
The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

© The CodeBreakers-Journal, Vol.1, No.2. (2004)

http://www.CodeBreakers-Journal.com

Award BIOS Reverse Engineering

Author: Darmawan Mappatutu Salihun

Abstract

The purpose of this article is to clean up the mess and positioned as a handy
reference for myself and the reader as we are going through the BIOS
disassembling session. I'm not held responsible about the correctness of any
explanation in this article, you have to cross-check what I wrote here and what
you have in your hand. Note that what I explain here based on award bios
version 4.51PGNM which I have. You can check it against award bios version
6.0PG or 6.0 to see if it's still valid. I'll working on that version when I have
enough time. As an addition, I suggest you to read this article throughly from
beginning to end to get most out of it.

Contents
Award BIOS Reverse Engineering .. 1

Author: Darmawan Mappatutu Salihun.. 1
Contents.. 1
1. Foreword ... 2
1. Prerequisite.. 3
1.1. PCI BUS.. 3
1.2. ISA BUS ... 6
2. Some Hardware "Peculiarities" .. 6
3. Some Software "Peculiarities" ... 9
4. Our Tools of Trade .. 13
5. Award BIOS File Structure.. 14
6. Disassembling the BIOS... 18

6.1. Bootblock... 18
6.2. System BIOS a.k.a Original.tmp.. 37

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1. Foreword

I would like to welcome you to the darkside of a working example of spaghetty
code, The Award BIOS. This article is not an official guide to award bios reverse
engineering nor it's compiled by an Award Corp. insider. I'm just an ordinary
curious person who really attracted to know how my computer BIOS works. I
made this article available to the public to share my findings and looking for
feedback from others since I'm sure I've made some "obscure mistakes" that I
didn't realize during my reverse engineering process. There are several
possibilities that make you reading this article now, perhaps you are an "old-time
BIOS hacker", perhaps you are a kind of person who really love "system
programming" like me or you are just a curious person who like to tinker. One
thing for sure, you'll get most of out of this article if you've done some BIOS
hacking before and looking forward to improve your skill. However, I've made a
prerequisite section below to ensure you've armed yourself with knowledge
needed to get most out of this article.

You may be asking, why would anyone need this guide ? indeed, you need this
guide if you found yourself cannot figure out how award BIOS code works. In my
experience, unless you are disassembling a working BIOS binary, you won't be
able to comprehend it. Also, you have to have the majority (if not all) of your
mainboard chips datasheets. The most important one is the chipset datasheet.

The purpose of this article is to clean up the mess and positioned as a handy
reference for myself and the reader as we are going through the BIOS
disassembling session. I'm not held responsible about the correctness of any
explanation in this article, you have to cross-check what I wrote here and what
you have in your hand. Note that what I explain here based on award bios
version 4.51PGNM which I have. You can check it against award bios version
6.0PG or 6.0 to see if it's still valid. I'll working on that version when I have
enough time. As an addition, I suggest you to read this article throughly from
beginning to end to get most out of it.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1. Prerequisite

First, I would like to thank to the readers of the earlier "beta-version" of this
article, from whom I consider that this part of the article should be included.

I have to admit that BIOS is somehow a state of the art code that requires lots of
low level x86 knowledge that only matter to such a small audience such as
operating system developer, BIOS developer, driver writer, possibly exploit and
virus writer (yes exploit and virus writer! coz they are curious people). Due to
this fact, there are couple of things that I won't explain here and it's your
homework that you should do to comprehend this guide. They are :

• The most important thing is you have to be able to program and
understand x86 assembly language. If you don't know it, then you'd better
start learning it. I'm using masm syntax throughout this article.

• Protected mode programming. You have to learn how to switch the x86
machine from real mode to protected mode. This means you need to learn
a preliminary x86 protected mode OS development. I've done it in the
past, that's why I know it pretty good. You can go to www.osdever.net
and other x86 operating system developer site to get some tutorials to
make yourself comfortable. The most important thing to master is how the
protected mode data structures work. I mean how Global Descriptor Table
(GDT), Interrupt Descriptor Table (IDT), also x86 control and segment
registers work. BIOS, particularly award BIOS uses them to perform its
"magic" as later explained in this article.

• What x86 "Unreal-Mode" is. Some people also call these mode of operation
"Voodoo-mode" or "Flat real-mode ". It's an x86 state that's between real-
mode and protected-mode. This is partially explained below.

• x86 "direct hardware programming". You need to know how to program
the hardware directly, especially the chips in your motherboard. You can
practice this from within windows by developing an application that
directly access the hardware. This is not a must, but it's better if you
master it first. You also have to know some x86 bus protocol, such as PCI
and ISA. I'll explain a bit about the bus protocols below.

• You have to be able to comprehend part (if not all) of the datasheets of
your motherboard chip. Such as the of the northbridge and southbridge
control registers.

1.1. PCI BUS

We'll begin with the PCI bus. I've been working with this stuff for quite a while.
The official standard for the PCI bus system is maintained by a board named
PCISIG (PCI Special Interest Group). This board actually is some sort of
cooperation between Intel and some other big corporation such as Microsoft.
Anyway, in the near future PCI bus will be fully replaced by a much more faster
bus system such as Arapahoe (PCI-Express a.k.a PCI-e) and Hypertransport. But
PCI will still remain a standard for sometime I think. I've read some of the
specification of the Hypertansport bus, it's backward compatible with PCI. This
means that the addressing scheme will remains the same or at least only needs a

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

http://www.osdever.net/

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

minor modification. This also holds true for the Arapahoe. One thing I hate about
this PCI stuff is that the standard is not an open standard thus, you gotta pay a
lot to get the datasheets and whitepapers. This become my main reason
providing you with this sort of tute.

First, PCI bus is a bus which is 32 bits wide. This imply that communicating using
this bus should be in 32 bits mode, pretty logical isn't it? So, writing or reading
to this bus will require 32 bits 'variable'.

Second, this bus system is defined in the port CF8h - CFBh which acts as the
address port and port CFCh - CFFh which acts as the data port. The role of both
ports will be clear soon.

Third, this bus system force us to communicate with them with the following
algorithm:

1. Send the address of the part of the device you're willing to read/write at
first. Only after that you're access to send/receive data through the data
port to/from the device will be granted.

2. Send/receive the data to be read/write through the data port.

As a note, as far as I know every bus/communication protocol implemented in
chip design uses this algorithm to communicate with other chip.

With the above definition, now I'll provide you with an x86 assembly code
snippet that shows how to use those ports.

No.
Mnemonic (masm

syntax)
Comment

1 pushad save all the contents of General Purpose Registers

2 mov eax,80000064h
put the address of the PCI chip register to be accessed in

eax (offset 64h device 00:00:00 or hostbridge)

3 mov dx,0CF8h
put the address port in dx. Since this is PCI, we use CF8h

as the port to open an access to the device.

4 out dx,eax
send the PCI address port to the I/O space of the

processor

5 mov dx,0CFCh
put the data port in dx. Since this is PCI, we use CFCh as

the data port to communicate with the device.

6 in eax,dx put the data read from the device in eax

7 or eax, 00020202
modify the data (this is only example, don't try this in

your machine, it may hang or even destroy your machine)

8 out dx,eax send it back

9 -

10 popad pop all the saved register

11 ret return...

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

I think the code above clear enough. In line one the current data in the
processors general purpose registers were saved. Then comes the crucial part.
As I said above, PCI is 32 bits bus system hence we have to use 32 bits chunk of
data to communicate with them. We do this by sending the PCI chip a 32 bits
address through eax register, and using port CF8 as the port to send this data.
Here's an example of the PCI register (sometimes called offset) address format.
In the routine above you saw :

....
mov eax,80000064h
....
the 80000064h is the address. The meaning of these bits are:

bit position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

binary value 1 0 1 1 0 0 1 0 0

hexadecimal
value

8 0 0 0 0 0 6 4

• The 31st bit is an enable bit. If this bit sets, it means that we are granted
to do a write/read transaction through the PCI bus, otherwise we're
prohibited to do so, that's why we need an 8 in the leftmost hexdigit.

• Bits 30 - 24 are reserved bits.
• Bits 23 - 16 is the PCI Bus number.
• Bits 15 - 11 is the PCI Device number.
• Bits 10 - 8 is the PCI Function Number.
• Bits 7 - 0 is the offset address.

