

2009

Editor: Shub-Nigurrath

ARTeam

3/25/2009

ARTeam eZine Issue IV

ARTEAM EZINE ISSUE IV

Forewords 2

ARTEAM EZINE ISSUE IV

Forewords 3

TABLE OF CONTENTS

FOREWORDS 6

Disclaimer/License 8

Supplements 8

Verification 8

1 REVERSING BINARY 500 BY EXTERNALIST 9

1.1 Introduction 9

1.2 Tools needed 9

1.3 Exploring the Binary 9

1.4 Reversing the Binary 16

1.5 Conclusions 47

1.6 References 48

1.7 Greetings 48

2 HANDY PRIMER ON LINUX REVERSING BY GUNTHER 49

2.1 Forewords 49

2.2 Abstract 49

2.3 Target 50

2.4 Examining our target 50

2.5 Searching for more clue 56

2.6 Analysing the contents of specific parts of the file 56

2.7 Retrieving Symbol table 57

2.8 Reversing the program 58

2.9 Reverse Engineering 58

2.10 Conclusions 65

ARTEAM EZINE ISSUE IV

Forewords 4

2.11 Greetings 65

3 USING .NET PROFILING API FOR A CUSTOM .NET PROTECTION BY KURAPICA 66

3.1 What is profiling? 66

3.2 How does the protection work? 67

3.3 The Profiling APIs 68

3.4 The workflow 69

3.5 Implementation 70

3.6 Preparing the Assembly: 76

3.7 Conclusion 79

3.8 References 79

3.9 Greetings 79

4 PRIMER ON REVERSING PALMOS APPLICATIONS EXTENDED EDITION BY,
WAST3D_BYTES, SUNTZU 80

4.1 Forewords 80

4.2 Few words on Palm OS 80

4.3 Filling our Reversing Laboratory 82

4.4 Reversing with PRCExplorer and PRCEdit 86

4.5 Reversing with POSE and SouthDebugger 94

4.6 Advanced Reversing 104

4.7 Conclusions and Further Readings 115

4.8 Greetings 116

5 REVERSING THE PROTECTION’S SCHEME OF ALEXEY PAJITNOV’S GAME DWICE BY
GYVER75 117

5.1 Introduction 117

5.2 Target and tools used to reverse it 117

ARTEAM EZINE ISSUE IV

Forewords 5

5.3 Analysis 118

5.4 Identification of Check’s routines 121

5.5 Suggestions to program a Keygen 149

5.6 Addendum – Exercise 150

5.7 References 152

5.8 Greetings 152

6 LIVE DEBUGGING SYMBIAN APPLICATIONS USING OR NOT USING IDA BY ARGV 153

6.1 Some FAQ 154

7 INTERVIEW WITH SHUB BY GUNTHER 155

ARTEAM EZINE #5 CALL FOR PAPERS 160

ARTEAM EZINE ISSUE IV

Forewords 6

FOREWORDS

Hi all,

It’s a long time since I promised the new ARTeam issue. As usual I had to postpone this new issue for a long
time due to a lot of things happened in the meantime. As anyone following us probably knows we had to
change hosting, rebuild the database of the forums and re-create the web site. All those stuffs have not been a
snap and I must excuse with authors who sent to me their contributions some months ago. Anyway we are
back now and hopefully we are here to stay. Now we are hosted at www.accessroot.com write it down!

This issue is then dedicated to the Evolution. Evolution ... means a lot of things indeed..

First of all, evolution of the reverse engineering world, this is evolving under the pressure of different issues.
One is the appearance of new post-pc devices and the increasing interest in reversing non Windows worlds,
the second is the augmented number of professionals involved in this area, on both sides of the barricades.
The result is that the reversing skills required to stay at the edge are increasing each and every day. It’s not as
simple to be original and to release new things, to follow all the possible directions. To stay on top requires
constant study and updating and this can be done only in two situations: when you are a kid without a work, or
a student, when you are paid by someone (either from black or white reversing worlds). Moreover the
economical crisis affecting most parts of the world is not helping! So what to happen? As with all things, we
also have to evolve somehow...

The scene is rapidly changing; everyone would really have to agree
that cracking is slowly fading away, but not away to oblivion, away to
something else. The amount of protections or cool ideas is becoming
less frequent, yet on the other hand the protections are becoming
more and more complex.

A few years ago, the software industry created new official
competences: the Secure Software Development Lifecycle developer,
the Security Architect and the Professional Reverse Engineer. This
was due to the fact that finally reversing for security needs was
recognized as a necessity and has been regulated by laws (since year

The reverse engineering world, is
evolving under the pressure of
different issues. One is the
appearance of new post-pc
devices, the second is the
augmented number of
professionals involved in this area,
on both sides of the barricades

http://www.accessroot.com/�

ARTEAM EZINE ISSUE IV

Forewords 7

2000), so it's now possible to build a career based solely upon reversing. This was not possible at the times of
+Fravia or +HCU, so the industry suffered with a lack of professionals figures for reversing/protecting
applications. The effect of this change of scenario is under everyone eyes: a big and constant rising of the bar
under economic pressure. New protections (Themida, SecuROM,...) and malware witness a change of attitude
(you may think that they are complex or not, but they are surely a breaking evolution compared to older
things). How many crackers can handle them fully? Not many and those who are keep their secrets for their
own clubs.

Which is the solution, I am not sure. I do know what it should be: share and work together, adopting the same
methods used by the "official" scientific reversing community. I'll call it scientific reversing, it publishes papers,
ezines, forums, conferences... but most of all collaboration is the keyword!

Collaboration is the keyword: software and protection industry collaborates; malware industry collaborates
(on both sides). A friend wrote little time ago “reversers should be more of a team, rather than acting like a
loosely knitted group of individuals. That is not to say that we shouldn't have our own individual
projects/desires, but there isn't really a sense of direction or purpose, other than to share what we find on our
journeys... Sometimes we are blindsided by our own singlemindedness, and fail to see new opportunities that
are there...At the same time as achieving this, you then get an improvement in everybodies skills and
knowledge, because ALL get taken along together.” Ask yourself, what made +HCU what it was? I think that
were two things: a truly sense of wonder and a team thinking (all together aiming at a final result).

For these reasons I want to raise my hand and call for quality contributors and reversers willing to share
original new tutorials and experiences. Sharing for what? To keep this experience alive. ARTeam is not our
child, is an instrument you may use or not.

So if you want to contribute with tutorials about reversing *anything* or describing original attacks and
advanced approaches you are invited to contact us/me.

Coming to this issue, it is focused on non-windows reversing, or better
on non-win32 reversing. There are insights into the Linux world
(Externalist, Gunther) and the Palm (wast3d_bytes has released
independently another Palm issue, which has been extended exclusively
for this eZine, I also added an interesting video tutorial from Suntzu).
There are also two interesting contributions into .NET advanced concepts
and one about classical reversing from Gyver75, which I added for the
passion for reversing it clearly shows, besides quality of the work. This
walkthrough is completed by a series of video tutorials prepared by argv
about live debugging Symbian systems, not only using IDA. The non-

win32 tutorials are just a completion of the activity we had already started a long time ago, investigating new
reversing worlds like the already known Symbian, iPhone, .NET and Mac. Finally, I decided to add an interview
Gunther prepared for me. It was requested a long time ago, you may skip it ;-)

Anyway as you can see the result is another extremely long issue, probably the longest one till now. All the
times it happens to write such a big issue I ask myself: how many of you will read or appreciate it, how many
will appreciate these “forewords” –hehe-. I really don’t know. One thing I must say is that each chapter can be
printed separately, which is especially true for this issue, because each one belongs to completely different
worlds.

Your Favourite Neighbourhood Shubby

ARTEAM EZINE ISSUE IV

Forewords 8

DISCLAIMER/LICENSE

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it.
This eZine is also free to distribute in its current unaltered form, with all the included supplements.

We have potentially illegal stuff inside. All the commercial programs used within our tutorials have been
used only for the purpose of demonstrating the theories and methods described. These documents are
released under the license of not using the information inside them to attack systems of programs for
piracy. If you do it will be against our rules. No distribution of patched applications has been done under any
media or host. The applications used were most of the times already been patched by other fellows, and
cracked versions were available since a lot of time. ARTeam or the authors of the papers shouldn’t be
considered responsible for damages to the companies holding rights on those programs. The scope of this
document as well as any other ARTeam tutorial is of sharing knowledge and teaching how to patch
applications, how to bypass protections and generally speaking how to improve the RCE art. We are not
releasing any cracked application. We are not at all encouraging people to release cracked applications;
damages if there will be any have to be claimed to persons badly using information, not under our license.

This disclaimer applies to all ARTeam releases and tutorials!

SUPPLEMENTS

This eZine is distributed with Supplements for each paper; the supplements are stored in folders with the same
title of the paper. Almost all the papers have supplements, check it.

VERIFICATION

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

http://releases.accessroot.com/�

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 9

1 REVERSING BINARY 500 BY EXTERNALIST

1.1 INTRODUCTION

This tutorial is about reversing Binary500 from DEFCON CTF Pre-quals 2008. Binary500 runs on a FreeBSD
server and has a keyfile associated with it. A keyfile is simply a text file that contains a secret password. The
goal of this challenge is to somehow retrieve the contents of this keyfile (which would have earned you an
extra 500 points if it were during the contest). Nobody knows how the binary interacts with the keyfile, so
dynamic or static reverse engineering of the binary might be required, and considering that this is the most
difficult out of all 5 binary challenges, it could be hard (or easy for some of you people :P) and require a lot of
work. I will try to thoroughly explain through the steps, but there is still some knowledge required for the
reader to get everything out of this tutorial. The reader is recommended to

− be familiar with IDA
− know how to use IDA Python
− have basic knowledge of the common reversing tools on a non Windows platform
− be familiar with the shell commands used on linux, freebsd, etc.
− know how to program

If you have never done any reversing on a non-windows platform and get stuck somewhere, always do a
search on google instead of just giving up. I myself haven’t had that many reversing sessions on FreeBSD and
google happened to be my best friend. This tutorial is targeted to people who aren’t that confident in
reversing in FreeBSD so the content might seem a little over explained in some parts. If you feel so, you can
just skip the parts on the basic usage of tools for fast reading.

1.2 TOOLS NEEDED

• IDA pro
• IDA python

• A FreeBSD machine

• GNU binutils

1.3 EXPLORING THE BINARY

You might think reversing a binary on a non-windows platform is somewhat alien, but the fundamentals don’t
really differ greatly. It’s just as simple as following certain known procedures like one would do on a windows
binary, which is what I’m going to demonstrate here.

First off, let’s look at the text that comes with the binary.

500: We're running this. Ask it for the key *very* nicely and it may give it to you ;):
ihatedns.allyourboxarebelongto.us:2600 file

http://nopsr.us/ctf2008qual/reversing500-cf3f218b2331845ae68b2a4a53b9cb28�

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 10

It seems like the binary is running on the server and we have to connect to it. Since the binary is no longer
available on the server, it would be necessary to set up a custom FreeBSD server and run the binary there. If
you don’t already have a FreeBSD machine installed, then you could easily get a vmware image from here.

After you’re done downloading and booting the FreeBSD machine, get the binary(which I renamed as
binary500) using the wget command, and have it running on the machine. You would have to supply a text file
as an argument, which I named ‘keyfile’. The keyfile will contain some sort of password that we must retrieve.
It would be better to run the binary in the background by entering ‘binary500 keyfile &’ so we could later on
analyze the binary without having to kill the binary500 process all the time.

Next, we want to know the IP address of the FreeBSD machine we’re using so type ‘ifconfig’. Mine turned out
as 192.168.1.131 so that’s what’s going to be used throughout the tutorial.

Ok, first off, use nmap to scan for open ports on the server. 2600 turns out to be opened as tcp. Now let’s try
to simply connect to the server to see what happens. Just type as the following:

externalist@Externalist:~$ nmap 192.168.1.131

Starting Nmap 4.53 (http://insecure.org) at 2008-07-10 00:16 KST

Interesting ports on 192.168.1.131:

Not shown: 1713 closed ports

PORT STATE SERVICE

2600/tcp open zebrasrv

Nmap done: 1 IP address (1 host up) scanned in 10.290 seconds

externalist@Externalist:~$ nc 192.168.1.131 2600

�#�#M#�#B#

We get sent some weird hex bytes that obviously don’t look like ascii characters. Let’s dump it into a file and
use the hexdump utility to dump the contents.

externalist@Externalist:~$ nc 192.168.1.131 2600 > temp

externalist@Externalist:~$ hexdump -C temp

00000000 fe 00 00 00 d2 00 00 00 21 01 00 00 96 03 00 00 |........!.......|

00000010 59 02 00 00 |Y...|

00000014

We see that a total amount of 20 bytes were sent from the server just by simply connecting to it. If repeated,
then do we get the same results?

externalist@Externalist:~$ nc 192.168.1.131 2600 > temp

externalist@Externalist:~$ hexdump -C temp

http://www.thoughtpolice.co.uk/�

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 11

00000000 87 02 00 00 f4 01 00 00 b3 01 00 00 49 03 00 00 |............I...|

00000010 52 01 00 00 |R...|

00000014

No. And by the looks of it, the server sends 5 Words expanded to Dwords. The meaning of this data is still
unclear. After receiving 20 bytes, the server is waiting for the client to send some data. I just randomly typed
anything and found out that the connection closes. I got curious and did the same thing, but this time typed in
only a few characters, and the server still waited to receive more data. This was a clue that the server may be
expecting only a certain amount of bytes to be received, so I just basically kept typing a couple of characters to
find out how many bytes the server was expecting.

externalist@Externalist:~$ nc 192.168.1.131 2600

�#]###�#�#asdf

asdlfkjaklsdjflkasdf

externalist@Externalist:~$ nc 192.168.1.131 2600

p#7#w#�#�#adslkfjaslkdfjasldkfjlkasjdflasf

externalist@Externalist:~$ nc 192.168.1.131 2600

X#(# #�#s#1234567890

qqqqqqqqqqq

externalist@Externalist:~$ nc 192.168.1.131 2600

�#�#2#'#�#12345678901

For brevity, some of the repetitive parts were deleted. Sending only a few characters doesn’t seem to do
anything, but if you send exactly 12 bytes to the server, then the server breaks the connection. So that must be
one condition of this binary. The user must initially send no more or less than 12 bytes.

What next? When reversing in Windows, one would open up PEID or any other Packer Identifier and
determine the packer first. But on Linux or FreeBSD, it is very hard to see a file wrapped up with a
packer/protector when most of the distributed software is Open Source. There is simply no need. One way to
test if a program is packed is to compress the file and compare it with the original file. If the file was packed,
then the file size will almost be the same.

-rwxr-xr-x 1 externalist externalist 26300 Jun 30 11:30 binary500

-rw-r--r-- 1 externalist externalist 19751 Jun 30 12:33 binary500.tar.gz

-rw-r--r-- 1 externalist externalist 16 Jun 30 11:32 keyfile

-rw-r--r-- 1 externalist externalist 0 Jun 30 12:33 temp

-rw-r--r-- 1 externalist externalist 17 Jun 30 12:29 test

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 12

The compression rate is hard to tell whether it’s packed or not, but we could probably safely assume that the
file is not packed since it’s not a Windows PE. The next thing to do is see the characteristics of the file, what
function it uses, and what strings are contained.

$ file binary500

binary500: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD), for FreeBSD 6.3, dynamically
linked (uses shared libs), stripped

$ objdump -R binary500

binary500: file format elf32-i386-freebsd

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

0804e0c8 R_386_JUMP_SLOT waitpid

0804e0cc R_386_JUMP_SLOT getgid

0804e0d0 R_386_JUMP_SLOT printf

0804e0d4 R_386_JUMP_SLOT random

0804e0d8 R_386_JUMP_SLOT recv

0804e0dc R_386_JUMP_SLOT geteuid

0804e0e0 R_386_JUMP_SLOT getegid

0804e0e4 R_386_JUMP_SLOT usleep

0804e0e8 R_386_JUMP_SLOT memcpy

0804e0ec R_386_JUMP_SLOT perror

0804e0f0 R_386_JUMP_SLOT getuid

0804e0f4 R_386_JUMP_SLOT socket

0804e0f8 R_386_JUMP_SLOT send

0804e0fc R_386_JUMP_SLOT accept

0804e100 R_386_JUMP_SLOT calloc

0804e104 R_386_JUMP_SLOT write

0804e108 R_386_JUMP_SLOT bind

0804e10c R_386_JUMP_SLOT chdir

0804e110 R_386_JUMP_SLOT initgroups

0804e114 R_386_JUMP_SLOT setsockopt

0804e118 R_386_JUMP_SLOT setgid

0804e11c R_386_JUMP_SLOT signal

0804e120 R_386_JUMP_SLOT read

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 13

0804e124 R_386_JUMP_SLOT memcmp

0804e128 R_386_JUMP_SLOT listen

0804e12c R_386_JUMP_SLOT fork

0804e130 R_386_JUMP_SLOT setresuid

0804e134 R_386_JUMP_SLOT memset

0804e138 R_386_JUMP_SLOT err

0804e13c R_386_JUMP_SLOT _init_tls

0804e140 R_386_JUMP_SLOT seteuid

0804e144 R_386_JUMP_SLOT getpwnam

0804e148 R_386_JUMP_SLOT atexit

0804e14c R_386_JUMP_SLOT setresgid

0804e150 R_386_JUMP_SLOT exit

0804e154 R_386_JUMP_SLOT strlen

0804e158 R_386_JUMP_SLOT open

0804e15c R_386_JUMP_SLOT setegid

0804e160 R_386_JUMP_SLOT srandomdev

0804e164 R_386_JUMP_SLOT vasprintf

0804e168 R_386_JUMP_SLOT setuid

0804e16c R_386_JUMP_SLOT close

0804e170 R_386_JUMP_SLOT free

$ strings binary500

/libexec/ld-elf.so.1

FreeBSD

libc.so.6

fabs

waitpid

getgid

random

recv

geteuid

_DYNAMIC

getegid

usleep

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 14

memcpy

perror

getuid

socket

send

_init

accept

calloc

write

environ

bind

__deregister_frame_info

chdir

initgroups

setsockopt

__progname

setgid

signal

read

memcmp

listen

fork

setresuid

memset

_init_tls

seteuid

getpwnam

_fini

atexit

setresgid

_GLOBAL_OFFSET_TABLE_

strlen

open

setegid

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 15

_Jv_RegisterClasses

srandomdev

vasprintf

setuid

__register_frame_info

close

free

_edata

__bss_start

_end

$FreeBSD: src/lib/csu/i386-elf/crti.S,v 1.7 2005/05/19 07:31:06 dfr Exp $

Unable to set SIGCHLD handler

Unable to create socket

Unable to set reuse

Unable to bind socket

Unable to listen on socket

Failed to find user %s

drop_privs failed!

setgid current gid: %d target gid: %d

setuid current uid: %d target uid: %d

open for save failed

Usage: ./MathIsHarD <keyfile>

N@$FreeBSD: src/lib/csu/i386-elf/crtn.S,v 1.6 2005/05/19 07:31:06 dfr Exp $

The first result indicates that the file has no symbols but was dynamically linked, therefore we will be able to
see the function names when debugging/disassembling. The second results shows all the functions used in the
program, and random/srandomdev sort of explains why the 20 bytes sent was always different. Strings
doesn’t show anything really useful other than the fact that the original file name might have been
MathIsHarD. Looks like we’re going to have some headaches solving math problems later on. :)

Next, we want to see what functions are being called, and ltrace will be used for this.

$ ltrace -f ./binary500 test

atexit(0x28053b88) = 0

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 16

atexit(0x804dc28) = 0

open("test", 0, 05001245611) = 3

read(3, "abcdefghijklmnop\n", 1024) = 17

signal(20, 0x804b10f) = NULL

socket(2, 1, 0) = 4

setsockopt(4, 65535, 4, 0xbfbfecb8, 4) = 0

bind(4, 0xbfbfeca0, 16, 0, 0x280a0200) = 0

listen(4, 20, 16, 531, 0x280a0200) = 0

accept(4, 0xbfbfeca0, 0xbfbfecb8, 0x804b56c, 4) = 5

fork() = 885

[pid 884] close(5) = 0

[pid 884] accept(4, 0xbfbfeca0, 0xbfbfecb8, 0x804b56c, 4 <unfinished ...>

[pid 885] +++ exited (status 255) +++

--- SIGTSTP (Child exited: 20) ---

waitpid(-1, 0xbfbfe940, 1) = 885

waitpid(-1, 0xbfbfe940, 1) = -1

The program reads the keyfile(test is just a temporarily created one) and probably stores the contents in
memory. Then it gets ready to accept connections from clients. When a client connects, it forks and waits for
more connections. Nothing really interesting.

It looks like we won’t get any further by dynamic analysis, so now is the time to fire up IDA and do some real
reversing. :)

1.4 REVERSING THE BINARY

This section focuses more on the analysis of the binary, than the reverse engineering process itself. Explaining
every little detail on how the reversing process is done is out of the scope of this tutorial, so if you’re not that
confident in reversing, then I highly recommend to read this book before going any further. The analysis will
start from the Entrypoint.

http://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1215235877&sr=8-1�

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 17

Although I’m writing this document in linux, I tend to use IDA in windows cause the graphical view facilitates
reversing in many situations(It saves a few seconds. :P). The picture above shows the entry point of the binary,
which obviously looks like some kind of Startup code. We immediately skip to the main function below.

This is the main(argc, argv) function after the startup code. When you enter the function, you will see
something like this.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 18

Looks like the entry point is obfuscated to scare away newbie reversers. This doesn’t seem to be a big problem
at first, but if you keep following the jmps/rets until you get tired, then you will notice that it’s not just the

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 19

entrypoint that’s obfuscated, but the whole program. And what’s even worse is the program is broken up into
tiny pieces and scattered all over the place that it makes it impossible to create a graphical view of the binary.

Graphical view is indeed a great concept and speeds up the reversing process, but it is not essential; one could
still live without it. However, there are some obstacles to overcome in order to successfully reverse with
minimum amount of fuss. For instance, in this particular binary, IDA has failed to define functions, and stack
variables depend on functions in IDA. You could try to manually define a function but IDA will get confused
very easily because of the way the binary is constructed, which is exactly what the obfuscation scheme was
implemented for; Anti-Disassembling. However, it is still possible to define stack variables with other means,
such as structure offsets. The reason why this is possible is because the binary is just shattered, and nothing
more. It still uses the traditional ebp based stack frame scheme, which is noticable in the 3rd picture above.

