
Analysis of Web Application Worms and
Viruses

Billy Hoffman (bhoffman@spidynamics.com

SPI Labs Security Researcher

Presentation Outline

• Why you should care
• Why these attacks happen
• Web application worms and viruses
• Analysis of Perl.Santy and MySpace.com web

malware
• Hypothetical, worst case examples of web malware
• Guidelines for writing secure web applications

Why You Should Care

Why You Should Care

• Web applications are not going away
• Offer too many advantages to be ignored by businesses

– Browser is a ubiquitous platform available on all operating
systems and patch levels

– Central location solves deployment, incompatibilities, and
diverse deployed version issues

– Easy to maintain a single server copy of software
– Appealing for budgets: cheap to deploy and maintain
– Large companies adopting web applications

• Saleforce.com
• Google’s various apps
• Microsoft’s “upcoming” Windows Live, Office Live

Why You Should Care

“Today over 70% of attacks
against a company’s
website or web application
come at the ‘Application
Layer’ not the network or
system layer.”

- Gartner Group

• Web-based attacks are
here

Why You Should Care

• Web-based attacks are not going away
– Low barriers of entry
– Lax security
– Vulnerabilities are everywhere
– Vulnerabilities are easy to find (Long’s Google Hacking)
– Re-use of common components (php[whatever]) makes

multiple sites vulnerability to a single issue
– Even if a site is secure, you have the entire Internet to find

other vulnerable sites.

Why You Should Care

• Web-based attacks are high profile
– Paris Hilton T-Mobile hack
– MySpace.com virus

• Web-based attacks can yield the same results as a traditional
attack does
– Usernames/passwords
– Credit card numbers/SSNs
– Confidential or classified information

• Automated attacks, let alone self-replicating automated attacks,
only makes these threats worse

Why These Attacks Happen

Why These Attacks Happen

• Web applications are complex!
– Multiple technologies crossing

multiple disciplines
• “Oh, that’s not my responsibility.”

– Website designers
• Internal and external

– Programmers
– Database admins
– IT infrastructure admins

• The web application security gap
• Design of an application vs. the

implementation of that application

Why These Attacks Happen

Security Professionals
Don’t Know the
Applications

“As an Application
Developer, I can build
great features and
functions while
meeting deadlines,
but I don’t know how
to develop my web
application with
security in mind.”

The Web Application
Security Gap

“As a Network Security
Professional, I don’t
know how my
companies web
applications are
supposed to work so I
deploy a protective
solution…but don’t
know if it’s protecting
what it’s supposed to.”

Application Developers
and QA Professionals
Don’t Know Security

This is your application design.

This is your developed application.

This is all the stuff that
your application is

supposed to do.

This is all the stuff that
your application was
supposed to do, but

doesn’t do. These are
Functionality bugs.

This is all the stuff
that your

application can
also do, but that
you’re not aware

of. These are
Security

vulnerabilities

Why These Attacks Happen

Clearing Up Some Myths

• Layer 7 is dominated by very simple protocols
– FTP, Telnet, SMTP, POP
– We are only concerned about HTTP, HTTPS and extensions

(WebDav)
• Don’t confuse simple with limited!
• People tend to have a lot of misconceptions about web

application security
– SSL
– Impact of common vulnerabilities like XSS

A Word About SSL

• “We use SSL; we don’t have to worry about web security.”
– SSL creates an encrypted tunnel between 2 parties. It

provides confidentiality, integrity, and authentication.
– Depending on who you ask, SSL takes place at layers 5 or 6

of the OSI model. SSL is not an Application Layer (ie layer 7)
protocol.

– All the attacks I will talk about today are Application Layer
attacks.

– Every attack I discuss today will work against an SSL
enabled website.

SSL does not protect you from most if not all web application attacks!