Now, we'll examine the previous value, that was sent. If you're curious, you'll
find out that 80000064h means we're communicating with the device in bus 0,
device 0 , function 0 and at offset 64. Actually this is the memory controller
configuration register of my mainboard's Northbridge. In most circumstances the
PCI device that occupy bus 0, device 0, function 0 is the Hostbridge, but you'll
need to consult your chipset datasheet to verify this. This stuff is pretty easy to
be understood, isn't it ? The next routines are pretty easy to understand. But if
you still feel confused you'd better learn assembly language a bit, since I'm not
here to teach you assembly :(. But, in general they do the following jobs:
reading the offset data then modifying it then writing it back to the device, if not
better to say tweaking it :) .

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1.2. ISA BUS

AFAIK, ISA bus is not a well standardized bus. Thus, any ISA device can reside
virtually almost anywhere in the system's 16-bit I/O address space. My
experience with ISA bus is very limited. I've only play with two chips this time
around, the first is the CMOS chip and the second one is my mainboard's
hardware monitoring chip, i.e. Winbond W83781D. Both chips uses the same
"general algorithm" as mentioned above in the PCI BUS, i.e. :

1. Send the address of the part of the device you're willing to read/write at
first. Only after that you're access to send/receive data through the data
port to/from the device will be granted.

2. Send/receive the data to be read/write through the data port.

My hardware monitoring chip defines port 295h as its address port (a.k.a index
port) and port 296h as its data port. CMOS chip defines port 70h as its address
port and port 71h as its data port.

2. Some Hardware "Peculiarities"

Due to its history, the x86 platform contains lots of hacks, especially its BIOS.
This is due to the backward compatiblity jargon that should be maintained by
any x86 system. In this section I'll try to explain couple of stuff that I found
during my BIOS disassembly journey that reveal these peculiarities.

The most important chips which responsible for the BIOS code handling are the
southbridge and northbridge. In this respect, the northbridge is responsible for
the BIOS shadowing, handling accesses to RAM and BIOS ROM, while the
southbridge is responsible for enabling the ROM decode control, which will
forward (or not) the memory addresses to be accessed to the BIOS ROM chip.
The "special" addresses shown below can reside either in the system DRAM or in
BIOS ROM chip, depending on the southbridge and northbridge register setting at
the time the BIOS code is executed.

Physical Address Used by
000E 0000h - 000F FFFFh 1 Mbit, 2 MBit, and 4 MBit BIOSes
000C 0000h - 000D FFFFh 2 MBit, and 4 MBit BIOSes
0008 0000h - 000B FFFFh 4 MBit BIOSes

The address shown above contain the BIOS code and pretty much system
specific, so you have to consult your datasheets to understand it. Below is an
example of the VIA693A chipset system memory map.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

 Table 4. System Memory Map
Space Start Size Address Range Comment
DOS 0 640K 00000000-0009FFFF Cacheable
VGA 640K 128K 000A0000-000BFFFF Used for SMM
BIOS 768K 16K 000C0000-000C3FFF Shadow Ctrl 1
BIOS 784K 16K 000C4000-000C7FFF Shadow Ctrl 1
BIOS 800K 16K 000C8000-000CBFFF Shadow Ctrl 1
BIOS 816K 16K 000CC000-000CFFFF Shadow Ctrl 1
BIOS 832K 16K 000D0000-000D3FFF Shadow Ctrl 2
BIOS 848K 16K 000D4000-000D7FFF Shadow Ctrl 2
BIOS 864K 16K 000D8000-000DBFFF Shadow Ctrl 2
BIOS 880K 16K 000DC000-000DFFFF Shadow Ctrl 2
BIOS 896K 64K 000E0000-000EFFFF Shadow Ctrl 3
BIOS 960K 64K 000F0000-000FFFFF Shadow Ctrl 3
Sys 1MB — 00100000-DRAM Top Can have hole
Bus D Top DRAM Top-FFFEFFFF
Init 4G-64K 64K FFFEFFFF-FFFFFFFF 000Fxxxx alias

The most important thing to take into account here is the address aliasing, as
you can see the FFFEFFFFh- FFFFFFFFh address range is an alias into
000Fxxxxh, this is where the BIOS ROM chip address mapped (at least in my
mainboard, cross check with yours). But, we also have to consider that this only
applies at the very beginning of boot stage (just after reset). After the chipset
reprogrammed by the BIOS, this address range will be mapped into system
DRAM chips. We can consider this as the Power-On default values.

Some "obscure" hardware port which sometimes not documented in the chipset
datasheets. Note that this info I found from Intel ICH5 and VIA 586B datasheet.
datasheet.

I/O Port address Purpose
92h Fast A20 and Init Register
4D0h Master PIC Edge/Level Triggered (R/W)
4D1h Slave PIC Edge/Level Triggered (R/W)

Table 146. RTC I/O Registers (LPC I/F—D31:F0)
I/O Port Locations If U128E bit = 0 Function
70h and 74h Also alias to 72h and 76h Real-Time Clock (Standard
RAM) Index Register
71h and 75h Also alias to 73h and 77h Real-Time Clock (Standard
RAM) Target Register
72h and 76h Extended RAM Index
Register (if enabled)
73h and 77h Extended RAM Target
Register (if enabled)

NOTES:
1. I/O locations 70h and 71h are the standard ISA location for the real-time
clock. The map for this bank is shown in Table 147. Locations 72h and 73h are
for accessing the extended RAM. The extended RAM bank is also accessed using
an indexed scheme. I/O address 72h is used as the address pointer and I/O
address 73h is used as the data register. Index addresses above 127h are not
valid. If the extended RAM is not needed, it may be disabled.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

2. Software must preserve the value of bit 7 at I/O addresses 70h. When writing
to this address, software must first read the value, and then write the same
value for bit 7 during the sequential address write. Note that port 70h is not
directly readable. The only way to read this register is through Alt Access mode.
If the NMI# enable is not changed during normal operation, software can
alternatively read this bit once and then retain the value for all subsequent writes
to port 70h.

The RTC contains two sets of indexed registers that are accessed using the two
separate Index and Target registers (70/71h or 72/73h), as shown in Table 147.

Table 147. RTC (Standard) RAM Bank (LPC I/F—D31:F0)
Index Name
00h Seconds
01h Seconds Alarm
02h Minutes
03h Minutes Alarm
04h Hours
05h Hours Alarm
06h Day of Week
07h Day of Month
08h Month
09h Year
0Ah Register A
0Bh Register B
0Ch Register C
0Dh Register D
0Eh–7Fh 114 Bytes of User RAM

There are couples of more things to take into account, such as the Video BIOS
and other expansion ROM handling. I'll try to cover this stuff next time when I
have done dissecting BIOS code that handle it.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

3. Some Software "Peculiarities"

There are couples of tricky areas in the BIOS code due to the execution of some
of its parts in ROM. I'll present some of my findings below.

call instruction is not available during bios code execution from within BIOS ROM
chip. This is due to call instruction uses/manipulate stack while we don't have
writeable area in BIOS ROM chip to be used for stack. What I mean by
manipulating stack here is the "implicit" push instruction which is executed by
the call instruction to "write/save" the return address in the stack. As we know
clearly, address pointed to by ss:sp at this point is in ROM, meaning: we can't
write into it. If you think, why don't use the RAM altogether ? the DRAM chip is
not even available at this point. It hasn't been tested by the BIOS code, thus we
haven't know if RAM even exists!

