
In virtually all distributed environments, electronic mail is the most heavily

used

network-based application. Users expect to be able to, and do, send e-

mail to others

who are connected directly or indirectly to the Internet, regardless of host

operating

system or communications suite. With the explosively growing reliance on

e-mail,

there grows a demand for authentication and confidentiality services. Two

schemes

stand out as approaches that enjoy widespread use: Pretty Good Privacy

(PGP) and

S/MIME. Both are examined in this chapter. The chapter closes with a

discussion of

DomainKeys Identified Mail.

1

2

Opening quote.

3

PGP is a remarkable phenomenon. Largely the effort of a single person,

Phil

Zimmermann, PGP provides a confidentiality and authentication service

that can

be used for electronic mail and file storage applications. In essence,

Zimmermann

has done the following:

1. Selected the best available cryptographic algorithms as building blocks.

2. Integrated these algorithms into a general-purpose application that is

independent

of operating system and processor and that is based on a small set of

easy-to-use commands.

3. Made the package and its documentation, including the source code,

freely

available via the Internet, bulletin boards, and commercial networks such

as

AOL (America On Line).

4. Entered into an agreement with a company (Viacrypt, now Network

Associates) to provide a fully compatible, low-cost commercial version of

PGP.

3

PGP has grown explosively and is now widely used. A number of reasons can

be cited for this growth.

1. It is available free worldwide in versions that run on a variety of platforms,
including

Windows, UNIX, Macintosh, and many more. In addition, the commercial

version satisfies users who want a product that comes with vendor support.

2. It is based on algorithms that have survived extensive public review and are

considered extremely secure. Specifically, the package includes RSA, DSS, and

Diffie-Hellman for public-key encryption; CAST-128, IDEA, and 3DES for

symmetric encryption; and SHA-1 for hash coding.

3. It has a wide range of applicability, from corporations that wish to select and

enforce a standardized scheme for encrypting files and messages to individuals

who wish to communicate securely with others worldwide over the Internet

and other networks.

4. It was not developed by, nor is it controlled by, any governmental or standards

organization. For those with an instinctive distrust of “the establishment,” this

makes PGP attractive.

4

5. PGP is now on an Internet standards track (RFC 3156; MIME Security

with

OpenPGP). Nevertheless, PGP still has an aura of an antiestablishment

endeavor.

4

The actual operation of PGP, as opposed to the management of keys,

consists of

four services: authentication, confidentiality, compression, and e-mail

compatibility

(Table 8.1).

5

The combination of SHA-1 and RSA provides an effective digital signature

scheme. Because of the strength of RSA, the recipient is assured that only the

possessor

of the matching private key can generate the signature. Because of the strength

of SHA-1, the recipient is assured that no one else could generate a new

message

that matches the hash code and, hence, the signature of the original message.

As an alternative, signatures can be generated using DSS/SHA-1.

Although signatures normally are found attached to the message or file that

they sign, this is not always the case: Detached signatures are supported. A

detached

signature may be stored and transmitted separately from the message it signs.

This

is useful in several contexts. A user may wish to maintain a separate signature

log of

all messages sent or received. A detached signature of an executable program

can

detect subsequent virus infection. Finally, detached signatures can be used when

6

more than one party must sign a document, such as a legal contract. Each

person’s

signature is independent and therefore is applied only to the document.

Otherwise,

signatures would have to be nested, with the second signer signing both

the document

and the first signature, and so on.

6

Another basic service provided by PGP is confidentiality, which

is provided by encrypting messages to be transmitted or to be stored locally as

files. In both cases, the symmetric encryption algorithm CAST-128 may be used.

Alternatively, IDEA or 3DES may be used. The 64-bit cipher feedback (CFB)

mode is used.

As always, one must address the problem of key distribution. In PGP, each

symmetric key is used only once. That is, a new key is generated as a random
128-bit

number for each message. Thus, although this is referred to in the
documentation

as a session key, it is in reality a one-time key. Because it is to be used only
once,

the session key is bound to the message and transmitted with it. To protect the
key,

it is encrypted with the receiver’s public key. Figure 8.1b illustrates the sequence.

As an alternative to the use of RSA for key encryption, PGP provides an option

referred to as Diffie-Hellman . As was explained in Chapter 3, Diffie-Hellman

is a key exchange algorithm. In fact, PGP uses a variant of Diffie-Hellman that
does

provide encryption/decryption, known as ElGamal.

7

Several observations may be made. First, to reduce encryption time, the

combination

of symmetric and public-key encryption is used in preference to simply

using RSA or ElGamal to encrypt the message directly: CAST-128 and the

other

symmetric algorithms are substantially faster than RSA or ElGamal.

Second, the

use of the public-key algorithm solves the session-key distribution problem,

because

only the recipient is able to recover the session key that is bound to the

message.

