The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Gone Gl

© The CodeBreakers-Journal, Vol.1, No.2. (2004)
http://www.CodeBreakers-Journal.com

Award BIOS Reverse Engineering

Author: Darmawan Mappatutu Salihun

Abstract

The purpose of this article is to clean up the mess and positioned as a handy
reference for myself and the reader as we are going through the BIOS
disassembling session. I'm not held responsible about the correctness of any
explanation in this article, you have to cross-check what 1 wrote here and what
you have in your hand. Note that what | explain here based on award bios
version 4.51PGNM which | have. You can check it against award bios version
6.0PG or 6.0 to see if it's still valid. I'll working on that version when | have
enough time. As an addition, | suggest you to read this article throughly from
beginning to end to get most out of it.

Contents
Award BIOS ReVerse ENQINEEIING ...u.ui i eeeeaaaaaannn 1
Author: Darmawan Mappatutu Salihun.......... ..o i 1
(O]] =T] £ 1
0 e o] /=Y. T o 2
T o 1= 1= o [S 3
0 O = O = 5 3
L. 2. IS A BUS Lo e e 6
2. Some Hardware "Peculiarities e 6
3. Some Software "Peculiaritieso e, 9
4. OUr TOOIS Of Trade ... e et eeaeaaees 13
5. Award BIOS File StrUCTUIe ...ttt eeeea e eeenans 14
6. Disassembling the BIOSot ettt aaaaas 18
6.1, BOOTDIOCK. ... e e 18
6.2. System BIOS a.k.a Original. tmp e 37

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1. Foreword

I would like to welcome you to the darkside of a working example of spaghetty
code, The Award BIOS. This article is not an official guide to award bios reverse
engineering nor it's compiled by an Award Corp. insider. I'm just an ordinary
curious person who really attracted to know how my computer BIOS works. |
made this article available to the public to share my findings and looking for
feedback from others since I'm sure I've made some "obscure mistakes" that I
didn't realize during my reverse engineering process. There are several
possibilities that make you reading this article now, perhaps you are an "old-time
BIOS hacker”, perhaps you are a kind of person who really love "system
programming" like me or you are just a curious person who like to tinker. One
thing for sure, you'll get most of out of this article if you've done some BIOS
hacking before and looking forward to improve your skill. However, I've made a
prerequisite section below to ensure you've armed yourself with knowledge
needed to get most out of this article.

You may be asking, why would anyone need this guide ? indeed, you need this
guide if you found yourself cannot figure out how award BIOS code works. In my
experience, unless you are disassembling a working BIOS binary, you won't be
able to comprehend it. Also, you have to have the majority (if not all) of your
mainboard chips datasheets. The most important one is the chipset datasheet.

The purpose of this article is to clean up the mess and positioned as a handy
reference for myself and the reader as we are going through the BIOS
disassembling session. I'm not held responsible about the correctness of any
explanation in this article, you have to cross-check what | wrote here and what
you have in your hand. Note that what | explain here based on award bios
version 4.51PGNM which I have. You can check it against award bios version
6.0PG or 6.0 to see if it's still valid. I'll working on that version when | have
enough time. As an addition, | suggest you to read this article throughly from
beginning to end to get most out of it.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1. Prerequisite

First, | would like to thank to the readers of the earlier "beta-version" of this
article, from whom | consider that this part of the article should be included.

I have to admit that BIOS is somehow a state of the art code that requires lots of
low level x86 knowledge that only matter to such a small audience such as
operating system developer, BIOS developer, driver writer, possibly exploit and
virus writer (yes exploit and virus writer! coz they are curious people). Due to
this fact, there are couple of things that I won't explain here and it's your
homework that you should do to comprehend this guide. They are :

e The most important thing is you have to be able to program and
understand x86 assembly language. If you don't know it, then you'd better
start learning it. I'm using masm syntax throughout this article.

e Protected mode programming. You have to learn how to switch the x86
machine from real mode to protected mode. This means you need to learn
a preliminary x86 protected mode OS development. I've done it in the
past, that's why | know it pretty good. You can go to www.osdever.net
and other x86 operating system developer site to get some tutorials to
make yourself comfortable. The most important thing to master is how the
protected mode data structures work. I mean how Global Descriptor Table
(GDT), Interrupt Descriptor Table (IDT), also x86 control and segment
registers work. BIOS, particularly award BIOS uses them to perform its
"magic" as later explained in this article.

¢ What x86 "Unreal-Mode" is. Some people also call these mode of operation
"Voodoo-mode" or "Flat real-mode ". It's an x86 state that's between real-
mode and protected-mode. This is partially explained below.

¢ x86 "direct hardware programming”. You need to know how to program
the hardware directly, especially the chips in your motherboard. You can
practice this from within windows by developing an application that
directly access the hardware. This is not a must, but it's better if you
master it first. You also have to know some x86 bus protocol, such as PCI
and ISA. I'll explain a bit about the bus protocols below.

e You have to be able to comprehend part (if not all) of the datasheets of
your motherboard chip. Such as the of the northbridge and southbridge
control registers.

1.1. PCIBUS

We'll begin with the PCI bus. I've been working with this stuff for quite a while.
The official standard for the PCIl bus system is maintained by a board named
PCISIG (PCl Special Interest Group). This board actually is some sort of
cooperation between Intel and some other big corporation such as Microsoft.
Anyway, in the near future PCI bus will be fully replaced by a much more faster
bus system such as Arapahoe (PCIl-Express a.k.a PCl-e) and Hypertransport. But
PCIl will still remain a standard for sometime | think. I've read some of the
specification of the Hypertansport bus, it's backward compatible with PCI. This
means that the addressing scheme will remains the same or at least only needs a

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

http://www.osdever.net/

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

minor modification. This also holds true for the Arapahoe. One thing | hate about
this PCI stuff is that the standard is not an open standard thus, you gotta pay a
lot to get the datasheets and whitepapers. This become my main reason
providing you with this sort of tute.

First, PCI bus is a bus which is 32 bits wide. This imply that communicating using
this bus should be in 32 bits mode, pretty logical isn't it? So, writing or reading
to this bus will require 32 bits 'variable’.

Second, this bus system is defined in the port CF8h - CFBh which acts as the
address port and port CFCh - CFFh which acts as the data port. The role of both
ports will be clear soon.

Third, this bus system force us to communicate with them with the following
algorithm:

1. Send the address of the part of the device you're willing to read/write at
first. Only after that you're access to send/receive data through the data
port to/from the device will be granted.

2. Send/receive the data to be read/write through the data port.

As a note, as far as | know every bus/communication protocol implemented in
chip design uses this algorithm to communicate with other chip.

With the above definition, now I'll provide you with an x86 assembly code
snippet that shows how to use those ports.

Mnemonic (masm

No. syntax)

Comment

| 1‘ pushad| save all the contents of General Purpose Registers

put the address of the PCI chip register to be accessed in

2 mov eax,80000064h eax (offset 64h device 00:00:00 or hostbridge)

put the address port in dx. Since this is PCI, we use CF8h

3 mov dx,0CF8h as the port to open an access to the device.

send the PCI address port to the 1/0 space of the

4 out dx,eax
processor
put the data port in dx. Since this is PCI, we use CFCh as
5 mov dx,0CFCh the data port to communicate with the device.
| 6‘ in eax,dx| put the data read from the device in eax
7 or eax, 00020202 modlfy the_ data (this is only example, don't try thI.S in
your machine, it may hang or even destroy your machine)
| 8‘ out dx,eax| send it back
o | -
| 10‘ popad | pop all the saved register
| 11‘ ret| return...

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

I think the code above clear enough. In line one the current data in the
processors general purpose registers were saved. Then comes the crucial part.
As | said above, PCI is 32 bits bus system hence we have to use 32 bits chunk of
data to communicate with them. We do this by sending the PCI chip a 32 bits
address through eax register, and using port CF8 as the port to send this data.
Here's an example of the PCI register (sometimes called offset) address format.
In the routine above you saw :

mov eax,80000064h

the 80000064h is the address. The meaning of these bits are:

bit position [31 (30 29 [28 [27 [26 [25 [24 [23 22 [21[20|19[18[17 16 [15[14[13[12[11 /10 /98 [7 6 [5 4 |3 \2\1\o|
bivery v |2 [0 00 [0 [0 [0 [0 [0 00 [0 [0 [0 [0 [o[0[0]0 [0 [0 [0 oolo/ iz 0fz[olo
hexadecimal g ‘ 0 ‘ o ‘ o ‘ o ‘ o ‘ . ‘ .
value

e The 31st bit is an enable bit. If this bit sets, it means that we are granted
to do a write/read transaction through the PCIl bus, otherwise we're
prohibited to do so, that's why we need an 8 in the leftmost hexdigit.

e Bits 30 - 24 are reserved bits.

e Bits 23 - 16 is the PCI Bus number.

e Bits 15 - 11 is the PCI Device number.

e Bits 10 - 8 is the PCI Function Number.

e Bits 7 - O is the offset address.

Now, we’'ll examine the previous value, that was sent. If you're curious, you'll
find out that 80000064h means we're communicating with the device in bus 0,
device O , function O and at offset 64. Actually this is the memory controller
configuration register of my mainboard’s Northbridge. In most circumstances the
PCI device that occupy bus 0, device 0, function O is the Hostbridge, but you'll
need to consult your chipset datasheet to verify this. This stuff is pretty easy to
be understood, isn't it ? The next routines are pretty easy to understand. But if
you still feel confused you'd better learn assembly language a bit, since I'm not
here to teach you assembly :(. But, in general they do the following jobs:
reading the offset data then modifying it then writing it back to the device, if not
better to say tweaking it :) .

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1.2. ISABUS

AFAIK, ISA bus is not a well standardized bus. Thus, any ISA device can reside
virtually almost anywhere in the system's 16-bit 1/0 address space. My
experience with ISA bus is very limited. I've only play with two chips this time
around, the first is the CMOS chip and the second one is my mainboard's
hardware monitoring chip, i.e. Winbond W83781D. Both chips uses the same
"general algorithm™" as mentioned above in the PCI BUS, i.e. :

1. Send the address of the part of the device you're willing to read/write at
first. Only after that you're access to send/receive data through the data
port to/from the device will be granted.

2. Send/receive the data to be read/write through the data port.

My hardware monitoring chip defines port 295h as its address port (a.k.a index
port) and port 296h as its data port. CMOS chip defines port 70h as its address
port and port 71h as its data port.

2. Some Hardware "Peculiarities"

Due to its history, the x86 platform contains lots of hacks, especially its BIOS.
This is due to the backward compatiblity jargon that should be maintained by
any x86 system. In this section I'll try to explain couple of stuff that I found
during my BIOS disassembly journey that reveal these peculiarities.

The most important chips which responsible for the BIOS code handling are the
southbridge and northbridge. In this respect, the northbridge is responsible for
the BIOS shadowing, handling accesses to RAM and BIOS ROM, while the
southbridge is responsible for enabling the ROM decode control, which will
forward (or not) the memory addresses to be accessed to the BIOS ROM chip.
The "special” addresses shown below can reside either in the system DRAM or in
BIOS ROM chip, depending on the southbridge and northbridge register setting at
the time the BIOS code is executed.

Physical Address Used by

OOOE 0000h - OOOF FFFFh 1 Mbit, 2 MBit, and 4 MBit BIOSes
000C 0000h - 000D FFFFh 2 MBit, and 4 MBit BlOSes

0008 0000h - O000B FFFFh 4 MBit BIOSes

The address shown above contain the BIOS code and pretty much system
specific, so you have to consult your datasheets to understand it. Below is an
example of the VIA693A chipset system memory map.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Table 4. System Memory Map

Space Start Size Address Range Comment

DOS O 640K 00000000-0009FFFF Cacheable

VGA 640K 128K 0O00A0000-000BFFFF Used for SMM
BIOS 768K 16K 000CO000-000C3FFF Shadow Ctrl 1
BIOS 784K 16K 000C4000-000C7FFF Shadow Ctrl 1
BIOS 800K 16K 000C8000-000CBFFF Shadow Ctrl 1
BIOS 816K 16K 000CCO00-000CFFFF Shadow Ctrl 1
BIOS 832K 16K 000DO0O00-000D3FFF Shadow Ctrl 2
BIOS 848K 16K 000D4000-000D7FFF Shadow Ctrl 2
BIOS 864K 16K 000D8000-000DBFFF Shadow Ctrl 2
BIOS 880K 16K 000ODCO00-000DFFFF Shadow Ctrl 2
BIOS 896K 64K OOOEOO0OO-O0OOOEFFFF Shadow Ctrl 3
BIOS 960K 64K OOOFO0000-000FFFFF Shadow Ctrl 3
Sys 1MB — 00100000-DRAM Top Can have hole
Bus D Top DRAM Top-FFFEFFFF

Init 4G-64K 64K FFFEFFFF-FFFFFFFF OO0OFxxxx alias

The most important thing to take into account here is the address aliasing, as
you can see the FFFEFFFFh- FFFFFFFFh address range is an alias into
OOOFxxxxh, this is where the BIOS ROM chip address mapped (at least in my
mainboard, cross check with yours). But, we also have to consider that this only
applies at the very beginning of boot stage (just after reset). After the chipset
reprogrammed by the BIOS, this address range will be mapped into system
DRAM chips. We can consider this as the Power-On default values.

Some "obscure" hardware port which sometimes not documented in the chipset
datasheets. Note that this info | found from Intel ICH5 and VIA 586B datasheet.
datasheet.

1/0 Port address Purpose

92h Fast A20 and Init Register

4D0h Master PIC Edge/Level Triggered (R/W)
4D1h Slave PIC Edge/Level Triggered (R/W)

Table 146. RTC 1/0 Registers (LPC 1/F-D31:FO0)

1/0 Port Locations IT U128E bit = 0 Function

70h and 74h Also alias to 72h and 76h Real-Time Clock (Standard
RAM) Index Register

71h and 75h Also alias to 73h and 77h Real-Time Clock (Standard
RAM) Target Register

72h and 76h Extended RAM Index
Register (if enabled)

73h and 77h Extended RAM Target

Register (if enabled)

NOTES:

1. 1/0 locations 70h and 71h are the standard ISA location for the real-time
clock. The map for this bank is shown in Table 147. Locations 72h and 73h are
for accessing the extended RAM. The extended RAM bank is also accessed using
an indexed scheme. I/0 address 72h is used as the address pointer and 1/0
address 73h is used as the data register. Index addresses above 127h are not
valid. If the extended RAM is not needed, it may be disabled.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

2. Software must preserve the value of bit 7 at 1/0 addresses 70h. When writing
to this address, software must first read the value, and then write the same
value for bit 7 during the sequential address write. Note that port 70h is not
directly readable. The only way to read this register is through Alt Access mode.
If the NMI# enable is not changed during normal operation, software can
alternatively read this bit once and then retain the value for all subsequent writes
to port 70h.

The RTC contains two sets of indexed registers that are accessed using the two
separate Index and Target registers (70/71h or 72/73h), as shown in Table 147.

Table 147. RTC (Standard) RAM Bank (LPC 1/F-D31:F0)
Index Name

00h Seconds

01h Seconds Alarm
02h Minutes

03h Minutes Alarm
04h Hours

05h Hours Alarm
06h Day of Week
07h Day of Month
08h Month

0%9h Year

OAh Register A
0OBh Register B
0OCh Register C
ODh Register D

OEh—7Fh 114 Bytes of User RAM

There are couples of more things to take into account, such as the Video BIOS
and other expansion ROM handling. I'll try to cover this stuff next time when |
have done dissecting BIOS code that handle it.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

3. Some Software "Peculiarities"

There are couples of tricky areas in the BIOS code due to the execution of some
of its parts in ROM. I'll present some of my findings below.

call instruction is not available during bios code execution from within BIOS ROM
chip. This is due to call instruction uses/manipulate stack while we don't have
writeable area in BIOS ROM chip to be used for stack. What I mean by
manipulating stack here is the "implicit" push instruction which is executed by
the call instruction to "write/save" the return address in the stack. As we know
clearly, address pointed to by ss:sp at this point is in ROM, meaning: we can't
write into it. If you think, why don't use the RAM altogether ? the DRAM chip is
not even available at this point. It hasn't been tested by the BIOS code, thus we
haven't know if RAM even exists!