The peculiarity of retn instruction. There is macro that's called ROM_call as
follows :

ROM_CALL MACRO RTN_NAME
 LOCAL RTN_ADD
 mov sp,offset DGROUP:RTN_ADD
 jmp RTN_NAME
RTN_ADD: dw DGROUP:$+2
 ENDM

an example of this macro "in action" as follows :

Address Hex Mnemonic
F000:6000 F000_6000_read_pci_byte proc near
F000:6000 66 B8 00 00 00 80 mov eax, 80000000h
F000:6006 8B C1 mov ax, cx ; copy offset
addr to ax
F000:6008 24 FC and al, 0FCh ; mask it
F000:600A BA F8 0C mov dx, 0CF8h
F000:600D 66 EF out dx, eax
F000:600F B2 FC mov dl, 0FCh
F000:6011 0A D1 or dl, cl ; get the byte
addr
F000:6013 EC in al, dx ; read the byte
F000:6014 C3 retn ; Return Near
from Procedure
F000:6014 F000_6000_read_pci_byte endp
......
F000:6043 18 00 GDTR_F000_6043 dw 18h ; limit of
GDTR (3 valid desc entry)
F000:6045 49 60 0F 00 dd 0F6049h ; GDT
physical addr (below)
F000:6049 00 00 00 00 00 00 00 00 dq 0 ; null
descriptor
F000:6051 FF FF 00 00 0F 9F 00 00 dq 9F0F0000FFFFh ; code
descriptor:
F000:6051 ; base addr
= F 0000h; limit=FFFFh; DPL=0;

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:6051 ;
exec/ReadOnly, conforming, accessed;
F000:6051 ;
granularity=byte; Present; 16-bit segment
F000:6059 FF FF 00 00 00 93 8F 00 dq 8F93000000FFFFh ; data
descriptor:
F000:6059 ; base addr
= 00h; seg_limit=F FFFFh; DPL=0;
F000:6059 ; Present;
read-write, accessed;
F000:6059 ;
granularity = 4 KByte; 16-bit segment
......
F000:619B 0F 01 16 43 60 lgdt qword ptr GDTR_F000_6043 ; Load
Global Descriptor Table Register
F000:61A0 0F 20 C0 mov eax, cr0
F000:61A3 0C 01 or al, 1 ; set PMode
flag
F000:61A5 0F 22 C0 mov cr0, eax
F000:61A8 EA AD 61 08 00 jmp far ptr 8:61ADh ; jmp below in
16-bit PMode (abs addr F 61ADh)
F000:61A8 ; (code
segment with base addr = F 0000h)
F000:61AD ; -----------------------------------

F000:61AD B8 10 00 mov ax, 10h ; load ds with
valid data descriptor
F000:61B0 8E D8 mov ds, ax ; ds = data
descriptor (GDT 3rd entry)
......
F000:61BC B9 6B 00 mov cx, 6Bh ; DRAM
arbitration control
F000:61BF BC C5 61 mov sp, 61C5h
F000:61C2 E9 3B FE jmp F000_6000_read_pci_byte ; Jump
F000:61C2 ; -----------------------------------

F000:61C5 C7 61 dw 61C7h
F000:61C7 ; -----------------------------------

F000:61C7 0C 02 or al, 2 ; enable VC-
DRAM

as you can see, you have to take into account that the retn instruction is
affected by the current value of ss:sp register pair, but ss register is not even
loaded with "correct" 16-bit protected mode value prior to using it! how this code
even works ? the answer is a bit complicated. Let's look at the last time ss
register value was manipulated before the code above executed :

Address Hex Mnemonic
F000:E060 8C C8 mov ax, cs
F000:E062 8E D0 mov ss, ax ; ss = cs (ss =
F000h a.k.a F_segment)
F000:E064 assume ss:F000
Note: this routine is executed in real-mode

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

as you can see, ss register is loaded with F000h (the current BIOS code 16-bit
segment in real-mode). This code implies that the hidden descriptor cache
register (that exist for every selector/segment register) is loaded with
"ss * 16" or F0000h physical address value. And this value is retained even
when the machine is switched into 16-bit Protected Mode above since ss register
is not reloaded. A snippet from Intel Software Developer Manual Vol.3 :

8.1.4. First Instruction Executed
The first instruction that is fetched and executed following a
hardware reset is located at physical
address FFFFFFF0H. This address is 16 bytes below the processor’s
uppermost physical
address. The EPROM containing the software-initialization code must
be located at this address.
The address FFFFFFF0H is beyond the 1-MByte addressable range of the
processor while in
real-address mode. The processor is initialized to this starting
address as follows. The CS
register has two parts: the visible segment selector part and the
hidden base address part. In real
address mode, the base address is normally formed by shifting the 16-
bit segment selector value
4 bits to the left to produce a 20-bit base address. However, during
a hardware reset, the segment
selector in the CS register is loaded with F000H and the base address
is loaded with
FFFF0000H. The starting address is thus formed by adding the base
address to the value in the
EIP register (that is, FFFF0000 + FFF0H = FFFFFFF0H).
The first time the CS register is loaded with a new value after a
hardware reset, the processor
will follow the normal rule for address translation in real-address
mode (that is, [CS base address
= CS segment selector * 16]). To insure that the base address in the
CS register remains
unchanged until the EPROM based software-initialization code is
completed, the code must not
contain a far jump or far call or allow an interrupt to occur (which
would cause the CS selector
value to be changed).

also a snippet from DDJ (Doctor Dobbs Journal):

At power-up, the descriptor cache registers are loaded with fixed,
default values, the CPU is in
real mode, and all segments are marked as read/write data segments,
including the code segment (CS).
According to Intel, each time the CPU loads a segment register in
real mode, the base address is
16 times the segment value, while the access rights and size limit
attributes are given fixed,
"real-mode compatible" values. This is not true. In fact, only the CS
descriptor cache access rights
get loaded with fixed values each time the segment register is loaded
- and even then only when a
far jump is encountered. Loading any other segment register in real
mode does not change the access
rights or the segment size limit attributes stored in the descriptor
cache registers. For these

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

segments, the access rights and segment size limit attributes are
honored from any previous setting
(see Figure 3). Thus it is possible to have a four giga-byte, read-
only data segment in real mode
on the 80386, but Intel will not acknowledge, or support this mode of
operation.

If you want to know more about descriptor cache and how it works, you can
search the web for articles about "descriptor cache" or "x86 unreal mode", the
most comprehensive guide can be found in one of Doctor Dobbs Journal and Intel
Software Developer Manual Vol.3 chapter 3 Protected Mode Memory
Management in section

3.4.2 Segment Registers. Back to our ss register, now you know that the "actor" here is
the descriptor cache register, especially its base address part. The visible part of ss is
only a "place holder" and the "register in-charge" for the "real" address
calculation/translation is the hidden descriptor cache. Whatever you do to this
descriptor cache will be in effect when any code, stack or data value addresses are
translated/calculated. In our case, we have to use "stack segment" with "base address"
at F 0000h physical address in 16-bit protected mode. This is not a problem, since the
base address part of ss descriptor cache register already filled with F0000h in one
of the code above. This explains why the code above can be executed flawlessly.
Another example:

Address Hex Mnemonic
F000:61BF BC C5 61 mov sp, 61C5h
F000:61C2 E9 3B FE jmp F000_6000_read_pci_byte ; Jump
F000:61C2 ; -----------------------------------

F000:61C5 C7 61 dw 61C7h

in this code we have to make ss:sp points to F61C5h for retn instruction to work.
Indeed, we've done it, since ss contains F0000h (its descriptor cache base address
part) and as you can see, sp contains 61C5h, the physical address pointed to by ss:sp
is F0000h + 61C5h which is F61C5h physical address.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

4. Our Tools of Trade

You are only as good as your tools. Yeah, this also holds true here. To begin the
journey, we'll need a couple of tool as follows :

1. IDA Pro disassembler. I'm using IDA Pro version 4.50. You can use your
favourite interactive disassembler. I found IDA Pro is the most suitable for
me. We need an interactive disassembler since the BIOS binary that we're
going to disassemble is not a trivial code. At some points of its execution it
resides in ROM, hence, no stack avalilable. It uses some sort of stack trick
to do procedure/routine calling.

2. A good hex editor. I'm using HexWorkshop ver. 3.0b. The most beneficial
feature of this hex editor is it's capability to calculate checksums for the
selected range of file that we open inside of it.

3. LHA 2.55, it's needed if you want to modify the bios binary. Or, you can
use winzip or another compression/decompression program that can
handle LZH/LHA file if you only want to get the compressed bios
components.

4. Some bios modification tools i.e. : CBROM, I'm using version 2.08, 2.07
and 1.24 and MODBIN. There are two types of modbin, modbin6 for award
bios ver. 6 and modbin 4.50.xx for award bios ver. 4.5xPGNM. We need
these tools to look at the bios components much more easily. You can
download it at www.biosmods.com, in the download section.

5. Some chipset datasheets. This depends on the mainboard bios binary that
you're gonna dissect. Some datasheets available at www.rom.by. I'm
dissecting a VIA693A-596B mainboard. I have the datasheets at my hand,
except for the southbridge i.e. VIA596B, which is substituted by VIA586B
and 686A datasheet, since the complete VIA596B datasheet is not
avalilable.

6. Intel Software Developer Manual Volume 1, 2 and 3. These are needed
since BIOS sometimes uses "exotic" instruction set. Also, there are some
system data structures that are hard to remember and need to be looked
up, such as GDT and IDT.