Note that we do not need a session-key exchange protocol of the type

discussed in

Chapter 14, because we are not beginning an ongoing session. Rather,

each message

is a one-time independent event with its own key. Furthermore, given the

store-andforward

nature of electronic mail, the use of handshaking to assure that both sides

have the same session key is not practical. Finally, the use of one-time

symmetric

keys strengthens what is already a strong symmetric encryption approach.

Only a

small amount of plaintext is encrypted with each key, and there is no

relationship

among the keys. Thus, to the extent that the public-key algorithm is secure,

the

entire scheme is secure. To this end, PGP provides the user with a range of

key size

options from 768 to 3072 bits (the DSS key for signatures is limited to 1024

bits).

7

As Figure 8.1c illustrates, both services

may be used for the same message. First, a signature is generated for the

plaintext

message and prepended to the message. Then the plaintext message plus

signature

is encrypted using CAST-128 (or IDEA or 3DES), and the session key is

encrypted

using RSA (or ElGamal). This sequence is preferable to the opposite: encrypting

the message and then generating a signature for the encrypted message. It is

generally

more convenient to store a signature with a plaintext version of a message.

Furthermore, for purposes of third-party verification, if the signature is performed

first, a third party need not be concerned with the symmetric key when verifying

the

signature.

In summary, when both services are used, the sender first signs the message

with its own private key, then encrypts the message with a session key, and

finally

encrypts the session key with the recipient’s public key.

8

9

As a default, PGP compresses the message after applying the signature

but before encryption. This has the benefit of saving space both for e-mail

transmission and for file storage.

The placement of the compression algorithm is critical.

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that one can store

only

the uncompressed message together with the signature for future

verification.

If one signed a compressed document, then it would be necessary either

to store a compressed version of the message for later verification or to

recompress the message when verification is required.

b. Even if one were willing to generate dynamically a recompressed

message

for verification, PGP’s compression algorithm presents a difficulty. The

algorithm is not deterministic; various implementations of the algorithm

achieve different tradeoffs in running speed versus compression ratio and,

as a result, produce different compressed forms. However, these different

compression algorithms are interoperable because any version of the

algorithm

can correctly decompress the output of any other version. Applying

the hash function and signature after compression would constrain all PGP

implementations to the same version of the compression algorithm.

2. Message encryption is applied after compression to strengthen

cryptographic

security. Because the compressed message has less redundancy than the

original

plaintext, cryptanalysis is more difficult.

The compression algorithm used is ZIP, which is described in Appendix G.

9

10

When PGP is used, at least part of the block to be transmitted

is encrypted. If only the signature service is used, then the message digest

is

encrypted (with the sender’s private key). If the confidentiality service is

used, the

message plus signature (if present) are encrypted (with a one-time

symmetric key).

Thus, part or all of the resulting block consists of a stream of arbitrary 8-bit

octets.

However, many electronic mail systems only permit the use of blocks

consisting of

ASCII text. To accommodate this restriction, PGP provides the service of

converting

the raw 8-bit binary stream to a stream of printable ASCII characters.

The scheme used for this purpose is radix-64 conversion. Each group of

three

octets of binary data is mapped into four ASCII characters. This format

also appends

a CRC to detect transmission errors. See Appendix 19A for a description.

The use of radix 64 expands a message by 33%. Fortunately, the session

key

and signature portions of the message are relatively compact, and the

plaintext message

has been compressed. In fact, the compression should be more than

enough to

compensate for the radix-64 expansion. For example, [HELD96] reports an

average

compression ratio of about 2.0 using ZIP. If we ignore the relatively small

signature

and key components, the typical overall effect of compression and

expansion of a

file of length X would be 1.33 * 0.5 * X = 0.665 * X . Thus, there is still an

overall

compression of about one-third.

One noteworthy aspect of the radix-64 algorithm is that it blindly converts

the

input stream to radix-64 format regardless of content, even if the input

happens to

be ASCII text. Thus, if a message is signed but not encrypted and the

conversion

is applied to the entire block, the output will be unreadable to the casual

observer,

which provides a certain level of confidentiality. As an option, PGP can be

configured

to convert to radix-64 format only the signature portion of signed plaintext

messages. This enables the human recipient to read the message without

using PGP.

PGP would still have to be used to verify the signature.

10

11

Figure 8.1a illustrates the digital signature service provided by

PGP. This is the digital signature scheme discussed in Chapter 4 and illustrated

in

Figure 4.5.

To protect the key, it is encrypted with the receiver’s public key. Figure 8.1b

illustrates the sequence.

As Figure 8.1c illustrates, both services

may be used for the same message. First, a signature is generated for the

plaintext

message and prepended to the message. Then the plaintext message plus

signature

is encrypted using CAST-128 (or IDEA or 3DES), and the session key is

encrypted

using RSA (or ElGamal). This sequence is preferable to the opposite: encrypting

the message and then generating a signature for the encrypted message. It is

generally

more convenient to store a signature with a plaintext version of a message.