This is exactly what I did when I first started analyzing this piece of binary. Jumping back and forth wasn’t such
a big deal for a long time, and things were running very smoothly, but by the time the binary was analyzed
halfway, some unexpected problems started to arise. Everything was fine when there were a couple of jcc
branches, and only one loop, but later on loops/breaks/returns within loops started to emerge, and
memorizing all those variants became very tiring and writing them all down while referencing them one by one
was also a very tedious task. That’s when I decided to make some sort of tool that would glue all those broken
parts into one piece.

If you jump back and forth the broken pieces for quite a while, you will notice that a certain pattern exists on
the code where once piece jumps to another.

Those are the only 3 patterns that exist in this binary. If there was a way to manually add cross references for
all those 3 patterns, then it would be possible to define functions, and also navigate through a whole function
in a graph, instead of mindlessly jumping back and forth basic blocks in the text view. For this, I used the
internal functions in IDA with IDA Python. The following Python script will work as a ‘gluer’ which combines all
the broken pieces into one nice function. This is only a ‘Semi Automatic’ version. I tried to construct one that
does everything automatically, but failed gracefully. :) For that reason, I admire the guys at Sexy Pandas team
who were able to make an automatic deobfuscator, which doesn’t only attach all the pieces together, but also
takes out all the irrelevant instructions, then reconstructs the whole binary in one perfect piece! After that,
Hex-Rays can do the rest of the job. That is just truly amazing, I must say. :D

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 20

Anyways, back to the python script. I tried to comment everything thoroughly so it would be easier to
understand. However, please forgive me if the code looks very messy and lame. I only just started learning
python recently btw. :P

- Header Note -
If you see any functions you are unsure of, then refer to the headers files in IDA sdk,
specifically bytes.hpp and
functions.hpp. Most of the functions used here belong to those two header files. And also, some
IDC functions
are used so the internal IDA help file may also be useful.

This function takes care of re-attaching the blocks when they break apart for some reason.
Since the blocks are forced to be attached, they sometimes break apart because of their nature of
being
seperated. That's when this function will be used.
def Reanalyze_Cross_References():
 func_iter = func_tail_iterator_t(get_func(ScreenEA()))
Initializes a function tail iterator class. With a function iterator, one could iterate through
function tails(basic blocks that belong to a function)
that belong to a particular function.
 status = func_iter.main()
Status is initialized. Status is 0 when there are no more functions to iterate.
 while status:
 chunk = func_iter.chunk()
Fetching the next function chunk
 status = func_iter.next()
 code = Heads(chunk.startEA, chunk.endEA)
Generating a list(array) of all the address of the codes that belong to the chunk
 last_instruction = code[len(code)-1]
getting the address of the last instruction
 next_instruction = last_instruction + 5
getting the address of the instruction after the last instruction
 if (GetMnem(last_instruction) == 'mov') and (GetOpnd(last_instruction,0) == 'ebx')\
 and ((GetOperandValue(last_instruction,1) & 0xFF000000) == 0x8000000)\
 and (GetMnem(next_instruction) == 'retn'):
if the code at the last instruction matches (mov ebx, 0x8******; retn), then proceed
 AddressFrom = last_instruction
 AddressTo = GetOperandValue(last_instruction,1)
 AddCodeXref(AddressFrom,AddressTo,fl_JF)
 SetManualInsn(last_instruction,'jump' + ' loc_%x'
%(GetOperandValue(last_instruction,1)))
 MakeComm(last_instruction,"")
Add a cross reference from the source to the destination, and overwrite the irrelevant
instruction with
a more meaningful manual instruction
 if (GetMnem(last_instruction) == 'mov') and (GetMnem(last_instruction-1) ==
'push')\
 and ((GetOperandValue(last_instruction,1) & 0xFF000000) == 0x8000000)\
 and (GetMnem(next_instruction) == 'call'):
if the code at the last instruction matches (push reg; mov reg,0x8******; call const), then
proceed
 AddressFrom = last_instruction
 AddressTo = GetOperandValue(last_instruction,1)
 AddCodeXref(AddressFrom,AddressTo,fl_JF)
 SetManualInsn(last_instruction,'jump' + ' loc_%x'
%(GetOperandValue(last_instruction,1)))
 SetManualInsn(last_instruction-1,'nop')
 DestAddress = GetOperandValue(last_instruction,1)
 SetManualInsn(DestAddress,'nop')
 SetManualInsn(DestAddress+1,'nop')
 MakeComm(last_instruction,"")
Add a cross reference from the source to the destination, and overwrite the irrelevant
instruction with
a more meaningful manual instruction

Choice = AskLong(5,'1 : reanalyze, 2 : remove tail, 3 : delete function\n\
 4 : append tail generic, 5: append tail custom, 6 : Add Cross Reference\n\

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 21

 7 : Add Cross Reference custom, 8 : testing functions')
Ask the user which option he/she wants to choose

if Choice == 1:
 reanalyze_function(get_func(ScreenEA()))
reanalyzing a function would sometimes(I don't know why not all the time but that's how it is :/
) make IDA recognize
local variables. It requires a function to be already constructed.

if Choice == 2:
 remove_func_tail(get_func(ScreenEA()),ScreenEA())
Removing function tails that obviously don't belong to a function will result in less confusion.

if Choice == 3:
 del_func(ScreenEA())
Delete a function only when you are sure about it. Deleting a function will make all the function
tails get deleted also.
If you have put together many function tails, and accidentally delete a function, then all your
work will be lost.

if Choice == 4:
 TailStart = AskAddr(0,'Enter the tail start :');
 TailEnd = AskAddr(0,'Enter the tail end :');
 append_func_tail(get_func(ScreenEA()),TailStart,TailEnd)
Manually add a function tail by entering the tail start and end addresses.

if Choice == 5:
This is the default choice, and the most used one. Putting the cursor on a correct line, this
function will
attach the basic blocks that are not already attached to each other. You will have to use this
function numerous times
because of the reason stated above; this is only a 'Semi automatic' script. :P Don't blame me
for not completing it.
I was simply too tired, lazy. :P
 OriginalPosition = ScreenEA()
 AddressFrom = ScreenEA()
 AddressTo = GetOperandValue(ScreenEA(),0)
 if AddressTo == 0:
 AddressTo = GetOperandValue(ScreenEA(),1)
Retrieving the source/destination addresses to use when adding cross references.

 Previous_Mnemonic = GetMnem(ScreenEA()-1)
 Current_Mnemonic = GetMnem(ScreenEA())
 Next_Mnemonic = GetMnem(ScreenEA()+5)
Retrieving mnemonics to use in the comparison.
 if (((Current_Mnemonic == 'push') and ((GetOperandValue(ScreenEA(),0) & 0xFF000000) ==
0x8000000))\
 or ((Current_Mnemonic == 'mov') and ((GetOperandValue(ScreenEA(),1) & 0xFF000000) ==
0x8000000)))\
 and (Next_Mnemonic == 'retn'):
Does the instruction under the cursor match (push/mov const; retn) ?
 func_setend(ScreenEA(),ScreenEA()+5)
 PatchByte(ScreenEA(),0xBB)
Then change the function end, and patch the 'push' to 'mov'. Why patch? Cause if you leave it as
push, then IDA
will have trouble adding cross references.
 if (Current_Mnemonic == 'mov') and (Previous_Mnemonic == 'push')\
 and ((GetOperandValue(ScreenEA(),1) & 0xFF000000) == 0x8000000) and (Next_Mnemonic ==
'call'):
Does the instruction under the cursor match (push reg; mov 0x8******; call const) ?
 func_setend(ScreenEA(),ScreenEA()+5)
Then change the function end.
 autoWait()
Wait till the analysis finishes, so the script won't screw up.
 if (get_func_num(AddressTo) != get_func_num(AddressFrom)) and (get_func_num(AddressFrom) !=
-1):
If the source function matches the destination function, then proceed.
 temp = get_item_end(AddressTo)
 temp = prev_head(temp,temp-1000)
If the current address is in the middle of an item(code or data), then Make**** functions will

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 22

fail.
This was not documented, hence, caused a lot of headaches. The above code sets the current
address to the beginning
of the item. Why didn't I use get_item_start? Because sadly, IDA Python doesn't import that
function.
 if temp != AddressTo:
 MakeUnkn(temp,0)
 autoWait()
 MakeCode(AddressTo)
 autoWait()
Sometimes, the destination address will be right in the middle of an instruction or data. That's
because of the
nature of this kind of obfuscation. IDA confuses code from data, and data from code. The above
code will define
code at the location even if it's in the middle of an item. It will make it possible to define a
function on that location.
 if get_func_num(AddressTo) == -1:
If no function exists in the destination location
 add_func(AddressTo,AddressTo+10)
 temp = get_item_end(AddressTo+10)
 temp = prev_head(temp,temp-1000)
 MakeComm(temp,'Warning! This might not\nbe the end of the block\nUse "e" to
set end')
Arbitrarily add a function to the destination location, and add a comment there so the user can
fix it later.
 add_func(AddressTo,BADADDR)
 fchunk = get_fchunk(AddressTo)
 StartAddress = fchunk.startEA
 EndAddress = fchunk.endEA
 del_func(get_func(AddressTo).startEA)
 append_func_tail(get_func(ScreenEA()),StartAddress,EndAddress)
Create a function tail and add it to the main function.
 autoWait()
 AddCodeXref(AddressFrom,AddressTo,fl_JF)
Add a cross reference to it, so it will be connected when viewed in graph mode.
 autoWait()
 Reanalyze_Cross_References()
 Jump(OriginalPosition)
Blocks will break apart after adding cross references, because IDA forces a reanalysis.
Using the Reanalyze_Cross_References() to put them back together.

if Choice == 6:
 AddressFrom = ScreenEA()
 AddressTo = GetOperandValue(ScreenEA(),1)
 AddCodeXref(AddressFrom,AddressTo,fl_JF)
Automatically add a cross reference below the cursor that needs to be added.

if Choice == 7:
 OriginalPosition = ScreenEA()
 Reanalyze_Cross_References()
 Jump(OriginalPosition)
This function will be used to unite the separated blocks.

if Choice == 8:
 func_setend(ScreenEA(),ScreenEA())
Testing function. Currently used to set a function end.

Pretty crappy piece of code, isn’t it? :P If you have read through and understood the code above, then you will
know how to use it. Nevertheless, I will explain just in case someone didn’t feel like reading through all those
messy codes and comments.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 23

Let’s start from the main function.

The code beside is one of the obfuscation patterns. Put your cursor on
the push instruction and load the python script.

The default will be set to 5, which acts as the attaching function.

Press OK and the source should be attached with the destination.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 24

This only works one at a time as mentioned earlier. If you want to fully automize it, feel free to edit the code.

In the above code, IDA thinks that jb will lead to both paths, when it always goes to one path. Therefore, you
must set the function end with the ‘e’ key at jb, and IDA will fix the cross references so it will only lead to one
path.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 25

However, the graph will break apart cause IDA forces a function reanalysis. Reunite it with the 7th option in the
python script.

Now if you ever see the (push const; retn) or (pushf; stc; jb const)sequence, then you could always fix it with
the above method.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 26

While analyzing, if you see any function tails that obviously don’t belong to a function like above, then you
could delete it with the second option in the python script. It’s not necessary, but it makes the graph look a
little cleaner.

If you see any Jmps or Jccs that IDA didn’t correctly resolve, you could also manually resolve them with the
default 5th option in the script.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 27

This is another kind of pattern. Put the cursor on the mov instruction above the call and Alt + F7(Python script
shortcut), Enter, Enter(Default selection 5), and it should properly resolve the cross references.

Sometimes you will see that IDA has mis-analyzed the end of a function chunk like below.

We already know that ‘e’ will renew the function end, but in some occasions, just setting the function end
won’t solve the problem.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 28

In this example, the function end was set to a correct address, but IDA split the chunk into two pieces. This is
because the function sub_804C3D0 is marked as ‘doesn’t return. This could be fixed by unchecking the
‘function doesn’t return’ checkbox in the function properties dialogbox.

IDA analyzes the function as ‘does not return’ because it contains an _exit() function. After unchecking the
option, the chunk will now be in one piece now.

Okay, before this tutorial turns into a ‘How to use IDA’ tutorial, I’ll stop talking about IDA and start focusing on
the binary itself. Understanding everything explained so far, and with a decent knowledge of using IDA, you
will be able to successfully construct a full set of functions out of all those broken/shuffled basic blocks. I know
it’s quite a boring task to do all that work by hand, but like I said, feel free to update the code to a fully
automized version. And hey, at least it’s better than nothing. :D

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 29

We have two options now. You could either

1. Add the cross references along the way, while reversing at the same time. However, stack variables
cannot be used, so structure offsets will have to be used instead.

2. Add cross references until a full function is made, and after that, stack variables will be accessible.
Loops will also be easily recognizable.

What I did is use 1 on functions that seemed to be long, and use 2 on the rest. It would be preferable to use
the later if you have more patience so everything will be in your sight, instead of not knowing what will come
up next. Don’t forget to save frequently because the script sometimes screws up(!), and when that happens,
all your work will be gone. :o

Having this all in mind, let’s start to analyze the program from beginning to end. If you feel hard to follow, then
you can use the idb file that comes with this tutorial.

This is the main function. Since the functions are all broken into pieces, I couldn’t copy/paste the text of the
whole function, neither make a screenshot of the entire function, so I will only write down the summary of
what each functions do. But as mentioned before, you could open up the idb file supplied with this tutorial if
you feel hard to follow up. The following is the summary of the main things this function does.

1. It checks if there is an Argument supplied. If there is no argument, it calls a function [NeedKeyFile].
NeedKeyFile function just prints out the string “Usage: ./MathIsHarD <keyfile>\n” and exits.

2. Then it calls [ReadKeyFile]. As the name implies, the function treats the supplied argument as a text
file name and reads it’s contents, then stores it in a global variable. If there are any issues, such as the
keyfile can’t be opened, then [NeedKeyFile] is called again.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 30

3. If all goes well, then the [InitializeNetwork] function initializes the network variables and calls network
functions so it can later accept connections from clients. Nothing important in this function.

4. If the network is all set up properly, it calls the [AcceptAndFork] function to accept incoming
connections.

Now let’s see what this AcceptAndFork function does.

As you can see in the picture, there are 3 loops in this function. Right in the middle of the first loop, there is an
accept() function which waits for connections from clients. If a client connects, but the accept function fails for
some reason, then it loops back and waits for other connections. If a socket is successfully created, then it
enters the second loop, where the program forks(Creates a copy of the process), and checks if the fork()
function succeeded. If so, then it goes into the third loop. Otherwise, it loops back and waits for other
connections. In the third loop, it checks if the current process executing the loop is the parent process, or the
forked process. To explain fork for people coming from Windows, when fork is executed, both the parent
process and the child process resume execution from the code right after fork(), with the child process having
the exact same context of the parent process. One thing different is that the child process will have a return
value of 0, while the parent process has a value of the child process ID. (Btw, If you ever get lost not knowing a
meaning of a certain function, use this site as a reference.)

If the case is a parent process, then the execution will loop back and accept connections again. But in the client
process case, the execution will fall to the left side, and call some kind of function that was supplied as an
argument. After that function is executed, the program will close the connection and exit. This is only the child
process being exited, so the parent will still be in the loop waiting for more connections. Let’s see what that
unknown function does.

http://www.nixdoc.net/�

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 31

Although this function doesn’t look that complicated at first sight, if you unhide all the grouped nodes, then
the function will turn huge. I had to group most of the nodes little bits at a time to not get easily drowned in
the ocean of basic blocks.

The part of the function shown above is where the function generates 5 random Dwords ranging from 0xC8 to
0x3E8 using a random seed generated by srandomdev(), and then sends those 5 Dwords to the client. This
explains why we received 5 randomized Dwords that looked like Words expanded to Dwords.

After that, it receives exactly 12 bytes, or more like 3 Dwords from the client, and compares the first Dword
with the value 0x46464952. From here on now, most of the red arrow paths will lead to (return -1), which is
the path we don’t want to follow. We want the first Dword to exactly match 0x46464952 so the function will
go to the left path. Let’s see the code that follows.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 32

You can see that the 3rd Dword must equal 0x45564157, otherwise the function will exit and nothing will
happen. The second Dword only has to be within a specific range (3 < Dword < 25000). With all those
conditions satisfied, we can move on to the next code.

This indicates that the Second Dword in Recv_Buffer is the size of Recv_Buffer2. Allocated1 is a local variable.
The rest should be self explanatory.

The program receives data from the client in the newly allocated buffer called ‘Allocated1’. Then it searches
for 2 specific Dwords from the received data.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 33

This is the searching loop. The search starts from the beginning of Allocated1 which gets updated in each loop
iteration. I will call this index ‘IndexAddress’(dword ptr). The loop first checks if (IndexAddress[1] < 25000).
Then it checks if (IndexAddress[1] < remaining bytes to search – 8). If the 2nd condition is satisfied, then the 1st
condition is automatically satisfied, so the 1st condition could be considered redundant. Then it is searching for
2 specific Dwords 0x20746D66 and 0x61746164. The data layout would look something like this.

If it successfully finds those two Dwords, then it stores the address where the Dwords are located in 2 local
variables for later use. After each loop operation is done, IndexAddress is updated by (IndexAddress[1]+8). The

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 34

loop stops when IndexAddress passes or equals the buffer end. One thing we learned from this function is that
the function treats AddressIndex as a structure pointer. The structure would look something like this:

Struct MagicStructure

{

 long MagicDword; // could be either 0x20746D66 or 0x61746164

 long size;

};

This is the code after the loop. It checks if the two locals that store addresses are empty, then calls a function
called CheckCondition1. CheckCondition1 checks some conditions on the structure pointed by
0x20746D66_local. Just to refresh your memory, 0x20746D66_local points to the structure that has
0x20746D66 as the first Dword. I will call this structure ‘SpecialStruct1’, and the 0x61746164 struct
‘SpecialStruct2’ from now on. We already know that the second Dword is some kind of size, but if you analyze
CheckCondition1, then you’ll know that some other members exist in this structure.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 35

Several conditions exist in this function.

1. word ptr [SpecialStruct1+8] == 1

2. 4000 <= dword ptr [SpecialStruct1+12] <= 8000

3. word ptr [SpecialStruct1+22] == 0x10

These conditions must be satisfied. We can expand Structure1 to have some new members now.

Struct MagicStructure

{

 long MagicDword; // could be either 0x20746D66 or 0x61746164

 long size;

 short const1 // must be 1

 short const2 // must be 0x10

 short const3 // must be between 4000 and 8000

};

After returning from CheckCondition1, it enters a function called Calculate1. Calculate1 simply calculates
(SpecialStruct2.size/word ptr [SpecialStruct+20]) and returns it. Then it stores it in a local ‘Calc_Result1’ for
later use. The condition (Calc_Result1 >= 2000) must satisfy, so we have one more condition.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 36

‘counter’ is the loop counter. It rages from 0~0x320. Everything else should be self explanatory. ‘Allocated2’
will be used quite often, so it should be noted here.

Calc_Result1 is divided by 5 and stored in Calc_Result2. One thing peculiar here is that the code uses
multiplication and shr operations for division instead of directly using idiv/div. This is because the mul
operation takes less amount of cpu cycles to execute than idiv/div. If you’ve been reversing for a while, then
you would easily recognize this type of compiler optimization.

Next, it enters a loop.

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 37

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 38

On each loop iteration, Calc_Result2 is multiplied with the loop counter, and stored to Calc_Result3. Two
functions are called after that.

Fill_Allocated2(Allocated2,0x320,Calc_Result3,Calc_Result2);

index = GetBiggest_FaddResult_Index(0x320,Allocated2);

And finally, index(Dword) is stored in a 20 byte buffer(which I named FinalCompareBuffer) 5 times in each loop
iteration. That buffer is going to be later compared with the 5 random Dwords(RandomNumberStorage) that
were initially generated and sent to the client. Do you get the picture now? :P

If they both turn out as the same 20 bytes, the keyfile contents will be sent to the client. Now we have to
figure out how we’re going to have complete control over the contents of FinalCompareBuffer. This will
require analysis of both functions.