OK, now we're armed. What we need to do next is to understand the basic stuff
by using the hex editor before proceeding through the disassembling session.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

http://www.biosmods.com/
http://www.rom.by/

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

5. Award BIOS File Structure

Award BIOS file consists of several components. Some of the components are
LZH level-1 compressed. We can recognize them by looking at the "-lh5-"
signature in the beginning of that component using hex editor. Here's an
example :

Address Hex ASCII
00000000 25F2 2D6C 6835 2D85 3A00 00C0 5700 0000 %.-lh5-.:...W...
00000010 0000 4120 010C 6177 6172 6465 7874 2E72 ..A ..awardext.r
00000020 6F6D DB74 2000 002C F88E FBDF DD23 49DB om.t ..,.....#I.

Beside the compressed components, there are also some "pure" 16-bit x86
binary components. Award BIOS execution begins at this "pure" binary
(uncompressed) components.

We have to know the entry point to start our disassembly to this BIOS binary.
We know that the execution of x86 processor begins in 16-bit real mode at
address F000:FFF0 (physical address FFFF FFF0) following restart or power up,
as per Intel Software Developer Manual Vol.3 "System Programming". Based on
our intuition, this address must contain a 16-bit real mode x86 executable code.
That's true. Below is the "memory map" of award bios binary that I have. It's a
2MBit/256 KB bios image for Iwill VD133 mainboard.

• The compressed components :
1. 0000h - 3AACh : XGROUP ROM (awardext.rom), this is an award

extension rom. It contains routine that is called from the system
BIOS, i.e. original.tmp

2. 3AADh - 97AFh : CPUCODE.BIN, this is the microcode for the
BIOS.

3. 97B0h - A5CFh : ACPITBL.BIN, the acpi table.
4. A5D0h - A952h : Iwill.bmp, the BMP logo.
5. A953h - B3B1h : nnoprom.bin, I haven't know yet what this

component's role.
6. B3B2h - C86Ch : Antivir.bin, the bios bootsector antivirus.
7. C86Dh - 1BEDCh : ROSUPD.BIN, this is a custom bios component

in my bios. It's used to display a customized Boot Logo and
indicator

8. 20000h - 35531h : original.tmp, this is the system BIOS. This
component located in this address in most award bioses, but
sometimes also located in the very beginning of the bios binary, i.e.
0000h.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Note:

o Between the compressed ROSUPD.BIN and original.tmp there are padding
FFh bytes. These padding bytes also found after the compressed original.tmp
and the pure binary BIOS components that will be explained below. An
example of these padding bytes :

o Address Hex ASCII
o 00037D00 2A42 4253 532A 0060 0070 0060 0060 00A0

BBSS.`.p.`.`..
o 00037D10 3377 4670 8977 ACCF C4CF 0100 00FF FFFF

3wFp.w..........
o 00037D20 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

................
o 00037D30 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

................
o The compressed component can be extracted easily by copying and pasting it

into a new binary file in Hexworkshop. Then, decompress this new file by
using LHA 2.55 or winzip. If we are into using winzip, give the new file an
".lzh" extension so that it'll be automatically associated with winzip.
Recognizing where we should "cut" to get the new file is pretty easy, just look
for the "-lh5-" string. Two bytes preceeding "-lh5-" string is the beginning
of the file and the end of the file is always 00h, right before the next
compressed file (with the "-lh5-" marker in its beginning), right before the
padding bytes or right before some kind of checksum. I present two examples
below, the highlighted bytes is the beginning or the end of the compressed file.

compressed CPUCODE.BIN file in my BIOS :

o Address Hex ASCII
o 00003AA0 4E61 19E6 9775 2B46 BA55 85F0 0024 382D

Na...u+F.U...$8-
o 00003AB0 6C68 352D DC5C 0000 00A0 0000 0000 0140 lh5-

.\.........@
o 00003AC0 2001 0B43 5055 434F 4445 2E42 494E BCAA

..CPUCODE.BIN..
o 00003AD0 2000 0038 3894 9700 52C4 A2CF F040 0000

..88...R....@..
o 00003AE0 4000 0000 0000 0000 0000 0000 0000 0000

@...............
o
o 000097A0 0E3C 8FA7 FFF4 FFFE 9FFF D3FF FFFB FF00

.<..............
o 000097B0 24D9 2D6C 6835 2DFA 0D00 00A6 2100 0000 $.-lh5-

.....!...

compressed ORIGINAL.TMP file in my BIOS :

Address Hex ASCII
0001FFF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
................
00020000 251A 2D6C 6835 2D09 5501 0000 0002 0000 %.-lh5-
.U.......

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

00020010 0000 5020 010C 6F72 6967 696E 616C 2E74 ..P
..original.t
00020020 6D70 0CD9 2000 002D 7888 F0FD D624 A5BA mp.. ..-
x....$..
........
00035510 019E 6E67 BF11 8582 88D9 4E7C BEC8 C34C
..ng......N|...L
00035520 401D 189F BDD0 A176 17F0 4383 1D73 BF99
@......v..C..s..
00035530 00C9 FFFF FFFF FFFF FFFF FFFF FFFF FFFF
................
00035540 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
................

• The pure binary components :
0. 36000h - 36C4Ah : Memory sizing routine, this routine also

initialize the Host Bridge and the CPU/RAM clock in my BIOS
1. 37000 - 37D1Ch : The decompression block, this routine contains

the LZH decompression engine which decompresses the compressed
bios components above.

2. 3C000h - 3CFE4h : This area contains various routine, the lower
128KB BIOS address decode enabler, the default VGA initialization
(executed if system bios is erratic), Hostbridge initialization routine,
etc.

3. 3E000h - 3FFFFh : This area contains the Boot Block code.

Note: in between some of the components lies padding bytes. Some are
FFh bytes and some are 00h bytes.

• The memory map in the real system (mainboard).
We have to note that the memory map above is described as we see the
BIOS binary in a hex editor. In the mainboard BIOS chip, it's a bit different
and more complex. It's mapped in my mainboard as follows (it's maybe a
bit different with yours, consult your chipset documentation):

0. 0000h - 3FFFFh in the BIOS binary (as displayed in hex editor) is
mapped into FFFC 0000h - FFFF FFFFh in my system memory
space. Due to my system's northbridge (as per its datasheet),
address FFFF 0000h - FFFF FFFFh is just an alias to F 0000h - F
FFFFh or speaking in "real-mode lingo" F000:0000h -
F000:FFFFh. Note that this mapping only applies just after power-
on, since it's the chipset's power-on default value. It's not
guaranteed to be valid after the chipset is reprogrammed by the
BIOS itself. There are some other "kludge" though and they are
really system dependent. You have to consult Intel Software
Developer Manual Volume 3 (system programming) and your
chipset datasheet.

1. Due to the explanantion in 1. , the pure binary BIOS components is
mapped as follows (note: just after power-on) :

 BootBlock : F000:E000h - F000:FFFFh
 Decompression Block : F000:7000h - F000:7D1Ch
 Early Memory Initialization : F000:6000h - F000:6C4Ah

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

2. The compressed BIOS components are mapped into system memory
space after they are decompressed in a different manner. They
reliant on the decompression block routine, but there are few
mappings that seem remain the same accross different BIOS files.
These mappings are (as per my BIOS. Yours may differ, but the
segment address very possibly the same):

 original.tmp a.k.a System BIOS : E000:0000h -
F000:5531h

 awardext.rom a.k.a Award extension ROM : 4100:0000h -
4100:xxxxh . Later relocated to 6000:0000h -
6000:xxxxh by original.tmp, before it's executed.

We have to be aware of this mapping during our journey.