The peculiarity of retn instruction. There is macro that's called ROM_call as
follows :

ROM_CALL MACRO RTN_NAME
LOCAL RTN_ADD
mov sp,offset DGROUP:RTN_ADD
Jjmp RTN_NAME
RTN_ADD: dw DGROUP : $+2
ENDM

an example of this macro "in action" as follows :

Address Hex Mnemonic

FO000:6000 FOOO_6000_read_pci_byte proc near
FO00:6000 66 B8 00 OO0 00 80 mov eax, 80000000h

FO00:6006 8B C1 mov ax, CX ; copy offset
addr to ax

FO00:6008 24 FC and al, OFCh ; mask it
FOO0:600A BA F8 0OC mov dx, OCF8h

FO00:600D 66 EF out dx, eax

FO00:600F B2 FC mov dl, OFCh

FO000:6011 OA D1 or dl, cl ; get the byte
addr

F000:6013 EC in al, dx ; read the byte
FO00:6014 C3 retn ; Return Near
from Procedure

F000:6014 FOO0_6000_read_pci_byte endp
FO00:6043 18 00 GDTR_FO00_6043 dw 18h ; limit of
GDTR (3 valid desc entry)

FO00:6045 49 60 OF 00 dd 0F6049h ; GDT
physical addr (below)

FO00:6049 00 00 00 00 OO0 OO0 OO OO dg O ; null
descriptor

FO00:6051 FF FF 00 00 OF 9F 00 00 dg 9FOFOO00OFFFFh ; code
descriptor:

FO00:6051 ; base addr

= F 0000h; limit=FFFFh; DPL=0;

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:6051 ;
exec/ReadOnly, conforming, accessed;
FO00:6051 ;

granularity=byte; Present; 16-bit segment
FO00:6059 FF FF 00 00 00 93 8F 00 dg 8F93000000FFFFh ; data

descriptor:

FO00:6059 ; base addr
= 00h; seg_limit=F FFFFh; DPL=0;

FO00:6059 ; Present;
read-write, accessed;

FO00:6059 ;
granularity = 4 KByte; 16-bit segment

FO00:619B OF 01 16 43 60 lgdt qgword ptr GDTR_FO00 6043 ; Load
Global Descriptor Table Register

FO00:61A0 OF 20 CO mov eax, crO

FO00:61A3 0OC 01 or al, 1 ; set PMode
flag

FO00:61A5 OF 22 CO mov crO0, eax

FO00:61A8 EA AD 61 08 00 Jjmp far ptr 8:61ADh ; jmp below in
16-bit PMode (abs addr F 61ADh)

FO00:61A8 ; (code
segment with base addr = F 0000h)

FO00:61AD T et
FOO0:61AD B8 10 00 mov ax, 10h ; load ds with
valid data descriptor

FO00:61BO 8E D8 mov ds, ax ; ds = data
descriptor (GDT 3rd entry)

FO00:61BC B9 6B 00 mov cx, 6Bh ; DRAM
arbitration control

FO00:61BF BC C5 61 mov sp, 61C5h

FO00:61C2 E9 3B FE Jmp FOOO0_6000_read_pci_byte ; Jump
FO00:61C2 D
FO00:61C5 C7 61 dw 61C7h

FO00:61C7 et
FO00:61C7 O0OC 02 or al, 2 ; enable VC-
DRAM

as you can see, you have to take into account that the retn instruction is
affected by the current value of ss:sp register pair, but ss register is not even
loaded with "correct”" 16-bit protected mode value prior to using it! how this code
even works ? the answer is a bit complicated. Let's look at the last time ss
register value was manipulated before the code above executed :

Address Hex Mnemonic

FOOO:EO60 8C C8 mov ax, cs

FO00:E062 8E DO mov Ss, ax ; Ss = cs (ss =
FOOOh a.k.a F_segment)

FO00:EO64 assume ss:F000

Note: this routine is executed iIn real-mode

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

as you can see, ss register is loaded with FOOOh (the current BIOS code 16-bit
segment in real-mode). This code implies that the hidden descriptor cache
register (that exist for every selector/segment register) is loaded with
''ss * 16" or FOOOOh physical address value. And this value is retained even
when the machine is switched into 16-bit Protected Mode above since ss register
is not reloaded. A snippet from Intel Software Developer Manual Vol.3 :

8.1.4. First Instruction Executed

The first instruction that is fetched and executed following a
hardware reset is located at physical

address FFFFFFFOH. This address is 16 bytes below the processor’s
uppermost physical

address. The EPROM containing the software-initialization code must
be located at this address.

The address FFFFFFFOH is beyond the 1-MByte addressable range of the
processor while in

real-address mode. The processor is initialized to this starting
address as follows. The CS

register has two parts: the visible segment selector part and the
hidden base address part. In real

address mode, the base address is normally formed by shifting the 16-
bit segment selector value

4 bits to the left to produce a 20-bit base address. However, during
a hardware reset, the segment

selector in the CS register is loaded with FOOOH and the base address
is loaded with

FFFFOOOOH. The starting address is thus formed by adding the base
address to the value in the

EIP register (that is, FFFFO0O00 + FFFOH = FFFFFFFOH).

The first time the CS register is loaded with a new value after a
hardware reset, the processor

will follow the normal rule for address translation in real-address
mode (that is, [CS base address

= CS segment selector * 16]). To insure that the base address in the
CS register remains

unchanged until the EPROM based software-initialization code is
completed, the code must not

contain a far jump or far call or allow an interrupt to occur (which
would cause the CS selector

value to be changed).

also a snippet from DDJ (Doctor Dobbs Journal):

At power-up, the descriptor cache registers are loaded with fixed,
default values, the CPU is in

real mode, and all segments are marked as read/write data segments,
including the code segment (CS).

According to Intel, each time the CPU loads a segment register in
real mode, the base address is

16 times the segment value, while the access rights and size limit
attributes are given fixed,

"real-mode compatible”™ values. This is not true. In fact, only the CS
descriptor cache access rights

get loaded with fixed values each time the segment register is loaded
- and even then only when a

far jump is encountered. Loading any other segment register in real
mode does not change the access

rights or the segment size limit attributes stored in the descriptor
cache registers. For these

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

segments, the access rights and segment size limit attributes are
honored from any previous setting

(see Figure 3). Thus it is possible to have a four giga-byte, read-
only data segment in real mode

on the 80386, but Intel will not acknowledge, or support this mode of
operation.

If you want to know more about descriptor cache and how it works, you can
search the web for articles about "descriptor cache” or "x86 unreal mode", the
most comprehensive guide can be found in one of Doctor Dobbs Journal and Intel
Software Developer Manual Vol.3 chapter 3 Protected Mode Memory
Management in section

3.4.2 Segment Registers. Back to our ss register, now you know that the "actor" here is
the descriptor cache register, especially its base address part. The visible part of ss is
only a "place holder" and the "“register in-charge" for the "real” address
calculation/translation is the hidden descriptor cache. Whatever you do to this
descriptor cache will be in effect when any code, stack or data value addresses are
translated/calculated. In our case, we have to use "stack segment” with "base address"
at F 0000h physical address in 16-bit protected mode. This is not a problem, since the
base address part of ss descriptor cache register already filled with FOO00h in one
of the code above. This explains why the code above can be executed flawlessly.
Another example:

Address Hex Mnemonic

FO00:61BF BC C5 61 mov sp, 61C5h

FO00:61C2 E9 3B FE Jjmp FOOO_6000_read pci_byte ; Jump
F000:61C2 e
FO00:61C5 C7 61 dw 61C7h

in this code we have to make ss:sp points to F61C5h for retn instruction to work.
Indeed, we've done it, since ss contains FOO00h (its descriptor cache base address
part) and as you can see, sp contains 61C5h, the physical address pointed to by ss:sp
is FOO0Oh + 61C5h which is F61C5h physical address.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

4. Our Tools of Trade

You are only as good as your tools. Yeah, this also holds true here. To begin the
journey, we'll need a couple of tool as follows :

1.

IDA Pro disassembler. I'm using IDA Pro version 4.50. You can use your
favourite interactive disassembler. | found IDA Pro is the most suitable for
me. We need an interactive disassembler since the BIOS binary that we're
going to disassemble is not a trivial code. At some points of its execution it
resides in ROM, hence, no stack avalilable. It uses some sort of stack trick
to do procedure/routine calling.

A good hex editor. I'm using HexWorkshop ver. 3.0b. The most beneficial
feature of this hex editor is it's capability to calculate checksums for the
selected range of file that we open inside of it.

LHA 2.55, it's needed if you want to modify the bios binary. Or, you can
use winzip or another compression/decompression program that can
handle LZH/LHA file if you only want to get the compressed bios
components.

Some bios modification tools i.e. : CBROM, I'm using version 2.08, 2.07
and 1.24 and MODBIN. There are two types of modbin, modbin6é for award
bios ver. 6 and modbin 4.50.xx for award bios ver. 4.5xPGNM. We need
these tools to look at the bios components much more easily. You can
download it at www.biosmods.com, in the download section.

Some chipset datasheets. This depends on the mainboard bios binary that
you're gonna dissect. Some datasheets available at www.rom.by. I'm
dissecting a VIA693A-596B mainboard. | have the datasheets at my hand,
except for the southbridge i.e. VIA596B, which is substituted by VIA586B
and 686A datasheet, since the complete VIA596B datasheet is not
avalilable.

Intel Software Developer Manual Volume 1, 2 and 3. These are needed
since BIOS sometimes uses "exotic" instruction set. Also, there are some
system data structures that are hard to remember and need to be looked
up, such as GDT and IDT.

OK, now we're armed. What we need to do next is to understand the basic stuff
by using the hex editor before proceeding through the disassembling session.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

http://www.biosmods.com/
http://www.rom.by/

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

5. Award BIOS File Structure

Award BIOS file consists of several components. Some of the components are
LZH level-1 compressed. We can recognhize them by looking at the "-lh5-"
signature in the beginning of that component using hex editor. Here's an
example :

Address Hex ASCII

00000000 25F2 2D6C 6835 2D85 3A00 00CO 5700 0000 %.-Bh5-.:...W...
00000010 0000 4120 010C 6177 6172 6465 7874 2E72 ..A ..awardext.r
00000020 6F6D DB74 2000 002C F88E FBDF DD23 49DB om.t ..,..... #1 .

Beside the compressed components, there are also some "pure” 16-bit x86
binary components. Award BIOS execution begins at this "pure" binary
(uncompressed) components.

We have to know the entry point to start our disassembly to this BIOS binary.
We know that the execution of x86 processor begins in 16-bit real mode at
address FOOO:FFFO (physical address FFFF FFFO) following restart or power up,
as per Intel Software Developer Manual Vol.3 "System Programming”. Based on
our intuition, this address must contain a 16-bit real mode x86 executable code.
That's true. Below is the "memory map" of award bios binary that | have. It's a
2MBIit/256 KB bios image for Iwill VD133 mainboard.

¢ The compressed components :

1. 0000h - 3AACh : XGROUP ROM (awardext.rom), this is an award
extension rom. It contains routine that is called from the system
BIOS, i.e. original.tmp

2. BAADh - 97AFh : CPUCODE.BIN, this is the microcode for the

BIOS.

97B0Oh - AS5CFh : ACPITBL.BIN, the acpi table.

A5DO0Oh - A952h : lwill.bmp, the BMP logo.

A953h - B3Blh : nnoprom.bin, I haven't know yet what this

component's role.

6. B3B2h - C86Ch : Antivir.bin, the bios bootsector antivirus.

7. C86Dh - 1BEDCh : ROSUPD.BIN, this is a custom bios component
in my bios. It's used to display a customized Boot Logo and
indicator

8. 20000h - 35531h : original.tmp, this is the system BIOS. This
component located in this address in most award bioses, but
sometimes also located in the very beginning of the bios binary, i.e.
0000h.

akw

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Note:

Between the compressed ROSUPD.BIN and original.tmp there are padding
FFh bytes. These padding bytes also found after the compressed original.tmp
and the pure binary BIOS components that will be explained below. An

example of these padding bytes :
Address Hex ASCI1
00037D00 2A42 4253 532A 0060 0070 0060 0060 O0AO
BBSS. .p. . ..
00037D10 3377 4670 8977 ACCF C4CF 0100 OOFF FFFF

The compressed component can be extracted easily by copying and pasting it
into a new binary file in Hexworkshop. Then, decompress this new file by
using LHA 2.55 or winzip. If we are into using winzip, give the new file an
".1zh™ extension so that it'll be automatically associated with winzip.
Recognizing where we should "cut" to get the new file is pretty easy, just look
for the "-Ih5-" string. Two bytes preceeding *'-Ih5-"" string is the beginning
of the file and the end of the file is always 00h, right before the next
compressed file (with the "-Ih5-" marker in its beginning), right before the
padding bytes or right before some kind of checksum. | present two examples
below, the highlighted bytes is the beginning or the end of the compressed file.

compressed CPUCODE.BIN file in my BIOS :
Address Hex ASCI1
00003AA0 4E61 19E6 9775 2B46 BA55 85F0 0024 382D
Na...u+F_U.._$8-
00003ABO 6C68 352D DC5C 0000 00AO 0000 0000 0140 Ih5-

OOO03ACO 2001 0B43 5055 434F 4445 2E42 494E BCAA
- .CPUCODE.BIN. .

OOO03ADO 2000 0038 3894 9700 52C4 A2CF F040 0000
..88...R....@-..

OOO00O3AEO 4000 0000 0000 0000 0000 0000 0000 0000

000097A0 OE3C 8FA7 FFF4 FFFE 9FFF D3FF FFFB FFOO

000097B0 24D9 2D6C 6835 2DFA 0DOO 00A6 2100 0000 $.-Ih5-

compressed ORIGINAL.TMP file in my BIOS :

Address Hex ASCI 1
0001FFFO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

00020010 0000 5020 010C 6F72 6967 G96E 616C 2E74 . .P
..original._t

00020020 6D70 OCD9 2000 002D 7888 FOFD D624 ASBA mp. . . .-
X....$..

00035510 019E 6E67 BF11 8582 88D9 4E7C BECS C34C
--nNg...... NJ---L

00035520 401D 189F BDDO A176 17F0 4383 1D73 BF99

@...... v..C..s..

00035530 00CO9 FFFF FFEF FFFF FEFF FFFF FFEF FEFF

00035540 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

The pure binary components :

0. 36000h - 36C4Ah : Memory sizing routine, this routine also
initialize the Host Bridge and the CPU/RAM clock in my BIOS

1. 37000 - 37D1Ch : The decompression block, this routine contains
the LZH decompression engine which decompresses the compressed
bios components above.

2. 3C0O00h - 3CFE4h : This area contains various routine, the lower
128KB BIOS address decode enabler, the default VGA initialization
(executed if system bios is erratic), Hostbridge initialization routine,
etc.

3. 3EOO0Oh - 3FFFFh : This area contains the Boot Block code.

Note: in between some of the components lies padding bytes. Some are
FFh bytes and some are O0Oh bytes.

The memory map in the real system (mainboard).
We have to note that the memory map above is described as we see the
BIOS binary in a hex editor. In the mainboard BIOS chip, it's a bit different
and more complex. It's mapped in my mainboard as follows (it's maybe a
bit different with yours, consult your chipset documentation):

0. 0000h - 3FFFFh in the BIOS binary (as displayed in hex editor) is
mapped into FFFC 0O000h - FFFF FFFFh in my system memory
space. Due to my system's northbridge (as per its datasheet),
address FFFF O000h - FFFF FFFFh is just an alias to F O000h - F
FFFFh or speaking in ‘'real-mode Ilingo" FOOO0:0000h -
FOOO:FFFFh. Note that this mapping only applies just after power-
on, since it's the chipset's power-on default value. It's not
guaranteed to be valid after the chipset is reprogrammed by the
BIOS itself. There are some other "kludge" though and they are
really system dependent. You have to consult Intel Software
Developer Manual Volume 3 (system programming) and your
chipset datasheet.

1. Due to the explanantion in 1. , the pure binary BIOS components is
mapped as follows (note: just after power-on) :

» BootBlock : FOOO:EOOOh - FOOO:FFFFh
= Decompression Block : FOO0O:7000h - FOOO:7D1Ch
= Early Memory Initialization : FOO0:6000h - FO00:6C4Ah

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

2.

The compressed BIOS components are mapped into system memory
space after they are decompressed in a different manner. They
reliant on the decompression block routine, but there are few
mappings that seem remain the same accross different BIOS files.
These mappings are (as per my BIOS. Yours may differ, but the
segment address very possibly the same):

= original.tmp a.k.a System BIOS : EO000:0000h -
FO00:5531h

= awardext.rom a.k.a Award extension ROM : 4100:0000h -
4100:xxxxh . Later relocated to 6000:0000h -

6000:xxxxh by original.tmp, before it's executed.

We have to be aware of this mapping during our journey.

Note:

It's very easy to get lost due to the sheer complexity of the BIOS binary address
mapping into the real system. But, there are some guidelines that will ease our effort
during our disassembly session using IDA Pro as follows :

(0]

Begin the disassembly session with the pure binary components. | just copy
my BIOS file at 36000h - 3FFFFh to get these components and paste it into a
new binary file to be disassembled. We need these components to reside in one
file since they are inter-related each other. Then | disassemble this new file by
setting its address mapping in IDA Pro to FO00:6000h - FO00:FFFFh and
disabling segment naming so that | can see its "real-mode address" in the
system during its execution.

Decompress the system bios (original.tmp) somewhere, you'll find that its size
is 128KB. Then disassemble it by setting its address mapping in IDA Pro to
E000:0000h - FO00:FFFFh. The address mapping should be like that since
this compressed bios component is decompressed by the decompression block
somewhere in memory and then relocated into this address range before it's
"jumped-into™ by the bootblock code (gets executed). AFAIK, this mapping
apply to all award BIOS. Also remember to disable segment naming, so that
we can see its "real-mode address" in the system during its execution.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

6. Disassembling the BIOS

Due to Intel System Programming Guide | mentioned before, we'll begin the
disassembly session at address FOOO:FFFOh (note: look at the memory mapping
above and adjust IDA Pro to suit it). You may ask: How the hell this is even
possible ? Intel Software Developer Manual Vol. 3 (PROCESSOR MANAGEMENT
AND INITIALIZATION - First Instruction Executed) says :

The first instruction that is fetched and executed following a hardware reset is
located at physical

address FFFFFFFOH.

