
Lecture slides prepared for “Computer Security: Principles and Practice”, 2/e, by 

William Stallings and Lawrie Brown, Chapter 4 “Overview”.

1



This chapter focuses on access control enforcement within a computer system.

The chapter considers the situation of a population of users and user groups that are

able to authenticated to a system and are then assigned access rights to certain 
resources

on the system. A more general problem is a network or Internet-based environment, in

which there are a number of client systems, a number of server systems, and a number

of users who may access servers via one or more of the client systems. This more 
general

context introduces new security issues and results in more complex solutions than those

addressed in this chapter. We cover these topics in Chapter 23.

2



3

ITU-T Recommendation X.800 defines access control as follows:

Access Control: The prevention of unauthorized use of a resource, 
including the

prevention of use of a resource in an unauthorized manner

We can view access control as the central element of computer security. The

principal objectives of computer security are to prevent unauthorized users from

gaining access to resources, to prevent legitimate users from accessing 

resources in

an unauthorized manner, and to enable legitimate users to access resources in 

an

authorized manner.



4

In a broad sense, all of computer security is concerned with access control. 

Indeed,

RFC 2828 defines computer security as follows: Measures that implement and 

assure

security services in a computer system, particularly those that assure access 

control

service. This chapter deals with a narrower, more specific concept of access 

control:

Access control implements a security policy that specifies who or what (e.g., in 

the

case of a process) may have access to each specific system resource and the 

type of

access that is permitted in each instance.



5

Figure 4.1 shows a broader context of access control. In addition to access

control, this context involves the following entities and functions:

• Authentication: Verification that the credentials of a user or other system

entity are valid.

Authorization: The granting of a right or permission to a system entity to

access a system resource. This function determines who is trusted for a given

purpose.

• Audit: An independent review and examination of system records and 

activities

in order to test for adequacy of system controls, to ensure compliance with

established policy and operational procedures, to detect breaches in security,

and to recommend any indicated changes in control, policy and procedures.

An access control mechanism mediates between a user (or a process executing

on behalf of a user) and system resources, such as applications, operating 

systems,



firewalls, routers, files, and databases. The system must first authenticate an 

entity

seeking access. Typically, the authentication function determines whether the user

is permitted to access the system at all. Then the access control function 

determines

if the specific requested access by this user is permitted. A security administrator

maintains an authorization database that specifies what type of access to which

resources is allowed for this user. The access control function consults this 

database

to determine whether to grant access. An auditing function monitors and keeps a

record of user accesses to system resources.

In the simple model of Figure 4.1, the access control function is shown as

a single logical module. In practice, a number of components may cooperatively

share the access control function. All operating systems have at least a 

rudimentary,

and in many cases a quite robust, access control component. Add-on security

packages can supplement the native access control capabilities of the OS. 

Particular

applications or utilities, such as a database management system, also incorporate

access control functions. External devices, such as firewalls, can also provide 

access

control services.

5



6

An access control policy, which can be embodied in an authorization database,

dictates what types of access are permitted, under what circumstances, and by

whom. Access control policies are generally grouped into the following 

categories:

• Discretionary access control (DAC): Controls access based on the 
identity

of the requestor and on access rules (authorizations) stating what requestors

are (or are not) allowed to do. This policy is termed discretionary because an

entity might have access rights that permit the entity, by its own volition, to

enable another entity to access some resource.

• Mandatory access control (MAC): Controls access based on comparing

security labels (which indicate how sensitive or critical system resources are)

with security clearances (which indicate system entities are eligible to access

certain resources). This policy is termed mandatory because an entity that has

clearance to access a resource may not, just by its own volition, enable another

entity to access that resource.



• Role-based access control (RBAC): Controls access based on the roles 

that

users have within the system and on rules stating what accesses are allowed to

users in given roles.

DAC is the traditional method of implementing access control, and is examined

in Section 4.3. MAC is a concept that evolved out of requirements for military

information security and is best covered in the context of trusted systems, which 

we

deal with in Chapter 13. RBAC has become increasingly popular and is covered in

Section 4.5.

These three policies are not mutually exclusive (Figure 4.2). An access control

mechanism can employ two or even all three of these policies to cover different

classes of system resources.

6



7

[VIME06] lists the following concepts and features that should be supported by 

an

access control system.

• Reliable input: The old maxim garbage-in-garbage-out applies with 
special

force to access control. An access control system assumes that a user is

authentic; thus, an authentication mechanism is needed as a front end to an

access control system. Other inputs to the access control system must also

be reliable. For example, some access control restrictions may depend on an

address, such as a source IP address or medium access control address. The

overall system must have a means of determining the validity of the source for

such restrictions to operate effectively.

• Support for fine and coarse specifications: The access control system 
should

support fine-grained specifications, allowing access to be regulated at the level of

individual records in files, and individual fields within records. The system should

also support fine-grained specification in the sense of controlling each individual



access by a user rather than a sequence of access requests. System 

administrators

should also be able to choose coarse-grained specification for some classes of

resource access, to reduce administrative and system processing burden.

