

-_

(NNNNNN. (NN) (NN) (NN) (NN) ___ NNN NNNN) JNN .NN)
(NNNNNNN (NN) ___. ___ (NN) ___ (NN) (NN) .___ NNN .___ .__ NNN JNNNN)(NNNNN NNNNN)
(NN) NNN (NN) (NNNNNN (NNNNN) (NN)(NN) (NN) (NN) JNNNNN.(NNNN) NNNNNN. (NNNNNNN .NN4NN)`"4NNN ""NNN)
(NNL_NNN (NN) NNN (NN) NNN (NN (NN)NNN (NN) (NN) NNN (N)`NNN"`(NN) NNN (NN) NNN JNF(NN) NNN (NN)
(NNNNNN) (NN) NNN.JNN) NNN (NN (NNNNN` (NN) (NN) NNNL/"` NNN (NNNNNNN (NN) NNN (NN`(NN) NNN (NN)
(NN) NNN (NN) .NNNNNN) NNN (NNNNN) (NN) (NN) `NNNNN NNN (NNNNNNN (NN) NNN NNN_JNNL. NNN (NN)
(NN) NNN (NN) NNN`(NN) NNN (NN (NN)NNL (NN) (NN) __`NNN) NNN (NN) NNN (NN) NNN NNNNNNNN) NNN (NN)
(NNLJNNN (NN) NNN (NN) NNN (NN (NN)(NN. (NNNNN(NN) NN (NN) NNN (NN) NNN (NN) NNN NNNNNNNN) NNN (NN)
(NNNNNNF (NN) NNNNNNN) (NNNNN` (NN)`NNL (NNNNN(NN) 4NNNNN` NNNN) NNNNNN) (NNNNNNN (NN) NNN (NN)
`"""""" `""` ""``""` """ `""` """ `"""""`""` """ """` `""" `"" """ `""` """ `""`

-_

BLACKLISTED 411 .NET

Edition 6
03.19.2006

-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
Table of Contents

 [1] .NET Update
 [2] Edition Quote
 [3] News

[a] Xbox 360 Copy Protection Broken
[b] Government receives D+ for computer security

[4] Articles
 [a] Hacking Cryptograms 101: Double your pleasure by Israel Torres
 [b] Hacking a CD Check Function by Israel Torres
 [5] Cryptogram
 [6] Favorite Photo

[7] Links
 [8] Credits

-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

[1] .NET Update
 To fix the problem of .NET scheduled releases landing on inconvenient/busy days, the scheduled
release date has changed to be the first Sunday/Monday after the 15th. Articles may be submitted 12 hours
prior the release date.

[2] ==Edition Quote==

“Security is a process, not an end state.”
Dr. Mitch Kabay – 1998

[2] ==News==
 [a] Xbox 360 Copy Protection Broken

Recently, a team of six hackers (not including contributions from others in the Xbox::hacking
community) released findings proving that the Xbox 360 was indeed NOT hack proof. Ironically, only
four months before, Chris Satchell from Microsoft made the following statement.

“There are going to be levels of security in this box that the hacker community has never seen
before”

While the actual team responsible for the hack refuses to release a working hacked firmware, technical
details provided give us a clear picture of Microsoft’s flaw. To put it quite clearly, all Xbox media is
signed by Microsoft (code signing) to prevent unauthorized code from executing. In order to prevent a 1:1
copy of the disc from playing, a mediaflag is included with the XEX (Xbox executable) on the disc
(Which defines which media [cd-r, dvd-r, dvd-rw, dvdxbox360] is supposed to house the executable).
Since modification of the actual mediaflag would invalidate the signature, a firmware hack was used to
force the dvd drive to report the media as being “dvdxbox360” instead of simply a dvd-r, dvd-rw etc.
While this hack provides users with the ability to boot from bootleg or backup copies, the final task at
executing unsigned code is still at large.
http://www.xbox-scene.com/xbox1data/sep/EEuklElZyFpcibJZvz.php
http://www.xbox-scene.com/xbox1data/sep/EEukZpklFAhkcWwSgZ.php
http://www.teamxecuter.com/index.php?name=News&file=article&sid=215&CMSSESSID=2eee66ee6ed
5de4475166d61dcdd4155

