

-_

(NNNNNN. (NN) (NN) (NN) (NN) ___ NNN NNNN) JNN .NN)
(NNNNNNN (NN) ___. ___ (NN) ___ (NN) (NN) .___ NNN .___ .__ NNN JNNNN)(NNNNN NNNNN)
(NN) NNN (NN) (NNNNNN (NNNNN) (NN)(NN) (NN) (NN) JNNNNN.(NNNN) NNNNNN. (NNNNNNN .NN4NN)`"4NNN ""NNN)
(NNL_NNN (NN) NNN (NN) NNN (NN (NN)NNN (NN) (NN) NNN (N)`NNN"`(NN) NNN (NN) NNN JNF(NN) NNN (NN)
(NNNNNN) (NN) NNN.JNN) NNN (NN (NNNNN` (NN) (NN) NNNL/"` NNN (NNNNNNN (NN) NNN (NN`(NN) NNN (NN)
(NN) NNN (NN) .NNNNNN) NNN (NNNNN) (NN) (NN) `NNNNN NNN (NNNNNNN (NN) NNN NNN_JNNL. NNN (NN)
(NN) NNN (NN) NNN`(NN) NNN (NN (NN)NNL (NN) (NN) __`NNN) NNN (NN) NNN (NN) NNN NNNNNNNN) NNN (NN)
(NNLJNNN (NN) NNN (NN) NNN (NN (NN)(NN. (NNNNN(NN) NN (NN) NNN (NN) NNN (NN) NNN NNNNNNNN) NNN (NN)
(NNNNNNF (NN) NNNNNNN) (NNNNN` (NN)`NNL (NNNNN(NN) 4NNNNN` NNNN) NNNNNN) (NNNNNNN (NN) NNN (NN)
`"""""" `""` ""``""` """ `""` """ `"""""`""` """ """` `""" `"" """ `""` """ `""`

-_

“BLACKLISTED 411 .NET”

Edition 5
02.15.2006

-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
Table of Contents

 [1] Edition Quote

[2] Articles
 [a] Hacking the Web: Automatic obfuscated submission by Israel Torres
 [b] Suduko by Cynric
 [c] Hacking Cryptograms 101: In Digestion by Israel Torres

 [3] Cryptogram
 [4] Favorite Photo
 [5] Credits

-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

[1] ==Edition Quote==
“Security is a process, not an end state.”

Dr. Mitch Kabay - 1998

[2] ==Articles==

[a]

Hacking the Web
Automatic Obfuscated Submission
By Israel Torres <israel@israeltorres.org>

The following techniques described herein are often used by phishers, spammers and scammers to have
your system do something you maybe aren’t expecting. The purpose of this article is to demonstrate these
techniques so that you may become aware as well as also use them as tools to suit your needs. Be
responsible for your actions.

Surely by now you have visited questionable links that have taken you for a ride the second you click on
them. It used to be very obvious when pop-ups were “the thing”. Thanks to browser technology I haven’t
seen a pop-up in years. However this hasn’t stopped unscrupulous people from trying to take things away
from you such as your money, identity, information, etc.

Some of the population has become savvy to not click on emails from people they don’t know, but most
of the population still is click happy.

Personally when I see a link to somewhere either in an email or a web page I take a quick look at my
status bar to see where it leads to – this method has proven to be broken in the past so if I am hanging out
in a gray area I also right click the link, copy the destination location and paste it into notepad. If things
don’t look right I’ll past it into word pad to shift the fonts around and see if someone is trying to use an
Alphabetic-L for a Numerical-One, or a Zero for an O. If I don’t feel comfortable with what I see I don’t
bother using my browser to click on it. Instead I use something like wget to pull the file for further
examination. I also make sure I don’t have anything installed or running such as Google Desktop which
had been known in the past to trigger system exploits upon dynamic indexing the second the file is on the
drive. The next thing I do is rename the file to something without a known extension such as “.dump__”
just in case it is written to exploit an expected associated application. (What me paranoid?) Then I take a
deep breath and use a hex editor to open the file (It could be a binary file used to trigger something). After
it proves to be a flat file I examine the code and look for obfuscation of any type, including calls to
external scripts, css… ANYTHING out of place. Once I feel comfortable I record the hash of the file and
the link in case I return to (what I suspect) a static page and move on. This long process has saved my
system more times than I can count. I have also learned a lot of the techniques from this process that keep
these guys in business.

This particular technique can be found in many implementations and is popular for hiding what is actually
happening. However with just a little prodding it is easy to find out as well as modify it to add to your
toolbox. I begin by explain how to create this scenario after which you will know how to “crack” these
scenarios in the future.