Note:
It's very easy to get lost due to the sheer complexity of the BIOS binary address
mapping into the real system. But, there are some guidelines that will ease our effort
during our disassembly session using IDA Pro as follows :

o Begin the disassembly session with the pure binary components. I just copy
my BIOS file at 36000h - 3FFFFh to get these components and paste it into a
new binary file to be disassembled. We need these components to reside in one
file since they are inter-related each other. Then I disassemble this new file by
setting its address mapping in IDA Pro to F000:6000h - F000:FFFFh and
disabling segment naming so that I can see its "real-mode address" in the
system during its execution.

o Decompress the system bios (original.tmp) somewhere, you'll find that its size
is 128KB. Then disassemble it by setting its address mapping in IDA Pro to
E000:0000h - F000:FFFFh. The address mapping should be like that since
this compressed bios component is decompressed by the decompression block
somewhere in memory and then relocated into this address range before it's
"jumped-into" by the bootblock code (gets executed). AFAIK, this mapping
apply to all award BIOS. Also remember to disable segment naming, so that
we can see its "real-mode address" in the system during its execution.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

6. Disassembling the BIOS

Due to Intel System Programming Guide I mentioned before, we'll begin the
disassembly session at address F000:FFF0h (note: look at the memory mapping
above and adjust IDA Pro to suit it). You may ask: How the hell this is even
possible ? Intel Software Developer Manual Vol. 3 (PROCESSOR MANAGEMENT
AND INITIALIZATION - First Instruction Executed) says :

The first instruction that is fetched and executed following a hardware reset is
located at physical
address FFFFFFF0H.
The answer is : I repeat that my northbridge chipset aliases address range FFFE
FFFFh - FFFF FFFFh to 000Fxxxxh. Also, note that the southbridge has no
means to alter the translation of this address range. It just passes the addresses
directly to the BIOS ROM chip. Hence, there's no difference between address
FFFF FFF0h and F FFF0h (or F000:FFF0 in "real-mode lingo") just after power-
on or reset. It's that simple heh ;) . This is the BootBlock area, it always contains
a far jump into the bootblock routine, mostly to F000:E05Bh. From this point
we can continue the disassembly to cover the majority of the pure binary part. In
reality, lots of the pure binary code is never executed at all since it's very seldom
your system BIOS gets corrupted and the Bootblock POST (Power On Self Test)
routine takes place.

6.1. Bootblock
From this point we can disassemble the bootblock routines. Now, I'll present
some of the "obscure" areas of the BIOS code in the disassembled bootblock.
This is with respect to my BIOS, yours may vary but it will be very similar.

At Virtual Shutdown routine:

Address Hex Mnemonic
F000:E07F BC 0B F8 mov sp, 0F80Bh ; contains
E103h (memory presence test code)
F000:E082 E9 7B 15 jmp Ct_Very_Early_Init ; return
from this jump
F000:E082 ; is
redirected to F000:E103h

At Reset PCI Bus routine:

Address Hex Mnemonic
F000:E1A0 BF A6 E1 mov di, 0E1A6h ; the return
addr of the jump below
F000:E1A3 E9 42 99 jmp Reset_PCI_Bus ;
Jumpless_in_Decompress_Area,
F000:E1A3 ; Program CPU
clock pin, host clock
F000:E1A3 ; for
jumperless platform ???
....

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:7CDD _delay: ; CODE XREF:
Reset_PCI_Bus+1F5
F000:7CDD E2 FE loop _delay ; Loop while
CX != 0
F000:7CDF FF E7 jmp di ; jump back to
F000:E1A3h

At call to memory detection routine:

Address Hex Mnemonic
F000:E1D6 Checksum is ok , execute memory
detection
F000:E1D6 2E 8B 07 mov ax, cs:[bx] ; ax = cs:[bx]
(cs:[7D06h] is 6000h)
F000:E1D9 25 00 F0 and ax, 0F000h ; ax = 6000h
F000:E1DC 8B F0 mov si, ax ; si = 6000h
F000:E1DE 81 C6 FC 0F add si, 0FFCh ; add
si,MEMORY_PRESENCE_OFFSET; si=6FFCh
F000:E1E2 2E 8B 34 mov si, cs:[si] ; si = 60B4h
F000:E1E5 BC EC E1 mov sp, 0E1ECh ; pointer to
pointer to ret addr below
F000:E1E8 FF E6 jmp si ; jmp to
F000:60B4h, execute memory detection
F000:E1E8 ; returns at
F000:E1F8

This code gets executed before the bootblock is copied to RAM. In case the RAM
is faulty, the system will halt and output error code from system speaker.

At bootblock get copied and executed in RAM:

Address Hex Mnemonic
F000:E2AA ;----------- Enter 16-bit Protected
Mode (Flat) ------------
F000:E2AA assume ds:F000
F000:E2AA 0F 01 16 F6 E4 lgdt qword ptr GDTR_F000_E4F6 ;
Load Global Descriptor Table
 ;
Register
F000:E2AF 0F 20 C0 mov eax, cr0
F000:E2B2 0C 01 or al, 1 ; activate
PMode flag
F000:E2B4 0F 22 C0 mov cr0, eax
F000:E2B7 EB 00 jmp short $+2 ; clear
prefetch, enter 16-bit PMode. We're
F000:E2B7 ; using the
"unchanged" hidden value of CS
F000:E2B7 ; register
(descriptor cache) from previous
F000:E2B7 ; "PMode
session" in memory_check_routine
F000:E2B7 ; for code
segment desc
F000:E2B9 B8 08 00 mov ax, 8
F000:E2BC 8E D8 mov ds, ax ; ds = 1st
entry in GDT loaded above
F000:E2BE assume ds:nothing
F000:E2BE 8E C0 mov es, ax ; es = 1st
entry in GDT loaded above
F000:E2C0

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:E2C0 ;There are two locations to access
E0000H ROM space, one is 0E0000H
F000:E2C0 ;and another is 0FFFE0000H. Some
chipsets can not access onboard ROM
F000:E2C0 ;space at 0E0000H if any device also
use the space on ISA bus. To
F000:E2C0 ;solve this problem , we need to
change address to 0FFFE0000H
F000:E2C0 ;to read BIOS contents at 0E0000H
space.
F000:E2C0 assume es:nothing
F000:E2C0 66 BE 00 00 0E 00 mov esi, 0E0000h ; starting
addr of compressed original.tmp
F000:E2C6 67 66 81 7E 02 2D 6C 68+ cmp dword ptr [esi+2], '5hl-' ;
LHA signature
F000:E2CF 74 07 jz LHA_sign_OK ; Jump if Zero
(ZF=1)
F000:E2D1 66 81 CE 00 00 F0 FF or esi, 0FFF00000h ; esi =
FFFE0000h
F000:E2D8
F000:E2D8 -- move entire BIOS (i.e. original.tmp
and bootblock)
F000:E2D8 from ROM at E0000h-FFFFFh to RAM at
10000h-2FFFFh --
F000:E2D8
F000:E2D8 LHA_sign_OK: ; CODE XREF:
F000:E2CF
F000:E2D8 66 BF 00 00 01 00 mov edi, 10000h ; buffer at
1000:0
F000:E2DE 66 B9 00 80 00 00 mov ecx, 8000h ; copy 128
KByte to buffer (original.tmp &
F000:E2DE ; bootblock)
F000:E2E4 67 F3 66 A5 rep movs dword ptr es:[edi], dword
ptr [esi] ; Move Bytes from
F000:E2E4
; String to String
F000:E2E8 0F 20 C0 mov eax, cr0
F000:E2EB 24 FE and al, 0FEh ; clear PMode
bit
F000:E2ED 0F 22 C0 mov cr0, eax
F000:E2F0 EB 00 jmp short $+2 ; clr
prefetch, back to RealMode
F000:E2F2 EA F7 E2 00 20 jmp far ptr 2000h:0E2F7h ; Jump
below in RAM
F000:E2F7 ; ------------------------------------

F000:E2F7 ;Setup temporary stack at 0:1000H, at
this point
F000:E2F7 ;Bios code (last 128 Kbyte) is still
compressed
F000:E2F7 ;except the bootblock and
decompression code
F000:E2F7
F000:E2F7 BootBlock_in_RAM: ; ax = 0000h
F000:E2F7 33 C0 xor ax, ax
F000:E2F9 8E D0 mov ss, ax ; ss = 0000h
F000:E2FB assume ss:nothing
F000:E2FB BC 00 10 mov sp, 1000h ; ss:sp =
0000:1000h
F000:E2FE

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The last 128KB of BIOS code (E000:0000h - F000:FFFFh) get copied to RAM as
follows :

1. Northbridge power-on default values aliases F0000h-FFFFFh address
space with FFFE FFFFh-FFFF FFFFh, where the BIOS ROM chip address
space mapped. That's why the following code is safely executed:

Address Hex Mnemonic
F000:FFF0 EA 5B E0 00 F0 jmp far ptr entry_point ;
Northbridge is responsible for decoding
F000:FFF0 ; the target
address of this jump into BIOS
F000:FFF0 ; chip through
address aliasing. So, even if
F000:FFF0 ; this is a far
jump (read Intel Software
F000:FFF0 ; Developer
Guide Vol.3 for info)
F000:FFF0 ; we are still
in BIOS chip d00d ;)
F000:FFF0 ; vi693A:
FFFEFFFF-FFFFFFFF is 000Fxxxx alias.

also, northbridge power-on default values disables DRAM shadowing for this
address space. Thus, read/write to this address space will not be forwarded to
DRAM. At the same time, there's no control register in southbridge that controls
the mapping of this address space. Hence, I suspect that read operation to this
address space will be "directly forwarded" to the BIOS ROM chip without being
altered by the southbridge. Of course this read operation first pass through
northbridge which apply the address aliasing scheme.