A Word About XSS Vulnerabilities

• People have a perception that XSS is silly and not dangerous
– Maybe true 5 years ago
– Much worse now
– AJAX, remoting, RegExs, speed and features of browsers

• People have the perception that XSS is difficult to create
– Very site specific
– Tedious to craft
– Lots of trial and error (manipulate parameter, send, repeat)

• XSS creation is very easy to automate. Even when it’s a
complex POST or HTTP header attack

• “Metasploit for web apps!”
– Payload is separated from positioning code to run payload

A Word About XSS Vulnerabilities

• Phuture Of Phishing - Toorcon 7, Sept 2005
• http://www.spidynamics.com/spilabs/education/presentations.html

Overview of Web Application Worms and
Viruses

Web Worms and Web Viruses

• Traditional attacks are still plentiful
• 2005 saw the release of self-replicating programs that automatically

find and exploit web application vulnerabilities
• Web Worms

– Propagates from host to host infecting each one
– Conventional worms and XSS worms
– Language independent
– Somewhat OS independent (depends on vulnerability they exploit)
– Runs on web servers (as httpd user)
– Spreads by sending request to vulnerable target that then runs

worm
– Payloads can be pretty much anything

Web Worms and Web Viruses

• Web Viruses
– Infects different pages or database entries on the same host (like

classic EXE or COM viruses)
– Written in JavaScript (possibly Java, Flash, but not viable because

of sandboxing technologies)
– Completely OS independent
– Runs inside browser on client
– Simply viewing an infected page with a browser infects new pages
– Payloads are bad, even with DOM restrictions

• Basic: Cookie-theft, keylogging, screen/form scrapping
• Advanced: remote control, arbitrary commands as user

Propagation Methods of Worms and
Viruses

• Exploits some vulnerability in a web application
• Sends specially crafted request which…

– Executes code on target, or
– Injects code into database, or
– Can be more exotic (simply reflects script to user, cache

poisoning)
• All attacks travel over HTTP

Surely that must be easy to detect and stop, right?

Detecting Layer 7 Attacks?

• Besides port 53, port 80 is the most common open port
• Just turn off 80 at the firewall? Kind of defeats the purpose of

running a web application!
• Down to detecting “malicious” activity

– Most people say “malicious” = !(“normal”)
– “Normal” is a moving target

• Types of users change (housewives during the day,
teenagers at night)

• Load changes with time and season (holiday shopping,
morning in South Korea, etc)

• Massive unanticipated traffic escalations (Slashdottings)

Detecting Layer 7 Attacks?

• Normal site use can look like an attack
– Large POSTs (ASP .NET ViewState), File Uploads
– People want their site to be crawled by automatic programs

• Deliberately design their sites to be robot friendly
• Massive hits from a small range of IPs is expected

– Large sites expect hits from all over the globe
• IPs from anywhere are expected
• Complex forms/parameters with funny names or

international characters
– AJAX plays havoc with HTTP traffic filters (Base64 data, etc)
– “End-to-end” Internet is gone: proxies/NAT are common
– Anonymity enhancements, other User-Agents break state

Detecting Layer 7 Attacks?

• IDS/IPS evasion is easier at Layer 7
– Packet-based vs. stream-based analysis

• Robert Graham’s excellent Toorcon 7 presentation
– Encoding craziness (URL encoding, UTF-8, etc)

• A period (“.”) can be encoded as %2E, %C0%AE,
%E0%80% AE, %F0%80%80%AE,
%F8%80%80%80%AE, %FX%80%80%80%80%AE.

– IDS/httpd IP fragment hanging
• Due to differences in how long IDS holds IP fragments

vs. destination TCP/IP stack, IDS and destination see
completely different HTTP requests!

• Dan Kaminski is The Man!

How Does Web Malware Send Attacks?

• Conventional web worm
– Executing code on the server, anyway you want!
– Perl::LWP, Sockets, even netcat, curl, wget!

• XSS web worm, web virus
– Restricted by JavaScript, but not by much
– Unidirectional (from host to target) a.k.a. “blind requests”

• Arbitrary GETs to any domain
– Image objects
– Script objects

• Arbitrary POSTs to any domain
– JavaScript’s createElement builds hidden FORM
– document.form[0].submit sends the request

How Does Web Malware Send Attacks?

• XSS web worm, web virus (continued)
– Bidirectional (host and target can talk back and forth)
– Not just GETs and POSTs, but TRACE, HEAD, Webdav?

• Arbitrary HTTP to the same domain
– AJAX
– Server can’t tell the difference!

Uncrippled AJAX: A Cracker’s Dream

• AJAX is excellent for an attacker
• Seamlessness of Google Maps = Seamless attacks

– iFrame voodoo (XSS-Proxy) is nice, but not perfect
• AJAX is crippled by the DOM Security model
• Holy Grail of XSS: Bidirectional communications tunnel to

arbitary domains without a hard refresh
– Yes, it can be done
– Yes, you can do very bad things with it like complete HTTP

man-in-the-middle just by visiting a webpage.
– Black Hat Las Vegas 2006?

