now.
Struct MagicStructure
{
long MagicDword; // could be either 0x20746D66 or 0x61746164
long size;
short constl // must be 1
short const2 // must be 0x10
short const3 // must be between 4000 and 8000
2

After returning from CheckConditionl, it enters a function called Calculatel. Calculatel simply calculates
(SpecialStruct2.size/word ptr [SpecialStruct+20]) and returns it. Then it stores it in a local ‘Calc_Resultl’ for
later use. The condition (Calc_Resultl >= 2000) must satisfy, so we have one more condition.

Reversing binary 500 by Externalist

IF!F-!TEFH'I'I EZINE ISS5UE I'A.-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

61746164 local

Finished storing 8x3260 Dwords?

dword ptr {Allocated? + counter = Bx18).
Updating counter.

‘counter’ is the loop counter. It rages from 0~0x320. Everything else should be self explanatory. ‘Allocated2’
will be used quite often, so it should be noted here.

Stores the result in Calc_Result2.

Calc_Resultl is divided by 5 and stored in Calc_Result2. One thing peculiar here is that the code uses
multiplication and shr operations for division instead of directly using idiv/div. This is because the mul
operation takes less amount of cpu cycles to execute than idiv/div. If you've been reversing for a while, then
you would easily recognize this type of compiler optimization.

Next, it enters a loop.

Reversing binary 500 by Externalist

ARTERM EZINE IESSLUE I".-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm'lust doing'my hobby. 1

Reversing binary 500 by Externalist

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

On each loop iteration, Calc_Result2 is multiplied with the loop counter, and stored to Calc_Result3. Two
functions are called after that.

Fill_Allocated2(Allocated2,0x320,Calc_Result3,Calc_Result2);
index = GetBiggest_FaddResult_Index(0x320,Allocated2);

And finally, index(Dword) is stored in a 20 byte buffer(which | named FinalCompareBuffer) 5 times in each loop
iteration. That buffer is going to be later compared with the 5 random Dwords(RandomNumberStorage) that
were initially generated and sent to the client. Do you get the picture now? :P

If they both turn out as the same 20 bytes, the keyfile contents will be sent to the client. Now we have to
figure out how we’re going to have complete control over the contents of FinalCompareBuffer. This will
require analysis of both functions.

The first function is kind of large and a bit confusing, because it uses a lot of fpu instructions. | actually made a
C version of the code to better understand the big picture instead of the small details. Instead of going through
every aspect of the assembly instructions, | will present here the C code for better readability and
understanding of the code logic.

int GetBiggest_FaddResult_Index(Allocated2_Struct* Allocated2Array);

void FillAllocated2(SpecialStructPointers SSP,Allocated2_Struct* Allocated2Array,DWORD Calc3,DWORD
Calc2);

double CalcHash(Allocated2_Struct Allocated2,SpecialStructPointers SSP,DWORD Calc3,DWORD Calc2);
SpecialStructPointers* AllocateAndCopy(SpecialStructPointers SSP);

void FillSS2(SpecialStructPointers* Allocated3,DWORD Allocated2_Counter_Plus_C8);

int ReturnIndex(SpecialStructPointers* Allocated3);

struct SpecialStructl

{
DWORD StructSize;
WORD Counter_Updater;
DWORD fdiv_divisor;
WORD Calcl_Div_Const;
¥
struct SpecialStruct2
{
DWORD ArraySize;
WORD Array[?];
//Array is a variable size array with the size of ArraySize
¥
struct SpecialStructPointers
{
SpecialStructl* SpecialStructlPointer;
SpecialStruct2* SpecialStruct2Pointer;
¥
struct Allocated2_Struct
{
int Counter_Plus_C8;
double fadd_result;
SpecialStructPointers* Allocated3;
¥
extern SpecialStructl SS1; // We have complete control over SpecialStructl Members
extern SpecialStruct2 SS2; // We also have complete control over SpecialStruct2

DWORD Calcl = SS2.ArraySize / SS1.Calcl_Div_Const;
// Some conditions exist.

// 1 : Calcl >= 2000

// 2 : SS2.Arraysize <= 25000

Reversing binary 500 by Externalist

:HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

// 3 : 4000 <= SS1.fdiv_divisor <= 8000

void main()

{
int MainCounter = 0;
DWORD FinalCompareBuffer[5];
DWORD Calc2 = Calcl / 20;
Allocated2_Struct Allocated2Array[0x320];
SpecialStructPointers SSP;
SSP.SpecialStructlPointer = &SS1;
SSP.SpecialStruct2Pointer = &SS2;

for(int i=0; i<0x320; i++)

{
}

Allocated2Array[i].Counter_Plus_C8 = i+0xC8;

while(MainCounter < 5)
{
int Counterl = 0;
int index;
DWORD Calc3 = Calc2 * MainCounter;

FillAllocated2(SSP,Allocated2Array,Calc3,Calc2);
index = GetBiggest_FaddResult_Index(Allocated2Array);

FinalCompareBuffer[MainCounter] =
Allocated2Array[index].Counter_Plus_C8;

}

// At this point, FinalCompareBuffer is compared with
// RandomNumberStorage, and if both are the same, then the
// keyfile will be sent.

// Returns the index of the biggest Fadd_Result among the ©x320 stored
// Fadd_Results.
int GetBiggest_FaddResult_Index(Allocated2_Struct* Allocated2Array)

{
int counter = 0,index = 0;
double biggest_fadd_result = Allocated2Array[0].fadd_result;
while(counter < 0x320)
{
Allocated2_Struct Allocated2 = Allocated2Array[counter];
if(Allocated2.fadd_result > biggest_fadd_result)
{
biggest_fadd_result = Allocated2.fadd_result;
index = counter;
}
counter++;
}
return index;
}

// Fill the Allocated2 Array.
void FillAllocated2(SpecialStructPointers SSP,Allocated2_Struct* Allocated2Array,DWORD Calc3,DWORD
Calc2)
{
int counter = 0;
double current_fadd_result = 0;
double smallest_fadd_result = 0;

while(counter < 0x320)
{

current_fadd_result =
CalcHash(&Allocated2Array[counter],SSP,Calc3,Calc2);

Reversing binary 500 by Externalist

:HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

// Calculating the fadd_result member of Allocated2Array.
Allocated2Array[counter].fadd_result = current_fadd_result;
// Storing ©x320 fadd_result member values.

if(counter = 0)
smallest_fadd_result = current_fadd_result;
if(smallest_fadd_result > current_fadd_result)
smallest_fadd_result = current_fadd_result;

counter++;

}

counter = 0;
while(counter < 0x320)

{
Allocated2Array[counter].fadd_result -= smallest_fadd_result;
// This doesn't really effect the final results.
counter++;

¥

¥

// Calculate Fadd_Result values to be stored in Allocated2.
double CalcHash(Allocated2_Struct& Allocated2,SpecialStructPointers SSP,DWORD Calc3,DWORD Calc2)
{

SpecialStructPointers* Allocated3;

double fadd_result = ©; // QWORD

int Index = 0;

if(Calc2 == @) // Calc2 is obviously not ©
Calc2 = Calci;

if(Allocated2->Allocated3 == 0)

{
Allocated3 = AllocateAndCopy(SSP);
// Allocating, and filling in data of Allocated3.
Allocated2->Allocated3 = Allocated3;
// Saving the Allocated3 member of Allocated2Array.
Fil1SS2(Allocated3,Allocated2->Counter_Plus_C8);
// Filling in the newly allocated SpecialStruct2 Array

// belonging to Allocated3.
}

SpecialStructl SS1 = *(Allocated3->SpecialStructlPointer);
SpecialStruct2 Current_SS2 = *(Allocated3->SpecialStruct2Pointer);
SpecialStruct2 Original_SS2 = SSP.SpecialStruct2Pointer;
Index = ReturnIndex(Allocated3);
// Returns a strange index. 99.99% of the time, this index is a

// non-zero value.

if(Index != 0)
{
int counter;
DWORD imul_result = 0;

while(counter < Calc2)

{

imul_result = (DWORD)Current_SS2.Array[counter] *
(DWORD)Original_SS2.Array[Calc3 + counter];

// takes only eax from edx:eax, but edx is always @ anway.

fadd_result += (double)imul_result;

// Multiplies the user supplied input with the currently generated
discretional sin wave, and adds all the values.

// Looks like it's calculating some integral value.

counter += SS1.Counter_Updater;

// This counter is later on revealed as 1.

}
if(fadd_result < ©0)

fadd_result = fadd_result * (double)-1;
// making fadd_result a positive value.

Reversing binary 500 by Externalist

:HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

fadd_result = 0;
}

return fadd_result;

// The returned values will be stored in the 0x320 fadd_result members of Allocated2.

// Since this value will directly affect the FinalCompareBuffer, we must have complete
control over this value.

¥

// Allocates some space for Allocated3. Allocate space for SpecialStructl, SpecialStruct2, copy the
contents, and store the pointers in Allocated3.
SpecialStructPointers* AllocateAndCopy(SpecialStructPointers SSP)
{

SpecialStructPointers* Allocated3 = calloc(1,8);

Allocated3->SpecialStructlPointer = calloc(1,0x18);

Allocated3->SpecialStruct2Pointer = calloc(1,SSP.SpecialStruct2Pointer->ArraySize + 8);

// Storing the pointers of the newly allocated SpecialStructl, SpecialStruct2

memcpy (Allocated3->SpecialStructlPointer,SSP.SpecialStructlPointer,0x18);

memcpy (Allocated3-
>SpecialStruct2Pointer,SSP.SpecialStruct2Pointer,SSP.SpecialStruct2Pointer->ArraySize + 8);

// Copying the original SpecialStructl, SpecialStruct2 data into

// the allocated one.
return Allocated3; // This will later be stored in Allocated2.

¥

// Fill the SpecialStruct2 Array.
void FillSS2(SpecialStructPointers* Allocated3,DWORD Allocated2_Counter_Plus_C8)
{
int counter = 0;
SpecialStructl SS1 *(Allocated3->SpecialStructlPointer);
SpecialStruct2 SS2 = *(Allocated3->SpecialStruct2Pointer);
double fmul_result (double)Allocated2_Counter_Plus_C8 * 6.283185307179586; // = 2 * PI

while(counter < Calcl);

{
double fdiv_result = (double)counter / (double)SS1.fdiv_divisor;
double fsin_result = sin(fmul_result * fdiv_result);
SS2.Array[counter] = (int)(fsin_result * (double)32767);
// Creating a discretional sin wave and storing it into the
// allocated SpecialStruct2.
//The range of a signed short value = -32767 ~ 32768, and considering
//the result of the sin operation is between -1/+1,
//this operation is to generate an integer that fits in a WORD.
counter += SS1.Counter_Updater;
¥
return;

¥

// Return the index of the 3rd value with the same sign as the initial value. Dunno the exact
meaning of this function. :/
int ReturnIndex(SpecialStructPointers* Allocated3)
{
int counter = 1;
int old_counter = 0;
int SignEqualCounter = 0;
SpecialStructl SS1 = *(Allocated3->SpecialStructlPointer);
SpecialStruct2 SS2 *(Allocated3->SpecialStruct2Pointer);

while(counter < Calcl)

{
if(SS2.Array[counter] & 0x8000 == SS2.Array[old_counter] & ©x8000)

// Check if both words have the same sign.

{

SignEqualCounter++;
old_counter = counter;

if(SignEqualCounter == 2)
break;

Reversing binary 500 by Externalist

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

counter += SS1.Counter_Updater;

// counter started out as 1, and old_counter as 0, so this indicates
// that Counter_Updater must be 1.

// Otherwise, there will be no value to compare to.

}

if(counter != Calcl)
return counter;
return 0;

This code is obviously not compliable (is there even such word as compilable? :P), but you could understand
what it’s trying to do by reading the code. If you want to later on analyze the assembly code, then always have
the IA-32 Architectures Software Developer’s Manual by your side so you could easily decipher the somewhat
less used fpu instructions quickly.

The two pictures below illustrate an example of a user supplied input, and two of the generated discretional
sin wave out of the 0x320 sin waves.

[User supplied Data]

Reversing binary 500 by Externalist

IF|F!TEF|‘I'I1 EZINE ISS5UE I'—.—'i

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

[Generated sin wave 1 : Const = 0x1D8]

[Generated sin wave 2 : Const = 0x1C8]

Reversing binary 500 by Externalist

!HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

fadd

result — mjL | +mol | F it |+ e | g g [4uic] 4

fadd result] = Addifion of the regulting 9 multiplied values

[How fadd_result is calculated]

Let’s try to ignore the crappy artwork. :D Now if you understood the C code, you would already know that
fadd_result is calculated by multiplying the user supplied graph with one of the generated sin waves, then
adding up all the discretional values of the resulting graph like the picture above. The value that gets stored in
FinalCompareBuffer is the constant(index+0xC8) associated with the sin wave with the highest fadd_result.

For instance, if we receive a random number 0x1C8(the first random Dword) from the server, we want to
supply a user generated graph that would make the fadd_result of sin wave2(from above pictures) the biggest
value out of all 0x320 fadd_results. We can only supply the user input once, and all the 0x320 sin waves will be
multiplied to that input, and added to create 0x320 fadd_results. So the question is, what kind of input would
make the fadd_result of the 0x1C8 sin wave the biggest, and the other 0x31F fadd_results always smaller?

The answer would be a sin wave that has the exact same cycle of the 0x1C8 sin wave. While a user supplied sin
wave(with the same cycle of the 2" 0x1C8 wave) multiplied with the 2" wave would result in a wave with all
positive values, the same user supplied sin wave multiplied with the 1°* 0x1D8 wave would result in a wave
with positive and negative values, and the negative values would contribute in making the fadd_result smaller.
So what we want to do is supply 5 sin waves that have exactly the same cycles as the 5 sin waves
corresponding to the 5 random(0xC8~0x3E8) Dwords we received from the server. That would be the last
condition and if that condition is satisfied, then FinalCompareBuffer will have the exact same content as
RandomNumberStorage and we will have the keyfile contents in our hands. :)

Reversing binary 500 by Externalist

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

The following code attack.c does exactly the thing just described.

t#tinclude <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#tinclude <stdlib.h>
#include <string.h>
t#tinclude <unistd.h>
#tinclude <math.h>

#define BUFSIZE 100
#define PI 3.14159265

void DieWithError(char* errorMessage);
// You would notice I've been studying with this book :
// "The pocket guide to TCP/IP sockets" :P

typedef struct MagicBytes_{

long magicl; // Must be 0x46464952
long size; // sizeof(SpecialStructl) + sizeof(SpecialStruct2)+4.
// 4 is because the size is later subtracted with 4 when
allocated.
long magic2; // Must be 0x45564157
IMagicBytes;

typedef struct SpecialStructl_{

long magic; // Must be 0x20746d66

long structsize; // Must be 16

short constil; // Must be 1

short CounterUpdater; // Must be 1

long FdivDividor; // Must be between 4000 ~ 8000

long unused;

short CalclDivConst; // Must be 2 or higher

short const2; // Must be 0x10
}SpecialStructl;

typedef struct SpecialStruct2_{

long magic; // 0x61746164
long structsize; // size of the Array
short SinWave[2500]; // this is where the 5 sin waves go
}SpecialStruct2;
void DieWithError(char* errorMessage)
{
perror(errorMessage);
exit(1);
}

int main(int argc, char* argv[])

{
int sock;
struct sockaddr_in ServAddr;
unsigned short ServPort;
char* servIP;
char StrRecv[BUFSIZE];

int bytesRcvd, totalBytesRcvd;
int mulconst, i, j;

MagicBytes MB;

SpecialStructl SS1;
SpecialStruct2 SS2;

servIP = "192.168.1.131";
ServPort = 2600;

if((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
DieWithError(“socket() failed");

Reversing binary 500 by Externalist

!HHTEHm EZINE ISS5UE IU]
|

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

memset (&ServAddr,0,sizeof(ServAddr));
ServAddr.sin_family = AF_INET;
ServAddr.sin_addr.s_addr = inet_addr(servIP);
ServAddr.sin_port = htons(ServPort);

if(connect(sock, (struct sockaddr*)&ServAddr,sizeof(ServAddr)) < 0)
DieWithError(“connect() failed");

if((bytesRcvd = recv(sock,StrRecv,BUFSIZE-1,0)) <= 0)
DieWithError(“recv failed 1");

StrRecv[bytesRcvd] = '\0';

// Receiving the 5 random Dwords to create the sin waves

MB.magicl = Ox46464952;

MB.size = sizeof(SpecialStructl) + sizeof(SpecialStruct2)+4;
MB.magic2 = 0x45564157;

// filling MB structure with the appropriate values

SS1.magic = 0x20746d66;

SS1.structsize = 16;

SSl.constl = 1;

SS1.CounterUpdater = 1;

SS1.FdivDividor = 4000;

// Could be any value between 4000 ~ 8000

SS1.Calcl1DivConst =2;

// Must be 2, cause the program reads/stores the Array values in WORD size.
SS1l.const2 = 0x10;

SS2.magic = 0x61746164;
SS2.structsize = 5000;
// Must be over 4000, cause SS2.structsize/SS1.CalclDivConst must be over 2000.
// The lower the value, the faster the calculation.
for(i=0; i<5; i++){
for(j=0; j<500; j++){
mulconst = *((long*)StrRecv+i);
SS2.SinWave[i*500+j] = 32767 * sin(2 * PI * mulconst * j / SS1.FdivDividor);
// Generating 5 kinds of discretional sinwaves,
// each corresponding
// to each of the received 5 random Dwords.
// 32767 exists so the result would be an integer that
// fits in a WORD.

¥

if(send(sock, (char*)&MB,sizeof (MagicBytes),0) != sizeof(MagicBytes))
DieWithError(“send() failed 1\n");

if(send(sock, (char*)&SS1,sizeof(SpecialStructl),0) != sizeof(SpecialStructl))
DieWithError(“send() failed 2\n");

if(send(sock, (char*)&SS2,sizeof(SpecialStruct2),0) != sizeof(SpecialStruct2))
DieWithError(“send() failed 3\n");

// Sending the structures along with the sin waves

if((bytesRcvd = recv(sock,StrRecv,BUFSIZE-1,0)) <= 0)
DieWithError(“recv failed 2");

printf(StrRecv);

// If all goes well, then the keyfile will be printed out

close(sock);
return 0;

Reversing binary 500 by Externalist

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

And the result.

externalist@Externalist:~/Documents/Reverse Engineering/Binary500$./attack

ARTeam Rocks!!! :)

1.5 CONCLUSIONS

This concludes the tutorial on reversing this year’s DEFCON Binary500 challenge. Personally, | think all of the
last year and this year’s binary challenge(except Binary300. Will someone please give me a reason for
inet_aton??) were excellent, and I'm looking forward for next year’s challenge. :P | must say I've learned lots
about reversing on non-windows platforms from reversing those binaries, and | would give a 5 out of 5 for this
year’s Binary500. :P

Later on, when the walkthroughs came up, | read that the user input was supposed to be a wave file, and
indeed when | did a quick search on the constants 0x46464952/0x45564157, google pointed to many
references to source codes related to wave files. This taught me an important lesson. ‘Always search for
constants that look suspicious before doing anything serious because it can provide some important clues that
reduce the amount of work and time spent’.

To sum up the main features of Binary500, first, Binary500 uses an obfuscation scheme that splits up the file
into many pieces to make static analysis more challenging, while it scatters a lot of trash bytes everywhere in
the binary. Second, it sends some data to the client and expects the client to send a mass of data that meets
certain conditions. The client program must deduce the correct form of data to send by using the initial data
sent from the server. Third, it does some mathematical operations, hence, requires the reverser to be capable
of accurately analyzing math functions.

I hope this tutorial was useful for some readers and sorry if my English was a bit sloppy or hard to read, it’s not
my mother language btw. :/ Most of the non-Windows platform reversers would have little or no problems
reading this tutorial, but if you're from Windows and feel like you can’t even understand 20% of this tutorial,
don’t worry. Just keep studying, and time will solve the problems for you. :P

Anyway, thanks for taking your time reading this tutorial and Happy Reversing! :)

Reversing binary 500 by Externalist

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

1.6 REFERENCES

= http://www.nixdoc.net

= http://www.intel.com/products/processor/manuals/

= http://www.hex-rays.com/idapro/idadoc/707.htm

= http://www.openrce.org/articles/full view/11
= http://www.rexx.com/~dkuhlman/python 101/python 101.html

1.7 GREETINGS

= To ARTeam members for creating awesome tutorials and always having the mind of sharing
knowledge. | wouldn’t have gone this far if it weren’t for ARTeam.

= To Teddy Rogers for maintaining a huge database of Windows reversing tools, documents,
information. You are the man!! :D

= To lena and Tiga for creating the well known tutorial series. | simply would have dropped out quickly if
it weren’t for those video tutorial series. :)

= To deLTA for being my first overseas friend, and for creating/maintaining the great CRCETL (and also
the recently founded CISTL).

= To all beistlab members and especially beist for inviting me to their team in the DEFCON CTF Pre-
Quals, and also for kicking ass all the time. :D

= To graylynx for guiding me to the security world.

= To phin3h45 for being a good friend.

= To all team members who once belonged to a now unexisting team formerly known as unknOwn. |
hope you guys are all doing well.

= To all my friends on my nateon friend list (You know who you are! :)

[In the Supplements folder “0.1

Externalist” you can find also:
Analysis, idb ida file
Binary, the original file
Pics, pictures of this tutorial
Source, sources used for this

tutorial]

Reversing binary 500 by Externalist

http://www.nixdoc.net/�
http://www.intel.com/products/processor/manuals/�
http://www.hex-rays.com/idapro/idadoc/707.htm�
http://www.openrce.org/articles/full_view/11�
http://www.rexx.com/~dkuhlman/python_101/python_101.html�
http://www.woodmann.com/collaborative/tools/index.php/Category:RCE_Tools�
http://www.woodmann.com/collaborative/sectools/index.php/Category:InfoSec_Tools�

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2 HANDY PRIMER ON LINUX REVERSING BY GUNTHER

2.1 FOREWORDS

The time has come to write a tutorial on Reversing Engineering on Linux. Reversing Engineering on Linux will
surely be welcome among the rapidly growing community of Linux users. Important applications which
appeared on Linux had slowly started to be protected with important tricks and some tools appeared which
can handle them.

After a conversation with Shub, | have decided to write a primer on this, examining which tools we can use to
disassemble the Linux applications, how to approach to them and what generally we can do. The tutorial will
cover different issues:

e What instruments we have and what to use and customize them.
e Practical examples of real applications

| also included a long list of references and further readings, as usual. The applications which | have used are
selected based on two criteria:

e being educative for my purposes

e being already cracked by someone else, so as to not create problems on my own

| hope that this could begin a new chapter in the ongoing ARTeam series of Reverse Engineering tutorials.
Today’s topic will go over Reverse Engineering on Linux. This topic has been hardly touched upon, thus giving
me room to add some information to the reader.

This tutorial is for anyone running Linux with gcc and who knows a bit of C. This tutorial does not claim to be
complete, exclusivity and is geared to beginners.

2.2 ABSTRACT

In this tutorial we are going to learn the ELF file format and learn how to conduct reverse engineering on an
ELF binary.

There has been a trend for growing commercial applications under Linux. Thus, there is a need for protective
mechanisms in the new environment. In this primer, | will try to fill in required information about tools which
Reverse Engineers used in Linux.

Let’s start getting our hands dirty...

Handy Primer on Linux Reversing by Gunther

!FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j
|

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2.3 TARGET

In this primer, | will use the following crackme to conduct the tutorial.
Here is the link to the crackme:

http://www.crackmes.de/users/damo2k/damos crackme 1 for linux/

2.4 EXAMINING OUR TARGET

2.4.1 STARTING

Before we try to break the program, it is often necessary to analyze it. For this purpose, we can use the
following programs to do so:

file - Displays information about the file type, architecture, the use of shared libraries.

root@w s i ~/Desktop
File Edit View Terminal Tabs Help

Figure 1 -file command displaying information of the target.

nm - List information about symbolic references (symbols) in object files.

Handy Primer on Linux Reversing by Gunther

http://www.crackmes.de/users/damo2k/damos_crackme_1_for_linux/�

[HF-!TEH\I'H EZINE ISSWE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Fle Edit View Terminal Tabs Help

Figure 2 - nm command listing about symbolic references.

size - Displays of all sections’ sizes and total size of the application.

Fle Edit View Terminal Tabs Help

00t @ D 2

Figure 3 - size command displaying all sizes of the target.

strings - Outputs all text strings contained in the file. It's very helpful when seeking registration codes stored
in the clear.

Handy Primer on Linux Reversing by Gunther

[HF!TEF’I\I'I'I EZINE ISS5UE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

File Edit View Terminal
G Desktopl# str

Figure 4 - strings command displaying all text strings found in the target.

Idd - Shows dependency programs from dynamic libraries. Programmers benefit more than crackers.

Fle Edit View Terminal Tabs Help
[root@ Des

Figure 5 - Idd command displaying dependency of the target.

Handy Primer on Linux Reversing by Gunther

[HF-!TEH\I'H EZINE ISSWE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

readelf - Explore file. Displays lots more information than the command file. Shows file type, architecture,
point of entry and other equally important data for reverse engineers and crackers.

Fle Edit View Terminal Tabs Help

Des B ELE

Figure 6 - readelf command displaying the all the information of the target.

2.4.2 INITIAL ANALYSIS

Where should we start from? We need to collect some basic information about the object. From the output
given by the file command, it has indicated that the object is an ELF executable compiled for Intel x86
architecture (Intel 80386, 32-bit, LSB — least significant byte).

file crkmel-linux32

It also reveals that the object has been linked dynamically and not stripped. If the ELF header of the binary
was corrupted in any way, the file command would report that as well.

2.4.3 ELF FILE FORMAT

ELF stands for Executable and Linking Format and the file format used (with some exceptions) on the Linux
system for relocatable, executable, and shared binary files that do not need any other hardware than CPU to
run, unlike Java and .NET.

e Relocatable objects (*.0) are linked with other objects in order to build an executable file or a shared
library — these are produced by compilers and assemblers.

e Executable objects are files that are ready to be executed, already relocated and with symbols
resolved (excluding those that refer to shared libraries, resolved at runtime).

e Shared objects (*.s0) contain code and data which can be used for linking in two different ways. They
can be linked with relocatable or shared objects to produce another object. They can also be linked
with executable code by the system dynamic linker/loader to create a process image in memory.

Handy Primer on Linux Reversing by Gunther

!HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

The basic component of an ELF file is its header(see Figure 7). The header is located at the beginning of the file
ans serves as a sort of a map of its remaining parts. It contains information such as the location of the
program header and section header relative to the beginning of the file. The memory location where control is
to be passed to when the program is launched (the so-called entrypoint), as well as some platform-
independent information that determines how the file content is to be interpreted.

To keep the ELF format as flexible as possible, 2 parallel views were introduced: linking view and execution
view (see Figure 8). When the object is being built, the compiler, assembler or linker treats the ELF file as a
collection of sections described by the section header with an optional program header (see Figure 9).
However, the system linker/loader treats the file as a collection of segments described by the program header
with an optional section header. The link view is not required for running executable code.

Browsing and examining the internals of ELF files can be accomplished with the help of the objdump program,
elfsh utility, ht program.

Fle Edit View Terminal Tabs Help

File Edit Windows Help 12:46 14.087.2088
x] ——— /froot/Desktop/crkmel-linux32 ——

Ff 45 4c 46 2ELF
32-bit objects
LSB encoding

System V

executable file
Intel 86386

Figure 7 - EIf header view with ht editor.

Handy Primer on Linux Reversing by Gunther

IF|F!TEF|‘I'I1 EZINE ISS5UE I

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Fle Edit View Terminal Tabs Help

File Edit Windows Help 12:46 14.87.2008
[{]—— /root/Desktop/crkmel-linux32 ——

entry 8 (phdr)
AO00006 phdr
AEOR0E34
08048034
93048034
goeReees details
AR AEEERERD

entry 1 (interp)
AAAEAEEA3 intel"p
00000114
08048114
08048114
AARAAR]3
AE0AAE 13
00000004 details

00000001

entry 2 (load)

Figure 8 - ELF program header view with ht editor.

ELF header

Program Header

Sectionl

Section 2
Segmentl

Section 3

Segment 2

Secion Header

Figure 9 - ELF format outline.

2.4.4 DISASSEMBLER AND HEX EDITING TOOLS

The following are some of the Disassembler and Hex editing tools which you can use:

Disassembler:
= Objdump - More than just a disassembler. a program for displaying various information about object
files.

v' Section file (- x)
v' Disassemble file (-D).
v' It displays the content of sections in hexadecimal notation (-s)

Handy Primer on Linux Reversing by Gunther

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

= Dissy - a disassembler for Linux and UNIX which supports multiple architectures and allows easy
navigation through the code It is implemented as a graphical frontend to objdump. It allows fast
navigation through the disassembled code and easy searching for addresses and symbols.

= Lida (Linux Interactive DisAssembler) - Quite interesting disassembler, which includes modules like
cryptanalysis, the possibility of placing bookmarks, etc.

= LDasm (Linux Disassembler) - Another shell for objdump/binutils.
= Bastard - Disassembler under Linux & FreeBSD, understands ELF/PE/bin- formats.

Hexadecimal editors:
= Bless - Written in mono hex editor. It supports the tab.

= Biew - Console editor. Allows you to view and edit files in text, hex, assembler form.

= Radare — An advanced cmdline hexadecimal editor.

2.5 SEARCHING FOR MORE CLUE

Where we could start from? A good starting point is trying to find out if the analysed binary file contains any
interesting character strings from our next stage of investigation. This way we can gather some information
about the platform used to build the binary and get an overall idea of the potential actions that the program
could take. In every reversing engineering task which we handle, we should note that even trivial details could
useful to our analysis.