The answer is : | repeat that my northbridge chipset aliases address range FFFE
FFFFh - FFFF FFFFh to OOOFxxxxh. Also, note that the southbridge has no
means to alter the translation of this address range. It just passes the addresses
directly to the BIOS ROM chip. Hence, there's no difference between address
FFFF FFFOh and F FFFOh (or FOOO:FFFO in "real-mode lingo™) just after power-
on or reset. It's that simple heh ;) . This is the BootBlock area, it always contains
a far jump into the bootblock routine, mostly to FOOO:EO5Bh. From this point
we can continue the disassembly to cover the majority of the pure binary part. In
reality, lots of the pure binary code is never executed at all since it's very seldom
your system BIOS gets corrupted and the Bootblock POST (Power On Self Test)
routine takes place.

6.1. Bootblock

From this point we can disassemble the bootblock routines. Now, I'll present
some of the "obscure™ areas of the BIOS code in the disassembled bootblock.
This is with respect to my BIOS, yours may vary but it will be very similar.

At Virtual Shutdown routine:

Address Hex Mnemonic

FOO0:EO7F BC OB F8 mov sp, OF80Bh ; contains
E103h (memory presence test code)

FOOO:E082 E9 7B 15 Jmp Ct _Very Early Init ; return
from this jump

FOO0:E082 ; IS

redirected to FOOO:E103h

At Reset PCI Bus routine:

Address Hex Mnemonic

FOOO:E1A0 BF A6 E1 mov di, OE1A6h ; the return
addr of the jump below

FOOO:E1A3 E9 42 99 jmp Reset_PCl_Bus
Jumpless_in_Decompress_Area,

FOOO:E1A3 ; Program CPU
clock pin, host clock

FOOO:E1A3 ; for
Jumperless platform ??7?

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:7CDD _delay: ; CODE XREF:
Reset PCl_Bus+1F5

FO00:7CDD E2 FE loop _delay ; Loop while
CX 1=0

FO00:7CDF FF E7 Jmp di ; jJump back to
FOOO:E1A3h

At call to memory detection routine:

Address Hex Mnemonic

FO00:E1D6 Checksum is ok , execute memory
detection

FOO0:E1D6 2E 8B 07 mov ax, cs:[bx] ; ax = cs:[bx]
(cs:[7D06h] 1s 6000h)

FOOO:E1D9 25 00 FO and ax, OFOO0Oh ; ax = 6000h
FOO0:E1DC 8B FO mov si, ax ; Si = 6000h
FOOO:E1DE 81 C6 FC OF add si, OFFCh ; add
si,MEMORY_PRESENCE_OFFSET; si=6FFCh

FOOO:E1E2 2E 8B 34 mov si, cs:[si] ; Si = 60B4h
FOOO:E1E5 BC EC E1 mov sp, OE1ECh ; pointer to
pointer to ret addr below

FOOO:E1E8 FF E6 Jmp si ; Jmp to
FO00:60B4h, execute memory detection

FOOO:E1E8 ; returns at
FOOO:E1F8

This code gets executed before the bootblock is copied to RAM. In

case the RAM

is faulty, the system will halt and output error code from system speaker.

At bootblock get copied and executed in RAM:

Address Hex Mnemonic

FOOO:E2AA e ————— Enter 16-bit
Mode (Flat) --———————-—-

FOO0:E2AA assume ds:F000

FOOO:E2AA OF 01 16 F6 E4
Load Global Descriptor Table

Register

FOOO:E2AF OF 20 CO

FOOO:E2B2 OC 01

PMode flag

FOOO:E2B4 OF 22 CO

FOOO:E2B7 EB 00

prefetch, enter 16-bit PMode. We"re
FOOO0:E2B7 ;
"unchanged" hidden value of CS

FOO0:E2B7 ;
(descriptor cache) from previous

FO00:E2B7 ;
session" in memory_ check routine

FOOO0:E2B7 ;
segment desc
FOOO:E2B9 B8
FOOO:E2BC 8E
entry in GDT
FOOO:E2BE
FOOO:E2BE 8E
entry in GDT
FOOO:E2CO

mov
or

eax, cro0
al, 1 :

mov
Jmp

cr0, eax
short $+2 :

08 00
D8
loaded above

mov
mov

ax, 8
ds, ax ;

assume ds:nothing
Cco mov es, ax ;

loaded above

Protected

Igdt gword ptr GDTR_FOOO E4F6 ;

activate

clear
using the
register
"PMode

for code
ds 1st

es 1st

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:E2CO

EOOOOH ROM space, one is OEOOOOH

FOO00:E2CO

;There are two locations to access

;and another i1s OFFFEOOOOH. Some

chipsets can not access onboard ROM

FO00:E2CO

use the space on ISA bus. To
FO00:E2CO

change address to OFFFEOOOOH
FOOO:E2CO

space.

FO00:E2CO

FOOO:E2CO 66 BE 00 00 OE 00
addr of compressed original _tmp

FOOO:-E2C6 67 66 81 7E 02 2D 6C 68+

LHA signature

FOOO:E2CF 74 07

(ZF=1)

FOOO:E2D1 66 81 CE 00 00 FO FF
FFFEOOOOh

FOOO:E2D8

FOOO:E2D8

and bootblock)

FOOO0:E2D8

10000h-2FFFFh --

FOOO:E2D8

FOOO:E2D8

FOOO:E2CF

FOOO:E2D8 66 BF 00 00 01 00
1000:0

FOOO:-:E2DE 66 B9 00 80 00 00
KByte to buffer (original.tmp &
FOOO0:E2DE

FOOO:E2E4 67 F3 66 A5

ptr [esi] ; Move Bytes from
FOOO:E2E4

; String to String
FOOO:E2E8 OF 20 CO
FOOO:E2EB 24 FE

bit

FOOO:-:E2ED OF 22 CO
FOOO:E2FO0 EB 00

prefetch, back to RealMode
FOOO:E2F2 EA F7 E2 00 20
below in RAM

FO00:E2F7

FOOO:E2F7

this point

FOO00:E2F7

compressed

FOOO:E2F7

decompression code
FOO00:E2F7

FOO00:E2F7

FOOO:E2F7 33 CO

FOOO:E2F9 8E DO

FOOO:E2FB

FOOO:E2FB BC 00 10
0000:1000h

FOO00:E2FE

;space at OEOOOOH if any device also
;solve this problem , we need to
;to read BIOS contents at OEOOOOH

assume es:nothing

mov esi, OEOOOOh ; starting
cmp dword ptr [esi+2], "5hl-" ;
Jjz LHA sign_OK ; Jump if Zero

or esi, OFFFOO000Oh ; esi =

-— move entire BIOS (i.e. original.tmp

from ROM at EOOOOh-FFFFFh to RAM at

LHA_sign_OK: ; CODE XREF:
mov edi, 10000h ; buffer at
mov ecx, 8000h ; copy 128

bootblock)

rep movs dword ptr es:[edi], dword

mov eax, crO

and al, OFEh ; clear PMode
mov cr0, eax

jmp short $+2 ; clr

jmp far ptr 2000h:O0E2F7h ; Jump

;Setup temporary stack at 0:1000H, at
;Bios code (last 128 Kbyte) is still

;except the bootblock and

BootBlock_in_RAM: ; ax = 0000h
Xor ax, ax
mov Ss, ax ; Ss = 0000h
assume ss:nothing
mov sp, 1000h ; SsIsp =

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The last 128KB of BIOS code (EO00:0000h - FOOO:FFFFh) get copied to RAM as
follows :

1. Northbridge power-on default values aliases FOOOOh-FFFFFh address
space with FFFE FFFFh-FFFF FFFFh, where the BIOS ROM chip address
space mapped. That's why the following code is safely executed:

Address Hex Mnemonic
FOOO:FFFO EA 5B EO 00 FO jmp far ptr entry_point ;
Northbridge is responsible for decoding

FO00:FFFO ; the target
address of this jump into BIOS

FO00:FFFO ; chip through
address aliasing. So, even if

FOOO:FFFO ; this is a far
Jjump (read Intel Software

FO00:FFFO ; Developer
Guide Vol .3 for info)

FO00:FFFO ; we are still
in BIOS chip dood ;)

FOOO:FFFO ; VIB93A:

FFFEFFFF-FFFFFFFF Is OOOFxxxx alias.

also, northbridge power-on default values disables DRAM shadowing for this
address space. Thus, read/write to this address space will not be forwarded to
DRAM. At the same time, there's no control register in southbridge that controls
the mapping of this address space. Hence, | suspect that read operation to this
address space will be "directly forwarded” to the BIOS ROM chip without being
altered by the southbridge. Of course this read operation first pass through
northbridge which apply the address aliasing scheme.

2. Very close to the beginning of Bootblock execution, routine
Ct_Very_Early_Init executed. This routine reprogram the PCI-to-ISA bridge
(in southbridge) to enable decoding of address EOOOOh-EFFFFh to ROM, i.e.
forwarding read operation in this address space into the BIOS ROM chip. The
northbridge power-on default values disables DRAM shadowing for this
address space. Thus, read/write to this address space will nhot be forwarded
to DRAM.

3. Then comes the routine displayed above which copied the last 128KB BIOS
ROM chip content (address EOOOOh - FFFFFh) into DRAM at 1000:0000h -
2000:FFFFh and continues execution from there. This can be accomplished
since this address space is mapped only to DRAM by the chipset, no
special address translation.

4. From this point on, Bootblock code execution is within segment
2000h in RAM. This fact holds true for all Bootblock routines explained
below. Note that the segment address shown in bootblock routines below
uses segment FOOOhh. It should be segment 2000h but I hadn't change it.
Pay attention to this!

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

At call to bios decompression routine and the jump into decompressed system bios:

Address Hex Mnemonic

FO00:E3DC E8 33 01 call Expand_BIOS ; decompress
bios code

FOOO:E3DF EB 03 jmp short BIOS_chksum_OK ;
checksum is good

FOOO:E3E1 I et
FOOO:E3E1l

FOOO:E3E1 B10S_chksum_err: ; CODE XREF:
FO00:E347

FOOO:E3E1l ; FO00:E350
FOOO:E3E1 B8 00 10 mov ax, 1000h

FOO0:E3E4

FOOO:E3E4 B10S_chksum_OK: ; CODE XREF:
FOOO:E3DF

FOOO:E3E4 8E D8 mov ds, ax ; ax = 5000H
if checksum ok

FOOO:E3E4 ; setup source
for shadowing

FOOO:E3E4 ; so, if ok,
ds = 5000h

FOOO:E3E6 assume ds:nothing

FOOO:E3E6 BO C5 mov al, OC5h

FOOO:E3E8 E6 80 out 80h, al ;
manufacture®s diagnostic checkpoint

FOOO:E3EA

FOOO:E3EA ;The source data segment is 5000H if
checksum is good.

FOOO:E3EA ;the contents in this area is
decompressed by routine "Expand_Bios".

FOOO:E3EA ;And segment 1000H is for shadowing
original BIOS image if checksum

FOOO:E3EA ;is bad. BIOS will shadow bootblock
and boot from it.

FOOO:E3EA E8 87 EB call Shadow BIOS code ; Call
Procedure

FOOO:E3ED BO 00 mov al, O ; clear uP
cache

FOOO:E3EF E8 C7 10 call Enable_uP_cache ; Call
Procedure

FOOO:E3F2

FOOO0:E3F2 ;BIOS decide where to go from here.
FOOO:E3F2 ;1T BIOS checksum is good, this
address F80DH is shadowed by

FOOO:E3F2 ;decompressed code (i.e. original._bin
and others),

FOO0:E3F2 ;And ""BootBlock POST™ will be executed
iT checksum is bad.

FOOO:E3F2 EA OD F8 00 FO jmp far ptr FOOO_segment ; jump to

FOOO segment

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

during execution of Expand_BIOS routine, the compressed BIOS code
(original.tmp) at 1000:0000h - 2000:FFFFh in RAM decompressed into
EO00:0000h - FOOO:FFFFh also in RAM. Note that the problem due to address
aliasing and DRAM shadowing are handled during the decompression by setting
the appropriate chipset registers. Below is the basic run-down of what this
routine accomplished:

2. Enable FFF80000h-FFFDFFFFh decoding. Access to this address
will be forwarded into the BIOS ROM chip by the PCI-to-1SA Bridge.
PCI-to-ISA bridge ROM decode control register is in-charge here.
This is needed, since my BIOS is 256KB and only 128KB of it has
been copied into RAM, i.e. the original.tmp and bootblock which is
at 1000:0000h-2000:FFFFh by now.

3. Copy lower 128KB of BIOS code from FFFCOOOOh-FFFDFFFFh in
ROM chip into 8000:0000h - 9000:FFFFh in DRAM.

4. Disable FFF80000h-FFFDFFFFh decoding. Access to this address
will not be forwarded into the BIOS ROM chip by the PCI-to-ISA
Bridge.

5. Verify checksum of the whole compressed BIOS image, i.e. calculate
the 8-bit checksum of copied compressed BIOS image in RAM (i.e.
8000:0000h - 9000:FFFFh + 1000:0000h - 2000:7FFDh) and
compare the result against result stored in 2000:7FFEh. If 8-bit
checksum doesn't match, then goto BIOS_chksum_err, else
continue to decompression routine.

6. Look for the decompression engine by looking for *BBSS* string in
segment 2000h, then execute the decompression routine for all of
the compressed BIOS components.

7. Decompress the compressed BIOS components. Note that at this
stage only origininal.tmp and it's extension i.e. awardext.rom
(probably also awardyt.rom, | haven't verify it) which get
decompressed. The other component treated in different fashion.
The BootBlock expand routine only process their
decompressed/expansion area information then put it somewhere in
RAM. We need some preliminary info before delving into this step as
follows:

= The format of the LZH level-1 compressed bios components.
The address ranges where these BIOS components will be
located after decompression are contained within this format.
The format is as follows (it applies to all compressed
components):

Offset from 1st Offset in Real

byte Header CUELE

The header length of the
00h N/A component. It depends on the
file/component name.

The header 8-bit checksum, not
including the first 2 bytes
(header length and header
checksum byte).

01h N/A

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

02h - 06h

00h - 04h

LZH Method ID (ASCII string
signature). In my BIOS it's "-
Ih5-" which means: 8Kk sliding
dictionary(max 256 bytes) +
static Huffman + improved
encoding of position and trees.

07h - 0Ah

05h - 08h

compressed file/component
size in little endian dword
value, i.e. MSB at 0Ah and so
forth

0Bh - OEh

09h - 0Ch

Uncompressed file/component
size in little endian dword
value, i.e. MSB at OEh and so
forth

OFh - 10h

0Dh - OEh

Decompression offset address
in little endian word value, i.e.
MSB at 10h and so forth. The
component will be
decompressed into this offset
address (real mode addressing
is in effect here).

11h - 12h

OFh - 10h

Decompression segment
address in little endian word
value, i.e. MSB at 12h and so
forth. The component will be
decompressed into this
segment address (real mode
addressing is in effect here).

13h

11h

File attribute. My BIOS
components contain 20h here,
which is normally found in
LZH level-1 compressed file.

14h

12h

Level. My BIOS components
contain 01h here, which means
it's a LZH level-1 compressed
file.

15h

13h

component filename name
length in byte.

16h -
[15h+filename_len]

14h -
[13h+filename_len]

component filename (ASCII
string)

[16h+filename_len]

[17h+filename_len]

[14h+filename_len]

[15h+filename_len]

file/component CRC-16 in
little endian word value, i.e.
MSB at [HeaderSize - 2h] and
so forth.

[18h+filename_len]

[16h+filename_len]

Operating System ID. In my
BIOS it's always 20h (ASCII

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

space character) which don't
resemble any LZH OS ID
known to me.

[19h+filename_len] [17h+filename_len] Next header size. In my BIOS

- - it's always 0000h which means

[LAh+filename_len] [[18h+filename_len] [no extension header.

Note:

The left-most offset is calculated from the beginning of
the compressed component and the contents
description "addressing" with respect to the 1st byte of
the component. The "offset in Real Header" is used
within the "scratch-pad RAM" explained below.

Each component is terminated with EOF byte, i.e. OOh
byte.

In my BIOS, there are ReadHeader procedure which
contains routine to read and verify the content of this
header. One of the key "procedure call" there is a call
into FreadCRC, which reads the bios component header
into a ‘scratch-pad” RAM area beginning at
3000:0000h (ds:0000h). This scratch-pad area is
filed with the "real-LZH-header value" which doesn't
include the first 2 bytes (header size and header 8-bit
checksum), but includes the 3rd byte (offset 02h)
until offset HeaderSize+02h.

The location of various checksums which are checked prior

and during the decompresion process.

Location

Calculation Method

Right after
compressed
original.tmp

original.tmp 8-bit checksum. This value is
calculated after it's copied to RAM at segment
1000h and 2000h. The code as follows :

Address Assembly Code

FO00:E307 ;BIOS checksum verify
FO00:E307 ;Now, the 128Kb BI0S (OEOOOOH-
OFFFFFH) is in 10000H-2FFFFH.