 [b] Government receives D+ for computer security
While we are constantly being told of the clear and present danger of terrorist attacks at airports and other
areas, and how the government has gone to great lengths to protect us, government agencies have
neglected to properly secure their own computer infrastructure. Under the Federal Information Security
Management Act (FISMA) of 2002, government agencies (twenty-four in all) receive grades based on
their overall computer security. While many might overlook the lack of computer security as something
that has no effect on them, let’s not forget two important things. First off, in 2008, Real ID is set to debut
which uses a centralized database to “securely” identify citizens. If the DOD and other
“security/intelligence” related agencies are unable to secure themselves, how will they secure servers
containing sensitive information pertaining to citizens? The second point is best described by the
following paragraph from securityfocus.com:

“Sources interviewed for this article maintained that there have been SCADA (supervisory control
and data acquisition) system attacks, but such incidents are almost never made public. Perhaps the
most well-known public incident is that of an information-technology contractor who used his
knowledge of control systems to release a million liters of sewage into a river basin in Australia.
And U.S. authorities investigated online reconnaissance of U.S. critical infrastructure systems by
attackers thought to be linked to al Qaeda in Pakistan, Saudia Arabia and Indonesia. “

This classic example provided by security focus gives us a clear picture that compromised government
security directly affects our lives. If we can rely on the government to secure their own infrastructure,
why should we accept every new “security” measure they suggest? Security is only as strong as the
weakest link and until the U.S. government realizes this and fixes its own security holes, no fancy million
dollar system will ever provide us with true security. Clearly a D+ for government security is not
acceptable.

http://www.securityfocus.com/news/11351
http://reform.house.gov/GovReform/News/DocumentSingle.aspx?DocumentID=40762
http://www.securityfocus.com/brief/167

[4] ==Articles==

[a] Hacking Cryptograms 101: Double your pleasure

Hacking Cryptograms 101
Double Your Pleasure
By Israel Torres <israel@israeltorres.org>

Welcome to the fifth lesson in hacking cryptograms. If you aren’t familiar with this column I highly
suggest reading the first through the fourth lessons as there is cumulative knowledge being touched
throughout. In this .NET column we play with doubling your pleasure by doubling your crypto. In normal
circumstances encrypting your encrypted data results in size increase due to data padding, but in this
example we are using text rotation, namely ROT13 and ROT47 in tandem. (This is a basic 1:1
substitution)

In the example below you can see the benefit of alternating ROT13:ROT47 functions:

Macro Seq. Doubling with ROT(x) Text Result
 0 Plaintext Hello World
1 1 ROT13 Uryyb Jbeyq
 2 ROT47 &CJJ3 y36JB
2 3 ROT13 &PWW3 l36WO
 4 ROT47 U!((b =be(~
3 5 ROT13 H!((o =or(~
 6 ROT47 wPWW@ l@CWO
4 7 ROT13 jCJJ@ y@PJB
 8 ROT47 ;ryyo Jo!yq
5 9 ROT13 ;ellb Wb!ld

 10 ROT47 j6==3 (3P=5
6 11 ROT13 w6==3 (3C=5
 12 ROT47 Hellb Wbrld
7 13 ROT13 Uryyo Joeyq
 14 ROT47 &CJJ@ y@6JB
8 15 ROT13 &PWW@ l@6WO
 16 ROT47 U!((o =oe(~
9 17 ROT13 H!((b =br(~
 18 ROT47 wPWW3 l3CWO
10 19 ROT13 jCJJ3 y3PJB
 20 ROT47 ;ryyb Jb!yq
11 21 ROT13 ;ello Wo!ld
 22 ROT47 j6==@ (@P=5
12 23 ROT13 w6==@ (@C=5
 24 ROT47 Hello World

You can also see that the plaintext is eventually returned in this same alternation (at sequence 24). If you
look carefully [highlighted in green] you can also see points in where the plaintext could be made out
enough to give its sequence away. You certainly wouldn’t want to use this for any type of secure
environment, communications… yet many do – I recently saw it in a posting for secure web/database
connections (yikes!).