The first function is kind of large and a bit confusing, because it uses a lot of fpu instructions. I actually made a
C version of the code to better understand the big picture instead of the small details. Instead of going through
every aspect of the assembly instructions, I will present here the C code for better readability and
understanding of the code logic.

int GetBiggest_FaddResult_Index(Allocated2_Struct* Allocated2Array);
void FillAllocated2(SpecialStructPointers SSP,Allocated2_Struct* Allocated2Array,DWORD Calc3,DWORD
Calc2);
double CalcHash(Allocated2_Struct Allocated2,SpecialStructPointers SSP,DWORD Calc3,DWORD Calc2);
SpecialStructPointers* AllocateAndCopy(SpecialStructPointers SSP);
void FillSS2(SpecialStructPointers* Allocated3,DWORD Allocated2_Counter_Plus_C8);
int ReturnIndex(SpecialStructPointers* Allocated3);

struct SpecialStruct1
{
 DWORD StructSize;
 WORD Counter_Updater;
 DWORD fdiv_divisor;
 WORD Calc1_Div_Const;
};

struct SpecialStruct2
{
 DWORD ArraySize;
 WORD Array[?];
 //Array is a variable size array with the size of ArraySize
};

struct SpecialStructPointers
{
 SpecialStruct1* SpecialStruct1Pointer;
 SpecialStruct2* SpecialStruct2Pointer;
};

struct Allocated2_Struct
{
 int Counter_Plus_C8;
 double fadd_result;
 SpecialStructPointers* Allocated3;
};

extern SpecialStruct1 SS1; // We have complete control over SpecialStruct1 Members
extern SpecialStruct2 SS2; // We also have complete control over SpecialStruct2
DWORD Calc1 = SS2.ArraySize / SS1.Calc1_Div_Const;
// Some conditions exist.
// 1 : Calc1 >= 2000
// 2 : SS2.Arraysize <= 25000

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 39

// 3 : 4000 <= SS1.fdiv_divisor <= 8000

void main()
{
 int MainCounter = 0;
 DWORD FinalCompareBuffer[5];
 DWORD Calc2 = Calc1 / 20;
 Allocated2_Struct Allocated2Array[0x320];
 SpecialStructPointers SSP;
 SSP.SpecialStruct1Pointer = &SS1;
 SSP.SpecialStruct2Pointer = &SS2;

 for(int i=0; i<0x320; i++)
 {
 Allocated2Array[i].Counter_Plus_C8 = i+0xC8;
 }

 while(MainCounter < 5)
 {
 int Counter1 = 0;
 int index;
 DWORD Calc3 = Calc2 * MainCounter;

 FillAllocated2(SSP,Allocated2Array,Calc3,Calc2);
 index = GetBiggest_FaddResult_Index(Allocated2Array);

 FinalCompareBuffer[MainCounter] =
 Allocated2Array[index].Counter_Plus_C8;
 }

 // At this point, FinalCompareBuffer is compared with
 // RandomNumberStorage, and if both are the same, then the
 // keyfile will be sent.
}

// Returns the index of the biggest Fadd_Result among the 0x320 stored
// Fadd_Results.
int GetBiggest_FaddResult_Index(Allocated2_Struct* Allocated2Array)
{
 int counter = 0,index = 0;
 double biggest_fadd_result = Allocated2Array[0].fadd_result;

 while(counter < 0x320)
 {
 Allocated2_Struct Allocated2 = Allocated2Array[counter];
 if(Allocated2.fadd_result > biggest_fadd_result)
 {
 biggest_fadd_result = Allocated2.fadd_result;
 index = counter;
 }
 counter++;
 }
 return index;
}

// Fill the Allocated2 Array.
void FillAllocated2(SpecialStructPointers SSP,Allocated2_Struct* Allocated2Array,DWORD Calc3,DWORD
Calc2)
{
 int counter = 0;
 double current_fadd_result = 0;
 double smallest_fadd_result = 0;

 while(counter < 0x320)
 {
 current_fadd_result =
 CalcHash(&Allocated2Array[counter],SSP,Calc3,Calc2);

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 40

 // Calculating the fadd_result member of Allocated2Array.
 Allocated2Array[counter].fadd_result = current_fadd_result;
 // Storing 0x320 fadd_result member values.

 if(counter = 0)
 smallest_fadd_result = current_fadd_result;
 if(smallest_fadd_result > current_fadd_result)
 smallest_fadd_result = current_fadd_result;

 counter++;
 }

 counter = 0;
 while(counter < 0x320)
 {
 Allocated2Array[counter].fadd_result -= smallest_fadd_result;
 // This doesn't really effect the final results.
 counter++;
 }
}

// Calculate Fadd_Result values to be stored in Allocated2.
double CalcHash(Allocated2_Struct& Allocated2,SpecialStructPointers SSP,DWORD Calc3,DWORD Calc2)
{
 SpecialStructPointers* Allocated3;
 double fadd_result = 0; // QWORD
 int Index = 0;

 if(Calc2 == 0) // Calc2 is obviously not 0
 Calc2 = Calc1;

 if(Allocated2->Allocated3 == 0)
 {
 Allocated3 = AllocateAndCopy(SSP);
 // Allocating, and filling in data of Allocated3.
 Allocated2->Allocated3 = Allocated3;
 // Saving the Allocated3 member of Allocated2Array.
 FillSS2(Allocated3,Allocated2->Counter_Plus_C8);
 // Filling in the newly allocated SpecialStruct2 Array
 // belonging to Allocated3.
 }

 SpecialStruct1 SS1 = *(Allocated3->SpecialStruct1Pointer);
 SpecialStruct2 Current_SS2 = *(Allocated3->SpecialStruct2Pointer);
 SpecialStruct2 Original_SS2 = SSP.SpecialStruct2Pointer;
 Index = ReturnIndex(Allocated3);
 // Returns a strange index. 99.99% of the time, this index is a
 // non-zero value.

 if(Index != 0)
 {
 int counter;
 DWORD imul_result = 0;

 while(counter < Calc2)
 {
 imul_result = (DWORD)Current_SS2.Array[counter] *
(DWORD)Original_SS2.Array[Calc3 + counter];
 // takes only eax from edx:eax, but edx is always 0 anway.
 fadd_result += (double)imul_result;
 // Multiplies the user supplied input with the currently generated
discretional sin wave, and adds all the values.
 // Looks like it's calculating some integral value.
 counter += SS1.Counter_Updater;
 // This counter is later on revealed as 1.
 }
 if(fadd_result < 0)
 fadd_result = fadd_result * (double)-1;
 // making fadd_result a positive value.
 }

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 41

 else
 {
 fadd_result = 0;
 }

 return fadd_result;
 // The returned values will be stored in the 0x320 fadd_result members of Allocated2.
 // Since this value will directly affect the FinalCompareBuffer, we must have complete
control over this value.
}

// Allocates some space for Allocated3. Allocate space for SpecialStruct1, SpecialStruct2, copy the
contents, and store the pointers in Allocated3.
SpecialStructPointers* AllocateAndCopy(SpecialStructPointers SSP)
{
 SpecialStructPointers* Allocated3 = calloc(1,8);
 Allocated3->SpecialStruct1Pointer = calloc(1,0x18);
 Allocated3->SpecialStruct2Pointer = calloc(1,SSP.SpecialStruct2Pointer->ArraySize + 8);
 // Storing the pointers of the newly allocated SpecialStruct1, SpecialStruct2
 memcpy(Allocated3->SpecialStruct1Pointer,SSP.SpecialStruct1Pointer,0x18);
 memcpy(Allocated3-
>SpecialStruct2Pointer,SSP.SpecialStruct2Pointer,SSP.SpecialStruct2Pointer->ArraySize + 8);
 // Copying the original SpecialStruct1, SpecialStruct2 data into
 // the allocated one.
 return Allocated3; // This will later be stored in Allocated2.
}

// Fill the SpecialStruct2 Array.
void FillSS2(SpecialStructPointers* Allocated3,DWORD Allocated2_Counter_Plus_C8)
{
 int counter = 0;
 SpecialStruct1 SS1 = *(Allocated3->SpecialStruct1Pointer);
 SpecialStruct2 SS2 = *(Allocated3->SpecialStruct2Pointer);
 double fmul_result = (double)Allocated2_Counter_Plus_C8 * 6.283185307179586; // = 2 * PI

 while(counter < Calc1);
 {
 double fdiv_result = (double)counter / (double)SS1.fdiv_divisor;
 double fsin_result = sin(fmul_result * fdiv_result);
 SS2.Array[counter] = (int)(fsin_result * (double)32767);
 // Creating a discretional sin wave and storing it into the
 // allocated SpecialStruct2.
 //The range of a signed short value = -32767 ~ 32768, and considering
 //the result of the sin operation is between -1/+1,
 //this operation is to generate an integer that fits in a WORD.
 counter += SS1.Counter_Updater;
 }
 return;
}

// Return the index of the 3rd value with the same sign as the initial value. Dunno the exact
meaning of this function. :/
int ReturnIndex(SpecialStructPointers* Allocated3)
{
 int counter = 1;
 int old_counter = 0;
 int SignEqualCounter = 0;
 SpecialStruct1 SS1 = *(Allocated3->SpecialStruct1Pointer);
 SpecialStruct2 SS2 = *(Allocated3->SpecialStruct2Pointer);

 while(counter < Calc1)
 {
 if(SS2.Array[counter] & 0x8000 == SS2.Array[old_counter] & 0x8000)
 // Check if both words have the same sign.
 {
 SignEqualCounter++;
 old_counter = counter;
 }
 if(SignEqualCounter == 2)
 break;

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 42

 counter += SS1.Counter_Updater;
 // counter started out as 1, and old_counter as 0, so this indicates
 // that Counter_Updater must be 1.
 // Otherwise, there will be no value to compare to.
 }
 if(counter != Calc1)
 return counter;
 return 0;
}

This code is obviously not compliable (is there even such word as compilable? :P), but you could understand
what it’s trying to do by reading the code. If you want to later on analyze the assembly code, then always have
the IA-32 Architectures Software Developer’s Manual by your side so you could easily decipher the somewhat
less used fpu instructions quickly.

The two pictures below illustrate an example of a user supplied input, and two of the generated discretional
sin wave out of the 0x320 sin waves.

[User supplied Data]

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 43

[Generated sin wave 1 : Const = 0x1D8]

[Generated sin wave 2 : Const = 0x1C8]

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 44

[How fadd_result is calculated]

Let’s try to ignore the crappy artwork. :D Now if you understood the C code, you would already know that
fadd_result is calculated by multiplying the user supplied graph with one of the generated sin waves, then
adding up all the discretional values of the resulting graph like the picture above. The value that gets stored in
FinalCompareBuffer is the constant(index+0xC8) associated with the sin wave with the highest fadd_result.

For instance, if we receive a random number 0x1C8(the first random Dword) from the server, we want to
supply a user generated graph that would make the fadd_result of sin wave2(from above pictures) the biggest
value out of all 0x320 fadd_results. We can only supply the user input once, and all the 0x320 sin waves will be
multiplied to that input, and added to create 0x320 fadd_results. So the question is, what kind of input would
make the fadd_result of the 0x1C8 sin wave the biggest, and the other 0x31F fadd_results always smaller?

The answer would be a sin wave that has the exact same cycle of the 0x1C8 sin wave. While a user supplied sin
wave(with the same cycle of the 2nd 0x1C8 wave) multiplied with the 2nd wave would result in a wave with all
positive values, the same user supplied sin wave multiplied with the 1st 0x1D8 wave would result in a wave
with positive and negative values, and the negative values would contribute in making the fadd_result smaller.
So what we want to do is supply 5 sin waves that have exactly the same cycles as the 5 sin waves
corresponding to the 5 random(0xC8~0x3E8) Dwords we received from the server. That would be the last
condition and if that condition is satisfied, then FinalCompareBuffer will have the exact same content as
RandomNumberStorage and we will have the keyfile contents in our hands. :)

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 45

The following code attack.c does exactly the thing just described.

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>

#define BUFSIZE 100
#define PI 3.14159265

void DieWithError(char* errorMessage);
// You would notice I've been studying with this book :
// "The pocket guide to TCP/IP sockets" :P

typedef struct MagicBytes_{
 long magic1; // Must be 0x46464952
 long size; // sizeof(SpecialStruct1) + sizeof(SpecialStruct2)+4.
 // 4 is because the size is later subtracted with 4 when
allocated.
 long magic2; // Must be 0x45564157
}MagicBytes;

typedef struct SpecialStruct1_{
 long magic; // Must be 0x20746d66
 long structsize; // Must be 16
 short const1; // Must be 1
 short CounterUpdater; // Must be 1
 long FdivDividor; // Must be between 4000 ~ 8000
 long unused;
 short Calc1DivConst; // Must be 2 or higher
 short const2; // Must be 0x10
}SpecialStruct1;

typedef struct SpecialStruct2_{
 long magic; // 0x61746164
 long structsize; // size of the Array
 short SinWave[2500]; // this is where the 5 sin waves go
}SpecialStruct2;

void DieWithError(char* errorMessage)
{
 perror(errorMessage);
 exit(1);
}

int main(int argc, char* argv[])
{
 int sock;
 struct sockaddr_in ServAddr;
 unsigned short ServPort;
 char* servIP;
 char StrRecv[BUFSIZE];

 int bytesRcvd, totalBytesRcvd;
 int mulconst, i, j;
 MagicBytes MB;
 SpecialStruct1 SS1;
 SpecialStruct2 SS2;

 servIP = "192.168.1.131";
 ServPort = 2600;

 if((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
 DieWithError("socket() failed");

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 46

 memset(&ServAddr,0,sizeof(ServAddr));
 ServAddr.sin_family = AF_INET;
 ServAddr.sin_addr.s_addr = inet_addr(servIP);
 ServAddr.sin_port = htons(ServPort);

 if(connect(sock,(struct sockaddr*)&ServAddr,sizeof(ServAddr)) < 0)
 DieWithError("connect() failed");

 if((bytesRcvd = recv(sock,StrRecv,BUFSIZE-1,0)) <= 0)
 DieWithError("recv failed 1");
 StrRecv[bytesRcvd] = '\0';
 // Receiving the 5 random Dwords to create the sin waves

 MB.magic1 = 0x46464952;
 MB.size = sizeof(SpecialStruct1) + sizeof(SpecialStruct2)+4;
 MB.magic2 = 0x45564157;
 // filling MB structure with the appropriate values

 SS1.magic = 0x20746d66;
 SS1.structsize = 16;
 SS1.const1 = 1;
 SS1.CounterUpdater = 1;
 SS1.FdivDividor = 4000;
 // Could be any value between 4000 ~ 8000
 SS1.Calc1DivConst =2;
 // Must be 2, cause the program reads/stores the Array values in WORD size.
 SS1.const2 = 0x10;

 SS2.magic = 0x61746164;
 SS2.structsize = 5000;
 // Must be over 4000, cause SS2.structsize/SS1.Calc1DivConst must be over 2000.
 // The lower the value, the faster the calculation.
 for(i=0; i<5; i++){
 for(j=0; j<500; j++){
 mulconst = *((long*)StrRecv+i);
 SS2.SinWave[i*500+j] = 32767 * sin(2 * PI * mulconst * j / SS1.FdivDividor);
 // Generating 5 kinds of discretional sinwaves,
 // each corresponding
 // to each of the received 5 random Dwords.
 // 32767 exists so the result would be an integer that
 // fits in a WORD.
 }
 }

 if(send(sock,(char*)&MB,sizeof(MagicBytes),0) != sizeof(MagicBytes))
 DieWithError("send() failed 1\n");
 if(send(sock,(char*)&SS1,sizeof(SpecialStruct1),0) != sizeof(SpecialStruct1))
 DieWithError("send() failed 2\n");
 if(send(sock,(char*)&SS2,sizeof(SpecialStruct2),0) != sizeof(SpecialStruct2))
 DieWithError("send() failed 3\n");
 // Sending the structures along with the sin waves

 if((bytesRcvd = recv(sock,StrRecv,BUFSIZE-1,0)) <= 0)
 DieWithError("recv failed 2");
 printf(StrRecv);
 // If all goes well, then the keyfile will be printed out

 close(sock);
 return 0;
}

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 47

And the result.

externalist@Externalist:~/Documents/Reverse Engineering/Binary500$./attack

ARTeam Rocks!!! :)

1.5 CONCLUSIONS

This concludes the tutorial on reversing this year’s DEFCON Binary500 challenge. Personally, I think all of the
last year and this year’s binary challenge(except Binary300. Will someone please give me a reason for
inet_aton??) were excellent, and I’m looking forward for next year’s challenge. :P I must say I’ve learned lots
about reversing on non-windows platforms from reversing those binaries, and I would give a 5 out of 5 for this
year’s Binary500. :P

Later on, when the walkthroughs came up, I read that the user input was supposed to be a wave file, and
indeed when I did a quick search on the constants 0x46464952/0x45564157, google pointed to many
references to source codes related to wave files. This taught me an important lesson. ‘Always search for
constants that look suspicious before doing anything serious because it can provide some important clues that
reduce the amount of work and time spent’.

To sum up the main features of Binary500, first, Binary500 uses an obfuscation scheme that splits up the file
into many pieces to make static analysis more challenging, while it scatters a lot of trash bytes everywhere in
the binary. Second, it sends some data to the client and expects the client to send a mass of data that meets
certain conditions. The client program must deduce the correct form of data to send by using the initial data
sent from the server. Third, it does some mathematical operations, hence, requires the reverser to be capable
of accurately analyzing math functions.

I hope this tutorial was useful for some readers and sorry if my English was a bit sloppy or hard to read, it’s not
my mother language btw. :/ Most of the non-Windows platform reversers would have little or no problems
reading this tutorial, but if you’re from Windows and feel like you can’t even understand 20% of this tutorial,
don’t worry. Just keep studying, and time will solve the problems for you. :P

Anyway, thanks for taking your time reading this tutorial and Happy Reversing! :)

ARTEAM EZINE ISSUE IV

Reversing binary 500 by Externalist 48

1.6 REFERENCES

 http://www.nixdoc.net
 http://www.intel.com/products/processor/manuals/
 http://www.hex-rays.com/idapro/idadoc/707.htm
 http://www.openrce.org/articles/full_view/11
 http://www.rexx.com/~dkuhlman/python_101/python_101.html

1.7 GREETINGS

 To ARTeam members for creating awesome tutorials and always having the mind of sharing
knowledge. I wouldn’t have gone this far if it weren’t for ARTeam.

 To Teddy Rogers for maintaining a huge database of Windows reversing tools, documents,
information. You are the man!! :D

 To lena and Tiga for creating the well known tutorial series. I simply would have dropped out quickly if
it weren’t for those video tutorial series. :)

 To deLTA for being my first overseas friend, and for creating/maintaining the great CRCETL (and also
the recently founded CISTL).

 To all beistlab members and especially beist for inviting me to their team in the DEFCON CTF Pre-
Quals, and also for kicking ass all the time. :D

 To graylynx for guiding me to the security world.
 To phin3h45 for being a good friend.
 To all team members who once belonged to a now unexisting team formerly known as unkn0wn. I

hope you guys are all doing well.
 To all my friends on my nateon friend list (You know who you are! :)

[In the Supplements folder “0.1

Externalist” you can find also:
 Analysis, idb ida file
 Binary, the original file
 Pics, pictures of this tutorial
 Source, sources used for this

tutorial]

http://www.nixdoc.net/�
http://www.intel.com/products/processor/manuals/�
http://www.hex-rays.com/idapro/idadoc/707.htm�
http://www.openrce.org/articles/full_view/11�
http://www.rexx.com/~dkuhlman/python_101/python_101.html�
http://www.woodmann.com/collaborative/tools/index.php/Category:RCE_Tools�
http://www.woodmann.com/collaborative/sectools/index.php/Category:InfoSec_Tools�

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 49

2 HANDY PRIMER ON LINUX REVERSING BY GUNTHER

2.1 FOREWORDS

The time has come to write a tutorial on Reversing Engineering on Linux. Reversing Engineering on Linux will
surely be welcome among the rapidly growing community of Linux users. Important applications which
appeared on Linux had slowly started to be protected with important tricks and some tools appeared which
can handle them.

After a conversation with Shub, I have decided to write a primer on this, examining which tools we can use to
disassemble the Linux applications, how to approach to them and what generally we can do. The tutorial will
cover different issues:

• What instruments we have and what to use and customize them.
• Practical examples of real applications

I also included a long list of references and further readings, as usual. The applications which I have used are
selected based on two criteria:

• being educative for my purposes
• being already cracked by someone else, so as to not create problems on my own

I hope that this could begin a new chapter in the ongoing ARTeam series of Reverse Engineering tutorials.
Today’s topic will go over Reverse Engineering on Linux. This topic has been hardly touched upon, thus giving
me room to add some information to the reader.

This tutorial is for anyone running Linux with gcc and who knows a bit of C. This tutorial does not claim to be
complete, exclusivity and is geared to beginners.

2.2 ABSTRACT

In this tutorial we are going to learn the ELF file format and learn how to conduct reverse engineering on an
ELF binary.

There has been a trend for growing commercial applications under Linux. Thus, there is a need for protective
mechanisms in the new environment. In this primer, I will try to fill in required information about tools which
Reverse Engineers used in Linux.

Let’s start getting our hands dirty...

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 50

2.3 TARGET

In this primer, I will use the following crackme to conduct the tutorial.

Here is the link to the crackme:

http://www.crackmes.de/users/damo2k/damos_crackme_1_for_linux/

2.4 EXAMINING OUR TARGET

2.4.1 STARTING

Before we try to break the program, it is often necessary to analyze it. For this purpose, we can use the
following programs to do so:

file - Displays information about the file type, architecture, the use of shared libraries.

Figure 1 -file command displaying information of the target.

nm - List information about symbolic references (symbols) in object files.

http://www.crackmes.de/users/damo2k/damos_crackme_1_for_linux/�

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 51

Figure 2 - nm command listing about symbolic references.

size - Displays of all sections’ sizes and total size of the application.

Figure 3 - size command displaying all sizes of the target.

strings - Outputs all text strings contained in the file. It's very helpful when seeking registration codes stored
in the clear.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 52

Figure 4 - strings command displaying all text strings found in the target.

ldd - Shows dependency programs from dynamic libraries. Programmers benefit more than crackers.

Figure 5 - ldd command displaying dependency of the target.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 53

readelf - Explore file. Displays lots more information than the command file. Shows file type, architecture,
point of entry and other equally important data for reverse engineers and crackers.

Figure 6 - readelf command displaying the all the information of the target.

2.4.2 INITIAL ANALYSIS

Where should we start from? We need to collect some basic information about the object. From the output
given by the file command, it has indicated that the object is an ELF executable compiled for Intel x86
architecture (Intel 80386, 32-bit, LSB – least significant byte).

file crkme1-linux32

It also reveals that the object has been linked dynamically and not stripped. If the ELF header of the binary
was corrupted in any way, the file command would report that as well.

2.4.3 ELF FILE FORMAT

ELF stands for Executable and Linking Format and the file format used (with some exceptions) on the Linux
system for relocatable, executable, and shared binary files that do not need any other hardware than CPU to
run, unlike Java and .NET.

• Relocatable objects (*.o) are linked with other objects in order to build an executable file or a shared
library – these are produced by compilers and assemblers.

• Executable objects are files that are ready to be executed, already relocated and with symbols
resolved (excluding those that refer to shared libraries, resolved at runtime).

• Shared objects (*.so) contain code and data which can be used for linking in two different ways. They
can be linked with relocatable or shared objects to produce another object. They can also be linked
with executable code by the system dynamic linker/loader to create a process image in memory.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 54

The basic component of an ELF file is its header(see Figure 7). The header is located at the beginning of the file
ans serves as a sort of a map of its remaining parts. It contains information such as the location of the
program header and section header relative to the beginning of the file. The memory location where control is
to be passed to when the program is launched (the so-called entrypoint), as well as some platform-
independent information that determines how the file content is to be interpreted.

To keep the ELF format as flexible as possible, 2 parallel views were introduced: linking view and execution
view (see Figure 8). When the object is being built, the compiler, assembler or linker treats the ELF file as a
collection of sections described by the section header with an optional program header (see Figure 9).
However, the system linker/loader treats the file as a collection of segments described by the program header
with an optional section header. The link view is not required for running executable code.

Browsing and examining the internals of ELF files can be accomplished with the help of the objdump program,
elfsh utility, ht program.

Figure 7 - Elf header view with ht editor.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 55

Figure 8 - ELF program header view with ht editor.

Figure 9 - ELF format outline.

2.4.4 DISASSEMBLER AND HEX EDITING TOOLS

The following are some of the Disassembler and Hex editing tools which you can use:

Disassembler:

 Objdump - More than just a disassembler. a program for displaying various information about object
files.