• Least privilege: This is the principle that access control should be 
implemented

so that each system entity is granted the minimum system resources and 

authorizations

that the entity needs to do its work. This principle tends to limit damage

that can be caused by an accident, error, or fraudulent or unauthorized act.

• Separation of duty: This is the practice of dividing the steps in a system 

function

among different individuals, so as to keep a single individual from subverting the

process. This is primarily a policy issue; separation of duty requires the 

appropriate

power and flexibility in the access control system, including least privilege and

fine-grained access control. Another useful tool is history-based authorization,

which makes access dependent on previously executed accesses.

• Open and closed policies: The most useful, and most typical, class of 
access

control policies are closed policies. In a closed policy, only accesses that

are specifically authorized are allowed. In some applications, it may also be

desirable to allow an open policy for some classes of resources. In an open

policy, authorizations specify which accesses are prohibited; all other accesses

are allowed.

• Policy combinations and conflict resolution: An access control mechanism

may apply multiple policies to a given class of resources. In this case, care must

be taken that there are no conflicts such that one policy enables a particular

access while another policy denies it. Or, if such a conflict exists, a procedure

must be defined for conflict resolution.

• Administrative policies: As was mentioned, there is a security 
administration

function for specifying the authorization database that acts as an input to the

7



access control function. Administrative policies are needed to specify who can

add, delete, or modify authorization rules. In turn, access control and other

control mechanisms are needed to enforce the administrative policies.

• Dual control: When a task requires two or more individuals working in 

tandem.

7



8

The basic elements of access control are: subject, object, and access right.

A subject is an entity capable of accessing objects. Generally, the concept 
of

subject equates with that of process. Any user or application actually gains 

access to

an object by means of a process that represents that user or application. The 

process

takes on the attributes of the user, such as access rights.

A subject is typically held accountable for the actions they have initiated,

and an audit trail may be used to record the association of a subject with security 

relevant

actions performed on an object by the subject.

Basic access control systems typically define three classes of subject, with

different access rights for each class:

• Owner: This may be the creator of a resource, such as a file. For system 

resources,



ownership may belong to a system administrator. For project resources, a project

administrator or leader may be assigned ownership.

• Group: In addition to the privileges assigned to an owner, a named group 

of

users may also be granted access rights, such that membership in the group is

sufficient to exercise these access rights. In most schemes, a user may belong

to multiple groups.

• World: The least amount of access is granted to users who are able to 

access the

system but are not included in the categories owner and group for this resource.

An object is a resource to which access is controlled. In general, an object

is an entity used to contain and/or receive information. Examples include records,

blocks, pages, segments, files, portions of files, directories, directory trees, 

mailboxes,

messages, and programs. Some access control systems also encompass, bits,

bytes, words, processors, communication ports, clocks, and network nodes.

The number and types of objects to be protected by an access control system

depends on the environment in which access control operates and the desired 

tradeoff

between security on the one hand and complexity, processing burden, and ease

of use on the other hand.

An access right describes the way in which a subject may access an object.

Access rights could include the following:

• Read: User may view information in a system resource (e.g., a file, selected

records in a file, selected fields within a record, or some combination). Read

access includes the ability to copy or print.

• Write: User may add, modify, or delete data in system resource (e.g., files,

records, programs). Write access includes read access.

• Execute: User may execute specified programs.

8



• Delete: User may delete certain system resources, such as files or records.

• Create: User may create new files, records, or fields.

• Search: User may list the files in a directory or otherwise search the 

directory.

8



9

As was previously stated, a discretionary access control scheme is one in which 

an

entity may be granted access rights that permit the entity, by its own volition, to

enable another entity to access some resource. A general approach to DAC, as

exercised by an operating system or a database management system, is that of 

an

access matrix. The access matrix concept was formulated by Lampson 

[LAMP69,

LAMP71], and subsequently refined by Graham and Denning [GRAH72, 

DENN71]

and by Harrison et al. [HARR76].

One dimension of the matrix consists of identified subjects that may attempt

data access to the resources. Typically, this list will consist of individual users or

user groups, although access could be controlled for terminals, network 

equipment,

hosts, or applications instead of or in addition to users. The other dimension lists

the objects that may be accessed. At the greatest level of detail, objects may be

individual data fields. More aggregate groupings, such as records, files, or even 

the



entire database, may also be objects in the matrix. Each entry in the matrix 

indicates

the access rights of a particular subject for a particular object.

9



10

Figure 4.3a, based on a figure in [SAND94], is a simple example of an access

matrix. Thus, user A owns files 1 and 3 and has read and write access rights to 

those

files. User B has read access rights to file 1, and so on.



11

In practice, an access matrix is usually sparse and is implemented by 

decomposition

in one of two ways. The matrix may be decomposed by columns, yielding

access control lists (ACLs); see Figure 4.3b. For each object, an ACL lists 
users and

their permitted access rights. The ACL may contain a default, or public, entry. 

This

allows users that are not explicitly listed as having special rights to have a default

set of rights. The default set of rights should always follow the rule of least 

privilege

or read-only access, whichever is applicable. Elements of the list may include

individual users as well as groups of users.