The benefit of dual encoding your data is that someone may not instantly recognize that it is dual encoded
and may give up trying to figure out a message or instruction string (unless of course you are like me and
just have to know what is going on just because [wink]), also if there is a monitoring program searching
for key words in your messages it may be prepared to recognize one or the other forms of rotation, but
maybe not both in tandem (though don’t always count on it).

In case you didn’t already know one of my side projects is to open FTard Decoder Ring and make its full
source available – when I get a chance I spend some time untangling things from my personal libraries
and this is the perfect opportunity to show you how you can programmatically achieve dual encoding.
Using macros as demonstrated above makes it a lot simpler when there is a lot of data to play with. In the
following implementation of ROT13:ROT47 I created the function frotate_c_ex(); to double your
pleasure in 12 steps. Using my original project I wrote for Hacking Cryptograms 101: "Rotating letters is
not secure, just annoying", I have added more functionality for you to play with (I’ve added // [comment
marks] to prior functionality that you may want to enable):

// Blacklisted411.net_HackingCryptograms101_example_5.cpp
// Hacking Cryptograms 101: Double Your Pleasure
// By Israel Torres < israel@israeltorres.org >
// Source: http://blacklisted411.israeltorres.org/

// This example demonstrates how to brute force ROT(x), ROT13, ROT47.
// You can play with the functions set in main:
// frotate_a_ex(), frotate_b_ex(), frotate_c_ex().
//

#include <iostream.h>
#include <string.h>

// here we declaring our rotation function prototype
void frotate_a(char szCrypto[255], int nrotate, char szCryptoOut[255]);
void frotate_a_ex(char szCrypto[255]);

void frotate_b(char szCrypto[255], int nrotate, char szCryptoOut[255]);
void frotate_b_ex(char szCrypto[255]);

void frotate_c_ex(char szCrypto[255]);

// here we are implementing our rotation function
void frotate_a(char szCrypto[255], int nrotate, char szCryptoOut[255])
{
 // here we are setting up our variables for use
 char szTemp[2]="\0";
 char szTemp2[2]="\0";
 int flag_skip = 0;

 // clear variable
 strcpy(szCryptoOut,"");

 // here we are finding out what the length of the cryptogram is
 int nCrypto = strlen(szCrypto);

 // here we are working for the entire length of the cryptogram
 for (int nloop = 0 ; nloop < nCrypto ; nloop++)
 {
 // here we are copying data into a variable for exclusive usage.
 szTemp[0] = szCrypto[nloop];

 // here we are comparing the value of the character to a set of ASCII conditions
 if ((int(szTemp[0]) >= 65) && (int(szTemp[0]) <= 90))
 {
 // we know that upper case letters are 26 values between 65 and 90
 // we then rotate the values accordinginly to make sure we are not exceeding the letter limit
 // and finally put the new data to the console
 //cout << char(65 + (int(szTemp[0]) - 65 - nrotate + 260)%26);
 szTemp2[0] = char(65 + (int(szTemp[0]) - 65 - nrotate + 260)%26);
 strcat(szCryptoOut, szTemp2);
 flag_skip = 1;
 }

 if ((int(szTemp[0]) >= 97) && (int(szTemp[0]) <= 122))
 {
 // we know that lower case letters are 26 values between 97 and 122
 // we then rotate the values accordinginly to make sure we are not exceeding the letter limit
 // and finally put the new data to the console
 //cout << char(97 + (int(szTemp[0]) - 97 - nrotate + 260)%26);
 szTemp2[0] = char(97 + (int(szTemp[0]) - 97 - nrotate + 260)%26);
 strcat(szCryptoOut, szTemp2);
 flag_skip = 1;
 }