 Section file (- x)
 Disassemble file (-D).
 It displays the content of sections in hexadecimal notation (-s)

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 56

 Dissy - a disassembler for Linux and UNIX which supports multiple architectures and allows easy

navigation through the code It is implemented as a graphical frontend to objdump. It allows fast
navigation through the disassembled code and easy searching for addresses and symbols.

 Lida (Linux Interactive DisAssembler) - Quite interesting disassembler, which includes modules like

cryptanalysis, the possibility of placing bookmarks, etc.

 LDasm (Linux Disassembler) - Another shell for objdump/binutils.

 Bastard - Disassembler under Linux & FreeBSD, understands ELF/PE/bin- formats.

Hexadecimal editors:

 Bless - Written in mono hex editor. It supports the tab.

 Biew - Console editor. Allows you to view and edit files in text, hex, assembler form.

 Radare – An advanced cmdline hexadecimal editor.

2.5 SEARCHING FOR MORE CLUE

Where we could start from? A good starting point is trying to find out if the analysed binary file contains any
interesting character strings from our next stage of investigation. This way we can gather some information
about the platform used to build the binary and get an overall idea of the potential actions that the program
could take. In every reversing engineering task which we handle, we should note that even trivial details could
useful to our analysis.

Searching for character strings will be accomplished with the help of the indispensible strings utility. It
examines the contents of a given file and prints out all sequences of 4 or more printable (ASCII) characters (the
default length of 4 can be changed with the –n option). By default, it scans only the initialised and loaded
sections of an ELF file. To display all strings, we use the –a option.

In some cases, strings can reveal interesting information such as the operating systems used to compile the
program and the compiler itself. Using strings with dynamically linked binaries produces more detailed
output. Besides the strings found in the program code, it also shows a list of symbol names corresponding to
the called shared library functions.

2.6 ANALYSING THE CONTENTS OF SPECIFIC PARTS OF THE FILE

Another way to search for interesting character strings in a file is to look through specific sections of the
analysed program (see ELF file section header structure) that usually contain character strings.

We are going to look through the .comment, .strtab, .dynstr, .note or .rodata sections. The location
of any section within the object is determined by the offset value in the section header. The header itself can
be retrieved using elfsh, ht editor or objdump with the –h option. A fragment of the section header is shown
in Figure 9.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 57

2.6.1 ELF FILE SECTION HEADER STRUCTURE

The file’s section header holds information about ELF object sections. A single segment may consist of one or
more sections – for example, the PT_LOAD segment with permissions to read and execute might contain the
.text, .init, .fini and .plt sections. Each section is described in the header with it type, name, size and memory
location where the section is to be placed. The section header is required only for compiling the program
(during the linking stage) and is ignored when the program is being executed. Each section contains
information of a specific kind:

 .init, fini – the code responsible for starting and exiting the process.
 .text – the actual program code.
 .data – initialised data.
 .bss – uninitialized data (initialised to zero when the program is loaded).
 .dynamic – information used for dynamic linking.
 .symtab – symbol table.
 .dynsym – dynamic linking symbol table.
 .strtab – string table.
 .dynstr – dynamic linking string table.
 .debug – debugging information.
 .rodata – read-only data.
 .rel* - relocation tables.
 .ctors, dtors – constructor and destructor tables.
 .hash – hash table.
 .got – global offset table.
 .plt – procedure linkage table.

2.7 RETRIEVING SYMBOL TABLE

The symbol table (see Frame Symbol Table) improves the readability of the program code. The table makes it
possible to link function references using their names and it also define the boundaries of each part of the
program. To get a list of the symbols, we can use the nm command. Using the –D option shows the list of
dynamic symbols, the –g option shows global symbols and the –a option shows all symbols.

Removal of the .symbol table destroys the obvious evidence of specific functions being used in the program.
Using the strip command on a dynamically linked program wipes out all local symbols. Whereas, using it on a
statically linked program deletes all contents of the symbol table.

The symbol table is not the only part of an executable that can be removed. Executable objects contain a few
other optional sections such as .debug and .comment. Another removable part is the section header, which is
required for link view, but not needed for execution view of an ELF object.

An example of a tool that strips the object of all unnecessary parts including the section header is sstrip from
ELF Kickers package (http://www.muppetlabs.com/~breadbox/software/elfkickers.html). The effect of using it
apart from destroying the links between function calls and names is that it obliterates section boundaries.
Currently, the ELF Kickers package is at version 2.0a.

Removing the section header has a side effect of preventing the analysis of the object using many utilities that
make use of the bfd library (GNU Binary File Descriptor), which relies on the section header being present. An
example of such an utility is objdump.

http://www.muppetlabs.com/~breadbox/software/elfkickers.html�

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 58

2.7.1 THE SYMBOL TABLE

When the final program is built, references among objects are managed through the so-called symbolic
references. The linker or system linker/loader resolves these symbols and modifies the parts of the code that
refer to them so that they point to the actual locations.

Symbols are structures that contain the names of objects (encoded as indexes to a table of character strings)
and symbol values. Each symbol may be local, global or weak. Local symbols are available only within a single
object, while global ones are accessible to other objects as well. Weak symbols are considered global until a
global symbol with the same name is encountered.

A statically linked binary contain the .symtab symbol table, whereas a dynamically linked binary contains
two tables: .symtab and .dynsym. The .dynsym table holds only those symbolic references which are
needed for dynamic linking.

Statically linked binaries have all references already resolved so the symbol table is not longer required and
can be removed. The removal is accomplished by stripping the ELF file (using the strip command). It is a
simple method of making the analysis of a binary file more difficult.

2.8 REVERSING THE PROGRAM

Now, let’s get our hands dirty by reverse engineering the program. This time round, I shall use radare to
assist us. But you can use ht editor or other tools too.

2.9 REVERSE ENGINEERING

Issuing the following command will give us something like Listing 1.

[root@home Desktop]# radare crkme1-linux32
open ro crkme1-linux32
Message of the day:
 I like to suck nibbles and make hex
Automagically flagging crkme1-linux32
15 symbols added.
17 strings added.
0 syscalls added.
[0x00000000]> s sym_main
[0x000003C4]> pD
0x000003C4, sym_main: 55 push ebp
0x000003C5 89e5 ebp = esp
0x000003C7 83ec18 esp -= 0x18 ; 24 ‘ ‘
0x000003CA 83e4f0 esp &= 0xf0 ; 240 ‘ ‘
0x000003CD b800000000 eax = 0x0
0x000003D2 29c4 esp -= eax
0x000003D4 c745fcf4860408 dword [ebp-0x4] = 0x80486f4
0x000003DB c745f800870408 dword [ebp-0x8] = 0x8048700
0x000003E2 c745f000000000 dword [ebp-0x10] = 0x0
0x000003E9 c745f400000000 dword [ebp-0xc] = 0x0
0x000003F0 837d0801 cmp dword [ebp+0x8], 0x1
0x000003F4 0f8ec3010000 ^ jle dword 0x5BD 1 = sym_main+0x1f9
0x000003FA 8b450c eax = [ebp+0xc]

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 59

0x000003FD 83c004 eax += 0x4 ; 4 ‘ ‘
0x00000400 83ec0c esp -= 0xc ; 12 ‘ ‘
0x00000403 ff30 push dword [eax]
0x00000405 e8befeffff ^ call 0x2C8 ; 2 = sym_strlen
0x0000040A 83c410 esp += 0x10 ; 16 ‘ ‘
0x0000040D 83f80a cmp eax, 0xa
0x00000410 741f v jz 0x431 ; 3 = sym_main+0x6d
0x00000412 83ec08 esp -= 0x8 ; 8 ‘ ‘
0x00000415 ff75fc push dword [ebp-0x4]
0x00000418 680d870408 push dword 0x804870d ; "GoodSerial!"+0
0x0000041D e8c6feffff ^ call 0x2E8 ; 4 = sym_printf
0x00000422 83c410 esp += 0x10 ; 16 ‘ ‘
0x00000425 c745ec00000000 dword [ebp-0x14] = 0x0
0x0000042C e9a8010000 ^ goto 0x5D9 ; 5 = sym_main+0x215
0x00000431 90 nop

Listing 1

From the above listing, we can roughly conclude that the serial MUST be of length 10 otherwise it will printf
“BadSerial!”

Now let’s attach a debugger to it using the following commandline and give the program a serial, abcdefghij, of
a length of 10:
[root@home Desktop]# radare dbg://"crkme1-linux32 abcdefghij"

argv = 'crkme1-linux32', 'abcdefghij',]
Program 'crkme1-linux32 abcdefghij'
open debugger ro crkme1-linux32 abcdefghij
Message of the day:
 Find hexpairs with ‘/x a0 cc 33’
Automagically flagging crkme1-linux32
15 symbols added.
17 strings added.
15 syscalls added.
flag 'entry' at 0x08048300 and size 00
[0x43169810]>

What we should do next is to set a breakpoint at the address where the address of nop starts; in this case it is
0x8048431.

[0x43169810]> !bp 0x08048431
new breakpoint at 0x8048431

[0x43169810]> !cont
cont: breakpoint stop (0x8048431)

[0x43169810]> V

Press ‘V’ without the quotes and you will get something like below.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 60

Pressing ‘p’ to change the print view to debugger mode.

Now, scroll down the dead listing, we can see that the program is checking to see if the current char is
between 0x60 and 0x7A (which is ‘a’ to ‘z’).

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 61

As we go through the disassembled code properly, we can see that each character is being converted to
uppercase by subtracting 0x20.

When we have reached the end of the string, we can find that it is doing another check by taking the first and
last byte of the serial and store in edx and eax respectively. After that, it subtracts 0x3 from the last byte and
check whether it’s the same as the first byte.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 62

After we bypass the first check, we encountered another check by the application again. This time round, it
retrieves the 2nd and 9th Character and stored it in edx and eax respectively. Next, it add 0xE to the 9th
character to compare whether it is the same as the 2nd character. If it is, the application continues.

Just as we thought that we had gone through the checks implemented in this application, there is another
checking being done again. But this time, it retrieves the 3rd and 8th character and subtracting 0x14 from the

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 63

8th character. After that, it did a compare with the new value with the 3rd character. If it passes that, it
proceeds.

And just as I thought, there is more checking being done after the previous one. It retrieves the 4th and 7th
character and added 0x6 to the 7th character and did a compare.

Now, for the final 2 characters. After retrieving both of them, it added them together and did a arithmetic shift
to the right (which is dividing the result by 2).

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 64

Then we take the 1st character and did a compare with our last result which we stored in edx. Once we have
bypass that test, you can see that it printf “Good Serial”.

ARTEAM EZINE ISSUE IV

Handy Primer on Linux Reversing by Gunther 65

2.10 CONCLUSIONS

Now, it’s time for trying to reverse other applications with we have seen so far.

Using the above analysis, you can build your own key generator to the above crackmes or any other Linux
applications which require serial numbers.

If some of you are intimidated by the CLI (Command Line Interface), you can try the gradare, GUI front-end, of
radare, It’ll provides decent graphs like IDA Pro.

All the stuff explained in this tutorial has been tested.

I hope that this document has provided some new ways of reversing knowledge in Linux, and when we face
similar disassembled codes it wouldn’t intimidate you in any way and you could assume the challenge of
researching and researching...in the ARTeam spirits.

2.11 GREETINGS

This tutorial is dedicated to all the components of ARTeam and Shub for editing it. Big thanks to Shub.

And of course, to you, who decided to read this document, because without your support and contribution this
task wouldn’t be worth to be done.

 [No supplements for this tutorial.]

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 66

3 USING .NET PROFILING API FOR A CUSTOM .NET PROTECTION BY KURAPICA

In this paper we will discuss the .NET Profiling APIs that ship with the .NET framework and see how we can use
them to implement a tight protection scheme to hide the MSIL code in the final assembly, hidden MSIL code
means that tools like reflector won't be able to produce source code from our compiled assembly and this can
increase the security and protection against reverse engineering.

Before we start exploring the ins and outs of the protection scheme we will discuss the Profiling APIs briefly
and see the events and methods that are important in our protection.

3.1 WHAT IS PROFILING?

Part of the .NET framework SDK speaks on an API that allows you to find out lots of information about the
behavior of the application coded with .NET technology, The API allows us to get many different types of
information during run time, you can also use the API to code tracing tools, exception analysis tools and
memory usage analysis tools.

This paper discusses the Profiling API, a part of .NET that has not yet received the attention it really deserves;
you can code a profiler that can be used against any .NET application without that application knowing it is
being profiled. The profiler works on an event system and as interesting things happen the profiler is
immediately notified, and can therefore build up real-time analysis of the profilee (the application being
profiled)

The Profiling API is all based around COM interfaces, .NET profilers must be built as in-process COM servers.
This means we can write .NET profilers in any COM-capable unmanaged language such as Delphi or C++.

The profiler must implement an interface defined by the Profiling API. This interface has a variety of methods
that are triggered like events when interesting things happen. There are many of these events in the interface,
and the profiler specifies which groups of events it is interested in receiving. Doing this avoids having every
event repeatedly triggered during the profiling session, which may heavily impact the application's
performance.

When managed applications are subsequently run the CLR loads the profiler COM server into the managed
application's address space and told which events to fire and proceeds to do so throughout the rest of that
application's lifetime.

The callback interface ICorProfilerCallback which must be implemented by each profiler. This interface
contains 69 methods and each of which is an event, although 3 of the methods will never be called in .NET 1.x
(they are there for use in future versions of .NET). Two of these events are special and are always called; the
rest are called only if requested (and if the event actually occurs in the managed application), in .NET
framework 2.0 the interface was expanded and new events were added, the special event methods are
Initialize and Shutdown. Initialize is called as soon as the CLR has initialized and loaded up the profiler, and it
is where you request the event categories you wish to be triggered throughout the program run. Shutdown is
called as the CLR is closing down during application termination.

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 67

Initialize is passed an IUnknown reference to another interface as a parameter, this one being ICorProfilerInfo
(also expanded to ICorProfilerInfo2 in .NET framework 2.0). This interface (like all of them except the callback
interface) is implemented in the CLR and is there to help you get more information when various events
trigger, offering you 33 methods to choose from. You should save this reference away so it can be used in the
event methods that are subsequently called. For example:

procedure TSomeProfiler.Initialize(const pICorProfilerInfoUnk: IUnknown);
begin

 CorProfilerInfo := pICorProfilerInfoUnk as ICorProfilerInfo;
 CorProfilerInfo.SetEventMask(COR_PRF_MONITOR_JIT_COMPILATION);

end;

You initially request the appropriate event categories in ICorProfilerCallback.Initialize by passing the required
flags along to the ICorProfilerInfo.SetEventMask method.

Linking the profiler COM object to the protected assembly is easy and all you have to do is to create a process
object and set the environment variables for this process like this:

'Create Process
Dim PSInfo As New ProcessStartInfo(TextBox1.Text)

'Initialize Profiler variables
PSInfo.EnvironmentVariables.Add("COR_ENABLE_PROFILING", "1")
PSInfo.EnvironmentVariables.Add("COR_PROFILER", "{34F20DB8-FA3C-4356-945D-
5D7819E81C8B}")

'Start the protected assembly
Dim Pr As Process = Process.Start(PSInfo)

These lines of code are enough to start the profiling process, the first environment variable tells the CLR to
enable profiling for the process and the second variable is the globally unique identifier of this profiler COM
object in windows registry, so it guides the CLR to the correct profiler COM object to load and initialize.

3.2 HOW DOES THE PROTECTION WORK?

The basic idea of this protection is using two important events that the CLR notifies the profiler of, these two
events are:

 JITCompilationStarted: The CLR calls JITCompilationStarted to notify the code profiler that the JIT
compiler is starting to compile a function but the important point here is that the function didn't start
execution yet.

 JITCompilationFinished: The CLR calls JITCompilationFinished to notify the code profiler that the JIT

compiler has finished compiling a function; here the function has finished execution.

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 68

Basically this protection scheme consists of 3 files:

1- The Loader: it can be a simple console executable which job is to create the profilee process and
prepare the environment variables.

2- The Profiler DLL: which is an implementation of the interfaces I described earlier, you can use any
COM-enabled language like Delphi or C++ to write this DLL.

3- The Protected assembly: This is the assembly that we need to hide its MSIL to prevent
decompilers and disassemblers from reproducing the MSIL code in any higher level language like
VB.net or C# or even IL.

The beauty of this protection lies in the fact that the protected assembly can't execute on its own unless
loaded by the Loader, simply because the protected assembly code is nopped, all the MSIL code bytes are set
to 00 which means that nothing is executed, the task of the Profiler DLL is to interfere in the right time to
provide the original MSIL code to the CLR and then execution can go normally.

3.3 THE PROFILING APIS

The profiler DLL is made up of two main objects, the ICorProfilerCallback which is responsible for the events
triggering, i.e. it tells us when something interesting happens like when some method is about to execute or
when some exception is raised and many other events, the second object is the ICorProfilerInfo which is used
by a code profiler to communicate with the CLR to control event monitoring and request information

We are mainly interested in two API which are:

 Procedure GetILFunctionBody(moduleId: ULONG; methodId: ULONG; out ppMethodHeader: PByte;
out pcbMethodSize: Ulong); safecall;

Retrieves a pointer to the body of a method starting at its header, a method is coped by the module it lives in,
because this function is designed to give a tool access to MSIL before it has been loaded by the Runtime, it

JITCompilationStarted

Function executes

JITCompilationFinished

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 69

uses the metadata token of the method to find the instance desired, this API is not actually used in our
protection but I mentioned here for relevance.

 Procedure SetILFunctionBody(moduleId: ULONG; methodId: ULONG; var pbNewILMethodHeader:
Byte); safecall;

Replaces the method body for a function in a module, This will replace the RVA of the method in the metadata
to point to this new method body and adjusts any internal data structures as required, This function can only
be called on those methods which have never been compiled by a JITTER, this is the API that we will use to
replace the nopped MSIL code with the original code so that execution continues normally.

3.4 THE WORKFLOW

Clearly our job is to provide the original MSIL code just before the protected function is executed and if you
look at this figure you will understand when we have to do this task.

JITCompilationStarted

This event is where we test to see if we reached the
protected function, you can retrieve much info on current
method using certain APIs too, we will interfere here to

Function executes

JITCompilationFinished

For increased security we can optionally nop the MSIL code

SetILFunctionBody

SetILFunctionBody

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 70

3.5 IMPLEMENTATION

 The Loader : implemented in VB.NET here but you can use C# or Delphi.NET

Imports System.Runtime.InteropServices.Marshal

Imports System.Runtime.InteropServices

Module Main

 Sub Main()

 Try

 'Register Profiler Library Classes in windows registry

 RegisterDLL()

'Extract Path of protected assembly which is supposed to be placed
in same folder

Dim xPath As New
IO.FileInfo(Reflection.Assembly.GetExecutingAssembly.Location)

 'Create Process

 Dim PSInfo As New ProcessStartInfo(xPath.DirectoryName &
"\ProtectedAssembly.exe")

 'Initialize Profiler variables

 ProcessStartInfo.EnvironmentVariables.Add("COR_ENABLE_PROFILING", "1")

 ProcessStartInfo.EnvironmentVariables.Add("COR_PROFILER", "{C827957B-
A8EB-4CD9-BD38-F0CC9B1DB1E5}")

 'Start Process

 PSInfo.UseShellExecute = False

 Dim Pr As Process = Process.Start(PSInfo)

 Catch ex As Exception

 MsgBox(ex.Message, MsgBoxStyle.Critical)

 End Try

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 71

 End Sub

#Region "Register Profiler DLL"

 <Runtime.InteropServices.DllImport("System.dll")> _

 Private Function DllRegisterServer() As Integer

 End Function

 Private registered As Boolean

 Friend Function RegisterDLL() As Boolean

 If Not registered Then

 If (DllRegisterServer() <> 0) Then

 Throw New Exception("Couldn't register System.dll")

 End If

 registered = True

 End If

 Return registered

 End Function

#End Region

End Module

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 72

 The Protection DLL : It's implemented in Delphi

unit SampleProfiler;

interface

uses

 Windows, ActiveX, ComObj, BaseProfiler, CorProf, ComServ, Classes, Sysutils,
StrUtils;

type

 TSampleProfiler = class(TBaseProfiler, ICorProfilerCallback2)

 protected

 procedure OnInitialize; override;

 // COR_PRF_MONITOR_JIT_COMPILATION

 procedure JITCompilationStarted(functionId: ULONG; fIsSafeToBlock: Integer);
safecall;

 end;

const

 // Update these constants for each new profiler

 ProfilerCoClassName = 'Kurapica_Profiler';

 ProfilerDescription = 'Protection Profiler for .NET assemblies';

 ProfilerGUID: TGUID = '{C827957B-A8EB-4CD9-BD38-F0CC9B1DB1E5}';

 ProfilerClass: TComClass = TSampleProfiler;

implementation

var

 // These are the original MSIL code bytes that we want to hide

 ProtectedMSIL: array[0..201] of byte = (

 $1B,$30,$04,$00,$BE,$00,$00,$00,$1E,$00,$00,$11,$02,$6F,$39,$00,

 $00,$06,$6F,$62,$00,$00,$0A,$6F,$63,$00,$00,$0A,$6F,$64,$00,$00,

 $0A,$16,$2E,$18,$02,$6F,$37,$00,$00,$06,$6F,$62,$00,$00,$0A,$6F,

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 73

 $63,$00,$00,$0A,$6F,$64,$00,$00,$0A,$16,$33,$02,$16,$2A,$73,$65,

 $00,$00,$0A,$13,$04,$11,$04,$72,$AE,$08,$00,$70,$6F,$66,$00,$00,

 $0A,$73,$67,$00,$00,$0A,$0B,$07,$28,$68,$00,$00,$0A,$02,$6F,$39,

 $00,$00,$06,$6F,$62,$00,$00,$0A,$6F,$63,$00,$00,$0A,$6F,$69,$00,

 $00,$0A,$6F,$6A,$00,$00,$0A,$0C,$02,$6F,$37,$00,$00,$06,$6F,$62,

 $00,$00,$0A,$6F,$63,$00,$00,$0A,$28,$6B,$00,$00,$0A,$13,$05,$11,

 $04,$08,$72,$D7,$0F,$00,$70,$11,$05,$6F,$6C,$00,$00,$0A,$0D,$09,

 $45,$02,$00,$00,$00,$06,$00,$00,$00,$02,$00,$00,$00,$DE,$19,$17,

 $0A,$DE,$15,$16,$0A,$DE,$11,$25,$28,$1D,$00,$00,$0A,$13,$06,$16,

 $0A,$28,$21,$00,$00,$0A,$DE,$00,$06,$2A

);

//==

// Start

//==

procedure TSampleProfiler.OnInitialize;

begin

 {Set events mask}

 EventMask := COR_PRF_MONITOR_JIT_COMPILATION;

end;

//==

// Method is about to be executed

//==

procedure TSampleProfiler.JITCompilationStarted(functionId: ULONG;

 fIsSafeToBlock: Integer);

var

 // Variables to extract current method name and see

 // if it's the protected method

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 74

 ClassName, MethodName: WideString;

 // Variables necessary to extract info about current method using the

 // GetFunctionInfo API

 ClassId,ModuleID,IToken:ULONG;

 // Object to allocate memory for the orignal MSIL code

 Ialloc : IMethodMalloc ;

 // Pointer to ProtectedMSIL array bytes, used for copying memory

 PprotectedMSIL : Pbyte ;

 // Pointer to orignal MSIL location where we will copy the ProtectedMSIL

 // to memory block

 PtempMSIL : PByte;

begin

SyncEnter;

 try

 {Initialize variables}

 ClassId:=0;

 ModuleID:=0;

 IToken:=0;

 // Retreive information about current function

 CorProfilerInfo.GetFunctionInfo(functionId,ClassId,ModuleID,IToken);

 {Get function name}

 if GetClassAndMethodFromFunctionId(functionID, ClassName, MethodName) then

 begin

 // Check if we are at "CheckLicense" method

 If MethodName = 'CheckLicense' then

 begin

 //Alloc memory for new ILs

 Ialloc := CorProfilerInfo.GetILFunctionBodyAllocator(ModuleId);

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 75

 PtempMSIL:=Ialloc.Alloc(202);

 //Copy orignial MSIL to memory

 PprotectedMSIL:=@ProtectedMSIL;

 CopyMemory(PtempMSIL,PprotectedMSIL,202);

 // Set new ILs

 CorProfilerInfo.SetILFunctionBody(ModuleID,IToken,PtempMSIL^);

 end

 end

 except

 on E: Exception do

 log(E.message);

 end;

 SyncExit

end;

initialization

 TComObjectFactory.Create(ComServer, ProfilerClass, ProfilerGUID,

 ProfilerCoClassName, ProfilerDescription, ciMultiInstance, tmFree);

end.