FO00:E307 mov ax, 1000h ; point
to OEOOOH bios segment
FOOO0:E30A mov ds, ax ; ds =

1000h (EOOOh segment of the BIOS
FOOO:E30A

copied to RAM)

FOO0:E30C assume ds:nothing
FO00:E30C mov bx, ds:9 ; size
over 64Kb ; equ--> bx = 0001lh

FOO0O:E310 mov cx, ds:7 ; get
compressed size; equ--> cx = 5509h
FOOO:E314 add cl, ds:0 ; add
header size; equ--> 25h + 09h = 2Eh
FO00:E318 adc ch, 0 ; Add
with Carry

FOOO:E31B adc bx, O ; Add
with Carry

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FOOO:E31E add «cx, 3 ;
cx, TAIL_BYTE_SIZE;

FOOO:E31E ;
COMPRESSED_SIZE = 552Eh + 3h = 5531h
FOOO:E31E ;
is the remainder of the cmprssd
FOO0:E31E s
original.tmp In seg_FO000h

FOOO:E321 adc bx, O ;
with Carry

FOO0:E324 jz below_or_equ_64Kb

if compressed size less than 64Kb
FOOO:E326 mov bx, cX
size remainder in next 64KB
FOO0:E326

(@seg_FO000N)

FOOO0:E326

FO00:E328 Xxor CX, CX
size to sum up for 1st 64Kb
FOO0:E328

(cx=0000h means 64KB)
FOOO:E32A

FO00:E32A below_or_equ_64Kb:
XREF: FOO00:E324

FOO0:E32A Xor si, Si
0000h

FOOO:E32C xor ah, ah
00h (initial 8-bit chksum)
FOOO:E32E

FOO0:E32E add_next_byte:
XREF: FO00:E331 F000:E343

FO00:E32E lodsb

String

FO00:E32F add ah, al

8 bit chksum, result iIn ah
FO00:E331 loop add_next byte
while cx '= 0 (<64KB)

FOOO:E333

FO00:E333 or bx, bx

compressed BIOS bigger than 64kb ?
FOOO:E335 jz
no, less than 64Kb

; add

; This

; Add

; Jmp

code

code

ah =

CODE
Load
calc

loop

look for_BBSS_sign ;

FOO0:E337 mov cx, bx ; CX =
compressed code size in next 64Kb
FO00:E339 mov bx, ds ; setup
next 64Kb segment address

FOO0:E339 ; at
first ds = 1000h

FOOO:E33B add bx, 1000h ; next
64Kb

FO00:E33F mov ds, bx ;
ds=ds+1000h (ds = 2000h i.e. seg_FO000h)
FOOO:E341 assume ds:nothing

FOOO:E341 xor bx, bx ; mark
that no next 64Kb ; bx = 0000h

FOO0:E343 jmp short add_next_byte ;

continue to do checksum sum up
FO00:E345 ;
FO00:E345

FOOO:E345 look_for_BBSS_sign:

; CODE

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

XREF: FOOO:E335

FOOO:E345 cmp ah, [si] ; cmp
calc-ed chksum & chksum in image.
FO00:E345 ; iIn
original .tmp BIOS image,

FO00:E345 ;

chksum at 35531h (F_seg:5531h)
FO00:E347 jnz BIOS cksm_error ; Jump
if Not Zero (ZF=0)

Right after the
decompression
engine

This is the 8-bit checksum of the decompression
engine which starts at FO00:7000h (2000:7000h
after copied to RAM) in my BIOS. The code as

follows:
Address Assembly Code
FOO0:E35E Verify checksum of decompress

engine

FOOO:E35E mov ds, ax ; ds =
2700h (2000:7000h)

FO00:E360 assume ds:nothing ; ds =
FOOOh segment in RAM

FOO0:E360 xor ah, ah ; ah =
0000h

FOOO:E362 xor si, Si ; SI =
0000h

FOO0:E364 mov cx, OFFFh ; 4095
Byte boundary

FO00:E364 ; the
4096th byte is the chksum

FOOO:E364 ; at
FOOO:7FFFh in my BIOS

FOO0:E367 chksum_loop: ; CODE
XREF: FOOO:E36A

FOOO:E367 lodsb ; Load
String

FO00:E368 add ah, al ; calc
8 bit chksum

FO00:E36A loop chksum_loop ; Loop
while CX 1= 0

FOOO:E36C

FO00:E36C cmp ah, [si]

decomp engine chksum OK ?

FOOO:E36E jnz BIOS cksm _error ; jump
if no

1 byte before
decompression
engine checksum
(that's explained
above)

This is the 8-bit checksum of all compressed BIOS
plus the 8-bit checksum of the decompression
engine (not including its previously calculated

checksum above). The code :

Address Assembly Code

FO00:E512 call Extern_executel ; copy
lower 128 KByte bios code from ROM

FOOO0:E512 ; (at FFFC
0000h - FFFD 0000h) to RAM

FO00:E512 ; (at
8000:0000h-9000:FFFFh)

FO00:E515 Xor ah, ah ; ah = 00h
FOOO0:E517 Xor CX, CX ; CX =
0000h

FO00:E519 mov bx, 8000h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:E51C mov ds, bx ; ds =
8000h, contains compressed
FOO00:E51C ; lower

128KB bios components (awdext,etc.)
FOOO:E51E assume ds:nothing
FOOO:E51E Xxor si, si ; Si =
0000h

FOO0:E520

FOOO:E520 next_seg8000h_byte: ; CODE
XREF: Expand_Bios+11 Expand_Bios+1F

FO00:E520 lodsb ; Load
String
FO00:E521 add ah, al ; calc 8-

bit chksum, result placed at ah
FO00:E523 loop next_seg8000h_byte ;
loop while cx = 0, i.e. 64 KByte

FO00:E525
FO00:E525 mov bx, ds ; bx = ds
FO00:E527 cmp bh, 90h ; 64 KByte

chksum-ed ?
FOOO:E52A jnb _8000h_chksum_done ;

yes
FO00:E52C add bh, 10h ; ho,
continue calc-iIng In next segment
FOO0:E52C ; we're

calc-ing 128KByte code chksum

FOOO:E52F mov ds, bx

FO00:E531 assume ds:nothing

FOO0:E531 jmp short
next_seg8000h_byte ; Jump

FOOO:E533 ; -—-—-———— -
FOOO:E533

FO00:E533 _8000h_chksum_done: ; CODE
XREF: Expand_Bios+18

FOOO:E533 mov bx, 1000h ; 1000h, 1st
64KB BIOS img (EOOOh seg of

FO00:E533 ; compressed
original .tmp)

FOOO:E536 mov ds, bx ; ds = 1000h
FOOO:E538 assume ds:nothing

FOOO:E538 xor si, si ; si = 0000h
FOOO:E53A cld ; Clear
Direction Flag

FOOO:E53B

FOOO:E53B next_segl000h_byte: ; CODE
XREF: Expand_Bios+2C Expand_Bios+3B

FO00:E53B lodsb ; Load
String
FO00:E53C add ah, al ; calc 8 bit

chksum, contd from chksum above
FO00:E53E loop next segl000h_byte ;
Loop while CX 1= 0

FOO0:E540

FOOO:E540 cmp bh, 20h ; 1S 64KB
reached? (seg_FO000 reached?)

FOOO:E543 jnb _1000h_chksum_done ;
yes

FOOO:E545 add bh, 10h ; no,
proceed calc-ing iIn next segment
FOOO:E548 mov ds, bx

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FOOO:E54A assume ds:nothing

FO00:E54A mov cx, 7FFEh ; calc
seg_FO000 chksum only until 7FFEh
FOOO:E54D jmp short
next_segl000h_byte ; Jump

FOOO:E54F ; —-—————m e
FOO0:E54F

FOOO:E54F _1000h_chksum_done: ; CODE
XREF: Expand_Bios+31

FO00:E54F cmp ah, [si] ; cmp calc-
ed chksum and chksum

FO00:E54F ; pointed
to by [si] (at FOOO:7FFEh, 1.e. B2h)
FOO0O0:E54F ; this is
the chksum for the bios binary

FOOO:E54F ; From

00000h to 37FFDh (C000:0h - FO000:7FFDh)
FOO0:E551 jnz BIOS cksm _error ; Jump
if Not Zero (ZF=0)

The following are the key parts of the decompression routine :

Address Assembly Code

FO00:E512 Expand_Bios proc near
FOOO:E555 mov bx, O
FO00:E558 mov es, bx
FOOO:E55A assume es:nothing
FOOO:E55A mov word ptr es:7004h, OFFFFh ; mov word
es:[Temp_ VGA OFf+4],ffFfFfh

mov bx,Temp_ VGA Seg
es = 0000h

FOOO:E561

FOOO:E561 xor al, al ; clr expand flag
FOOO:E563 mov bx, 1000h

FO00:E566 mov es, bx ; es = 1000h;
SrcSegment,i.e. seg EOOOh

FOOO:E566 ;

FO00:E568 assume es:nothing

FO00:E568 Xor bx, bx ; bx = 0000h ;
SrcOffset

FOO0:E56A call BootBlock Expand ; read compressed
original.tmp header and

FOOO:E56A ; extract original.tmp
to segment 5000h

FOOO0:E56A ; TgtSegment is read
from its LZH header

FOOO:E56A ; on return

ecx=total_component_cmprssd_size

FOOO:E56D jb decompression_error ; Jump if Below
(CF=1)

FOOO:E56F test ecx, OFFFFOOOOh ; ecx & FFFF 0000h
;check against wrong

FO0O0:E56F ; compressed
original.tmp size, i.e. < 64 KB

FOOO:E576 jz decompression_error ; Jump if Zero
(ZF=1)

FOOO:E578 mov bx, 2000h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FOOO:E57B mov es, bx ; es
2000h;SrcSegment, i.e. seg_ FOO0Oh
FOOO:E57D assume es:nothing
FOOO:E57D mov bx, 1 ; chksum byte size
FOOO:E580 jmp short Expand_else ; Jump

FOOO:E59D Expand_else: ; CODE XREF:
Expand_Bios+6E Expand_Bios+99

FOOO:E59D add bx, cx ; es = 2000h (seg_F00Oh
in RAM)

FO00:E59D ; bx =
offset_after_original . tmp+chksum;

FO00:E59D ; this input likely
return CF=1 since

FO00:E59D ; It isn"t a LzZH

compressed component

FOOO:E59F call BootBlock Expand
FOOO:E5A2 jb Expand_else_ Over
FOOO:E5A4 test ecx, OFFFFOOO0Oh
FOOO:E5AB jz Expand_else
FOO0:E5AD Expand_else_Over:
Expand_Bios+89 Expand_Bios+90
FOOO:E5AD call Extern_execute2 ; expand lower 128KB
BI10S code (COOOOh-DFFFFh)

Call Procedure

Jump if Below (CF=1)
Logical Compare
Jump if Zero (ZF=1)
CODE XREF:

FOOO:E5AD ; this routine only
decompress awardext.rom, other
FOOO:E5AD ; component only get

their ExpSegment processed

FOOO:E5BO0 jz B10S_cksm_error ; jump if zero
(awardext.rom not found)
FOOO:E5B4 mov ax, 5000h
FOOO:E5B7 clc

FOOO:E5BS retn

Procedure

FO00:E5B8 Expand_Bios endp

ax = 5000h on success
Clear Carry Flag
Return Near from

FO00:E5B9 BootBlock Expand proc near
FO00:E5B9 cmp dword ptr es:[bx+0Fh], 40000000h ; 1st
addr contain 5000 0000h

FO00:E5B9 ; decomp_Seg:0ffset equ
4000 0000h ?
FOOO:E5B9 ; (Is extension

component ?)
FOO0:E5C2 jnz not_40000000h ; No,skip; at first
this jump is taken

FOOO:E5EA not_40000000h: ; CODE XREF:
BootBlock Expand+9
FOOO:E5EA mov dx, 3000h ; mov dx,Exp Data Segq;

decomp scratch pad ?

FOOO0:ESED push ax

FOOO:ESEE push es

FOOO:E5EF call Search BBSS label ; on return si =
7D06h

FOOO:E5EF ; (cs:di = 2000:7D06h -
- bios In ram)

FOOO:E5F2 pop es

FOOO:E5F3 assume es:nothing

FOO0:E5F3 push es

FOOO:E5F4 mov ax, es ; ax = 1000h (1st pass)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1h
1h

FOOO:E5F6 shr ax, OCh
FOOO:E5F9 mov es, ax
FOOO:E5FB assume es:nothing
FOOO:E5FB mov ax, cs:[si+0OEh] ; mov ax,7789% (addr of
decompression code)

ax
es

FOOO:E5FF call ax ; call 7789h i1.e Expand
(decompression engine)
FO00:E601 pop es ; €s = 1000h

FO00:E602 assume es:nothing

FO00:E602 pop ax

FOO0:E603 retn ; Return Near from
Procedure

FO00:E603 BootBlock Expand endp

FO00:7789 ;Code below is called from Bootblock Expand
procedure

FO00:7789 ;(at FOOO:E5FF) and should return there when
Ffinished.

FO00:7789 Expand proc near

FOO0:780E add bx, 12h ; bx = 12h

FO00:7811 call Get_Exp_Src_Byte ; get es:[bx+12h] to
AL (ExpSegment hi byte)

FO00:7814 sub bx, 12h ; restore bx value
(first pass = 0000h)

FO00:7817 cmp al, 40h ; Is "extension
component" ?

FO00:7817 ; at 1st: al equ 50h
(original .tmp)

FO000:7817 ; at 2nd: al equ 41h
(awardext.rom)

FO00:7817 ; at all other
components: al equ 40h

FO00:7817 ; The decompression
caveat is here d0Od !!!

FO00:7819 jnz Not_ POST_USE ; Jmp if no: for
original .tmp and awadext.rom

FO00:7819 ; goto decompress,
otherwise no

FO00:781B add bx, 11h ; bx =

ExpSegment_lo_byte index

FO00:781E call Get_Exp Src Byte ; al =
ExpSegment_lo_byte

FO00:7821 sub bx, 11h restore bx
FO00:7824 or al, al segment 4000h ?
FO00:7826 jnz Record_to buffer ; jmp if no
FO00:7826 ; (all "extension
component™ jump here)

FO00:7830 Record_to buffer:
FO00:7830 movzx dx, al
ExpSegment_lo_byte
FO00:7833 inc bx ; bx =
header_chksum_index

FO00:7834 call Get _Exp Src Byte ; al = header_chksum
FO000:7837 sub al, dl ; al = header_chksum -
ExpSegment_lo_byte

FO00:7839 call Set Exp Src Byte ; header_chksum = al
FO00:783C dec bx ; restore bx

FO00:783D xor al, al ; al = 00h

CODE XREF: Expand+9D
dx =

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Set Exp_Src_Byte ; ExpSegment_lo_byte

d

bx

restore bx

dx =

dx =

di = 6000h + dx (look
; 0000:[di] =

cxX = ExpSegment

; al = header_len

ecx = header_len

bx --> point to
; eax = compressed

restore bx
ecx = header_len +

ecx

restore gs

FO00:783F add bx, 11h
ExpSegment_lo_byte

FO00:7842 call

00h (ExpSegment=4000h)
FO00:7845 sub bx, 11h
FO00:7848 inc dx
ExpSegment_lo _byte + 1
FO00:7849 shl dx, 2
4*(ExpSegment_lo_byte + 1)
FO00:784C add di, dx
abovel)

FO0O0:784E mov gs:[di], bx
CmprssedCompnnt_offset_addr
FO00:7851 mov CcX, es
FO00:7853 mov gs:[di+2], cx
0000: [di+2]=ExpSegment
FO000:7857 call Get_Exp_Src_Byte
FO00:785A movzx ecx, al
FOO0:785E add bx, 7
compressed file size

FO00:7861 call Get Exp_Src_Dwor
file size

FO00:7864 sub bx, 7
FO00:7867 add ecx, eax
compressed_file_size

FOO0:786A add ecx, 3

total _compressed_component_size
FOOO:786E pop gs

FO00:7870 assume gs:nothing
FO00:7870 jmp exit_proc
FO00:7873 ;

FO00:7873 Not_POST_USE:
Expand+A5

FO000:7873 pop gs

FO00:7875 call MakeCRCTable
lookup table used later
FO00:7878 call ReadHeader
component header into
FO00:7878

error CF=1

FO00:7878

FO00:787B jb exit_proc
wrong (CF=1)

FO00:787F mov ax, ds:108h
FO00:7882 mov ds:104h, ax
FO00:7885 mov ax, ds:10Ah
FO00:7888 mov ds:106h, ax
FO00:788B ;--calculate compressed
when decompress complete
FO00:788B mov ecx, ds:310h
;compressed size

FO00:7890 Xor eax, eax
FO00:7893 mov al, ds:571Ch
compressed header size
FO00:7896 add ecx, eax
FO00:7899 add ecx, 3

ecx,COMPRESSED_UNKNOWN_BYTE;

FO00:7899

compressed size"