2. Very close to the beginning of Bootblock execution, routine
Ct_Very_Early_Init executed. This routine reprogram the PCI-to-ISA bridge
(in southbridge) to enable decoding of address E0000h-EFFFFh to ROM, i.e.
forwarding read operation in this address space into the BIOS ROM chip. The
northbridge power-on default values disables DRAM shadowing for this
address space. Thus, read/write to this address space will not be forwarded
to DRAM.

3. Then comes the routine displayed above which copied the last 128KB BIOS
ROM chip content (address E0000h - FFFFFh) into DRAM at 1000:0000h -
2000:FFFFh and continues execution from there. This can be accomplished
since this address space is mapped only to DRAM by the chipset, no
special address translation.

4. From this point on, Bootblock code execution is within segment
2000h in RAM. This fact holds true for all Bootblock routines explained
below. Note that the segment address shown in bootblock routines below
uses segment F000h. It should be segment 2000h but I hadn't change it.
Pay attention to this!

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

At call to bios decompression routine and the jump into decompressed system bios:

Address Hex Mnemonic
F000:E3DC E8 33 01 call Expand_BIOS ; decompress
bios code
F000:E3DF EB 03 jmp short BIOS_chksum_OK ;
checksum is good
F000:E3E1 ; ------------------------------------

F000:E3E1
F000:E3E1 BIOS_chksum_err: ; CODE XREF:
F000:E347
F000:E3E1 ; F000:E350
...
F000:E3E1 B8 00 10 mov ax, 1000h
F000:E3E4
F000:E3E4 BIOS_chksum_OK: ; CODE XREF:
F000:E3DF
F000:E3E4 8E D8 mov ds, ax ; ax = 5000H
if checksum ok
F000:E3E4 ; setup source
for shadowing
F000:E3E4 ; so, if ok,
ds = 5000h
F000:E3E6 assume ds:nothing
F000:E3E6 B0 C5 mov al, 0C5h
F000:E3E8 E6 80 out 80h, al ;
manufacture's diagnostic checkpoint
F000:E3EA
F000:E3EA ;The source data segment is 5000H if
checksum is good.
F000:E3EA ;the contents in this area is
decompressed by routine "Expand_Bios".
F000:E3EA ;And segment 1000H is for shadowing
original BIOS image if checksum
F000:E3EA ;is bad. BIOS will shadow bootblock
and boot from it.
F000:E3EA E8 87 EB call Shadow_BIOS_code ; Call
Procedure
F000:E3ED B0 00 mov al, 0 ; clear uP
cache
F000:E3EF E8 C7 10 call Enable_uP_cache ; Call
Procedure
F000:E3F2
F000:E3F2 ;BIOS decide where to go from here.
F000:E3F2 ;If BIOS checksum is good, this
address F80DH is shadowed by
F000:E3F2 ;decompressed code (i.e. original.bin
and others),
F000:E3F2 ;And "BootBlock_POST" will be executed
if checksum is bad.
F000:E3F2 EA 0D F8 00 F0 jmp far ptr F000_segment ; jump to
F000 segment

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

during execution of Expand_BIOS routine, the compressed BIOS code
(original.tmp) at 1000:0000h - 2000:FFFFh in RAM decompressed into
E000:0000h - F000:FFFFh also in RAM. Note that the problem due to address
aliasing and DRAM shadowing are handled during the decompression by setting
the appropriate chipset registers. Below is the basic run-down of what this
routine accomplished:

2. Enable FFF80000h-FFFDFFFFh decoding. Access to this address
will be forwarded into the BIOS ROM chip by the PCI-to-ISA Bridge.
PCI-to-ISA bridge ROM decode control register is in-charge here.
This is needed, since my BIOS is 256KB and only 128KB of it has
been copied into RAM, i.e. the original.tmp and bootblock which is
at 1000:0000h-2000:FFFFh by now.

3. Copy lower 128KB of BIOS code from FFFC0000h-FFFDFFFFh in
ROM chip into 8000:0000h - 9000:FFFFh in DRAM.

4. Disable FFF80000h-FFFDFFFFh decoding. Access to this address
will not be forwarded into the BIOS ROM chip by the PCI-to-ISA
Bridge.

5. Verify checksum of the whole compressed BIOS image, i.e. calculate
the 8-bit checksum of copied compressed BIOS image in RAM (i.e.
8000:0000h - 9000:FFFFh + 1000:0000h - 2000:7FFDh) and
compare the result against result stored in 2000:7FFEh. If 8-bit
checksum doesn't match, then goto BIOS_chksum_err, else
continue to decompression routine.

6. Look for the decompression engine by looking for *BBSS* string in
segment 2000h, then execute the decompression routine for all of
the compressed BIOS components.

7. Decompress the compressed BIOS components. Note that at this
stage only origininal.tmp and it's extension i.e. awardext.rom
(probably also awardyt.rom, I haven't verify it) which get
decompressed. The other component treated in different fashion.
The BootBlock_expand routine only process their
decompressed/expansion area information then put it somewhere in
RAM. We need some preliminary info before delving into this step as
follows:

 The format of the LZH level-1 compressed bios components.
The address ranges where these BIOS components will be
located after decompression are contained within this format.
The format is as follows (it applies to all compressed
components):

Offset from 1st
byte

Offset in Real
Header Contents

00h N/A
The header length of the
component. It depends on the
file/component name.

01h N/A

The header 8-bit checksum, not
including the first 2 bytes
(header length and header
checksum byte).

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

02h - 06h 00h - 04h

LZH Method ID (ASCII string
signature). In my BIOS it's "-
lh5-" which means: 8k sliding
dictionary(max 256 bytes) +
static Huffman + improved
encoding of position and trees.

07h - 0Ah 05h - 08h

compressed file/component
size in little endian dword
value, i.e. MSB at 0Ah and so
forth

0Bh - 0Eh 09h - 0Ch

Uncompressed file/component
size in little endian dword
value, i.e. MSB at 0Eh and so
forth

0Fh - 10h 0Dh - 0Eh

Decompression offset address
in little endian word value, i.e.
MSB at 10h and so forth. The
component will be
decompressed into this offset
address (real mode addressing
is in effect here).

11h - 12h 0Fh - 10h

Decompression segment
address in little endian word
value, i.e. MSB at 12h and so
forth. The component will be
decompressed into this
segment address (real mode
addressing is in effect here).

13h 11h

File attribute. My BIOS
components contain 20h here,
which is normally found in
LZH level-1 compressed file.

14h 12h

Level. My BIOS components
contain 01h here, which means
it's a LZH level-1 compressed
file.

15h 13h component filename name
length in byte.

16h -
[15h+filename_len]

14h -
[13h+filename_len]

component filename (ASCII
string)

[16h+filename_len]
-

[17h+filename_len]

[14h+filename_len]
-

[15h+filename_len]

file/component CRC-16 in
little endian word value, i.e.
MSB at [HeaderSize - 2h] and
so forth.

[18h+filename_len] [16h+filename_len] Operating System ID. In my
BIOS it's always 20h (ASCII

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

space character) which don't
resemble any LZH OS ID
known to me.

[19h+filename_len]
-

[1Ah+filename_len]

[17h+filename_len]
-

[18h+filename_len]

Next header size. In my BIOS
it's always 0000h which means
no extension header.

 Note:
 The left-most offset is calculated from the beginning of

the compressed component and the contents
description "addressing" with respect to the 1st byte of
the component. The "offset in Real Header" is used
within the "scratch-pad RAM" explained below.

 Each component is terminated with EOF byte, i.e. 00h
byte.

 In my BIOS, there are ReadHeader procedure which
contains routine to read and verify the content of this
header. One of the key "procedure call" there is a call
into FreadCRC, which reads the bios component header
into a "scratch-pad" RAM area beginning at
3000:0000h (ds:0000h). This scratch-pad area is
filled with the "real-LZH-header value" which doesn't
include the first 2 bytes (header size and header 8-bit
checksum), but includes the 3rd byte (offset 02h)
until offset HeaderSize+02h.

 The location of various checksums which are checked prior
and during the decompresion process.