Source: automatic_obfuscated_submission.html
This is what your typical web surfer will see if they click view source on their browser if they happen to
get a chance to stop it before it executes.
<html>
<title>Hacking The Web : Automatic Obfuscated Submission - blacklisted411.israeltorres.org</title>
<!--
:::::::::::::::::::::::
:: Blacklisted!411 .NET Edition 5
:: Hacking The Web : Automatic Obfuscated Submission
:: By Israel Torres <israel@israeltorres.org>
:: Source available at: http://blacklisted411.israeltorres.org
:::::::::::::::::::::::::::::::::::
:: Read automatic_obfuscated_submission_worksheet.txt for more information
:::::::::::::::::::::::::::::::::::
// -->
<body onLoad="document.forms[0].submit()">
<div id="bl411">
<script>
 document.getElementById("bl411").innerHTML = unescape('%3c%66%6f%72%6d%20%61%63%74%69%6f
%6e%3d%22%68%74%74%70%3a%2f%2f%77%77%77%2e%67%6f%6f%67%6c%65%2e%63%6f%6d%2f%73%65%61%72%63%68
%22%20%6e%61%6d%65%3d%22%66%22%20%6d%65%74%68%6f%64%3d%22%70%75%74%22%3e%3c%69%6e%70%75%7
4%20%74%79%70%65%3d%68%69%64%64%65%6e%20%6e%61%6d%65%3d%68%6c%20%76%61%6c%75%65%3d%65%6e
%3e%3c%69%6e%70%75%74%20%6d%61%78%6c%65%6e%67%74%68%3d%32%30%34%38%20%73%69%7a%65%3d%35
%35%20%6e%61%6d%65%3d%71%20%76%61%6c%75%65%3d%22%42%6c%61%63%6b%6c%69%73%74%65%64%20
%34%31%31%2c%49%73%72%61%65%6c%20%54%6f%72%72%65%73%22%20%74%69%74%6c%65%3d%22%47%6f%6f
%67%6c%65%20%53%65%61%72%63%68%22%3e%3c%69%6e%70%75%74%20%74%79%70%65%3d%22%73%75%62%6d
%69%74%22%20%76%61%6c%75%65%3d%22%47%6f%6f%67%6c%65%20%53%65%61%72%63%68%22%20%6e%61%6d
%65%3d%62%74%6e%47%3e%3c%2f%66%6f%72%6d%3e')
</script>

</body>
</html>

Step 1: Create Form
Using the template below you can modify the form at will to suit your needs. This is a simple example
that just takes you to the Google website with results on the query string.
<form action="http://www.google.com/search" name="f" method="put">
 <input type=hidden name=hl value=en>
 <input maxlength=2048 size=55 name=q value="Blacklisted 411,Israel Torres" title="Google Search">
 <input type="submit" value="Google Search" name=btnG>
</form>

Step 2: Compress Form
To compress the form, remove unnecessary whitespace (carriage return, new line, spaces in between
brackets) and modify into one line.
<form action="http://www.google.com/search" name="f" method="put"><input type=hidden name=hl
value=en><input maxlength=2048 size=55 name=q value="Blacklisted 411,Israel Torres" title="Google
Search"><input type="submit" value="Google Search" name=btnG></form>

Step 3: Encode Form
This further obfuscates what is supposed to happen when the page loads to a common web surfer.
%3c%66%6f%72%6d%20%61%63%74%69%6f%6e%3d%22%68%74%74%70%3a%2f%2f%77%77%77
%2e%67%6f%6f%67%6c%65%2e%63%6f%6d%2f%73%65%61%72%63%68%22%20%6e%61%6d
%65%3d%22%66%22%20%6d%65%74%68%6f%64%3d%22%70%75%74%22%3e%3c%69%6e%70
%75%74%20%74%79%70%65%3d%68%69%64%64%65%6e%20%6e%61%6d%65%3d%68%6c%20
%76%61%6c%75%65%3d%65%6e%3e%3c%69%6e%70%75%74%20%6d%61%78%6c%65%6e%67
%74%68%3d%32%30%34%38%20%73%69%7a%65%3d%35%35%20%6e%61%6d%65%3d%71%20
%76%61%6c%75%65%3d%22%42%6c%61%63%6b%6c%69%73%74%65%64%20%34%31%31%2c
%49%73%72%61%65%6c%20%54%6f%72%72%65%73%22%20%74%69%74%6c%65%3d%22%47
%6f%6f%67%6c%65%20%53%65%61%72%63%68%22%3e%3c%69%6e%70%75%74%20%74%79
%70%65%3d%22%73%75%62%6d%69%74%22%20%76%61%6c%75%65%3d%22%47%6f%6f%67
%6c%65%20%53%65%61%72%63%68%22%20%6e%61%6d%65%3d%62%74%6e%47%3e%3c%2f
%66%6f%72%6d%3e

Once your form is encoded you will paste it into your html file between the single quotes in the
unescape(‘’) function. You can also add more such as scripting as long as you make sure you add, and
compress BEFORE you encode it.

After you have completed your crafted html file you want to be sure to test it locally first to get the results
you are looking for. This works and has been tested on the latest versions of Internet Explorer as well as
Mozilla Firefox.

Encoding Example
Ftard Decoder Ring is a Windows tool created for encoding and decoding text. You can paste your
compressed form into the edit control and click ASC->Hex % to return the encoded form.

Online Experience
After loading the html from a local system it attempts to execute the obfuscated string. If you have a
software firewall running on your client system (always a good idea) you may encounter the following

due to the first attempt to access the web. This case usually only will occur if this is the only instance of
your browser that hasn’t previously accessed the Internet within the same session.

Otherwise the user will quickly see the non-hidden submission field (you can use type="password so they
see *** instead if so desired):

<input type="password" maxlength=2048 size=55 name=q value="Blacklisted 411,Israel Torres" title="Google Search">

All Results
Regardless of how you load the html (local or web) it takes you to the same place.