 // here we are just passing anything that is not a letter directly to the console
 if (flag_skip == 0)
 {
 //cout << szTemp[0];
 strcat(szCryptoOut, szTemp);
 }

 // here we are resetting the flag for the next time around
 flag_skip = 0;
 }
}

void frotate_a_ex(char szCrypto[255])
{
 // here we are setting up our variables for use
 int max_rotate = 26 +1;
 char szCryptoOut[255]="\0";

 // here we are looping through our rotations
 for (int nrotate = 0; nrotate < max_rotate; nrotate++)
 {
 // here we are calling our rotation function
 // and presenting it to the console in this format
 frotate_a(szCrypto, nrotate, szCryptoOut);
 cout << nrotate << "\t" << szCryptoOut << endl;

 }
}

// here we are implementing our rotation function
void frotate_b(char szCrypto[255], int nrotate, char szCryptoOut[255])
{

 // here we are setting up our variables for use
 char szTemp[2]="\0";
 int flag_skip = 0;
 char szTemp2[2]="\0";

 // clear variable
 strcpy(szCryptoOut,"");

 // here we are finding out what the length of the cryptogram is
 int nCrypto = strlen(szCrypto);

 // here we are working for the entire length of the cryptogram
 for (int nloop = 0 ; nloop < nCrypto ; nloop++)
 {
 // here we are copying data into a variable for exclusive usage.
 szTemp[0] = szCrypto[nloop];

 // here we are comparing the value of the character to a set of ASCII conditions
 if ((int(szTemp[0]) >= 33) && (int(szTemp[0]) <= 126))
 {
 // we know that upper case letters are 26 values between 65 and 90
 // we then rotate the values accordinginly to make sure we are not exceeding the letter limit
 // and finally put the new data to the console
 //cout << char(33 + (int(szTemp[0]) - (33+47) - nrotate + 940)%94);
 szTemp2[0] = char(33 + (int(szTemp[0]) - (33+47) - nrotate + 940)%94);
 strcat(szCryptoOut, szTemp2);
 flag_skip = 1;
 }

 // here we are just passing anything that is not a letter directly to the console
 if (flag_skip == 0)
 {
 cout << szTemp[0];
 strcat(szCryptoOut, szTemp);
 }

 // here we are resetting the flag for the next time around
 flag_skip = 0;
 }
}

void frotate_b_ex(char szCrypto[255])
{
 // here we are setting up our variables for use
 int max_rotate = 47 +1;
 char szCryptoOut[255]="\0";

 // here we are looping through our rotations
 for (int nrotate = 0; nrotate < max_rotate; nrotate++)
 {
 // here we are calling our rotation function
 // and presenting it to the console in this format
 frotate_b(szCrypto, nrotate, szCryptoOut);
 cout << nrotate << "\t" << szCryptoOut << endl;
 }
}

void frotate_c_ex(char szCrypto[255])
{
 int nrotate_a = 13;
 int nrotate_b = 0;
 char szCryptoOut[255]="\0";

 cout << "Macro" << "\t" << "ROT13 (ODD)" << "\t" << " ROT47 (EVEN)" << endl;
 cout << "####################################" << endl;

 cout << "0" << "\t" << szCrypto << endl;

 for (int nmacro = 1 ; nmacro < 12 + 1; nmacro++)
 {
 cout << nmacro << "\t";
 frotate_a(szCrypto, nrotate_a, szCryptoOut);
 cout << szCryptoOut << "\t";
 frotate_b(szCryptoOut, nrotate_b, szCrypto);
 cout << szCrypto << endl;

 }

}

void main(int argc, char* argv[])
{
 // here we are setting up our variables for use
 char szCrypto[255]="\0";
 // here we are copying our cryptogram into a variable
 strcpy(szCrypto,"Hello World");

 // rot(x) with caeser cipher A-Z, a-z including ROT13
 //frotate_a_ex(szCrypto);

 // rot(x) including ROT47
 //frotate_b_ex(szCrypto);

 frotate_c_ex(szCrypto);

}

After you’ve compiled and executed it you will see these results that match the original chart above.