Web Application Worms

Web Application Worms (Detailed)

• Two types, conventional (seen in wild) and XSS (theoretical)
• Conventional web worm

– Real, in the wild threat (Perl.Santy, variants)
– Run on/by underline OS of the server
– Almost in all languages: Perl, Python, interpreted languages

allows for some OS independence (payload tends to be OS
specific)

– Exploits vulnerabilities in target host’s web applications that
allow remote code execution

• SQL injection (gets database to execute code)
• Poorly written PHP/Perl/Python/CGI scripts
• Buffer overflows

Web Application Worms (Detailed)

• Conventional web worm (continued)
– Finding new hosts to infect

• Search web application code for references (10.*.*.* IPs!)
• Ask a 3rd party (search engines, botnet, IM robot, etc)

– Payload and propagation
• Already can execute arbitrary code on server for payload
• Sends requests with attack string to new hosts

– Limitations
• User account of exploited web application or web server
• Underlying OS (chroot isolation, allowed scripting, etc)

Web Application Worms (Detailed)

• XSS web worm
– Theoretical (MySpace.com attack was a web virus)
– Runs inside the browser on the client (JavaScript, VBScript)
– Exploits XSS vulnerabilities to run malicious script
– XSS vulnerabilities are laughably common!
– Payload and propagation:

• Payloads are nasty and advanced (see previous)
• Sends blind requests to infect backend databases of

other hosts (forums, profiles, news stories, etc)
• Victims view infected page in browser, script executes…

– Limitations
• Few imposed by JavaScript, DOM, but they don’t matter

Web Application Viruses

Web Application Viruses (Detailed)

• Real, in the wild threat (MySpace.com virus)
• Backend databases for dynamic content is injected with XSS
• XSS code served with page, browser executes XSS which

launches payload, infects more pages on same host
• Is “virus” the correct term?

– Infects pages/databases on same host
– Each infection increasing exposure of virus, runs more often
– Cannot spread without host “program” (HTML, dynamic

content, etc)
• Payloads

– Geared more towards information stealing and destruction
– Limitations actually prevents most host damage

Implications of a Web Virus

• Huge! Virus runs in any modern web browser
• Truly cross platform instead of carrying multiple payloads for

multiple platforms
• Immune to conventional virus detection

– Virus stored in database with other highly dynamic content
– Anti-virus tools work on files, not text snippets
– Anti-virus tools have file system hooks, not database hooks
– Server file system, code paths, and binaries are never

modified

Implications of a Web Virus

• Immune to any kind of “bad JavaScript” filter
– Filters would have to be client-side; how does your client-

side browser determine what is malicious JavaScript code?
– To client browser, pages and script come from same

legitimate origin (the web server)
– Same problem as detecting “malicious” HTTP traffic
– Malicious JavaScript looks just like regular JavaScript

• Requests images, possibly from multiple, external
domains (images.domain.com, blah.adserver.com)

• Requests scripts from other domains (“link” ads)
• Manipulates and modifies the DOM tree
• Hooks OnEvents

Implications of a Web Virus

• Think I’m just selling fear? Compare traditional information
stealing Trojan with a web application virus

• Consider a web virus that uses JavaScript to capture keystrokes
and send them to a 3rd party

• Has infected a shared calendar page on a web-based CRM
• Any user viewing an infected page gets their calendar page

infected (AJAX, blind POST, etc), spreading the virus
• One page view causes spreading; keylogger payload executes

and can persist across all of CRM app, even uninfected pages
like web-based email (see XSS-proxy, iframe remoting, etc)

• Integrity checks all pass because binaries are unmodified,
hooks are intact, no cloaked processes or IPC, and user’s
browser is not modified. Works on all platforms, even PDAs!