Uses
There are many uses this can be modified for such as automating your personal logins, filling out forms;
however its primary use is to automatically submit without really having a chance to see what is being
submitted.

As users, filters and other forms of protection become more aware of these techniques they will be
evolved by those that need to use them. It is a never ending cycle. I am always interested in learning about
new techniques if you know one send it my way!

Keeping it ‘rael,
Israel Torres

Source Code
Source code bundle can be downloaded here:
http://blacklisted411.israeltorres.org/automatic_obfuscated_submission.zip

Individual Source code can be downloaded here:
http://blacklisted411.israeltorres.org/automatic_obfuscated_submission.html
http://blacklisted411.israeltorres.org/automatic_obfuscated_submission_worksheet.txt

MD5 hash of the source code bundle can be validated at:
http://blacklisted411.israeltorres.org/automatic_obfuscated_submission.md5.txt

note: you may have to copy and paste the addresses above if they wrap around!

Demonstration available at:
http://blacklisted411.israeltorres.org/automatic_obfuscated_submission.html

FTard Decoder Ring:

http://tools.israeltorres.org/#FTardDecoderRing

Google Desktop Issue (relating to WMF)
http://www.f-secure.com/weblog/archives/archive-122005.html

Spam and Phishing Obfuscation Part 1: Forum Attacks
http://www.blacklisted411.net/index.php?option=com_content&task=view&id=187&Itemid=66

[b] Suduko by Cynric

We've all seen this odd grid of numbers in newspapers, online, and books at our favorite store. Some of
you may be utterly confused while others trod along at a slow pace. Hopefully, after reading this, both
types will be whizzing through the more difficult problems with greater ease. The name Sudoku is the
Japanese abbreviation of a longer phrase, "suji wa dokushin ni
kagiru," meaning "the digits must remain single".
[1] By the way, the [#]'s reference links mentioned at the end of the article.

Before we can get our feet wet, we need to lay down some basic terms that will be used throughout the
article and in many online tutorials. If you have absolutely no idea what sudoku is, take a look at
http://sudoku.com.au (an easy to use system with many features and an active community). "Cell" refers
to a single space that a number would fall in. A "block" is a 3x3 group of Cells typically outlined darker
than the Cells. "Rows" and "Columns" go in horizontal (that's left and right) and vertical (up and down),
respectively.
There is also a general notation used to represent specific Cells. If you've ever played chess or Battleship,
then you'll feel right at home. Each Cell in a Row is labeled with a letter of the alphabet from A-I. Each
Cell in a Column is labeled with a number from 1-9; these numbers are NOT the same digits you are
trying to fill in, but merely part of a coordinate system. So, when we want to address the bottom left Cell,
we would say A1. Similarly for the top right, we address it as I9. Blocks are numbered from left to right,
top to bottom.

The object here is to fill in the puzzle with missing numbers 1-9.
Each Row and Column must contain the digits 1-9. On top of that, each block must contain the digits 1-9.
That's it, only two rules. Let's start with some basic techniques and work our way up to a walkthrough. If
you have 8 of the 9 Cells filled in a block, the last cell must be the only digit you have yet to use.
Similarly, if a Row or Column is missing a single Cell, then that missing Cell is the left over digit.
Example of a single Row:

1 2 3 | 4 5 6 | 7 _ 9

We know that the missing Cell (represented by the underscore "_") is an 8 since it's the only digit we've
yet to use. Now, most of the time, to keep from juggling all these numbers in your head, you'll probably
want to print out your puzzle and proceed to mark it up with possibilities. By using the fact that only the
digits 1-9 can only appear once in each block, Row, and Column, we can create a list of possibilities for

each. When all but one possibility for a Cell has been removed (meaning that they appear somewhere else
in the block, Row, or Column), then the remaining digit must be the correct entry.
This is generally referred to as the "Sole Candidate" since no other possibility legally exists. When the
same scenario is extended to Rows and
Columns, it is known as the "Unique Candidate" for the same reasons. Let's take a look at another
example of Rows:

1 2 3 | 7 8 9 | _ _ _
4 5 6 | 1 2 3 | _ _ _
_ _ _ | _ _ _ | _ _ _

In the above example, we can see that Cells A3, B3, and C3 contain 1, 2, and 3.
Also, D2, E2, and F2 contain 1, 2, and 3. This means that 1, 2, and 3 must go in G1, H1, and I1. Of
course, we do not know the order in which they go, but we do know that they occupy some position of
Row 1 in Block 3. What does this mean?
It means that the digits 1, 2, and 3 can NOT be in G2, H2, I2, G3, H3, or I3.
This type of rational is known as Block, Row, or Column (depending on which you're dealing with)
Interactions.

The last basic technique that needs to be covered is called the "Naked
Subset"; no, you do not need to strip for this one. This technique is based on pairs. If two Cells in a block,
Row, or Column have the same two candidates, then we know that those two candidates can be safely
removed from the Cells in the block, Row, or Column depending on which you are using. In other words,
if you have two Cells that exist in the same block, Row, or Column with the possible candidates of 1 and
9 each, then the 1 and 9 can not be anywhere else in that block, Row, or Column. Let's look at a short
example:

1/9 _ _ | _ _ _ | _ _ 1/9

Let's say A1 is the 1. This means that I1 has to be the 9 since the same digit can not exist in the same
Block, Row, or Column. This same logic applies if we had chosen A1 to be a 9 instead. Although we can't
know from this alone which values A1 and I1 are, we do know that the digits 1 and 9 can not be anywhere
else in the Row. If we were dealing with Blocks or Columns, the same idea applies. Pretty neat, eh?