So I heard that no one submitted a valid solution to last month’s cryptogram (tsk,tsk):
&#{ {qw }t# } y'pp#t

Now using this lesson it should be really easy to figure out ;)

Hopefully you guys will try a little harder next time in this month’s cryptogram.

If you do solve it and feel more confident to play with more cryptograms check out this column’s
“Fitzgerald cryptogram” started in .NET Edition 5 below.

This concludes Lesson 5 of Hacking Cryptograms 101. If you encounter a cryptogram or what you
suspect to be a secret message that interests you either because you are stuck solving it or for any other
reason please send me an email. See you next edition!

Keeping it ‘rael,
Israel Torres

The Fitzgerald Cryptogram

The test of a first-rate intelligence is the ability to hold two opposed ideas in mind at the same time and still retain the ability to
function. - F. Scott Fitzgerald

04 00 00 00 00 00
16 18 21 22 24 30
01 10 17 21 24 40
60 64 89 00 00 00
10 17 33 00 00 00

Email your solution to israel@israeltorres.org

Source Code
Source code can be downloaded here:
Zip
http://blacklisted411.israeltorres.org/Blacklisted411.net_HackingCryptograms101_example_5.zip

CPP
http://blacklisted411.israeltorres.org/Blacklisted411.net_HackingCryptograms101_example_5.cpp

MD5 hash of the source code can be validated at:
http://blacklisted411.israeltorres.org/Blacklisted411.net_HackingCryptograms101_example_5.md5.txt

note: you may have to copy and paste the addresses above if they wrap around!

References and Related Links

ROT13
http://en.wikipedia.org/wiki/ROT13

FTard Decoder Ring
http://tools.israeltorres.org/FTardCryptoSuite.php#FTardDecoderRing

The Hacking Cryptograms 101 Articles Collection
http://blacklisted411.israeltorres.org/

[a] Hacking a CD Check Function

Hacking A CD Check Function
By Israel Torres <israel@israeltorres.org>

Disclaimer: Be Responsible For Your Own Actions .This document has been censored for your protection.

The other day I went to look for a decent Sudoku game for Windows because I no longer wanted to carry
around the 2 inch thick 1001 Sudoku book I bought the week prior. It was really inconvenient and heavy
and wasn’t as portable as I thought it would be. I figured something to run on my laptop would suit my
portability issues a lot better. I shopped around at a few retailers without any luck around the same time I
decided to get the book. It was surprising to see that the top gaming companies out there didn’t have
anything out to date for such a popular game – seriously most book stores have a few shelves dedicated to
this game alone. So the following week I was looking in the game area of one of my favorite
[undisclosed] retailers and there it was. Not really in the section I buy from but from the cheaper jewel-
case-only software section (aka the cheap shelf). The same section I promised myself I wouldn’t buy from
again because last two times the games contained spyware or just plain sucked compared to their
packaging artwork (never judge a game by the pretty pictures on the box). With much hesitation I picked
it up read it over and bought it.

The features promised on the back of the package were really good compared to most online versions of
the game, or any shareware versions – it even came with a built in solver to solve offline games. I quickly
read the manual to see if there were any weird warnings that weren’t on the outside of the package… and
what do you know:

…requires that all programs be installed from an account with Administrator rights…

That figures. I usually never install anything from a privileged account and always feel strange when a
game bought from the cheap shelf REQUIRES it. Great - this usually means I have to test it on a test
machine first and check to see if there are any undocumented surprises like outbound packets leaking
information, phoning home, etc.

It installs fine and I fire it up, the splash screen takes a lot longer than it should and the menu is really
basic and easy to follow. I monitor it for a while and don’t notice anything weird trying to get out to the
Internet, or suspicious activity happening in the background. I open up the installation directory and
notice a bunch of VB6 DLL’s I examine the main executable by throwing it into a hex editor and confirm
it is written in VB6.