FO00:789D

mov edx, ds:314h

otal

CODE XREF: Expand+90

value
CRC-16

restore gs
initialize

read compressed
scratchpad @RAM, on

bx preserved
error, something

mov
mov
mov
mov

ax,ExpSegment
TgtSegment,ax
ax,ExpOffset
TgtOffset,ax
size and return
mov ecx,compsize
= 0000 0000h
al ,headersize;

eax
mov

Add
add
ecx = ""total

mov edx,origsize

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:78A2 push edx

FO00:78A4 push ecx ; save ecx (total
compressed component size)

FO00:78A6 push bx ; bx = 0000h

FO00:78A7 add bx, 5 ; offset 5 ("-1h0O-" or
*-1h5-%)

FO0O0:78AA call Get_Exp Src_Byte ; get compress or
store type value

FO00:78AD pop bx ; bx = 0000h (1st pass)
FO00:78AE cmp al, "0- ; Is it "-1hO-"" ? first
pass is no

FO00:78B0 jnz Not_Store ; No, jump (first pass:
Jjump taken)

FO00:78E1 Not_Store: ; CODE XREF: Expand+127
FO00:78E1 push word ptr ds:104h ; push word ptr
TgtSegment

FO00:78E5 push word ptr ds:106h ; push word ptr
TgtOffset

FO00:78E9 push large dword ptr ds:314h ; push dword
ptr origsize

FOO0:78EE ; extract content from compressed file
FO00:78EE call Extract ; call LzZH
decompression routine

FO00:78F1 pop dword ptr ds:314h ; pop dword ptr

origsize

FO00:78F6 pop word ptr ds:106h ; pop word ptr
TgtOffset

FO00:78FA pop word ptr ds:104h ; pop word ptr
TgtSegment

FO00:78FE Expand_Over: ; CODE XREF: Expand+156

FO00:78FE call ZeroFill _32K mem ; zero fill 32K in
segmnt pointed by ds

FO00:78FE ; 1.e. clean up
scratch-pad RAM
FO00:7901 pop ecx ; ecx = "total

compressed size" (restore ecx)
FO00:7903 pop edx
FO00:7905 clc

FO00:7906 exit_proc:

Expand+F2

FO00:7906 pop es

FO00:7907 pop bx

FO00:7908 pop eax
FO00:790A retn ; Return Near from
Procedure

FO00:790A Expand endp

decompression success
CODE XREF: Expand+E7

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

8. After looking at these exhaustive list of hints, we managed to
construct the mapping of the decompressed BIOS components as
described below :

Starting
address of Decompression
decompressed Compressed Decompressed | State (by Component
BIOS Size Size Bootblock description
component in code)
RAM
Decompressed
to RAM awardext.rom, this is
4100:0000h 3A85h 57COh beginning at |a "helper module”
address in |for original.tmp
column one.
cpucode.bin, this is
5CDCh AOOOh
- the CPU microcode
acpitbl.bin, this is
DFAh 21A6h
iwillbmp.bmp, this is
35Ah 2D3Ch :
nnoprom.bin,
A38h FECh .
- explanation N/A
antivir.bin, this is
1493h 2280h
- BIOS antivirus code
ROSUPD.bin, seems
F63Ah 14380h to be custom Logo
display procedure
Decompressed
to RAM riginal.tmp, th
5000:0000h | 15509h 20000h beginning at |2 '9'nal.tmp, the
. system BIOS
address in
column one.

9. Note: The decompression addresses marked with green background
are treated in different fashion as follows :

» It's not the real decompression area of the corresponding
component as you can see from the explanation above. It's

only some sort of "place holder" for the real decompression

area that's later handled by original.tmp. The conclusion is:

only original.tmp and awardext.rom get decompressed

by ExpandBios routine in Bootblock. If you want to verify

this, try summing up the decompressed code size, it won't fit

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

= All of these component's decompressed segment address are
changed to 4000h by Expand procedure as you can see in
the routine at FO0O0:7842h above.

= The 40xxh shown in their "Starting Address ... (for
decompression)™ actually an ID that works as follows: 40 (hi-
byte) is an ID that mark it as an "Extension BIOS" to be
decompressed later during original.tmp execution. xXx is an ID
that will be used in original.tmp execution to refer to the
component to be decompressed. This will be explained more
thoroughly in original.tmp explanation later.

= All of these components are decompressed during
original.tmp execution. The decompression result is placed
starting at address 4000:0000h, but not at the same time.
Some of it (maybe all, I'm not sure yet) also relocated from
that address to retain their contents after another component
also decompressed in there. More explanation on this
available at original.tmp section below.

10.Shadow the BIOS code. Assuming that the decompression routine
successfully completed, the routine above then copy the
decompressed system BIOS (original.tmp) from 5000:0000h -
6000:FFFFh in RAM to EOOOOh - FFFFFh also in RAM. This is
accomplished as follows:

1. Reprogram the northbridge shadow RAM control register to
enable write only into EOOOOh - FFFFFh, i.e. forward write
operation into this address range to DRAM (nhot to the BIOS
ROM chip anymore).

2. Perform a string copy operation to copy the decompressed
system BIOS (original.tmp) from 5000:0000h -
6000:FFFFh to EOOOOh - FFFFFh.

3. Reprogram the northbridge shadow RAM control register to
enable read only into EOOOOh - FFFFFh, i.e. forward read
operation into this address range to DRAM (nhot to the BIOS
ROM chip anymore). This is also to write-protect the system
BIOS code.

11.Enable the microprocessor cache then jump into the decompressed
system BIOS. This step is the last step in the normal Bootblock
code execution path. After enabling the processor cache, the code
then jump into the write-protected system BIOS (original.tmp) at
FOOO:F80Dh in RAM as seen in the code above. This jump
destination address seems to be the same accross different award
bioses.

e Now, I'll present the "memory map" of the compressed and decompressed
BIOS components just before jump into decompressed original.tmp is
made. This is important since it will ease us in dissecting the
decompressed original.tmp later. We have to note that by now, all code
execution happens in RAM, no more code execution from within BIOS ROM
chip.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Decompression

Address Range in| State (by —
RAM Bootblock Description
code)

This area contains the header of the extension

component (component other than original.tmp

and awardext.rom) fetched from the
0000:6000h - N/A compressed BIOS at 8000:0000h -
0000:6xxxh 9000:FFFFh (previously BIOS component at

FFFC0000h - FFFDFFFFh in the BIOS chip).

Note that this is fetched here by part of the

bootblock in segment 2000h.

This area contains the compressed

original.tmp. It's part of the copy of the last
1000:0000h - Combressed 128KB of the BIOS (previously BIOS
2000:5531h P component at E000:0000h - FOO0:FFFFh in

the BIOS chip). This code is shadowed here by
the bootblock in BIOS ROM chip.
2000:5532h - . . .
2000:5EEEN N/A This area contains only padding bytes.

This area contains the bootblock code. It's part

of the copy of the last 128KB of the BIOS

(previously BIOS component at E000:0000h -
2000:6000h - Pure binary |[F000:FFFFh in the BIOS ROM chip). This
2000:FFFFh (executable) |code is shadowed here by the bootblock in

BI1OS ROM chip. This is where our code

currently executing (the "copy" of bootblock in

segment 2000h).

This area contains the decompressed
4100:0000h - Decompressed awardext.rom. Note that the decompression
4100:57CO0Oh P process is accomplished by part of the

bootblock in segment 2000h.

This area contains the decompressed
5000:0000h - original.tmp. Note that the decompression
6000:FFFFh Decompressed process is accomplished by part of the

bootblock in segment 2000h.

This area contains the copy of the first/lower

. i 128KB of the BIOS (previously BIOS
gg%g?:(?ggh Compressed |component at FFFC0000h - FFFD000Oh in
’ the BIOS chip). This code is shadowed here by
the bootblock in segment 2000h.
) This area contains copy of the decompressed
E000:0000h - . S
F000:EEEEN Decompressed |original.tmp, which is shadowed here by the

bootblock in segment 2000h.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The last thing to note is: what | explain about bootblock here only covers the
normal Bootblock code execution path, which means | didn't explain about
the Bootblock POST that takes place in case original.tmp corrupted. I'll try to
cover it later when | have time to dissect it. This is all about the bootblock right
now, from this point on we'll dissect the original.tmp.

6.2. System BIOS a.k.a Original.tmp
We'll just proceed as in bootblock above, I'll just highlight the places where the
"code execution path" are obscure. So, by now, you're looking at the

disassembly of the decompressed original.tmp of my bios.

The entry point from Bootblock:

Address Hex Mnemonic

FOOO0:F80D This code is jumped into by the
bootblock code

FO00:F80D if everything went OK

FOO0:F80D E9 02 F6 Jmp sysbios_entry _point ;

This is where the bootblock jumps after relocating and write-protecting the system
BIOS.

The awardext.rom and extension BIOS components (lower 128KB bios-code)
relocation routine :

Address Assembly Code

FOOO:EE12 sysbios_entry point: ; CODE XREF: FO00:F80D

FOOO:EE12 mov ax, O

FOOO:EE15 mov ss, ax ; Ss = 0000h

FOOO:EE17 mov sp, 1000h ; setup stack at 0:1000h

FOOO:EE1A call setup_stack ; Call Procedure

FOOO:EE1D call init DRAM shadowRW ; Call Procedure

FO00:EE20 mov si, 5000h ; ds=5000h (look at copy_mem_word)
FOOO:EE23 mov di, OEOOOh ; es=E000h (look at copy_mem_word)
FO00:EE26 mov cx, 8000h copy 64KByte

FO00:EE29 call copy_mem_word copy EOOOh segment routine, i.e.
FO00:EE29 copy 64Kbyte from 5000:0h to
EO00:0Oh

FO00:EE2C call j _init DRAM shadowR ; Call Procedure

FO00:EE2F mov si, 4100h ; ds = XGroup segment decompressed,
i.e.

FOOO:EE2F ; at this point 4100h

FOOO:EE32 mov di, 6000h ; €s = new XGroup segment
FOOO:EE35 mov cx, 8000h ; copy 64KByte

FOO0:EE38 call copy _mem_word ; copy XGroup segment , i.e.
FOO0:EE38 ; 64Kbyte from 4100:0h to 6000:0h
FOOO:EE3B call Enter_| UnreaIMode ; jump below in UnrealMode
FOOO:EE3E Begin_in_UnrealMode

FOOO:EE3E mov ax, ds

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:EE40 mov es, ax ; = ds (3rd entry in GDT)
FOOO:EE40 ; base_addr=0000 0000h;limit 4GB
FOOO:EE42 assume es:nothing

FOOO:EE42 mov esi, 80000h ; mov esi,(POST Cmprssed Temp_Seg
shl 4)

FOOO:EE42 ; relocate lower 128KB bios code
FOOO:EE48 mov edi, 160000h

FOOO:EE4E mov ecx, 8000h

FOOO:EE54 cld ; Clear Direction Flag

FO00:EE55 rep movs dword ptr es:[edi], dword ptr [esi] ; move
FOOO:EE55 ; 128k data to 160000h (phy addr)
FOO0O0:EE59 call Leave UnrealMode ; Call Procedure

FOOO:EE59 End_in_UnrealMode

FO00:EE5C mov byte ptr [bp+214h] 0 ; mov byte ptr

FO00:EE5C ; POST_SPEED[bp],Normal_Boot
FOOO:EE61 mov si, 626Bh ; offset 626Bh (EOOOh POST tests)
FOOO:EE64 push OEOOOh ; segment EOOOh

FOOO:EE67 push si ; next instruction offset (626Bh)
FOOO:EE68 retf ; Jmp to EO00:626Bh

FO00:7440 Enter_UnrealMode proc near ; CODE XREF: FOOO:EE3B
FO00:7440 mov ax, Cs

FO00:7442 mov ds, ax ; ds = cs

FO00:7444 assume ds:F000

FO00:7444 Igdt gword ptr GDTR_FO0OO 5504 ; Load Global Descriptor
Table Register

FO00:7449 mov eax, crO

FO00:744C or al, 1 ; Logical Inclusive OR

FO00:744E mov crO, eax

FO00:7451 mov ax, 10h

FO00:7454 mov ds, ax ; ds = 10h (3rd entry in GDT)
FO00:7456 assume ds:nothing

FO00:7456 mov Sss, ax ; Ss = 10h (3rd entry in GDT)
FO00:7458 assume ss:nothing

FO00:7458 retn ; Return Near from Procedure
FO00:7458 Enter_UnrealMode endp

FO00:5504 GDTR_FO00_5504 dw 30h ; DATA XREF: Enter_PMode+4
F000:5504 ; GDT limit (6 valid desc)
FO00:5506 dd OF550Ah ; GDT phy addr (below)

FO00:550A dg O ; null desc

FO00:5512 dq 9FOFOOOOFFFFh ; code desc (08h)

FO00:5512 ;

base _addr=F0000h;seg limit=64KB; code execute/ReadOnly

FO00:5512

conforming,accessed;granularity= 1Byte 16-bit segment;

FO00:5512 ; segment present,code,DPL=0
FO00:551A dg 8F93000000FFFFh ; data desc (10h)

FO00:551A ; base_addr=0000

0000h;seg_limit=4GB;data,R/W,accessed;

FOO0:551A

; granularity=4KB;16-bit segment;

segment present,

FOOO:551A
FO00:5522
FO00:5522

base_addr=FFFF0000h;seg_limit=64KB:

FO00:5522
byte;
FO00:5522

; data,DPL=0
dg OFFO093FFO000FFFFh ; data desc 18h

data,R/W,accessed;
; 16-bit segment,granularity =

; segment present, data, DPL=0.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FOO0:552A dq OFFO093FF8000FFFFh ; data desc 20h

FO00:552A ;

base addr=FFFF8000h;seg_limit=64KB;data,R/W,accessed;

FO00:552A ; 16-bit segment,granularity = 1
byte;

FOO0:552A ; segment present, data, DPL=0.
FO00:5532 dgq 930FO0000FFFFh ; data desc 28h

FO00:5532 ;

base addr=F0000h;seg limit=64KB;data,R/W,accessed;

F000:5532 ; 16-bit segment,granularity = 1
byte;

FO00:5532 ; segment present, data, DPL=0.

Note: after the execution of code above, the "memory map" is changed once again.
But this time only for the compressed "BIOS extension™ i.e. the lower 128KB of BIOS
code and the decompressed awardext.rom, the "memory map" mentioned in the
Bootblock explanation above partially overwritten.

New Address Decompression

Range in RAM State Description
6000:0000h - o
6000:57C0h Decompressed [This is the relocated awardext.rom
This is the relocated compressed "BIOS
160000h - extension", including the compressed
17EEEEh Compressed |awardext.rom. (i.e. this is the copy of

FFFCO0000h - FFFDFFFF in the BIOS rom
chip.

At call to the POST routine a.k.a "POST jump table execution™.

Address Assembly Code

E000:626B The last of the these POST routines starts the EISA/ZISA
E000:626B section of POST and thus this call should never return.
E000:626B If it does, we issue a POST code and halt.

EO000:626B

E000:626B This routine called from FOOO:EE6G8h

EO00:626B

EO000:626B sysbios _entry point_contd a.k.a NORMAL POST TESTS
EO00:626B mov cx, 3 ; mov cx,STD_POST_CODE
EO00:626E mov di, 61C2h ; mov di,offset STD POST_TESTS
E000:6271 call RAM_POST tests ; this won"t return in normal
condition

E000:6274 Jmp short Halt_System ; Jump

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:6276 ;

E000:6276

E000:6276 RAM_POST_tests proc near ; CODE XREF:

last_EOOO_POST+D
last_EOOO_POST+18 ...

cl =3

manufacture®s diagnostic

fs = FOOOh

the call into EOOO segment

in the beginning :
di = 61C2h ; ax = cs:[di] = 154Eh
called from E000:2489 w/ di=61FCh

Increment by 1

di =di + 2

Logical Inclusive OR

RAM Post Error

save di

save cx

call 154Eh (relative call addr)
,one of this call
won"t return in normal
restore all

condition

Jump if Below (CF=1)
Increment by 1
sts ; Jump

CODE XREF: RAM_POST_ tests+10
RAM_POST_tests+18
Return Near from Procedure

E000:6276 ;
E000:6276 mov al, cl ;
E000:6278 out 80h, al ;
checkpoint

EO00:627A push OFO00h
EO000:627D pop fs ;
EO00:627F

EO00:627F ;This is the beginning of
EO00:627F ;POST function table
EO00:627F assume fs:F000
EO000:627F mov ax, cs:[di] ;
EO00:627F ;
EO00:627F ;
(dummy)

EO000:6282 inc di ;
E000:6283 inc di ;
E000:6284 or ax, ax ;
E000:6286 Jz RAM_post_return ;
E000:6288 push di ;
E000:6289 push cx ;
EO00:628A call ax ;
EO00:628A ;
EO000:628A ;
E000:628C pop cx ;
EO000:628D pop di

EO000:628E Jjb RAM_post_return ;
E000:6290 inc cx ;
E000:6291 Jmp short RAM_POST_te
E000:6293 ;

E000:6293

EO000:6293 RAM_post_return: ;
E000:6293 ;
E000:6293 retn ;
E000:6293 RAM_POST_ tests endp
EO000:61C2 EO POST TESTS TABLE:
E000:61C2 dw 154Eh ;
EO00:61C4 dw 156Fh ;
EO000:61C6 dw 1571h ;
POST

E000:61C8 dw 16D2h ;
EO000:61C8 ;
EO00:61CA dw 1745h ;
EO00:61CC dw 178Ah ;
EO00:61CE dw 1798h ;
Intel)

EO000:61D0 dw 17B8h ;
initialize

EO000:61D0 ;
components

E000:61D0 ;
EO000:61D2 dw 194Bh ;
microcode

Restore boot flag
Chk_Mem_Refrsh_Toggle
keyboard (and its controller)

chksum ROM, check EEPROM

on error generate spkr tone
Check CMOS circuitry

"chipset defaults™ initialization
init CPU cache (both Cyrix and

init interrupt vector, also
"sighatures"™ used for Ext BIOS

decompression
Init_mainboard_equipment & CPU

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO000:61D2 ; chk ISA CMOS chksum ?
E000:61D4 dw 1ABCh ; Check checksum. Initialize
keyboard controller

E000:61D4 ; and set up all of the 40: area
data.