Ok. I know this is difficult to follow in an article without an example. So, let's step through a tough puzzle
[2] from my favorite online site [3].
Hopefully, in seeing my thought process, you'll gain a better understanding on how these techniques are
used. You can also find proofs [4] on this site under "MORE" at the top. There are 1.76 million hits for
"technique sudoku" on
Google so there should be plenty of examples to learn from. I found this [5] particular site to be fairly
straightforward with decent examples.

Sudoku for 13/February/2006 from http://sudoku.com.au:

Figure 1:

_ _ 6 | 3 _ _ | _ _ _
_ 5 _ | 4 _ _ | _ 9 _
7 _ _ | _ _ _ | _ _ 2

6 _ _ | _ 5 _ | 8 _ _
_ _ 3 | _ _ _ | 2 _ _
_ _ 1 | _ 8 _ | _ _ 6

2 _ _ | _ _ _ | _ _ 8
_ 9 _ | _ _ 7 | _ 5 _
_ _ _ | _ _ 1 | 6 _ _

I suggest copying this to paper or just visiting the puzzle online so you can follow along. First off, I like to
look for pairs that will eliminate some possibilities by using the Interaction rule. But, if any good ideas
come before that, I won't hesitate to jump.

I'm feeling lucky with 8's. In Block 3, 8 is only possible at H9 and H7 due to an 8 being in Columns G
(G6) and I (I3) already. In Block 4, an 8 can only be at A5 and B5 because of Rows 4 (E4) and 6 (G6).
And in Block 8, only at D1 and D2 because of Row 3 (I3) and Column E (E4). In Block 1, only at A2 and
C3. No luck so far. Ahah, in Block 9, we have a Sole Candidate for 2 at H1. Another Sole
Candidate exists at B3 for a 6. Notice how Rows 1 and 3 have both 2 and 6.
This means that 2 and 6 go somewhere at D2 and E2. This good news means that since D2 contains either
a 2 or 6, our 8 from before can not go there; thus,
D1 is 8. Because of the 1's on Row 1 (F1) and Column C (C4), we get a Sole Candidate for 1 at A2. This
blocks our previously mentioned 8 from going there and therefore must go at C2.

Figure 2:

_ _ 6 | 3 _ _ | _ _ _
_ 5 _ | 4 _ _ | _ 9 _
7 _ _ | _ _ _ | _ _ 2

6 _ _ | _ 5 _ | 8 _ _
_ _ 3 | _ _ _ | 2 _ _
_ _ 1 | _ 8 _ | _ _ 6

2 6 _ | _ _ _ | _ _ 8
1 9 8 | _ _ 7 | _ 5 _
_ _ _ | _ _ 1 | 6 2 _

Let's do something a little more complex. Take a look at the intersection of E6 and G2. The only positions
left for a 5 in Block 8 are at D3 and F3. Or, better yet, along Row 3. Now, take a look at the intersection
of B8 and E6.
Possible positions for 5 in Block 4 are at A4 and A5 -- or, better yet, Column
A. This tells us that Column A and B contain a 5. We also know that Row 2 and
3 contain a 5. This madness of Naked Subsets gives us a Sole Candidate for 5 at C1.

Looking at Column C, we see that digits 2, 4, 7, and 9 are left. Digit 2 is the only candidate at C8.
Remember that 2 and 6 have taken up residence somewhere at D2 and E2? Good. That means that for
Block 8, 3 can only be at
E1, E3, or F3. But, because of the 3 at C5, we know that 3 must go at A1 or B1
effectively eliminating E1 as a valid possibility. The intersection of D9 and
C5 yield positions F4 and F6 as the only valid choices for 3 in Block 4. This
just so happens to eliminate Column F giving us our Sole Candidate for 3 at E3
which we fought hard for. An easy Sole Candidate exists at H7 due to the 6's
at C3, G1, and H4. This gives us another at H9 for an 8.

Figure 3:

_ _ 6 | 3 _ _ | _ 8 _
_ 5 2 | 4 _ _ | _ 9 _
7 _ _ | _ _ _ | _ 6 2

6 _ _ | _ 5 _ | 8 _ _
_ _ 3 | _ _ _ | 2 _ _
_ _ 1 | _ 8 _ | _ _ 6

2 6 _ | _ 3 _ | _ _ 8
1 9 8 | _ _ 7 | _ 5 _
_ _ 5 | 8 _ 1 | 6 2 _

Let's look at the combined intersection of 3 and 8 using C2, C5, D9, and H9.
The only two positions for our 3 and 8 in Block 1 are somewhere at A8 and B7.
Perfect. We now have a Sole Candidate for 1 at B9 thanks to the eliminations
at A2 and C4. In Block 1, the only unclaimed values are 4 and 9 which will

reside somewhere on A9 and C7. On Row 3, a 4 is only possible at C3 and F3.
If C3 is 4 then C7 must be 9. Or, if F3 is 4, then E1 must be 9 because the only
possible values for it were 4 and 9. Whichever way it is, the 9 being at C7
or E1 forbids a 9 from showing up at E7. If you look at all the possible
values for E7, you'll see that only one digit remains -- a 1. Since a 1 can no
longer show up in Block 2, possible solutions for D7 get reduced to a 5 or 9.
We also have a 5 and 9 as possible values for D3. Alright, let's make an
assumption about C3. It's going to take us 9 more steps, but afterwards, we
will have a solution for C3 that reduces the entire puzzle to Sole and Unique
Candidates. Pick up your pencils, here we go.