• No trace of the virus other than occasional info leak to outside

Analysis of Perl.Santy

Analysis of Perl.Santy

• Conventional web worm (many variants)
• December 2004 – Spring 2005
• Perl with LWP, Sockets (varies)
• Attack vector: Exploits phpBB highlighting bug for code

execution by specially crafted input parameters
• Propagation:

– Google searches with static string to find vulnerable hosts
– GET requests with attack string, propagating virus

• Payload
– Trivial page defacement of all html, php, etc documents

Analysis of Perl.Santy

• Google search string provided choke point
• Static search strings stored inside the Perl source code
• Host selection algorithm extremely poor

– Pick a ccTLD
– Pick a version of phpBB.

Analysis of Perl.Santy

• No mutation of source code, search string, or attack string
• Payload was silly

Analysis of MySpace.com Virus

Analysis of MySpace.com Virus

• Web virus
• October 2005: Infected 5th largest domain on the Internet
• JavaScript with AJAX
• Attack vector: XSS exploit allowed <SCRIPT> into user’s profile
• Propagation:

– Used AJAX to inject virus into the user profile of anyone who
viewed an infected page

• Payload:
– Used AJAX to force viewing user to add user “Samy” to their

friends list
– Used AJAX to append “Samy is my hero” to victim’s profile

Filtering Input Is Hard!

• MySpace.com did a very good job filtering certain words <SCRIPT>,
JavaScript, innerHTML, certain characters likes “

• No <SCRIPT> not good enough
– <DIV style=“background(‘javascript:whatever’)”>

• Whitespace is your friend
– ‘tag.inne’ + ‘rHTML’ ‘java\nscript’ String.fromCharCode()

• God bless the eval statement
– Parses and executes JavaScript stored in a string
– String doesn’t have to be defined in JavaScript. Can be in the DOM
– <DIV id=“code” expr=“alert(‘xss’)”

style=“background(‘java\nscript:eval(document.code.expr)’)”>

See http://namb.la/popular/tech.html for all technical challenges

Infection Method Explained

Analysis of MySpace.com Virus

• Awesome hack! No, I didn’t write it.
– I did present about XSS + AJAX attacks at Toorcon 7 a

month before the virus hit
• Excellent proof of concept about how using AJAX is a security

risk even though it obeys the DOM security model
• Web server cannot tell the difference between AJAX

requests and web browser requests
• Shows how AJAX + JavaScript RegExs can handle complex

login sequences spanning multiple pages
• MySpace lucked out as it could have been much worse

Hypothetical, Worse Case Examples of
Web Malware

• The Perl.Santy worm and MySpace.com virus were real world
examples of concepts that web security people have talked
about for years

• Both had very childish payloads
• So, what is a worst case scenario with these types of threats?
• Next, I present you with two hypothetical and truly evil examples

of extreme web malware
– Swogmoh Web Worm
– 1929 Web Virus

Now put on your Black Hats!

Swogmoh Web Worm (Details)

• “HOly Mother of GOd, We’re Screwed!” backwards
• Written in Perl::LWP
• Attack vector: Multiple SQL injection vulnerabilities of different

web applications
• Propagation:

– Use Google to locate new sites vulnerable to one of our SQL
injection vulns

– Mutate our search string to avoid bottlenecks
• Allinurl: ~= inurl:
• Add ignored words (the, in, of, at, a, an) or repeat words
• Algorithm to generate English words or /usr/local/dict
• Word order

Swogmoh Web Worm (Details)

• Propagation (continued)
– If I don’t get a results page, Google can detect search string
– Randomly select next search engine

• Mutate virus source code
– Interpreted scripts are easy to mutate

• New comments, etc
• Replace control structures (do: while = while, while = for,

if-then-else = switch)
• Encrypt the static strings with a different dynamically

generated key per copy!
– Perl is text parsing king. Complex text replacement is no big

deal.

Swogmoh Web Worm (Details)

• Payload
– Keeps track of successful infections by trying to GET magic

page from victims. After 100 successfully infections, launch
payload!