When it is desired to determine which subjects have which access rights to a 

particular

resource, ACLs are convenient, because each ACL provides the information

for a given resource. However, this data structure is not convenient for 

determining

the access rights available to a specific user.



Decomposition by rows yields capability tickets (Figure 4.3c). A capability

ticket specifies authorized objects and operations for a particular user. Each user

has a number of tickets and may be authorized to loan or give them to others.

Because tickets may be dispersed around the system, they present a greater 

security

problem than access control lists. The integrity of the ticket must be protected,

and guaranteed (usually by the operating system). In particular, the ticket must

be unforgettable. One way to accomplish this is to have the operating system hold

all tickets on behalf of users. These tickets would have to be held in a region of

memory inaccessible to users. Another alternative is to include an unforgeable

token in the capability. This could be a large random password, or a cryptographic

message authentication code. This value is verified by the relevant resource 

whenever

access is requested. This form of capability ticket is appropriate for use in a

distributed environment, when the security of its contents cannot be guaranteed.

The convenient and inconvenient aspects of capability tickets are the opposite

of those for ACLs. It is easy to determine the set of access rights that a given user

has, but more difficult to determine the list of users with specific access rights for a

specific resource.

11



12

[SAND94] proposes a data structure that is not sparse, like the access matrix,

but is more convenient than either ACLs or capability lists (Table 4.1). An 

authorization

table contains one row for one access right of one subject to one resource.

Sorting or accessing the table by subject is equivalent to a capability list. Sorting 

or

accessing the table by object is equivalent to an ACL. A relational database can

easily implement an authorization table of this type.

This section introduces a general model for DAC developed by Lampson, 

Graham,

and Denning [LAMP71, GRAH72, DENN71]. The model assumes a set of 

subjects,

a set of objects, and a set of rules that govern the access of subjects to objects. 

Let us

define the protection state of a system to be the set of information, at a given 

point in

time, that specifies the access rights for each subject with respect to each object. 

We can

identify three requirements: representing the protection state, enforcing access 

rights,



and allowing subjects to alter the protection state in certain ways. The model 

addresses

all three requirements, giving a general, logical description of a DAC system.

To represent the protection state, we extend the universe of objects in the

access control matrix to include the following:

• Processes: Access rights include the ability to delete a process, stop 

(block),

and wake up a process.

• Devices: Access rights include the ability to read/write the device, to 

control

its operation (e.g., a disk seek), and to block/unblock the device for use.

• Memory locations or regions: Access rights include the ability to 
read/write

certain regions of memory that are protected such that the default is to disallow

access.

• Subjects: Access rights with respect to a subject have to do with the 
ability

to grant or delete access rights of that subject to other objects, as explained

subsequently.

12



Figure 4.4 is an example. For an access control matrix A, each entry A[S, X]

contains strings, called access attributes, that specify the access rights of subject S to

object X. For example, in Figure 4.4, S1 may read file F2, because ‘read’ appears in

A[S1, F1].

From a logical or functional point of view, a separate access control module is

associated with each type of object (Figure 4.5). The module evaluates each request

by a subject to access an object to determine if the access right exists. An access

attempt triggers the following steps:

1. A subject S0 issues a request of type α for object X.

2. The request causes the system (the operating system or an access control 
interface

module of some sort) to generate a message of the form (S0, α, X) to the

controller for X.

3. The controller interrogates the access matrix A to determine if α is in A[S0, X].

If so, the access is allowed; if not, the access is denied and a protection violation

occurs. The violation should trigger a warning and appropriate action.

13



14

Figure 4.5 suggests that every access by a subject to an object is mediated

by the controller for that object, and that the controller’s decision is based on the

current contents of the matrix. In addition, certain subjects have the authority to

make specific changes to the access matrix. A request to modify the access 

matrix is

treated as an access to the matrix, with the individual entries in the matrix treated 

as

objects. Such accesses are mediated by an access matrix controller, which 

controls

updates to the matrix.



The model also includes a set of rules that govern modifications to the access

matrix, shown in Table 4.2. For this purpose, we introduce the access rights ‘owner’

and ‘control’ and the concept of a copy flag, explained in the subsequent paragraphs.

The first three rules deal with transferring, granting, and deleting access rights.

Suppose that the entry α* exists in A[S0, X]. This means that S0 has access right α to

subject X and, because of the presence of the copy flag, can transfer this right, with

or without copy flag, to another subject. Rule R1 expresses this capability. A subject

would transfer the access right without the copy flag if there were a concern that

the new subject would maliciously transfer the right to another subject that should

not have that access right. For example, S1 may place ‘read’ or ‘read*’ in any matrix

entry in the F1 column. Rule R2 states that if S0 is designated as the owner of object

X, then S0 can grant an access right to that object for any other subject. Rule 2 states

that S0 can add any access right to A[S, X] for any S, if S0 has ‘owner’ access to x.

Rule R3 permits S0 to delete any access right from any matrix entry in a row for

which S0 controls the subject and for any matrix entry in a column for which S0 owns

the object. Rule R4 permits a subject to read that portion of the matrix that it owns

or controls.