Figure 4:

_ 1 6 | 3 _ _ | _ 8 _
_ 5 2 | 4 _ _ | _ 9 _
7 _ _ | _ 1 _ | _ 6 2

6 _ _ | _ 5 _ | 8 _ _
_ _ 3 | _ _ _ | 2 _ _
_ _ 1 | _ 8 _ | _ _ 6

2 6 _ | _ 3 _ | _ _ 8
1 9 8 | _ _ 7 | _ 5 _
_ _ 5 | 8 _ 1 | 6 2 _

Let's assume C3 is 7. We now get C7 as being 4. With C5 and C7 eliminating 3
and 4 on Row 3, it must mean the 3 and 4 go somewhere at A1 and B1. Coupled with
our 3 and 4 pair at G2 and I2, we can eliminate Row 2 as well. This leaves us
with only one place in Block 8 for the 4 to go; F3. Because of the 5 at H2, we
get a Unique Candidate for 5 at D3 because D2 and E2 are still reserved for
digits 2 and 6. This means D7 is 9 -- remember that pair we mentioned earlier?
Due to H8, we get a Unique Candidate on Row 3 for a 9 at G3. H3 becomes a 1 and
I1 becomes 7. Using the intersection of H8 and G3, the only place a 9 can fit in
Block 6 is I5 or I6. Using the intersection of C4 and H3, the only place a 1
can fit in Block 6 is I5 or I6. On Row 9, the only position open for a 5 is at
I9. The only position for 4 is now at I2. This gives us a 3 at G2 and I8, a 4
at G9, a 7 at G8 and ... oh ... wait a minute. A 1 at G7? Uh uh. This would
conflict with our 1 at E7 which we know is correct. Therefore, we have finally
deduced that C3 is not 7. You might be thinking I'm crazy at this point, but
we have actually just broken the puzzle down to simple Sole and Unique
Candidates; well, if you were able to keep up with this that is.

Now that we know C3 is 4, it follows that B1 is 7 and A is 3. Look at Column
C, C6 must be 7 which leaves C7 as 9. Getting C7 nails down A9 as 4 --
remember that they were paired? The 4 at A9 and D8 tells us that G7 is the
only valid position for a 4 in Block 3. Remember that 3 and 4 pair at G2 and
I2? Well, we finally get to solve it with G2 being 3 leaving I2 as 4. That 4
and the one at C3 gives us the value of E1 as 4. The only digit left on Row 1
is a 9 at I1. It, with the 9 at H8, yields a 9 at G4. The intersection of G4 and
B2 leave only A5 available for the 9 in Block 4. A 5 is already in Block 1, so

A4 must be 5 on Column A with A8 being 8.

Figure 5:

4 1 6 | 3 _ _ | _ 8 _
8 5 2 | 4 _ _ | _ 9 _
7 3 9 | _ 1 _ | 4 6 2

6 _ 7 | _ 5 _ | 8 _ _
9 _ 3 | _ _ _ | 2 _ _
5 _ 1 | _ 8 _ | 9 _ 6

2 6 4 | _ 3 _ | _ _ 8
1 9 8 | _ _ 7 | 3 5 4
3 7 5 | 8 4 1 | 6 2 9

The last Cell in Block 1 is a 3. E4 and G6 leave only B5 open for an 8. D1 and
E4 only leave F7 open for an 8 on Row 7. That means D7 is 5 and D3 is 9 --
back to using those pairs again. The only Cell in Block 8 not reserved is F3
which becomes 5. Looking at Block 2, we see that the 2 at C8 and the 9 at H8
eliminate those values along Row 8, forcing them to be somewhere on Row 9.
With that Row reserved, the 7 at F1 conveniently positions a 7 at E8. This
leaves a 6 on F8. The possibilities along Row 8 get reduced by the 3 at G2.
Now that we have our 3 at I8, we can safely fill in a 1 at G8. The
intersection of E6 and H2 put a 5 at I5. This pairs up with Block 3 and gives
us a 5 at G9 as well. Block 3 is finished off with a 7 at I9 leading to
polishing off Column I with a 1 at I6. To finish off Column G and Block 9, we
get a 7 and 1, respectively.