C:\Program Files\Microsoft Visual Studio\VB98\VB

I sweep over the rest of the program quickly and don’t notice anything immediately so I reboot the test
system to see if there are any post-boot triggers. It comes up fine. I pick and poke a few more times and
don’t run across anything suspicious and conclude that running this game wouldn’t put my laptop into a
more vulnerable posture than it already is. Satisfied with this I remove the CD and install it on my laptop
system as recommended by the instructions – of course I tried to install it as a user first without success as
expected.

I put the CD away and forgot about the game until later that evening. I thought about playing Sudoku and
fired it up by clicking the icon in my quick start toolbar. It came up as expected (after it dropped my
volume down to start its soundtrack) and it prompted me to choose a player identity and click one of the
menu game items. I clicked on the simple version and immediately was surprised to see the [undisclosed]
“CD Check” message box pop up:

Attention!

Please insert the [UNDISCLOSED] CD into the drive from which the game was
installed.

OK Cancel

I thought to myself, geeze are really people still doing this – especially on a cheap game?

Instinctively my mind switched from wanting-to-play-Sudoku mode to wanting-to-hack-Sudoku-
application mode almost instantly.

I clicked on OK just to see if that would shut it up. No luck there. I clicked Cancel and it terminated the
whole game. As far as I was concerned this was completely unacceptable. There was no way I could
return this game due to store policy and putting any more effort into going about getting my money back
was already into the red. I don’t have the luxury of carrying a spare CD-ROM compatible drive whenever
I want to play, nor should I have to since the entire game installs itself on my hard disk. Someone at this
company decided some time along the way that putting in a CD-check for this game would do their part in
piracy prevention at the everyday user’s inconvenience (namely mine). Things were about to change as far
as I was concerned…

I took the simplest route (to reinvention prevention) and knocked on Google to see if there was a patch for
this game that would make it “friendlier”. I had my doubts since it was from the cheap shelf and I
probably had one of 40 copies worldwide. My doubts were correct, no one had heard of this game. I also
figured that installing a patch would put my machine at more risk than it was worth even if I had found
one. Some of the patches out there have some creepy stuff in them. If anything I would check it out to see
what the patch was doing and do it myself since it was just for my single system. Just to be super safe I

read over the document and EULA to make sure there wasn’t anything about patching their software, and
there wasn’t. Good for me and good for you.

I took a breath then created a temporary directory, filled it with a handful of useful tools for finding out
what an application is doing (Filemon, Regmon, Depends, Spy++ just to name a few). Then began the
slow process of finding out what all was involved with this CD-check. There wasn’t an INI file present in
the installation directory so more than likely there were settings in the registry that it was initializing itself
with upon invocation. I fired up Regmon, filtered by filename, got to the point where it was going to ask
for the CD used ALT-TAB to switch tasks to start and stop Regmon and examined the resulting log:

I noticed one file that was being queried more than once and it is SCRRUN.DLL. I searched the system
for the file and checked the properties on it:

Its description is Microsoft ® Script Runtime -the keyword being script. From this point it is easy
enough to deduce that they are using Visual Basic Script / VBScript around the same time they are doing
the CD-Check. Now to verify and see if we can find this somewhere in the executable file.

I drag the executable to my hex editor (hex-fu time) and search for the hexadecimal representation of the
word “Script”. Depending on which editor you are using you may need to convert the word correctly so
that it is found if it is there:

Conversion of the word Script
Script 1. The word Script

S c r i p t 2. With spaces between each character

53 63 72 69 70 74 3. Converted to hexadecimal values

53 00 63 00 72 00 69 00 70 00 74 4. With 00h in between each character.

Doing this 53 00 63 00 72 00 69 00 70 00 74 is the hexadecimal representation for the word Script. Type
this in and search for it.