The remaining rules in Table 4.2 govern the creation and deletion of subjects

and objects. Rule R5 states that any subject can create a new object, which it

owns, and can then grant and delete access to the object. Under rule R6, the owner

of an object can destroy the object, resulting in the deletion of the corresponding

column of the access matrix. Rule R7 enables any subject to create a new subject;

the creator owns the new subject and the new subject has control access to itself.

Rule R8 permits the owner of a subject to delete the row and column (if there are

subject columns) of the access matrix designated by that subject.

15



The set of rules in Table 4.2 is an example of the rule set that could be defined

for an access control system. The following are examples of additional or 

alternative

rules that could be included. A transfer-only right could be defined, which results in

the transferred right being added to the target subject and deleted from the 

transferring

subject. The number of owners of an object or a subject could limited to one by

not allowing the copy flag to accompany the owner right.

The ability of one subject to create another subject and to have ‘owner’ access

right to that subject can be used to define a hierarchy of subjects. For example, in

Figure 4.4, S1 owns S2 and S3, so that S2 and S3 are subordinate to S1. By the 

rules

of Table 4.2, S1 can grant and delete to S2 access rights that S1 already has. 

Thus,

a subject can create another subject with a subset of its own access rights. This

might be useful, for example, if a subject is invoking an application that is not fully

trusted and does not want that application to be able to transfer access rights to

other subjects.

15



16

The access control matrix model that we have discussed so far associates a set 

of

capabilities with a user. A more general and more flexible approach, proposed

in [LAMP71], is to associate capabilities with protection domains. A protection

domain is a set of objects together with access rights to those objects. In terms

of the access matrix, a row defines a protection domain. So far, we have equated

each row with a specific user. So, in this limited model, each user has a 

protection

domain, and any processes spawned by the user have access rights defined by 

the

same protection domain.

A more general concept of protection domain provides more flexibility. For

example, a user can spawn processes with a subset of the access rights of the 

user,

defined as a new protection domain. This limits the capability of the process.

Such a scheme could be used by a server process to spawn processes for 

different

classes of users. Also, a user could define a protection domain for a program that

is not fully trusted, so that its access is limited to a safe subset of the user’s 



access

rights.

The association between a process and a domain can be static or dynamic.

For example, a process may execute a sequence of procedures and require 

different

access rights for each procedure, such as read file and write file. In general,

we would like to minimize the access rights that any user or process has at any

one time; the use of protection domains provides a simple means to satisfy this

requirement.

One form of protection domain has to do with the distinction made in many

operating systems, such as UNIX, between user and kernel mode. A user program

executes in a user mode, in which certain areas of memory are protected 
from the

user’s use and in which certain instructions may not be executed. When the user

process calls a system routine, that routine executes in a system mode, or what 

has

come to be called kernel mode, in which privileged instructions may be 
executed

and in which protected areas of memory may be accessed.

16



17

For our discussion of UNIX file access control, we first introduce several basic

concepts concerning UNIX files and directories.

All types of UNIX files are administered by the operating system by means of

inodes. An inode (index node) is a control structure that contains the key 

information

needed by the operating system for a particular file. Several file names may be

associated with a single inode, but an active inode is associated with exactly one 

file,

and each file is controlled by exactly one inode. The attributes of the file as well 

as

its permissions and other control information are stored in the inode. On the disk,

there is an inode table, or inode list, that contains the inodes of all the files in the 

file

system. When a file is opened, its inode is brought into main memory and stored 

in

a memory-resident inode table.

Directories are structured in a hierarchical tree. Each directory can contain

files and/or other directories. A directory that is inside another directory is referred



to as a subdirectory. A directory is simply a file that contains a list of file names 

plus

pointers to associated inodes. Thus, associated with each directory is its own 

inode.

17



18

Most UNIX systems depend on, or at least are based on, the file access control

scheme introduced with the early versions of UNIX. Each UNIX user is assigned

a unique user identification number (user ID). A user is also a member of a 

primary

group, and possibly a number of other groups, each identified by a group ID.

When a file is created, it is designated as owned by a particular user and marked

with that user’s ID. It also belongs to a specific group, which initially is either its

creator’s primary group, or the group of its parent directory if that directory has

SetGID permission set. Associated with each file is a set of 12 protection bits. 

The

owner ID, group ID, and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the

owner of the file, other members of the group to which this file belongs, and all 

other

users. These form a hierarchy of owner, group, and all others, with the highest 

relevant

set of permissions being used. Figure 4.6a shows an example in which the file 

owner has

read and write access; all other members of the file’s group have read access, 



and users

outside the group have no access rights to the file. When applied to a directory, 

the read

and write bits grant the right to list and to create/rename/delete files in the 

directory.

The execute bit grants to right to descend into the directory or search it for a 

filename.

18



19

The remaining three bits define special additional behavior for files or directories.

Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)

permissions. If these are set on an executable file, the operating system 

functions as

follows. When a user (with execute privileges for this file) executes the file, the 

system

temporarily allocates the rights of the user’s ID of the file creator, or the file’s 

group,

respectively, to those of the user executing the file. These are known as the 

“effective

user ID” and “effective group ID” and are used in addition to the “real user ID” 

and

“real group ID” of the executing user when making access control decisions for 

this

program. This change is only effective while the program is being executed. This 

feature

enables the creation and use of privileged programs that may use files normally

inaccessible to other users. It enables users to access certain files in a controlled 

fashion.