Figure 6:

4 1 6 | 3 _ _ | 5 8 7
8 5 2 | 4 7 6 | 1 9 3
7 3 9 | 5 1 8 | 4 6 2

6 _ 7 | _ 5 _ | 8 _ 1
9 8 3 | _ _ _ | 2 _ 5
5 _ 1 | _ 8 _ | 9 _ 6

2 6 4 | _ 3 _ | 7 1 8
1 9 8 | _ _ 7 | 3 5 4
3 7 5 | 8 4 1 | 6 2 9

Friendly 9's at A5, D3, and G4 solidify a 9 at F6 which forbids a 9 at F9. We
get 9 at E9 and 2 at F9. The intersection of F9 and G5 puts the 2 for Block 5
on Column D. This gives us a 2 at E2 and therefore a 6 at D2. Column E is
completed with a 6 at E5. Column F is completed with F4 as 3 and F5 as 4 after
noticing C5. H6 is 3 thanks to C5 and F4. F5 forbids a 4 at H5 placing it at
H4. Block 6 is finished with a 7 that couples with C6 to place a 7 at D4.
I6 gives a 1 for D5 with a 2 finishing off Block 5. Block 4 is completed with
a 2 and 4 at B4 and B6, respectively. That's it! Whew, what a job. The final
solution is below followed by some links.

Figure 7:

4 1 6 | 3 9 2 | 5 8 7
8 5 2 | 4 7 6 | 1 9 3
7 3 9 | 5 1 8 | 4 6 2

6 4 7 | 2 5 9 | 8 3 1
9 8 3 | 1 6 4 | 2 7 5
5 2 1 | 7 8 3 | 9 4 6

2 6 4 | 9 3 5 | 7 1 8
1 9 8 | 6 2 7 | 3 5 4
3 7 5 | 8 4 1 | 6 2 9

===================
[1] http://en.wikipedia.org/wiki/Sudoku
[2] http://sudoku.com.au/1V13-2-2006-sudoku.aspx
[3] http://sudoku.com.au
[4] http://sudoku.com.au/MoreSudoku.aspx
[5] http://www.simes.clara.co.uk/programs/sudokutechniques.htm

[c]

Hacking Cryptograms 101
In Digestion
By Israel Torres <israel@israeltorres.org>

Welcome to the fourth lesson in hacking cryptograms. This .NET column engages in forms of hacking
cryptograms (secret messages) found in everyday transactions. Commonly known cryptograms are seen
in the daily newspaper and various websites that focus on mono-alphabetic substitution. However any text
that contains a secret or hidden message can be a cryptogram.

In Edition 4 of .NET we had two visible cryptograms and one hidden cryptogram to help you solve the
visible cryptograms. The best way to hide something is to put it in plain sight.

Cryptogram A (beginner)
5EBE2294
ECD0E0F0
8EAB7690
D2A6EE69

Cryptogram B (advanced)
1814E0A5
AF374437
03D7EE4C
87EFA6BA

Hint: There is no need to GET the SID to solve this cryptogram. You also shouldn’t need
Bravo Foxtrot.

I’ve been informed by the .NET editor that no one solved this particular set (shame * shame) – If they did
they didn’t submit the answer to us for recognition. In lieu of the last two concluding cryptograms that are
posted at the end of the article not being solved by readers the .NET editor is planning to come up with
something else (last I heard a type of puzzle). Worry not dear readers I will simply involve a cryptogram

in this column for entertainment purposes. As part of the format change you can email me directly the
solutions you have and I will talk about them the next time around.

Solution: The hidden hints in the Hint!

Allow me to demonstrate the hidden cryptogram first. This cryptogram was hidden in the hint (of all
places):

Hint: There is no need to GET the SID to solve this cryptogram. You also shouldn’t need
Bravo Foxtrot.

I embedded the hint with a pseudo-anagram (rearranged letters).

GET the SID

GET SID is extracted turned into one word GETSID. If this still isn’t obvious you can put this anagram
into an anagram analyzer. One that has been around for a long time is the Internet Anagram Server
available on wordsmith.org.

http://www.wordsmith.org/anagram/anagram.cgi?anagram=GETSID

In which the following results are returned:

DE GIST
DIGEST
DES GIT
TED SIG

DIG SET
ID GETS
SID GET
DIS GET

Using the results you can quickly figure out there is only one word returned (DIGEST):

DE GIST
DIGEST
DES GIT
TED SIG
DIG SET
ID GETS
SID GET
DIS GET

This tells you that the each cryptogram is a digests of the message commonly referred to as message
digest (MD) hash.

The second part of this hidden message is the following:

You also shouldn’t need Bravo Foxtrot.

This is a message telling you that you shouldn’t need Bravo Foxtrot. What the heck is Bravo Foxtrot? If
you type it in Google the results will involve sites using alpha-phonetic coding.

Bravo Foxtrot.

The phonetic code Bravo Foxtrot represents two letters – B and F (BF). This one is more difficult to grasp
if crypto isn’t your thing (or maybe even if it is). BF is another way to declare Brute Force attacks.
Knowing this you can rewrite the statement as:

You also shouldn’t need Brute Force

This tells you right away that this message digest can be cracked using a dictionary attack – even better a
common word or set of words in a normal dictionary!

Solution: Cryptogram A (beginner)

If you didn’t consider the hint in part of considering the solution you may have ended up trying to apply
various attacks on the block of text which would have led you astray. You must remember not to take for
granted what is being presented to you. At the same time do not wholly trust what you are being allowed
to see as what is to be seen. I’d throw in a matrixism here but I won’t ;)

Now that we know we are dealing with a message digest this part is a lot easier. Since this is the beginner
version it is pretty straightforward.

Cryptogram A (beginner)
5EBE2294

ECD0E0F0
8EAB7690
D2A6EE69

By simply removing the line break and carriage return we turn this into its original format.