– Known vulns = known apps = known database structures
• Dump usernames/passwords to mailing lists, blog

comments, or Slashdot so you can retrieve them
• Or listen to the sound of 100,000 DROP TABLEs
• Or INSERT INTO databases with garbage

– Flood email systems, webs servers of major anti-virus
companies, app creators to slow their response

Swogmoh Web Worm (Details)

• Impact and improvements
– Will vary but generally very bad
– Defeated by backups
– Google might be able to filter search strings faster than

anticipated, but that’s why we have multiple search engines
– Balance between number of hosts infected and payload

must be researched to ensure maximum possible infections
– Works with any remote code execution vulnerability

• Abstract virus code from remote code execution code
• Again, “Metasploit for web applications”
• Pluggable interface for new vulnerabilities
• Start virus with multiple vulnerabilities

1929 Web Virus (Details)

• Infects a major stock trading site
• JavaScript with AJAX
• Attack vector: XSS exploit to get <SCRIPT> into forum,

customizable stock profile, stock ticker, etc
• Propagation:

– Uses AJAX/blind POST to inject script into other pages using
credentials of any user viewing infected page

• Payload:
– Uses AJAX to place buy and sell stock orders on your behalf
– Complex confirmation pages are not an issue (short of a

captcha, two factor authentication)

1929 Web Virus (Details)

• Two modes
– Online mode: virus decisions controlled by 3rd party
– Research mode: virus makes buy/sell decisions by itself

• Online mode
– Use iframe heartbeating (see XSS-Proxy) to send

commands from external 3rd party to infected pages running
in browsers

– Inflict damage to stock market as thousands of users sell
otherwise healthy stocks

– Damage 1,000 individual portfolios simultaneously by buying
junk stocks

1929 Web Virus (Details)

• Research mode
– Selects stocks to monitor

• Randomly build stock symbols
• Price/Earnings ratios
• Trade volume thresholds

– AJAX used to sample these stocks at set intervals
– Calculate rate of change of stock price to find buying/selling

trends
– When rate of change approaches zero we are nearing the

top or bottom of a trend curve, sign tells us which direction
– Buys stocks at the highest prices
– Sells stocks at lowest prices

1929 Web Virus (Details)

• Impact
– Try explaining to the SEC that you really didn’t make a trade

• It came from your IP
• You were online
• Trades mixed in with other legitimate trades

– Eventually stock trading site will find virus, remove it, and
attempt to sort real trades from virus trades

– Does not really matter in the end
– External brokers will have made trade decisions based on

effects of the virus’ trades. The virus has affected the
entire stock market.

Guidelines for Writing Secure Web
Applications

Guidelines for Writing Secure Web
Applications

• Ultimately, web malware occurs because of vulnerabilities in
web applications

• Fixing the vulnerabilities stops both aspects of web malware
– Initial injection and further propagation
– Payload execution

• Your web applications are the bricks in the walls of your
website. Do you really trust a brick you downloaded from
SourceForge?

• 90% of web application security is validating user input

Guidelines for Writing Secure Web
Applications

• Never trust anything you get from the client!
• Everything can be modified

– “Hidden” HTML input tags
– Cookies
– URL parameters
– POST data
– HTTP headers

Guidelines for Writing Secure Web
Applications

• Never use input you get from the client without sanitizing it
– Enforcing data types

• Only numbers?
• Only letters?
• Formatting (credit cards, telephone numbers)

– Length restrictions (TinyDisk file system)
– Escaping characters like < “ ‘ | ; > to avoid SQL injection and

XSS attacks
• PHP/ASP all have built in functions for this. A well placed

RegEx can stop most attacks.
• Use a meta-language like Wikipedia [[link:]], etc

Guidelines for Writing Secure Web
Applications

• Input validators should be implemented on both sides of a web
application
– Client-side validation should exist solely for performance issues
– Server-side validators are the only way to enforce any limits

• Frontend code should properly represent backend code
– Backend code for an HTML FORM that uses POST should only

read values that were posted. (Request.Form vs.
Request.QueryString, etc)

• Over engineering is very bad
• Applications should only provide enough functionality to work

– If you have static content, do not use scripting technologies (ASP,
PHP, JSP, etc) to serve it

– LDAP directory vs. full SQL-driven relational database

Summary

• Web application malware is no longer theoretical.
• So far web malware payloads have been silly. Expect this to

change.
• Web malware payloads can equal traditional malware in terms

of damage and information leakage.
• Web malware operates on a different level than traditional

malware. Defenses are not as readily available for these threats.
• For these reasons, web malware is actually more dangerous

than traditional malware.
• Popularity and buzzwords are driving uneducated programmers

into web application development, making the problem worse.
• Properly securing web applications inputs will stop most web

malware.

Questions?

Analysis of Web Application Worms and
Viruses

Billy Hoffman (bhoffman@spidynamics.com

SPI Labs Security Researcher