Searching for character strings will be accomplished with the help of the indispensible strings utility. It
examines the contents of a given file and prints out all sequences of 4 or more printable (ASCIl) characters (the
default length of 4 can be changed with the —n option). By default, it scans only the initialised and loaded
sections of an ELF file. To display all strings, we use the —a option.

In some cases, strings can reveal interesting information such as the operating systems used to compile the
program and the compiler itself. Using strings with dynamically linked binaries produces more detailed
output. Besides the strings found in the program code, it also shows a list of symbol names corresponding to
the called shared library functions.

2.6 ANALYSING THE CONTENTS OF SPECIFIC PARTS OF THE FILE

Another way to search for interesting character strings in a file is to look through specific sections of the
analysed program (see ELF file section header structure) that usually contain character strings.

We are going to look through the .comment, . strtab, .dynstr, .note or . rodata sections. The location
of any section within the object is determined by the offset value in the section header. The header itself can
be retrieved using elfsh, ht editor or objdump with the —h option. A fragment of the section header is shown
in Figure 9.

Handy Primer on Linux Reversing by Gunther

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2.6.1 ELF FILE SECTION HEADER STRUCTURE

The file’s section header holds information about ELF object sections. A single segment may consist of one or
more sections — for example, the PT_LOAD segment with permissions to read and execute might contain the
.text, .init, .fini and .plt sections. Each section is described in the header with it type, name, size and memory
location where the section is to be placed. The section header is required only for compiling the program
(during the linking stage) and is ignored when the program is being executed. Each section contains
information of a specific kind:

= _.init, fini-the code responsible for starting and exiting the process.
= | text —the actual program code.

= . data —initialised data.

= . bss—uninitialized data (initialised to zero when the program is loaded).
= .dynamic -information used for dynamic linking.

= . symtab—symbol table.

= . dynsym-—dynamic linking symbol table.
= . strtab - string table.

= . dynstr—dynamic linking string table.
= . debug - debugging information.

= |, rodata-—read-only data.
. . rel* - relocation tables.
. .ctors, dtors-constructor and destructor tables.

= . hash—hash table.
= . got —global offset table.
= . plt—procedure linkage table.

2.7 RETRIEVING SYMBOL TABLE

The symbol table (see Frame Symbol Table) improves the readability of the program code. The table makes it
possible to link function references using their names and it also define the boundaries of each part of the
program. To get a list of the symbols, we can use the nm command. Using the —D option shows the list of
dynamic symbols, the —g option shows global symbols and the —a option shows all symbols.

Removal of the .symbol table destroys the obvious evidence of specific functions being used in the program.
Using the strip command on a dynamically linked program wipes out all local symbols. Whereas, using it on a
statically linked program deletes all contents of the symbol table.

The symbol table is not the only part of an executable that can be removed. Executable objects contain a few
other optional sections such as .debug and .comment. Another removable part is the section header, which is
required for link view, but not needed for execution view of an ELF object.

An example of a tool that strips the object of all unnecessary parts including the section header is sstrip from
ELF Kickers package (http://www.muppetlabs.com/~breadbox/software/elfkickers.html). The effect of using it
apart from destroying the links between function calls and names is that it obliterates section boundaries.
Currently, the ELF Kickers package is at version 2.0a.

Removing the section header has a side effect of preventing the analysis of the object using many utilities that
make use of the bfd library (GNU Binary File Descriptor), which relies on the section header being present. An
example of such an utility is objdump.

Handy Primer on Linux Reversing by Gunther

http://www.muppetlabs.com/~breadbox/software/elfkickers.html�

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2.7.1 THE SYMBOL TABLE

When the final program is built, references among objects are managed through the so-called symbolic
references. The linker or system linker/loader resolves these symbols and modifies the parts of the code that
refer to them so that they point to the actual locations.

Symbols are structures that contain the names of objects (encoded as indexes to a table of character strings)
and symbol values. Each symbol may be local, global or weak. Local symbols are available only within a single
object, while global ones are accessible to other objects as well. Weak symbols are considered global until a
global symbol with the same name is encountered.

A statically linked binary contain the . symtab symbol table, whereas a dynamically linked binary contains
two tables: . symtab and .dynsym. The .dynsym table holds only those symbolic references which are
needed for dynamic linking.

Statically linked binaries have all references already resolved so the symbol table is not longer required and
can be removed. The removal is accomplished by stripping the ELF file (using the strip command). It is a
simple method of making the analysis of a binary file more difficult.

2.8 REVERSING THE PROGRAM

Now, let’s get our hands dirty by reverse engineering the program. This time round, | shall use radare to
assist us. Butyou canuse ht editor or other tools too.

2.9 REVERSE ENGINEERING

Issuing the following command will give us something like Listing 1.

[root@home Desktop]# radare crkmel-Llinux32
open ro crkmel-linux32
Message of the day:
I like to suck nibbles and make hex
Automagically flagging crkmel-linux32
15 symbols added.
17 strings added.
@ syscalls added.
[0x00000000]> s sym_main
[ox000003C4]> pD

0x000003C4, sym_main: 55 push ebp

0x000003C5 89e5 ebp = esp

0x000003C7 83ec18 esp -= 0x18 ; 24 ¢ ¢
0x000003CA 83e4f0 esp &= Oxfo ; 240 © ¢
0x000003CD b800000000 eax = 0x0

0x000003D2 29c4 esp -= eax

0x000003D4 c745fcf4860408 dword [ebp-0x4] = 0x80486f4
0x000003DB c7451800870408 dword [ebp-0x8] = 0x8048700
Ox000003E2 c745f000000000 dword [ebp-0x10] = 0Ox0
Ox0000O3E9 Cc745f400000000 dword [ebp-0xc] = 0x0
0x000003F0 837d080e1 cmp dword [ebp+0x8], ©x1
Ox000003F4 0f8ec3010000 ~ jle dword Ox5BD 1 = sym_main+0x1f9
OX000003FA 8b450c eax = [ebp+0xc]

Handy Primer on Linux Reversing by Gunther

ARTEAM EZINE ISSUE IV

!FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j
|

I Reversing : I'm lust doing'my hobby. 1

0x000003FD 83c004 eax += ox4 ; 4 ¢ ¢

0x00000400 83ecOc esp -= Oxc ; 12 ¢ ¢

0x00000403 ff30 push dword [eax]

0x00000405 e8befeffff ~ call ox2C8 ; 2 = sym_strlen
Ox0000040A 83c410 esp += 0x10 ; 16 ¢ ¢

0x0000040D 83f80a cmp eax, ©Oxa

0x00000410 741f v jz 0x431 ; 3 = sym_main+0x6d
0x00000412 83ec08 esp -= 0x8 ; 8 ¢ ¢

0x00000415 ff75fc push dword [ebp-0x4]

0x00000418 680d870408 push dword 0x804870d ; "GoodSerial!"+@
0x0000041D e8cofeffff ~ call Ox2E8 ; 4 = sym_printf
0x00000422 83c410 esp += 0x10 ; 16 © ¢
0x00000425 C745ec00000000 dword [ebp-0x14] = 0x0

0x0000042C €9a8010000 ~ goto Ox5D9 ; 5 = sym_main+0x215
0x00000431 90 nop

Listing 1

From the above listing, we can roughly conclude that the serial MUST be of length 10 otherwise it will printf
“BadSerial!”

Now let’s attach a debugger to it using the following commandline and give the program a serial, abcdefghij, of
a length of 10:
[root@home Desktop]# radare dbg://"crkme1-linux32 abcdefghij"

argv = 'crkmel-linux32', 'abcdefghij',]
Program 'crkmel-1linux32 abcdefghij'
open debugger ro crkmel-linux32 abcdefghij
Message of the day:

Find hexpairs with ‘/x a@ cc 33’
Automagically flagging crkmel-linux32
15 symbols added.
17 strings added.
15 syscalls added.
flag 'entry' at 0x08048300 and size 00
[0x43169810]>

What we should do next is to set a breakpoint at the address where the address of nop starts; in this case it is
0x8048431.

[0x43169810]> !bp 0x08048431
new breakpoint at 0x8048431

[0x43169810]> !cont
cont: breakpoint stop (0x8048431)

[0x43169810]> V

Press ‘V’ without the quotes and you will get something like below.

Handy Primer on Linux Reversing by Gunther

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

File Edit Wiew Terminal Tabs Help

[8xb7f20810 (inc=16, bs=180 sz=0 mark=0x8) hexb] oceip

[. . . # . .1
offset @1 23 45 67 89 AB CD EF ©1 0123456789ABCDEFO1

OxB7F20810, 89%ed e849 0200 AO89 c7e8 e2ff ffff 8lc3 dba7? ...I..............

[+]

OxB7F20822 0100 8b83 @eff ffff 5a8d 2484 29c¢2 528b 832c Z.5.).R..,
0xB7F20834, 0000 088d 7494 088d 4c24 0483 e583 e4fm 5050t...L$...... PP
0xB7F20846 5556 3led e8fl d180 008d 93cc 2dff ff8b 2424 UV1......... -...5%%
BxB7F20858, ffe7 8db6 0POG O8O0 e842 4fel 8081 claf a7el BO.......
BxB7F2086A 0855 89%e5 5d8d 8lcc 0580 BT TR

Pressing ‘p’ to change the print view to debugger mode.

File Edit WView Terminal Tabs Help
[0xb7f20810 (inc=18, bs=186 sz=0 mark=0x8) visual] oeip

[v]

[._. . # . .1
Stack:

offset 81 23 45 67 89 AB CD EF © 1 0123456789ABCDEFO1
OxBF893000, cBdd f2b7 e085 0408 DOBE GOOO GORO 0OEO BOBT
OxBF8930E2 0408 f486 0408 4831 8%bf 5094 ddb7 0280 0600 H1..P.......
0xBF8930F4, 7431 89bf 8031 89bf 0083 0408 0000 00O 8200 tl...l............
OxBF893106 08GO 1lc8b 7fe3 f4af f3b7 f4df,
Registers:

eax 0OxB00OBOGa esi 0Oxb7f3aced eip 0xB8048432

ebx BOxb7fedff4 edi 0xBOAEOEAN oeax Oxffffffff

ecx Bx4554006a esp Oxbf8930de eflags 0x200346

edx Oxffffeeee ebp 0xbf8930e8 cPaZsTIdor® (PZTI)
Disassembly:
No line specified

; Get argl2
Ox08048432 eip: 8b458c¢ eax = [ebp+0xc] H]
eax+@xfffffffs
0x08048435 83co04 eax += 0Gx4 ; 4 ° °
0x08048438, 8b55fe edx = [ebp-8x18]
0x0804843B 8bae eax = [eax]
0x0804843D e1do eax += edx]
Ox0804843F 8038080 cmp byte [eax], 8x8
.==< 0x08048442 7502 Vv jnz 0x8048446 H ?

Now, scroll down the dead listing, we can see that the program is checking to see if the current char is
between 0x60 and 0x7A (which is ‘a’ to ‘Z’).

Handy Primer on Linux Reversing by Gunther m

ARTEAM EZINE ISSUE IV

[HF!TEF’I\I'I'I EZINE ISS5UE

I Reversing : I'm lust doing'my hobby. 1

=5 rOOL@GUNLIERYHOTE) QUNLHEY DESKLOD!

File Edit Wiew Terminal Tabs Help

B8x804843d (inc=2, bs=180 sz=8 mark=8x0) disasm] eip+8xb
..

81de eax += edx

83c204 edx += Ox4 ; 4 ' '

[

[.

0x

[} 803800 cmp byte [eax], @x0@

0 7502 v inz @ 446 i 1= eip+0x14
[} 4, ebda v goto 0x8048490 ; 2 = elp+0x5e
[} 8b450¢C eax = [ebp+8xc] ; oeax+Oxfffffffs
03 83coe4 eax += 0x4 ; 4 ' "

[} C, 8bs5fe edx = [ebp-8x18]

e} 8boo eax = [eax]

a: alda eax += edx

0 803860 cnp byte [eax], ox60 €=

a: 7e3l v jle 8x8 39 ; 3 = elp+0x57
[} , 8b450¢C eax = [ebp+8xc] ; oeax+Oxfffffffs
03 83coe4 eax += 0x4 ; 4 ' "

0x 8bs5fe edx = [ebp-8x18]

0x 8boo eax = [eax]

a: alda eax += edx

[} 80387a cmp byte [eax], 8x7a

a: . 7f1f jo 0x8048489 ; 4 = elp+8x57

[} 8b550¢C edx = [ebp+8xc]

03

As we go through the disassembled code properly, we can see that each character is being converted to
uppercase by subtracting 0x20.

=] gunthena Gumthen =y I esKIopD

File Edit Wiew Terminal Tabs Help

Handy Primer on Linux Reversing by Gunther

When we have reached the end of the string, we can find that it is doing another check by taking the first and
last byte of the serial and store in edx and eax respectively. After that, it subtracts 0x3 from the last byte and
check whether it’s the same as the first byte.

[HF-!TEH\I'H EZINE ISSWE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

= guntherdGUNtHer-=yDeskiop! El@
File Edit Wiew Terminal Tabs Help

k|

After we bypass the first check, we encountered another check by the application again. This time round, it
retrieves the 2™ and 9™ Character and stored it in edx and eax respectively. Next, it add OxE to the 9™
character to compare whether it is the same as the 2™ character. Ifitis, the application continues.

gUnLHEN @ GUNETER =YV ES Ko B@

File Edit “iew Terminal Tabs

-

Just as we thought that we had gone through the checks implemented in this application, there is another
checking being done again. But this time, it retrieves the 3 and 8" character and subtracting 0x14 from the

Handy Primer on Linux Reversing by Gunther

[HF-!TEH\I'H EZINE ISSWE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

8™ character. After that, it did a compare with the new value with the 3" character. If it passes that, it
proceeds.

gunthera@GUnther =/ eskiop’ E@
File Edit View Terminal Tabs Help

And just as | thought, there is more checking being done after the previous one. It retrieves the 4™ and 7"
character and added 0x6 to the 7" character and did a compare.

Ut EnaGUNTEHER =Y JESKLOD! E\@
File Edit Wiew Terminal Tabs Help

Now, for the final 2 characters. After retrieving both of them, it added them together and did a arithmetic shift
to the right (which is dividing the result by 2).

Handy Primer on Linux Reversing by Gunther

[HF-!TEH\I'H EZINE ISSWE I"j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

OUNLh e GUNLHET =Y [V ESKLO IEI@
File Edit Wiew Terminal Tabs Help

3

Then we take the 1 character and did a compare with our last result which we stored in edx. Once we have
bypass that test, you can see that it printf “Good Serial”.

gunthen@Gunther- =y es Ko P’ EIIEI
File Edit Wiew Terminal Tabs Help
=101

1f:

Handy Primer on Linux Reversing by Gunther

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

2.10 CONCLUSIONS

Now, it’s time for trying to reverse other applications with we have seen so far.

Using the above analysis, you can build your own key generator to the above crackmes or any other Linux
applications which require serial numbers.

If some of you are intimidated by the CLI (Command Line Interface), you can try the gradare, GUI front-end, of
radare, It'll provides decent graphs like IDA Pro.

All the stuff explained in this tutorial has been tested.

| hope that this document has provided some new ways of reversing knowledge in Linux, and when we face
similar disassembled codes it wouldn’t intimidate you in any way and you could assume the challenge of
researching and researching...in the ARTeam spirits.

2.11 GREETINGS

This tutorial is dedicated to all the components of ARTeam and Shub for editing it. Big thanks to Shub.

And of course, to you, who decided to read this document, because without your support and contribution this
task wouldn’t be worth to be done.

[No supplements for this tutorial.]

Handy Primer on Linux Reversing by Gunther

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

3 USING .NET PROFILING APl FOR A CUSTOM .NET PROTECTION BY KURAPICA

In this paper we will discuss the .NET Profiling APIs that ship with the .NET framework and see how we can use
them to implement a tight protection scheme to hide the MSIL code in the final assembly, hidden MSIL code
means that tools like reflector won't be able to produce source code from our compiled assembly and this can
increase the security and protection against reverse engineering.

Before we start exploring the ins and outs of the protection scheme we will discuss the Profiling APIs briefly
and see the events and methods that are important in our protection.

3.1 WHAT IS PROFILING?

Part of the .NET framework SDK speaks on an API that allows you to find out lots of information about the
behavior of the application coded with .NET technology, The API allows us to get many different types of
information during run time, you can also use the APl to code tracing tools, exception analysis tools and
memory usage analysis tools.

This paper discusses the Profiling API, a part of .NET that has not yet received the attention it really deserves;
you can code a profiler that can be used against any .NET application without that application knowing it is
being profiled. The profiler works on an event system and as interesting things happen the profiler is
immediately notified, and can therefore build up real-time analysis of the profilee (the application being
profiled)

The Profiling API is all based around COM interfaces, .NET profilers must be built as in-process COM servers.
This means we can write .NET profilers in any COM-capable unmanaged language such as Delphi or C++.

The profiler must implement an interface defined by the Profiling API. This interface has a variety of methods
that are triggered like events when interesting things happen. There are many of these events in the interface,
and the profiler specifies which groups of events it is interested in receiving. Doing this avoids having every
event repeatedly triggered during the profiling session, which may heavily impact the application's
performance.

When managed applications are subsequently run the CLR loads the profiler COM server into the managed
application's address space and told which events to fire and proceeds to do so throughout the rest of that
application's lifetime.

The callback interface ICorProfilerCallback which must be implemented by each profiler. This interface
contains 69 methods and each of which is an event, although 3 of the methods will never be called in .NET 1.x
(they are there for use in future versions of .NET). Two of these events are special and are always called; the
rest are called only if requested (and if the event actually occurs in the managed application), in .NET
framework 2.0 the interface was expanded and new events were added, the special event methods are
Initialize and Shutdown. Initialize is called as soon as the CLR has initialized and loaded up the profiler, and it
is where you request the event categories you wish to be triggered throughout the program run. Shutdown is
called as the CLR is closing down during application termination.

using .net profiling api for a custom .NET Protection by Kurapica m

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Initialize is passed an IlUnknown reference to another interface as a parameter, this one being ICorProfilerinfo
(also expanded to ICorProfilerinfo2 in .NET framework 2.0). This interface (like all of them except the callback
interface) is implemented in the CLR and is there to help you get more information when various events
trigger, offering you 33 methods to choose from. You should save this reference away so it can be used in the
event methods that are subsequently called. For example:

procedure TSomeProfiler.Initialize(const pICorProfilerInfoUnk: IUnknown);
begin

CorProfilerInfo := pICorProfilerInfoUnk as ICorProfilerInfo;
CorProfilerInfo.SetEventMask (COR_PRF_MONITOR_JIT_COMPILATION);

end;

You initially request the appropriate event categories in ICorProfilerCallback.Initialize by passing the required
flags along to the ICorProfilerinfo.SetEventMask method.

Linking the profiler COM object to the protected assembly is easy and all you have to do is to create a process
object and set the environment variables for this process like this:

'Create Process
Dim PSInfo As New ProcessStartInfo(TextBox1l.Text)

'Initialize Profiler variables
PSInfo.EnvironmentVariables.Add("COR_ENABLE PROFILING", "1")
PSInfo.EnvironmentVariables.Add("COR_PROFILER", "{34F20DB8-FA3C-4356-945D-
5D7819E81C8B}")

'Start the protected assembly
Dim Pr As Process = Process.Start(PSInfo)

These lines of code are enough to start the profiling process, the first environment variable tells the CLR to
enable profiling for the process and the second variable is the globally unique identifier of this profiler COM
object in windows registry, so it guides the CLR to the correct profiler COM object to load and initialize.

3.2 HOW DOES THE PROTECTION WORK?

The basic idea of this protection is using two important events that the CLR notifies the profiler of, these two
events are:

= JITCompilationStarted: The CLR calls JITCompilationStarted to notify the code profiler that the JIT
compiler is starting to compile a function but the important point here is that the function didn't start

execution yet.

= JITCompilationFinished: The CLR calls JITCompilationFinished to notify the code profiler that the JIT
compiler has finished compiling a function; here the function has finished execution.

using .net profiling api for a custom .NET Protection by Kurapica

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

A

JITCompilationStarted

\4

Function executes

A\ 4

JITCompilationFinished

Basically this protection scheme consists of 3 files:

1- The Loader: it can be a simple console executable which job is to create the profilee process and
prepare the environment variables.

2- The Profiler DLL: which is an implementation of the interfaces | described earlier, you can use any
COM-enabled language like Delphi or C++ to write this DLL.

3- The Protected assembly: This is the assembly that we need to hide its MSIL to prevent

decompilers and disassemblers from reproducing the MSIL code in any higher level language like
VB.net or C# or even IL.

The beauty of this protection lies in the fact that the protected assembly can't execute on its own unless
loaded by the Loader, simply because the protected assembly code is nopped, all the MSIL code bytes are set
to 00 which means that nothing is executed, the task of the Profiler DLL is to interfere in the right time to
provide the original MSIL code to the CLR and then execution can go normally.

3.3 THE PROFILING APIS

The profiler DLL is made up of two main objects, the ICorProfilerCallback which is responsible for the events
triggering, i.e. it tells us when something interesting happens like when some method is about to execute or
when some exception is raised and many other events, the second object is the ICorProfilerinfo which is used
by a code profiler to communicate with the CLR to control event monitoring and request information

We are mainly interested in two API which are:

= Procedure GetlLFunctionBody(moduleld: ULONG; methodld: ULONG; out ppMethodHeader: PByte;
out pcbMethodSize: Ulong); safecall;

Retrieves a pointer to the body of a method starting at its header, a method is coped by the module it lives in,
because this function is designed to give a tool access to MSIL before it has been loaded by the Runtime, it

using .net profiling api for a custom .NET Protection by Kurapica m

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

uses the metadata token of the method to find the instance desired, this API is not actually used in our
protection but | mentioned here for relevance.

= Procedure SetlLFunctionBody(moduleld: ULONG; methodld: ULONG; var pbNewILMethodHeader:
Byte); safecall;

Replaces the method body for a function in a module, This will replace the RVA of the method in the metadata
to point to this new method body and adjusts any internal data structures as required, This function can only
be called on those methods which have never been compiled by a JITTER, this is the API that we will use to
replace the nopped MSIL code with the original code so that execution continues normally.

3.4 THE WORKFLOW

Clearly our job is to provide the original MSIL code just before the protected function is executed and if you
look at this figure you will understand when we have to do this task.

A\ 4

JITCompilationStarted

This event is where we test to see if we reached the
protected function, you can retrieve much info on current
method using certain APIs too, we will interfere here to

Function executes

\ 4

JITCompilationFinished

For increased security we can optionally nop the MSIL code

using .net profiling api for a custom .NET Protection by Kurapica m

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

3.5 IMPLEMENTATION

= The Loader : implemented in VB.NET here but you can use C# or Delphi.NET

Imports System.Runtime.InteropServices.Marshal
Imports System.Runtime.InteropServices
Module Main
Sub Main()
Try
'Register Profiler Library Classes in windows registry
RegisterDLL()

'"Extract Path of protected assembly which is supposed to be placed
in same folder

Dim xPath As New
I0.FileInfo(Reflection.Assembly.GetExecutingAssembly.Location)

'Create Process

Dim PSInfo As New ProcessStartInfo(xPath.DirectoryName &
"\ProtectedAssembly.exe")

'Initialize Profiler variables
ProcessStartInfo.EnvironmentVariables.Add("COR_ENABLE_PROFILING", "1")

ProcessStartInfo.EnvironmentVariables.Add("COR_PROFILER", "{C827957B-
A8EB-4CD9-BD38-FOCC9B1DB1ES}")

'Start Process

PSInfo.UseShellExecute = False

Dim Pr As Process = Process.Start(PSInfo)
Catch ex As Exception

MsgBox(ex.Message, MsgBoxStyle.Critical)

End Try

using .net profiling api for a custom .NET Protection by Kurapica

IF|F!TEF|‘I'I1 EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

End Sub

#Region "Register Profiler DLL"
<Runtime.InteropServices.D11Import("System.d11")> _
Private Function D11RegisterServer() As Integer
End Function
Private registered As Boolean
Friend Function RegisterDLL() As Boolean

If Not registered Then
If (DllRegisterServer() <> ©) Then
Throw New Exception("Couldn't register System.dll")
End If
registered = True
End If
Return registered

End Function

#End Region

End Module

using .net profiling api for a custom .NET Protection by Kurapica

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

= The Protection DLL : It's implemented in Delphi

unit SampleProfiler;
interface
uses

Windows, ActiveX, ComObj, BaseProfiler, CorProf, ComServ, Classes, Sysutils,
StrUtils;

type
TSampleProfiler = class(TBaseProfiler, ICorProfilerCallback2)
protected
procedure OnInitialize; override;
// COR_PRF_MONITOR_JIT_COMPILATION

procedure JITCompilationStarted(functionId: ULONG; fIsSafeToBlock: Integer);
safecall;

end;

const
// Update these constants for each new profiler
ProfilerCoClassName = 'Kurapica_ Profiler';

'Protection Profiler for .NET assemblies’;

ProfilerDescription
ProfilerGUID: TGUID = '{C827957B-A8EB-4CD9-BD38-FOCCI9BI1DB1E5}";

ProfilerClass: TComClass = TSampleProfiler;

implementation
var
// These are the original MSIL code bytes that we want to hide
ProtectedMSIL: array[0..201] of byte = (
$1B, $30,%04, $00, $BE, $00,$00, $00, $1E,$00,$00,$11,%$02, $6F, $39, $00,
$00, $06,$6F, $62,$00, $00,$0A, $6F, $63,$00,$00,$0A, $6F, $64,$00, $00,

$0A,$16,%$2E,$18,%02,%$6F,$37,$00,$00,$06, $6F,$62,$00,$00, $0A, $6F,

using .net profiling api for a custom .NET Protection by Kurapica

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

$63,$00,$00, $0A, $6F, $64,$00,$00, $0A,$16,$33,$02,$16,$2A,$73,$65,
$00,$00,$0A,$13,%$04,$11,$04,$72, $AE,$08,$00,$70,$6F, $66,$00,$00,
$0A,$73,$67,$00,$00, $0A, $0B,$07,$28,$68,$00,$00,$0A,$02, $6F,$39,
$00,$00, $06, $6F, $62,$00, $00, $0A, $6F ,$63,$00,$00, $0A, $6F, $69,$00,
$00,$0A, $6F, $6A,$00,$00, $0A, $0C, $02,$6F, $37,$00,$00,$06, $6F,$62,
$00,$00, $0A, $6F, $63,$00,$00, $0A, $28,$6B,$00,$00,$0A,$13,$05,$11,
$04,$08,$72,$D7,$0F,$00,$70,$11,$05,$6F, $6C,$00,$00,$0A,$0D, $09,
$45,$02,$00, $00,$00, $06, $00, $00, $00,$02,$00,$00,$00, $DE,$19,$17,
$0A, $DE, $15,$16,$0A, $DE, $11,$25,$28,$1D,$00,$00,$0A,$13,$06,$16,

$0A, $28,$21,$00, $00, $0A, $DE, $00, $06, $2A

procedure TSampleProfiler.OnInitialize;
begin
{Set events mask}
EventMask := COR_PRF_MONITOR_JIT_COMPILATION;

end;

procedure TSampleProfiler.JITCompilationStarted(functionId: ULONG;
fIsSafeToBlock: Integer);

var
// Variables to extract current method name and see

// if it's the protected method

using .net profiling api for a custom .NET Protection by Kurapica

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

ClassName, MethodName: WideString;
// Variables necessary to extract info about current method using the
// GetFunctionInfo API
ClassId,ModuleID,IToken:ULONG;
// Object to allocate memory for the orignal MSIL code
Ialloc : IMethodMalloc ;
// Pointer to ProtectedMSIL array bytes, used for copying memory
PprotectedMSIL : Pbyte ;
// Pointer to orignal MSIL location where we will copy the ProtectedMSIL
// to memory block
PtempMSIL : PByte;
begin
SyncEnter;
try
{Initialize variables}
ClassId:=0;
ModulelD:=0;
IToken:=0;
// Retreive information about current function
CorProfilerInfo.GetFunctionInfo(functionId,ClassId,ModuleID,IToken);
{Get function name}
if GetClassAndMethodFromFunctionId(functionID, ClassName, MethodName) then
begin
// Check if we are at "CheckLicense" method
If MethodName = 'CheckLicense' then
begin
//Alloc memory for new ILs

Ialloc := CorProfilerInfo.GetILFunctionBodyAllocator(Moduleld);

using .net profiling api for a custom .NET Protection by Kurapica

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

PtempMSIL:=Ialloc.Alloc(202);
//Copy orignial MSIL to memory
PprotectedMSIL:=@ProtectedMSIL;
CopyMemory (PtempMSIL,PprotectedMSIL,202);
// Set new ILs
CorProfilerInfo.SetILFunctionBody(ModuleID,IToken,PtempMSIL");
end
end
except
on E: Exception do
log(E.message);
end;
SyncExit

end;

initialization
TComObjectFactory.Create(ComServer, ProfilerClass, ProfilerGUID,
ProfilerCoClassName, ProfilerDescription, ciMultiInstance, tmFree);

end.

using .net profiling api for a custom .NET Protection by Kurapica

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

3.6 PREPARING THE ASSEMBLY:

The assembly that you want to protect can only be of type executable, all you have to do is to replace the MSIL
code in every important function with 00 bytes so that reflector or other tools are useless, here is an example
that | posted earlier in Crackme #18 which implements this protection effectively to protect one function
called "CheckLicense", the entire key generation process lies within this function so It's our target.