Alternatively, when applied to a directory, the SetGID permission indicates that 

newly



created files will inherit the group of this directory. The SetUID permission is 

ignored.

The final permission bit is the “Sticky” bit. When set on a file, this originally

indicated that the system should retain the file contents in memory following 

execution.

This is no longer used. When applied to a directory, though, it specifies that

only the owner of any file in the directory can rename, move, or delete that file. 

This

is useful for managing files in shared temporary directories.

One particular user ID is designated as “superuser.” The superuser is

exempt from the usual file access control constraints and has systemwide access.

Any program that is owned by, and SetUID to, the “superuser” potentially grants

unrestricted access to the system to any user executing that program. Hence 

great

care is needed when writing such programs.

This access scheme is adequate when file access requirements align with users

and a modest number of groups of users. For example, suppose a user wants to 

give

read access for file X to users A and B and read access for file Y to users B and 

C. We

would need at least two user groups, and user B would need to belong to both 

groups

in order to access the two files. However, if there are a large number of different

groupings of users requiring a range of access rights to different files, then a very 

large

number of groups may be needed to provide this. This rapidly becomes unwieldy 

and

difficult to manage, even if possible at all. One way to overcome this problem is to 

use

access control lists, which are provided in most modern UNIX systems.

A final point to note is that the traditional UNIX file access control scheme

implements a simple protection domain structure. A domain is associated with the

user, and switching the domain corresponds to changing the user ID temporarily.

19



20

Many modern UNIX and UNIX-based operating systems support access control

lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we 

describe

FreeBSD, but other implementations have essentially the same features and 

interface.

The feature is referred to as extended access control list, while the traditional

UNIX approach is referred to as minimal access control list.

FreeBSD allows the administrator to assign a list of UNIX user IDs and groups

to a file by using the setfacl command. Any number of users and groups can be

associated with a file, each with three protection bits (read, write, execute), 

offering a

flexible mechanism for assigning access rights. A file need not have an ACL but 

may be

protected solely by the traditional UNIX file access mechanism. Free BSD files 

include

an additional protection bit that indicates whether the file has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use

the following strategy (e.g., Figure 4.6b):



1. The owner class and other class entries in the 9-bit permission field have 

the

same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for 
this file.

These permissions represent the maximum permissions that can be assigned to

named users or named groups, other than the owning user. In this latter role, the

group class entry functions as a mask.

3. Additional named users and named groups may be associated with the 

file,

each with a 3-bit permission field. The permissions listed for a named user or

named group are compared to the mask field. Any permission for the named

user or named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are per 

formed.

Step 1 selects the ACL entry that most closely matches the requesting process. 

The ACL

entries are looked at in the following order: owner, named users, (owning or 

named)

groups, others. Only a single entry determines access. Step 2 checks if the 

matching entry

contains sufficient permissions. A process can be a member in more than one 

group; so

more than one group entry can match. If any of these matching group entries 

contain the

requested permissions, one that contains the requested permissions is picked (the 

result

is the same no matter which entry is picked). If none of the matching group entries 

contains

the requested permissions, access will be denied no matter which entry is picked.

20



21

Traditional DAC systems define the access rights of individual users and groups

of users. In contrast, RBAC is based on the roles that users assume in a system

rather than the user’s identity. Typically, RBAC models define a role as a job 

function

within an organization. RBAC systems assign access rights to roles instead of

individual users. In turn, users are assigned to different roles, either statically or

dynamically, according to their responsibilities.

RBAC now enjoys widespread commercial use and remains an area of active

research. The National Institute of Standards and Technology (NIST) has issued 

a

standard, Security Requirements for Cryptographic Modules (FIPS PUB 140-2, 

May

25, 2001), that requires support for access control and administration through 

roles.

The relationship of users to roles is many to many, as is the relationship of

roles to resources, or system objects (Figure 4.7). The set of users changes, in 

some

environments frequently, and the assignment of a user to one or more roles may



also be dynamic. The set of roles in the system in most environments is relatively

static, with only occasional additions or deletions. Each role will have specific 

access

rights to one or more resources. The set of resources and the specific access 

rights

associated with a particular role are also likely to change infrequently.

21



22

We can use the access matrix representation to depict the key elements of an

RBAC system in simple terms, as shown in Figure 4.8. The upper matrix relates

individual users to roles. Typically there are many more users than roles. Each 

matrix

entry is either blank or marked, the latter indicating that this user is assigned to 

this

role. Note that a single user may be assigned multiple roles (more than one mark 

in a

row) and that multiple users may be assigned to a single role (more than one 

mark in

a column). The lower matrix has the same structure as the DAC access control 

matrix,

with roles as subjects. Typically, there are few roles and many objects, or 

resources.

In this matrix the entries are the specific access rights enjoyed by the roles. Note 

that a

role can be treated as an object, allowing the definition of role hierarchies.