Location Calculation Method

Right after
compressed
original.tmp

original.tmp 8-bit checksum. This value is
calculated after it's copied to RAM at segment
1000h and 2000h. The code as follows :
Address Assembly Code
F000:E307 ;BIOS checksum verify
F000:E307 ;Now, the 128Kb BIOS (0E0000H-
0FFFFFH) is in 10000H-2FFFFH.
F000:E307 mov ax, 1000h ; point
to 0E000H bios segment
F000:E30A mov ds, ax ; ds =
1000h (E000h segment of the BIOS
F000:E30A ;
copied to RAM)
F000:E30C assume ds:nothing
F000:E30C mov bx, ds:9 ; size
over 64Kb ; equ--> bx = 0001h
F000:E310 mov cx, ds:7 ; get
compressed size; equ--> cx = 5509h
F000:E314 add cl, ds:0 ; add
header size; equ--> 25h + 09h = 2Eh
F000:E318 adc ch, 0 ; Add
with Carry
F000:E31B adc bx, 0 ; Add
with Carry

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:E31E add cx, 3 ; add
cx,TAIL_BYTE_SIZE;
F000:E31E ;
COMPRESSED_SIZE = 552Eh + 3h = 5531h
F000:E31E ; This
is the remainder of the cmprssd
F000:E31E ;
original.tmp in seg_F000h
F000:E321 adc bx, 0 ; Add
with Carry
F000:E324 jz below_or_equ_64Kb ; jmp
if compressed size less than 64Kb
F000:E326 mov bx, cx ; code
size remainder in next 64KB
F000:E326 ;
(@seg_F000h)
F000:E326 ;
F000:E328 xor cx, cx ; code
size to sum_up for 1st 64Kb
F000:E328 ;
(cx=0000h means 64KB)
F000:E32A
F000:E32A below_or_equ_64Kb: ; CODE
XREF: F000:E324
F000:E32A xor si, si ; si =
0000h
F000:E32C xor ah, ah ; ah =
00h (initial 8-bit chksum)
F000:E32E
F000:E32E add_next_byte: ; CODE
XREF: F000:E331 F000:E343
F000:E32E lodsb ; Load
String
F000:E32F add ah, al ; calc
8 bit chksum, result in ah
F000:E331 loop add_next_byte ; loop
while cx != 0 (<64KB)
F000:E333
F000:E333 or bx, bx ;
compressed BIOS bigger than 64kb ?
F000:E335 jz look_for_BBSS_sign ;
no, less than 64Kb
F000:E337 mov cx, bx ; cx =
compressed code size in next 64Kb
F000:E339 mov bx, ds ; setup
next 64Kb segment address
F000:E339 ; at
first ds = 1000h
F000:E33B add bx, 1000h ; next
64Kb
F000:E33F mov ds, bx ;
ds=ds+1000h (ds = 2000h i.e. seg_F000h)
F000:E341 assume ds:nothing
F000:E341 xor bx, bx ; mark
that no next 64Kb ; bx = 0000h
F000:E343 jmp short add_next_byte ;
continue to do checksum sum up
F000:E345 ; -----------------------------

F000:E345
F000:E345 look_for_BBSS_sign: ; CODE

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

XREF: F000:E335
F000:E345 cmp ah, [si] ; cmp
calc-ed chksum & chksum in image.
F000:E345 ; in
original.tmp BIOS image,
F000:E345 ;
chksum at 35531h (F_seg:5531h)
F000:E347 jnz BIOS_cksm_error ; Jump
if Not Zero (ZF=0)

Right after the
decompression
engine

This is the 8-bit checksum of the decompression
engine which starts at F000:7000h (2000:7000h
after copied to RAM) in my BIOS. The code as
follows:
Address Assembly Code
F000:E35E Verify checksum of decompress
engine
F000:E35E mov ds, ax ; ds =
2700h (2000:7000h)
F000:E360 assume ds:nothing ; ds =
F000h segment in RAM
F000:E360 xor ah, ah ; ah =
0000h
F000:E362 xor si, si ; si =
0000h
F000:E364 mov cx, 0FFFh ; 4095
Byte boundary
F000:E364 ; the
4096th byte is the chksum
F000:E364 ; at
F000:7FFFh in my BIOS
F000:E367 chksum_loop: ; CODE
XREF: F000:E36A
F000:E367 lodsb ; Load
String
F000:E368 add ah, al ; calc
8 bit chksum
F000:E36A loop chksum_loop ; Loop
while CX != 0
F000:E36C
F000:E36C cmp ah, [si] ;
decomp engine chksum OK ?
F000:E36E jnz BIOS_cksm_error ; jump
if no

1 byte before
decompression
engine checksum
(that's explained
above)

This is the 8-bit checksum of all compressed BIOS
plus the 8-bit checksum of the decompression
engine (not including its previously calculated
checksum above). The code :
Address Assembly Code
F000:E512 call Extern_execute1 ; copy
lower 128 KByte bios code from ROM
F000:E512 ; (at FFFC
0000h - FFFD 0000h) to RAM
F000:E512 ; (at
8000:0000h-9000:FFFFh)
F000:E515 xor ah, ah ; ah = 00h
F000:E517 xor cx, cx ; cx =
0000h
F000:E519 mov bx, 8000h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:E51C mov ds, bx ; ds =
8000h, contains compressed
F000:E51C ; lower
128KB bios components (awdext,etc.)
F000:E51E assume ds:nothing
F000:E51E xor si, si ; si =
0000h
F000:E520
F000:E520 next_seg8000h_byte: ; CODE
XREF: Expand_Bios+11 Expand_Bios+1F
F000:E520 lodsb ; Load
String
F000:E521 add ah, al ; calc 8-
bit chksum, result placed at ah
F000:E523 loop next_seg8000h_byte ;
loop while cx != 0, i.e. 64 KByte
F000:E525
F000:E525 mov bx, ds ; bx = ds
F000:E527 cmp bh, 90h ; 64 KByte
chksum-ed ?
F000:E52A jnb _8000h_chksum_done ;
yes
F000:E52C add bh, 10h ; no,
continue calc-ing in next segment
F000:E52C ; we're
calc-ing 128KByte code chksum
F000:E52F mov ds, bx
F000:E531 assume ds:nothing
F000:E531 jmp short
next_seg8000h_byte ; Jump
F000:E533 ; -----------------------------

F000:E533
F000:E533 _8000h_chksum_done: ; CODE
XREF: Expand_Bios+18
F000:E533 mov bx, 1000h ; 1000h, 1st
64KB BIOS img (E000h seg of
F000:E533 ; compressed
original.tmp)
F000:E536 mov ds, bx ; ds = 1000h
F000:E538 assume ds:nothing
F000:E538 xor si, si ; si = 0000h
F000:E53A cld ; Clear
Direction Flag
F000:E53B
F000:E53B next_seg1000h_byte: ; CODE
XREF: Expand_Bios+2C Expand_Bios+3B
F000:E53B lodsb ; Load
String
F000:E53C add ah, al ; calc 8 bit
chksum, contd from chksum above
F000:E53E loop next_seg1000h_byte ;
Loop while CX != 0
F000:E540
F000:E540 cmp bh, 20h ; is 64KB
reached? (seg_F000 reached?)
F000:E543 jnb _1000h_chksum_done ;
yes
F000:E545 add bh, 10h ; no,
proceed calc-ing in next segment
F000:E548 mov ds, bx

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:E54A assume ds:nothing
F000:E54A mov cx, 7FFEh ; calc
seg_F000 chksum only until 7FFEh
F000:E54D jmp short
next_seg1000h_byte ; Jump
F000:E54F ; -----------------------------

F000:E54F
F000:E54F _1000h_chksum_done: ; CODE
XREF: Expand_Bios+31
F000:E54F cmp ah, [si] ; cmp calc-
ed chksum and chksum
F000:E54F ; pointed
to by [si] (at F000:7FFEh, i.e. B2h)
F000:E54F ; this is
the chksum for the bios binary
F000:E54F ; from
00000h to 37FFDh (C000:0h - F000:7FFDh)
F000:E551 jnz BIOS_cksm_error ; Jump
if Not Zero (ZF=0)

The following are the key parts of the decompression routine :