1. Build your Assembly using visual studio and keep a list of functions' addresses that you want to

protect.
WKurapica CrackME #1158 M=l
— License
Mame | Register |
key .

[T Mo Music

2. Next step is locating these functions in WinHex to nop their bytes, this entire procedure can be
automated using simple coding but | will explain my manual method here.

using .net profiling api for a custom .NET Protection by Kurapica

IF|F!TEF|‘I'I1 EZINE ISS5UE I'-.-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

CFF Explorer VIl - [CrackME .exe] [=l B3

File Settings 7

<> H

TS

=] EFile: CrackME .exe

— (& Dos Headsr

2] NtHeaders

12 File Header

=] Optional Header

[Z] Data Directories [x]
— (& Section Headers [x]
o Blmport Drirectory

— I3 Resource Directory

— Relocation Directory
— &= Debug Directon

2 MET Directony

|2 MetaData Headsr
12 MetaData Streams
(B

=) Tables Header
17 Tables

[Z] #SHings

12 #us

|2 #GUID

[Z] #RInb

— iﬁ-,.Addna:;s Converter
— ‘ﬁ, Dependency Walker
— iQj,-,Hex Editor

CrackME exe

7117 Module (1)
e-120) TypeRef (98)
e-10) TypeDef (15)
£-127) Field (78)
Mel

71-{) Param (49}
H-{0) MemberRef (147)
£1-{20) Constant (53)

e-127) Customattribute (111}
71123 FieldMarshal (1)

7-2) Standalonssig (907
£1-1.7) PropertyMap (7)
£1-120) Property (18)

71-{0) MethodSemantics (27)
71-127) ModuleRef (2)

7-5) TypesSpec (113

{23 Implap (16

£1-{27) Assembly (1)

e1-{0) AssemblyRef (5)
1-17) ManifestResource (5)
7-[5) MestedClass (5)

7-{) GenericParam (5)
71-{_7) Methodspec (4)

[

e [[[e [[e e [e e [- - -]

X

You can also use the classic method by finding the correct node of the protected function in ILdsam

then you can read the RVA value and convert it to a file offset like we did in most previous tutors, but
CFF explorer provides us with the RVA value directly by expanding the "method" table, now find the
"CheckLicense" node and read its RVA value.

CFF Explorer ¥ll - [CrackME _exe]

File Settings 7

=] EFile: CrackME. exe
F— = Dos Header

[Z] Wt Headers

=] File Header

|=] Optional Header
[Z) Data Directories [x]
— (& Section Headers [«]
— Eﬁlmport Directary

— () Resource Directory
— [Relocation Diirectory
— E:'Debug Directary

[.MET Directary

=] MetaData Header
(5] MetaData Streams
R

[Z] Tables Header
% Tables

[Z) #Strings

12 #Us

[= #GUID

[Z] #Blob

— iﬁ;‘.ﬁddnﬂm Converter

— ‘ﬁ, Dependency Walker
— aﬁ;‘Hex Editor
— 9, Identifier

I (=]

Crack ME exe b4

53 - (get_Labell) 2 [Member | Offset | Size Yalue

54 - et Labell] R [oon3zzon | Dwerd D003276C

55 - {get_Text_Key) Hor

56 - (set_Text_Key) ImplFlags 00032204 wiord anoo

57 - {get_Text_Name) Flags 00032206 ‘word 0o

56 - (set_Text_Name) Name 00032208 Word 0B7C

59 - (get_tCheckBox1})

60 - (set_CheckBoxl) Signature 00032204 Wwiord 0254

61 - (CheckLicense) ParamList ooo3z2DC ‘wiord 0029

62 - (CMD_Req_cClick)

63 - (Form_Main_Load)
64 - (Form_Main_Formdlc
65 - (PlayMusic)

66 - {(CheckBoxl_Checke
67 - (Main)

65 - (DRegisterServer)
69 - (Register)

70 - {get_ResourceManag
71 - {get_Culture)

72 - (set_Culture)

73 - {.cckor)

74 - {.ctor)

75 - (get_Default)

----- [Z] 76 - {get_Settings)

-3 Param (43

-3 MemberRef (147)

[-IL3) Constant (53) i

o T~ PR r]“\ ;rl .

using .net profiling api for a custom .NET Protection by Kurapica

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

4. Use the address converter function to convert this value to a file offset and open WinHex

The 12 shaded bytes are the method's header and should be left intact

00031760 |06 73 2F 00 00 OA &F 61 00 00 0A 2A 1B 30 04 00 .=/...ca...*.0..

nooo0z1770 (B 00 00 OO0 1E OO0 00 11 02 &F 39 00 OO0 0B BF 62 [3........ of9...0b
Qoo317&80 |00 00 0A 6F 63 00 00 0A 6F 64 00 00 0A 16 ZE 18 | ...oc...od......
nooz17%0 |02 6F 37 00 00 06 6F 62 00 00 0A &F 63 00 00 0O&A | .o7...ob...0c...
noooz17a0 |&6F 64 00 00 0&A 16 33 02 16 2A 73 65 00 00 DA 13 |od....3..%=3a....
noooz17e0 |04 11 04 Y2 AE 08 00 70 A&F &6 00 00 0a 73 67 00 ...r@8..peof...=24q.
Qoo317co |00 oA OB 07 25 &8 00 00 0OA 02 &F 3% 00 00 06 &F |....(h....0%...0
0o0o317p0 |62 00 OO0 OA 6F 63 00 00 OA 6F 69 00 00 OA 6F BA b...oc...o0l...o0]
noooz17e0 |00 00 0OA OC 02 6F 37 00 00 06 6F 62 00 00 OA &F | o7, .ok Lo
nooo03z17r0 |63 00 00 DOA 28 6B 00 OO0 0O&A 13 05 11 04 08 72 D7 (oo (k..o rx
noooz1s00 |0F 00 70 11 05 gF &C 00 00 0OA OD 09 45 02 00 00| ..p..ol..... E...
nooo0oz1s10 (00 06 00 OO OO0 0OZ Q0 0O OO DE 19 17 0A DE 15 16 | - T
0o0z18=z0 |0A DE 11 =25 =28 10 00 00 O0& 13 06 16 0&A 28 21 00 | .5.%(........ Ll
00031830 2 5

5. Select the method's MSIL code bytes and nop them

oooz1770 (BE 00 00 00 1E 0O 00 11 02 &F 392 00 00 068 6F B2 [%........ o9...0b
oooz17&80 00 00 0A 6F &3 00 00 0A oF 64 00 00 DA 16 2E 18 | ...oc...od......

ooo31790 |02 gF 37 00 00 06 6F 62 00 00 0OA 6F 63 00 00 0A | .o7...ob...ocC...
0oo317a0 |BF B4 00 00 0A 16 33 02 16 2A 73 65 00 00 0A 13 od....3..%=e....
ooo317e0 |04 11 04 72 AE 08 00 70 6BF 66 00 00 0A 73 &7 00 ...r®..pof...=4d.
ooo317co |00 0A OB O7F 268 68 00 00 OA 02 6F 39 00 00 068 B6F |(h....0%...0
000317p0 |62 00 00 0OA 6F 63 00 00 O0OA 6F 69 00 00 OA 6F GBA | b...oc...o0l...o0]
0003170 (00 00 0A OC 02 &F 37 00 00 O& &6F &2 00 00 0OA BF |..... o7...0b...0
000317F0 |83 00 00 0OA 28 6B OO0 OO0 O0OA 13 05 11 04 08 72 DY [eo.. . (k... ..., E%
oooz1so00 |(OF 00 70 11 05 &F &C 00 OO0 0OA OD 0% 45 02 00 00 | ..p..cl..... E...
ooo=z1s510 (00 Os OO0 OO0 0O 02 OO OO0 OO0 DE 1% 17 OA DE 15 16| TR PO
000=z18z0 |(0A DE 11 25 28 1D 00 00 OA 13 06 16 0A 28 21 00 | . &5.%(........ (L.
00031830 e - - - - - - -

6. There is a feature in WinHex that helps you rip the bytes to a Pascal or C source so you can paste the
original MSIL code directly as an array in your protective DLL, now overwrite these selected bytes with
00 byte and you are done.

7. After you nop the bytes you can sign your assembly with a strong name signature to add another
layer of protection.

using .net profiling api for a custom .NET Protection by Kurapica

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

3.7 CONCLUSION

Now we will talk about the Pros and Cons of this protection technique.

As you can see, using the profiling APls which are part of the .NET framework itself can ensure stability more
than other code hiding techniques used in commercial protectors like Maxtocode and CLI-Secure, you can use
this technique for all .net versions as long as you implement the profiler's COM interfaces correctly, another
point of strength is that If you use other supporting techniques like names obfuscation and control-flow
obfuscation then you will have a stronger protection in total.

The weakness of this protection is that it can impact the performance, the hook in the profiler can slow the
performance a bit since it has to check for every method being compiled, | used an explicit string comparison
to see if this is the right function to fill, in bigger application and when you have many protected functions you
can use a hash table to increase performance, but this is theoretically unnoticeable to humans, besides most
machines run on high clock rates nowadays.

Defeating this protection requires hooking the JITTER to dump the MSIL code just before it gets executed so
it's possible but it can be a hectic job if you add control-flow obfuscation, UFO-PU55Y's ILLY plug-in is a good
example for this.

3.8 REFERENCES

[1] The .NET Profiling APl and the DNProfiler Tool, Matt Pietrek, MSDN Magazine December 2001,
http://msdn.microsoft.com/msdnmag/issues/01/12/hood/default.aspx

[2] .NET Internals: The Profiling API, Brian Long

[3] The .NET Framework SDK Tool Developer Guide

3.9 GREETINGS

| want to send a special greeting to my friend in crime UFO-PU55Y for all the help and support he provided and
to all the following people with no particular order

LibX — Devine9 — revert — Apakekdah — Lena151 — Ntoskrnl — Shub-Nigurrath
And the following teams

RET - SnD — ARTeam — BI@ck Storm — ATARE — AORE — CiM ['” the Supplements folder “0.3 Kurapica”
you can find also the full crackmel8 used

here.]

using .net profiling api for a custom .NET Protection by Kurapica

http://msdn.microsoft.com/msdnmag/issues/01/12/hood/default.aspx�
http://forums.accessroot.com/index.php?showuser=239�

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

4 PRIMER ON REVERSING PALMOS APPLICATIONS EXTENDED EDITION BY,
WAST3D_BYTES, SUNTZU

4.1 FOREWORDS

| believe time has come for a new tutorial. This time we will leave the Windows and we will be transferred in a
new field.

Palm OS scene is active since a long time, releasing a lot of applications and with some important groups.
Applications are found a lot in the market. Some of them have been protected well and with nice tricks and
that will make our study more interesting.

For the Palm OS scene | have found a few tutorials the market is not so prolific. The majority (btw you can
consider all of them except 4) are not written in English. Most of these are simple so they will help us get the
basic idea and some of them are for advanced reversing.

| decided to take a trip to this world, by searching the tools which will help disassemble the programs, what
approaches we should follow and what we can do to create some patches so we can distribute them.

| started from scratch since | haven’t seen any discussion on the forums (or | have not seem/found them). This
is a special issue which includes various tutorials | wrote with different targets and different difficulty levels. |
know that some people who have better knowledge from me may laugh because of the simple approaches.

The tutorial will cover different issues:

* Some words about Palm OS Suntzu is author of a video

* The laboratory with our tools tutorial in the supplements folder

= Examples on real applications

4.2 FEW WORDS ON PALM OS

Since the introduction of the first Palm Pilot in 1996, the Palm OS platform has defined the trends and
expectations for mobile computing - from the way people use handhelds as personal organizers to the use of
mobile information devices as essential business tools, and even the ability to access the Internet or a central
corporate database via a wireless connection.

Palm OS 5, which has been available to customers for years, supports ARM®-compliant processors. Palm OS
Garnet is an enhanced version of Palm OS 5 and provides features such as dynamic input area, improved
network communication, and support for a broad range of screen resolutions including QVGA.

Palm OS Cobalt 6.1 is the next generation of Palm OS. It will enable the creation of new categories of devices

for the communications, enterprise, education and entertainment markets. Palm OS Cobalt 6.1 provides
integrated telephony features, support for WiFi and Bluetooth, and enhancements to the user interface.

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

http://www.palmsource.com/palmos/garnet.html�
http://www.palmsource.com/palmos/garnet.html�
http://www.palmsource.com/palmos/garnet.html�
http://www.palmsource.com/palmos/cobalt.html�

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

As with previous versions of Palm OS, Palm OS Garnet and Palm OS Cobalt retain application compatibility with
existing 68K-based applications.

Palm OS was originally developed by Jeff Hawkins for use on the original Pilot PDA by US Robotics. Version 1.0
was present on the original Pilot 1000 and 5000 and version 2.0 was introduced with the PalmPilot Personal
and Professional.

With the launch of the Palm Ill series, version 3.0 of the OS was introduced. Incremental upgrades occurred
with the release of versions 3.1, 3.3, and 3.5, adding support for color, multiple expansion ports, new
processors, and other various additions.

Version 4.0 was released with the m500 series, and later made available as an upgrade for older devices. This
added a standard interface for external filesystem access (such as SD cards) and improved telephony libraries,
security, and the Ul. Version 4.1 included a series of bug fixes.

Palm OS 1.0-4.1 were based on top of a small kernel licensed from Kadak. While these versions are technically
capable of multitasking, the "terms and conditions of that license specifically state that Palm may not expose
the API for creating/manipulating tasks within the OS.

Version 5.0 was introduced with the Tungsten T and was the first version released to support ARM devices.
Described as a stepping stone to full ARM support, Palm apps are run in an emulated environment called the
Palm Application Compatibility Environment (PACE), making the device capable of running software written for

older versions. Even with the additional overhead of PACE, Palm applications usually run faster on ARM
devices than on previous generation hardware. New software can take advantage of the ARM processors with
PNO (PACE Native objects), small units of ARM code, these are also sometimes referred to as 'ARMlets'. It was
also around this time when Palm began to separate its hardware and OS efforts, eventually becoming two
companies, PalmSource, Inc. (OS) and palmOne (hardware, now named Palm, Inc.). Further releases of Palm
0OS 5 have seen a standardised API for hi-res and dynamic input areas, along with a number of more minor
improvements.

Palm OS 5.2 and 4.1.2 (and later) also feature Graffiti 2. This is based on Jot by CIC.

Version 5.4 added the NVFS (Non-Volatile File System), and used Flash for storage instead of DRAM,
preventing data-loss in the event of battery drain. However, this fundamentally changed the way programs
were executed from the Execute-in-Place system that PalmOS traditionally used, and has been the source of
many compatibility problems, requiring many applications to have explicit NVFS support added for them to be
stable.

In December 2006, Palm (Hardware) paid $44 million to ACCESS for the rights to the source code for Palm OS
Garnet. With this arrangement, a single company is again developing palm hardware and software. Palm can
modify the licensed software as needed and it need not pay royalties to ACCESS over future years.

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

http://en.wikipedia.org/wiki/Jeff_Hawkins�
http://en.wikipedia.org/wiki/Palm_Pilot�
http://en.wikipedia.org/wiki/Personal_digital_assistant�
http://en.wikipedia.org/wiki/US_Robotics�
http://en.wikipedia.org/wiki/Filesystem�
http://en.wikipedia.org/wiki/Telephony�
http://en.wikipedia.org/wiki/Tungsten_T�
http://en.wikipedia.org/wiki/ARM_architecture�
http://en.wikipedia.org/w/index.php?title=Palm_Application_Compatibility_Environment&action=edit�
http://en.wikipedia.org/wiki/PalmSource%2C_Inc.�
http://en.wikipedia.org/wiki/Graffiti_2�

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

4.3 FILLING OUR REVERSING LABORATORY

Fortunately for us, some tools are in existence (debugger ©) which will make our life easier. We have the
option to crack the application with dead listing or with the live approach. Also we have in our hands an
emulator and we will load our programs.

Here is the approach that we will follow:
Choosing which PalImOS we will use

Install the software on our emulator

Wait till finishes

Find the correct patch

Change correctly the bytecodes, later more info

NouvpkwbdR

Test the application by loading into the emulator(or real Palm)

Repack the new .prc file to distribute our patched application

4.3.1 EXISTING TOOLS TO HANDLE PRC FILES

SouthDebugger: This debugger is Java-based and specifically designed for the Palm OS. This program has a
memory dump, trap breakpoints and a notes section. You can log addresses and register values. It will become
our Olly for Palm.

= PRCEdit: PRCedit is a graphical frontend for pilotdis and splitprc.

= PRCedit has an own splitprc built in but it still can use the original program.

= PilotDis: This Disassembler was originally created to overcome the "Crash" problem that "PilDis" had
when disassembling certain .prc files.

= Debuffer: We can analyze the alive code. Something like Numega Softice, but freeware edition.

= Palm OS emulator: We will load the applications to test like being our real palm.

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

4.3.2 PRC FILE STRUCTURE

Pocket Smalltalk generates .PRC (Pilot resource database) files which can be transferred to a PalmPilot for
execution. Resource databases consist of a list of arbitrary-length chunks of binary data, with each chunk being
tagged by a resource type and a resource ID. This document describes the resource types used to encode the
different parts of a Pocket Smalltalk program.

Since the compiled .PRC file contains everything needed for execution of the Pocket Smalltalk program, there
will be many resource records present in addition to those representing actual compiled Smalltalk source
code. These records include the machine language virtual machine, the icon used in the application launcher,
some PalmOS GUI resources, and so on. These resources will not be described here.

At the time of this writing, the Smalltalk portion of the compiled .PRC file will consist of one or more of each of
the following resource record types (some types are optional):

= CIsN - class name data [optional]

= ClIsO - class offsets

= ClIsD - compiled class and method data
= ObjD - statically defined objects

= SelD - symbol text data [optional]

= SysP - system properties

The resource record type is simply a 4-byte integer which can be conveniently represented as an ASCII string.
The resource record abstraction is supported by the PalmOS firmware.

Because of the possibility of memory fragmentation in the PalmPilot, each record is kept to a small size
(usually under 8Kk). If there is more data of a particular type than can fit in a single record, the data is broken up
into chunks and each chunk is assigned a consecutive resource ID. This is handled transparently by the virtual
machine.

4.3.3 THE CLSD RECORD

The most important segment type is the ClsD type. It contains the compiled form of classes and methods and
will usually make up the bulk of a compiled program. It has a somewhat complex layout, but it is logical and
efficient. At the highest level, it consists of a header followed by a body. The header has the following
structure:

= A 2-byte integer with the total number of compiled classes.
= For each compiled class, a 2-byte integer with the number of bytes taken by the compiled form of
each class.

Following this header are the compiled forms of each class. Note: if the ClsD segment needs to be split to avoid
fragmentation problems, the split will always occur between the end of one compiled class and the beginning
of another.

The compiled form of a class is, basically, a method dictionary. It encodes the selector/method associations of
a class. First are two bytes with the number of selectors defined in the class (not counting selectors defined in

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j
|

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

any superclasses). After this are pairs of 16-bit integers, with the first integer in each pair containing a selector
defined in the class, and the second integer in each pair containing the byte offset to the method for that
selector (the offset is from the start of the compiled class data, i.e., from the number-of-selectors word
above).

The selectors are sorted in ascending order. When looking up a method at runtime, a binary search is
performed (in contrast to the hash table mechanism used by other Smalltalks). In general, the binary search is
just as fast as a hash table (and faster for classes with large numbers of methods), and it saves space because
there are no unused slots.

After the selector/offset table come the instructions of the methods, one after the other. The methods are
completely linear; in other words, no "literal table" is needed. Therefore compiled methods need no extra
structure and need not be scanned by the garbage collector at runtime.

4.3.4 PALM OS OPERATING SYSTEM

In the world of win32 reversing on x86 architectures we have registers like EDX,EAX,ESP etc. Palm have 8 data
registers, these are: DO, D1, D2, D3, D4, D5, D6 and D7. We also have 8 address registers: AO, Al, A2, A3, A4,
A5, A6 and A7, where A7 (USP/SSP) works as a stack pointer. We are dealing with 68k assembly which has a
different instruction set, and the syntax is opposite of windows.

Examples for further comprehension:
MOV destination, source (Intel) corresponds to MOV source, destination
MOV EDX, ECX (Intel) corresponds to MOV ECX, EDX

Another thing you should be aware of is that on Palm the code "branches", while on windows it "jumps". The
only real difference is the name of the instructions.

4.3.5 OTHER TOOLS

PRCExplorer: Using this tool you can open any PRC file and navigate into it. You can see individual resources,
graphically display Forms and Alerts, Bitmaps, Fonts, ... This is useful to debug and develop your application as
well as analyzing PRCs.

Palm Debugger: Our second debugger. Manage all PDB data and Resources on-line from Palm device. Ideal for
debugging, analyze and fix problems. Get information about: Device resources: view statistics, software
versions, etc. DataBases: view, Sort and Print all data, size, version, and backup and records information.

You can Add, Delete, Modify or Search specific data. Applications: analyze structure, size, version, related
databases, date info and much more!

X-Master: X-Master is an extension manager similar to HackMaster, but it is designed to offer various technical
and user-interface improvements. It is fully compatible with HackMaster, all existing Hacks are supported, and

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

switching sets of active extensions is supported. Version 1.5 adds an improved interoperability with locking

apps like OnlyMe and more compatibility fixes. It will help a lot our prime debugger.

4.3.6 INSTALLING THE TOOLS

4.3.6.1 INSTALLING EMULATOR

We extract emulator from the zip/rar archive and we open Emulator_Profile.exe.

Mew Session

RO file palmosd0-en-m505. rom 7 |
Device Palm mA05 - | Cancel

Skin - Generic - |

RéM size 8192 - |

Figure 10 - Start Screen of emulator

Unfortunately, the package does not include the ROM file which you should download also. After pressing ok
we see how our palm is.

Set Date: |

Set Time:
5et Time fone:

Daylight Saving: « Off

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Figure 11 - The emulator and the menu

By pressing the applications button we see the menu (Figure 11). The menu only contains the starting edition
applications. The installation of the application now is simple. You just drag and drop them from your HDD.

54.3.6.2 INSTALLING PRC EDIT

We want to have a powerful Disassembler in our hands and in order to we need few additional things. Open it
go to options and you choose Disassembler options. Be careful with the installation of PilotDis because it can
cause some problems with long directories (see my configuration in Figure 12).

Options ['S__<| -

Sl Cuzstom opoodes]

General options

|Jse extemal SplitPRC I

Path ta Splitpre: | J
Path to PilatDis: | pilotdistpilotedis exe =
Fath to spstraps.tat: | spilotdishepstraps. bt @

Eutra pilotdis commands; |

] | Cahcel

Figure 12 - Installation of pilotdis to prcedit

As you see | have extracted somewhere on my HDD and i have make a link to them. Now our Disassembler is
ok so let’s start reversing...

4.4 REVERSING WITH PRCEXPLORER AND PRCEDIT
The moment has come to reverse a real application so we can have a better knowledge of these 2 great tools.

Basically the approach we will follow is the “dead listing” approach (we are going to use Disassembler). The
first application is a commercial one that has an easy protection. Moreover you are protected from viruses ;)

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

4.4.1 REVERSING THE FIRST APPLICATION: F-SECURE ANTIVIRUS 2.00

| have opened my Palm emulator and | have installed F-Secure antivirus (installation is done with by dragging
and dropping the .prc to the emulator screen).

@
@
=

Security ToDolist Welcorne -

Figure 13 - the installed Antivirus

| open the application and | take a nag screen (see Figure 13) that my program expires in 14 days.

F-5%ecure Anti-Yirus

You are running F-
Secure Anti-Yirus 2.0
evaluation version
which will run until

Jan 13, 2007 .

After evaluation period
you must purchase full
version.

Figure 14 - the limitation

Unfortunately there is no registration button. So we are going to remove the nag screen with the trial period.
Our next move is to open PRCExplorer so we can check what information we can obtain. After we had opened
file we find ourselves here:

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j
|

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

B - JR—

+- Talt (8) = fsaV-l:-c '

+ Thmp {3 =B Talt (8)]

¥ mdep(;)) 1000 {0:x03ed)

4 data (1) 1100 (0x04+4c)

+ tAIB (2} 1200 {0:x04b0)

+ EAIN (1} 1300 {00514}

1 LFRM {B) 1400 (0x0578)

+- ESTR (4) 1500 (0x05dc)

4 tver (1) 1600 {Ox0640)
1700 (0x06a4)

Figure 15 - The contents of the file

We are currently interested in the Talt section so click on that (Talt are resources which give important
information about target). Hopefully we can see it has only 8 resources which is good for us. A bit of searching
gives us an important resource

- Fsaw,prc)
5 Talt (8) Resource size; 174 bytes
1000 {0:x03ed)
1100 (D)
1200 {0x04b0) v i
ou are Funmning
1300 (00514 F-5ecure Anti-Yirus 2.0
1400 i evaluation version
hich will il
1500 {0e0Sde) P
1600 {00640 After evaluation period
1700 I:UXDE!EH:I you must purchase full
Th (3) version.
+ mp
+- code (2)

Figure 16 - Talt 1400 period of evaluation nag

We continue our search and we find another important resource

=] Fsaw prc)
- Talt (8) Resource gize: 199 bytes
1000 {0x0328)
1100 (0x044c)
1200 {0x04h0) F-Secure Anti-Virus
1300 {0x0514)

9 Your evaluation version
78) of F-Secure Anti-Virus

1400 {0x05
Sdch 2.0 has expired. Please

purchase full version

1600 {0=0640) from
1700 (Dx06a4) wunw f-secure.comswir
Th (3) eless
+ mp
+- code (2

Figure 17 - Talt 1500 nag application expired

So what is happening here? As we see in resource 1400 we see the starting nag screen about the
trial/evaluation period. In resource 1500 we find the expired message nag. We have obtained all our valuable
information so we can close PRCExplorer and we can go on with our Disassembler PRCEdit. Sometime it will

|Il

complain about opening other files. You have to press “yes to all” and we find ourselves here:

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

fsawpre fsaviep | fsavbins | GER1| LCR1 |

Figure 18 - What I’m seeing in our Disassembler

Now we have to go to alerts and search for resource 1400 and 1500

= % Resources
+--] Forms
=20 Alerts

+ #1000 17273

1100 Thiz application requires Palm0S 2.0 or later, Program will terminate,

1200 F-Secure Antiiruz iz infected.swmiv'ou must delete it manually,

1300 17273

1400 You are inning F-5ecure Anti-ins 2.0 evaluation version which will i untils

1500 % our evaluation verzion of F-Secure Anti-irug 2.0 has expired. Pleaze purchaze

1600 vou have succesfully regiztered F-Secure Antitius 2.0

1700 One or mare infections were found during zcan.\nl elete infected programs from yo

- [F
LR B

Figure 19 - Talt 1400 and 1500

As we can see all the nags/alerts are here. At first we will go to talt 1400. We see we can extend the tree (if
you cannot you have not done correctly the configuration of PilotDis)

= _.E.E Resources

+--] Farms
S Alerts

+- 4 100017273
1100 Thiz application reg
1200 F-5ecure Anti-ing
1300 17273

[
o

1400 %'ou are wnning F-S
] References
c¥ 00002002

Figure 20 - The important reference

Remember that for this program we will need the references only with the green arrow. We can see the right
window with the disassembled code. | am completely sure you do not understand anything

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

00002144 J£3cO575 MOWE.W #1400!'35578,
ooooz14s dedfzl94d aysTrapFrmcustomlilert
ooooz14e 4fefille LEL J0 (A7) A7
ooooz 150 4227 Lz8Z CLER.E — A7)

oooo2 152 45780008 PEL j0003.W
ooooz2156 45 6del95 PEL —5736 (L)
QO00z215a qedfa027 sysTrapMemiet

Figure 21 - The nag

The highlighted command is the point where our nag is appeared (the starting nag). We have to disappear it.
But how we are going to achieve that? | have already made a list with valuable opcodes.(it is included with the
68k in the supplements of this package). I'm going to explain the code but you need to study the commands
and the opcodes.

We have to remember the opcode the nag appears:

OPCODE HEX VALUE
MOVE .W #1400!$578, - (A7) 3F3C0578
sysTrapFrmCustomAlert 4E4FA194

Now we continue with the expired nag which has 3 references. We follow the reference 000020ea. If we think
logically we can understand that something decides if that nag will be executed or not. That must be a jump
(here branch). So we have to scroll up a little.

0000z 0de a6 i0a BEQ Lz79
0ooozZoen 5340 SUEBQ.W #1,D0
0000z 0ez aTas BEQ Lzg:2
ooo0z0e4d 5340 JUBQ.W #1,D0
oogdz0eda 6Tl BEQ LZ30
alae6 ERA LZ3z

3 F3 05 MOVE.W #H1500!'55dc,—(L7)

Figure 22 - Important code

If you get familiarized with the code you can see that also Figure 22 shows us the jump. Itis L279.

6 T0a 279
100020e0 5340 SUEQ.W #1,D0
Q000z0ed alac BEQ LZdzZ
1000z20e4 5340 SUBQ.W #1,D0
1000Z20e6 67l BEQ LzZ30
Q000z20ed G066 ERL Lzgz
Q000=202a8 3f3cO5de L2279 MOVE.W #1500!'3$5de, — (47)

Figure 23 - The jump that executes the command

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

The BEQ= Branch if Equal and it works like JE in Win32 platform. | am sure that you have thought already a few
ways of solving it but we are going to just keep it

OPCODE HEX VALUE

BEQ L279 670a

And we continue with the next reference which sends us here

ooooz 104 S544f ADDQ. W HZ, A7
0o00z 106 6710 BEQ L2511
2 f3c05do MOVE.W #1500!55de,— (A7)

0000210 qedfgl102 syaTrapFrmhlert

Figure 24 - Third Important location

As we can see above this command there is a jump (branch) which decides if the nag appears. If we change it it
will not affect us.