RBAC lends itself to an effective implementation of the principle of least

privilege, referred to in Section 4.1. Each role should contain the minimum set of



access rights needed for that role. A user is assigned to a role that enables him or 

her

to perform only what is required for that role. Multiple users assigned to the same

role, enjoy the same minimal set of access rights.

22



23

A variety of functions and services can be included under the general RBAC

approach. To clarify the various aspects of RBAC, it is useful to define a set of

abstract models of RBAC functionality.

The solid lines in Figure 4.9b indicate relationships, or mappings, with a single

arrowhead indicating one and a double arrowhead indicating many. Thus, there is

a many-to-many relationship between users and roles: One user may have 

multiple

roles, and multiple users may be assigned to a single role. Similarly, there is a 

many-to-

many relationship between roles and permissions. A session is used to define a

temporary one-to-many relationship between a user and one or more of the roles 

to

which the user has been assigned. The user establishes a session with only the 

roles

needed for a particular task; this is an example of the concept of least privilege.

The many-to-many relationships between users and roles and between roles

and permissions provide a flexibility and granularity of assignment not found in

conventional DAC schemes. Without this flexibility and granularity, there is a 



greater

risk that a user may be granted more access to resources than is needed because 

of

the limited control over the types of access that can be allowed. The NIST RBAC

document gives the following examples: Users may need to list directories and 

modify

existing files without creating new files, or they may need to append records to a 

file

without modifying existing records.

[SAND96] defines a family of reference models that has served as the basis

for ongoing standardization efforts. This family consists of four models that are

related to each other as shown in Figure 4.9a. and Table 4.3. RBAC0 contains the

minimum functionality for an RBAC system. RBAC1 includes the RBAC0

functionality

and adds role hierarchies, which enable one role to inherit permissions

from another role. RBAC2 includes RBAC0 and adds constraints, which restrict

the ways in which the components of a RBAC system may be configured. RBAC3

contains the functionality of RBAC0, RBAC1, and RBAC2.

the ways in which the components of a RBAC system may be configured. RBAC3

contains the functionality of RBAC0, RBAC1, and RBAC2.

Base Model—RBAC0 Figure 4.9b, without the role hierarchy and constraints,

contains the four types of entities in an RBAC0 system:

• User: An individual that has access to this computer system. Each 

individual

has an associated user ID.

Role: A named job function within the organization that controls this 
computer

system. Typically, associated with each role is a description of the authority and

responsibility conferred on this role, and on any user who assumes this role.

• Permission: An approval of a particular mode of access to one or more 
objects.

Equivalent terms are access right, privilege, and authorization.

23



• Session: A mapping between a user and an activated subset of the set of 

roles

to which the user is assigned.

23



Scope RBAC Models.

24



Role hierarchies provide a means of reflecting

the hierarchical structure of roles in an organization. Typically, job functions with

greater responsibility have greater authority to access resources. A subordinate job

function may have a subset of the access rights of the superior job function. Role

hierarchies make use of the concept of inheritance to enable one role to implicitly

include access rights associated with a subordinate role.

Figure 4.10 is an example of a diagram of a role hierarchy. By convention, subordinate

roles are lower in the diagram. A line between two roles implies that the

upper role includes all of the access rights of the lower role, as well as other access

rights not available to the lower role. One role can inherit access rights from multiple

subordinate roles. For example, in Figure 4.10, the Project Lead role includes all of

the access rights of the Production Engineer role and of the Quality Engineer role.

More than one role can inherit from the same subordinate role. For example, both

the Production Engineer role and the Quality Engineer role include all of the access

rights of the Engineer role. Additional access rights are also assigned to the Production

Engineer Role and a different set of additional access rights are assigned to the

Quality Engineer role. Thus, these two roles have overlapping access rights, namely

the access rights they share with the Engineer role.

25



Constraints provide a means of adapting RBAC to the

specifics of administrative and security policies in an organization. A constraint is

a defined relationship among roles or a condition related to roles. [SAND96] lists

the following types of constraints: mutually exclusive roles, cardinality, and prerequisite

roles.

Mutually exclusive roles are roles such that a user can be assigned to only

one role in the set. This limitation could be a static one, or it could be dynamic, in

the sense that a user could be assigned only one of the roles in the set for a session.

The mutually exclusive constraint supports a separation of duties and capabilities

within an organization. This separation can be reinforced or enhanced by use of

mutually exclusive permission assignments. With this additional constraint, a mutually

exclusive set of roles has the following properties:

1. A user can only be assigned to one role in the set (either during a session or

statically).

2. Any permission (access right) can be granted to only one role in the set.

Thus the set of mutually exclusive roles have non-overlapping permissions. If two

users are assigned to different roles in the set, then the users have non-overlapping

permissions while assuming those roles. The purpose of mutually exclusive roles is to

increase the difficulty of collusion among individuals of different skills or divergent job

functions to thwart security policies.

26



Cardinality refers to setting a maximum number with respect to roles. One

such constraint is to set a maximum number of users that can be assigned to a 

given

role. For example, a project leader role or a department head role might be limited

to a single user. The system could also impose a constraint on the number of roles

that a user is assigned to, or the number of roles a user can activate for a single 

session.