EO00:61D6 dw 1B08h ; Relocate extended BIOS code
EO000:61D6 ; Init CPU MTRR, PCI REGs(Video
BIOS ?)

EO00:61D8 dw 1DC8h ; Video_Init (including EPA proc)
EO00:61DA dw 2342h

EO00:61DC dw 234Eh

EO00:61DE dw 2353h 5 dummy

EO00:61EQ dw 2355h 5 dummy

EOO0:61E2 dw 2357h 5 dummy

EO00:61E4 dw 2359h ; Init Programmable Timer (PIT)
EO00:61E6 dw 23A5h ; Init PIC_1 (programmable
Interrupt Ctlr)

EOOO:61E8 dw 23B6h ; same as above ?

EOOO:61EA dw 23F9h 5 dummy

EO00:61EC dw 23FBh ; Init PIC 2

EO00:61EE dw 2478h ; dummy

EO00:61F0 dw 247Ah 5 dummy

EO00:61F2 dw 247Ah

EOO0:61F4 dw 247Ah

EO00:61F6 dw 247Ah

EOO00:61F8 dw 247Ch ; this will call RAM_POST_tests
again

EO00:61F8 ; Ffor values below(a.k.a ISA POST)
EOOO:61FA dw O

EOOO:61FA END_EO_POST_TESTS_TABLE

E000:247C last _EOOO_POST proc near

E000:247C cli ; Clear Interrupt Flag
E000:247D mov word ptr [bp+156h], O

E000:2483 mov cx, 30h ; "O*

E000:2486 mov di, 61FCh ; this addr contains 0000h
E000:2489

EO000:2489 repeat_RAM_POST_tests: ; CODE XREF: last_EOOO_POST+10
E000:2489 call RAM_POST tests ; this call immediately return
EO000:2489 ; since cs:[di]=0000h

E000:248C Jb repeat RAM_POST tests ; jmp if CF=1; not taken
E000:248E mov cx, 30h ; "0*

E000:2491 mov di, 61FEh ; cs:[di] contains 249Ch
EO000:2494

EO000:2494 repeat_RAM_POST_tests_2: ; CODE XREF: last_EOOO_POST+1B
E000:2494 call RAM_POST_ tests ; this call should nvr return if
E000:2494 ; everything is ok

E000:2497 Jjb repeat RAM POST tests 2 ; Jump if Below (CF=1)
E000:2499 Jjmp Halt_System ;

EO000:2499 last_EO0O_POST endp

EOO0:61FC ISA_POST_TESTS

EO00:61FC dw O

EOO0:61FE dw 249Ch

EO000:6200 dw 26AFh

E000:6202 dw 29DAh

EO000:6204 dw 2A54h 5 dummy

EO000:6206 dw 2A54h

E000:6208 dw 2A54h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO00:620A dw 2A54h
E000:620C dw 2A54h
EO000:620E dw 2A54h
E000:6210 dw 2A56h
E000:6212 dw 2A56h
E000:6214 dw 2A56h
E000:6216 dw 2A58h
E000:6218 dw 2A64h
EOO00:621A dw 2B38h
EO000:621C dw 2B5Eh
EO00:621E dw 2B60h
E000:6220 dw 2B62h
E000:6222 dw 2BC8h
EO000:6224 dw 2BFOh
EO000:6226 dw 2BF5h
E000:6228 dw 2BF7h
EO00:622A dw 2C53h
E000:622C dw 2C55h
EO00:622E dw 2C61h
E000:6230 dw 2C61h
E000:6232 dw 2C61h
E000:6234 dw 2C61h
E000:6236 dw 2C61h
EO000:6238 dw 2C61h
EO00:623A dw 2CA6h
E000:623C dw 6294h
EO000:623E dw 62EAh
E000:6240 dw 6329h
E000:6242 dw 6384h
EO000:6244 dw 64D6h
E000:6246 dw 64D6h
E000:6248 dw 64D6h
EO00:624A dw 64D6h
E000:624C dw 64D6h
EO00:624E dw 64D6h
EO000:6250 dw 64D6h
E000:6252 dw 64D6h
EO000:6254 dw 64D6h
EO000:6256 dw 64D6h
EO000:6258 dw 64D6h
EO00:625A dw 64D6h
E000:625C dw 64D6h
EOO00:625E dw 64D8h
EO000:6260 dw 66Alh
E000:6262 dw 673Ch
EO000:6264 dw 6841h
E000:6266 dw O

EO000:6266 END_ISA_POST_TESTS

5 dummy

; dummy
; dummy

; HD init ?

; game 10 port init ?

; dummy

; FPU error interrupt related
5 dummy

5 dummy

; set cursor charcteristic

; dummy

; bootstrap

issues int 19h (bootstrap)

Note:

o The "POST jump table™ procedures will set the Carry Flag (CF=1) if they
encounter something wrong during their execution. Upon returning of the
POST procedure, the Carry Flag will be tested, if it's set, then the
"RAM_POST_TESTS" will immediately returns which will Halt the machine
and output sound from system speaker.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

e At the "segment vector" routine. Below is only an example of its usage.
There are lot of places where it's implemented. There are couple of
variation of this "segment vector". Some will jump from segment EOOOh
to FOOOh, some will jump from segment FOOOh to EOOOh, some jump
from EOOOh to 6000h(relocated decompressed awardext.rom) and some
jump from FOOOh to 6000h(relocated decompressed awardext.rom).

First variant: jump from segment EO0Oh to FOOOh

Address Assembly Code

E000:1553 Restore WarmBoot Flag proc near ; CODE XREF:
Restore_Boot Flag
EO00:155A call FOOO_read_cmos_byte ; Call Procedure

EO000:156E Restore WarmBoot Flag endp

Address Machine Code Assembly Code

EO00:6CA2 FOOO_read_cmos_byte proc near
EO00:6CA2 ; CODE XREF:
Restore_WarmBoot Flag+7

EO00:6CA2 ;
sub_EO00_1745+2

EO000:6CA2 68 00 EO push OEOO0Oh

EO00:6CA5 68 B3 6C push 6CB3h

EO00:6CA8 68 31 EC push OEC31h

EO00:6CAB 68 FD E4 push OE4FDh ; Read_CMOS_byte
EO00:6CAE 008 EA 30 EC 00 FO Jjmp far ptr FO0OO_func_vector ;
Jump

EO00:6CB3 e et e
EO00:6CB3 008 C3 retn ; Return Near
from Procedure

E000:6CB3 FOOO_read_cmos_byte endp ; sp = -8
FOOO:EC30 FOOO0_func_vector: ; CODE XREF:
sub_EO00_1745+3C

FOO0:EC30 ;
reinit_CPU?+12

FOO0:EC30 C3 retn ; jump to
target function

FOOO:EC31 et et
FOOO:EC31 CB retf ; EOOOh

segment vector

FOOO0:E4FD read_CMOS_byte proc near ; CODE XREF:
sub_FO00_3CEE+1A

FOOO:E4FD ;
sub_FO00_3CEE+2A

FOOO:E4FD 87 DB xchg bx, bx ; Exchange

Register/Memory with Register

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FOOO:E4FF 90 nop ; No Operation
FOOO:E500 E6 70 out 70h, al ; CMOS Memory:
FO00:E500 ; used by
real-time clock

FO00:E502 E3 00 jcxz $+2 ; Jump IF CX is O
FOOO:E504 E3 00 jcxz $+2 ; Jump IFCX is O
FOOO:E506 87 DB xchg bx, bx ; Exchange
Register/Memory with Register

FOOO:E508 E4 71 in al, 71h ; CMOS Memory
FOOO:E50A E3 00 jcxz $+2 ; Jump IF CX is O
FOOO:E50C E3 00 jcxz $+2 ; Jump IFCX is O
FOOO:E50E C3 retn ; Return Near
from Procedure

FO00:E50E read_CMOS_byte endp

Second variant: jump from segment EO0Oh to 6000h

Address Machine Code Assembly Code

EO000:171F Check F_Next proc near ; CODE XREF:
chksum_ROM+2D

E000:1737 OE push cs

E000:1738 68 43 17 push 1743h ; ret addr below
EO00:173B 68 29 18 push 1829h ; func addr in
XGroup seg (Detect EEPROM)

EO00:173E EA 02 00 00 60 Jmp far ptr 6000h:2 ; jump to XGroup
code

EO000:1743 et
E000:1743 F8 clc ; Clear Carry
Flag

EO000:1744 C3 retn ; Return Near
from Procedure

E000:1744 Check F Next endp ; sp = -6

6000:0000 locret_6000 O: ; CODE
XREF: 6000:0017

6000:0000 C3 retn ; jump
to target procedure

6000:0001 I et
6000:0001 CB retf ; back
to caller

6000:0002 I e e
6000:0002 68 01 00 push 1 ; push
return addr for retn

6000:0002 ;
(addr_of retf above)

6000:0005 50 push ax

6000:0006 9C pushf ; Push
Flags Register onto the Stack

6000:0007 FA clhi ; Clear

Interrupt Flag

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

6000:0008 87 EC
Exchange Register/Memory with Register

xchg bp, sp ;

6000:000A 8B 46 04 mov ax, [bp+4] ; mov
ax,1 ; look at 1st inst above

6000:000D 87 46 06 xchg ax, [bp+6] ; Xchg
ax,word_pushed by org_tmp

6000:0010 89 46 04 mov [bp+4], ax ;
[sp+4] = word_pushed_by org_tmp

6000:0013 87 EC xchg bp, sp ;
modify sp

6000:0015 9D popf ; Pop
Stack into Flags Register

6000:0016 58 pop ax

6000:0017 EB E7 Jmp short locret 6000 0 ; jump
into word_pushed by original.tmp

6000:1829 FA clhi ; Clear
Interrupt Flag

6000:18B3 C3 retn ;

Return Near from Procedure

Third variant: jump from segment 6000h to FOOOh

Address Assembly Code

6000:4F60 reinit_chipset proc far

6000:4F60 push ds

6000:4F61 mov ax, OF000h

6000:4F64 mov ds, ax ; ds = FOOOh

6000:4F66 assume ds:nothing

6000:4F66 mov bx, OE38h ; ptr to PCl reg vals (ds:bx =
FOOO:E38h)

6000:4F69

6000:4F69 next_PCIl_reg: ; CODE XREF: reinit_chipset+3D
6000:4F69 cmp bx, OEF5h ; are we finished ?

6000:4F6D Jz exit_PCl_init ; 1T yes, then exit

6000:4F6F mov cx, [bx+1] ; cx = PCl addr to read
6000:4F72 call setup_read write PCl ; on ret, ax = F70Bh, di =
F725h

6000:4F75 push cs

6000:4F76 push 4F7Fh

6000:4F79 push ax ; goto FOOO:F70B

(Read_PCI_Byte)

6000:4F7A Jjmp far ptr OEOO0Oh:6188h ; goto_seg F000

6000:4F7F ; ————— e
6000:4F7F mov dx, [bx+3] ; reverse-and mask

E000:6188 goto_FO000_seg: ; CODE XREF:
HD_init_?+3BD

E000:6188 ; HD_init_?+578

E000:6188 68 31 EC
EO000:618B 50

push OEC31h
push ax

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:618C 9C

Register onto the Stack
EO000:618D FA

Flag

EO00:618E 87 EC
Register/Memory with Register
EO00:6190 8B 46 04

EO000:6193 87 46 06

and EC31lh

EO000:6196 89 46 04

[sp+4]., [sp+6]

E000:6199 87 EC
Register/Memory with Register
E000:619B 9D

Flags Register

EO00:619C 58

EO000:619D EA 30 EC 00 FO

pushf ; Push Flags
cli ; Clear Interrupt
xchg bp, sp ; Exchange

mov ax, EC31lh
xchg ret addr

mov ax, [bp+4]
xchg ax, [bp+6]

mov [bp+4], ax ; mov

xchg bp, sp ; Exchange

popf ; Pop Stack into
pop ax

Jmp far ptr FO0OO_func_vector ; Jump

FO00:EC30 FOOO0_func_vector: ; CODE XREF:

chk _cmos_circuit+3C

FOOO:EC30 C3 retn ; jJump to target
function

FOOO:EC31 e

FOOO:EC31 CB

retf ; return to

calling segment:offset (6000:4F7F)

FO00:F70B read_ PCl_byte proc near ; CODE XREF: enable ROM write?+4

FOO0:F724 retn
FO00:F724 read_PCIl_byte endp

; Return Near to FOOO:EC31h

e At "chksum_ROM"

procedure.

This procedure is part of the

"EO_POST_TESTS", which is the POST routine invoked using the "POST
jump table". There's no immediate return from within this procedure. But,
a call into "Check F_Next"™ will accomplish the "near return” needed to
proceed into the next "POST procedure" execution.

E000:16D2

E000:16FF 74 1E

will return this routine
EOO0O0:16FF

called

E000:171D EB E6
EO00:171D

chksum_ROM proc near

Jz Check F Next ; yes. This jump

; to where it"s

Jmp short spkr_endless _loop ; Jump

chksum_ROM endp

EO00:171F
chksum_ROM+2D
E000:1743 F8
successful execution

Check F_Next proc near ; CODE XREF:

clc ; signal

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO000:1744 C3 retn ; retn to
RAM_POST_TESTS, proceed to next POST proc
EO000:1744 Check F_Next endp ; sp = -6

¢ The original.tmp decompression routine for the "Extension_BIOS
components” is one of the most confusing thing to comprehend at first.
But, by understanding it, we "virtually" have no more thing to worry about
the "BIOS code execution path”. | suspect that the same technique as
what I'm going to explain here is used accross the majority of award bios.

The basic run-down of this routine explained below.
1. Expand_Bios procedure called from the "main bootblock code
execution path" saved the needed "signature" to the predefined

area in RAM as shown below :

FOO0:E512 Expand_Bios proc near ; CODE XREF: FOO0O0:E3DC
FO00:E555 mov bx, O ; mov bx,Temp VGA Seg
FOOO:E558 mov es, bx ; es = 0000h

FOOO:E55A assume es:nothing

FOOO:E55A mov word ptr es:7004h, OFFFFh ; mov word
es:[Temp_VGA_Off+4],ffffh

FOOO:E55A ; later used for other
Ext_BIOS

FOOO:E55A ; component decompression
FOO0:E561

FOOO:E561 xor al, al ; clr expand flag
FOOO:E563 mov bx, 1000h

FO00:E566 mov es, bx ; es = 1000h; SrcSegment,i.e.
seg_EOOOh

FO00:E566 ;

FOO0:E568 assume es:nothing

FOOO:E568 xor bx, bx ; bx = 0000h ; SrcOffset

FOO0:E56A call BootBlock Expand ; read compressed
original.tmp header and

FOOO:E56A ; extract original._.tmp to
segment 5000h
FOOO:E56A ; on return

ecx=total_component _cmprssd_size

FOO0:E5B8 Expand_Bios endp

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

2.

Expand procedure called from Bootblock Expand procedure during

Bootblock execution modify the header as needed and save the result in

predefined area in RAM. The code as follows:

FO00:7789 Expand proc near

mov di,Temp_ EXP_Seg
gs = Temp_Exp_Seg (0000h)

mov di,Temp_EXP_OfF
7789 ; 0000:6000h = 7789h
mov word ptr gs:[di],offset

12h
; get es:[bx+12h] to AL

restore bx value (first

is "extension component' ?

; at 1st: al equ 50h
; at 2nd: al equ 41h
; at all other components: al
; The decompression caveat 1is
; Jmp if no: for original._tmp

; goto decompress, otherwise

ExpSegment_lo_byte

ExpSegment_lo_byte
restore bx

; segment 4000h ?
; this is always 00h when

; called from within

(all "extension component'
cmp dword

1st pass from original.tmp,
[0000:6004]=FFFFh

Expand BI0S before jmp to

Jjmp always taken from

FO00:77FF push gs ; save gs
FO00:7801 mov di, O ;
FO00:7804 mov gs, di ;
FO00:7806 assume gs:nothing

FO00:7806 mov di, 6000h :
FO00:7809 mov word ptr gs:[di],
FO00:7809 ;
Expand

FOO0:780E add bx, 12h ; bx =
FO00:7811 call Get Exp_Src Byte
(ExpSegment hi byte)

FO00:7814 sub bx, 12h ;

pass = 0000h)

FO00:7817 cmp al, 40h ;
FO00:7817 :
(original .tmp)

FO00:7817 ;
(awdext.rom)

FO00:7817 ;

equ 40h

FO00:7817 ;

here doOd !!1!