Furthermore, for purposes of third-party verification, if the signature is performed

12

first, a third party need not be concerned with the symmetric key when

verifying the

signature.

In summary, when both services are used, the sender first signs the

message

with its own private key, then encrypts the message with a session key, and

finally

encrypts the session key with the recipient’s public key.

12

13

Figure 8.2 shows the relationship among the four services so far

discussed.

On transmission (if it is required), a signature is generated using a hash

code of

the uncompressed plaintext. Then the plaintext (plus signature if present)

is compressed.

Next, if confidentiality is required, the block (compressed plaintext or

compressed signature plus plaintext) is encrypted and prepended with the

publickey-

encrypted symmetric encryption key. Finally, the entire block is converted

to

radix-64 format.

On reception, the incoming block is first converted back from radix-64

format

to binary. Then, if the message is encrypted, the recipient recovers the

session key

and decrypts the message. The resulting block is then decompressed. If

the message

is signed, the recipient recovers the transmitted hash code and compares it

to its

own calculation of the hash code.

13

DomainKeys Identified Mail (DKIM) is a specification for cryptographically

signing

e-mail messages, permitting a signing domain to claim responsibility for a

message

in the mail stream. Message recipients (or agents acting in their behalf)

can verify

the signature by querying the signer’s domain directly to retrieve the

appropriate

public key and thereby can confirm that the message was attested to by a

party in

possession of the private key for the signing domain. DKIM is a proposed

Internet

Standard (RFC 4871: DomainKeys Identified Mail (DKIM) Signatures).

DKIM has

been widely adopted by a range of e-mail providers, including

corporations, government

agencies, gmail, yahoo, and many Internet Service Providers (ISPs).

14

RFC 4686 characterizes the range of attackers on a spectrum of

three levels of threat.

1. At the low end are attackers who simply want to send e-mail that a

recipient

does not want to receive. The attacker can use one of a number of

commercially

available tools that allow the sender to falsify the origin address of

messages. This makes it difficult for the receiver to filter spam on the basis

of

originating address or domain.

2. At the next level are professional senders of bulk spam mail. These

attackers

often operate as commercial enterprises and send messages on behalf of

third

parties. They employ more comprehensive tools for attack, including Mail

Transfer Agents (MTAs) and registered domains and networks of

compromised

15

computers (zombies) to send messages and (in some cases) to harvest

addresses to which to send.

3. The most sophisticated and financially motivated senders of messages

are

those who stand to receive substantial financial benefit, such as from an

E-mail-based fraud scheme. These attackers can be expected to employ all

of

the above mechanisms and additionally may attack the Internet

infrastructure

itself, including DNS cache-poisoning attacks and IP routing attacks.

15

To understand the operation of DKIM, it is useful to have a basic grasp of

the

Internet mail architecture, which is currently defined in RFC 5598. This

subsection

provides an overview of the basic concepts.

At its most fundamental level, the Internet mail architecture consists of a

user world in the form of Message User Agents (MUA), and the transfer

world, in

the form of the Message Handling Service (MHS), which is composed of

Message

Transfer Agents (MTA). The MHS accepts a message from one user and

delivers

it to one or more other users, creating a virtual MUA-to-MUA exchange

environment.

This architecture involves three types of interoperability. One is directly

between

users: messages must be formatted by the MUA on behalf of the message

16

author so that the message can be displayed to the message recipient by

the destination

MUA. There are also interoperability requirements between the MUA and

the

MHS—first when a message is posted from an MUA to the MHS and later

when

it is delivered from the MHS to the destination MUA. Interoperability is

required

among the MTA components along the transfer path through the MHS.

Figure 8.4 illustrates the key components of the Internet mail architecture,

which include the following.

• Message User Agent (MUA): Operates on behalf of user actors and user

applications.

It is their representative within the e-mail service. Typically, this

function is housed in the user’s computer and is referred to as a client e-

mail

program or a local network e-mail server. The author MUA formats a

message

and performs initial submission into the MHS via a MSA. The recipient

MUA processes received mail for storage and/or display to the recipient

user.

• Mail Submission Agent (MSA): Accepts the message submitted by an

MUA

and enforces the policies of the hosting domain and the requirements of

Internet standards. This function may be located together with the MUA or

as a separate functional model. In the latter case, the Simple Mail Transfer

Protocol (SMTP) is used between the MUA and the MSA.

• Message Transfer Agent (MTA): Relays mail for one application-level

hop.

It is like a packet switch or IP router in that its job is to make routing

assessments

and to move the message closer to the recipients. Relaying is performed

16

by a sequence of MTAs until the message reaches a destination MDA. An

MTA also adds trace information to the message header. SMTP is used

between

MTAs and between an MTA and an MSA or MDA.