… and I immediately hit pay dirt! Quickly I can see the and extra the text:

4
Scripting FileSystemObject
Drives
A:
IsReady
VolumeName
SUDOKU
Attention!
$
Please Insert the
j
CD into the drive from which the game was installed

I see the message box (MsgBox) message that is being thrown up when the conditional isn’t being met,
and I can edit it to say whatever I’d like – but what I’d really like to do is not have it come up at all. After
making a backup I first try and remove it by overwriting it with 00’s.

This doesn’t work and I get script errors within the program that the object couldn’t be created correctly.

Sudoku

Run-time error '429':

ActiveX component can't create object

OK

After running into this error message I try and think of how the logic is being set up and think of the
pseudo-code:

‘ VBScript Pseudo-Code for checking the drives for a CD-ROM with the volume name
SUDOKU
‘
Create Scripting FileSystemObject

Check the Drives for an inserted (IsReady) CD (4) with the VolumeName SUDOKU
‘

Ok, that looks like what is happening, I check out Microsoft’s Visual Basic and VBScript references on
these functions and write up the following VBScript code following the pseudo-code above:

' Blacklisted411.net_Hacking_A_CD_Check_Function.vbs
' Hacking A CD Check Function
' By Israel Torres < israel@israeltorres.org >
'
' This example demonstrates how this CD-Check is checking its requirements
' It is not suggested to do it this way because it can easily be hacked by:
' Changing ReqDriveType from 4 to 2 (CD to Hard Disk)
' Changing ReqVolumeName from "SUDOKU" to "VOLUME" (arbitrary)
' ... allows the CD-Check function to be defeated within the compiled binary.

' Set up variables for use
Option Explicit
Dim fs, dc, d
Dim ReqDriveType, ReqVolumeName
Dim flagCD

' Declare variable values
flagCD = false

ReqDriveType = 4
' Defined Drive Types
' 0 = "Unknown"
' 1 = "Removable"
' 2 = "Fixed"
' 3 = "Network"
' 4 = "CD-ROM"
' 5 = "RAM Disk"

ReqVolumeName = "SUDOKU"

' Instantiate the FileSystemObject
Set fs = CreateObject("Scripting.FileSystemObject")

' Get the machine's Drive listing
Set dc = fs.Drives

' Loop through our drives until we find:
' A CD-ROM with the Volumename SUDOKU
For Each d in dc
 If d.DriveType = ReqDriveType Then
 If d.IsReady Then
 If d.VolumeName = ReqVolumeName Then
 flagCD = true

 End If
 Else
 MsgBox "CD Drive Not Ready"
 End If
 End If
Next

If flagCD = true Then
 MsgBox "Requirements Found (Check Verified)"
Else
 MsgBox "Requirements Not Found"
End If

I test it a few times with the CD Inserted and the CD ejected and it looks good and accurate to the
behavior in the compiled code. It also looks like they didn’t bother resetting the flags during enumeration
or really anything other than check for anything other than a CD-ROM with a Volume Name of
SUDOKU.

Going one step at a time I change one of my hard disk volume names to SUDOKU in preparation to
“spoof” the Volume Name after I cripple the drivetype so the conditional will “think” everything is ok
and all conditions are met.

Using my hex-fu I throw the binary into my hex editor, search for Script (53 00 63 00 72 00 69 00 70 00
74) and change the value of 4 (ASCII 52 decimal -> 34 hexadecimal) to the value of 2 (ASCII 50 decimal
-> 32 hexadecimal). I save the binary after making a backup of the original (*important when
experimenting*) and click on the executable to see if things look good.

Things work just as planned – I am no longer receiving the error message requesting to insert the CD-
ROM. This fulfills my needs, but one last thing I’d like to change is the Volume Name requirement from

SUDOKU to something else – Why? - Because I can. Personally I like to keep my volume labels simple
and generic and not give more information to someone who may be shoulder surfing when I am not
looking. I think of other six letter words that would replace SUDOKU and VOLUME fits the bill.
(Changing this is demonstrated in the same graphic above). I test it again with and without the CD and
the CD-Check has been completely defeated – its logic functions will always be true regardless whether
the CD is inserted or not. (During my experimentation I also tried this with a USB key by modifying the
DriveType to removable drive (1) and it worked as expected.)