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 76

3.6 PREPARING THE ASSEMBLY:

The assembly that you want to protect can only be of type executable, all you have to do is to replace the MSIL
code in every important function with 00 bytes so that reflector or other tools are useless, here is an example
that I posted earlier in Crackme #18 which implements this protection effectively to protect one function
called "CheckLicense", the entire key generation process lies within this function so It's our target.

1. Build your Assembly using visual studio and keep a list of functions' addresses that you want to
protect.

2. Next step is locating these functions in WinHex to nop their bytes, this entire procedure can be
automated using simple coding but I will explain my manual method here.

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 77

3. You can also use the classic method by finding the correct node of the protected function in ILdsam
then you can read the RVA value and convert it to a file offset like we did in most previous tutors, but
CFF explorer provides us with the RVA value directly by expanding the "method" table, now find the
"CheckLicense" node and read its RVA value.

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 78

4. Use the address converter function to convert this value to a file offset and open WinHex

5. Select the method's MSIL code bytes and nop them

6. There is a feature in WinHex that helps you rip the bytes to a Pascal or C source so you can paste the
original MSIL code directly as an array in your protective DLL, now overwrite these selected bytes with
00 byte and you are done.

7. After you nop the bytes you can sign your assembly with a strong name signature to add another
layer of protection.

 The 12 shaded bytes are the method's header and should be left intact

ARTEAM EZINE ISSUE IV

using .net profiling api for a custom .NET Protection by Kurapica 79

3.7 CONCLUSION

Now we will talk about the Pros and Cons of this protection technique.

As you can see, using the profiling APIs which are part of the .NET framework itself can ensure stability more
than other code hiding techniques used in commercial protectors like Maxtocode and CLI-Secure, you can use
this technique for all .net versions as long as you implement the profiler's COM interfaces correctly, another
point of strength is that If you use other supporting techniques like names obfuscation and control-flow
obfuscation then you will have a stronger protection in total.

The weakness of this protection is that it can impact the performance, the hook in the profiler can slow the
performance a bit since it has to check for every method being compiled, I used an explicit string comparison
to see if this is the right function to fill, in bigger application and when you have many protected functions you
can use a hash table to increase performance, but this is theoretically unnoticeable to humans, besides most
machines run on high clock rates nowadays.

Defeating this protection requires hooking the JITTER to dump the MSIL code just before it gets executed so
it's possible but it can be a hectic job if you add control-flow obfuscation, UFO-PU55Y's ILLY plug-in is a good
example for this.

3.8 REFERENCES

[1] The .NET Profiling API and the DNProfiler Tool, Matt Pietrek, MSDN Magazine December 2001,
http://msdn.microsoft.com/msdnmag/issues/01/12/hood/default.aspx

[2] .NET Internals: The Profiling API, Brian Long
[3] The .NET Framework SDK Tool Developer Guide

3.9 GREETINGS

I want to send a special greeting to my friend in crime UFO-PU55Y for all the help and support he provided and
to all the following people with no particular order

LibX – Devine9 – revert – Apakekdah – Lena151 – Ntoskrnl – Shub-Nigurrath

And the following teams

RET – SnD – ARTeam – Bl@ck Storm – AT4RE – AORE – CiM

[In the Supplements folder “0.3 Kurapica”

you can find also the full crackme18 used

here.]

http://msdn.microsoft.com/msdnmag/issues/01/12/hood/default.aspx�
http://forums.accessroot.com/index.php?showuser=239�

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 80

4 PRIMER ON REVERSING PALMOS APPLICATIONS EXTENDED EDITION BY,
WAST3D_BYTES, SUNTZU

4.1 FOREWORDS

I believe time has come for a new tutorial. This time we will leave the Windows and we will be transferred in a
new field.

Palm OS scene is active since a long time, releasing a lot of applications and with some important groups.
Applications are found a lot in the market. Some of them have been protected well and with nice tricks and
that will make our study more interesting.

For the Palm OS scene I have found a few tutorials the market is not so prolific. The majority (btw you can
consider all of them except 4) are not written in English. Most of these are simple so they will help us get the
basic idea and some of them are for advanced reversing.

I decided to take a trip to this world, by searching the tools which will help disassemble the programs, what
approaches we should follow and what we can do to create some patches so we can distribute them.

I started from scratch since I haven’t seen any discussion on the forums (or I have not seem/found them). This
is a special issue which includes various tutorials I wrote with different targets and different difficulty levels. I
know that some people who have better knowledge from me may laugh because of the simple approaches.

The tutorial will cover different issues:

 Some words about Palm OS
 The laboratory with our tools
 Examples on real applications

4.2 FEW WORDS ON PALM OS

Since the introduction of the first Palm Pilot in 1996, the Palm OS platform has defined the trends and
expectations for mobile computing - from the way people use handhelds as personal organizers to the use of
mobile information devices as essential business tools, and even the ability to access the Internet or a central
corporate database via a wireless connection.

Palm OS 5, which has been available to customers for years, supports ARM®-compliant processors. Palm OS
Garnet is an enhanced version of Palm OS 5 and provides features such as dynamic input area, improved
network communication, and support for a broad range of screen resolutions including QVGA.

Palm OS Cobalt 6.1 is the next generation of Palm OS. It will enable the creation of new categories of devices
for the communications, enterprise, education and entertainment markets. Palm OS Cobalt 6.1 provides
integrated telephony features, support for WiFi and Bluetooth, and enhancements to the user interface.

Suntzu is author of a video
tutorial in the supplements folder

http://www.palmsource.com/palmos/garnet.html�
http://www.palmsource.com/palmos/garnet.html�
http://www.palmsource.com/palmos/garnet.html�
http://www.palmsource.com/palmos/cobalt.html�

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 81

As with previous versions of Palm OS, Palm OS Garnet and Palm OS Cobalt retain application compatibility with
existing 68K-based applications.

Palm OS was originally developed by Jeff Hawkins for use on the original Pilot PDA by US Robotics. Version 1.0
was present on the original Pilot 1000 and 5000 and version 2.0 was introduced with the PalmPilot Personal
and Professional.

With the launch of the Palm III series, version 3.0 of the OS was introduced. Incremental upgrades occurred
with the release of versions 3.1, 3.3, and 3.5, adding support for color, multiple expansion ports, new
processors, and other various additions.

Version 4.0 was released with the m500 series, and later made available as an upgrade for older devices. This
added a standard interface for external filesystem access (such as SD cards) and improved telephony libraries,
security, and the UI. Version 4.1 included a series of bug fixes.

Palm OS 1.0-4.1 were based on top of a small kernel licensed from Kadak. While these versions are technically
capable of multitasking, the "terms and conditions of that license specifically state that Palm may not expose
the API for creating/manipulating tasks within the OS.

Version 5.0 was introduced with the Tungsten T and was the first version released to support ARM devices.
Described as a stepping stone to full ARM support, Palm apps are run in an emulated environment called the
Palm Application Compatibility Environment (PACE), making the device capable of running software written for
older versions. Even with the additional overhead of PACE, Palm applications usually run faster on ARM
devices than on previous generation hardware. New software can take advantage of the ARM processors with
PNO (PACE Native objects), small units of ARM code, these are also sometimes referred to as 'ARMlets'. It was
also around this time when Palm began to separate its hardware and OS efforts, eventually becoming two
companies, PalmSource, Inc. (OS) and palmOne (hardware, now named Palm, Inc.). Further releases of Palm
OS 5 have seen a standardised API for hi-res and dynamic input areas, along with a number of more minor
improvements.

Palm OS 5.2 and 4.1.2 (and later) also feature Graffiti 2. This is based on Jot by CIC.

Version 5.4 added the NVFS (Non-Volatile File System), and used Flash for storage instead of DRAM,
preventing data-loss in the event of battery drain. However, this fundamentally changed the way programs
were executed from the Execute-in-Place system that PalmOS traditionally used, and has been the source of
many compatibility problems, requiring many applications to have explicit NVFS support added for them to be
stable.

In December 2006, Palm (Hardware) paid $44 million to ACCESS for the rights to the source code for Palm OS
Garnet. With this arrangement, a single company is again developing palm hardware and software. Palm can
modify the licensed software as needed and it need not pay royalties to ACCESS over future years.

http://en.wikipedia.org/wiki/Jeff_Hawkins�
http://en.wikipedia.org/wiki/Palm_Pilot�
http://en.wikipedia.org/wiki/Personal_digital_assistant�
http://en.wikipedia.org/wiki/US_Robotics�
http://en.wikipedia.org/wiki/Filesystem�
http://en.wikipedia.org/wiki/Telephony�
http://en.wikipedia.org/wiki/Tungsten_T�
http://en.wikipedia.org/wiki/ARM_architecture�
http://en.wikipedia.org/w/index.php?title=Palm_Application_Compatibility_Environment&action=edit�
http://en.wikipedia.org/wiki/PalmSource%2C_Inc.�
http://en.wikipedia.org/wiki/Graffiti_2�

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 82

4.3 FILLING OUR REVERSING LABORATORY

Fortunately for us, some tools are in existence (debugger ) which will make our life easier. We have the
option to crack the application with dead listing or with the live approach. Also we have in our hands an
emulator and we will load our programs.

1. Here is the approach that we will follow:
2. Choosing which PalmOS we will use
3. Install the software on our emulator
4. Wait till finishes
5. Find the correct patch
6. Change correctly the bytecodes, later more info
7. Test the application by loading into the emulator(or real Palm)

Repack the new .prc file to distribute our patched application

4.3.1 EXISTING TOOLS TO HANDLE PRC FILES

SouthDebugger: This debugger is Java-based and specifically designed for the Palm OS. This program has a
memory dump, trap breakpoints and a notes section. You can log addresses and register values. It will become
our Olly for Palm.

 PRCEdit: PRCedit is a graphical frontend for pilotdis and splitprc.
 PRCedit has an own splitprc built in but it still can use the original program.
 PilotDis: This Disassembler was originally created to overcome the "Crash" problem that "PilDis" had

when disassembling certain .prc files.
 Debuffer: We can analyze the alive code. Something like Numega Softice, but freeware edition.
 Palm OS emulator: We will load the applications to test like being our real palm.

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 83

4.3.2 PRC FILE STRUCTURE

Pocket Smalltalk generates .PRC (Pilot resource database) files which can be transferred to a PalmPilot for
execution. Resource databases consist of a list of arbitrary-length chunks of binary data, with each chunk being
tagged by a resource type and a resource ID. This document describes the resource types used to encode the
different parts of a Pocket Smalltalk program.

Since the compiled .PRC file contains everything needed for execution of the Pocket Smalltalk program, there
will be many resource records present in addition to those representing actual compiled Smalltalk source
code. These records include the machine language virtual machine, the icon used in the application launcher,
some PalmOS GUI resources, and so on. These resources will not be described here.

At the time of this writing, the Smalltalk portion of the compiled .PRC file will consist of one or more of each of
the following resource record types (some types are optional):

 ClsN - class name data [optional]
 ClsO - class offsets
 ClsD - compiled class and method data
 ObjD - statically defined objects
 SelD - symbol text data [optional]
 SysP - system properties

The resource record type is simply a 4-byte integer which can be conveniently represented as an ASCII string.
The resource record abstraction is supported by the PalmOS firmware.

Because of the possibility of memory fragmentation in the PalmPilot, each record is kept to a small size
(usually under 8k). If there is more data of a particular type than can fit in a single record, the data is broken up
into chunks and each chunk is assigned a consecutive resource ID. This is handled transparently by the virtual
machine.

4.3.3 THE CLSD RECORD

The most important segment type is the ClsD type. It contains the compiled form of classes and methods and
will usually make up the bulk of a compiled program. It has a somewhat complex layout, but it is logical and
efficient. At the highest level, it consists of a header followed by a body. The header has the following
structure:

 A 2-byte integer with the total number of compiled classes.
 For each compiled class, a 2-byte integer with the number of bytes taken by the compiled form of

each class.

Following this header are the compiled forms of each class. Note: if the ClsD segment needs to be split to avoid
fragmentation problems, the split will always occur between the end of one compiled class and the beginning
of another.

The compiled form of a class is, basically, a method dictionary. It encodes the selector/method associations of
a class. First are two bytes with the number of selectors defined in the class (not counting selectors defined in

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 84

any superclasses). After this are pairs of 16-bit integers, with the first integer in each pair containing a selector
defined in the class, and the second integer in each pair containing the byte offset to the method for that
selector (the offset is from the start of the compiled class data, i.e., from the number-of-selectors word
above).

The selectors are sorted in ascending order. When looking up a method at runtime, a binary search is
performed (in contrast to the hash table mechanism used by other Smalltalks). In general, the binary search is
just as fast as a hash table (and faster for classes with large numbers of methods), and it saves space because
there are no unused slots.

After the selector/offset table come the instructions of the methods, one after the other. The methods are
completely linear; in other words, no "literal table" is needed. Therefore compiled methods need no extra
structure and need not be scanned by the garbage collector at runtime.

4.3.4 PALM OS OPERATING SYSTEM

In the world of win32 reversing on x86 architectures we have registers like EDX,EAX,ESP etc. Palm have 8 data
registers, these are: D0, D1, D2, D3, D4, D5, D6 and D7. We also have 8 address registers: A0, A1, A2, A3, A4,
A5, A6 and A7, where A7 (USP/SSP) works as a stack pointer. We are dealing with 68k assembly which has a
different instruction set, and the syntax is opposite of windows.

Examples for further comprehension:

MOV destination, source (Intel) corresponds to MOV source, destination

MOV EDX, ECX (Intel) corresponds to MOV ECX, EDX

Another thing you should be aware of is that on Palm the code "branches", while on windows it "jumps". The
only real difference is the name of the instructions.

4.3.5 OTHER TOOLS

PRCExplorer: Using this tool you can open any PRC file and navigate into it. You can see individual resources,
graphically display Forms and Alerts, Bitmaps, Fonts, ... This is useful to debug and develop your application as
well as analyzing PRCs.

Palm Debugger: Our second debugger. Manage all PDB data and Resources on-line from Palm device. Ideal for
debugging, analyze and fix problems. Get information about: Device resources: view statistics, software
versions, etc. DataBases: view, Sort and Print all data, size, version, and backup and records information.

You can Add, Delete, Modify or Search specific data. Applications: analyze structure, size, version, related
databases, date info and much more!

X-Master: X-Master is an extension manager similar to HackMaster, but it is designed to offer various technical
and user-interface improvements. It is fully compatible with HackMaster, all existing Hacks are supported, and

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 85

switching sets of active extensions is supported. Version 1.5 adds an improved interoperability with locking
apps like OnlyMe and more compatibility fixes. It will help a lot our prime debugger.

4.3.6 INSTALLING THE TOOLS

4.3.6.1 INSTALLING EMULATOR

We extract emulator from the zip/rar archive and we open Emulator_Profile.exe.

Figure 10 - Start Screen of emulator

Unfortunately, the package does not include the ROM file which you should download also. After pressing ok
we see how our palm is.

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 86

Figure 11 - The emulator and the menu

By pressing the applications button we see the menu (Figure 11). The menu only contains the starting edition
applications. The installation of the application now is simple. You just drag and drop them from your HDD.

4.3.6.2 INSTALLING PRC EDIT

We want to have a powerful Disassembler in our hands and in order to we need few additional things. Open it
go to options and you choose Disassembler options. Be careful with the installation of PilotDis because it can
cause some problems with long directories (see my configuration in Figure 12).

Figure 12 - Installation of pilotdis to prcedit

As you see I have extracted somewhere on my HDD and i have make a link to them. Now our Disassembler is
ok so let’s start reversing...

4.4 REVERSING WITH PRCEXPLORER AND PRCEDIT

The moment has come to reverse a real application so we can have a better knowledge of these 2 great tools.
Basically the approach we will follow is the “dead listing” approach (we are going to use Disassembler). The
first application is a commercial one that has an easy protection. Moreover you are protected from viruses ;)

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 87

4.4.1 REVERSING THE FIRST APPLICATION: F-SECURE ANTIVIRUS 2.00

I have opened my Palm emulator and I have installed F-Secure antivirus (installation is done with by dragging
and dropping the .prc to the emulator screen).

Figure 13 - the installed Antivirus

I open the application and I take a nag screen (see Figure 13) that my program expires in 14 days.

Figure 14 - the limitation

Unfortunately there is no registration button. So we are going to remove the nag screen with the trial period.
Our next move is to open PRCExplorer so we can check what information we can obtain. After we had opened
file we find ourselves here:

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 88

Figure 15 - The contents of the file

We are currently interested in the Talt section so click on that (Talt are resources which give important
information about target). Hopefully we can see it has only 8 resources which is good for us. A bit of searching
gives us an important resource

Figure 16 - Talt 1400 period of evaluation nag

We continue our search and we find another important resource

Figure 17 - Talt 1500 nag application expired

So what is happening here? As we see in resource 1400 we see the starting nag screen about the
trial/evaluation period. In resource 1500 we find the expired message nag. We have obtained all our valuable
information so we can close PRCExplorer and we can go on with our Disassembler PRCEdit. Sometime it will
complain about opening other files. You have to press “yes to all” and we find ourselves here:

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 89

Figure 18 - What I’m seeing in our Disassembler

Now we have to go to alerts and search for resource 1400 and 1500

Figure 19 - Talt 1400 and 1500

As we can see all the nags/alerts are here. At first we will go to talt 1400. We see we can extend the tree (if
you cannot you have not done correctly the configuration of PilotDis)

Figure 20 - The important reference

Remember that for this program we will need the references only with the green arrow. We can see the right
window with the disassembled code. I am completely sure you do not understand anything

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 90

Figure 21 - The nag

The highlighted command is the point where our nag is appeared (the starting nag). We have to disappear it.
But how we are going to achieve that? I have already made a list with valuable opcodes.(it is included with the
68k in the supplements of this package). I’m going to explain the code but you need to study the commands
and the opcodes.

We have to remember the opcode the nag appears:

OPCODE HEX VALUE

MOVE.W #1400!$578,-(A7) 3F3C0578

sysTrapFrmCustomAlert 4E4FA194

Now we continue with the expired nag which has 3 references. We follow the reference 000020ea. If we think
logically we can understand that something decides if that nag will be executed or not. That must be a jump
(here branch). So we have to scroll up a little.

Figure 22 - Important code

If you get familiarized with the code you can see that also Figure 22 shows us the jump. It is L279.

Figure 23 - The jump that executes the command

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 91

The BEQ= Branch if Equal and it works like JE in Win32 platform. I am sure that you have thought already a few
ways of solving it but we are going to just keep it

OPCODE HEX VALUE

BEQ L279 670a

And we continue with the next reference which sends us here

Figure 24 - Third Important location

As we can see above this command there is a jump (branch) which decides if the nag appears. If we change it it
will not affect us.

OPCODE HEX VALUE

6710 BEQ L281

We have explained above how BEQ works so we need to change it to jump always. Ok we have finished with
our nags. It’s time to go and patch the program now.

4.4.1.1 PATCHING THE TARGET

It’s time to make the changes to our target. Go to fsav.prc window

Figure 25 - The start of the code

And now we are going to find our opcodes. We need to search and find the first opcode so do a Ctrl+F and fill
the opcode 3F 3C 05 78 4E 4F A1 94

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 92

Figure 26 - Original code

We do not see any jump affecting us so the only thing we can do is to NOP the messagebox.

Figure 27 - Modified Code

We continue with the second location. This time search for 67 0A. We land on here

Figure 28 - Highlighted=original code

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 93

This jump needs to be noped because there are jumps after that they will not show us the nags.

Figure 29 - Second patch done

The only we need to do now is to find the third location to patch which is here

Figure 30 - The third location original code

We need to modify this jump from BEQ to BRA so it is always jumping..

Figure 31 - Fully patched code

Now save your file with the modifications. I saved it as fsav.patched.prc

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 94

4.4.1.2 TESTING THE TARGET

Load your palm and install the patched target.

Figure 32 - Patched target loaded

Now open so we can test our work..

We fully patched the application...Congratulations

4.5 REVERSING WITH POSE AND SOUTHDEBUGGER

This time we will reverse another commercial application but with a completely different way. We will use the
live approach.