FO00:7819 jnz Not_ POST_USE ;

and awadext.rom

FO00:7819 ;

no

FO00:781B add bx, 11h ; bx =
index

FO00:781E call Get_Exp Src Byte ; al =
FO00:7821 sub bx, 11h ;
FO00:7824 or al, al ;
FO00:7824 ;
Expand

FO00:7824 ;
original _tmp

FO000:7826 jnz Record_to_buffer ; jmp if no
FO00:7826 ;

jump here)

FO00:7828 cmp dword ptr gs:[di+4], O ;
[0000:6004]:0

FO00:7828 ;
FO00:7828 ;
(programmed by

FO00:7828 ;
original _.tmp

FOO0:782E jnz Not_POST_USE ;
within original.tmp

FO00:7830

FO00:7830 Record_to buffer:
FO00:7830 movzx dx, al
FO00:7833 inc bx

CODE XREF: Expand+9D
dx = ExpSegment_lo_byte
bx header_chksum_index

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:7834 call Get_Exp _Src Byte ; al = header_chksum

FO000:7837 sub al, dl ; al = header_chksum -
ExpSegment_lo_byte

FO00:7839 call Set Exp Src Byte ; header_chksum = al

FO00:783C dec bx ; restore bx
FO00:783D Xor al, al ; al = 00h
FO00:783F add bx, 11h ; bx = ExpSegment_lo_byte

FO00:7842 call Set_Exp Src_Byte ; ExpSegment_lo_byte = 00h
(ExpSegment=4000h)

FO00:7845 sub bx, 11h ; restore bx

FO00:7848 inc dx ; dx = ExpSegment_lo_byte + 1
FO00:7849 shl dx, 2 ; dx = 4*(ExpSegment_lo_byte
+ 1)

FO00:784C add di, dx ; di = 6000h + dx (look
abovel)

FO00:784E mov gs:[di], bx ; 0000:[di] =
CmprssedCompnnt_offset_addr

FO00:784E ; (offset addr in compressed
Ext_BI0S)

FO00:7851 mov CX, es ; CX = ExpSegment

FO00:7853 mov gs:[di+2], cx ; 0000:[di+2]=ExpSegment

FO000:7857 call Get_Exp_Src_Byte ; al header_len
FO00:785A movzx ecx, al ecx header_len
FO00:785E add bx, 7 bx --> point to compressed

file size

FO00:7861 call Get Exp_Src _Dword ; eax = compressed file
size

FO00:7864 sub bx, 7 ; restore bx

FO00:7867 add ecx, eax ; ecx = header_len +
compressed_file_size

FOO0:786A add ecx, 3 ; ecx =

total _compressed_component_size

FO00:786E pop gs ; restore gs

FO00:7870 assume gs:nothing
FO00:7870 jmp exit_proc
FO00:7873 Not_POST_USE:
FO00:7873 pop gs

FO00:7875 call MakeCRCTable
table used later

Jump

restore gs value
initialize CRC-16 lookup

FO00:7878 call ReadHeader ; read compressed component
header into

FO00:7878 ; scratchpad @RAM, on error
CF=1

FO00:7878 ; bx preserved

FO00:787B jb exit_proc ; error, something wrong
(CF=1)

FO00:787F mov ax, ds:108h ; mov ax,ExpSegment
FO00:7882 mov ds:104h, ax ; mov TgtSegment,ax
FO00:7885 mov ax, ds:10Ah ; mov ax,ExpOffset
FO00:7888 mov ds:106h, ax ; mov TgtOffset,ax
FO00:788B ;--calculate compressed total size and return when
decompress complete

FO00:788B mov ecx, ds:310h ; mov ecx,compsize
;compressed size

FO00:7890 xor eax, eax ; eax = 0000 0000h
FO00:7893 mov al, ds:571Ch ; mov al,headersize;

compressed header size
FO00:7896 add ecx, eax
FO00:7899 add ecx, 3
ecx,COMPRESSED_UNKNOWN_BYTE;

Add
add

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:7899 ; ecx = "total compressed
size"”

FO00:789D mov edx, ds:314h ; mov edx,origsize

FO00:78A2 push edx

FO00:78A4 push ecx ; save ecx (total compressed
component size)
FO00:78A6 push bx
FO00:78A7 add bx, 5

bx = 0000h
offset 5 ("-1h0-" or "-1h5-

FOO00:78AA call Get _Exp_Src Byte ; get compress or store type
value

FOO0:78AD pop bx
FOOO:78AE cmp al, "O°F
is no

FO00:78B0 jnz Not_Store ; No, jump (First pass: jump
taken)

FO00:78B2 push ds

FO00:78B3 push si

FO00:78B4 push bx

bx = 0000h (1st pass)
is it "-1h0-" ? First pass

FO00:78B5 mov di, ds:10Ah ; mov di,ExpOffset

FO00:78B9 movzx ax, byte ptr ds:571Ch ; movzx ax,byte ptr
headersize

FO00:78BE add ax, 2 ; ax = hdrsize + 2

FO00:78C1 add bx, ax ; bx = hdrsize + 2 (assuming

bx is 0000h)
FO00:78C3 mov cx, ds:310h ; mov cx,word ptr
compressed_size_ lo_word

FO00:78C7 mov ax, ds:108h mov ax,ExpSegment

FOO0:78CA mov es, ax ; es = ExpSegment
FO00:78CC add cx, 3 ; CX =
ceiling(compressed_size lo_word)

FO00:78CF shr cx, 2 ; transfer to dword unit
(cmprssd_size/4)

FO00:78D2

FO00:78D2 Get_Store_Data Loop: ; CODE XREF: Expand+151

FO00:78D2 call Get Exp_Src Dword ; read dword from
compressed file in RAM
FO00:78D5 add bx, 4
FO00:78D8 stosd
(ExpSegment :ExpOffset)
FO00:78DA loop Get Store Data Loop ; Loop whille CX 1= 0
FO00:78DC

FO00:78DC pop bx ; bx =
offset_after_cmprssed_filename

FO00:78DD pop si

FO00:78DE pop ds

FO00:78DF jmp short Expand_Over ; Jump

FOOO:78El ; ——————— e
FO00:78E1

FO00:78E1 Not_Store: ; CODE XREF: Expand+127
FO00:78E1 push word ptr ds:104h ; push word ptr TgtSegment
FO00:78E5 push word ptr ds:106h ; push word ptr TgtOffset
FO00:78E9 push large dword ptr ds:314h ; push dword ptr

point to next dword
store in es:di

origsize

FO00:78EE ; extract content from compressed file

FOO0:78EE call Extract ; call LZH decompression
routine

FO00:78F1 pop dword ptr ds:314h ; pop dword ptr origsize
FO00:78F6 pop word ptr ds:106h ; pop word ptr TgtOffset
FO00:78FA pop word ptr ds:104h ; pop word ptr TgtSegment

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:78FE

FO00:78FE Expand_Over:

FO00:78FE

CODE XREF: Expand+156

call ZeroFill_32K mem ; zero fill 32K in segmnt
pointed by ds

FO00:78FE ; 1.e. clean up scratch-pad
RAM

FO00:7901 pop ecx ; ecx = "total compressed
size" (restore ecx)

FO00:7903 pop edx

FO00:7905 clc ; decompression success
FO00:7906 exit_proc: ;

FO00:7906 pop es

FO00:7907 pop bx

FO00:7908 pop eax

FOOO0:790A retn ; Return Near from Procedure

FO00:790A Expand endp

The lines marked in blue color are the lines which are executed
when this "decompression engine" is invoked from within
original.tmp as in this nnoprom.bin decompression process.

The lines marked with red color is where the "signature" are written
into memory. For example, nnoprom.bin component is defined
with ID: 4027h. This "component's handling” will arrive at
Record_to_buffer where it's ID is processed. In this routine it's
"index" will be saved. The index is calculated as follows (also look at
the code above):

index = 4*(lo_byte(ID) + 1)

this index is used to calculate the address to save the information,
in nnoprom.bin's case it is AOh (from [4 * (27h + 1)]), so the
address to save the information begins at 60A0h. As you can see
above, the info first saved is the component's offset address within
the compressed "Extension_BIOS components”, saved to address
60A0h, then the "expansion/decompression segment address"
saved to 60A2h. This "expansion/ decompression segment address"
always 4000h for all "extension BIOS components™ as you can see
in the code above. The same process is carried out for all other
"extension BIOS components"”. | also have to note here that the
source segment wused for “extension BIOS components”
decompression is 8000h this is due to the fact that
Record_to_buffer in the Expand routine above only executed
when called from Extern_execute2 routine as follows :

FO00:C05B Extern_execute2 proc near ; CODE XREF: Expand Bios+9B
FO00:C0O5B mov bx, 8000h ; mov
bx,Temp_Extra_ BI0S_Addres

FOOO:CO5E mov es, bx ; s = 8000h

FO00:C060 assume es:nothing

FO00:C060 Xor bx, bx ; bx = 0000h

FO00:C062 Xor ecx, ecx ; ecx= 0000 0000h
FO00:C065 push c¢x ; assume no award external
code

FO00:C066

FO00:C066 Expand_ ROM_ loop: ; CODE XREF:

Extern_execute2+30

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:C066 add bx, cx ; [bx] = next compressed
component

FO00:C068 jb Next_segment ; Jump if Below (CF=1)
FOOO:CO6A test ecx, OFFFFOOOOh ; Logical Compare
FO00:C071 jz expand_awdext ; Jump if Zero (ZF=1)
FO00:C073

FO00:C0O73 Next_segment: ; CODE XREF:
Extern_execute2+D

FO00:C073 mov CX, es

FO00:CO75 add cx, 1000h ; Add

FO00:C079 mov es, CX ; es = es + 1000h (next
segment)

FO00:C07B assume es:nothing

FO00:CO7B jmp short Expand_ROM_Next ; Jump

FOOO:CO7D ; ——————— o m e
FO00:CO7D

FO00:CO7D expand_awdext: ; CODE XREF:

Extern_execute2+16

FO00:CO7D cmp

code?

FO00:C082 jnz not_awdext_rom
FO00:C084 pop ax

FO00:C085 or al, 1
FO00:C087 push ax

FO00:C088

FO00:C088 not_awdext rom:
Extern_execute2+27

byte ptr es:[bx+12h], 41h ;

Is award external

No,skip

restore flag

set found flag
store it to stack

CODE XREF:

FO00:C088 call BootBlock Expand ; on retn, cx =

total _comprssd_cmpnent_size

FO00:CO8B jnb Expand_ROM_loop ; Jump if Not Below (CF=0)
FO00:C08D

FO00:C08D ;----- decompress secondary extra BI0S area (0DO0OOh)
FOO0:CO8D mov bx, es

FOOO:CO8F add bx, 1000h ; Add

FO00:C093 mov es, bx

FO00:C095 assume es:nothing

FO00:C095 xor bx, bx ; Logical Exclusive OR
FO00:C097

FO00:C097 Expand_ROM_ Next:
Extern_execute2+20
FO00:C097 xor
FO00:C099
FO00:C099 Expand_ROM_loopl:
Extern_execute2+4E

CX, CX

FO00:C099 add bx, cx
compressed_component_1st byte
FO00:C09B cmp

code?

FOOO:COAO0 jnz @@OF
FO00:COA2 pop ax
FOO0:COA3 or al, 1
FOOO:COA5 push ax
FO00:COA6

FOOO:COA6 @@QF:
Extern_execute2+45

FOO0:COA6 call BootBlock Expand
FOOO:COA9 jnb Expand_ROM_loopl
FO00:COAB pop ax

byte ptr es:[bx+12h], 41h ;

CODE XREF:

cx = 0000h

CODE XREF:

[bx] =

Is award external
No,skip

restore flag

set found flag

store it to stack

CODE XREF:

Call Procedure
Jump if Not Below (CF=0)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

FO00:COAC or al, al ; check award external code
has found?
FO00:COAE retn ; Return Near from Procedure

FOOO:COAE Extern_execute2 endp

FOO0:E5B9 BootBlock Expand proc near ; CODE XREF:
Extern_execute2+2D

FOO0:E5B9 ; Extern_execute2+4B ...
FO00:E5B9 cmp dword ptr es:[bx+0Fh], 40000000h ; 1st addr
contain 5000 0000h

FO00:E5B9 ; decomp_Seg:0ffset equ 4000

0000h ?

FOOO:E5B9 ; (Is extension component ?)

FOO0:E5C2 jnz not_40000000h ; No,skip; at first this jump
is taken

FOOO:E5EA not_40000000h: ; CODE XREF:

BootBlock Expand+9

FOOO:E5EA mov dx, 3000h ; mov dx,Exp Data Seg; decomp

scratch pad

FOOO:ESED push ax

FOOO:ESEE push es

FOOO:E5EF call Search BBSS label ; on return si = 7D06h
FO00:ESEF ; (cs:di = 2000:7D06h -- bios
in ram)

FOOO:E5F2 pop es

FOOO:E5F3 assume es:nothing

FOOO:E5F3 push es

FOOO:E5F4 mov ax, es ; ax = 1000h (1st pass); ax
=8000h(2nd pass)

FOOO0:E5F6 shr ax, 0Ch ; ax = 1h

FOOO:E5F9 mov es, ax ; es = 1h(1st pass);es=8h(2nd
pass)

FOOO:E5FB assume es:nothing
FOOO:E5FB mov ax, cs:[si+OEh] ; mov ax,7789h (addr of
decompression code)

FOOO:E5FF call ax ; call 7789h i1.e Expand
(decompression engine)
FO00:E601 pop es ; es = 1000h (1st pass); es =

8000h (2nd pass)

FO00:E602 assume es:nothing

FO00:E602 pop ax

FO00:E603 retn ; Return Near from Procedure
FO00:E603 BootBlock Expand endp

3. Next, the POST routine POST_8S a.k.a Init_Interrupt_Vector in
original.tmp responsible for preparing the needed 'signature™ for the
decompression as you can see below :

EO00:17B8 init_ivect proc near

E000:1834 ;for run time decompress code ret

E000:1834 mov bx, 2000h
E000:1837 mov es, bx
E000:1839 assume es:nothing

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

4.

Next,

EO000:1839
EO00:183F
EO000:1842
E000:1844
EO000:1844
EO000:1847

mov byte ptr es:0DFFFh, OCBh ;

mov si, O
mov ds, si

assume ds:nothing
mov si, 7000h
mov ax, [si+4]

filled before by

EO000:1847

bootblock)

EO00:184A
EO000:184D
EO00:184F
EO00:184F
E000:1852
EO000:1856
EO000:1859
EO000:185B
EO000:185D
EO000:1861
EO000:1864
EO000:1867
EO000:1868B
EO00:1868B
EO000:186B
EOO00:186E
EOO0O:186F

mov di, O
mov es, di

assume es:nothing
mov di, 6000h

mov es:[di+4], ax
cmp ax, OFFFFh

Jz signature_ok
mov ax, [si]

mov es:[di+4], ax
[si+2]
shr ax, 0Ch

mov es:[di+6], ax

mov ax,

signature_ok:
call sub _EO00_8510

clc
retn

EO00:186F init_ivect endp

ds

0000h

ax

T

FFFFh (0000:7004h

Expand_Bios routine in

es = 0000h

[0000:6004]

= FFFFh

Compare Two Operands
Jump if Zero (ZF=1)

Shift Logical Right

CODE XREF:

init_ivect+Al

Call Procedure
Clear Carry Flag
Return Near from Procedure

init_NNOPROM_BIN

routine (this

is just an example,

other

component will differ slightly) decompressed by the following code :

EOO00:71C1 init_NNOPROM_BIN proc near ; CODE XREF: POST_13S

EO00:71CF

mov di, OAOh ;

nnoprom.bin-->4027h

EO00:71CF

4*(ExpSegment_lo_byte + 1) ;

EO00:71CF
EO00:71CF

bootblock for info

E000:71D2
EO000:71D5
E000:71D9
E000:71DC
E000:71DD
EO000:71DD
EO00:71DF
EO00:71E2
E000:71E3
E000:71E3
EO000:71E5
EO00:71ES8
EO00:71E9
seg_7000h
E000:71E9
code

call near ptr POST_
Jjb exit_proc

push 4000h
pop ds

assume ds:nothing

Xor si, Si
push 7000h
pop es

assume es:nothing

xor di, di

mov cX, 4000h

cld
rep movsd

d

di

di

offset_nnoprom.bin [

6000h +

AOh = 4h*(27h+1h)]
look at Expand proc in

ecompress ; Call Procedure

Jjmp if CF=1, 1st pass CF=0

ds = 4000h
si = 0000h
es = 7000h
di = 0000h

Clear Direction Flag
move 64KB from seg 4000h to

i.e. relocate decompressed

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO00:71EC mov di, 3

EO00:71EF cmp dword ptr es:[di], "ONN$" ; match
nnoprom._bin signature

EOO0:71F7 Jjnz exit_proc ; Jump iFf Not Zero (ZF=0)
EO00:71FB push 9FF8h

EO00:71FE pop es ; es = 9FF8h

EO00:71FF assume es:nothing

EO00:71FF xor di, di ; di = 0000h

EO000:7201 mov cx, 68h ; "h*

EO00:7204 xor al, al ; al = 0000h

E000:7206 rep stosb ; Store String
EO000:7208 mov di, OA4h ; "a-

EO00:720B call near ptr POST_decompress ; Call Procedure
EO000:720E Jjb exit_proc ; Jump if Below (CF=1)
E000:7212 push ds