OPCODE HEX VALUE

6710 BEQ L281

We have explained above how BEQ works so we need to change it to jump always. Ok we have finished with
our nags. It’s time to go and patch the program now.

54.4.1.1 PATCHING THE TARGET

It's time to make the changes to our target. Go to fsav.prc window

fsav.prc | fsav.rcp | fsavbins | GCR 1] LCR1 |
0x0000: G673 6176 0000 0000 0000 0000 0000 0000 £SaV............

0z0010: 0000 0000 0000 0000 0000 0000 0000 0000 e e e ennsnns
0z00Z0: 0001 0002 BE19 8227 BB19 B2ZY 0000 oooo L...E.I'E.1'....
0z0030: 0000 0000 0000 0000 00o00 0000 6170 7O06C ... eeew. appl
0z0040: 4653 4156 0000 0000 0000 D000 OO1C B3RF FSAV.......... Co

Figure 25 - The start of the code

And now we are going to find our opcodes. We need to search and find the first opcode so do a Ctrl+F and fill
the opcode 3F 3C 05 78 4E 4F A1 94

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Nz2240: 3003 673C 5340 670A 5340 B676C 5340 6712 0.g<38@yg.S@gl3@y.
Nz2250: 6066 3F3C O5DC 4E4F A192 303C 3039 544F " £7<.aH0™"0<09T0
N=z2260: b06A 3F3C ODO0DE 4EBA 0Z86 3600 544F 6710 " 37<..HI.16.T0g.
Nz2270: JF3C 05DC 4E4F Al19Z 303C 1538 544F e04C 7« .gHO™70<.8T0°L
Nz2280: 486E FFE88 4EBA 0392 1F3C 0007 ZFZE FFBC HneIMI.".<. .- .=l
N:=2290: 1F3C 0019 456E FFE6 4EBA 0675 41FA 0034 <. .Hne{HI.xaAV.4
l=z22A0: 4850 41FA 0030 4350 456E FFEB 05745 HP&T.DHPHH'CH
N:z22B0: O01E 4227 4878 0005 486D Remi0o. .EB'Hx. .Hm

Figure 26 - Original code

We do not see any jump affecting us so the only thing we can do is to NOP the messagebox.

Ox2Z240: 3003 673C 5340 B70A 5340 676C 5340 6712 0.g<i@y.3@gl3ag .,
Ox2Z250: BOBE 3F3C 05DC 4E4F 21592 303C 3039 544F " f7< . GNO™ " 0<08TO
Ox2Z60: bOBA 3F3C O00E 4EBA 0286 3600 S44F 6710 "37<..MNI.16.T0g.
Ox2Z270: 3F3C 05DC 4E4F A19Y 303C 1533 544F 6040 Y<.gWO™"0<.8T0°L
Ox2Z280: 456E FF85 4EBA 0392 1F3C 0007 ZFZE FFBC HneINI.".<..-. el
Ox2Z290: 1F3C 0019 456FE FFEE 4EBA 0673 41FA 0034 <. .Hne{HT.xaAV.4
Ox2ZA0: 4850 41FA 0030 48350 436E FFE6 4EV1 4EF71 HPAY . OHPHne CHglg

0x22B0: 4E71 4E71 BFEF 001E 4227 4878 0008 486D MNgblglo..B'Hxz..Hm

Figure 27 - Modlified Code

We continue with the second location. This time search for 67 0OA. We land on here

0x2240: 3003 673C 5340 [Fgaljs340 6760 5340 6712 0.g<Sogfseylsay.
0x2250: 6066 3F3C 05DC 4E4F A192 303C 3039 S544F £7<.GNO™"0<09TO
0x2260: 6064 3F3C OO0OE 4EBA 0286 3600 S544F 6710 ~j7<..NI.16.TOg.
0x2270: 3F3C OSDC 4E4F A192 303C 1538 544F 604C 7<.aNO™’0<¢.8TO'L
0x2280: 486E FF88 4EBA 0392 1F3C 0007 2F2E FFBC HneINI.”.<../.sl
0z2290: 1F3C 0019 486E FFE6 4EBAZ 0678 41FA 0034 .<..Hne{NT.zAv.4
0x22A0: 4850 41FA 0030 4850 486E FFEG 4E71 4E71 HPAY . OHPHne ZHqhly
Ox22B0: 4E71 4E71 4FEF 001E 4227 4878 0005 486D NgMgOo..E'Hz..Hm

Figure 28 - Highlighted=original code

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

This jump needs to be noped because there are jumps after that they will not show us the nags.

0x2240: 3003 673C 5340 4E71 [340 B76C 5340 6712 0.g<SENgS@glS@y.
0x2250: 6066 3F3C 0SDC 4E4F 2192 303C 3039 S544F °£7<.aN0™ " 0<09TO
0x2260: 6064 3F3C DOOE 4EBA 0286 3600 S544F 6710 " j7<..NI.16.T0g.
0z2270: 3F3C 05DC 4E4F A192 303C 1538 G544F 6040 7<.aNO™"0<.8T0'L
0x2280: 486E FF86 4EBA 0392 1F3C 0007 2FZE FFSC HneINI.”.<../.el
0x2290: 1F3C 0019 456E FFEG 4EBA 0678 41FA 0034 .<..Hne{NI.xAT.4
Ox22a0: 4850 41FA 0030 4850 456E FFEG 4E71 4E71 HPAY . OHPHne {Hgllq
0x22B0: 4E71 4E71 4FEF O01E 4227 4878 0008 486D MNglgOo..B'Hx..Hm

Figure 29 - Second patch done

The only we need to do now is to find the third location to patch which is here

Dx2240: 3003 673C 5340 4E¥1 5340 676C 5340 6712 0.g<3@kgSEglSag .
Oxz2250: 6066 3F3C 05DC 4E4F A192 303C 3039 S544F " £7<.GMO™"0<09TO
OxZ2260: 606A 3F3C 000E 4EBA 0256 3600 S544F T3P NI L 16 TOR
Ox2270: 3F3C 05DC 4E4F A192 303C 1538 544F e04C V<. aMO™"0<.8T0°L
Ox2280: 486E FF8G8 4EBA 0392 1F3C 0007 2FZE FFGC HneIWNI. .<..-.=I
0x2290: 1F3C 0019 436E FFEG 4EBA 0678 41FA 0034 .<. . HneINT.zAV .4
Oxz22A0: 45850 41FA 0030 4550 486E FFER 4EV1 4E71 HPAY . OHPHn = {HgHg
Ox22B0: 4E71 4E¥1 4FEF 001K 4227 45875 0005 4860 MNgMgOo..B'H=. .Hm

Figure 30 - The third location original code

We need to modify this jump from BEQ to BRA so it is always jumping..

0x2240: 3003 6730 5340 4E71 5340 G7AC 5340 6712 0.g<S@EtlgS@glSay .
0x2250: GORE 3F3C 0SDC 4E4F A192 303C 3039 544F £7¢.aH0™"0<09T0
O0x2260: GOGA 3F3C 000E 4EBA 0286 3600 S44F f010 “j7?<..HI.16.TO 0.
0x2270: 3F30C 0SDC 4E4F A192 303C 1538 S44F 040 7<.§HO™70<.8T0°L
0x2280: 48GE FFA8 4EBX 0392 1F3C 0007 2F2E FF8C HneINI.”.<..~ .=l
0x2290: 1F3C 0019 486E FFEG 4EBEZ 0A78 41FAZ 0034 .<..Hne(NI.z&v .4
0x22k0: 4850 41FA 0030 4850 48RE FFEG 4E71 4E71 HPAT . OHPHn e {Hghly
0x22B0: 4E71 4E71 4FEF 001E 4227 4878 0008 486D NgMgOo..B'Hz..Hm

Figure 31 - Fully patched code

Now save your file with the modifications. | saved it as fsav.patched.prc

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

54.4.1.2 TESTING THE TARGET

Load your palm and install the patched target.

Emes o TS
& @ i

Clock DateBook Expense F-SECURE'E e jre Anti-Vins
v @ @ for Palm 0%
i 2000 - 2001
F-Secure AV HotSync Tlail F-Secure Carporation

Security ToDolist Welcome -

Figure 32 - Patched target loaded
Now open so we can test our work..

We fully patched the application...Congratulations

4.5 REVERSING WITH POSE AND SOUTHDEBUGGER

This time we will reverse another commercial application but with a completely different way. We will use the
live approach.

4.5.1 REVERSING THE SECOND APPLICATION: TEALDOC 6.77

Install application and see how it behaves

Teull}m: W All {02 Docs
LUnlocking Tealloc

Palrn O% Ernulator

Enter the kew wou received after
registering wour copy of Tealloc,

If wou've upgraded fram Teallac S
or earlier, enter wour ald
registration key first,

[Gk][cancel | [Keyboard]

Figure 33 - Registration Box

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

To find the registration you have to click menu in your palm OS emulator when you have loaded the program
and you will see the register option. Let’s try registering it..

W il {03 Docs

¥ Mo matches in locationscategaty

Registration Key Invalid

Make sure the HotSync
I "Palm O% Ernulator’
ratches the one you
submitted when you
purchased the product.

Figure 34 - Invalid registration

It’s time to run our Debugger. His name is SouthDebugger and he is a shareware for unlimited time. It will
replace Olly in Palm. To run South Debugger you need the java environment. SouthDebugger is being
developed in java so you click on the jar file to run him.

= southDebugger v1.7 - CSCPDA "

southDebugger v1. 7

{c) 2001 by Jens Bruhn
MO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DAMAGES WHATSOEVER ARISING OUT OF THE USE OF OR INABILITY T USE THIS PROGRAM.

This program is cracked. Ifyou are using this program, you should register immediately. This program is
unrestricted and time unlimited. Registration will give you free updates and support. Contact
debugoeri@iensbruhn.de for more information or visit hitp: e jenshruhn.der

Support shareware with registration! Thed

http: fnani JEnshruhn de

Please enter machine's IP, on which emulator is running: [127.0.0.1

Figure 35 - SouthDebugger Start Screen

SouthDebugger has reached edition 1.7. It has an annoying nag and the “unregistered” word at the top bar.
Well we could reverse it because | do not like unregistered tools but it is not in the purpose of this tutorial
(moreover CSCPDA already patched it). SouthDebugger needs help from another program called X-Master.
There are some events that are generated by the program. It is X-Master that generates these events and
keeps POSE blocked. Think what happens to Windows and Olly during debug. Also SouthDebugger connects to
the machine’s IP. So press “connect” and goes to X-Master.

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Figure 36 - X-Master Installed

So we have installed X-Master (I hope you remember that it is done by drag and drop). Load it in POSE and
SouthDebugger becomes green. When it becomes green we execute POSE.

= southDebugger v1.2 - UNREGISTERED
File Execution Window Help

EEEE cEEIE @O

This is a nag-screen! Please register...

Please vigit hitpo s jenshruhin.del for mare

informations.

Oo0cc72e 7001 MOWEQ #31, DO

Figure 37 - SouthDebugger

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

ARTEAM EZINE ISSUE T

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Now we have to press the execute button. It is the F5

*= southDebugger v1.2 - UNREGISTERED
File Execution Window Help

EEE=<E cE =S Q@

This is a hag-screen! Please register... 3
Please visit hitp: st jenshrubn.del for more

informations.

waiting for breakpoint..

joocc726 7001 MOVEQ #31, 00

Figure 38 - SouthDebugger Executed

And we see in the POSE screen. The red light in the debugger means that the debugger is not in "contact" with
the emulator, while the green one means we have "contact". As long as the green light is on we can't do
anything in the emulator, we can set breakpoints in the debugger.

50ft Reset (1)

The handheld will be
reset now toactivate
X-Master.

Figure 39 - The reset

Before this you may see a notice for restarting X-Master. Just press ok.

Palm 05 Emulator

H-Mazter [1.0] just called Palm 05 routine 'SpsSetTrapbddress"
Applications should not call this function because it is reserved for
apztem uze anly. Ehug

Figure 40 - The Error

This is an error created by application. The X-MASTER acceded to the SysSEtTrapAddress function. Press
continue.. And we continue reversing. What are we going to do? We will obtain a serial for our name. How is
this done? This is done by some functions. In Win32 platform we have the api like GetDlgltemTextA,
GetWindowTextA. That palm functions do not have names in windows but their names can describe well their

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

functions. A function that almost always usually works in PALM is sysTrapSrtCompare that as they will occur
account serves to compare text chains. We go in SouthDebugger > Window - New window breakpoint.

= southDebugger v1.2 - UNREGISTERED
File Execution Window Help

hih=

breakpoints
cond. trap breakpoints |
breakpoints |/ trap breakpoints

O
Ol
=]
Ol
il

Figure 41 - Breakpoints Window

We are not interested breakpoints but we want trap breakpoints.

breakpoints :
cond. trap breakpoints |
breakpoints r trap hreakpoints

[b

Lel]

Figure 42 - Trap Breakpoints

By getting into to the X-Master the breakpoints are being “not set”.

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

ARTEAM EZINE ISSUE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

- southDebugger ¥1.2 - UNREGISTERED
File Execution Window Help

==

NOP

=]
T
=]

breakpoints

cond. trap breakpoints |
‘ hreakpoints |/ trap hreakpoints

ZET
SET
ZET
SET
ZET

Figure 43 - “Not Set” condition

The trap breakpoints are a lot but for this one application we will use SysTrapStrCompare. | am quite sure that
you will be asking yourselves why | used that. It is a common breakpoint in Palm that checks for the serial.
Remember that the only way to learn the breakpoints is experience.

[ROEZ]
[ROBA]
[AOEE]
[AROEC]
[AOBED]
[AROEE]
[LOEF]
[A0CO]
[AOCL]
[AOCZ]
[ROCZ]
[2OC4]
[AROCE]
[AROCE]
[AOC7]

I TADES] =ySlrapoYy=SL1DFemowes

find:| systrapstr

sysTrapiysLibThlEncry
sysTrapSy=sLibFind
sysTrapSysBatteryDhialog
syTsTrapSysCopritringPesource
sysTrapivysEernelInta
sysTrapSyshaunchConsole
sysTrapfysTinerbeleate
sysTrapSysiecbutolffTine
sT=TrapiysFornPointerdArrayTolftrin
sysTrapiysRandon
sysTrapSysTaskSwitcching
sysTrapSysTinerPead
sysTrapitrCopy

sy=sTrapStrCat

sysTrapStrlen

[ROCE]

sysTrapitrConpare

[aOC3]

[b

sysTrapStrITolk

Il | 1]

[4]

4
N8 sysTrapStrCompare

set remove cancel

Figure 44 - Breakpoint List

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu m

=]
ARTEAM EZINE ISSUE I?J

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Only we need to do is click set (it is like setting a breakpoint in Olly with command bar).

* southDebusgger v1.2 - UNREGISTERED
File Execution Window Help

==

bhreakpoints

cond. trap breakpoints |
breakpoints r trap breakpoints

[ADCE] sysTrapStrCompare

HOT ZET

HOT ZET

HOT SET

HOT SET

Figure 45 - Breakpoint is Set

We click F5 (execute in SouthDebugger) and we are in the window of X-Master. We return to the applications
and we get into the TealDoc Options and we register again until it breaks on SysTrapStrCompare.

NOTE: If the SouthDebugger stops before arriving at the register window then you press F5 until you reach
there.

In this program you have to press many times F5..

= southDebugger v1.2 - UNREGISTERED
File Execution Window Help

t=it=

breakpoints

cond. trap breakpoints |
hreakpoints |/ trap breakpoints

[A0C8] sysTrapStrCompare

| b

NOT ZET

NOT ZET

NOT ZET

[4]]

NOT ZET

Figure 46 - Green Light

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu Keo]

IF|F!TEF|‘I'I1 EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Finally we broke on registration. The bar of SouthDebugger informs us where the breakpoint has stopped.

DO07AEOE 4E4FAQCE TRAF #1515F, #41160!5A0C8 [svsTrapStriompare]

Figure 47 - Our breakpoint

In our case the breakpoint has stopped in 7ABOE and the opcodes of this instruction are 4E4FAQC8. The last
part is the instruction. Now we have to go to this place we click on the button with the icon of NOP.

EE=<E CE B @@

' new DISASSEMELER window |

main

Figure 48 - Second button right to left

Now we can see the part of the comparison.

disassembler

dechex [000VAAFE ﬁ ‘@ ‘« }> }»

address | ascii | hex | command notes
Q007LAFE N© 4EEE UNLE LE
O007AEOD Hu 4E7E ETS
Q007AEDZ NV 4EEE0000 LINE LE, #30
Q007REQE f. ZFZEOOOC MOWE.L #LlE1$CiAE), —-(A7)
Q007REQL /. ZFZEO00S MOVE.L §$S{A&), — (A7)
ooo07AElE MO 4EEE UNLE AG
Al Al A2 A3 Ad A5 A6 A7 PC
Do D1 DZ D3 D& D& D6 D7 usp

[0007AAF2-0007ABD2]:

Figure 49 - Compare routine

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu BsIekE

!HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Now we have to load trap stack which will give all the important information.

Window | Help

manage workspaces...

new hreakpoint window
new register window
new logging window

| new trap-stack window
| new notes window
 new step spy window

new disassembler window
new memory dump window

Figure 50 - Trap Stack Window

Now we click and we open trap stack window and we see that our serial is compared with the string debug
(Figure 51). I have the sense that it is not what exactly we want.

oo b 4
trapsta[:k oo XA
Int16 StrComparefconst Char *s1, const Char*52}|

madifyer type narme valle info
const Char *z] 0000CEES 1EIF1Z12121E1E1E
const Char *=E OO0EFDEE LEETIG

This function is nat full implermented yet. | till need full reference lists...

Figure 51 - Our serial compared

Well I do not believe that our correct serial may be the string DEBUG. So press once more F5.

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu iy

!HHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

trap stack
nt16 Strzomparefconst Char*s1, const Char *s2)

rmodifier trpe name vallue info
const Char *z] O000CEES 1E1E12121212121%
const Char =z QO0&FDED HTIhdcd

his function is nat full implemented yet. | still need full reference lists..

Figure 52 - Again our serial compared....

Now our serial is compared with the string XUJh4c4. Is it our real serial?

54.5.1.1 TESTING THE TARGET

Press F5 and go to the registration box..

Teull}m: W All {0} W Docs
Unlocking Teallac

Falrn 0% Ernulator

Enter the kew wou received after
registering wour copy of TealCuoc,

If wou've upgraded from Tealloc &
or earlier, enter wour ald
registration ke first,

[&K) [<ancel | [Keyboard |

Figure 53 - Serial we found

Press ok and see

- Thank ¥ou

30-Day Fasskey

@ Accepted. Please enter
wour long term passkey
within 30 days=

Figure 54 - Registered

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu Ik}

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Congratulations...We cracked that application and we can use it forever...

4.6 ADVANCED REVERSING

In this chapter of tutorial we will discuss applications which have a more complex protection system and they
need more thinking from the other applications. In my opinion we will get a clear image of what is happening
to Palm OS. We will use a combination of tools to reach in the final result. If you want to follow this tutorial be
sure you have understand the approaches used in the previous chapters.

4.6.1 REVERSING THE THIRD APPLICATION: 300 BOWL

We examine the application to see the limitations

You ara playing an unragistarad
varsion of 300 Bowl. ¥ou will
ba limited fo 20 runs {pxifing
to anothar palm application and
resstarting 300 Bclwlljcnunls as
a mm and allows 5 frame
ames, one playsr or varsus
Lha compular.

You may play as many 3 frame
games as you like sach run.

Figure 55 - Limitations

We fill the registration box

300 Bowl Registration 300 Bowl Registration

Enter vour unlock code Enter your unlodk code
Hotzwnc Lser IC Hotswne Lzer (D
PALMOSERUL 1212121212 PALMCSERLIL 1212121212

Flegse vizit Jasoniaaldrnan.com Flease vizit JasonGoldran.com
to purchase your unlock code 2
and enable all features of the game

Crerna lirpited to & frarmes and 1 player
Cverna runs rermaining: 19

. | Register .

Figure 56 - Invalid Registration

@ Incorrect code antered.

We open PRCExplorer and we look for the talt. Fortunately they are only 14..

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu BsIeZ}

ARTEAM EZINE ISSUE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

[=] 300BawlHighColor . pre .
- MBAR (1) Resource size: 50 bytes

=1 Talt {14}
- 1000 {0x03e8)
- 1001 {0x03e9)
- 1002 (0x03ea)

Mot Registered

1005 (0x03ed)
1006 (DXDSBBJ @ Incorrect code entered.

- 1007 {0x03eF)
- 1008 {O0x03F0)

Figure 57 - Talt with invalid registration nag

So we close the PRCExplorer and we open PRCEdit. Remember to say “yes to all” to Disassembler window.

El% Resources

----- 1 Forms

= 2 Alerts
----- #1000 This device does r
#1001 This wersion of 300
#1002 Thank you faor regiz
= 4 1003 Incorect code ente
I H_l References

Figure 58 - The reference

We follow to the right window so we can check the code

TrapFrmiler
E. W #1io000!

TrapFrm&ot

Figure 59 - The code

That’s all the important code (I'll copy and paste so | can comment on him)

00000684 4e90 JSR (A0Q) s;verification routine

00000686 4a2a2000cC TST.B 12(A2) ;registration ok?

0000P68a 671e BEQ L55 ;not. follow L55

0000068c 3f3cO3ea MOVE.W #1002!$3ea,- (A7) ;if registration ok go on

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu B0}

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

00000690 4e4fal92 sysTrapFrmAlert ;show talt window registration fine
00000694 3f3c03e8 MOVE.W #1000!$3e8, - (A7)

00000698 4e4fal9b sysTrapFrmGotoForm

000069 C 4ledfb74 LEA -1164(A5),A0

00000620 117c00010001 MOVE.B #1,1(A0Q)

00000626 6000ff34 BRA L52

000006aa 3f3c@3eb L55 MOVE.W #1003!$3eb,- (A7) ;if registration invalid go on
000006ae 4edfal92 sysTrapFrmAlert ;show talt window registration invalid
000006b2 6000ff28 BRA L52

000006b6 4240 L56 CLR.W D®o

TST.B 12(A2) ;tests byte to be A2+12
BEQ L55 ;it goes to L55 if test ok(A2+12=0)

We go to SouthDebugger and we press connect. Then we go to trap breakpoints and they are in “not set”
condition. Remember the X-Master plugin we used and the whole approach to reach the “not set” condition.

It should be followed again. And you should reach here

||nd: systrapfrma|

LELZLT FEITEpFINM-ETUBTECT I

[4122] sysTrapFrumGetObjectType -
[A153] =sysTrapFrmGecObjectPrr
[A154] =ysTrapFrmHidedbject

[A15E8] =ysTrapFrmfhowilbject

[412E8] sysTrapFrmGetObjectPoszition
[4127] sysTrapFrmietObjectPozition
[A1588] sy=TrapFrmGetControlValue
[21589] sy=TrapFrmBetControlValue

[A1584] sy=sTrapFrmGetControlGroupSelectio
[L18E] sy=TrapFrmietControlGroupSelectio
[A158C] sy=TrapFrmCopyLabel
[L158T] sy=TrapFrmEetlabel
[L15E] sy=TrapFrmGetLabel
[L18F] sy=sTrapFrmiBetCategoryLabel
[2190] sy=TrapFrmGetTitle
[2191] sy=TrapFrmEetTitle
[A19%] sy=TrapFrmblert
I []

1]
AEN sysTrapFrmalert

‘ set H remaowve || cancel ‘

[4]

Figure 60 - Breakpoint List

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu B3

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

We follow the previous method with the reset of the Palm OS and continuous breaks till we reach the
registration button. We break here:

00022096 4F4FA193 TRAP g1515F, #41362 152703 [svaTrapFrmilert]

Figure 61 - Location we broke

oo0gzner H. 4E90 J5R (A0}

0002EDEE I* dAazA000C0 TET.B FlzlsClAE)

ooo2zpiz o. E71E EEQ §30!51E ;O008ZD32

o00g:zn74 T SF3CO3ZEL MOWE_T1 FlO0z123EL, - (A

ooo2EDIe HO. . 4E4FR13E TORATD FLlLEI4F, #413€E140198 [sysTrapFrmblert]
ooo2zpC Tl ZF3CO2ES MOWE. g1l000!ls3E2, (A7)

ooo2zDe0 HO. . 4E4FL13E TORATD FlEI2F, #4137114019E [sysTrapFrumFotoForm]
ooo2zDad At 41EDFE74 LEA f-1lled!y-42C{AL) AD

ooogznas S 117C00010001 MOVE_E g51, #E1lian)

0002EDEE) E000FF24 EDn f-z04!12-CC 00022004

0oo2zpaz Tl ZF3COZEE MOWE. F1l0021$32EE, -(A7)

Figure 62 - The important location (see Figure 59)

Now you have to set the breakpoint to the JSR (= call in Win 32) command so right and activate breakpoint.

o00gzner M. 4E90 TSR (a0

O002zDEE I* dAzA000C0 T2T.EB #lz s CLAE)

ooogzpiz o. &71E EEQ #30!¢1E ;00082032

000gzn74 T AFICO3ZEL MOVE T #1002 1 $3ELA, - (AT)

ooogzEDIe NO.. dE4FR12E TRAD #lE12F, H41362130159% [sysTrapFrmilert]
ooozzpic Tal. 2F3CO2ESR MOVE. W #1000 $32E2, -(AT)

ooogznen NO. . 4E4FL1SE TRLP #1515F, #4137113819E [sysTrapFrmGotoForm]
ooo02zDed P 41lEDFE74 LEAL #-1l&d!2-d2C (A5, RO

ooozzpes - 117C00010001 MOVE.E #:1, #:1{A0)

O0008zDEE : SO00FF34 BRL #-204 1 5-CC ;00082CC4

ooo2zDaz Tal. 2F3COZEE MOVE. W #1002 ! $#32EE, -(AT)

Figure 63 - New Breakpoint location

F5 and click on the invalid registration nag. Then click again register and you land on the location as in the
Figure 63. Then click F8.

000S0E4S 4ESEFFAC LINE AG, #-84'5-54

Figure 64 - New location

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu By

lHHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Here is our new location 00080E48. We go back till we find that address.

O0020E4:2 IRt dEEEFFAL LINE he, f-8d1:-Ld

O0020E4C H..%2 42ET71CEE MOVEM.L A47A27RZ2/DE/D4/D2, - (A7)
O0020EED G..h 47EDFLES LEA #-272c 12 -ES2(AL), AZ
O0020EE4 J-.. dLFLCA0C TET.E #-ld0e8 13 -36F4 (AE)
O0020EES q. &71E EEQ #20131E ;00020E7S
O0020EER J+ dLFBEOOOC TET.E #1213 C(AZ)

O0020EEE
O0020E&D
O0020E&4
O0020E&S
O0020E&C
O0020ETE
O0020ET4
O0020ETS
O0020ETA
O0020ETC
O0020E20D
O0020E2E
O0020E24
O0020E2E

718 EEQ #24!5158 ;00020EVE
ALFLCR0D TET.E H-1l40e7 13 -36F3 (AL)
7000222 EEQ #904153238 ;O000211EE
Z0EDESA MOVEA.L #-E7z24!$-1c6EC{AL), AD
D1FCO00000EE ADDA.L #2elsbe, A7

4E30 JEL (400

0000272 ERL #2281$378 ;O000211EE
4ZA77 CLE.L - AT

4ZA77 CLE.L - AT

4LEEFFED LEA #-80!f-E0(Ase) . AZ
ZF0a MOVE.L AZ, - (A7)

4ZA77 CLE.L - AT

4ZA77 CLE.L - AT

4ZA77 CLE.L - AT

Figure 65 - The important subroutine

We observed the routine which is called by sysTrapDIkSyncinfo that returns the hotsyncname. Palm has
something called HotSyncID, it is in a way the name of your Palm. All Palms have an ID like this. The majority of
programs have a registration routine where the serial is generated from your HotSynclID, so HotSynclID is kind
of like a username. That means a serial working for your HotSyncID won't work on other Palms than yours. It’s
time to get back to the PRCEdit without closing SouthDebugger (I had closed it and broke on
systrapdlkgetsyncinfo). And we have to search the trap. So search for Getsync and you will find it in
code0002.bin.s

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu I}

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

00000s68 d4edfaZad

000DD&a6e 4243 CLE.W D3

00000a6e 4z242 CLE.W DZ

0000Da70 4fef001S LEL Z4(L7), A7
00000274 4%9edcS0d LEL —14067 (A5, Ad
000DD&a7E 4alz TST.E (A2

00000aT7a 673e EEQ L75

000DDaTe 2Zda MOVEL.L AZ, A1
00000aTe 4leeffdd LEL —40 (AG) , AD
000DDaS2 12312000 L71 MOVE.B O0O(i1,DZ.W),D1
00000aS6 1001 MOVE.E D1,D0
000DDaS8 O600Ef9f ADDI.E #-97'-361,D0
000008Sc OcOO00019 CMPI.E #25!519,D0
00000290 6208 BHI L7z

00000892 O601ffen ADDI.E #-32'-%20,D1
0000Da96 s000000e BRL L73

00000a%a 1001 L7z MOVE.E D1,D0
0000Da9: O600EfhE ADDI.E #-65'-541,D0
0000080 0000019 CMPI.E #25!519,D0
000D0Daat 6206 BHI L74

00000sas 11813000 L73 MOVE.E D1,0(A0,D3.W
000DDaaa 5243 ADDOQ.W #1,D3
00000sac S5Z42 L74 ADDO.W #1,DE
000DDaae 4a312000 TST.E O(Ail,DZ.W)
00000shE 6706 EEQ L75

00000skd Ocdz000b CHMPI.W #11'$h,DzZ
00000shE 6fcE ELE L71

Figure 66 - The location

All the code in Figure 66 is of major importance. Here are the checks for our serial. In line 00000ab4 checks if
our name is smaller than 12 characters. A few lines below we have the important check although. Also you
should observe that we have many jumps in this part of code. Many checks? We will see.,.