The lesson to be learned is that this type of CD check is not “secure” - just annoying. If you are the
programmer that wrote this function I hope you have learned something from this. Sure the whole “low-
hanging fruit” deterrence concept used to be an excuse – used to be.

Now onto playing Sudoku! ;)

Keeping it ‘rael,
Israel Torres

Source Code
The VBScript Source code demonstrated herein can be downloaded here:
VBScript
http://blacklisted411.israeltorres.org/Blacklisted411.net_Hacking_A_CD_Check_Function.vbs

Zip Archive:
http://blacklisted411.israeltorres.org/Blacklisted411.net_Hacking_A_CD_Check_Function.zip

MD5 hash of the source code can be validated at:
http://blacklisted411.israeltorres.org/Blacklisted411.net_Hacking_A_CD_Check_Function.md5.txt

note: you may have to copy and paste the addresses above if they wrap around!

References and Related Links

UltraEdit 32
http://www.ultraedit.com/

Depends.exe
http://www.dependencywalker.com/

Regmon
http://www.sysinternals.com/Utilities/Regmon.html

FileMon
http://www.sysinternals.com/Utilities/Filemon.html

Spy++
http://msdn.microsoft.com/library/en-us/vcug98/html/_asug_home_page.3a_.spy.2b2b.asp
http://msdn.microsoft.com/msdnmag/issues/06/04/ManagedSpy/

1001 Sudoku (SBN: 1560258837)
http://www.amazon.com/gp/product/1560258837/qid=1142478374/sr=2-1/ref=pd_bbs_b_2_1/102-2000420-
8412957?s=books&v=glance&n=283155

Microsoft Windows Scripting

http://msdn.microsoft.com/scripting/

Microsoft Visual Basic Reference
http://msdn.microsoft.com/library/en-us/VBRef98/html/vbmscLROverview.asp

FileSystemObject Object
- Provides access to a computer's file system.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/html/vaobjfilesystemobject.asp

Drives Collection
- Read-only collection of all available drives.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/html/vaobjDrives.asp

Drive Object
- Provides access to the properties of a particular disk drive or network share.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/html/vaobjDrive.asp

IsReady Property
- Returns True if the specified drive is ready; False if it is not.
http://msdn.microsoft.com/library/en-us/vbenlr98/html/vaproIsReady.asp

VolumeName Property
- Sets or returns the volume name of the specified drive. Read/write.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/html/vaprovolumename.asp

DriveType Property
- Returns a value indicating the type of a specified drive.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/html/vaprodrivetype.asp

The name of the Sudoku game and retailer mentioned herein are undisclosed for everyone's
protection.

[5] ==Cryptogram==

March Cryptogram
By Israel Torres <israel@israeltorres.org>

You have one simple cryptogram to solve:

Hint: It is really easy.

Your mission if you choose to accept it is solving this cryptogram (if you can). To qualify as a winner you
need to submit two things:

1. The solved message
2. How you solved the cryptogram by describing each step, algorithm name, etc. The more

information you submit the more we’ll believe you.

Send both items 1 and 2 to crypto@blacklisted411.net with the subject of “cryptograms”

Winners will be posted in order of submittals based on correctness and completeness above.
Winners will be posted right before the next edition is released.
Keeping it ‘rael,

Israel Torres

[6] ==Favorite Photo==

A mint mp3 player

http://www.i-hacked.com/index.php?option=content&task=view&id=216
[7] ==Links==

Hacking Games
http://www.hackits.de/ - Hacking challenges (Games, Puzzles, Etc)
http://www.hackthissite.org/ - Offering encryption, hacking, real world challenges, and more

Computer Security News
http://www.securityfocus.com - A leader in security related news

http://www.topix.net/tech/computer-security - A collaboration of computer security news from around the
web

[8] ==Credits==

Chief Editor: Zachary Blackstone

Online Edition Editor: Ustler

Authors: Israel Torres.