Cryptogram A (beginner)
5EBE2294ECD0E0F08EAB7690D2A6EE69

The idea of a message digest algorithm is that you can apply the mechanism to result in a unique hash
generated by the computation of the original data. There have been recent studies to show that this may
not be unique as originally thought but that is neither here nor there for this focus. In any case this is still a
popular method to use data values.

At this stage you may not be sure what type of message digest this is. Could it be MD4, MD5, MD* ?
You will assume that it is the more popular MD5 and see if this proves true.

You have a few options once you have a hash you determine to be MD5. Listed in the reverse order of
difficulty they are but not limited to:

1. Find the original text by searching the hash in Google.
2. Use online hash crackers.
3. Use your own rainbow tables.
4. Use cracking tools locally.
5. Write your own tools.

You can look into each option quickly to see which gets you the results you need.

1. Finding the original text by searching the hash in Google

Copy and paste the hash to your Google toolbar or browser and begin your search. With this particular
hash I found a goldmine of results:

Results 1 - 10 of about 539 for 5EBE2294ECD0E0F08EAB7690D2A6EE69. (0.45 seconds)

2. Using an online hash cracker

There are a handful of free public cracking sites available to do all the work for you. The first one that
comes to mind is passcracking.com:

… However this once wildly heralded site has been closed. There is little mention in most links that refer
this site so chances are you are bound to get your hopes up that they are still operational.

Though there is still hope (for now) with passcracking.ru.

Once the site renders go ahead and copy and paste the hash and click DoIT. Almost instantly the results
come back positive!

5EBE2294ECD0E0F08EAB7690D2A6EE69 secret

3. Using your own rainbow tables.
Project RainbowCrack

You may have noticed that both of the sites listed in 2 above get their results using rainbow tables. The
Russian site even offers priority accounts; there are even more private sites that offer pay for priority
services to use their servers – as you can expect it can get expensive. You can check out Project
RainbowCrack and generate your own set of tables to whistler through cracking MD5 hashes (and a
handful of others). Though after you read the information as to the disk space required to generate a
decent table signing up for a remote subscription doesn’t sound too bad. Being self-sufficient I can
understand spending a few bucks and carry around a USB drive filled only with a set of tables and maybe
even a front end. If you end up going cheap and not thoroughly covering enough characters you have a
higher chance to miss the solution. It is well worth it to wait a few months of 24/7 table generation and
sorting to get a clean thorough table.

4. Using cracking tools locally.

MDrack v1.2

MD Crack is one of my favorite all time message digest cracking tools. This particular version was last
updated back in 2004 but it still keeps on cracking!

The worst downside of this local application is that it seriously hogs your resources until you are done.
The second I began the process for the demo below my MP3s stopped playing and turned into chunk.

This hash took a little under an hour to find using brute force (BF):

Collision found ! => secret

It would have taken a lot less time to use a dictionary file, but this version doesn’t support it at this time (I
demonstrate how to make your own in the next section).

4. Writing your own cracking tools.

I wrote the following tool (batch files) in a matter of seconds with a few more seconds of testing to get it
hammered into place. I call it a poor man’s way to crack MD5 hashes. In essence it isn’t the hash being
cracked but the method applied is cracking the solution by hashing each word found in our custom
dictionary and then comparing it to the hash sought to be cracked. (The source code is available in the
coding section of this article as well as online as linked at the end of this article – I have also created a
BF generator but that is not within scope of this document.)

After checking each hashed entry against the target hash we find the match for Cryptogram A. This all
really depends on your dictionary file so in theory the more complete dictionary file you have the more of
a chance you have of encountering a match at the same time the longer it will take to search through.

After a few seconds of hashing the dictionary file we get match – a lot shorter than the brute force
approach with MDCrack above.

MATCH FOUND! [secret] == [5EBE2294ECD0E0F08EAB7690D2A6EE69]

Now let’s get to the fun part where I demonstrate how you can do this programmatically. This way if you
run into this type of cryptogram again you can use this tool to quickly find the solution. If you aren’t into
coding, I suggest you at least look it over to get a feel of the logic involved (this source is available online
via the link below). If you simply refuse to even look at it skip the following example and GOTO
NO_CODING();

md5demo.txt
:::::::::::::::::::::::
:: Blacklisted!411 .NET Edition 5
:: Hacking Cryptograms 101 : In Digestion
:: By Israel Torres <israel@israeltorres.org>
:: Source available at: http://blacklisted411.israeltorres.org
:::::::::::::::::::::::::::::::::::

This simple demonstration requires the four files listed below:
-the first three are available at http://blacklisted411.israeltorres.org

dictionary1.txt (included) CC722A145A3565C50C8218EEDF6DED68
md5crack.bat (included) 3CA9862E7FECF952F4BF800DA29CA868
md5check.bat (included) 05ECE55F6C13A8827ECE14C9BA461D32
md5.exe (available from http://www.fourmilab.ch/md5/)
609F46A341FEDEAEEC18ABF9FB7C9647

Control Flow:
md5crack.bat calls md5check.bat after opening dictionary1.txt

md5check.bat calls md5.exe to generate hash against dictionary1.txt and using find and
errorlevel to identify match

Release Notes: To keep this simple there is minimal error control please make sure
required files are available in same directory, or path.