E000:7213 push es

EO000:7214 push fs

EO000:7216 push gs

E000:7218 call Update Descriptor_Cache ; Call Procedure
EO00:721D Xor esi, esi ; esi = 0000 0000h
EO00:7220 mov ds, si ; ds = 0000h

EO000:7222 assume ds:nothing

EO000:7222 mov es, Si ; es = 0000h

EO000:7224 assume es:nothing

E000:7224 push 4000h

E000:7227 pop si ; Ssi = 4000h

EO000:7228 shl esi, 4 ; esi = 40000h
EO000:722C mov edi, 100000h

E000:7232 mov ecx, ebx

E000:7235 shr ecx, 2 ; Shift Logical Right
E000:7239 cld ; Clear Direction Flag
EO00:723A db 26h

EO000:723A rep movs dword ptr [edi], dword ptr [esi] ; Move
Byte(s) from String to String

EO00:723F pop gs

E000:7241 pop fs

E000:7243 pop es

EO000:7244 assume es:nothing

E000:7244 pop ds

E000:7245 assume ds:nothing

EO00:7245 push 9FF8h

E000:7248 pop es

EO000:7249 assume es:nothing

E000:7249 mov dword ptr es:0, 100000h

E000:7253 mov dword ptr es:4, 40000h

E000:725D Xor eax, eax ; Logical Exclusive OR
EO000:7260 mov ax, OEOO0Oh

EO00:7263 shl eax, 4 ; Shift Logical Left
EO000:7267 add eax, 7156h ; Add

EO00:726D mov es:8, eax

EO000:7272 mov ax, 7

EO000:7275 mov es:0Ch, ax

EO000:7279 mov ax, 7000h

E000:727C mov es:0Eh, ax

EO000:7280 Xor eax, eax ; Logical Exclusive OR
EO00:7283 mov ax, OEOO0Oh

E000:7286 shl eax, 4 ; Shift Logical Left
E000:728A add eax, 71AAh ; Add

EO000:7290 mov es:10h, eax

EO000:7295 mov esi, 9FF80h

EO00:729B add esi, O ; Add

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO00:72A2 mov al, 36h ; "6"

EO00:72A4 push cs

EO00:72A5 push 72B0Oh

EO00:72A8 push OE4FDh ; read CMOS byte

EO000:72AB Jjmp far ptr goto FO00_seg ; Jump

EOO0:72B0 ; —————— o
EO00:72B0 mov bl, al

EO00:72B2 mov ax, O

EO000:72B5 call near ptr init_nnoprom? ; Call Procedure
EO000:72B8 pushf ; Push Flags Register onto
the Stack

EO000:72B9 popf ; Pop Stack into Flags
Register

EO000:72BA Jb exit _proc ; Jump if Below (CF=1)
EO00:72BC mov ax, O

EO00:72BF mov ds, ax

EO000:72C1 assume ds:nothing

EO00:72C1 or byte ptr ds:4B7h, 3 ; Logical Inclusive OR
EO00:72C6

EO00:72C6 exit_proc: ; CODE XREF:
init_NNOPROM_BIN+14 j

EO00:72C6 ; init_NNOPROM_BIN+36 j ...
E000:72C6 popad ; Pop all General Registers
(use32)

EO00:72C8 pop es

EO000:72C9 assume es:nothing

EO000:72C9 pop ds

EO00:72CA assume ds:nothing

EO00:72CA retn ; Return Near from Procedure

E000:72CA init_NNOPROM_BIN endp ;

sp = 6

EO00:6E49 POST_decompress proc far ; CODE XREF:
EPA Procedure+43

EO00:6E49
EO00:6E49
EO00:6E4A
EO00:6E4B
EO00:6E4C
E000:6E4D
E000:6E4E
pass di =
EO000:6E52
EO00:6E53
EO00:6E55
E0O00:6E58
EO00:6E5B
E0O00:6E5E
EO00:6E61
EO00:6E64
E000:6E69

AOh

; EPA Procedure+5E ...

push ds

push es

push bp

push di ; store DI

push si ; store SI

and di, 3FFFh ; mask DI bit 14 and 15; 1st

cli ;
mov al, OFFh ;
call FOOO_Cpu_Cache ;
push OEOOOh

push 6E69h

push OEC31h

push OE3D4h ; A20_On

Jmp far ptr FOOO_call ; turn on gate A20

Clear Interrupt Flag
mov al,TRUE
enable caching

EO00:6E69
EO00:6E6C
EO00: 6E6E
space) ;

EO00:6E6GE
EO00:6E70
EO00:6E70
EO00:6E73

call EOOO_enter_FlatPMode ;
mov ax, ds
mov es, ax

Call Procedure
; es = ds (flat 4GB addr

; base_addr=0000 0000h
assume es:nothing
call EOOO_Back to RealMode ;
pop dx ; dx = si

restore ss

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EOO0:6E74 pop ax ; ax = di

EO00:6E75 mov ebx, es:[di+6000h] ; mov

ebx,es:[di+Temp_ EXP_Off]

EOO0:6E75 ;
ebx=0008[nnoprom_cmpressd_offset]h (nnoprom.bin)

EO00:6E7B or ebx, ebx ; Logical Inclusive OR
EOO00:6E7E Jz Decomp_Data_ _Empty ; Jump if Zero (ZF=1)
EO00:6E82 cmp bx, OFFFFh ; Compare Two Operands
EO00:6E85 Jz Decomp_Data_Empty ; Jump if Zero (ZF=1)
EO00:6E89 test ah, 40h ; 1st pass is 00h (ax = AOh)
EO00:6E8C Jjz Go_on ; 1st pass this jump is taken
EO00:6E8E clc ; Clear Carry Flag

EOO0O:6E8F Jmp POST_decomp_Ret ; Jump

EOOO:6E92 ; ————— e
EO000:6E92

EO00:6E92 Go_on: ; CODE XREF:
POST_decompress+43

EO00:6E92 mov di, es:6000h ; di = offset_Expand
(decompression engine

EO000:6E92 ; offset addr saved by
bootblock)

EO00:6E97 mov esi, ds:160000h ; mov esi,[awardext.rom
4Byte hdr]

EO00:6E9F not esi ; One"s Complement Negation
EO00:6EA2 mov ds:80000h, esi

EOO00:6EAA cmp ebx, 100000h ; ExpSeg-CompOffset (ebx =
8xxxxh)

EO00:6EB1 jb Is_New_Decomp_Method ; 1st pass this jmp IS
taken

EO000:6EB3 push di save offset Expand to stack

EO00:6EB4 mov esi, 90000h ds:[esi] = 90000h (last
64KB of Ext_BIOS)

EO00:6EBA mov edi, 140000h ; es:[edi] = 140000h
EO000:6ECO mov ecx, 4000h ; copy last 64 KB of Ext_BIOS
to 140000h - 14FFFFh

EOO00:6EC6 cld ; Clear Direction Flag
EO00:6EC7 rep movs dword ptr es:[edi], dword ptr [esi]
Move Byte(s) from String to String

EO00:6ECB mov esi, 160000h ; ds:[esi] = addr_of last
Ext_BIOS (128KB)

EO00:6ED1 mov edi, 80000h ; es:[edi] = target addr
EO00:6ED7 mov ecx, 8000h ; copy 128KB from 160000h-
17FFFFh to 80000h-9FFFFh

EOOO0:6EDD cld ; Clear Direction Flag
EO00:6EDE rep movs dword ptr es:[edi], dword ptr [esi] ;
Move Byte(s) from String to String

EOOO:6EE2 pop di ; di = offset_Expand
EOOO:6EE3 ror ebx, 10h ; Rotate Right

EOO00:6EE7 mov es, bx ; es = ExpSegment (of the
compressed component)

EOO0O:6EE9 assume es:nothing

EOOO:6EE9 ror ebx, 10h ; restore ebx

EOOO:6EED mov cx, es:[bx+11h] ; store decompress_segment
for

EOO0: 6EED ; checksum recalculation
EO00:6EF1 push cx ; store it to stack
EOO00:6EF2 push word ptr es:[bx] ; store original checksum
value

EOO00:6EF5 test ah, 80h ; test Sl is available?
EOO00:6EF8 Jz decompress ; 1st pass this jmp is taken

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO00:6EFA mov es:[bx+11lh], dx ; reset decompress segment
EO00:6EFE add cl, ch ; original segment of
checksum

EO00:6F00 add dI, dh ; new segment of checksum
EO000:6F02 sub cl, dh ; difference segment of
checksum

EO00:6F04 sub es:[bx+1], cl ; recalculate checksum
EO00:6F08 Jmp short decompress ; No,skip process Sl
EOOO:6FOA ; —-————— e
EO00:6F0A

EOO00:6F0A Is_New Decomp_Method: ; CODE XREF:
POST_decompress+68

EOO00:6F0A add ebx, OEOO0O0Oh ; ebx = (80000h+EO000h) =
160000h

EO00:6F11 mov cx, es:[ebx+11lh] ; cx=ExpSegment(changed to
4000h by bootblock)

EOO0:6F16 push cx ; save ExpSegment

EO00:6F17 push word ptr es:[ebx] ; save chksum and hdr_len
EO00:6F1B test ah, 80h ; SI available? (1st pass no
i.e. 00h)

EO00:6F1E Jz decompress ; 1st pass this jmp is taken
EO000:6F20 mov es:[ebx+11h], dx

EO00:6F25 add cl, ch ; Add

EO00:6F27 add dl, dh ; Add

EO000:6F29 sub cl, dh ; Integer Subtraction
EO00:6F2B sub es:[ebx+1], cl ; Integer Subtraction
EO00:6F30

EO00:6F30 decompress: ; CODE XREF:
POST_decompress+AF

EO000:6F30 ; POST_decompress+BF ...
EO000:6F30 ror ebx, 10h ; Rotate Right

EOO0:6F34 mov es, bx ; €s = SrcSegment (16h i.e.
160000h_Tlinear_addr)

E000:6F36 ror ebx, 10h ; restore ebx(ebx = 16xxxxh ;
EO00:6F36 ; 1st pass: xxxx-> cmpressed
nnoprom offset)

EOO00:6F3A push cs ; save current code segment
EO00:6F3B push 6F49h ; ret addr below

EOO00:6F3E push ODFFFh

EO00:6F41 mov dx, 3000h

EO00:6F44 push 2000h

EO00:6F47 push di

EOO00:6F48 retf ; Jmp 2000:addr_of_Expand
EO00:6F48 ; (goto decompression engine
at seg_2000h)

EOOO:6F49 ; —————— e
E000:6F49 push OEOO0Oh

E000:6F4C push 6F5Ah

EO00:6F4F push OEC31h

EO00:6F52 push OE3D4h ; A20 _On

EO00:6F55 Jjmp far ptr FOOO_call ; jmp FOOO_A20 On
EOOO:6F5A ; —-———— e
EO000:6F5A call EOOO_enter_FlatPMode ; Call Procedure
EO00:6F5D mov ax, ds

EOOO0:6F5F mov es, ax ; es-->BaseAddr=0000 0000h;
limit 4GB

EO00:6F61 assume es:nothing

EO000:6F61 call EOOO _Back to RealMode ; Call Procedure

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO00:6F64 mov eax, ds:80000h

EO00:6F6B cmp eax, ds:160000h ; 1st pass, ds:80000h equ
(Not-dx:160000h)

EOO00:6F73 jnz Is_New_Decomp ; 1st pass this jmp is taken
EO00:6F75 ror ebx, 10h ; Rotate Right

EO00:6F79 mov es, bx

EOO00:6F7B assume es:nothing

EOO00:6F7B ror ebx, 10h ; Rotate Right

EOOO:6F7F pop word ptr es:[bx]

EO000:6F82 pop word ptr es:[bx+11h]

EO000:6F86 mov ebx, es:[bx+0Bh]

EO00:6F8B Jmp short disable_A20 ; Jump

EOOO:6F8D ; ——————— e
EO00:6F8D

EOO00:6F8D Is_New_Decomp: ; CODE XREF:
POST_decompress+12A

EO00:6F8D pop word ptr es:[ebx] ; restore original
checksum

EO000:6F91 pop word ptr es:[ebx+11h] ; restore original
segment

EO00:6F96 mov ebx, es:[ebx+0Bh] ; get decompressed data
size

E000:6F9C

EO00:6F9C disable A20: ; CODE XREF:
POST_decompress+142

EO00:6F9C push OEOOOh

EO00: 6F9F push 6FADh

EO00:6FA2 push OEC31h

EO00:6FA5 push 0OE424h ; turn gate A20 off
EO00:6FA8 Jmp far ptr FOOO_call ; FOOO_CALL A20_Off
EOOO:6FAD ; —————— e e
EO00:6FAD clc ; Clear Carry Flag

EO000:6FAE Jjmp short POST_decomp_ Ret ; Jump

EOOO:6FBO ; —————— oo
E000:6FBO

EOO00:6FBO Decomp_Data_Empty: ; CODE XREF:
POST_decompress+35

EO000:6FBO ; POST_decompress+3C
EO00:6FBO stc ; Set Carry Flag

E000:6FB1

EO00:6FB1 POST_decomp_ Ret:
POST_decompress+46

; CODE XREF:

EO000:6FB1 ; POST_decompress+165
EO00:6FB1 push¥f ; Push Flags Register onto
the Stack

EO00:6FB2 push ebx

EO000:6FB4 push OEOOOh

EO00:6FB7 push 6FC5h

EO00:6FBA push OEC31h

EO00:6FBD push OE3D4h ; turn on a20 gate
EO00:6FCO Jjmp far ptr FOOO_call ; FO0O_call A20 _On
EOOO:6FC5 ; - - ——- -
EOQ00:6FC5 call EOOO _enter_FlatPMode ; Call Procedure
EOO00:6FC8 mov ax, ds

EOO0:6FCA mov es, ax ; es = 4GB segment,

base_addr=0000

EO00:6FCC

0000h
assume es:nothing

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

EO00:6FCC
EO00:6FCF
EO00:6FD6
EO00:6FDE
taken
EO00:6FEO
EO00:6FE6
EO00:6FEC
EO00:6FEF
EO00:6FFO
8FFFFh
EO00:6FF4
EO00:6FFA
EO000:7000
EO000:7006
EO00:7007

call EO0OO Back to RealMode ; Call Procedure

mov eax, ds:80000h

cmp eax, ds:160000h ; Compare Two Operands

Jjnz Not_Old_Decomp_Method ; 1st pass this jmp is

mov edi, 80000h

mov ecx, 4000h

Xor eax, eax ; Logical Exclusive OR

cld ; Clear Direction Flag

rep stos dword ptr es:[edi] ; clear 80000h to

mov esi, 140000h

mov edi, 90000h

mov ecx, 4000h

cld ; Clear Direction Flag

rep movs dword ptr es:[edi], dword ptr [esi] ;

Move Byte(s) from String to String

EO00:700B

EO00:700B Not_Old_Decomp_ Method: ; CODE XREF:
POST_decompress+195

EO00:700B
EO00:700E
EO000:7011
EO00:7014
EO00:7017

EO00:701C ;

E000:7023
Register

EO000:7024
E000:7025
E000:7026
E000:7026
E000:7027

push OEOOOh

push 701Ch

push OEC31h

push OE424h ; turn gate A20 off
Jjmp far ptr FOOO_call ; FOOO _CALL A20 OfFf

mov al, O ; mov al,FALSE
call FOOO_Cpu_Cache ; disable CPU cache
popf ; Pop Stack into Flags

pop bp

pop es

assume es:nothing

pop ds

retn ; Return Near from Procedure

EO000:7027 POST_decompress endp ; sp = -18h

what I've explained above only applies exactly to nnoprom.bin in
my BIOS, but it's very possible that this mechanism still in use for
other versions of award bios.

After all of the explanation above, we only need to follow the "POST jump
table execution” to be able to know which "execution path" is taken by the
BIOS in which circumstances. Having doing this approach we'll be able to
do what we please to our "to be hacked" award bios >:).

What I've explained above possibly far too premature to be ended here. But, |
consider this article finished here as the Beta2 version of this article. If you
follow this article from beginning to end, you'll absolutely be able to understand
the "BIG Picture"” of how the Award BIOS works. | think all of the issue dissected
here is enough to do any type of modification you wish to do with award bios. If
you find any mistake(s) within this article, please contact me. Goodluck with you
BIOS reverse engineering journey, | hope you enjoy it as much as | do :) .

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

mailto:mamanzip@yahoo.com

	Award BIOS Reverse Engineering
	Author: Darmawan Mappatutu Salihun

	Contents
	Foreword
	Prerequisite
	PCI BUS
	ISA BUS
	Some Hardware "Peculiarities"
	Some Software "Peculiarities"
	Our Tools of Trade
	Award BIOS File Structure
	Disassembling the BIOS
	Bootblock
	System BIOS a.k.a Original.tmp