4.5.1 REVERSING THE SECOND APPLICATION: TEALDOC 6.77

Install application and see how it behaves

Figure 33 - Registration Box

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 95

To find the registration you have to click menu in your palm OS emulator when you have loaded the program
and you will see the register option. Let’s try registering it..

Figure 34 - Invalid registration

It’s time to run our Debugger. His name is SouthDebugger and he is a shareware for unlimited time. It will
replace Olly in Palm. To run South Debugger you need the java environment. SouthDebugger is being
developed in java so you click on the jar file to run him.

Figure 35 - SouthDebugger Start Screen

SouthDebugger has reached edition 1.7. It has an annoying nag and the “unregistered” word at the top bar.
Well we could reverse it because I do not like unregistered tools but it is not in the purpose of this tutorial
(moreover CSCPDA already patched it). SouthDebugger needs help from another program called X-Master.
There are some events that are generated by the program. It is X-Master that generates these events and
keeps POSE blocked. Think what happens to Windows and Olly during debug. Also SouthDebugger connects to
the machine’s IP. So press “connect” and goes to X-Master.

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 96

Figure 36 - X-Master Installed

So we have installed X-Master (I hope you remember that it is done by drag and drop). Load it in POSE and
SouthDebugger becomes green. When it becomes green we execute POSE.

Figure 37 - SouthDebugger

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 97

Now we have to press the execute button. It is the F5

Figure 38 - SouthDebugger Executed

And we see in the POSE screen. The red light in the debugger means that the debugger is not in "contact" with
the emulator, while the green one means we have "contact". As long as the green light is on we can't do
anything in the emulator, we can set breakpoints in the debugger.

Figure 39 - The reset

Before this you may see a notice for restarting X-Master. Just press ok.

Figure 40 - The Error

This is an error created by application. The X-MASTER acceded to the SysSEtTrapAddress function. Press
continue.. And we continue reversing. What are we going to do? We will obtain a serial for our name. How is
this done? This is done by some functions. In Win32 platform we have the api like GetDlgItemTextA,
GetWindowTextA. That palm functions do not have names in windows but their names can describe well their

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 98

functions. A function that almost always usually works in PALM is sysTrapSrtCompare that as they will occur
account serves to compare text chains. We go in SouthDebugger  Window  New window breakpoint.

Figure 41 - Breakpoints Window

We are not interested breakpoints but we want trap breakpoints.

Figure 42 - Trap Breakpoints

By getting into to the X-Master the breakpoints are being “not set”.

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 99

Figure 43 - “Not Set” condition

The trap breakpoints are a lot but for this one application we will use SysTrapStrCompare. I am quite sure that
you will be asking yourselves why I used that. It is a common breakpoint in Palm that checks for the serial.
Remember that the only way to learn the breakpoints is experience.

Figure 44 - Breakpoint List

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 100

Only we need to do is click set (it is like setting a breakpoint in Olly with command bar).

Figure 45 - Breakpoint is Set

We click F5 (execute in SouthDebugger) and we are in the window of X-Master. We return to the applications
and we get into the TealDoc Options and we register again until it breaks on SysTrapStrCompare.

NOTE: If the SouthDebugger stops before arriving at the register window then you press F5 until you reach
there.

In this program you have to press many times F5..

Figure 46 - Green Light

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 101

Finally we broke on registration. The bar of SouthDebugger informs us where the breakpoint has stopped.

Figure 47 - Our breakpoint

In our case the breakpoint has stopped in 7AB0E and the opcodes of this instruction are 4E4FA0C8. The last
part is the instruction. Now we have to go to this place we click on the button with the icon of NOP.

Figure 48 - Second button right to left

Now we can see the part of the comparison.

Figure 49 - Compare routine

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 102

Now we have to load trap stack which will give all the important information.

Figure 50 - Trap Stack Window

Now we click and we open trap stack window and we see that our serial is compared with the string debug
(Figure 51). I have the sense that it is not what exactly we want.

Figure 51 - Our serial compared

Well I do not believe that our correct serial may be the string DEBUG. So press once more F5.

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 103

Figure 52 - Again our serial compared....

Now our serial is compared with the string XUJh4c4. Is it our real serial?

4.5.1.1 TESTING THE TARGET

Press F5 and go to the registration box..

Figure 53 - Serial we found

Press ok and see

Figure 54 - Registered

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 104

Congratulations...We cracked that application and we can use it forever...

4.6 ADVANCED REVERSING

In this chapter of tutorial we will discuss applications which have a more complex protection system and they
need more thinking from the other applications. In my opinion we will get a clear image of what is happening
to Palm OS. We will use a combination of tools to reach in the final result. If you want to follow this tutorial be
sure you have understand the approaches used in the previous chapters.

4.6.1 REVERSING THE THIRD APPLICATION: 300 BOWL

We examine the application to see the limitations

Figure 55 - Limitations

We fill the registration box

Figure 56 - Invalid Registration

We open PRCExplorer and we look for the talt. Fortunately they are only 14..

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 105

Figure 57 - Talt with invalid registration nag

So we close the PRCExplorer and we open PRCEdit. Remember to say “yes to all” to Disassembler window.

Figure 58 - The reference

We follow to the right window so we can check the code

Figure 59 - The code

That’s all the important code (I’ll copy and paste so I can comment on him)

00000684 4e90 JSR (A0) ;verification routine

00000686 4a2a000c TST.B 12(A2) ;registration ok?

0000068a 671e BEQ L55 ;not. follow L55

0000068c 3f3c03ea MOVE.W #1002!$3ea,-(A7) ;if registration ok go on

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 106

00000690 4e4fa192 sysTrapFrmAlert ;show talt window registration fine

00000694 3f3c03e8 MOVE.W #1000!$3e8,-(A7)

00000698 4e4fa19b sysTrapFrmGotoForm

0000069c 41edfb74 LEA -1164(A5),A0

000006a0 117c00010001 MOVE.B #1,1(A0)

000006a6 6000ff34 BRA L52

000006aa 3f3c03eb L55 MOVE.W #1003!$3eb,-(A7) ;if registration invalid go on

000006ae 4e4fa192 sysTrapFrmAlert ;show talt window registration invalid

000006b2 6000ff28 BRA L52

000006b6 4240 L56 CLR.W D0

TST.B 12(A2) ;tests byte to be A2+12

BEQ L55 ;it goes to L55 if test ok(A2+12=0)

We go to SouthDebugger and we press connect. Then we go to trap breakpoints and they are in “not set”
condition. Remember the X-Master plugin we used and the whole approach to reach the “not set” condition.

It should be followed again. And you should reach here

Figure 60 - Breakpoint List

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 107

We follow the previous method with the reset of the Palm OS and continuous breaks till we reach the
registration button. We break here:

Figure 61 - Location we broke

Figure 62 - The important location (see Figure 59)

Now you have to set the breakpoint to the JSR (= call in Win 32) command so right and activate breakpoint.

Figure 63 - New Breakpoint location

F5 and click on the invalid registration nag. Then click again register and you land on the location as in the
Figure 63. Then click F8.

Figure 64 - New location

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 108

Here is our new location 00080E48. We go back till we find that address.

Figure 65 - The important subroutine

We observed the routine which is called by sysTrapDlkSyncInfo that returns the hotsyncname. Palm has
something called HotSyncID, it is in a way the name of your Palm. All Palms have an ID like this. The majority of
programs have a registration routine where the serial is generated from your HotSyncID, so HotSyncID is kind
of like a username. That means a serial working for your HotSyncID won't work on other Palms than yours. It’s
time to get back to the PRCEdit without closing SouthDebugger (I had closed it and broke on
systrapdlkgetsyncInfo). And we have to search the trap. So search for Getsync and you will find it in
code0002.bin.s

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 109

Figure 66 - The location

All the code in Figure 66 is of major importance. Here are the checks for our serial. In line 00000ab4 checks if
our name is smaller than 12 characters. A few lines below we have the important check although. Also you
should observe that we have many jumps in this part of code. Many checks? We will see.,.

Figure 67 - A check

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 110

Now we have to analyze the code down from L78. In this line we see the instruction MOVE.B #1,12 (A3).
Although except for this “mov” there is one also...

Figure 68 - Second mov instruction

These 2 instructions are the same. We can check it with SouthDebugger. Execute till the point I am with F7
(remember that F7 does not get into call and does not follow jumps). You must be here

Figure 69 - Our location

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 111

From that location you have to trace again with F7 till here:

Figure 70 - Executed code

From here you hit once the F8 because we want to follow that branch (=jump) and you land here:

Figure 71 - The new location

Now we only need to trace with F7 until the second mov command to see if the byte in register A3 is 01.
Remember it. And finally we are here

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 112

Figure 72 - The instruction we wanted

Now do a right click, select new memory dump window and go to register A3.

Figure 73 – 12th byte

As you see the 12th byte is 01 so till here our registration is correct. So what we think now? After the first and
the second mov instruction there are some CLR.B 12(A3) which will zero the Test. B and the L55 will be
executed and we take invalid message. Now I’ll list the CLR.B 12(A3).

00000c40 422b000c CLR.B 12(A3)

00000c8e 422b000c CLR.B 12(A3)

00000cdc 422b000c CLR.B 12(A3)

00000d28 422b000c CLR.B 12(A3)

00000d7a 422b000c CLR.B 12(A3)

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 113

00000dc6 422b000c CLR.B 12(A3)

00000b14 422b000c CLR.B 12(A3)

00000b20 422b000c CLR.B 12(A3)

00000b2c 422b000c CLR.B 12(A3)

00000b38 422b000c CLR.B 12(A3)

00000b44 422b000c CLR.B 12(A3)

00000b50 422b000c CLR.B 12(A3)

4.6.1.1 PATCHING THE TARGET

Now we have to patch all CLR.B 12(A3) by NOP. Firstly we locate the patches

Figure 74 - Original code

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 114

Now I’ll show you the patched code..(Figure 75)

Figure 75 - Modified code

Save the new prc file...

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 115

4.6.1.2 TESTING THE TARGET

Figure 76 - Registered version

As you see we cracked that difficult target..

4.7 CONCLUSIONS AND FURTHER READINGS

This tutorial just covers an introduction to reversing Palm OS applications and it’s tools. I had given practical
examples which will help you start learning and advancing.

There are not much *public* tutorials in that field but from my searching I got that tutorials which the basic
idea:

 http://www.quequero.org/store/palmos/introduzione.htm
 http://www.quequero.org/store/palmos/opcodes.html
 http://www.quequero.org/store/palmos/tetris.htm
 http://www.quequero.org/store/palmos/fnox.htm
 http://www.quequero.org/store/palmos/willypmos.htm
 http://www.quequero.org/store/palmos/linee_guida.zip
 http://www.quequero.org/store/palmos/xgrimator.html
 http://www.quequero.org/store/palmos/epokh_serialfishing.html

Also Quequero page includes some of the tools for the others you have to search google , yahoo etc..

 http://www.quequero.org/store/palmos/tools/emulatore.zip
 http://www.quequero.org/store/palmos/tools/pilotdis.zip
 http://www.quequero.org/store/palmos/tools/PRC2BIN.zip
 http://www.quequero.org/store/palmos/tools/rom_palmIIIxe.zip
 http://www.quequero.org/store/palmos/tools/MsgSrc.zip
 http://www.quequero.org/store/palmos/tools/debuffer.zip

http://www.quequero.org/store/palmos/introduzione.htm�
http://www.quequero.org/store/palmos/opcodes.html�
http://www.quequero.org/store/palmos/tetris.htm�
http://www.quequero.org/store/palmos/fnox.htm�
http://www.quequero.org/store/palmos/willypmos.htm�
http://www.quequero.org/store/palmos/linee_guida.zip�
http://www.quequero.org/store/palmos/xgrimator.html�
http://www.quequero.org/store/palmos/epokh_serialfishing.html�
http://www.quequero.org/store/palmos/tools/emulatore.zip�
http://www.quequero.org/store/palmos/tools/pilotdis.zip�
http://www.quequero.org/store/palmos/tools/PRC2BIN.zip�
http://www.quequero.org/store/palmos/tools/rom_palmIIIxe.zip�
http://www.quequero.org/store/palmos/tools/MsgSrc.zip�
http://www.quequero.org/store/palmos/tools/debuffer.zip�

ARTEAM EZINE ISSUE IV

Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu 116

In Russian we have a tutorial from TSRH

http://www.sendspace.com/file/jvxopi

In English

http://www.reteam.org/papers/e38.pdf

4.8 GREETINGS

My greetings are sent to ARTeam, SnD, ICU, TSRH, exetools, unpack.cn, crackmes.de, Virus2qp1 and Shub-
Nigurrath. Also I want to thank a friend who always reads beta versions. Off course everyone who has read till
here, after a long and difficult tutorial.

[In the Supplements folder “0.4

Wast3d_Bytes” you can find also:

 A video tutorial from Suntzu about
“Nag screen & Limit Removal and
Preregistered Patching (How to
Patch Word Monaco 1)”. Thanks
him for this contribution.

 The method to directly patch
applications on the palm, see the
file

Patching_on_palm_in_a_snap.txt]

http://www.sendspace.com/file/jvxopi�
http://www.reteam.org/papers/e38.pdf�

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 117

5 REVERSING THE PROTECTION’S SCHEME OF ALEXEY PAJITNOV’S GAME DWICE BY
GYVER75

5.1 INTRODUCTION

Who has never played with Tetris? This’s my favourite game, i should stay hours and hours in front of my 17’’
monitor to rotate and drop its Tetraminis! So, to satisfy my curiosity, i have searched others Alex Pajitnov’s
game and i have found this game producted by WildSnake Software House: Dwice.Well, in a one word: it’s a
drug! The Tetris’s father has mixed very well the ideas that stay behind of its most popular game and …
Mahjong!!! There’s only one problem: it’s a demo that requires a serial number to activate its full functionality.
So, why not to reverse it? Furthermore, the only patch distribuited on the Net doesn’t work (forgot
somethings Team DiGERATi?), then I conviced myself to write this tutorial for the ARTeam, i hope to like it and,
as always, sorry for my bad english.

5.2 TARGET AND TOOLS USED TO REVERSE IT

These the tools used:

 TTaarrggeett:: Alexey’s Dwice; you can found it at: http://www.wildsnake.com/puzzle/dw/
 TToooollss:: OllyDbg v1.10, the most powerful ring 3 debugger; RDG Packer Detector and CFF Explorer. I

spend a few words to a useful plugin written by Scherzo for Ollydbg: LCB Plugin. As you know, Olly
stores the information of a debugged program (i.e breakpoints,comments but also path of debuggee
file) in a proprietary format: .Udd file; so, when we change any its‘parameter’, (i.e we uninstall the
prog or simply patch it), we will lost anything! Instead, LCB plugin allows to import and export
comments and breakpoints of a debug’s session in a external file; in other words, any change we do
on the program under debug, is indipendent by the machine where the prog itself is installed! So,
thanks to this feature, I was able to reverse this game in differents PC without to lose data or
comments.

http://www.wildsnake.com/puzzle/dw/�

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 118

5.3 ANALYSIS

First of all, before to start with Ollydbg, we should examine the victim to find any “attack’s point”:

As you can see above, the registration’s scheme appears very simply; clearly, if the target were packed, first of
all we should unpacked it. So, to check this, I use RDG Packer detector, but obviously, you can use any other PE
analyser:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 119

Fortunately, this program isn’t packed or compressed; furthermore, it was written in Visual C++ and uses some
crypto algorithms… have you seen RDG CryptoDetector recognizes RIJNDAEL signature? Not worry, Crypto
scanners are useful tools but not always say the true!! Infact, I used also the Crypto scanner module of
SND_Reverse Tool v 1.4 and, in this case, the only signatures identified were the CRC32 hashes.

Well, we can make us (in reality, we must!! ;)) many other questions, i.e. how many sections have the
program, where’s the entry point, which libraries are imported or what ‘s the resource’s identifier of
dialogbox’s template seen above, but for all these questions there’s only answer: CFF Explorer (Thanks Daniel
Pistelli, aka NtosKrnl).

After this static analysis of the prog, we can finally fire up our favourite debugger: OllyDbg; i configured it as
Lena151 has suggested in her video tutorials, without any hiding plugins; only in this way we can learn
somethings!

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 120

These are my settings:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 121

5.4 IDENTIFICATION OF CHECK’S ROUTINES

Having loaded Dwice under debug, i searched for all intermodular call and I put a INT 3 breakpoints on 2 API:
DialogBoxParamA and GetDlgItemTextA. So, after clicked in the ‘REGISTER button’, I have landed immediately
in these pieces of code:

Figure 77.

As you can notice, Ollydbg gives us many information: name of Dialog template (REGISTERDIALOG) and,
expecially the DialogBox Procedure localized in the memory’s offset at 00419CA0h. Here, the target stores the
License Name and License Code in two buffer long 82 bytes (respectively, at the offset 004F1020h and
004F1220h). After the last indirect call used to invoke the GetDlgItemTextA, we can see 3 strange calls:

First call simply removes space’s chars at the beginning of License
Name buffer; also it substitutes the spaces in the middle with only
one space char, for example see Figure 78.

Figure 78. You consider the underline chars as simply spaces.

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 122

The offset 004F1020h is the end of a String buffer that begins at the address 004F0FE0h:
'9V4BKI6UVYQACMYEXMABTBZAUQGBWMBYELHLSO7Z50PO23LWFT3ZREDSMHN08LJI '; so, as side effect,
the License Name is appended at the end of this “Hash String”.

Second call copies the chars stored at the offset 004F1020h in new buffer at the address 004F1120h; also, it
removes the digit chars of the previous buffer, see Figure 79.

Figure 79.

Third call simply converts the chars of the License Code stored at the address 004F1220h in uppercase chars
(‘a’ -> ‘A’, ‘y’ -> ‘Y’ …).

 Clearly, I exposed only the results of these calls; if you are interested in tracing there, load my comments
exported through Scherzo’s plug in, you can found it in the src folder with the plug in itself (I anyway suggest
you to read this tutorial with these comments, because each procedure mentioned here, was described in
depth!). As final result, I did a snapshot of the memory’s block from the address 004F0FE0h to the address
004F1230h:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 123

Figure 80.

As you can see in figure 1, after these calls, the API EndDialog is invoked with return value = 1; so, in this piece
of code, there isn’t any check’s routine! To find them, as first approach, I put a memory breakpoint at the
offset of License Code, but, after pressing F9, only one time it’s stopped and later, the Bad Boy Message
appears:

Figure 81.

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 124

Hmm, very strange! Indeed, when the debugger stopped its execution at the address 004F1220h,where I put a
M. Breakpoint on access, the code simply copied these bytes in another place and went ahead. Well, in a
traditional way, I set another M. Breakpoint on access in the new locations but I have landed in the same code:
another copy of Memory Block (shown in Figure 4) in a new place. Despite having tried to trace this routine
(it’s repeated many times) setting breakpoints everywhere, I however lost “ the main wire “ and I reached in
the same disappointing result: “ The License Code you entered is invalid… “.

5.4.1 OBFUSCATION

If the standard mode to trace doesn’t work, we can attach the victim in other way: indeed, we can recognize
the resource identifier displayed in Figure 5 and then, start from here to reverse. So, with CFF Explorer and its
Extension Plug in Resource Tweaker, I discovered that the “ Bad or Good Boy Message “ are in reality a Dialog
Boxes:

Then in Ollydbg, I set breakpoints on every call to DialogBoxParamA and, after inserted a bogus License Code, I
have landed here:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 125

Figure 82.

As you can see above, the Good or Bad Boy Message depends by the parameter passed to routine at the offset
0041A020h: if equal to 1 (like my case), it’s passed a ‘REGISTERFAIL’ template as parameter in
DialogBoxParamA, else it’s set ‘REGISTEROK’ message! So, for this reason, I searched any reference to the
command at the beginning of this procedure and I found two calls:

Well, my comments are quite clear, they comes from few tests and from the relative jumps at the address
0040F391h (see below):

0040F391 PUSH 1 ; Case BB9 of switch 0040E7A4

0040F393 CALL dwice.0041A020 ; the final BAD judgment!!!

0040F2B8 MOV DWORD PTR DS:[4F1448],EBX ; Case BB8 of switch
0040E7A4

0040F2BE MOV DWORD PTR DS:[9EEC84],EBX

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 126

Figure 83 – obfuscation calls

These relative jumps are made if the buffers of License Name (004F1020h) or License Code (004F1220h) are
empty (so, it’s clear that we did an error and the prog should let us know!); else, if it’s all OK, the base offset
of memory block, displayed in figure 4 (004F0FE0h), is copied at new address and then, fourth calls are
invoked. We’re finally arrived to the Obfuscations’ routine!

Stepping in to the first call, it appears to us a (strange…) sequence of calls:

Every call allocates a Memory Block in to the Heap
(through the API HeapAlloc …), then copies the
Memory’s zone displayed in figure 4 in it. The pointer
returned by the API is stored in a particular location in
the DATA section of the target (see my comments in
the Figure 8) and it will be used, in the next call, as
source to new copy’s operation. Indeed, the only
differences between a subroutine and the other, are
the offsets of pointers of Src. and Dest. Heap
Memory’s blocks; the structure of each call is the
same, see Figure 85.

Figure 84

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 127

Figure 85 – structure of each call of the obfuscation list

The others 3 Obfuscation’s calls use this routine to destroy and create Memory blocks allocating in to the
heap: the offsets that point to it, are stored in the same locations you can see in Figure 87. It’s important to
notice the presence of garbage call inside this scheme: before to copy the Heap source block in to the New
one, a subroutine is invoked:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 128

The call underlined in blue, generates a pseudo random number; this selects, after a few calculation, 2
subroutines that make the same thing: copy’s operation of Heap Blocks!!!

Well, at the end of this deep analysis, we can statically trace locations that point to Heap objects created; in
example, by the address constant 00A9447Ch (I selected it because it’s the first address used to point the
Original Memory’s Block of Figure 80 !), we will find many subroutines having the same “structure”:

PUSH 100
CALL dwice.00427220
ADD ESP,4
… some calculation
CMP CL,1
JNZ SHORT Alternative copy operation
…
 1° copy’s mode
PUSH 444
PUSH offset of Source Heap Block
PUSH offset of New Heap Block
CALL dwice.004B5060
…
MOV ECX,6
MOV EDI,DWORD PTR DS:[offset of New Heap Block]
IDIV ECX
MOV ECX,111
MOV EAX,1
REP MOVS DWORD PTR ES:[offset of New Heap Block],
 DWORD PTR DS:[offset of Source Heap Block]

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 129

Figure 86.