Another form of constraint is to set a maximum number of roles that can be

granted a particular permission; this might be a desirable risk mitigation technique

for a sensitive or powerful permission.

A system might be able to specify a prerequisite, which dictates that a user 

can

only be assigned to a particular role if it is already assigned to some other 

specified

role. A prerequisite can be used to structure the implementation of the least 

privilege

concept. In a hierarchy, it might be required that a user can be assigned to a 

senior

(higher) role only if it is already assigned an immediately junior (lower) role. For

example, in Figure 4.10 a user assigned to a Project Lead role must also be 

assigned

to the subordinate Production Engineer and Quality Engineer roles. Then, if the 

user

does not need all of the permissions of the Project Lead role for a given task, the 

user

can invoke a session using only the required subordinate role. Note that the use of

prerequisites tied to the concept of hierarchy requires the RBAC3 model.

26



In 2001, NIST proposed a consensus model for RBAC, based on the original work in

[SAND96] and later contributions. The model was further refined within the RBAC

community and has been adopted by the American National Standards Institute,

International Committee for Information Technology Standards (ANSI/INCITS)

as ANSI INCITS 359–2004.

The main innovation of the NIST standard is the introduction of the RBAC

System and Administrative Functional Specification, which defines the features

required for an RBAC system. This specification has a number of benefits. The specification

provides a functional benchmark for vendors, indicating which capabilities

must be provided to the user and the general programming interface for those

functions. The specification guides users in developing requirements documents and

in evaluating vendor products in a uniform fashion. The specification also provides a

baseline system on which researchers and implementers can build enhanced features.

The specification defines features, or functions, in three categories:

• Administrative functions: Provide the capability to create, delete, and maintain

RBAC elements and relations

• Supporting system functions: Provide functions for session management and

for making access control decisions

• Review functions: Provide the capability to perform query operations on

RBAC elements and relations

27



Examples of these functions are presented in the following discussion.

27



28

The NIST RBAC model comprises four model components (Figure 4.11): core

RBAC, hierarchical RBAC, static separation of duty (SSD) relations, and dynamic

separation of duty (DSD) relations. The last two components correspond to the

constraints component of the model of Figure 4.9.



The elements of core RBAC are the same as those of RBAC0

described in the preceding section: users, roles, permissions, and sessions. The 

NIST

model elaborates on the concept of permissions by introducing two subordinate

entities: operations and objects. The following definitions are relevant:

• Object: Any system resource subject to access control, such as a file, 
printer,

terminal, database record, and so on

• Operation: An executable image of a program, which upon invocation

executes some function for the user

• Permission: An approval to perform an operation on one or more RBAC

protected objects

29



The administrative functions for Core RBAC include the following: add and

delete users from the set of users; add and delete roles from the set of roles; create

and delete instances of user-to-role assignment; and create and delete instances of

permission-to-role assignment. The supporting system functions include the following:

create a user session with a default set of active roles; add an active role to a session;

delete a role from a session; and check if the session subject has permission to perform

a request operation on an object. The review functions enable an administrator to view

but not modify all the elements of the model and their relations, including users, roles,

user assignments, role assignments, and session elements.

Core RBAC is a minimal model that captures the common features found in

the current generation of RBAC systems.

30



Hierarchical RBAC includes the concept of inheritance

described for RBAC1. In the NIST standard, the inheritance relationship includes

two aspects. Role r1 is said to be a descendant of r2 if r1 includes (inherits) all of the

permissions from r2 and all users assigned to r1 are also assigned to r2. For example,

in Figure 4.10, any permission allowed in the Project Lead 1 role is also allowed in the

Director role, and a user assigned to the Director role is also assigned to the Project

Lead 1 role.

The NIST model defines two types of role hierarchies:

General role hierarchies: Allow an arbitrary partial ordering of the role

hierarchy. In particular, this type supports multiple inheritance, in which a

role may inherit permissions from multiple subordinate roles and more than

one role can inherit from the same subordinate role.

• Limited role hierarchies: Impose restrictions resulting in a simpler tree structure.

The limitation is that a role may have one or more immediate ascendants

but is restricted to a single immediate descendant.

The rationale for role hierarchies is that the inheritance property greatly simplifies

the task of defining permission relationships. Roles can have overlapping permissions,

which means that users belonging to different roles may have some shared permissions.

In addition, it is typical in an organization that there are many users that share

a set of common permissions, cutting across many organizational levels. To avoid the

31



necessity of defining numerous roles from scratch to accommodate various users,

role hierarchies are used in a number of commercial implementations. General 

role

hierarchies provide the most powerful tool for this purpose. The standard 

incorporates

limited role hierarchies, which are also useful, to allow for a simpler 

implementation

of role hierarchies.

Hierarchical RBAC adds four new administrative functions to Core RBAC:

add a new immediate inheritance relationship between two existing roles; delete

an existing immediate inheritance relationship; create a new role and add it as

an immediate ascendant of an existing role; and create a new role and add it as

an immediate descendant of an existing relationship. The hierarchical RBAC 

review

functions enable the administrator to view the permissions and users associated 

with

each role either directly or by inheritance.