00000&akbhd Q420000 CHPI.W #11!'%b,D2

00000&akhE afcd ELE L71

O0000&aba Q430001 L75 CHMPI.W #1,D3

00000&akhe neia BGT L7a

Qo0o00&c0 1d7c0041££45 MCOVE.B #e5'541,-40 (L&)

O0000&ace 1d7c0042 ££49 MOVE.B #He6!$42, -39 (LE)

O0000&aco 1d7c0043ffda MOVE.B #67'543,-38(LE)

O0000&adz 1d7c0044ffdh MCOVE.B #65'544, -37(LE)

00000&ads 1d7c0045ffdo MOVE.B #69'545, -36(LE)

00000&ade 1d7c0046ffdd MOVE.B #70'546,-35(LE)

00000&aed diZeffde CLE.E —-34(ha)

00000&aes Tala MOVEQ #6,0D3

o0000&aea 3403 L7a MCOWE.W D3, DE

Oo0000&aec Q420000 CHPI.W #11!'%b,D2

ooooo0atfo aels BGT L73

oooo0afa 4leeffds LEA —-40 (A} , A0

oooo0atfe 1llbc0O0422000 L7Y MOVE.E #66!5%42,0(A0,D2.W

oooo00&atfo 5242 ADDQ.W #1,D2

Oo0o00atfe Q420000 CHPI.W #11!'%b,D2

Q0000kh0z affz ELE L77
TPc0001000c = MOVE. B

Figure 67 - A check

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu BEIE]

IF|F!TEF|‘I'I'I EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Now we have to analyze the code down from L78. In this line we see the instruction MOVE.B #1,12 (A3).
Although except for this “mov” there is one also...

177c0001000c L75 MOVE.E #1,12 (A3)
4al4 TST.E [A4)

AT76EE BEQ L&5

05300335 CMPI.W #51!3%33, (A3)
A704 BEQ L79

4zzZp0o00e CLE.E 1z (A3)
Oceh003 90002 L75 CMRI.W #57!'539,2 (L3)
6704 EEQ L&0o

4zzpo0oc CLE.E 1z (A3)
Oegh003 40004 LSO CHMPI.W #52!'534,4(43)
6704 EEQ L&l

4zzpo0oc CLE.E 1z (A3)
Degh003 60006 L51 CHMPI.W #54!536,6(43)
6704 EEQ Lz

4zZzp0o0oc CLE.E 12 (A3)

Degkh003 00005 L&z CMPI.W #45!'530,8 (43)
6704 EEQ La3

4zZzp0o0oc CLE.E 12 (A3)

Oegh0035000a L&3 CMPI.W #56!'538,10(43)
6704 EEQ LE4

4zZzp0o0oc CLE.E 12 (A3)

4azh0o00c L&4 TST.E 12 (A3)

671a EEQ L&5
1b7e0001e50e MOVE.E #1,-14086(45)

Z06dead MOVEL.L —-5724(AL5), L0

dife00000056 LDDA.L #56!556, 40

4280 JSR grAnj]

61l00fe70 ESER La&7

6000025 ERL Las
Pe0001000c) MOVE.B #1,12 (43)

Figure 68 - Second mov instruction

These 2 instructions are the same. We can check it with SouthDebugger. Execute till the point | am with F7
(remember that F7 does not get into call and does not follow jumps). You must be here

O0020ES4 E. 4247 CLE.L - (47)

OO020ESS E. 4247 CLE.L - (A7)

e e e e e T ey
OO0230ESC EC 4743 CLE.TI o3

OO020ESE EE 4Z4Z CLE.T Lz

Oo020ESD 0. 4FEFOO0L1S LEA g241518 (A7), A7

OO020ES4 I... 43EDCI0D LEA #-14057 1 -26F2(AL) . Ad

Figure 69 - Our location

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu kK]

IF|F!TEF|‘I'I1 EZINE ISS5UE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

From that location you have to trace again with F7 till here:

O0020ESE EE 4F4F CLE.TT DE

ooo20E20 0. 4FEFOO1= LEA #24 1212047, AT
00020E24 I... 43EDCS0L LEA #-14067 1§ -26F2 (AL) | A4
ooo20E2: I. 4A1E TET.E (AE)

O0020ESL o= &73E EEQ #6Z!1$3E ;00020EDA
00020E2C "I EE4R MOVEA_L AZ, A1

O0020ESE AL 41EEFFL& LEA #-40ts-za (A&, LO
O0020ELE i 12312000 MOVE.E #s0(n1, D2y, D1
O0020ELE .- ool MOVE.E 1, oo

00020ELS . QO&00FFSF ADDI.E #-571s-cl, DO
O0020ELC . aCoooals CMPI.E #2E1£1%, DO
00020EERD b G202 EHI #+8 s00020EEA
O0020EEE e O&01FFEQ ADDI.E #-3E1s-z0, D1
O0020EEES) &000000E BRA #l4!12E ;00020ECE
O00020EBL .- o0l MOVE.E 1, oo

00020EEC . O&00FFEF ADDI.E f-E6&ls-41, DO
o0o20ECO . aCooools CMPI.E #ZE1£19, DO
00020EC4 b GEOE BHI #5& s00020ECC
O0020ECE .. llzlz000 MOVE.E D1, #F0(AD D32
O0020ECA RC LE43 ADDQ . TT f:l, D2

00os0ECE kE LE4E ADDQ.T #31, D2

O0020ECE Jl. 44312000 TET.E #30 (AL, DEZ)
O0020EDR: . 70 EEQ #$& S000S0EDA
00020EDR4 .EB QC4Z000E CHPFI.W #1l1!3E, D=
O00s0EDRS o. sFC2 ELE #-5elF-38 ;00020EAZ
O0020EDRA .C oCc4z0001 CHPI.W #31, D=

Figure 70 - Executed code

From here you hit once the F8 because we want to follow that branch (=jump) and you land here:

000Z0EDRE n* SEZA EGT F4Z!F2A ;O000S0F0OA
00030EED - 1DYCO041FFDe HMOVE.E geSlial, £-40!5-28 (48]
00030EE& - 1D7CO04ZFFDS MOVE_E feelias, f-3915-27(A8)
00030EEC - 1DYCO043FFDA MOVE._E #e7 1343, £-3815-26 (48]
O0020EF:Z - 1D7CO044FFDE MOVE_E feslidd, f-371§-25(Ag)
00020EF: - 1D7CO045FFDC MOVE.E feolzdb, f-36lf-Z4(Ae)
O0020EFE - 1D7CO046FFDDr MOVE_B #7014, $-3E15-23(Ag)
00020F04 E_.. 4>7EFFDE CLE.E §-34 1§22 (AB)

ooozoFos . TE0E MOVEQ #3e, D2

| e) T R e |

Figure 71 - The new location

Now we only need to trace with F7 until the second mov command to see if the byte in register A3 is 01.
Remember it. And finally we are here

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu BlkE

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

000s0FEe g. &704 EEQ #34 ;00020FLC
000s0FEs E+ dzzBO0O0OC CLR.E Fl2!FC(AT)

000S0FEC .k QCeEOOzZ0000s CHPI.W #451530, E3T0AZ)
000s0Fe2 g. &704 EEQ #34 ;00020Fc2
00030F&4 E+ 4z7BO0O0OC CLE.E F1Z!FCIAT)

00030F&es -k OCEEOOZ30008 CHPI.W #o6!538, FLO!IFA(AS)
00030F&E . &704 EEQ #54 ;00020F74
000s0F?0 E+ 4z7BO0O0OC CLE.E F1Z!FCIAT)

00030F74 I+ 4AFROO0OC TET.E F1Z!FCIAT)

00030F7s . &71A EEQ gze!51la 00080F54
O0030F7A - 1E7COO0LCS0E MOVE.E f£31l, #-1406613-36F2 (A5
000s0Fs0 ST . Z06DE3LG MOVER_ L #-572415-165C(AL), &O
00030Fs4 .- D1FCO000005s ADDA_L #861556, A7

00030FSA . dE20 JER (A0

ooos0FeC a E100FE70D EZL f-4001%-190 ;00020DFE
oo0s0F=20 . EO000ZEC ERA fe0dlgzEC 000211EE

Figure 72 - The instruction we wanted

Now do a right click, select new memory dump window and go to register A3.

memory dump [A3]

4
00007218 i K[| P @

address | 0|12 3/4/58|[6|7]5] 9|1n|11|12|13|14|15| astii |
Qo0a7E1s 00 21 00 2Z 00 31 00 32 00 31 1.2l 201 2000 _
Qo00a7Ez5 00 08 00 04 00 04 Q0 21 01 321 00 Qo oo 15 oo 13 1...... B

oooo7Ezs 00 1 00 15 00 15 oo 15 QOO0 15 o0 15 oo 1B oo 1&
Qooo7E4s 00 00 00 00 00 00 a0 00 00 00 00 00 00 ad o0 00
oooo7Z252 00 00 00 00 00 &C OO0 00 OO0 0l 00 01 o0 o0 00 o0 i 1
ooo07Z2es 00 00 00 00 00 00 o0 00 00 o0 00 00 00 00 00 00,
oooo7E7e 00 00 00 00 00 00 o0 00 00 o0 00 00 00 00 00 00,
oooo7z2s 00 00 00 00 00 00 o0 00 OO0 o0 00 00 00 00 00 00 —

OO00737=92 00 a0 o0 00 00 00 00 a0 00 a0 a0 a0 o0 00 000 bl
Al a1 a2 A3 Ad A5 Ab A7 PC
Do D1 D2 D3 D5 D5 D D7 usp

Figure 73 — 12" byte

As you see the 12th byte is 01 so till here our registration is correct. So what we think now? After the first and
the second mov instruction there are some CLR.B 12(A3) which will zero the Test. B and the L55 will be
executed and we take invalid message. Now I'll list the CLR.B 12(A3).

00000Cc40 422bB00OC CLR.B 12(A3)
00000Cc8e 422bBR0OC CLR.B 12(A3)
P0000cdc 422bB00cC CLR.B 12(A3)
00000d28 422bB00cC CLR.B 12(A3)
P0000d7a 422b006C CLR.B 12(A3)

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu kWi

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

0000edc6 422boL0c CLR.B 12(A3)
00000b14 422b006C CLR.B 12(A3)
00000b20 422b0O00C CLR.B 12(A3)
00000b2c 422beeec CLR.B 12(A3)
00000b38 422b006C CLR.B 12(A3)
00000b44 422bo00C CLR.B 12(A3)
00000b50 422b000C CLR.B 12(A3)

54.6.1.1 PATCHING THE TARGET

Now we have to patch all CLR.B 12(A3) by NOP. Firstly we locate the patches

OxzzC440: 7C00 4eC9 353F 7C00 1AC9 3A0C eADO 0301
0z2C450: 6066 0C3BE 7CFF ECCSY 3838 7C00 1ACY 3AZ6
Oz2C460: ZEFF F424 BEFF F&4E 5E4E 754E Se00 OO01F
Ox2C470: 3C00 013F 3C00 1448 eDF1 683F 3C00 0142
0z2C480: 672F 3C42 7752 4D4E 4FAZ D44E SE4E 754E
Oz2C490: S5eFF FC3D 7C0O0 1AFF FELIF 3C00 0145 BEFF
Ox2C4a0: FE48 eDF1 6842 672F 3C42 7732 4D4E 4FAZ
0zzC4B0: D34E SE4E 754E 56FF AC43 E71C 3347 EDF1
Oz2C4C0: Bad4h ZDCY ODCe7 1E4A ZEOO OCe7 ls4h ZDCY
Ox2C4D0: 0DeY 0003 ©5z0 eDE9 A4D1 FCOO 0000 Se4E
OxZC4E0: 9060 0003 7842 AY42 AT745 EEFF BOZF OA4Z2
Oz2C4F0: AT742 A742 AV4E 4FAZ A947 43472 424F EF0O0
Oz2C500: 1549 EDCY 0D4A 1267 3EZZ 4A41 EEFF DE1Z
0x2C510: 3120 0010 0106 OOFF 9FOC 0000 1962 0806
OxzC520: O1FF EO60 0000 OE10 0106 OOFF BEOC 0000
Oz2C530: 1962 0611 5130 0052 4352 4Z24A 3120 0067
Ox2C540: Oe0C 4200 0OBeF CgOC 4300 01eE ZA1D 7COO
0xzC550: 41FF D81D 7C00 42FF D91D 7C00 43FF DALD
Oz2C560: 7CO0 44FF DE1D 7CO0 45FF DC1D 7CO00 46FF
Oz2C570: DD42 ZEFF DEY6 Oe3d4 030C 4Z00 OBRE 1241
0x2C580: EEFF D811 BCOO 4220 0052 4200 4200 OBeF
OzzC5%90: Fz17 7C0O0 0100 0C4a 1467 660C 5300 3367
Oz2C5a0: 0442 ZBOO DCOC eBOOD 3900 0Ze7 0442 ZEOO
Ox2C5B0: 0OCOC eBOO 3400 047 0442 ZBOOD 0OCOC eBOO
OxzC5C0: 3600 067 0442 ZBEOO 0OCOC eBOO 3000 0867
0z2C5D0: 0442 ZBOO 0COC eEOO 3500 0Ae7 0442 ZEOO
Oz2C5E0: 0C44A ZBOO ODCe7 1A1B 7CO0 01CY DEZ0D eDEY
Ox2CS5F0: A4D1 FCOO 0000 Se4E 9061 OO0FE 70e0 0002
OzzCeO0: 5C17 7CO0 0100 0C4z2 4342 4442 4595 CA4Z
Oz2Ce10: 4249 EDE9 9C435 EEFF DS10 3120 0048 501D
Ox2CezZ0: 40FF AF30 40D6 4545 F280 0036 4z20C 4200
0xzCh30: OBRF Ee74 0132 0306 4100 9443 EEFF DE10
Oz2Ce40: 3120 0048 801D 40FF AF30 40D8 4845 FZ280
Ox2Ch50: 0056 420C 4200 0OBeF E&Y4 0Z06 4400 E7V43
Ox2Ce60: EEFF DE810 3120 0048 501D 40FF AF30 40DA

Figure 74 - Original code

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu Bk}

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Now I'll show you the patched code..(Figure 75)

Ozz2C5A0: 044E 714E 710C BEO0 3900 0Ze7 044E 714E
O0z2C5B0: 710C eBOO 3400 0467 044E 714E 710C BBOO
O0z2C5C0: 3600 0667 044E 714E 710C 6BO0 3000 0867
Oz2C5D0: 044E 714E 710C 6BOO 3500 0ARY 044E ¥14E
Ox2C5ED: 714A 2B0O0 0OCe7 1A1B 7C00 01CY OEZ0 BDES

Dxz2C6C0: C910 ZEFF AF48 8050 SFBEO 5367 044E 714E
DzzCeD0O: 7130 04C1 FC1l4 7BE4Z 4045 4032 00ER 4130
DzZCeED: 0474 OFE4 &052 40C3 FCOO 8430 4490 C132
DzzCeFO: 0530 01C1 FCee 6742 4045 40E4 40E4 6190
0xzzC700: 4130 402F 0848 BEFF AF4E 4FA0 C910 ZEFF
0x2C710: AF45 8050 SFBEO eBOO 0267 O44E 714E 7130
Nxz2C720: 05C1 FC14 7B42 4048 4032 O0E6 4130 0574
0xz2C730: OFE4 6092 40C3 FCOO 6430 4590 C132 0830
0xz2C740: 01C1 FCAe A747 4048 40E4 40E4 6190 4130
0xz2C750: 402F 0848 BEFF AF4E 4FA0 C910 ZEFF AF48
0xz2C760: 8050 SFED &BEO0 0467 044E F14E 7120 54D1
0xz2C770: FCOO 0010 eC48 7800 e4ZF OA4E 9050 8F32
DxzzC780: 00C3 FCOOD 6454 C13Z2 0AZ0 O1C1 FChbE &742
0xz2C790: 4045 40E4 4074 OFE4 6190 4130 402F 0548
Nxz2C740: BEFEF AF4E 4FAD CH10 ZEFF AF48 8050 8FEO
0xz2C7B0: 6BOO 0667 044E 714E Y151 4406 45FF De30
0xz2C7C0: 04C1 FC14 7B42 4048 4032 O0E6 4130 0474
0xz2C700: OFE4 6092 40C3 FCOO 6493 4132 0430 01C1
0xz2C7E0: FCRB 6742 40458 40E4 40E4 6190 413530 402F
0xzzC7F0: 0548 BEFF AF4E 4FAQ0 C910 ZEFF AF458 3050
0z2C800: SFEO 6EBOOD 0867 0O44E 714E 7130 05C1 FC14
DzzC310: 7B42 4045 4032 00E6 4130 0574 OFE4 e092
0x2C6820: 40C3 FCOO 6494 4132 0530 01C1 FChh B742
Dxzz2C830: 4045 40E4 40E4 190 4130 402F 0548 BEFF
Dxzz2C840: AF4E 4FAD C910 Z2EFF AF48 8050 SFBO &BOO
Dxz2C0850: DARY O44FE ?IEE 7161 DOFC 124C EE1C 38FF

Figure 75 - Modified code

Save the new prc file...

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu B}

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

54.6.1.2 TESTING THE TARGET

Figure 76 - Registered version

As you see we cracked that difficult target..

4.7 CONCLUSIONS AND FURTHER READINGS

This tutorial just covers an introduction to reversing Palm OS applications and it’s tools. | had given practical
examples which will help you start learning and advancing.

There are not much *public* tutorials in that field but from my searching | got that tutorials which the basic
idea:

= http://www.quequero.org/store/palmos/introduzione.htm

= http://www.quequero.org/store/palmos/opcodes.html

= http://www.quequero.org/store/palmos/tetris.htm

= http://www.quequero.org/store/palmos/fnox.htm

= http://www.quequero.org/store/palmos/willypmos.htm

= http://www.quequero.org/store/palmos/linee guida.zip

= http://www.quequero.org/store/palmos/xgrimator.html

= http://www.quequero.org/store/palmos/epokh serialfishing.html

Also Quequero page includes some of the tools for the others you have to search google , yahoo etc..

= http://www.quequero.org/store/palmos/tools/emulatore.zip

= http://www.quequero.org/store/palmos/tools/pilotdis.zip

= http://www.quequero.org/store/palmos/tools/PRC2BIN.zip

= http://www.quequero.org/store/palmos/tools/rom palmllixe.zip

= http://www.quequero.org/store/palmos/tools/MsgSrc.zip

= http://www.quequero.org/store/palmos/tools/debuffer.zip

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu BEEE

http://www.quequero.org/store/palmos/introduzione.htm�
http://www.quequero.org/store/palmos/opcodes.html�
http://www.quequero.org/store/palmos/tetris.htm�
http://www.quequero.org/store/palmos/fnox.htm�
http://www.quequero.org/store/palmos/willypmos.htm�
http://www.quequero.org/store/palmos/linee_guida.zip�
http://www.quequero.org/store/palmos/xgrimator.html�
http://www.quequero.org/store/palmos/epokh_serialfishing.html�
http://www.quequero.org/store/palmos/tools/emulatore.zip�
http://www.quequero.org/store/palmos/tools/pilotdis.zip�
http://www.quequero.org/store/palmos/tools/PRC2BIN.zip�
http://www.quequero.org/store/palmos/tools/rom_palmIIIxe.zip�
http://www.quequero.org/store/palmos/tools/MsgSrc.zip�
http://www.quequero.org/store/palmos/tools/debuffer.zip�

IF|F!TEF|‘I'I1 EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

In Russian we have a tutorial from TSRH

http://www.sendspace.com/file/jvxopi

In English

http://www.reteam.org/papers/e38.pdf

4.8 GREETINGS

My greetings are sent to ARTeam, SnD, ICU, TSRH, exetools, unpack.cn, crackmes.de, Virus2qpl and Shub-
Nigurrath. Also | want to thank a friend who always reads beta versions. Off course everyone who has read till
here, after a long and difficult tutorial.

[In the Supplements folder “0.4
Wast3d_Bytes” you can find also:

® A video tutorial from Suntzu about
“Nag screen & Limit Removal and
Preregistered Patching (How to
Patch Word Monaco 1)”. Thanks
him for this contribution.

® The method to directly patch

applications on the palm, see the
file

Patching_on_palm_in_a_snap.txt]

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu BEEI3)

http://www.sendspace.com/file/jvxopi�
http://www.reteam.org/papers/e38.pdf�

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

5 REVERSING THE PROTECTION’S SCHEME OF ALEXEY PAJITNOV’S GAME DWICE BY
GYVER75

5.1 INTRODUCTION

Who has never played with Tetris? This’s my favourite game, i should stay hours and hours in front of my 17”
monitor to rotate and drop its Tetraminis! So, to satisfy my curiosity, i have searched others Alex Pajitnov’s
game and i have found this game producted by WildSnake Software House: Dwice.Well, in a one word: it’s a
drug! The Tetris’s father has mixed very well the ideas that stay behind of its most popular game and ...
Mahjong!!! There’s only one problem: it’s a demo that requires a serial number to activate its full functionality.
So, why not to reverse it? Furthermore, the only patch distribuited on the Net doesn’t work (forgot
somethings Team DIGERATI?), then | conviced myself to write this tutorial for the ARTeam, i hope to like it and,
as always, sorry for my bad english.

5.2 TARGET AND TOOLS USED TO REVERSE IT

These the tools used:

= Target: Alexey’s Dwice; you can found it at: http.//www.wildsnake.com/puzzle/dw/

= Tools: OllyDbg v1.10, the most powerful ring 3 debugger; RDG Packer Detector and CFF Explorer. |
spend a few words to a useful plugin written by Scherzo for Ollydbg: LCB Plugin. As you know, Olly
stores the information of a debugged program (i.e breakpoints,comments but also path of debuggee

file) in a proprietary format: .Udd file; so, when we change any its‘parameter’, (i.e we uninstall the
prog or simply patch it), we will lost anything! Instead, LCB plugin allows to import and export
comments and breakpoints of a debug’s session in a external file; in other words, any change we do
on the program under debug, is indipendent by the machine where the prog itself is installed! So,
thanks to this feature, | was able to reverse this game in differents PC without to lose data or
comments.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 kW,

http://www.wildsnake.com/puzzle/dw/�

| =
ARTEAM EZINE ISSUE I'-.-"

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

5.3 ANALYSIS

First of all, before to start with Ollydbg, we should examine the victim to find any “attack’s point”:

s oTedns
-3 e0aEs
W ozee
wdae cane
QY

1. T oblair regizraton inlamaton
Pﬁhﬂwﬂrﬁ Buthors bealows. Thiz mall open Irdsmet beowsss window.

ollows nsinections 10 iceys License Code,
I]uyl]‘:i\d]

2 Whenyou havs registersd, enber your regstistion infomation bebo.

PrE R
After click hers, [
if gopears
DiclogBox fo [Coenee Tode
register the |
product!

[or | cCoal | Olrdres Holps
¥
We can put g bregkpoint in the API

GelliglhtemTextA fo frace the inputs and find
check’s roufines!

As you can see above, the registration’s scheme appears very simply; clearly, if the target were packed, first of
all we should unpacked it. So, to check this, | use RDG Packer detector, but obviously, you can use any other PE
analyser:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

RD@Packer Detector v0.6.5 5E)
G:\ProgrammivwildSnake Software\Dwice'dwice exe m

Microsoft Visual C++ 6.0 Compilador

Nada Detectado

Posible
T Al Frente [

ommlliih Detecter I
@ frchivo Escaneado en 2.785eg O M-A & M-B m‘

RDG CryptoDetector vO 2 -)

CREC32 JURCE2] % Offsct OxbD/ogl
CRC32 [CRC32] x Offzet DDy FBAD

CRC32b [CAC32] = Offset Ox1BBEED

RLINDAEL [Encriptacion] % Offset OxD9DE1

ZLib = Dffset DxEN991

Algoritmos detectados S

|

G:vProgrammiVWwilds nake Software\Dwice\dwice exe

(Amnalizado en 25 Seq.

[E:\Programmitwids nake S cltwae\Dwice\dwice. ewe]

Fortunately, this program isn’t packed or compressed; furthermore, it was written in Visual C++ and uses some
crypto algorithms... have you seen RDG CryptoDetector recognizes RIJNDAEL signature? Not worry, Crypto
scanners are useful tools but not always say the true!! Infact, | used also the Crypto scanner module of
SND_Reverse Tool v 1.4 and, in this case, the only signatures identified were the CRC32 hashes.

Well, we can make us (in reality, we must!! ;)) many other questions, i.e. how many sections have the
program, where’s the entry point, which libraries are imported or what ‘s the resource’s identifier of
dialogbox’s template seen above, but for all these questions there’s only answer: CFF Explorer (Thanks Daniel
Pistelli, aka NtosKrnl).

After this static analysis of the prog, we can finally fire up our favourite debugger: OllyDbg; i configured it as
Lenal51 has suggested in her video tutorials, without any hiding plugins; only in this way we can learn

somethings!

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 REKE]

ARTEAM EZINE ISSUE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

These are my settings:

3= Debupging options |Y

Coermands | Disasm | CPU | Regoters | Stack | Ansheis1 | Analpesis 2 | Analpeis 3 |
Secuity | Debug | Everts Ewcepbone | Trsce | SFX | Swings | Addesses |

¥ Igriue memony access viclations in EERNEL32

Igreate: [pass 1o prograem] lollowang excephions:
[T INT3 beasks

[Single-step bieak

H Debupging options

Secuiky | Debug | Events | Ewcepions | Teace | SFX | Stings | Addesses |
Comenant: | Disasm CPU | Registess | Stack | Arayeis 1 | Anaysis 2 | Anaheie 3 |

™ Memcsy access violstion [T Syncheonize scusce with CPLU
[T Integer division by 0 [+ Undesine forps

[~ Irvesbd o privilaged instction ¥ Show drection of pamps

[~ ANFPU exceptions ¥ Shew jump path

: 2 ¥ Show graved path ¥ jumg is rof Laken
[Igrode also following cushom exceptions o langss:
¥ Show pmps b seleched command

iz Debugging options W Certer Follow'-ed command

Commands | Disasm | CPU | Registess | Humbes of visible ines after stepped command [Delsd =
Secuty | Debug E | Exception: Letier key n Ditassembles shals
S —————————— Mlakoe firsl ponses ab € Heow labal
| ™ Sysem brsskpoint & Assembin
€ Entty poind of main modus " Hew comment
& winkain [f bocation i kncownil £ Dbect of lost selected hpe
[Break on nsve moduls [DLL) !J
[Break onmodule [DLL] unloading =
[~ Break onnew teead
™ Bresk onithead snd
[Bresk on debug shing
= OK_] Undo | Cancsl
— =55 e e

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

lHHTEHm EZINE ISS5UE IU]

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

5.4 IDENTIFICATION OF CHECK’S ROUTINES

Having loaded Dwice under debug, i searched for all intermodular call and | put a INT 3 breakpoints on 2 API:
DialogBoxParamA and GetDIgltemTextA. So, after clicked in the ‘REGISTER button’, | have landed immediately
in these pieces of code:

PUSH 0 lParar HULL

FUSH dwice.00412CR0O DlgFroc = dwice.00413CRO
MOV EDXK,DWORD PTR DS: [ECK+2E0]
PUSH ZDX

FUSH dwice.004FD3L1C plexplats "REGISTERDIALOG"
PUSH EZAX hinst => HULL

CALL HEAR DWORD FTIR DS: [<&USER3Z|WDialogBoxFaramh

.

ES5I,DMCRD PTR S58: [ESP+C) Case 1 of switeh 00415D92

EDI,DWORD PTR DS: [«<&USER3Z.G¢ USER3Z.GetDlgltemTextl
¥ FCount 52 (82.)

H dwice.004F1020 J r = dwice.004F1020
3EB 51ID 3E8 (1000.)
MEAR EDI GetDlgltemTexth
&2 fCount 52 (82.)

J5H dwice.04F1220 Buffer = dwice.004F1220
3ES ContzoallD 3E3 (1001.)

H ESI
MNEAR EDI terlaxth
dwice 00425840 This Sub analyses the 'Hame®: Remove from chis empry

dwice. 00425330 This Sub analyses the 'Hame": Remove fzom this DIGIT
duwice . 00425R20 This Sub analyses the 'Serial'; take of this only dig]
1 R t =1

H ESI nind

WEAR DWORD PTR DS: [<&lSERAZ [Er‘.d:;a:_:g
EDI
EAX, 1
E5I

Figure 77.

As you can notice, Ollydbg gives us many information: name of Dialog template (REGISTERDIALOG) and,
expecially the DialogBox Procedure localized in the memory’s offset at 00419CAOh. Here, the target stores the
License Name and License Code in two buffer long 82 bytes (respectively, at the offset 004F1020h and
004F1220h). After the last indirect call used to invoke the GetDIgltemTextA, we can see 3 strange calls:

il WP First call simply removes space’s chars at the beginning of License
CALL dwice.00425830 ‘ Name buffer; also it substitutes the spaces in the middle with only
00415DF0 | (CHE dwicse 00425RZ20 .
one space char, for example see Figure 78.
License Name Dwice.004F1020h

G)
[y
ey
on
9
4
i
on

Figure 78. You consider the underline chars as simply spaces.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Xl

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

The offset 004F1020h is the end of a String buffer that begins at the address 004FOFEOh:
'9V4BKI6UVYQACMYEXMABTBZAUQGBWMBYELHLSO7Z50PO23LWFT3ZREDSMHNOSLII *; so, as side effect,
the License Name is appended at the end of this “Hash String”.