MD5Crack.bat

@ECHO OFF
:::::::::::::::::::::::
:: Blacklisted!411 .NET Edition 5
:: Hacking Cryptograms 101 : In Digestion
:: By Israel Torres <israel@israeltorres.org>
:: Source available at: http://blacklisted411.israeltorres.org
:::::::::::::::::::::::::::::::::::
:: Please read md5demo.txt for instructions and usage
::::::::::::::::::::::
:: 1/2 MD5Crack.bat
::::::::::::::::::::::
prompt $g

:: Display when this process began
DATE /T
TIME /T

::For each string in our dictionary file we want to check it against this hash
::
FOR /F %%A IN (dictionary1.txt) DO md5check.bat %%A
5EBE2294ECD0E0F08EAB7690D2A6EE69

::
:: END

MD5Check.bat

@ECHO OFF
:::::::::::::::::::::::
:: Blacklisted!411 .NET Edition 5
:: Hacking Cryptograms 101 : In Digestion
:: By Israel Torres <israel@israeltorres.org>
:: Source available at: http://blacklisted411.israeltorres.org
:::::::::::::::::::::::::::::::::::
:: Please read md5demo.txt for instructions and usage
::::::::::::::::::::::
:: 2/2 MD5Check.bat

::::::::::::::::::::::

md5 -d%1 | find /i "%2"

IF ERRORLEVEL 1 GOTO FOUND_NOT
IF ERRORLEVEL 0 GOTO FOUND_MATCH
GOTO FOUND_NOT

:FOUND_MATCH
CLS
ECHO MATCH FOUND! [%1] == [%2]
:: Display when this process ended successfully
DATE /T
TIME /T
ECHO PRESS CONTROL-C TO EXIT
PAUSE > NUL
GOTO END_BATCH

:FOUND_NOT
ECHO MATCH _NOT_ FOUND
GOTO END_BATCH

:END_BATCH
:: Display when this process ended
DATE /T
TIME /T

These batch files can be refined for greater granularity and control but it gets the job done effectively.

NO_CODING()

That was easy enough… but what about Cryptogram B? It is solved in the same fashion with the only
exception being that you need a bigger dictionary or more time for brute forcing it since it is two words
(literally - without a space in between them). Here is a summary of steps:

Step 0.
Cryptogram B (advanced)
1814E0A5
AF374437
03D7EE4C
87EFA6BA

Step 1.
Cryptogram B (advanced)
1814E0A5AF37443703D7EE4C87EFA6BA

Step 2.
>md5 -dtwowords
1814E0A5AF37443703D7EE4C87EFA6BA

For this article I went to check the sites I mentioned in helping crack this online.

First Google…

… then the Russian site:

… of course I submitted it and it has been put into the queue – it is very possible that if you check this the
time you have read this there will be a solution in the database …

In the research for hacking message digests I found that a lot of sites out there use MD5 for many things
(some things that it shouldn’t). The next time you see a hash type it in Google and see if you surprised ;)

This concludes Lesson 4 of Hacking Cryptograms 101. If you encounter a cryptogram or what you
suspect to be a secret message that interests you either because you are stuck solving it or for any other
reason please send me an email. See you next edition!

Keeping it ‘rael,
Israel Torres

Cryptogram
The test of a first-rate intelligence is the ability to hold two opposed ideas in mind at the same time and still retain the ability to
function. - F. Scott Fitzgerald

04 00 00 00 00 00
16 18 21 22 24 30
01 10 17 21 24 40
60 64 89 00 00 00
10 17 33 00 00 00

Email your solution to israel@israeltorres.org

Source Code
Source code bundle can be downloaded here:
http://blacklisted411.israeltorres.org/Blacklisted411.net_HackingCryptograms101_example_4_all.zip

Individual Source code can be downloaded here:
http://blacklisted411.israeltorres.org/md5demo.txt
http://blacklisted411.israeltorres.org/md5crack.bat
http://blacklisted411.israeltorres.org/md5check.bat
http://blacklisted411.israeltorres.org/dictionary1.txt

MD5 hash of the source code bundle can be validated at:
http://blacklisted411.israeltorres.org/Blacklisted411.net_HackingCryptograms101_example_4_all.md5.txt

note: you may have to copy and paste the addresses above if they wrap around!

References and Related Links

Internet Anagram Server
http://www.wordsmith.org/anagram/

NATO Phonetic Alphabet
http://en.wikipedia.org/wiki/NATO_phonetic_alphabet

Brute Force Attack
http://en.wikipedia.org/wiki/Brute_force_attack

MD5

http://en.wikipedia.org/wiki/MD5

MD5 Online Cracking (Project Closed)
http://passcracking.com/

Project RainbowCrack
http://www.antsight.com/zsl/rainbowcrack/

MD Crack
http://c3rb3r.openwall.net/mdcrack/

MD5: Command Line Message Digest Utility
http://www.fourmilab.ch/md5/

[3] ==Cryptogram==
This should be rather simple for those that spend some time on it. Submissions need to be sent to crypto@blacklisted411.net by
the 14th of March at the latest.

[4] ==Favorite Photo==

RCA MSN TV2 Linux Cluster

http://mirror.toc2rta.com/index.php/Main_Page

[5] ==Credits==

Chief Editor: Zachary Blackstone

Online Edition Editor: Ustler

Authors: Ustler, Israel Torres. Cynric