• Mail Delivery Agent (MDA): Responsible for transferring the message

from

the MHS to the MS.

• Message Store (MS): An MUA can employ a long-term MS. An MS can

be

located on a remote server or on the same machine as the MUA. Typically,

an MUA retrieves messages from a remote server using POP (Post Office

Protocol) or IMAP (Internet Message Access Protocol).

Two other concepts need to be defined. An administrative management

domain (ADMD) is an Internet e-mail provider. Examples include a

department

that operates a local mail relay (MTA), an IT department that operates an

enterprise

mail relay, and an ISP that operates a public shared e-mail service. Each

ADMD can have different operating policies and trust-based decision

making. One

obvious example is the distinction between mail that is exchanged within an

organization

and mail that is exchanged between independent organizations. The rules

for

handling the two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that

provides

a mapping between the name of a host on the Internet and its numerical

address.

16

DKIM is designed to provide an e-mail authentication technique that is

transparent

to the end user. In essence, a user’s e-mail message is signed by a private

key of the

administrative domain from which the e-mail originates. The signature

covers all of

the content of the message and some of the RFC 5322 message headers.

At the receiving

end, the MDA can access the corresponding public key via a DNS and

verify

the signature, thus authenticating that the message comes from the

claimed administrative

domain. Thus, mail that originates from somewhere else but claims to

come

from a given domain will not pass the authentication test and can be

rejected. This

approach differs from that of S/MIME and PGP, which use the originator’s

private

key to sign the content of the message. The motivation for DKIM is based

on the

following reasoning.

17

1. S/MIME depends on both the sending and receiving users employing

S/MIME.

For almost all users, the bulk of incoming mail does not use S/MIME, and

the

bulk of the mail the user wants to send is to recipients not using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header

information

concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore

transparent

to the user; the user need take no action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular

message

and to prevent forgers from masquerading as good senders.

Figure 8.5 is a simple example of the operation of DKIM. We begin with a

message generated by a user and transmitted into the MHS to an MSA that

is within

the user’s administrative domain. An e-mail message is generated by an e-

mail client

program. The content of the message, plus selected RFC 5322 headers, is

signed

by the e-mail provider using the provider’s private key. The signer is

associated

with a domain, which could be a corporate local network, an ISP, or a public

e-mail

facility such as gmail. The signed message then passes through the

Internet via a

sequence of MTAs. At the destination, the MDA retrieves the public key for

the

incoming signature and verifies the signature before passing the message

17

on to the

destination e-mail client. The default signing algorithm is RSA with SHA-

256. RSA

with SHA-1 also may be used.

17

Figure 8.6 provides a more detailed look at the elements of DKIM

operation. Basic

message processing is divided between a signing Administrative

Management Domain

(ADMD) and a verifying ADMD. At its simplest, this is between the

originating ADMD

and the delivering ADMD, but it can involve other ADMDs in the handling

path.

Signing is performed by an authorized module within the signing ADMD

and

uses private information from a Key Store. Within the originating ADMD,

this

might be performed by the MUA, MSA, or an MTA. Verifying is performed

by

an authorized module within the verifying ADMD. Within a delivering

ADMD,

verifying might be performed by an MTA, MDA, or MUA. The module

verifies

18

the signature or determines whether a particular signature was required.

Verifying

the signature uses public information from the Key Store. If the signature

passes,

reputation information is used to assess the signer and that information is

passed

to the message filtering system. If the signature fails or there is no

signature using

the author’s domain, information about signing practices related to the

author can

be retrieved remotely and/or locally, and that information is passed to the

message

filtering system. For example, if the sender (e.g., gmail) uses DKIM but no

DKIM

signature is present, then the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an additional

header

entry, starting with the keyword Dkim-Signature . You can view examples

from

your own incoming mail by using the View Long Headers (or similar

wording)

option for an incoming message.

Before a message is signed, a process known as canonicalization is

performed

on both the header and body of the RFC 5322 message. Canonicalization

is necessary

to deal with the possibility of minor changes in the message made en route,

including character encoding, treatment of trailing white space in message

lines, and

the “folding” and “unfolding” of header lines. The intent of canonicalization

is to

make a minimal transformation of the message (for the purpose of signing;

the message

itself is not changed, so the canonicalization must be performed again by

the

18

verifier) that will give it its best chance of producing the same canonical

value at the

receiving end. DKIM defines two header canonicalization algorithms

(“simple” and

“relaxed”) and two for the body (with the same names). The simple

algorithm tolerates

almost no modification, while the relaxed tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag

consisting

of a tag code followed by an equals sign and ends with a semicolon.

18

19

Chapter 8 summary.