Second call copies the chars stored at the offset 004F1020h in new buffer at the address 004F1120h; also, it
removes the digit chars of the previous buffer, see Figure 79.

Dwice.004F1020h Dwice.004F1120h

Figure 79.

Third call simply converts the chars of the License Code stored at the address 004F1220h in uppercase chars
(‘" >N,y ->Y).

Clearly, | exposed only the results of these calls; if you are interested in tracing there, load my comments
exported through Scherzo’s plug in, you can found it in the src folder with the plug in itself (I anyway suggest
you to read this tutorial with these comments, because each procedure mentioned here, was described in
depth!). As final result, | did a snapshot of the memory’s block from the address 004FOFEOh to the address
004F1230h:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 ¥

ARTEAM EZINE ISSUE IUJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Hex dump ASCIT
359 56 34 42 45 4% 3& 55|56 59 51 41 43 4D 535 45| SV4BEIeUVYQRCMYE
58 4D 41 42 54 4z SR 41 55 51 47 42 57 4D 4z 59 | HMRBTERBZRAUDEEWME
45 4C 45 4C 53 4F 37 5& |35 30 50 4F 32 33 4C 57 |ELHLSOTZS0POZ3L
4 54 33 S5A 52 45 44 53 4D 48 4E 30|38 4C 42 49 | FT3ZREDSHMHNOSLJII
004F1020)47 79 7& &5|72 37 25 00)oo-o00 00 0:100 Lafaialal GGlever?S

O04FI0OE0| 00 00 00 OO|00 00 00 00|00 00 OO0 OOy00 00 00 OO - - ________..__._
a0 o0 o0 00|00 00 OO OO0 00 00 00 OOWOOD 00 OO0 OO0 __ ___ ________.___

a0 00 OO0 OO|0OO Gp OO0 OOD|00 OO0 OO0 OO|0O0 OO0 00 OO0 ... Q- ____J1___
00 00 00 00|00 of o4 jgASP NGME WithouFerhpty - [----- -
oo 50 og oo og of SPEESHIEs the tesUlt DI CALL |1

00 00 00 O0|00 Op OO0 OO0 00*0d OO0 00700 o0 oo - - = - - 8- --_-_-1___
00 00 00 00|00 O o S St _ _ . _ . ..

00 00 00 00|00 00 00 OO0 1||caccoccancacal -oo
00 00 00 00|00 00 00 OO0 0 Gt - - -
00 00 00 00|00 00 00 OO0 1Y||caccoconcacaacos

00 00 OO0 00|00 00 OO0 OO0 00 00 00 00|00 00 00 00| - e e e e e e e e e -
a0 o0 o0 00|00 00 OO OO0 00 00 00 00|00 00 OO0 OO0 - ________._____
a0 o0 o0 00|00 00 OO OO0 00 00 00 00|00 00 OO0 OO0 - ________._____
Jo0 o0 o0 00|00 00 OO OO0 00 00 00 00|00 00 OO0 OO0
00 00 00 00|00 00 OO OO0 00 00 00 00|00 00 OO0 OO0
47 79 T& &5 7Z 00|35 00 00 @0 00 Q000 00 00 00

ad o0 a0 a0 a0
00 00 00 [alalale}
00 00 00 [alalale}
00 00 00 [aLaali}
00 00 00 [aLa it}
a0 a0 a0 a0 o0
a0 a0 a0 a0 o0
aad a0 a0 a0 o0
aad a0 a0 a0 o0
ad a0 a0 a0 o0
aa a0 ad a0 a0
a0 00 00 o0 00
00 00 00 [alalale}

00 00 00
00 00 00
44 3233 432
47 52 42
a0 a0 a0

[aLaali}
L b e |
52 22| DECAN4XePSY¥CAUS2
00 00| GEBYERGLBELZEX _ _
a0 o0 ________________

Figure 80.

As you can see in figure 1, after these calls, the APl EndDialog is invoked with return value = 1; so, in this piece
of code, there isn’t any check’s routine! To find them, as first approach, | put a memory breakpoint at the
offset of License Code, but, after pressing F9, only one time it’s stopped and later, the Bad Boy Message
appears:

Registration Invalid

The License Code you entered is not valid.
Make sure the Registered Mame and License
Code are entered cornectly.

Figure 81.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

IF|F!TEF|‘I'I1 EZINE ISS5UE I'—.—'i

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Hmm, very strange! Indeed, when the debugger stopped its execution at the address 004F1220h,where | put a
M. Breakpoint on access, the code simply copied these bytes in another place and went ahead. Well, in a
traditional way, | set another M. Breakpoint on access in the new locations but | have landed in the same code:
another copy of Memory Block (shown in Figure 4) in a new place. Despite having tried to trace this routine
(it's repeated many times) setting breakpoints everywhere, | however lost “ the main wire “ and | reached in
the same disappointing result: “ The License Code you entered is invalid... “.

5.4.1 OBFUSCATION

If the standard mode to trace doesn’t work, we can attach the victim in other way: indeed, we can recognize
the resource identifier displayed in Figure 5 and then, start from here to reverse. So, with CFF Explorer and its
Extension Plug in Resource Tweaker, | discovered that the “ Bad or Good Boy Message “ are in reality a Dialog
Boxes:

Bl AFile: dwice exe
—— (i Dos Header

=1 | Resource Hacker - GL..[:HE[Ej

&l Mt Headers
2 File Header = '—H"a'" -
& Optional Header = T
(@ Data Directories] L BETAID

(3 DEBUG_VIDEO_MODE
£ DEMOLIMIT

1 DEMOLIMIT2

) KEYBOARDDIALOG
(] KEYSDIALOG

— & Section Headers fx]
— Jmport Directory
— |) Resource Directony

I-E-E-E-HE-HE80-0E

— M, Dependency Walker 2] NEWVIDEOMODE

—— N, Hex Editor) OPTIONS

— 9, identifier £3 REGISTERDIALOG

- ﬁ. Import Adder &% 1033

— N, Quick Disassembler = {3 REGISTERFAIL

—— N, Rebuilder & 1033

| % Resource Editor - 3 REGISTERDK

— ‘4 Resource Tweaker & 1033

— &, UPX Lrility :

= Dialog - REGISTERFAIL | =] Dialog - REGISTEROK
Registration Invalid ' Registration Success

The License Code pou entesed i not vabd Congratulations! "r'ou have been registered
Make sure the Fegisterad Mame snd License succassiully. Thank pou o puchase Dwicsl
Code ate ardered comectly.

Then in Ollydbg, | set breakpoints on every call to DialogBoxParamA and, after inserted a bogus License Code, |
have landed here:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

% BBOD LRETACO MOV ECK, DHORD FTR DE: [ACITiN]
€705 OOEFSTO MOV DHORD FTR DS: [9ZEF0Q),1
g0l WOV EAX,DMCAD FTR D48:[ECX]
FTED 64 EALL NIAR DHORD FTR DE: [EA

80D 1AETACO MOV E GRD FTR DE- LACTT1

Step into
Ex 09 ¥

{1004 €9 BOST4L00 |PUSH dwice.00415780 the call
H LT EBSL EOOZ000 MOV IDX,DMORAD FTR DS: [ICX+IL0) 0041A020h
g5C0 TEST EAN, EAX 1]
(1ho4 52 FUSH DX
oo4thosr | .. 74 07 |72 SHORT dwice.0041R058 | [
YIROS1)) . | 68 38084700 | FUSH dwice.00470838 ASCEI "REGCISTERFAIL"
| IB 08 TP SHORT dwice.0041A08D
> £8 ICOE4FO0 |PUSH duice DO4FDEIC ASCET *RECISTIROK®
» AL 4CTIACOO |MOV EAX,DWORD FTR D§:[ACTI4C) l
LY &

00499909

LegBoxFaranh

aiposz|l . so FUSH EAN

I . rric odczano BREE wEan owomD PTR DS: [<LUSER3Z.Dialegl
' §BOD 1AETACO MOV ICX,DNCRD PTR DS:[ACTTIN]

CT08 ONEFSEOMOV DWORD FTR DS:[SEZFOR],0

gBll MOV EDXK, DWORD FIR DE: [ECX]

FTS2 @ BRI NIAR DHORD PTR DS: [EDN+ER)
. 708 QOEFSEO MOV DWORD PTR D&:(SEEF00),
.. £3 RETH

. ; i
e L 1 T | Casw BBY of switch DOMOETAY
;”.ixrl to deice.0040F3%8 from dwice.OO041A0d0 | 8 B2 Suice, 00413020 | the fimal BAD judpment!!!

83C4 (ADD ESR.4
4300 | NCR AN, TAX

Figure 82.

As you can see above, the Good or Bad Boy Message depends by the parameter passed to routine at the offset
0041A020h: if equal to 1 (like my case), it's passed a ‘REGISTERFAIL’ template as parameter in
DialogBoxParamA, else it's set ‘REGISTEROK’ message! So, for this reason, | searched any reference to the
command at the beginning of this procedure and | found two calls:

0040F391 PUSH 1 ; Case BB9 of switch 0040E7A4

0040F393 CALL dwice.0041A020 : the final BAD judgment!!!
0040F2B8 MOV DWORD PTR DS:[4F1448],EBX ; Case BB8 of switch
0040E7A4

0040F2BE MOV DWORD PTR DS:[9EEC84],EBX

Well, my comments are quite clear, they comes from few tests and from the relative jumps at the address
0040F391h (see below):

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 WA

=]
ARTEAM EZINE ISSUE I'—.—'J

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

> | |CALL dwice.0041%F50 Cases 3F1,ClD of switech Q040E7A4
. CMF EAX, 1 HWe approde hers later the REGISTERDLG!
| | THZ dwice.0040F56D

{MOW AL,BYIE FPTIR DS:[4F1020] AL == firgt char of the namae!;
. TEST AL,AL if the NHame buffezr is expty...
q.._-. SHORT dwice.0040F331 jump, else go avay;

{ MOV AL,BYTE PTR DS:[4F1220]) AL == firsgt char of tha Seazial buffaz:
. TESET AL,AL if the Serial Buffer is ampty...
"ﬁb_‘. SHORT dwice.0040F331 jump, else go avay;

h s [A3447C) ,dwice .004F0FE0 | ASCII "SVEBRIEUVYQRCMYEXMABTBZAURGEBWMBYEL
CALL dwice.Q04I5ZA0
CALL dwice.Q0435FEQ
CALL dwice.00422540
EALL dwice.004lR270
{MOV DWORD FTIR DS: -2 [3EECEC) == Tims flag for Reg Dialog!
KOR EAX, EAX
FOF EDI

POF ESI

FOF EBX
ESF,EEBF
FOF EBF

. | | RETH
*“WSH 1 Case BBY9 of switch 0040E7A4

|CALL dwice.004LlRA0Z0 the final BAD judgment!!!

Obfuscation's calls

- -
=
e

§

Figure 83 — obfuscation calls

These relative jumps are made if the buffers of License Name (004F1020h) or License Code (004F1220h) are
empty (so, it’s clear that we did an error and the prog should let us know!); else, if it’s all OK, the base offset
of memory block, displayed in figure 4 (O04FOFEOh), is copied at new address and then, fourth calls are
invoked. We're finally arrived to the Obfuscations’ routine!

Stepping in to the first call, it appears to us a (strange...) sequence of calls:

§ |CALL dwice.00425C70 [ASS47Ch] —> [A94474h];
. |CALL dwice.004105&0 [A94474h] => [9EEDOCH]:
. AL dwice. 00418330 [SEEDOCh] -> [SEEEB4h]; Every call allocates a Memory Block in to the Heap
. |GALL dwice.00418E230 [9EEEB4h] -»> [9EEEFOR); .
| ice. goez1080 i e (through the APl HeapAlloc ...), then copies the
. |CALL dwice.0042ZA40 [A543FBR] -> [A%4410n); | Memory’s zone displayed in figure 4 in it. The pointer
. |EAZL duwise.00423220 [AS4410R] -> [AS4422h]; . . . L
| eATT dwice onszzama [AS4428R] -> [AS4440R]; returned by the APl is stored in a particular location in
dl B [AS4440R] -= [R3445En17 1 the DATA section of the target (see my comments in
. |CRALL dwice. 00421520 [AS4458h] => [AS43F4h];
. | EALY dwice.00425320 [AS43F4h] -> [AS446Ch); the Figure 8) and it will be used, in the next call, as
. |GALL dwice.00410A20 [AS446Ch] -> [9ZEDO4RI; , .
" | avice noaisaED (SREDO4R] -> [SEEEACH) - source to new copy’s operation. Indeed, the only
. |EALL dwice.00413F20 [SEEEACh] -» [9EEEEZh]; differences between a subroutine and the other, are
. |CRALL dwiee 00421850 [SEEEEER] => [AS43F0R]; .
. |BALL dwice.00422830 {as43F0n] -» [asasocn); | the oOffsets of pointers of Src. and Dest. Heap
- | dwice.00423570 [R3440Ch] -= [A34424R17 1 Memory’s blocks; the structure of each call is the
. | CARY dwice 00423830 [AS4424h] -> [AS443Ch];
. |CALL dwice.004241EQ [AS443Ch] -» [AZ4450R); same, see Figure 85.
. |CALL dwiee_ 004221C0 [AS44580h] =-> [AS43ESh]:
. |EALL dwice.00425940 [AS43E8h] —> [AS4470h];
. |GALL dwice.004108D0 [A94470R] -> [9EEDOSR];
. |CARE dwice. 004183240 [SEEZDO&h] - [9EZEROR];
. |GALL dwice.00419810 [9EEEBOL] -» [9EEEECH];
. |ERALL dwiea 00421920 [SEEEECH] => [AS43E0R];
. |CALL dwice.00422CZ0 [AS43E0n] -> [A94404h];
. |CALL dwice.004230D0 [A94404h] -> [A9S441Ch];
. |CARLL dwice.004Z3DF0 [AS441Ch] -> [AS4434h];
. |CALL dwice.00424030 [A94434h] -> [A94454h);:
. |ERALL dwice. 00421DD0 [AS4454h] =-> [AS43ECHh];
. |EALL dwice.00425750 [AS43ECH] -> [AS4464h];

Figure 84

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

e ———— f oo——
F \.,‘ / ke Src offset (take Dest oftsat
(Stat |—»/ ponisioHeap

Block

!
{ points o Heap
Biock

4
,’1 -"‘-1._\
Inits the Dest MHe ~,
olfsat t Oftsat == 0%
Yes
v "'
¥ § =

Dustrory "_1& heep l Creale o new m Offiat
Block pointed by — S - —p| pointer to New

Dest offset 2 Heap Biock

Copy the Heap |
Sic Block in the
New Heap Block

Figure 85 — structure of each call of the obfuscation list

The others 3 Obfuscation’s calls use this routine to destroy and create Memory blocks allocating in to the
heap: the offsets that point to it, are stored in the same locations you can see in Figure 87. It's important to

notice the presence of garbage call inside this scheme: before to copy the Heap source block in to the New
one, a subroutine is invoked:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 by

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

PUSH 100

CALL dwice.00427220

ADD ESP,4

. some calculation

CMP CL,1

INZ SHORT Alternative copy operation

1° copy’s mode

<
<«

MOV ECX,6
MOV EDI,DWORD PTR DS:[offset of New Heap Block]
IDIV ECX
MOV ECX,111
MOV EAX,1
REP MOVS DWORD PTR ES:[offset of New Heap BlocR],
DWORD PTR DS:[offset of Source Heap Block]

The call underlined in blue, generates a pseudo random number; this selects, after a few calculation, 2
subroutines that make the same thing: copy’s operation of Heap Blocks!!!

Well, at the end of this deep analysis, we can statically trace locations that point to Heap objects created; in
example, by the address constant 00A9447Ch (I selected it because it’s the first address used to point the
Original Memory’s Block of Figure 80 !), we will find many subroutines having the same “structure”:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 ibid

ARTEAM EZINE ISSUE I'—.—'i

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

rs|PUSH 251 saves E5I on the stack:
.|M0V EETI, DHORD PTR DS: [SEECEC) E5I points to a Heap Object;
TEST E5I,E81
.PRUSH EDI saves EDI on the stack;
ol o HORT dwise.004L041B it jumps A¥ meally Heap Object sxistes
C|uorr EBe swonn pra s (NN $— 25T points to the original Heap Block;
.| TEST ESINEI
. JHI SHORT _d0dLd4iB it jumps surely;
.| FOP EDT
.| HOR EZAX, EZAX
.|FOP ESI
{omy Ctil +R
FUSH 100 pazazatar pansed By valus:
. EALL dwice. 00427220 this proc gqenerates a pssude random number < to the parameter passed by valus;
-|AND ERX, 3
.|ADD EER, 4
-|ARD ERX, 20000001
.| TS SHORT dwice 00410447 »| References fo the
TEC ZAX address constant
-|CR EAX FFFFFFIE
| e 22 A9447Ch
\ T2 SHORT dwice 00410462
-|MOV ESI,DWORD PTR D3:[A34464) ESI peinte wo ancther Heap Cblest;
.|TEET EST EST
4 JHZ SHORT dwice.Q04L0463 it jumps L¥ Deally Aeap Object sxistas
|may BT boRD BTR DS DN $ — EZT points to the original Heap Block;
.| TEST E5I,E81
Lo JHI SHORT dwice d0410482 it jumps surely;
.| FOP EDI
.| HOR EAN, EZAX .
FOP 251 Copy's operation on the stack
HETH
EDT == paramater paseed | Top of the stack...);
ECX = nu=her of bytas to copy;
. b E copy cperatien;
| BOR EOT restore EDI;
.| MOV ERN, 1
.| FOR ESI rastore E5I;
474 |b. | RETH
Figure 86.

As you can see above, at the end of subroutine 00410410h, there’s a simply copy operation of 111h bytes from
Heap Area to Stack one; indeed, if we find references to select command at the beginning of this procedure
(Ctrl+R), we will land here:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

ARTEAM EZINE ISSUE IV

SUB ESP, 444
PUSH 11

.]nu. dwice 00427220

ADD ESF, 4
CMP ERX, OF
Jh dwice. 00413782

wiF NEAR DWORD FTR DF: [EAN=4+418E834)

LIA ZAX, DWORD PTR S55:([ESP]
FIISH EAX

EALL dwice.d04128FL3

oMF dwice.0041873C

LIA SO0, DMORD PTR 55:[E5R]
PUSH ECK

CALL dwice . 00423AED

JMF dwice.004187BC

LEZx ZDo, DMORD BTR SSC[EER]
PUSH 20X

CALL dwice.00422DC0

JHP dwies 00218T7BC

LEIA ErX,DHORD FTR S55: [ESF]
FUSH Ek

CALL dwice.00410880

~nr dwice.00418780

LIA EZCK, DMORD PTR 335:[ESP]
FUSH ECX

EALL dwice.d0417FFD

JHP dwice.0041878C

LzA 0K, DMORD PTR 55:([E5R)
PUSH EDX

CALL dwice.00423300

JMF dwice.004187BC

LEA Ea, DMORD BTR 55:[E5R]
PUSH ZAX

CALL dwice.004Z3340

JMF SHORT dwice.d041E7BC
LEX ECY, DWORD FTR E5: [EER]
FUSH ZCX

CALL dwicae 00418380

JHF SHORT dwice.004187BC
LZIA EDK, DWORD PTR 335: [ESP]
FUSH EDX

FAZAmGTRE passed

I Reversing : I'm lust doing'my hobby. 1

by valus:

This sub g
ERK <= 1D0h; it
Switch (cases 0.

Case 0 of switch
EAX == pffset of

This proc copies

Cama 1 of switch
ECK == pffser of
This proc copies
Casas 2
EIX == olfsez of
This proec coples

of switch

Case 3 of switch
EAX == pffset of

This pzoec copias

Case 4 of switch
ECK == offset of
This proc copiss

Case 5 of switch
EDX == sffger of
This proc copies

Case & of switch
EAX == gffpez of
This proc coples
Case 7 of switch
ECK == gffset of

This proc copled

Case B of switch

s 8P o "

-F)

00418600
atack's top;

a Heap cbject in to the stack;

00413600
STAck'® Top;
a Heap object in to the

00412600
sTack’s Top;
& Heap cbiect in to the

00412600
stack's top;

a Heap cbject in to che scack:

00418600
stack's top;

a Hsap cbjsct in to ths stack;

00413600
sTack's Tep;
a Heap object in to the

00413600
#tack's Top;
& Heap object in to the

00418600
stack's top;

& Heap cbject in to che sTack;

00418600

ARTEAM EZINE ISSUE I'—.—'i

stack;

acack:

acack;

sTAck;

fusber by the use of the API GetTickCount
's used as & random index;

EDX == offset of stack's top;
This proc copiss a Heap cbjesct in to the stack:

CALL dwice.d0425C00

Figure 87.

The first call (dwice.00427220h) generates a pseudo random index used to select a subroutine from 16 ones
(here every procedure has the same structure displayed in Figure 10!); so, it’ s clear why we don’t trace the
serial in the standard way: the stack area where the target copies License Name, License Code and validates
its, derives from a heap object randomly chosen! Graphically see Figure 88:

HEAP AREA

Qriginal Memory Randomly
AR4TCH STACK AREA
Block selects one of
ARedidh these Memory
AR T GACMYERM FEEDOCH Blocks P ALY G A CRTERM
LABTBLAVCGEWMBTELML A BTHLAUCHG BB VELR
SOTISIPOIMWFTIIREDS o SO TS0 XU WITIIREDS
MM Iy wer TE = | AMNGE Gy verTL.

= Create a New
Memory's block
in to the Heap

It Copies
M.B on the
stack

Figure 88.

Funny, isn't it?

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Well, at the end we came in the right place (procedure represented in Figure 87): we can recognize a test on
the License Code’s length and many checks about the chars or digits belonging to the Serial! Before to describe
the General Check’s scheme, | want to present to you a global overview of this protection; it’s time to talk
about Guard'’s Checks.

5.4.2 GUARD’S CHECKS AND TIME’S FLAGS

If you have noticed in Figure 83 | stressed in green a address constant 9EEC8Ch. This location is a sort of Time's
Flag: its value is decremented by a unit until to a certain constant; then a Check’s routine is executed. To

discover this, | found any reference to this address constant:
0040F37E | MOV DWORD PTR DS:([9EZCEC), 3
0040F7EB | MOV EAX, DWORD PTR DS: [9EECEC] . .
0040F778 |MOV DWORD PTR DS: [9EECEC),EAX SO, | traced the 2 instructions and | landed here:

040F7Z0|rs |MOV EAX, DHORD PTR DS: [JEEEEE] ——r—
40F725|| . |PUSHE EDI
40F726|| . |¥OR EDI,EDI
40F728]] . |MF ZAX, EDI
.| THZ SHORT dwice.d040F73C Guard's
. |CMP DWCRD PTR DE: JAEECSSE] , EDI | Checksﬂ!
-w|JHZ SHORT dwice.0d040F73C
. |CHP DWCRD PTR DS: [IESESNE] , =01 |
.w|JE SHORT dwiece . 0040F768
» MOV EAX, DWORD PTR DS:[ACEZLEL
MOV DWORD PTR DS: (BEEEEMD,ZDT |
MOV DHORD PTR DS: [BESESEN , EDI > These afe Flag Contzols!!; ;)
MOV DWORD FTR DS: [EESESE] , EDI !
MOV ECK,DWORD PTR DS: [EAX+2ZED]
FUSH EDI

. 4

FUSH 0BBS BEB3
PUSH 111 We_COMMAND
PUSH E2CX

. |GALL WEAR DWORD PTR D&: [<cUSER3Z et
> | MOV EAX, DHORD PTR DS:[pe Flag, at the begin its value is 3;
- | CHF ERX,EDI
-w|JLE SHORT dwice.d040FT78E
DEC ERX
CHF EAN, 1 When EAX == 1, it begins the contrel of the serial;

. |MOv DWORD PTR DS: (EEEEEE . EAX

.| JHE SHORT dwice.0040F73E
CALL dwice.004250A0

. |TEST EAX,ERX

.| THZ SHSRT dwice.0040F794

. |wov pwomp pTR D2: (NN .Y | [9EECS4) == Flag control, if it sets to 1 we have a MISTAKE;
-w| JHP SHORT dwice. 0040F73E
» |MOV DWORD FTR DS: [[[EEEEE) , = [SEEEDD] == Time flag for Reg Dialog!
» |CMP DWORD PTR D&: (SEEC30], EDI [SEEC50] == OAh; it's the firs: Time Flag for Regiscry Check!
.| JLE SHORT dwice.004077B8
HOV DWORD PTR DS: [SEECH0),EDI [9EECH0) = 0, Reset the Time Councez:
CALL dwice.004250R0
. | MOV DWORD PTR DS: [9EEEC4],1 [9EEEC4] == 1; ic's a next Tima's flag for Registzy Check;
D040FT » | POP EDI
p40r7eC|L. | RETH
Figure 89.

My comments are quite clears but however | will explain to you this subroutine in a few words. First of all,
have you noticed the API PostMessageA? It receives a WM_COMMAND uMsg with wParam = 0BB9h... where
we met this constant? Do you remember good or bad boy messages (in reality, dialog boxes...) ? Ok, now this
API is invoked if one of this locations ([9EEC94h], [9EEC98h], [9EECICh]) is not equal to O; else we jump in the
instructions underlined in grey. Here, the Time's flag addressed by 9EEC8Ch is decremented until to 1; then a

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 ksl

IF|F!TEF|‘I'I1 EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Check’s routine (CALL dwice.004250A0h) is invoked and returns O if is not passed. If this happens, a guard’s
check [9EEC94h]is set to 1 (so, in the next cycle, the prog. calls the APl PostMessageA in Figure 89), else it sets
a new Time’s Flag: [9EEEDOh]== 5. It’s clear that a next Check’s routine is linked to this parameter; so | found
any reference to this new address constant and | have landed here:

0 |rs MOV ZAX,DWORD PTR DS: (BEEEBE) | SAX = [9ZZED0), Time Flag; When ZAX == I, starcs ancther Dialeg check control;
©| . |TEST EAX,EAX

JLE SHORT dwice.0040F773

DIC IR

CMP ERX,:

. |wov oo pre os: (HEEEEN) , EAX
.w|JHI SHORT dwice.0040F7F3
CALL dwice.00410640

. |TEST EAM, EM

.| THI SHORT dwice. 0040FTES

. |MOV DWORD PTR DS: (SESESE , 1 [9EEC34] == Flag contzol, if it sets mo 1 we have a HISTANE;
.| JHF SHORT dwice.0040F773
> MOV DWORD PTR DS: [FEEEEE], ¢ [SEEECE] == §; it's a next Time's Flag for Reg Dialeg;

* | MOV ZAX,DHORD PTR DS:([9ZZEC4] | EAX = [9ZZEC4], Time's Flag; when ZAX == 1 gtazts anccher Registry check control;
TEST EAN,ERX

JLE SHORT dwice.0040F815
MOV DHORD PTR DS:[SEEEC4].0
CALL dwice.0021l0840

B . |MOW DWORD PTR DS:([SEZZD4),5 [9ZEED4] == 5; ic's & nexc Time's Zlag Zor Regiscry Check:
81t |L> |RETH

o

%

ZC4] = 0, Reset the Time Counter;

Figure 90.

Well, we can notice the same structure seen in Figure 89; so, to find all Check’s routines, we can simply trace
Time's Flags (now, we recognize it! |. e | traced the [9EEEC8h]):

s [MOoV EAX, DWCRD PTIR DS: [DEEEEE) | ZAX = [SEEECH), Time Flag; When EAX == &, starts another check contrel;

PUSH E5I
XoR ESI,ESI
. |CHP EAX,EST] - |
.«|JLE SHORT dwice.0040F232 Time's HCIQS
DEC =AM Bwiteh (cases 2. _5)
CMP ERX, 4
(| - |#ov DwWORD ®TR Ds- (HEEEEE], £AX Guard's Checks
il -~|JTHZ SHORT dwies . 0040F34C
CALL dwice 004128C0 Case 5 of switeh 0040F82ZC
. |TEST EAX, EAX
.v|JHZ SHORT dwice.0040F352
MOV DWORD PTR DS: [SEEESS), 1 [SEECH4) == Flag contzol, if it sets to 1 we have a MISTAHE:

i - ™P SHORT dwice. 0040F332

i| > |cep ERX, 2

| -~|THZ SHORT dwiece.DD40F3&C

| - |CALL dwiee.0041R0C0 Case 4 of swizeh 0040F82C

{| > |TEST EAX,EAX

.v|JHZ SHORT dwice.0040F3352

MCAT DWORD PTR DS: [9EZECE),ES5I| ([92Z2EC8) = 0, zeset the Time Countes:

. |MCV DWORD PTR DS: [DESESE) , 1 [SEECH2) == Flag contzol, if it sets to 1 we have a MISTANE:
| -~|™P SHORT dwice.0040F232

i| = |cp EAX,Z
| -+|THZ SHORT dwice.DD40FE78

CALL dwice 0041R100 Case 3 of swizeh D040FS2C

i -7 |MP SHORT dwiee. 0040F356&

| > |cMP EAX, 1

v|JHZ SHORT dwice.0040F334

. |CALL dwice.0041A140 Case 2 of switch 0040F32C

i| .7|MP SHORT dwice.0040F35&

| > |[CMP EAX ESI Default case of switch 0040F22C

ww|JHZ EHORT dwice. 0040F2382

(| - |#ov oworo ®TR Ds-: (HEEEEE ., [SEEEES] == 9; it's & next Time's Flag;

{| > |MOV EAX,DWORD PIR DS:[SEEED4) | ERX = [SEEED4], Time's Flag; vhen EAN == 4 scarts another Ragistry check contral;

At the end, a PostMessageA with uMsg = WM_COMMAND and wParam = 0BB8h is invoked. You know what it
means? EhEh ...