31



SSD and DSD are two components that add

constraints to the NIST RBAC model. The constraints are in the form of separation of

duty relations, used to enforce conflict of interest policies that organizations may employ

to prevent users from exceeding a reasonable level of authority for their positions.

SSD enables the definition of a set of mutually exclusive roles, such that if

a user is assigned to one role in the set, the user may not be assigned to any other

role in the set. In addition, SSD can place a cardinality constraint on a set of roles.

A cardinality constraint associated with a set of roles is a number greater than one

specifying a combination of roles that would violate the SSD policy. For example,

the permissions associated with the purchasing function could be organized as a set

of four roles, with the constraint the no user may be assigned more than three roles

in the set. A concise definition of SSD is that SSD is defined as a pair (role set, n)

where no user is assigned to n or more roles from the role set.

SSD includes administrative functions for creating and deleting role sets and

adding and deleting role members. It also includes review functions for viewing the

properties of existing SSD sets.

32



As with SSD, DSD relations limit

the permissions available to a user. DSD specifications limit the availability of the

permissions by placing constraints on the roles that can be activated within or 

across

a user’s sessions. DSD relations define constraints as a pair (role set, n), where 

n is a

natural number n 2, with the property that no user session may activate n or 

more

roles from the role set.

DSD enables the administrator to specify certain capabilities for a user at

different, non-overlapping spans of time. As with SSD, DSD includes 

administrative

and review functions for defining and viewing DSD relations.

33



34

The Dresdner Bank has implemented an RBAC system that serves as a useful 

practical

example [SCHA01]. The bank uses a variety of computer applications. Many

of these were initially developed for a mainframe environment; some of these 

older

applications are now supported on a client-server network while others remain on

mainframes. There are also newer applications on servers. Prior to 1990, a 

simple

DAC system was used on each server and mainframe. Administrators maintained

a local access control file on each host and defined the access rights for each 

employee

on each application on each host. This system was cumbersome, time-

consuming,

and error-prone. To improve the system, the bank introduced an RBAC scheme,

which is systemwide and in which the determination of access rights is 

compartmentalized

into three different administrative units for greater security.

Roles within the organization are defined by a combination of official position

and job function. Table 4.4a provides examples. This differs somewhat from the



concept of role in the NIST standard, in which a role is defined by a job function.

To some extent, the difference is a matter of terminology. In any case, the bank’s

role structuring leads to a natural means of developing an inheritance hierarchy

based on official position. Within the bank, there is a strict partial ordering of

official positions within each organization, reflecting a hierarchy of responsibility 

and

power. For example, the positions Head of Division, Group Manager, and Clerk 

are

in descending order.

34



When the official position is combined with job function, there

is a resulting ordering of access rights, as indicated in Table 4.4b. Thus, the 

financial

analyst/Group Manager role (role B) has more access rights than the financial

analyst/Clerk role (role A). The table indicates that role B has as many or more

access rights than role A in three applications and has access rights to a fourth

application. On the other hand, there is no hierarchical relationship between 

office

banking/Group Manager and financial analyst/Clerk because they work in 

different

functional areas. We can therefore define a role hierarchy in which one role is 

superior

to another if its position is superior and their functions are identical.

35



The role

hierarchy makes it possible to economize on access rights definitions, as 

suggested

in Table 4.4c.

36



In the original scheme, the direct assignment of access rights to the individual

user occurred at the application level and was associated with the individual application.

In the new scheme, an application administration determines the set of access

rights associated with each individual application. However, a given user performing

a given task may not be permitted all of the access rights associated with the

application. When a user invokes an application, the application grants access on

the basis of a centrally provided security profile. A separate authorization administration

associated access rights with roles and creates the security profile for a use

on the basis of the user’s role.

A user is statically assigned a role. In principle (in this example), each user

may be statically assigned up to four roles and select a given role for use in invoking

a particular application. This corresponds to the NIST concept of session. In practice,

most users are statically assigned a single role based on the user’s position and

job function.

All of these ingredients are depicted in Figure 4.12. The Human Resource

Department assigns a unique User ID to each employee who will be using the system.

Based on the user’s position and job function, the department also assigns one or

more roles to the user. The user/role information is provided to the Authorization

Administration, which creates a security profile for each user that associates the

User ID and role with a set of access rights. When a user invokes an application,

the application consults the security profile for that user to determine what subset of

the application’s access rights are in force for this user in this role.

A role may be used to access several applications. Thus, the set of access rights

associated with a role may include access rights that are not associated with one

of the applications the user invokes. This is illustrated in Table 4.4b. Role A has

numerous access rights, but only a subset of those rights are applicable to each of the

three applications that role A may invoke.

Some figures about this system are of interest. Within the bank, there are 65

official positions, ranging from a Clerk in a branch, through the Branch Manager, to a

37



Member of the Board. These positions are combined with 368 different job 

functions

provided by the human resources database. Potentially, there are 23,920 different

roles, but the number of roles in current use is about 1300. This is in line with the

experience other RBAC implementations. On average, 42,000 security profiles are

distributed to applications each day by the Authorization Administration module.

37



38

Chapter 4 summary.