As you can see above, at the end of subroutine 00410410h, there’s a simply copy operation of 111h bytes from
Heap Area to Stack one; indeed, if we find references to select command at the beginning of this procedure
(Ctrl+R), we will land here:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 130

Figure 87.

The first call (dwice.00427220h) generates a pseudo random index used to select a subroutine from 16 ones
(here every procedure has the same structure displayed in Figure 10!); so, it’ s clear why we don’t trace the
serial in the standard way: the stack area where the target copies License Name, License Code and validates
its, derives from a heap object randomly chosen! Graphically see Figure 88:

Figure 88.

 Funny, isn’t it?

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 131

Well, at the end we came in the right place (procedure represented in Figure 87): we can recognize a test on
the License Code’s length and many checks about the chars or digits belonging to the Serial! Before to describe
the General Check’s scheme, I want to present to you a global overview of this protection; it’s time to talk
about Guard’s Checks.

5.4.2 GUARD’S CHECKS AND TIME’S FLAGS

If you have noticed in Figure 83 I stressed in green a address constant 9EEC8Ch. This location is a sort of Time’s
Flag: its value is decremented by a unit until to a certain constant; then a Check’s routine is executed. To

discover this, I found any reference to this address constant:

So, I traced the 2 instructions and I landed here:

Figure 89.

My comments are quite clears but however I will explain to you this subroutine in a few words. First of all,
have you noticed the API PostMessageA? It receives a WM_COMMAND uMsg with wParam = 0BB9h… where
we met this constant? Do you remember good or bad boy messages (in reality, dialog boxes…) ? Ok, now this
API is invoked if one of this locations ([9EEC94h], [9EEC98h], [9EEC9Ch]) is not equal to 0; else we jump in the
instructions underlined in grey. Here, the Time’s flag addressed by 9EEC8Ch is decremented until to 1; then a

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 132

Check’s routine (CALL dwice.004250A0h) is invoked and returns 0 if is not passed. If this happens, a guard’s
check [9EEC94h]is set to 1 (so, in the next cycle, the prog. calls the API PostMessageA in Figure 89), else it sets
a new Time’s Flag: [9EEED0h]== 5. It’s clear that a next Check’s routine is linked to this parameter; so I found
any reference to this new address constant and I have landed here:

Figure 90.

Well, we can notice the same structure seen in Figure 89; so, to find all Check’s routines, we can simply trace
Time’s Flags (now, we recognize it! I. e I traced the [9EEEC8h]):

At the end, a PostMessageA with uMsg = WM_COMMAND and wParam = 0BB8h is invoked. You know what it
means? EhEh …

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 133

This is a possible flowchart for the general Protection’s scheme:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 134

Now, we are ready to analyze the Checks’ routines of License Code.

5.4.3 GENERAL CHECK’S SCHEME

Figure 87 shows the first part of a more complex subroutine that identifies General Check’s scheme used in
this target:

00410640 SUB ESP,444
00410646 PUSH 11
00410648 CALL dwice.00427220
0041064D ADD ESP,4
00410650 CMP EAX,0F
00410653 JMP NEAR DWORD PTR DS:[EAX*4+address of indexes table]
…
A Heap object is randomly selected to be copied in the stack area;
…
0041073F OR ECX,-1
00410742 XOR EAX,EAX
00410744 PUSH EDI
00410745 LEA EDI, stack’s offset of License Code
0041074C REPNE SCAS BYTE PTR ES:[EDI]
0041074E NOT ECX
00410750 DEC ECX
00410751 CMP ECX,1E ; ECX = Length of Serial;
00410754 JE Next
…
Next
00410765 PUSH Parameter passed by address
00410766 CALL Hashing Block procedure
0041076B MOV ECX, index of License Code Buffer
…
00410786 MOV CL,BYTE PTR SS:[Base offset of License Code + ECX]
0041078D MOV EDX,EAX ; EAX is a return’s value of the Hashing Block Procedure;
0041078F AND EDX,1F ; EDX is the index of Hash String Buffer;
00410792 CMP CL,BYTE PTR SS:[Base offset of Hash String + EDX*2]
00410796 JE Next Check
00410798 POP EDI
00410799 XOR EAX,EAX ; if EAX == 0, we did a mistake!;
0041079B ADD ESP,444
004107A1 RETN
…
Next Check
004107A2 MOV ECX, another index of License Code
…
004107BA MOV CL,BYTE PTR SS:[Base offset of License Code + ECX]
004107C1 MOV EDX,EAX
004107C3 SHR EDX,5
004107C6 AND EDX,1F ; EDX is another index of Hash String Buffer;
004107C9 CMP CL,BYTE PTR SS:[Base offset of Hash String + EDX*2]
004107CD JE Next next Check
004107CF POP EDI
004107D0 XOR EAX,EAX ; if EAX == 0, we did a mistake!;
004107D2 ADD ESP,444
004107D8 RETN
…
Next next Check
…

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 135

The yellow code block takes the stack’s offset of License Code (stored in EDI) and tests its Length; if this is
equal to 30 (1Eh), we jump in the Red Code Block where a Hashing Procedure is invoked. This subroutine
receives, as input, one parameter passed by address (it can be License Name, a part of License Code or CDATA
resource…) and returns a DWORD value (stored in EAX) used many times as index of Hash String Buffer
'9V4BKI6UVYQACMYEXMABTBZAUQGBWMBYELHLSO7Z50PO23LWFT3ZREDSMHN08LJI + License Name '. In
reality, this index has a 5 bits capacity, so in EAX are compressed max 6 different indexes; to select it, the
program uses these instructions:

The green code blocks verify the same condition:

License Code[i] = Hash String [Base offset + 2*j] where j is the index calculated before and i is a simple pointer
(i and j are variable). If one of these tests doesn’t pass, EAX is set to 0 and a Guard’s Check is set to 1; else EAX
is set to 1 and we will execute another Check’s Routine linked to a new Time’s Flag. From this point of view, we
can divide every test in to 4 main groups (one for each Time’s Flag control):

Elements of different color belong to different Check’s routines. White elements of this buffer are control
free.

Generally, every Check’s routine has one Hashing Block Procedure except in to the 1° Time’s Flag control
where there are 3 different Hashing Blocks. So, tracing the path of the previous flowchart, we can find all
Hashing Blocks according to Time’s Flag Controls; the following table summarizes the results found:

…
0041080E MOV EAX,1 ; if EAX == 1, Good job!
00410813 POP EDI
00410814 MOV DWORD PTR DS:[9EED10],EAX
00410819 ADD ESP,444
0041081F RETN

License Code Buffer

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
A

0
B

0
C

0
D

0
E

0
F

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
A

1
B

1
C

1
D

MOV EDX, EAX
 SHR EDX, multiply of 5
 AND EDX, 1Fh

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 136

 Hashing Block Input Output:32 bit value

1° Time’s Flag Control Direct Code
0042521Bh…00425278h

License Code [15:10] 3 indexes compressed

CALL dwice.00424DE0h License Name 2 indexes compressed

CALL dwice.00427550h License Name, CDATA
Buffer

5 indexes compressed

2° T. Flag Control CALL dwice.004100C0h License Name 3 indexes compressed

3° T. Flag Control CALL dwice.00418220h License Name 4 indexes compressed

4° T. Flag Control CALL dwice.004190D0h License Name 6 indexes compressed+1
index of 2 bits

Table 1.Clearly, the offset s present in this table are relative, they will change from PC to PC.

Before to describe every Hashing Block, I will spend a few word to the only condition used to verify the
correctness of License Code’s elements: License Code[i] = Hash String [Base offset + 2*j]. This test can be
execute in the form I have presented before (green code’s blocks), or it can be “obfuscated” in this way:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 137

Figure 91.

As you can see in Figure 91, stepping in to the call dwice.004186C0h, (1. Red arrow) we recognize the first part
of General Check’s scheme; the only difference is the absence of green block code. At its place, there’s a
simple store operation of 32 bits value in to an address constant (2. Blue comment). Now, for every step of
Time’s Flag (Figure 91). It’s stored at the address constant [9EEEC8h]), a different subroutine is invoked (3.
Green comment): here, thanks to hash value previously stored, the same checks of green code block in the
general Check’s scheme are executed (10. Black Comment).

You can read my Dwice’s comments, exported thank to LCB plug in, for a deeper analysis… ;-).

Now I will explain the Hashing Blocks routines presented in the previous table.

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 138

5.4.4 HASHING BLOCKS

 1° Time’s Flag Control - 1° Hashing Block

The registers EDI and ESI are used
respectively as index of License Code
Buffer and counter of First Loop.
Here, every element of License Code
belonging to interval 10h…15h, must
to be also an element of Hash String
at the even position: License Code[i]
== Hash String [2*j] (do you
recognize this condition?). The
subroutine underlined in red returns
in EAX proper j index. Now, for every
cycle, the counter i (stored in ESI), is
incremented by 4 and it’s used as 2

power; then, j is multiplied to 2 (4*i)
and stored in a temp value. This
result is OR–ed with the value
obtained in the next cycle. So, at the
end: ECX == OR (j[i] * 16 i) where i
belongs to interval [0…6[and j
depends to i. In the green code block,
every nibble of ECX is then XOR – ed
with a value stored in EBX initialized
to 987AC16Bh and multiplied 25-1.
Then, the result is copied in ESI and
the entire cycle is repeated 6 times.

This Hashing Block produces a 32 bit
value containing 3 indexes
compressed used to verify License
Code[16h:18h].

 1° Time’s Flag Control - 2° Hashing Block, 2° and 3° Time’s Flag Controls

I decided to group these tests because they present, more or less, the same structure and they have
the same algorithm to compute the 32 bits hash value: Carry Less Multiplication.

Normally, when we must to multiply 2 numbers, we apply the algorithm of the partial sums; for
example, if we have 15 and 12 and we must to do its product, we will make:

15 x 12 = 15 x (1 x 10 + 2) = (15 x 1) x 10 + (15 x 2) = 150 + 30 = 180

XOR EDI,EDI
…
 XOR ESI,ESI
First Loop:
MOV CL,BYTE PTR SS:[Offset of License Code[10h]+EDI]
LEA EDX, Offset of Hash String
PUSH ECX
PUSH EDX
CALL dwice.00424950
ADD ESP,8
CMP EAX,0
JL Error Code
MOV ECX,ESI
ADD ESI,4
SHL EAX, CL
MOV ECX, Temp Value
OR ECX,EAX
INC EDI
CMP ESI,18
MOV Temp Value, ECX
JB First Loop
MOV ESI, 987AC16Bh
MOV EAX,ECX
MOV EDI,EAX
MOV ECX,6
Second Loop:
MOV EBX,ESI
MOV EDX,EAX
SHL EBX,5
AND EDX,0F
SUB EBX,ESI
XOR EDX,EBX
SHR EAX,4
DEC ECX
MOV ESI,EDX
JNZ Second Loop

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 139

Clearly, also 15 must to be decomposed in to positional notation! Now, in a digit system, the
presentation’s base is obviously 2, so:

(15)10 = (0F)16 = (1111)2 ;

(12)10 = (0C)16 = (1100)2 ;

(15)10 x (12)10 = (1111)2 x (1100)2 = (1111)2 x (1 x 23 + 1 x 22) =

 = (1111)2 x 23 + (1111)2 x 22 = (1111000)2 + (111100)2 = (10110100)2 =

 = (180)10

Then, the partial sums can to be implemented in the assembly language as a sequence of SHL and
ADD instructions; instead, in Carry Less Multiplication, the ADD instructions are substituted with XOR
ones. Considering the previous example and identifying the Carry Less Multiplication with ‘ * ‘ symbol:

(15)10 * (12)10 = (1111)2 * (1100)2 = (1111)2 * (1 x 23 + 1 x 22) =

 = (1111)2 x 23 ^ (1111)2 x 22 = (1111000)2 ^ (111100)2 = (1000100)2 =

 = (68)10 (‘^‘ = XOR symbol)

 As you can notice, a great difference between normal and Carry Less multiplication, is the bit’s
number of final product: in the first, this is equal to sum of 2 bit’s numbers; in the second, the result
has the same bit’s number of greater multiplier. After this brief Mathematical introduction, I can
present you the Flowchart of Hashing Blocks belonging to this group:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 140

The 32 bit value used as input in a Carry Less Multiplication block, is stored in a particular way: the
position of every bit set to 1 is saved in .data section or, from a mathematical point of view, there’s
every exponent of 2 power associated to bits set to 1. For example, if we consider the number (10)10 =
(1010)2:

1 0 1 0 Value

3 2 1 0 Position

Inside the program, this number should be stored as a structure of 2 dwords: (3,1). Thanks to these
infos, the following figure should be clear:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 141

Figure 92.

I have found to mark the init phase (pointed to black arrow) and base instructions used to Carry Less
Multiplication (violet color); instead, the address constants underlined in green, identify the
representation of a 32 bit value that changes from Hashing Block to Hashing Block. For example, in the
figure above, this number is:

(18h,11h,0Dh,06h) = (0000 0001 0000 0010 0010 0000 0100 0000)2 = (01022040)16

It’s clear, no? For the following analysis, we can identify the Carry Less Multiplication Block with this
function: Unsigned int C.L.M(int, int). So, in this context, we can write:

HashingValue = C.L.M(UpLicenseName[i],32 bit value);

The first parameter is the current char of License Name converted in Uppercase mode.

 1° Time’s Flag Control - 3° Hashing Block

In reality, the subroutine invoked in this group, is used many times and not only to return a 32 bit
value used to verify License Code. In general terms, we can define its prototype as: Unsigned int
CDATAHash(short int, short int, *char[]); the first parameter, passed by value, is a binary digit (0 or 1)
and identifies the type of calculation inside this subroutine; the second parameter, passed by value,
represents the number of bytes to elaborate in the third parameter passed by address. In this context,
this function becomes:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 142

HashingValue = CDATAHash(1,19h,*LicenseCode)

Naturally, as you can see in Table 1, there’s also another parameter inside this procedure: a CDATA
buffer long 400 bytes and stored in .data section. It’s used in this way:

As you can notice, the only
difference between first type
of calculation and second one
(yellow code), is the presence
of a call (red code) invoked to
convert literal char in to
uppercase mode. The other
instructions are the same:
after a XOR operation, EAX is
the index (multiply of 4) of
CDATA Buffer; ESI stores the
Dword pointed by EAX and its
value is XOR-ed with EBX that
contains the result of
precedent loop; EBP is its
counter. At the end, EAX
stores return value of this
subroutine (grey block).

Now it’s time to talk about
last test…

 4° Time’s Flag Control

The structure of this check is not very different by the flowchart presented before; there ‘s always a
init phase of a Structure saved in to the stack and there’s a compute phase where the Structure’s
locations are elaborated in a certain way; the final phase selects one of these as 32 bit Hash Value.
The main difference stays in compute phase where the Carry Less Multiplication Block is substituted
with a chain of XOR – ing and Permutation Blocks:

MOV EDI, Third parameter;
MOV EBP, Second parameter;
Here:
MOV EAX, First parameter;
MOV EBX,ESI ; Initially, ESI = -1
SHR EBX,8
TEST EAX,EAX
JE 1° calculation
;2° calculation
MOV AL,BYTE PTR DS:[EDI]
INC EDI
PUSH EAX
CALL dwice.00427800 ; It’s converts the literal char in to
upper case!;
AND EAX,0FF
AND ESI,0FF
ADD ESP,4
XOR EAX,ESI
MOV ESI,DWORD PTR DS:[EAX*4+Base offset of CDATA buffer]
JMP Next
1° calculation:
XOR EAX,EAX
AND ESI,0FF
MOV AL,BYTE PTR DS:[EDI]
XOR ESI,EAX
INC EDI
MOV ESI,DWORD PTR DS:[ESI*4+ Base offset of CDATA buffer]
Next:
XOR ESI,EBX
DEC EBP
JNZ Here
…
MOV EAX,ESI
POP ESI
NOT EAX ; EAX is a return value of
this Sub;
RETN

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 143

Figure 93.Cryptographic scheme inside 4° Time’s Flag Control

In the CALL dwice.004190D0h,that implements the Hashing Block of this Time’s Flag Control, we can
recognize 3 types of permutation:

 Subroutines N° Blocks to permute (or
parameters passed by address)

1° Permutation’s Type CALL dwice.00419060h 2

2° Permutation’s Type CALL dwice.00419080h 3

3° Permutation’s Type CALL dwice.004190A0h 4

Table 2. As always, the offsets present in this table are relative, they will change from PC to PC.

The three Subroutines above are invoked in this way:

Figure 94.Description of CALL dwice.00419060h; the addresses of blocks change from invoke to invoke.

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 144

Figure 95. Description of CALL dwice.00419080h; the addresses of blocks change from invoke to invoke.

Figure 96. Description of CALL dwice.004190A0h; the addresses of blocks change from invoke to invoke.

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 145

It’s not necessary to comment these figures because I explained every instruction in OllyDbg; instead,
to describe the whole Cryptographic scheme, I’ll introduce 2 ‘ Mathematical operators’:

PERMUTE (1° Block, 2° Block,…,6° Block); first block goes in to second block, second block
goes in to third etc etc… .

XOR (Block, dword); naturally, the 32 bit value change from XOR to XOR.

Then, after a first phase where a structure of 6 dword is stored in to the stack and initialized, the
Hashing Block does the following operations:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 146

Funny, isn’t it? Indeed, every colorized block can be drastically simplified with a barrier of XOR
operations and ONE permutation; for example, we consider the first 4 operations in red block above:

PERMUTE(2,6) = the 2° block goes in the 6° position and the 6° block goes in the 2° position; then the
block in the 6° position (2° block) is xor-ed with the value 7F2AE134h. So:

PERMUTE(2,6) -> XOR(6, 7F2AE134h) ≡ XOR(2, 7F2AE134h) -> PERMUTE(2,6)

(Simply rule: scramble always PERMUTE with XOR and change the block xor-ed with what precedes in
PERMUTE operation. If block xor-ed is independent by PERMUTE operation, is will not be changed)

Considering the other 2 operations, we have:

XOR(2, 7F2AE134h) -> PERMUTE(2,6) -> PERMUTE(1,6) -> XOR(2, 7F2AE134h) ≡

XOR(2, 7F2AE134h) -> PERMUTE(2,6) -> XOR(2, 7F2AE134h) -> PERMUTE(1,6) ≡

XOR(2, 7F2AE134h) -> XOR(6, 7F2AE134h) -> PERMUTE(2,6) -> PERMUTE(1,6) ≡

XOR(2, 7F2AE134h) -> XOR(6, 7F2AE134h) -> PERMUTE(2,1,6)

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 147

In the last passage, I combine the 2 permutations; you can see References for more infos. So,
approaching the problem in this way, I simplified the Cryptographic scheme:

We can further simplify XOR’s barriers having one XOR operation for each location in colorized block;
for example, in blue block, we have 2 XOR operations for 2° location:

XOR(2, A248C13Bh) -> XOR(2, 1893CBE0h) = XOR(2, BADB0ADBh); simply no?

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 148

Before to explain some tricks I used to write a keygen, I would display the Init Phase of this Time’s Flag
Control:

Do you recognize the call underlined in
red? Yes, it’s the same used in 3°
Hashing Block of 1° Time’s Flag
control:

EAX = CDATAHash(1, ,)

 where the 2° and 3° parameters are
the length (yellow instructions) and
offset of ‘Cleaned Name’. In the green
code I stressed the storing operation
of locations in to the stack. We can
synthesize these instructions in this
way:

MOV EAX, 578A43D1h
…
MOV ESI, address of the 'Cleaned Name’
PUSH EDI
MOV 5 block, EAX
MOV EDI,ESI
OR ECX,-1
XOR EAX,EAX
REPNE SCAS BYTE PTR ES:[EDI]
MOV EBX, A312B14Ch
MOV EBP, A29DC94Dh
NOT ECX
DEC ECX
PUSH 1
PUSH ECX ;ECX = Length of 'Cleaned Name Buffer';
PUSH ESI
CALL dwice.00427550
XOR EAX,EBX
MOV EDI,ESI ;EDI = ESI = pointer of the 'Cleaned Name';
MOV 1 block, EAX
PUSH 1
PUSH Length of 'Cleaned Name Buffer'
PUSH ESI
CALL dwice.00427550
MOV EBX,17983DE1h;
…
XOR EAX,EBX
…
MOV 2 block, EAX
PUSH 1
PUSH Length of 'Cleaned Name Buffer';
PUSH ESI
CALL dwice.00427550
XOR EAX, 58209123h
MOV EDI,ESI ;EDI = ESI = pointer of the 'Cleaned Name';
MOV 4 block, EAX
…
PUSH 1
PUSH Length of 'Cleaned Name Buffer'
PUSH ESI
CALL dwice.00427550
XOR EAX,EBP
MOV EDI,ESI ;EDI = ESI = pointer of the 'Cleaned
Name';
XOR EAX, 289F1E44h;
MOV 3 block, EAX
…
PUSH 1
PUSH Length of 'Cleaned Name Buffer';
PUSH ESI
CALL dwice.00427550
MOV ECX, 5 block;
…
XOR EAX,ECX
MOV 6 block, EAX

1° block = CDATAHash(1,a,b) ^ A312B14Ch
2° block = CDATAHash(1,a,b) ^ 17983DE1h
3° block = CDATAHash(1,a,b) ^ 8A02D709h
4° block = CDATAHash(1,a,b) ^ 58209123h
5° block = 578A43D1h
6° block = CDATAHash(1,a,b) ^ 5° block

a = Length of Cleaned Name;
b = offset of Cleaned Name Buffer;

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 149

5.5 SUGGESTIONS TO PROGRAM A KEYGEN

There are many plug-ins for OllyDbg that allow to rip instructions, but I prefer to write a Keygen ex novo
because, first of all, it’s a useful exercise and also because we can optimize some part of code in Check’s
routines. In fact, if you have understand the previous Flowcharts of Check’s routines, you have certainly
noticed it’s not necessary calculate everything but only changes relative to that location used to store a 32 bit
Hashing value. For example, in the 4° Time’s Flag control, only the 2° location of Structure saved in to the Stack
is important, while the others are superfluous; so, doing little back tracing in the Cryptographic Scheme:

In the same way, we can “reverse” the Hashing’s Blocks based to Carry Less Multiplication; for simplicity, I
write these instructions in pseudo C language:

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 150

PUSH Offset of License Code
PUSH Buffer of Cryptic License
Code
CALL dwice.00424AA0

For others Check’s routines, you can see the asm source of my Keygen, it’s quite commented! ;)

5.6 ADDENDUM – EXERCISE

Don’t worry, it’s a my little proposal; if you traced the program as I described here, you have surely notice
many duplications of calls inside Time’s Flag controls (see Figure 14.) and also you can see others address
constants that seem to work like Time’s Flags itself… why? Once registered the game, where ‘s saved the
License Code? Exact, in Window’ registry, more precisely in:
HKEY_LOCAL_MACHINE\SOFTWARE\WildSnake Software\Dwice\1.0.