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

ZINE ISSLE I'—.—']

il

- ARTERAM E

=
L
-
(%]
D
L
<
N
i
>
<
i
T
o
<

I Reversing : I'm lust doing'my hobby. 1

This is a possible flowchart for the general Protection’s scheme:

jiiobpssay Aog pooo

(o'gas
‘ANVWWOD WM
'pUH)
vobpssawysod

A

s34

&l
5 BN A 5WNSY

BULNG S423BUTD o

| = [uDeo336]

jiieBossay Aog ppg

(0's8d
'‘ANYWWOD WM

ON

| Ag Juswealoag

& = [Upg33aal

o

Bojys.awiy

%93y s,pieng

534

h 4

vabossawjsod

| = [ureD336]

§ N[0 A S, UINSY

BUYNCI SHIBYD) o7

534

£2 == [UpgIITe,

‘PUH) N

| = [ureD336]

%93y s,pieng

534

| A Juswealoag

& = [yog3assl

Boj4s,awiL

9 B0 A 5 LINSY

BULNGI S4238UD ol

&l == [YDRD338>

%99y s,paeng

| AQ Jusweloag

OoN

Bpjys.awil

133

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

IF|F!TEF|‘I'I1 EZINE ISS5UE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Now, we are ready to analyze the Checks’ routines of License Code.

5.4.3 GENERAL CHECK’S SCHEME

Figure 87 shows the first part of a more complex subroutine that identifies General Check’s scheme used in
this target:

00410640 SUB ESP,444

00410646 PUSH 11

00410648 CALL dwice.00427220

0041064D ADD ESP,4

00410650 CMP EAX,OF

00410653 JMP NEAR DWORD PTR DS:[EAX*4+address of indexes table]

A Heap object is randomly selected to be copied in the stack area;

0041073F OR ECX,-1

00410742 XOR EAX, EAX

00410744 PUSH EDI

00410745 LEA EDI, stack’s offset of License Code
0041074C REPNE SCAS BYTE PTR ES:[EDI]

0041074E NOT ECX

00410750 DEC ECX

00410751 CMP ECX, 1E ; ECX = Length of Serial;
00410754 JE Next

; EAX is a return’s value of the Hashing Block Procedure;
; EDX is the index of Hash String Buffer;

00410798 POP EDI
00410799
0041079B ADD ESP,444
004107A1 RETN

; 1f EAX == 0, we did a mistake!;

; EDX is another index of Hash String Buffer;

004107CF POP EDI
004107D0
004107D2 ADD ESP,444
004107D8 RETN

;5 1f EAX == 0, we did a mistake!;

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

!FlF!TEF'I‘ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

oo41080c [OVEMME . if EAX == 1, Good job!
00410813 POP EDI

00410814 MOV DWORD PTR DS:[9EED1@],EAX
00410819 ADD ESP,444

0041081F RETN

The yellow code block takes the stack’s offset of License Code (stored in EDI) and tests its Length; if this is
equal to 30 (1Eh), we jump in the Red Code Block where a Hashing Procedure is invoked. This subroutine
receives, as input, one parameter passed by address (it can be License Name, a part of License Code or CDATA
resource...) and returns a DWORD value (stored in EAX) used many times as index of Hash String Buffer
'9V4BKI6UVYQACMYEXMABTBZAUQGBWMBYELHLSO7Z50PO23LWFT3ZREDSMHNOS8LII + License Name '. In
reality, this index has a 5 bits capacity, so in EAX are compressed max 6 different indexes; to select it, the
program uses these instructions:

MOV EDX, EAX
SHR EDX, multiply of 5
AND EDX, 1Fh

The green code blocks verify the same condition:

License Code[i] = Hash String [Base offset + 2*j] where j is the index calculated before and i is a simple pointer
(7andjare variable). If one of these tests doesn’t pass, EAX is set to 0 and a Guard’s Check is set to 1; else EAX
is set to 1 and we will execute another Check’s Routine linked to a new Time’s Flag. From this point of view, we
can divide every test in to 4 main groups (one for each Time's Flag control):

License Code Buffer

(M N (T TTT]
OOO‘O‘O‘O‘O‘OOO 0 O 00‘1‘1‘1‘1‘1‘111111111
01 2 3 45 6 7 8 9 B C E F O 1 2 3 45 6 7 8 9 A B C D

0 0
A D

Elements of different color belong to different Check’s routines. White elements of this buffer are control
free.

Generally, every Check’s routine has one Hashing Block Procedure except in to the 1° Time’s Flag control
where there are 3 different Hashing Blocks. So, tracing the path of the previous flowchart, we can find all
Hashing Blocks according to Time’s Flag Controls; the following table summarizes the results found:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 ES)

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

ARTEAM EZINE ISSUE I'—.—'j

Hashing Block

Direct Code
0042521Bh...00425278h

CALL dwice.00424DEOh
CALL dwice.00427550h
2° T. Flag Control CALL dwice.004100C0h
CALL dwice.00418220h
4° T. Flag Control CALL dwice.004190D0h

License Code [15:10]

License Name

License Name, CDATA
Buffer

License Name

License Name

License Name

Output:32 bit value

3 indexes compressed

2 indexes compressed

5 indexes compressed

3 indexes compressed

4 indexes compressed

6 indexes compressed+1
index of 2 bits

Table 1.Clearly, the offset s present in this table are relative, they will change from PC to PC.

Before to describe every Hashing Block, | will spend a few word to the only condition used to verify the
correctness of License Code’s elements: License Code[i] = Hash String [Base offset + 2*j]. This test can be
execute in the form | have presented before (green code’s blocks), or it can be “obfuscated” in this way:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Efd

ARTEAM EZINE ISSUE I'—.—'i

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

=3 MOV EAX, DWORD PTR DS:[9EEECE] EA¥ = [SEEECE], Time Flag; When EAX ==
PUSH ESI Lza zox, BWORD BTR 857 (ESER140]
XoR E5I,25I|]. A Hashing procedyre is calculated CUSH EDN
- | P EAX,ESI EALY dwice.00418220
-~|JLE SHORT duwice Q040852 MOV ECX, DWORD FTR DS:[4F1438]
DEC EAX ADD ESE, &
CHME ZRX, 4 CMP ECX, 100
. |MCV DWORD PTR DE:[SEEECE] . E MOV DWORD DTR x:_]rm
oo |THZ SHORT dwice.0040
BAIE dwice.004186C0 Case 5 of switch 0040F82C A
TEST EAN, EAX
.v| NI SHORT dwice.0040F232 2. The result of
. |MOV DWORD PTR DS:([5ZZC54),.1 [SEEC54]) == Flag contzol, if it sets to Hashing Block
.| JME SHORT dwice.0080F852 . 1
- is stored in a
.| THZ SHORT dwice.0040F28C COSTANT
STEALL dwice._ 0041A0C0 Case 4 of switeh 0040F8ZC ADDRESS
4 |TEST EZRN, EAX
| vHZ SHORT dwice.0040F292
MOV DWORD PTR DS:([SEEECH),ESI [9EEEC8] = 0, reset the Time Counter;
MOV DWORD BTR DE:([9EECSE],1 [SEEC98) == Flag control, if it sets to| [
| JMF SHORT dwice.0040F292 - [!l:ﬂ' EAX, DWORD DTR Dﬂ:[-] 10
| THZ SHORT dwice 0040F27H) ;ﬁ: ig _2023 PIR Ds: N | Eé.‘x — Index of
=1EALL dwice.0041R100 Case 3 of aw AND k .
~|.MP SHORT dwice.0040F356 oy MEZTE ICTE- .
= . - = Index o
.| TNZ SHORT dwice.0040FEEE -~ ;{23522;77:;“"-"“"”*‘ e Hash String:
TERLL dwice.(041R140 Case 2 of sy~ LETH o - [4F1220R] =
*| JMP SHORT dwiece 0040F356 -
Defauls case|” MoV EL, B!."EE PFTR DS: [EEX+4F1220]) Base offsef of
«|TNZ SHORT dwice.0040FE32 | RHERRAR A2 License Code;
MOV DWORD DIR DS:[9EZEZEBE],S [oEzERa) == || - |FVSH EBX - [AFOFEQR] =
. |XOR EDX,EDX
MOV BL,BYTE DIR DS: [EAK*Z+4FOFE0] i‘“‘;cs":r"'_ﬂ of
, ash String:
3. At E.'.'er;,' value of Time's g: gls.-}.(BL This address 4
Flag, if's executed the same e constant changes
] fest by these calls. For .-_________} . |mov =ax, 20% | from callte call
simplicity,i reported only one L. |EETH
of these subroufines.
Figure 91.

As you can see in Figure 91, stepping in to the call dwice.004186C0h, (1. Red arrow) we recognize the first part
of General Check’s scheme; the only difference is the absence of green block code. At its place, there’s a
simple store operation of 32 bits value in to an address constant (2. Blue comment). Now, for every step of
Time’s Flag (Figure 91). It’s stored at the address constant [9EEEC8h]), a different subroutine is invoked (3.
Green comment): here, thanks to hash value previously stored, the same checks of green code block in the
general Check’s scheme are executed (10. Black Comment).

You can read my Dwice’s comments, exported thank to LCB plug in, for a deeper analysis... ;-).

Now | will explain the Hashing Blocks routines presented in the previous table.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

ARTEAM EZINE ISSUE IV

CARTERAM EZINE IS5UE I'—.—'j

I Reversing : I'm lust doing'my hobby. 1

5.4.4 HASHING BLOCKS

= 1°Time’s Flag Control - 1° Hashing Block

XOR EDI,EDI

XOR ESI,ESI

First Loop:

MOV CL,BYTE PTR SS:[Offset of License Code[16h]+EDI]
LEA EDX, Offset of Hash String

ADD ESP,8
CMP EAX,0
JL Error Code

MOV ECX,ESI

ADD ESI,4

SHL EAX, CL

MOV ECX, Temp Value
OR ECX, EAX

INC EDI

CMP ESI,18

MOV Temp Value, ECX
JB First Loop

MOV ESI, 987AC16Bh
MOV EAX, ECX

MOV EDI, EAX

MOV ECX,6

The registers EDI and ESI are used
respectively as index of License Code
Buffer and counter of First Loop.
Here, every element of License Code
belonging to interval 10h...15h, must
to be also an element of Hash String
at the even position: License Codeli]
== Hash String [2*]] (do vyou
recognize this condition?). The
subroutine underlined in red returns
in EAX proper j index. Now, for every
cycle, the counter i (stored in ESI), is
incremented by 4 and it’s used as 2
power; then, j is multiplied to 2 @)
and stored in a temp value. This
result is OR-ed with the value
obtained in the next cycle. So, at the
end: ECX == OR (j[i] * 16 ') where i
belongs to interval [0..6[and j
depends to i. In the green code block,
every nibble of ECX is then XOR — ed
with a value stored in EBX initialized
to 987AC16Bh and multiplied 2°-1.
Then, the result is copied in ESI and
the entire cycle is repeated 6 times.

This Hashing Block produces a 32 bit
value containing 3 indexes
compressed used to verify License
Code[16h:18h].

= 1°Time’s Flag Control - 2° Hashing Block, 2° and 3° Time’s Flag Controls

| decided to group these tests because they present, more or less, the same structure and they have

the same algorithm to compute the 32 bits hash value: Carry Less Multiplication.

Normally, when we must to multiply 2 numbers, we apply the algorithm of the partial sums; for

example, if we have 15 and 12 and we must to do its product, we will make:

15x12=15x(1x10+2)=(15x1)x10+(15x2) =150+ 30 =180

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Rkt

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Clearly, also 15 must to be decomposed in to positional notation! Now, in a digit system, the
presentation’s base is obviously 2, so:

(15)10 = (OF)46 = (1111), ;

(12)10 = (0C)16 = (1100), ;

(15)10 % (12)10=1(1111), x (1100), = (1111), x (1 x 2 +1x 22) =
=(1111), x 2>+ (1111), x 2= (1111000), + (111100), = (10110100), =
=(180)40

Then, the partial sums can to be implemented in the assembly language as a sequence of SHL and
ADD instructions; instead, in Carry Less Multiplication, the ADD instructions are substituted with XOR
ones. Considering the previous example and identifying the Carry Less Multiplication with “ * * symbol:

(15)10 * (12)10 = (1111), * (1100), = (1111), * (1x 2’ + 1 x 2°) =
= (1111), x 2° A (1111), x 2> = (1111000), ~ (111100), = (1000100), =
=(68)1 (‘M = XOR symbol)

As you can notice, a great difference between normal and Carry Less multiplication, is the bit’s
number of final product: in the first, this is equal to sum of 2 bit’s numbers; in the second, the result
has the same bit’s number of greater multiplier. After this brief Mathematical introduction, | can
present you the Flowchart of Hashing Blocks belonging to this group:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 EEE]

ARTEAM EZINE ISSUE IV

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

I Reversing : I'm lust doing'my hobby. 1

Inits the locations of &
Structure stored in to
tha stack

'
/

|
32 bit value

A4 A4
Takes char of License » Canversion in to cafr!"_ Lﬂs_s y[Some calculationof | > Some calculation of
Name Uppercase Mode Multiplication #| 1° Stack locatian n* Stack locatian
i { 1
The Result of C.L.M is used as
input of these Blocks
Analyse Next Char We have
analysed all
chars of
License
Na MName?
End 32 bits Hashing value =

one of Stack's location

The 32 bit value used as input in a Carry Less Multiplication block, is stored in a particular way: the
position of every bit set to 1 is saved in .data section or, from a mathematical point of view, there’s
every exponent of 2 power associated to bits set to 1. For example, if we consider the number (10),0 =

(1010),:

1 0 Value

Position

Inside the program, this number should be stored as a structure of 2 dwords: (3,1). Thanks to these

infos, the following figure should be clear:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

140

=]
IF|F!TEF|‘I'I'I EZINE ISS5UE IL'JJ

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

FOUSH ECK TS ==o iCK = Current char; parameter passed by value; . I
BRLL dwice.00427800 This Sdl~menwazps the Cuzzent Char in a UPDERCASE Char; ’_’0';“3;;-;3““3‘ Lol Bl H]
o 0. S | 2t - e oy e K 135 NORD PIR B5: (8B4 20
TV A% : = m—— wov BGHD IR §5: [E58+10), ax
PUSH ERX ERX is a pazacete: passed by valus; === oy DHORD PIR 81 [ESPY4], TAK
CALL dwiee. 00427800 This Sub converts the Current Char in a UPPERCASE Char; |Mov DHORD BTR B85 [ESE4E] max
MV CL,BYTE FIR §5: [EBF) CL = Cuzzent Chaz; MOV CL BYTE BTR S5:[EBE]
PUSH ECX ECK is a paramerer passed by value; “OU DWORD PIR 551 [Z5P+8] Zax
MOVSY EBX,AL EBX = Curzent UPPERCASE Chaz; 1857 ClL.CL

BALL dwice.00427800 This Sub converts the Current Char in a UPPERCASE Char; (U0 EERSEE ::f:gﬁ:;:-:g
MGV DL,BYIE PIR 55:[EBP) DL =lc~.1rren1:. Chazx; \10" e ss;tr.snlcllz;x
FUSH EDX EDX is a parameter passed by value; Mo DHORD PTR S5: [ESP420], =iy
MOVSK ESI, AL E£5I = Current UBPERCASE Char;

CALL dwice.00427800 This Sub converts the Curzent Char in a UPPERCASE Char: .

MOV Ec, SiioaD e1a o8 (EETEEE- zcx = oen; It inifs the
ADD ESP, 10 Realign the Stack; 1800000001 locafions
MOVSK EAX,AL EAX = Current UPFERCASE Char; C{17983DEL on the
MOV EDX, EAX EDX = Current UPPERCASE Char; 0000008 e

MOV EBR,ERX EBF = Current UPFERCASE Chac: 00000088

SHL EZDX,CL EDX = Current UPPERCASE Char * 2= (0O6h) pLlildel |

JC ZCX, DHORD BTA 25 [EINEE-| =cx = 11k; 00000038

SHL I3F,CL EBP = Current UPPERCASE Char * 2-(11lh)

MOV ECX, DHORD PTR D [HEENEH" ECX = OZh; o)) These address constanis coniain
HOR EIX,EBF EDK = Cuzzent UFPERCASE Char * [2~(06h) xor 2-(11h));

MOV EBP, EAX | HEck

SHL EBR,CL associafed fo the bils sef fa 1
MOV ECX, DWORD PTR DS} (HENEEEE-| =cX = 1a8h;

XOR EDX, EBP EDX = Curzent UPPERCASE Char * [2~(06h) xor 2-~(llh) xozr (2=(0Dh)]):

MOV EBR,ZAX

SHL E3F,CL s

MOV ECX,DWORD PIR DS:([4F1450) | 2CX = O&n;

XOR EDX, EBP EDX = Current UPPERCASE Char * [2~(06h) xor Z*(11lh) xor (Z*{0Dh) xor (2*~(18h)];
MOV EBR,EBX EZBF = Current UPFERCASE Chaz;

XOR EAK EDX == > ERX = Currenc UPPERCASE Char = [2~(0¢h) xer 2-(11h) xer (Z-(0Dh) xer (Z~(1Bh) xer 1];
MOV EDX, EBX EDX = Current UPPERCASE Charx;

Figure 92.

I have found to mark the init phase (pointed to black arrow) and base instructions used to Carry Less
Multiplication (violet color); instead, the address constants underlined in green, identify the
representation of a 32 bit value that changes from Hashing Block to Hashing Block. For example, in the
figure above, this number is:

(18h,11h,0Dh,06h) = (0000 0001 0000 0010 0010 0000 0100 0000), = (01022040)¢

It's clear, no? For the following analysis, we can identify the Carry Less Multiplication Block with this
function: Unsigned int C.L.M(int, int). So, in this context, we can write:

HashingValue = C.L.M(UpLicenseNamel[i],32 bit value);

The first parameter is the current char of License Name converted in Uppercase mode.

1° Time’s Flag Control - 3° Hashing Block

In reality, the subroutine invoked in this group, is used many times and not only to return a 32 bit
value used to verify License Code. In general terms, we can define its prototype as: Unsigned int
CDATAHash(short int, short int, *char[]); the first parameter, passed by value, is a binary digit (O or 1)
and identifies the type of calculation inside this subroutine; the second parameter, passed by value,

represents the number of bytes to elaborate in the third parameter passed by address. In this context,
this function becomes:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Rkl

!FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j
|

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

HashingValue = CDATAHash(1,19h,*LicenseCode)

Naturally, as you can see in Table 1, there’s also another parameter inside this procedure: a CDATA
buffer long 400 bytes and stored in .data section. It’s used in this way:

MOV EDI, Third parameter;

MOV EBP, Second parameter; As you can notice, the only
Here: difference between first type
MOV EAX, First parameter; o of calculation and second one
MOV EBX,ESI 5 Initially, ESI = -1 .

SHR EBX,8 (yellow code), is the presence
TEST EAX,EAX of a call (red code) invoked to

JE 1° calculation

- - convert literal char in to
;2° calculation

MOV AL,BYTE PTR DS:[EDI] uppercase mode. The other
INC EDI instructions are the same:
. . after a XOR operation, EAX is
; It’s converts the Lliteral char 1in to . .
upper case!; the index (multiply of 4) of
AND EAX,OFF CDATA Buffer; ESI stores the
AND ESI,@FF Dword pointed by EAX and its
ADD ESP,4 i)
XOR EAX,ESI value is XOR-ed with EBX that
MOV ESI,DWORD PTR DS:[EAX*4+Base offset of CDATA buffer] contains the result of
JMP Next precedent loop; EBP is its
1° calculation:
XOR EAX, EAX counter. At the end, EAX
AND ESI,OFF stores return value of this

MOV AL,BYTE PTR DS:[EDI]
XOR ESI,EAX
INC EDI

MOV ESI,DWORD PTR DS:[ESI*4+ Base offset of CDATA buffer] Now it’s time to talk about

Next: last test...
XOR ESI,EBX

DEC EBP

MOV EAX,ESI

POP ESI

NOT EAX ; EAX 1is a return value of
this Sub;

RETN

subroutine (grey block).

= 4°Time’s Flag Control

The structure of this check is not very different by the flowchart presented before; there ‘s always a
init phase of a Structure saved in to the stack and there’s a compute phase where the Structure’s
locations are elaborated in a certain way; the final phase selects one of these as 32 bit Hash Value.
The main difference stays in compute phase where the Carry Less Multiplication Block is substituted
with a chain of XOR - ing and Permutation Blocks:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Y]

ARTEAM EZINE ISSUE IV

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

1° Block
2* Block

2 Valve

6" Block

1* Value

Figure 93.Cryptographic scheme inside 4° Time's Flag Control

In the CALL dwice.004190D0h,that implements the Hashing Block of this Time’s Flag Control, we can
recognize 3 types of permutation:

Subroutines N° Blocks to permute (or
parameters passed by address)

1° Permutation’s Type CALL dwice.00419060h

2° Permutation’s Type CALL dwice.00419080h 3
3° Permutation’s Type CALL dwice.004190A0h 4

Table 2. As always, the offsets present in this table are relative, they will change from PC to PC.

The three Subroutines above are invoked in this way:

L=2a =axX,DWORD PTR S55: [ESP+48) EAX = address of 1 bleeck;

LIZn EZCX.DWORD FTR S5:[ESPte0) ECX = addzess of & bleck;

FUSH ERX First parameter passed by address: offser of 1 block;
PUSH ECX Second parameter passed by address: ocffset of & bleock:
CALL dwice.00413080 This sub scrambles the postions of two blocks)

Ctrl + R = Step in to...

EDX,DWORD PTR 55: [ESP+8]
MOV ZAX, DWORD FTR S5: [ESF+4)
PUSH ESI
MOV ESI,DWORD PTR D5: [EDX)
MOV ECH,DWCRD FTR DS: [ERX)
MOV DWORD PTR DS:[EAX],ESI
MOV DWORD FIR DS: [EDK],ECX
POP ESI
RETN

EDY = offser of first block; (first paramecer);
EAX = offset of second block: (Second pazametez).
save ESI in to the Stack;

ESI = firat block:

ECX = sacond block;

First bleck goes in the position ef Seccnd bloek:
Second block goes in the positien of First bleock:
restore original value of ESI;

Figure 94.Description of CALL dwice.00419060h; the addresses of blocks change from invoke to invoke.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

IF|F!TEF|‘I'I1 EZINE ISS5UE

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

L=Zx ZhX,DWORD PTR S5S5:[ESP+40]
LIZA ZCK,DWORD PTR 55:[ESP448)

ERX = pddress of 2 block;
ECK = addzress of 4 block;

FUSH ERX Firat paramecer passed by address: offse:z of 2 bloek;
LZA EDX, DMCRD PTR 55:[E5F+48) EDX = address ef 3 block;

FUSH ECX Sscond pazarete: passed by addrzess: offset of 4 bleck:
PUSH EDX Third paramecer passed by address: offsec of 3 block;

CALL dwice.Q0415080 This Sub permutes the blocks: [first parameter] -> [sacond paramater)

Stepinto..

DX, DHORD PIR 55: [ESP+8) EDX = offser of second block;
MOV ZAX, DHORD PIR 55:[ESP+4) EDX = cffset of thizd block;
PUSH ESI save ESI in me the ssack:
MOV ESI,DWORD PTR DS:[EDX) ESI = second block;

MOV ECK, DWORD FTR DS: [ERX] ECX = third block:

(2econd parameter);
{thizrd parametex);

MOV DWORD PTR DS:[EAN] EST
MOV ZAX, DWORD PTR SS5:[ESP+10)
MO ESI, DWORD PTR DS: [ERX)
MOV DWORD PTR DS:[EDX),ESI
MOV DWORD PTR DS: [EAX] ,ECX

Second block goes in the posicion of Third block;
EAX = offset of ficst block:;
ESI m first block;

First block goes in the position of Second block;
Thizd block goes in the position of First block:

{ first parameter):

PO ESI
RETN

rescore the value of ESI;

Figure 95. Description of CALL dwice.00419080h; the addresses of blocks change from invoke to invoke.

LEIR ZAX,DWCORD PTR S5: [ESP+44] E = address of € block;
LZA ZCX,DWCRD PTR 55: [ESP+IC) ZICX = address of 1 block;
PUSH EAX First parameter passed by address: offset of & block;
LEh EZDX.DWORD PTR 55: [ESP+3C) ZDX = address of 4 block;
FUSH ECX Zecond pazameter passed by addzess: offset of 1 block:
LEA ZRX,DWORD PTR 55: [ESP+3C] EAX = address of 3 block;
FUSH EDX Third parameter passed by address: cocffset of 4 block:
PUSH EAM Fourth parameter passed by address: offsez of 3 block;

CALL dwice.004130A0 This Sub permutes the blocks: [fizrst parametez] -> [second

Following in fo...
MOV EDX, FTR 55:[ESP+3) EDX = offset of third block;
MOV ZAX,DWCRD FTR S5: [ESF+4) ERX = gffset of fourth block:
PUSH ESI save ESI in to the scack;
MOV ESI,DWORD PTR DS: [EDX) E2I = thizd bleck:

i{third parameter);
[fourth parametecz);

MOV ECK, DWCORD PFIR DS: [ERX]

MOV DWORD PIR
MOV EAX, DHORD
MOV ESI, DWORD
MOV DWORD FIR
MoV DX, BHORD

D5: [EAX) ,E5I
PIR S5: [ESF+10]
PTR D5: [EAX]
DS: [EDX] ,ESI
PTR 55: [ESP+14])

ECX = fourcth block;
Third block goes in the position of Fourth block;
ERX w pffser of second bleock: (second parameter);
ESI = second block;
Second block goes in the position of Third block;

EDX = offset of firac bleck; (firsc paramecer);
EELI = fizst block:

First block goes in the position of Second bloeck;
Fourth block goas in the position of First block;
reszore the value of ESI;

MOV ESI,DWORD PTR DE: [EDX)
MOV DWORD PTR DS: [ERX],ESI
MOV DWCRD FTR DS: [EDX],ECX
POP ESI

RETH

Figure 96. Description of CALL dwice.004190A0h; the addresses of blocks change from invoke to invoke.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

It’s not necessary to comment these figures because | explained every instruction in OllyDbg; instead,
to describe the whole Cryptographic scheme, I'll introduce 2 * Mathematical operators’:

PERMUTE (1° Block, 2° Block,...,6° Block); first block goes in to second block, second block
goes in to third etc etc... .

XOR (Block, dword); naturally, the 32 bit value change from XOR to XOR.

Then, after a first phase where a structure of 6 dword is stored in to the stack and initialized, the
Hashing Block does the following operations:

PERMUTE(2.6) -> XOR|6s, 7F2AF134h) -
PERMUTE(1.6) -> XOR|(2, 7F24E124R) ->
PERMUTE(2.5,1.3) -> XOR (4, 58209123h) ->
PERMUTE(z2.1) -> XOR |4, 1893CBE0R) ->
PERMUTE(s,2,1) ->> PERMUTE (2,4,3) ->
PERMUTE(1.¢) -> PERMUTE(4,1) ->
XOR (s, 7F24E134R) -> PERMUTE2,1) ->
PERMUTE(4,2) -= XOR(4,13246178h)

No

r

XOR (s, 34576FEER) -> PERMUTE (s, 1,2,3) ->

Yes

1

PERMUTE(1.6.2) -> PERMUTE(1.2.3) ->

Last byte
of 3
Block=2

?