Here, both License Name and License Code are stored as REG_SZ. So, when we launch the game, the
program tests the presence of these keys and, if they exist, it does the same controls; for exercise, you can
trace this Checks and discover new Time’s Flags (Registry Time’s Flags! ;-D).

It’s important to underline as License Code is saved in to registry in a cryptic form; I discovered it tracing
the case BB8 of CALL dwice.0040E7A4h do you remember the “final good judgment” ?). Inside it, we can
find:

The CALL underlined in red, simply crypts the License Code
passed as 1° parameter by address and the result is stored in
Cryptic License Code’s Buffer (2° parameter passed by address
).

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 151

Stepping inside this, we can analyze these instructions:

The subroutine underlined in red,
receives in input 2 parameters: a
byte of License Code and the
offset of Hash String; so, it
returns in EAX a index j that
satisfies the same condition seen
before:

License Code[i] = Hash String
[Base offset + 2*j]. Then, using
ESI as pointer to an Hash Table,
the target maps its bytes in to a
Cryptic Serial Buffer. Indeed, as
you can see to left, we can
identify 4 main groups for Hash
Table’s index:

1° group = (5,9,0Bh,0Ch);

2° group = (4,6,0Ah,0Fh);

3° group = (0,2,8,0Eh);

4° group = others indexes;

For every group, there’s a
different displacement in the
instruction:

MOV reg,[H.Table offset + disp +
4*j];

where displacement can be:

 0 -> for 1° group;

1 -> for 2° group;

2 -> for 3° group;

3 -> for 4° group.

XOR ESI,ESI
Loop:
LEA EDI, address of current byte of Cryptic Serial Buffer;
MOV AL, current byte of License Code;
PUSH EAX
PUSH address of Hash String
CALL dwice.00424950
…
TEST EAX,EAX
JL Error code
CMP ESI,5
JE 1° group
CMP ESI,9
JE 1° group
CMP ESI,0B
JE 1° group
CMP ESI,0C
JE 1° group
CMP ESI,4
JE 2° group
CMP ESI,6
JE 2° group
CMP ESI,0A
JE 2° group
CMP ESI,0F
JE 2° group
TEST ESI,ESI
JE 3° group
CMP ESI,2
JE 3° group
CMP ESI,8
JE 3° group
CMP ESI,0E
JE 3° group
MOV CL,[Hash Table's base offset + 3 + 4*j];
JMP Next1
3° group
MOV DL,[Hash Table's base offset + 2 + 4*j];
MOV BYTE PTR DS:[EDI],DL
JMP Next
2° group
MOV AL,[Hash Table's base offset + 1 + 4*j];
MOV BYTE PTR DS:[EDI],AL
JMP Next
MOV CL,[Hash Table's base offset + 4*j];
Next1:
MOV BYTE PTR DS:[EDI],CL
Next:
INC ESI
CMP ESI,1E
JL Loop
POP EDI
POP ESI
POP EBP
MOV EAX,1
POP EBX
RETN

ARTEAM EZINE ISSUE IV

Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75 152

So, the Hash Table can be partitioned in this way:

As exercise, you can find the subroutine that implements the inverse operation: from Cryptic License Code to
Clear License Code… (little suggestion: you can trace any reference to offset constant 00598974h; in fact, in my
pc, this is the Base offset of Hash Table).

Uff… finally we can tell TO HAVE FINISH!!! I hope that this tutorial you enjoyed and still sorry if I was not clear
as I would have been.

5.7 REFERENCES

[1] “Permutation”, http://en.wikipedia.org/wiki/Permutation

[2] “Carry-Less Multiplication and Its Usage for Computing The GCM Mode”,
http://softwarecommunity.intel.com/articles/eng/3787.htm

5.8 GREETINGS

First of all, I want to thank Shub–Nigurrath for editing and revising this long tutorial, all members of ArTeam,
Quequero, Evilcry and all U.I.C; thanks also go to Oleh Yuschuk, Scherzo and NtosKrnl for their useful tools but
especially I thank you who have read my tutorial.

Dedicated to my love Angela,
My mother and my father

[In the Supplements folder “0.5 Gyver75”

you can find also:

 LCB Olly plugin with sources and
comments for the code

 Full ASM sources of the keygen]

http://en.wikipedia.org/wiki/Permutation�
http://softwarecommunity.intel.com/articles/eng/3787.htm�

ARTEAM EZINE ISSUE IV

Live Debugging Symbian Applications Using or not Using IDA by Argv 153

6 LIVE DEBUGGING SYMBIAN APPLICATIONS USING OR NOT USING IDA BY ARGV

Here we present a short readme of what’s into the Supplements folders. In folder 0.6 argv you can find 4
videos about live Symbian debugging of applications, with and without IDA and from PC or directly from the
phone.

This video series dedicated to Symbian covers all the possible ways available to live debug Symbian
applications, and drop away dead-listings.

You have 3 Debug Videos + Teaser One. And also, as you can see they are arranged in folders.

 First Debug Video is about Debugging Application using a built in Emulator.
You may think Emulator is crap and not worth exploring. Well, you are very wrong. Emulator is perfect
way to test and debug applications before application goes to phone. Emulator also supports
debugging which you can use to find glitches and fix them before transferring the file to the phone. It
is true that Emulator isn't real phone, but do you want a buggy application on the phone? I think so
also. Use debugging on Emulator ALWAYS before trying to run/debug it on the phone. Emulator has
its own console you can invoke and track the progress as you are stepping through the code.

 Second Debug Video is about Debugging Application LIVE on the phone.
In the second video you will see how to debug an application LIVE on the phone. However you have
many obstacles here. You cannot correct errors like in Emulator, you can only view how it looks on
the phone. This is not a debugger of choice. Emulator is far better. You can try to debug on the phone,
but execution path is very quick so you might miss some stuff going on behind the scene. Debugging
on phone can be useful in cases where you need to see how application behaves on real device, but
still, it is weak as a debugger.

 Third Video is about Debugging Application using IDA Pro 5.4
Last method is by using IDA with Remote Symbian Debugger that connects to phone's AppTRK. This is
most powerful type of debugging because you are literally stepping through applications code. In IDA,
you can see the stance of registers and also you can see memory layout and you can write your own
memory regions.

ARTEAM EZINE ISSUE IV

Live Debugging Symbian Applications Using or not Using IDA by Argv 154

6.1 SOME FAQ

Finally here are few questions we thought you might ask:

Q: Do these need a hacked Symbian phone?

-- No, but hacking the phone could save time.

Q: To which Symbian versions these solutions apply?

-- These solutions apply to ANY 3rd device. It can be used in Second Edition but that is different story.

Q: Which type of debugging event I can or I cannot handle?

-- You can debug userland programs. And without extremely hard work you can't debug protected
areas on the phone.

Q: Is the TRK the only option available, is there any other similar product?

-- Yes, Target Resident Kernel is only one that support debugging. Similar product do not exist, at least
I am not aware of it.

Q: TRK relies on undocumented Symbian kernel APIs? If yes the risk isn't that Nokia will drop support
for them?

-- Probably not because big development companies need it. In fact, Nokia updated TRK just recently.

[In the Supplements folder “0.6 argv” you can find:

 Debugging_real_programs_with_Emulator_by_argv
a series of 3 videos

 Live_Debugging_Programs_using_Carbide_by_argv
a series of 2 videos plus tools and programs required

 Debugging_programs_teaser_Video_by_argv.wmv
the first video to look at

 Debugging_programs_with_IDA_Pro_by_argv.wmv
this is probably the second video to look

 symbian_primer.pdf from Hex Rays’ site, a document
explaining how to configure IDA 5.4 for Symbian
debugging

Beware tutorials have audio comments]

ARTEAM EZINE ISSUE IV

Interview with Shub by Gunther 155

7 INTERVIEW WITH SHUB BY GUNTHER

 Gunther: Hi Shub, thank you for your availability. Some simple
questions to introduce you to our readers to start with. What is your
role at ARTeam? Can you tell me a little bit about yourself and what
do you do?

Shubby: Hi everybody. Which is my role in the team? Anyone coming
to visit our forum should have seen that I define myself as the
commander. It’s a joke of course, but more or less that is what I do in
the team, motivating people with new ideas, keeping the team joined,
handle the forum and system (even in case of crashes) and propose to
the other mates possible evolutions. But the team is truly a
democratic group. I am not a real commander, I’m rather the one that
most often proposes new ideas for discussion. This comes from a
personal attitude, I am what is often also called a “cross-fertilizator”:
what happens to me is that I tend to read a lot of papers and tutorials
and start thinking about possible applications with different
techniques in the RCE area. I am somehow embarrassed doing
interviews because I hate those types of people standing up and
telling their truths as if were gold, I then wish to remark that I am just
giving opinions, the word ”IMHO” should be added at the beginning of
any future sentence. ;-)

Gunther: How long have you been involved with Reverse Engineering?
How did you become interested in it?

Shubby: This is a story that starts a lot of years ago, my first approach
to reversing were with a Commodore C64, at that time the scene was

incredibly quite huge and luckily there wasn’t still any well defined regulation against piracy. That was, let
say, a golden age! Anyway I learnt then to disassemble on the Motorola 68000 architecture (I still have a
little handbook called “Pocket guide assembly language for the 68000”, printed in 1984!... definitely a
prehistoric age) and entered some of the 0days teams of that time (I will not mention them). That scene
was mainly made of BBS and few lucky datapac connection points and of course was made through modem
transmitting at 1200/2400 BAUDS (approx 240 chars/sec then approx 1920 bit/sec)! When C64 was
declared dead I stopped reversing, but your passions returns and I started again few years ago with Palm
(reversing Palm programs) and then found ARTeam. What I liked immediately of ARTeam was the attitude
to share everything they were doing not only pushing at an increasing the cracks/day ratio. Moreover there
were some very talented people! Others joined later, now ARTeam is made of very excellent reversers.

ARTEAM EZINE ISSUE IV

Interview with Shub by Gunther 156

Gunther: Do you use any special tools for RE?

Shubby: the most special tool I use is my brain ;-) Beside this I use quite all the possible tools, but mostly
OllyDbg, IDA and few other specialized tools like resources decompiler or specialized disassemblers like
DeDe. I like to integrate all the results of these tools just to have different views of the same thing; it helps
me understanding the underlying logic of the system and have an higher view, you can call this type of
reversing “birdfly reversing”. Ah I forgot to say that I also use Total Commander a lot, for almost
everything, it’s just a substitute of explorer. With the proper plugins it becomes a perfect forensic
workstation. What is often forgotten is to look under the hood which are outside of usual tools (evidences
or weakness are sometimes so evident that there’s no need to even open OllyDbg).

Gunther: If you had to make recommendations for other engineers in your fields, what would you say to
them?

Shubby: If you mean reversing that’s not my field ;-), but what to say. I don’t think I am anything so special
to give any advice to anyone, but in general the only thing I suggest is to follow your attitude and to not get
shortcuts. RCE is all but a simple art and recently the interest of industry just raise the bar. I posted few
months ago on our forum1

Shubby: Indeed I already answered partially in the above question, sorry. But I see a lot of different trends
happening. First of all the number of professional people doing reverse engineering for work increased.
These roles are on both sides of the barricade: malware and fighting. Those people among us not working
in RCE and not willing to create malware are somehow compressed between these two colliding worlds.
Then the web scene (which is weakly protected) is vulnerable to government on the one hand and
releasing competition with 0day (which is well protected) on the other hand. This hybrid situation could
only create problems. This is why ARTeam stopped doing any release a long time ago and started to just do
tutorials. Tutorials writing is that type of activity that’s borderline and (till now) borne. On the other hand
most of the reversers sat down on WinXP and 32 bit architectures without expanding their views to other
systems (non win32, non-PC), to other architecture (embedded, hardware hacking, 64bits) and to what will
come after Vista (W7, OSX). The most common comment I saw from reversers using Vista was “luckily it
runs OllyDbg”..this means that they are not getting the real opportunities offered by Vista, isn’t it?
Whenever WinXP disappears, a lot of well known crackers will do as well. What we did (with iPhone,

 this post: “Since few years the software industry created a new official
competence, the security expert, the secure software development lifecycle, the professional reverse
engineer. This was due to the fact that finally reversing for security needs has been regulated by laws and
it's now possible to build a career on reversing. This was not possible at the times of +Fravia and industry
was suffering from the lack of professional roles, able to effectively reverse programs. The effect of this
change of scenario is under eyes of anyone, a great and constant raise of the bar. New protections
(themida, securom,...) are very difficult. How many crackers can handle them fully? Not much and those
who are, keep their secrets for their own clubs. Of course!”. I posted this comments on the forum because I
clearly see this drift happening. What this means is that if you want to stay at top you’ll have to study more
(if you’re alone) or collaborate more (if you are in a team).

Gunther: How do you really feel about the current situation in RE and software protection?

1 http://www.accessroot.com/arteam/forums/index.php?showtopic=7602

http://www.accessroot.com/arteam/forums/index.php?showtopic=7602�

ARTEAM EZINE ISSUE IV

Interview with Shub by Gunther 157

Symbian, WinCE,…) is to create some alternatives trying to reverse also different systems. This ezine is also
a proof.

Gunther: What are you currently working on at the moment and what are you interested in the near
future?

Shubby: Indeed lately I was taken out of reversing due to RL issues and due to the forum restoring, the new
site setup and this ezine also...a lot of editorial and boring tasks that slowed my interest on active RCE. But
was due: luckily I found several ARTeam enthusiasts and people appreciating our efforts and vision which
helped us to be here. I think that once all will again be fixed I will take some resting just doing nothing, or
better just doing what I was doing before: reading tutorials and reversing them without any additional
distraction.

Gunther: Is RE your profession?

Shubby: I cannot answer to this question; surely it’s one of my passions.

Gunther: Do you think we are at the point where software protection developers had a hard time
protecting their software against you guys?

Shubby: Not indeed I think just the opposite. This is the golden and upmost point in the reversing saga,
where reversers reach their more complex results against developers. Software industry started to react
professionally and it’s eating the disadvantage accumulated in years (mostly due to misleading
regulations). What will come is the era of team working: malware is already using teamworking (look at
conflicker, it’s clearly a result of a team of experts), industry as well of course, 0day teams are already
collaborating without telling to anyone and the web reversing “scene” will also have to do it. Why? Just
because complexity is too much for a self-made man!

Gunther: you often mention the malware industry, and the professional reversing world. How these two
worlds will change the way of protecting programs?

Shubby: Humm my idea of how programs’ protection mechanisms will evolve is tied to malware. To start
describing the idea I must start from the honeynets (nets specifically prepared to be vulnerable and catch
malwares like honey, a type of trap for malware). I started to think that future evolutions of protections
and thought that some programs are also like honeynets, they are probably better termed as say
"honeyprogs", just prepared to be cracked and "catch" infos from who did it. Just to make it brief the
concept is this: suppose you have a program that is important for a specific class of users, like specialists in
something, and suppose that the program costs a lot.

There are two possible ways to protect the program: first, few simple evident protections that one generic
cracker can see, at some not too easy level, just to not raise suspects. Second, a much more hidden
protection that silently somehow collect data on the patching process… or instead, of shouting "I'm

ARTEAM EZINE ISSUE IV

Interview with Shub by Gunther 158

debugged and can't run", just collect information about your PC and you… silently! That information can be
used to modify the program behavior (like for games badly cracked for which the game’s engine of a badly
cracked game becomes "harder" to play, while the game doesn't complain about being a pirated copy), or
to actively send information to somewhere…

Is that possible? Sure, it is. Malware is already doing these things. What I think is that developers soon will
realize that malware logic could be helpful for them (indeed Sony was the first to realize it, almost a year
ago when they were distributing CDs with a self installing rootkit for their DRM system). I then to start
thinking that we'll have to use the same tricks that are normally used to test malwares, to avoid programs
to catch information and send them to developers. This is exactly the same concept malware does, just
tilted. Malware phish information from your system about accounts, start to think about a program that
phish information on you, that are trying to crack it.

Moreover malware is teaching us that there are hundreds ways to catch information from the system that
normal reversers doesn't even suspect that are possible. This is because nowadays malware analysis is
considered a white-hat only domain, but it's not.

This is why I decided to focus the next eZine only on malware analysis, thought as a way to teach us to
better reverse any program: tutorials about methodologies, primers, things that are important to know...
This is not to tell that we should convert to malware analysis, our malware interest is functional to what we
are already doing!

Gunther: What are your future plans? Do you plan on writing any books soon like H.D,Moore?

Shubby: humm I thought of writing something several times, or even to collect some tutorials into a book,
but time is always lacking and writing is a really expensive task. It’s anyway a pinpointed task and I am just
waiting to find time to develop it.

Gunther: What are the directions and future for ARTeam? Any interesting projects in progress?

Shubby: just continue doing what we are already doing, hopefully with the contributions of all the team
mates who shared their passions. ARTeam is first of all a group of friends, what I always missed is the
opportunity to meet them all, but we are spread in so many places that it will just be impossible!

ARTEAM EZINE ISSUE IV

Interview with Shub by Gunther 159

Gunther: Could you give some pieces of advice for our readers – people who might be going to look for a
job in Reverse Engineering field some day?

Shubby: Advice? Humm nothing special indeed… Just that living doing RCE is really hard. Look at those guys
officially doing it for work: they are travelling all around the globe to seek works. Second thing do not
reveal that once you were crackers, because it exists the so called “Mitnick effect”: if you’re an ex-cracker
anyone will ask you to do courses explaining how to do things and asking to teach them, but no one will
ever give you their system for fixing. So after all this will reveal to be an own goal.

Gunther: Our interview seems to be completed. Do you have something to add to our readers? Thank you
for your time and keep up the excellent work.

Shubby: Not indeed, I wrote so much and I bored so much that I cannot even think that anyone will still be
alive at this point. This interview comes at the end of a giant issue which kept me busy for several months,
collecting, fixing and editing all these contributions. First of all I wish to thanks all the authors (and you as
well) and all the other mates sharing their experiences on our forums.

So long, and thanks for all the phish!

ARTEAM EZINE ISSUE IV

ARTeam eZine #5 Call for Papers 160

ARTEAM EZINE #5 CALL FOR PAPERS

ARTeam members are asking for your article submissions on subjects
related to Reverse-Engineering.

We wanted to provide the community with somewhere to distribute
interesting, sometimes random, reversing information. Not everyone
likes to write tutorials, and not everyone feels that the information
they have is enough to constitute a publication of any sort. I’m sure
all of us have hit upon something interesting while coding/reversing
and have wanted to share it but didn’t know exactly how. Or if you
have cracked some interesting protection but didn’t feel like writing
a whole step by step tutorial, you can share the basic steps and
theory here. If you have an idea for an article, or just something

fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat debugger
detection, or how to defeat an interesting crackme..

The eZine is more about sharing knowledge, as opposed to teaching. So the articles can be more
generic in nature. You don’t have to walk a user through step by step. Instead you can share
information from simple theory all the way to “sources included”

What we are looking for in an article submission:

1. Clear thought out article. We are asking you to take pride in what you submit.
2. It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.
3. Any format is fine, but to save our time possibly send them in WinWord Office or text

format.
4. If you include pictures please center them in the article. If possible please add a number and

label below each image.
5. If you use references please add them as footnotes where used.
6. If you include code snippets inside a document other than .txt please use a monospace font

to allow for better formatting and possibly use a syntax colorizer
7. Anonymous articles are fine. But you must have written it. No plagiarism!
8. Any other questions you may have feel free to ask

We are accepting articles from anyone wanting to contribute. That means you.

We want to make the eZine more of a community project than a team release. If your article is not
used, it’s not because we don’t like it. It may just need some work. We will work with you to help
develop your article if it needs it.

Questions or Comments please visit http://forum.accessroot.com

http://forum.accessroot.com/�

	Forewords
	Disclaimer/License
	Supplements
	Verification

	Reversing binary 500 by Externalist
	Introduction
	Tools needed
	Exploring the Binary
	Reversing the Binary
	Conclusions
	References
	Greetings

	Handy Primer on Linux Reversing by Gunther
	Forewords
	Abstract
	Target
	Examining our target
	Starting
	Initial Analysis
	elf file format
	disassembler and hex editing tools

	Searching for more clue
	Analysing the contents of specific parts of the file
	ELF file section header structure

	Retrieving Symbol table
	The Symbol Table

	Reversing the program
	Reverse Engineering
	Conclusions
	Greetings

	using .net profiling api for a custom .NET Protection by Kurapica
	What is profiling?
	How does the protection work?
	The Profiling APIs
	The workflow
	Implementation
	Preparing the Assembly:
	Conclusion
	References
	Greetings

	Primer on Reversing PalmOS Applications Extended Edition by, Wast3d_Bytes, Suntzu
	Forewords
	Few words on Palm OS
	Filling our Reversing Laboratory
	Existing tools to handle PRC files
	PRC File Structure
	The ClsD Record
	Palm OS Operating System
	Other Tools
	Installing the tools
	Installing emulator
	Installing PRC Edit

	Reversing with PRCExplorer and PRCEdit
	Reversing the first Application: F-Secure Antivirus 2.00
	Patching the Target
	Testing the target

	Reversing with POSE and SouthDebugger
	Reversing the second application: TealDoc 6.77
	Testing the target

	Advanced Reversing
	Reversing the third application: 300 Bowl
	Patching the target
	Testing the Target

	Conclusions and Further Readings
	Greetings

	Reversing the Protection’s scheme of Alexey Pajitnov’s game Dwice by Gyver75
	Introduction
	Target and tools used to reverse it
	Analysis
	Identification of Check’s routines
	Obfuscation
	Guard’s Checks and Time’s Flags
	General Check’s Scheme
	Hashing Blocks

	Suggestions to program a Keygen
	Addendum – Exercise
	References
	Greetings

	Live Debugging Symbian Applications Using or not Using IDA by Argv
	Some FAQ

	Interview with Shub by Gunther
	ARTeam eZine #5 Call for Papers

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