PERMUTE(z.1.3) -> PERMUTE(1.6.2) -> XOR(s, 1893cBeon) -> PERMUTE (6, 1.2,3) ->
PERMUTE(3,4.1) -> PERMUTE(1.2.3) -> PERMUTE(z.6.1) -> PERMUTE(2,1.2) -=
XOR(z2, A248C138hR) XOR|(3, 24576FEBR)

T

XOR(4, 7F2AE134k) -= PERMUTE (4.2) - XOR (2. 12246178h) -> PERMUTE (4.3.¢) -=
PERMUTE(1,5) -> PERMUTE (s, 1,4.3) -> XOR (¢, Az4gC138n) -> PERMUTE(1,3,4) ->
PERMUTE(s,3) -> PERMUTE(3,2,4,6) -> PERMUTE(3,1) -> PERMUTE (2, 1.6) ->
PERMUTE(1.2) -> PERMUTE(1.6) -> XOR(¢, Az42C138R) -> PERMUTE (6.1) ->
PERMUTE(z.6) -> XOR (2, Az48C138h) -= PERMUTE(z.1.2,¢) -> PERMUTE (s, 1,2) - >
PERMUTE(1.5) -> PERMUTE (&.2) -> XOR(4, 7F24E124h) -> PERMUTE(2,4,6) -=
XOR|z 1893ceE0R) - PERMUTE(1,2) -> PERMUTE(4,1) -> XOR(1,1893CBE0R) ->
PERMUTE(z 1) -> XOR (s, Az9DC94Dh) -> PERMUTE(4,6) -> PERMUTE(z,1,4,2)

1

2 Block = 32 bit hashing valve

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 EEE

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Funny, isn’t it? Indeed, every colorized block can be drastically simplified with a barrier of XOR
operations and ONE permutation; for example, we consider the first 4 operations in red block above:

PERMUTE(2,6) = the 2° block goes in the 6° position and the 6° block goes in the 2° position; then the
block in the 6° position (2° block) is xor-ed with the value 7F2AE134h. So:

PERMUTE(2,6) -> XOR(6, 7F2AE134h) = XOR(2, 7F2AE134h) -> PERMUTE(2,6)

(Simply rule: scramble always PERMUTE with XOR and change the block xor-ed with what precedes in
PERMUTE operation. If block xor-ed is independent by PERMUTE operation, is will not be changed)

Considering the other 2 operations, we have:
XOR(2, 7F2AE134h) -> PERMUTE(2,6) -> PERMUTE(1,6) -> XOR(2, 7F2AE134h) =
XOR(2, 7F2AE134h) -> PERMUTE(2,6) -> XOR(2, 7F2AE134h) -> PERMUTE(1,6) =
XOR(2, 7F2AE134h) -> XOR(6, 7F2AE134h) -> PERMUTE(2,6) -> PERMUTE(1,6) =

XOR(2, 7F2AE134h) -> XOR(6, 7F2AE134h) -> PERMUTE(2,1,6)

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 REI

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

In the last passage, | combine the 2 permutations; you can see References for more infos. So,
approaching the problem in this way, | simplified the Cryptographic scheme:

XOR(z2 7rF24E134n)
XOR (s, 7F24E134h)
XOR (4 582091230
XORL_,S%CBE%; - PERMUTE(2.1.6) initial common phase
XOR(1, 7F24E134h)
XOR(413246178n)

XOR (6, 34576F€8n) - PERMUTE(2.1) No Branch condition
XOR(1, a248C138h)

XOR(1. 1asacecon) - PERMUTE|z,1.3) Yes Branch condilion
XOR (s, 34576FEBR) o

XOR (4, 7F24E134h)

XOR (4, 13246178n)

XOR(z A248C138h)

XOR(3, A248C138h)

XOR(1. A245C138n) ‘ PERMUTE 5,1,3.4.2) Final common phase
XOR (4, 7F24E134h)

XOR(z, 1893cBEOR)

XOR(1, 1893CBEOR)

XOR (4,A29DC94Dh)

We can further simplify XOR’s barriers having one XOR operation for each location in colorized block;
for example, in blue block, we have 2 XOR operations for 2° location:

XOR(2, A248C13Bh) -> XOR(2, 1893CBEOh) = XOR(2, BADBOADBAh); simply no?

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Y,

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Before to explain some tricks | used to write a keygen, | would display the Init Phase of this Time’s Flag
Control:

MOV EAX, 578A43D1h Do you recognize the call underlined in

5 Y R
MOV ESI, address of the 'Cleaned Name’ red? Yes, it's the same used in 3

PUSH EDI Hashing Block of 1° Time’s Flag
control:

MOV EDI,ESI

OR ECX,-1 _

XOR EAX, EAX EAX = CDATAHash(1, ,)

REPNE SCAS BYTE PTR ES:[EDI]

MOV EBX, A312B14Ch where the 2° and 3° parameters are

MOV EBP, A29DC94Dh the length (yellow instructions) and

NOT ECX ‘ ,

DEC ECX offset of ‘Cleaned Name’. In the green

code | stressed the storing operation
;ECX = Length of ‘Cleaned Name Buffer'; of locations in to the stack. We can
synthesize these instructions in this

XOR EAX, EBX way:
MOV EDI,ESI ;EDI = ESI = pointer of the 'Cleaned Name';

1°block = CDATAHash(1,a,b) »* A312B14Ch
2°block = CDATAHash(1,a,b) » 17983DE1h
3°block = CDATAHash(1,a,b) » 8A02D709h
4°block = CDATAHash(1,a,b) » 58209123h
5°block = 578A43D1h

6° block = CDATAHash(1,a,b) ~ 5° block

|

EBX, 17983DE1h;

XOR EAX, EBX
a = Length of Cleaned Name;

b = offset of Cleaned Name Buffer;

T

XOR EAX, 58209123h
MOV EDI,ESI ;EDI = ESI = pointer of the 'Cleaned Name';

XOR EAX, EBP

MOV EDI,ESI JEDI = ESI = pointer of the 'Cleaned
Name ' ;

XOR EAX, 289F1E44h;

MOV ECX, 5 block;

XOR EAX,ECX

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Rt

!FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j
|

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

5.5 SUGGESTIONS TO PROGRAM A KEYGEN

There are many plug-ins for OllyDbg that allow to rip instructions, but | prefer to write a Keygen ex novo
because, first of all, it's a useful exercise and also because we can optimize some part of code in Check’s
routines. In fact, if you have understand the previous Flowcharts of Check’s routines, you have certainly
noticed it’s not necessary calculate everything but only changes relative to that location used to store a 32 bit
Hashing value. For example, in the 4° Time's Flag control, only the 2° location of Structure saved in to the Stack
is important, while the others are superfluous; so, doing little back tracing in the Cryptographic Scheme:

2° Location

4

PERMUTE s.1,5.4.2) AKOR {7, 7rzaeT32R)

XOR(4,13246178R)

X ; ;
l Who wentin 2° Flace? M

XOR[T Zzrecwssn).
4° Location — KOR(4, 77241340

I consider only XOR op relative to X 5
this block and | simplify it: !
[{axora =0, geen lines |

XOR(4,4290C04Dh)

We jump directly inred
XOR's bamer because the
4%location is independent
by conditional phase

{ green blocks Jand the red
permmutation block of initial
phase

Init Phase of Cryptographic’ scheme M

XOR (6. 7F7zE

_________ A

LYy Wi -
a = Length of Cleaned Name; AN 4, 002UV T 230
b = offset of Cleaned Name Buffer; W

WD o an o ea—ae
Al S A A N P]

At the end, the
32 bit Hashing Value
is:

CDATAHash(1. Length of Cleaned Name, *Cleaned Name Buffer] XOR A29DC94Dh

In the same way, we can “reverse” the Hashing’s Blocks based to Carry Less Multiplication; for simplicity, |
write these instructions in pseudo C language:

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 EEE]

!HHTEHm EZINE ISS5UE IU]
=

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Int Temp; Int Temp;
HashingValue = 8x8A312B14C; HashingValue = 8x578443D1;
for (1=0, i < CleanedNamelength, i++) for (1=0, 1 < CleanedNamelength, i++)
{.Temp = C.L.M(UpLicenseCName[1],0x01022041); {.Temp = C.L.M(UpLicenseCName[1],0x21020881);
HashingValue = 8x25 * HashingValue + Temp; HashingValue = 8x13 * HashingValue + Temp;
¥; ¥;
2°Time’s Flag Control 3°Time’s Flag Control
Int Temp;

HashingValue = 8x17983DE1;
for (1=0, 1 < CleanedNamelength, i++)
{.Temp = C.L.M(UpLicenseName[1],0x22208241);
HashingValue = HashingValue * Temp;
If (HashingValue £ @)
HashingWValue = 2 * HashingValue +1;
Else HashingWValue = 2 * HashingValue;
¥;

1°Time’s Flag Control — 2” Hashing Block

For others Check’s routines, you can see the asm source of my Keygen, it’s quite commented! ;)

5.6 ADDENDUM — EXERCISE

Don’t worry, it’s a my little proposal; if you traced the program as | described here, you have surely notice
many duplications of calls inside Time’s Flag controls (see Figure 14.) and also you can see others address
constants that seem to work like Time’s Flags itself... why? Once registered the game, where ‘s saved the
License Code? Exact, in Window’ registry, more precisely in:
HKEY_LOCAL_MACHINE\SOFTWARE\WildSnake Software\Dwice\1.0.

Here, both License Name and License Code are stored as REG_SZ. So, when we launch the game, the
program tests the presence of these keys and, if they exist, it does the same controls; for exercise, you can
trace this Checks and discover new Time’s Flags (Registry Time's Flags! ;-D).

It's important to underline as License Code is saved in to registry in a cryptic form; | discovered it tracing
the case BB8 of CALL dwice.0040E7A4h do you remember the “final good judgment” ?). Inside it, we can
find:

PUSH Offset of License Code The CALL underlined in red, simply crypts the License Code
PUSH Buffer of Cryptic License passed as 1° parameter by address and the result is stored in
Code

Cryptic License Code’s Buffer (2° parameter passed by address

CALL dwice.00424AA0
).

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 Rkl

ARTEAM EZINE ISSUE IV

CARTERAM EZINE IS5UE I'—.—'j

I Reversing : I'm lust doing'my hobby. 1

Stepping inside this, we can analyze these instructions:

XOR ESI,ESI
Loop: <

LEA EDI, address of current byte of Cryptic Serial Buffer;
MOV AL, current byte of License Code;

TEST EAX, EAX
JL Error code

CMP ESI,4
JE 2° group
CMP ESI,6

JE 2° group
CMP ESI,@A
JE 2° group
CMP ESI,OF
JE 2° group
TEST ESI,ESI
JE 3° group
CMP ESI,2

JE 3° group
CMP ESI,8

JE 3° group
CMP ESI,©OE
JE 3° group

JMP Next1

3° group

MOV DL, [Hash Table's base offset + 2 + 4*j];
MOV BYTE PTR DS:[EDI],DL

JMP Next

2° group

MOV AL, [Hash Table's base offset + 1 + 4*j];
MOV BYTE PTR DS:[EDI],AL

JMP Next

|

Next:
INC ESI
CMP ESI,1E

IL Loop
POP EDI
POP ESI
POP EBP
MOV EAX,1
POP EBX
RETN

The subroutine underlined in red,
receives in input 2 parameters: a
byte of License Code and the
offset of Hash String; so, it
returns in EAX a index j that
satisfies the same condition seen
before:

License Code[i] = Hash String
[Base offset + 2*j]. Then, using
ESI as pointer to an Hash Table,
the target maps its bytes in to a
Cryptic Serial Buffer. Indeed, as
you can see to left, we can
identify 4 main groups for Hash
Table’s index:

4° group = others indexes;

For every group, there’s a
different displacement in the
instruction:

MOV reg,[H.Table offset + disp +
4*l;

where displacement can be:
for 1° group;
for 2° group;
for 3° group;

3 -> for 4° group.

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 ksl

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

So, the Hash Table can be partitioned in this way:

3173 TA A 6A 31 32 46 51 71 4B &1
41 B4 5A 32 &C 73 51 |62 78 45 41 41
€5 4F 5% 82 Bl |32 g4 50 44 58 T2 &G
34 BS 38 48 B4 75 EE& TT 43 T 70 33
38 6D &7 58 e 48 TA &2 42 78 53
4Z BR &5 75 33 5d 4&4 4E &8 €2 56 54
4D 37 4D 70 20 |55 &8 29 33 30 35 38
£F 4D 70 &5 34 &8E 35 36 &3 4C 31 4F
80 28 151 EE 73 |74 &C &C 20 €174 &8

As exercise, you can find the subroutine that implements the inverse operation: from Cryptic License Code to
Clear License Code... (little suggestion: you can trace any reference to offset constant 00598974h; in fact, in my
pc, this is the Base offset of Hash Table).

Uff... finally we can tell TO HAVE FINISH!!! | hope that this tutorial you enjoyed and still sorry if | was not clear
as | would have been.

5.7 REFERENCES

[1] “Permutation”, http://en.wikipedia.org/wiki/Permutation

[2] “Carry-Less Multiplication and Its Usage for Computing The GCM Mode”,
http://softwarecommunity.intel.com/articles/eng/3787.htm

5.8 GREETINGS

First of all, I want to thank Shub—Nigurrath for editing and revising this long tutorial, all members of ArTeam,
Quequero, Evilcry and all U.I.C; thanks also go to Oleh Yuschuk, Scherzo and NtosKrnl for their useful tools but
especially | thank you who have read my tutorial.

Dedicated to my love Angela,
My mother and my father

[In the Supplements folder “0.5 Gyver75”

you can find also:
e Olly plugin with sources and
comments for the code

Full ASM sources of the keygen]

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 ky)

http://en.wikipedia.org/wiki/Permutation�
http://softwarecommunity.intel.com/articles/eng/3787.htm�

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

6 LIVE DEBUGGING SYMBIAN APPLICATIONS USING OR NOT USING IDA BY ARGV

Here we present a short readme of what’s into the Supplements folders. In folder 0.6 argv you can find 4

videos about live Symbian debugging of applications, with and without IDA and from PC or directly from the
phone.

This video series dedicated to Symbian covers all the possible ways available to live debug Symbian
applications, and drop away dead-listings.

You have 3 Debug Videos + Teaser One. And also, as you can see they are arranged in folders.

= First Debug Video is about Debugging Application using a built in Emulator.
You may think Emulator is crap and not worth exploring. Well, you are very wrong. Emulator is perfect
way to test and debug applications before application goes to phone. Emulator also supports
debugging which you can use to find glitches and fix them before transferring the file to the phone. It
is true that Emulator isn't real phone, but do you want a buggy application on the phone? I think so
also. Use debugging on Emulator ALWAYS before trying to run/debug it on the phone. Emulator has
its own console you can invoke and track the progress as you are stepping through the code.

= Second Debug Video is about Debugging Application LIVE on the phone.
In the second video you will see how to debug an application LIVE on the phone. However you have
many obstacles here. You cannot correct errors like in Emulator, you can only view how it looks on
the phone. This is not a debugger of choice. Emulator is far better. You can try to debug on the phone,
but execution path is very quick so you might miss some stuff going on behind the scene. Debugging
on phone can be useful in cases where you need to see how application behaves on real device, but
still, it is weak as a debugger.

= Third Video is about Debugging Application using IDA Pro 5.4
Last method is by using IDA with Remote Symbian Debugger that connects to phone's AppTRK. This is
most powerful type of debugging because you are literally stepping through applications code. In IDA,
you can see the stance of registers and also you can see memory layout and you can write your own
memory regions.

Live Debugging Symbian Applications Using or not Using IDA by Argv

ARTEAM EZINE ISSUE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

6.1 SOME FAQ

Finally here are few questions we thought you might ask:
Q: Do these need a hacked Symbian phone?
-- No, but hacking the phone could save time.
Q: To which Symbian versions these solutions apply?
-- These solutions apply to ANY 3rd device. It can be used in Second Edition but that is different story.
Q: Which type of debugging event | can or | cannot handle?

-- You can debug userland programs. And without extremely hard work you can't debug protected
areas on the phone.

Q: Is the TRK the only option available, is there any other similar product?

-- Yes, Target Resident Kernel is only one that support debugging. Similar product do not exist, at least
I am not aware of it.

Q: TRK relies on undocumented Symbian kernel APIs? If yes the risk isn't that Nokia will drop support
for them?

-- Probably not because big development companies need it. In fact, Nokia updated TRK just recently.

[In the Supplements folder “0.6 argv” you can find:

Debugging_real_programs_with_Emulator_by_argv
a series of 3 videos
Live_Debugging_Programs_using_Carbide_by_argv
a series of 2 videos plus tools and programs required
Debugging_programs_teaser_Video_by_argv.wmv
the first video to look at
Debugging_programs_with_IDA_Pro_by_argv.wmv
this is probably the second video to look
symbian_primer.pdf from Hex Rays’ site, a document
explaining how to configure IDA 5.4 for Symbian
debugging

Beware tutorials have audio comments]

Live Debugging Symbian Applications Using or not Using IDA by Argv

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Gunther: Hi Shub, thank you for your availability. Some simple
questions to introduce you to our readers to start with. What is your
role at ARTeam? Can you tell me a little bit about yourself and what
do you do?

Shubby: Hi everybody. Which is my role in the team? Anyone coming
to visit our forum should have seen that | define myself as the

commander. It’s a joke of course, but more or less that is what | do in

S saanid G the team, motivating people with new ideas, keeping the team joined,
littls frlmzol mq‘ w:un the

Ei;;a‘z‘éu.{ﬁ'sﬁ.‘nm“‘gg O iridge handle the forum and system (even in case of crashes) and propose to
Jasting refreshment. . . .
[EChemlital los 1, £o. Eosth mputh, the other mates possible evolutions. But the team is truly a

throat and digestion |
democratic group. | am not a real commander, I’'m rather the one that

[4
SH U B BY S most often proposes new ideas for discussion. This comes from a

personal attitude, | am what is often also called a “cross-fertilizator”:

“Our supply of goat milk is . .
ﬂf:ﬁf?ﬁgﬁm what happens to me is that | tend to read a lot of papers and tutorials

D ol and start thinking about possible applications with different
§ techniques in the RCE area. | am somehow embarrassed doing
interviews because | hate those types of people standing up and
telling their truths as if were gold, | then wish to remark that | am just
giving opinions, the word "IMHO” should be added at the beginning of

any future sentence. ;-)

Gunther: How long have you been involved with Reverse Engineering?
How did you become interested in it?

Shubby: This is a story that starts a lot of years ago, my first approach

to reversing were with a Commodore C64, at that time the scene was
incredibly quite huge and luckily there wasn’t still any well defined regulation against piracy. That was, let
say, a golden age! Anyway | learnt then to disassemble on the Motorola 68000 architecture (I still have a
little handbook called “Pocket guide assembly language for the 68000”, printed in 1984!... definitely a
prehistoric age) and entered some of the Odays teams of that time (I will not mention them). That scene
was mainly made of BBS and few lucky datapac connection points and of course was made through modem
transmitting at 1200/2400 BAUDS (approx 240 chars/sec then approx 1920 bit/sec)! When C64 was
declared dead | stopped reversing, but your passions returns and | started again few years ago with Palm
(reversing Palm programs) and then found ARTeam. What | liked immediately of ARTeam was the attitude
to share everything they were doing not only pushing at an increasing the cracks/day ratio. Moreover there
were some very talented people! Others joined later, now ARTeam is made of very excellent reversers.

Interview with Shub by Gunther

:FlF!TEF'I\ITI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Gunther: Do you use any special tools for RE?

Shubby: the most special tool | use is my brain ;-) Beside this | use quite all the possible tools, but mostly
OllyDbg, IDA and few other specialized tools like resources decompiler or specialized disassemblers like
DeDe. | like to integrate all the results of these tools just to have different views of the same thing; it helps
me understanding the underlying logic of the system and have an higher view, you can call this type of
reversing “birdfly reversing”. Ah | forgot to say that | also use Total Commander a lot, for almost
everything, it’s just a substitute of explorer. With the proper plugins it becomes a perfect forensic
workstation. What is often forgotten is to look under the hood which are outside of usual tools (evidences
or weakness are sometimes so evident that there’s no need to even open OllyDbg).

Gunther: If you had to make recommendations for other engineers in your fields, what would you say to
them?

Shubby: If you mean reversing that’s not my field ;-), but what to say. | don’t think | am anything so special
to give any advice to anyone, but in general the only thing | suggest is to follow your attitude and to not get
shortcuts. RCE is all but a simple art and recently the interest of industry just raise the bar. | posted few
months ago on our forum® this post: “Since few years the software industry created a new official
competence, the security expert, the secure software development lifecycle, the professional reverse
engineer. This was due to the fact that finally reversing for security needs has been regulated by laws and
it's now possible to build a career on reversing. This was not possible at the times of +Fravia and industry
was suffering from the lack of professional roles, able to effectively reverse programs. The effect of this
change of scenario is under eyes of anyone, a great and constant raise of the bar. New protections
(themida, securom,...) are very difficult. How many crackers can handle them fully? Not much and those
who are, keep their secrets for their own clubs. Of course!”. | posted this comments on the forum because |
clearly see this drift happening. What this means is that if you want to stay at top you’ll have to study more
(if you're alone) or collaborate more (if you are in a team).

Gunther: How do you really feel about the current situation in RE and software protection?

Shubby: Indeed | already answered partially in the above question, sorry. But | see a lot of different trends
happening. First of all the number of professional people doing reverse engineering for work increased.
These roles are on both sides of the barricade: malware and fighting. Those people among us not working
in RCE and not willing to create malware are somehow compressed between these two colliding worlds.
Then the web scene (which is weakly protected) is vulnerable to government on the one hand and
releasing competition with 0day (which is well protected) on the other hand. This hybrid situation could
only create problems. This is why ARTeam stopped doing any release a long time ago and started to just do
tutorials. Tutorials writing is that type of activity that’s borderline and (till now) borne. On the other hand
most of the reversers sat down on WinXP and 32 bit architectures without expanding their views to other
systems (non win32, non-PC), to other architecture (embedded, hardware hacking, 64bits) and to what will
come after Vista (W7, OSX). The most common comment | saw from reversers using Vista was “luckily it
runs OllyDbg”..this means that they are not getting the real opportunities offered by Vista, isn't it?
Whenever WinXP disappears, a lot of well known crackers will do as well. What we did (with iPhone,

I http://www.accessroot.com/arteam/forums/index.php2showtopic=7602

Interview with Shub by Gunther

http://www.accessroot.com/arteam/forums/index.php?showtopic=7602�

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Symbian, WinCE,...) is to create some alternatives trying to reverse also different systems. This ezine is also
a proof.

Gunther: What are you currently working on at the moment and what are you interested in the near
future?

Shubby: Indeed lately | was taken out of reversing due to RL issues and due to the forum restoring, the new
site setup and this ezine also...a lot of editorial and boring tasks that slowed my interest on active RCE. But
was due: luckily | found several ARTeam enthusiasts and people appreciating our efforts and vision which
helped us to be here. | think that once all will again be fixed | will take some resting just doing nothing, or
better just doing what | was doing before: reading tutorials and reversing them without any additional
distraction.

Gunther: Is RE your profession?

Shubby: | cannot answer to this question; surely it’s one of my passions.

Gunther: Do you think we are at the point where software protection developers had a hard time
protecting their software against you guys?

Shubby: Not indeed | think just the opposite. This is the golden and upmost point in the reversing saga,
where reversers reach their more complex results against developers. Software industry started to react
professionally and it's eating the disadvantage accumulated in years (mostly due to misleading
regulations). What will come is the era of team working: malware is already using teamworking (look at
conflicker, it’s clearly a result of a team of experts), industry as well of course, Oday teams are already
collaborating without telling to anyone and the web reversing “scene” will also have to do it. Why? Just
because complexity is too much for a self-made man!

Gunther: you often mention the malware industry, and the professional reversing world. How these two
worlds will change the way of protecting programs?

Shubby: Humm my idea of how programs’ protection mechanisms will evolve is tied to malware. To start
describing the idea | must start from the honeynets (nets specifically prepared to be vulnerable and catch
malwares like honey, a type of trap for malware). | started to think that future evolutions of protections
and thought that some programs are also like honeynets, they are probably better termed as say
"honeyprogs", just prepared to be cracked and "catch" infos from who did it. Just to make it brief the
concept is this: suppose you have a program that is important for a specific class of users, like specialists in
something, and suppose that the program costs a lot.

There are two possible ways to protect the program: first, few simple evident protections that one generic
cracker can see, at some not too easy level, just to not raise suspects. Second, a much more hidden
protection that silently somehow collect data on the patching process... or instead, of shouting "I'm

Interview with Shub by Gunther

!HF!TEH\ITI EZINE ISS5UE I'—.—'j
L

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

debugged and can't run", just collect information about your PC and you... silently! That information can be
used to modify the program behavior (like for games badly cracked for which the game’s engine of a badly
cracked game becomes "harder" to play, while the game doesn't complain about being a pirated copy), or
to actively send information to somewhere...

Is that possible? Sure, it is. Malware is already doing these things. What | think is that developers soon will
realize that malware logic could be helpful for them (indeed Sony was the first to realize it, almost a year
ago when they were distributing CDs with a self installing rootkit for their DRM system). | then to start
thinking that we'll have to use the same tricks that are normally used to test malwares, to avoid programs
to catch information and send them to developers. This is exactly the same concept malware does, just
tilted. Malware phish information from your system about accounts, start to think about a program that
phish information on you, that are trying to crack it.

Moreover malware is teaching us that there are hundreds ways to catch information from the system that
normal reversers doesn't even suspect that are possible. This is because nowadays malware analysis is
considered a white-hat only domain, but it's not.

This is why | decided to focus the next eZine only on malware analysis, thought as a way to teach us to
better reverse any program: tutorials about methodologies, primers, things that are important to know...
This is not to tell that we should convert to malware analysis, our malware interest is functional to what we
are already doing!

Gunther: What are your future plans? Do you plan on writing any books soon like H.D,Moore?

Shubby: humm | thought of writing something several times, or even to collect some tutorials into a book,
but time is always lacking and writing is a really expensive task. It's anyway a pinpointed task and | am just
waiting to find time to develop it.

Gunther: What are the directions and future for ARTeam? Any interesting projects in progress?

Shubby: just continue doing what we are already doing, hopefully with the contributions of all the team
mates who shared their passions. ARTeam is first of all a group of friends, what | always missed is the
opportunity to meet them all, but we are spread in so many places that it will just be impossible!

Interview with Shub by Gunther

!FlF!TEFNTI EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

Gunther: Could you give some pieces of advice for our readers — people who might be going to look for a
job in Reverse Engineering field some day?

Shubby: Advice? Humm nothing special indeed... Just that living doing RCE is really hard. Look at those guys
officially doing it for work: they are travelling all around the globe to seek works. Second thing do not
reveal that once you were crackers, because it exists the so called “Mitnick effect”: if you're an ex-cracker
anyone will ask you to do courses explaining how to do things and asking to teach them, but no one will
ever give you their system for fixing. So after all this will reveal to be an own goal.

Gunther: Our interview seems to be completed. Do you have something to add to our readers? Thank you
for your time and keep up the excellent work.

Shubby: Not indeed, | wrote so much and | bored so much that | cannot even think that anyone will still be
alive at this point. This interview comes at the end of a giant issue which kept me busy for several months,
collecting, fixing and editing all these contributions. First of all | wish to thanks all the authors (and you as
well) and all the other mates sharing their experiences on our forums.

So long, and thanks for all the phish!

Interview with Shub by Gunther

IF|F!TEF|‘I'I'I EZINE ISS5UE I'—.—'j

ARTEAM EZINE ISSUE IV

I Reversing : I'm lust doing'my hobby. 1

ARTEAM EZINE #5 CALL FOR PAPERS

ARTeam members are asking for your article submissions on subjects
related to Reverse-Engineering.

We wanted to provide the community with somewhere to distribute
interesting, sometimes random, reversing information. Not everyone
likes to write tutorials, and not everyone feels that the information
they have is enough to constitute a publication of any sort. I'm sure
all of us have hit upon something interesting while coding/reversing
and have wanted to share it but didn’t know exactly how. Or if you
have cracked some interesting protection but didn’t feel like writing
a whole step by step tutorial, you can share the basic steps and
theory here. If you have an idea for an article, or just something

fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat debugger

detection, or how to defeat an interesting crackme..

The eZine is more about sharing knowledge, as opposed to teaching. So the articles can be more

generic in nature. You don’t have to walk a user through step by step. Instead you can share

information from simple theory all the way to “sources included”

What we are looking for in an article submission:

1.

7.
8.

Clear thought out article. We are asking you to take pride in what you submit.

It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.

Any format is fine, but to save our time possibly send them in WinWord Office or text
format.

If you include pictures please center them in the article. If possible please add a number and
label below each image.

If you use references please add them as footnotes where used.

If you include code snippets inside a document other than .txt please use a monospace font
to allow for better formatting and possibly use a syntax colorizer

Anonymous articles are fine. But you must have written it. No plagiarism!

Any other questions you may have feel free to ask

We are accepting articles from anyone wanting to contribute. That means you.

We want to make the eZine more of a community project than a team release. If your article is not

used, it’s not because we don't like it. It may just need some work. We will work with you to help

develop your article if it needs it.

Questions or Comments please visit http://forum.accessroot.com

ARTeam eZine #5 Call for Papers

http://forum.accessroot.com/�

	Forewords
	Disclaimer/License
	Supplements
	Verification

	Reversing binary 500 by Externalist
	Introduction
	Tools needed
	Exploring the Binary
	Reversing the Binary
	Conclusions
	References
	Greetings

	Handy Primer on Linux Reversing by Gunther
	Forewords
	Abstract
	Target
	Examining our target
	Starting
	Initial Analysis
	elf file format
	disassembler and hex editing tools

	Searching for more clue
	Analysing the contents of specific parts of the file
	ELF file section header structure

	Retrieving Symbol table
	The Symbol Table

	Reversing the program
	Reverse Engineering
	Conclusions
	Greetings

	using .net profiling api for a custom .NET Protection by Kurapica
	What is profiling?
	How does the protection work?
	The Profiling APIs
	The workflow
	Implementation
	Preparing the Assembly:
	Conclusion
	References
	Greetings

	Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu
	Forewords
	Few words on Palm OS
	Filling our Reversing Laboratory
	Existing tools to handle PRC files
	PRC File Structure
	The ClsD Record
	Palm OS Operating System
	Other Tools
	Installing the tools
	Installing emulator
	Installing PRC Edit

	Reversing with PRCExplorer and PRCEdit
	Reversing the first Application: F-Secure Antivirus 2.00
	Patching the Target
	Testing the target

	Reversing with POSE and SouthDebugger
	Reversing the second application: TealDoc 6.77
	Testing the target

	Advanced Reversing
	Reversing the third application: 300 Bowl
	Patching the target
	Testing the Target

	Conclusions and Further Readings
	Greetings

	Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75
	Introduction
	Target and tools used to reverse it
	Analysis
	Identification of Check’s routines
	Obfuscation
	Guard’s Checks and Time’s Flags
	General Check’s Scheme
	Hashing Blocks

	Suggestions to program a Keygen
	Addendum – Exercise
	References
	Greetings

	Live Debugging Symbian Applications Using or not Using IDA by Argv
	Some FAQ

	Interview with Shub by Gunther
	ARTeam eZine #5 Call for Papers

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