Address Assembly Code

F000:E512 Expand_Bios proc near
.........
F000:E555 mov bx, 0 ; mov bx,Temp_VGA_Seg
F000:E558 mov es, bx ; es = 0000h
F000:E55A assume es:nothing
F000:E55A mov word ptr es:7004h, 0FFFFh ; mov word
es:[Temp_VGA_Off+4],ffffh
F000:E561
F000:E561 xor al, al ; clr expand flag
F000:E563 mov bx, 1000h
F000:E566 mov es, bx ; es = 1000h;
SrcSegment,i.e. seg_E000h
F000:E566 ;
F000:E568 assume es:nothing
F000:E568 xor bx, bx ; bx = 0000h ;
SrcOffset
F000:E56A call BootBlock_Expand ; read compressed
original.tmp header and
F000:E56A ; extract original.tmp
to segment 5000h
F000:E56A ; TgtSegment is read
from its LZH header
F000:E56A ; on return
ecx=total_component_cmprssd_size
F000:E56D jb decompression_error ; Jump if Below
(CF=1)
F000:E56F test ecx, 0FFFF0000h ; ecx & FFFF 0000h
;check against wrong
F000:E56F ; compressed
original.tmp size, i.e. < 64 KB
F000:E576 jz decompression_error ; Jump if Zero
(ZF=1)
F000:E578 mov bx, 2000h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:E57B mov es, bx ; es =
2000h;SrcSegment, i.e. seg_F000h
F000:E57D assume es:nothing
F000:E57D mov bx, 1 ; chksum byte size
F000:E580 jmp short Expand_else ; Jump
.........
F000:E59D Expand_else: ; CODE XREF:
Expand_Bios+6E Expand_Bios+99
F000:E59D add bx, cx ; es = 2000h (seg_F000h
in RAM)
F000:E59D ; bx =
offset_after_original.tmp+chksum;
F000:E59D ; this input likely
return CF=1 since
F000:E59D ; it isn't a LZH
compressed component
F000:E59F call BootBlock_Expand ; Call Procedure
F000:E5A2 jb Expand_else_Over ; Jump if Below (CF=1)
F000:E5A4 test ecx, 0FFFF0000h ; Logical Compare
F000:E5AB jz Expand_else ; Jump if Zero (ZF=1)
F000:E5AD Expand_else_Over: ; CODE XREF:
Expand_Bios+89 Expand_Bios+90
F000:E5AD call Extern_execute2 ; expand lower 128KB
BIOS code (C0000h-DFFFFh)
F000:E5AD ; this routine only
decompress awardext.rom, other
F000:E5AD ; component only get
their ExpSegment processed
F000:E5B0 jz BIOS_cksm_error ; jump if zero
(awardext.rom not found)
F000:E5B4 mov ax, 5000h ; ax = 5000h on success
F000:E5B7 clc ; Clear Carry Flag
F000:E5B8 retn ; Return Near from
Procedure
F000:E5B8 Expand_Bios endp

F000:E5B9 BootBlock_Expand proc near
F000:E5B9 cmp dword ptr es:[bx+0Fh], 40000000h ; 1st
addr contain 5000 0000h
F000:E5B9 ; decomp_Seg:Offset equ
4000 0000h ?
F000:E5B9 ; (is extension
component ?)
F000:E5C2 jnz not_40000000h ; No,skip; at first
this jump is taken
.........
F000:E5EA not_40000000h: ; CODE XREF:
BootBlock_Expand+9
F000:E5EA mov dx, 3000h ; mov dx,Exp_Data_Seg;
decomp scratch pad ?
F000:E5ED push ax
F000:E5EE push es
F000:E5EF call Search_BBSS_label ; on return si =
7D06h
F000:E5EF ; (cs:di = 2000:7D06h -
- bios in ram)
F000:E5F2 pop es
F000:E5F3 assume es:nothing
F000:E5F3 push es
F000:E5F4 mov ax, es ; ax = 1000h (1st pass)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:E5F6 shr ax, 0Ch ; ax = 1h
F000:E5F9 mov es, ax ; es = 1h
F000:E5FB assume es:nothing
F000:E5FB mov ax, cs:[si+0Eh] ; mov ax,7789h (addr of
decompression code)
F000:E5FF call ax ; call 7789h i.e Expand
(decompression engine)
F000:E601 pop es ; es = 1000h
F000:E602 assume es:nothing
F000:E602 pop ax
F000:E603 retn ; Return Near from
Procedure
F000:E603 BootBlock_Expand endp

F000:7789 ;Code below is called from Bootblock_Expand
procedure
F000:7789 ;(at F000:E5FF) and should return there when
finished.
F000:7789 Expand proc near
.........
F000:780E add bx, 12h ; bx = 12h
F000:7811 call Get_Exp_Src_Byte ; get es:[bx+12h] to
AL (ExpSegment hi byte)
F000:7814 sub bx, 12h ; restore bx value
(first pass = 0000h)
F000:7817 cmp al, 40h ; is "extension
component" ?
F000:7817 ; at 1st: al equ 50h
(original.tmp)
F000:7817 ; at 2nd: al equ 41h
(awardext.rom)
F000:7817 ; at all other
components: al equ 40h
F000:7817 ; The decompression
caveat is here d00d !!!
F000:7819 jnz Not_POST_USE ; jmp if no: for
original.tmp and awadext.rom
F000:7819 ; goto decompress,
otherwise no
F000:781B add bx, 11h ; bx =
ExpSegment_lo_byte index
F000:781E call Get_Exp_Src_Byte ; al =
ExpSegment_lo_byte
F000:7821 sub bx, 11h ; restore bx
F000:7824 or al, al ; segment 4000h ?
F000:7826 jnz Record_to_buffer ; jmp if no
F000:7826 ; (all "extension
component" jump here)
.........
F000:7830 Record_to_buffer: ; CODE XREF: Expand+9D
F000:7830 movzx dx, al ; dx =
ExpSegment_lo_byte
F000:7833 inc bx ; bx =
header_chksum_index
F000:7834 call Get_Exp_Src_Byte ; al = header_chksum
F000:7837 sub al, dl ; al = header_chksum -
ExpSegment_lo_byte
F000:7839 call Set_Exp_Src_Byte ; header_chksum = al
F000:783C dec bx ; restore bx
F000:783D xor al, al ; al = 00h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:783F add bx, 11h ; bx =
ExpSegment_lo_byte
F000:7842 call Set_Exp_Src_Byte ; ExpSegment_lo_byte =
00h (ExpSegment=4000h)
F000:7845 sub bx, 11h ; restore bx
F000:7848 inc dx ; dx =
ExpSegment_lo_byte + 1
F000:7849 shl dx, 2 ; dx =
4*(ExpSegment_lo_byte + 1)
F000:784C add di, dx ; di = 6000h + dx (look
above!)
F000:784E mov gs:[di], bx ; 0000:[di] =
CmprssedCompnnt_offset_addr
F000:7851 mov cx, es ; cx = ExpSegment
F000:7853 mov gs:[di+2], cx ;
0000:[di+2]=ExpSegment
F000:7857 call Get_Exp_Src_Byte ; al = header_len
F000:785A movzx ecx, al ; ecx = header_len
F000:785E add bx, 7 ; bx --> point to
compressed file size
F000:7861 call Get_Exp_Src_Dword ; eax = compressed
file size
F000:7864 sub bx, 7 ; restore bx
F000:7867 add ecx, eax ; ecx = header_len +
compressed_file_size
F000:786A add ecx, 3 ; ecx =
total_compressed_component_size
F000:786E pop gs ; restore gs
F000:7870 assume gs:nothing
F000:7870 jmp exit_proc ; Jump
F000:7873 ; ---

F000:7873 Not_POST_USE: ; CODE XREF: Expand+90
Expand+A5
F000:7873 pop gs ; restore gs value
F000:7875 call MakeCRCTable ; initialize CRC-16
lookup table used later
F000:7878 call ReadHeader ; read compressed
component header into
F000:7878 ; scratchpad @RAM, on
error CF=1
F000:7878 ; bx preserved
F000:787B jb exit_proc ; error, something
wrong (CF=1)
F000:787F mov ax, ds:108h ; mov ax,ExpSegment
F000:7882 mov ds:104h, ax ; mov TgtSegment,ax
F000:7885 mov ax, ds:10Ah ; mov ax,ExpOffset
F000:7888 mov ds:106h, ax ; mov TgtOffset,ax
F000:788B ;--calculate compressed total size and return
when decompress complete
F000:788B mov ecx, ds:310h ; mov ecx,compsize
;compressed size
F000:7890 xor eax, eax ; eax = 0000 0000h
F000:7893 mov al, ds:571Ch ; mov al,headersize;
compressed header size
F000:7896 add ecx, eax ; Add
F000:7899 add ecx, 3 ; add
ecx,COMPRESSED_UNKNOWN_BYTE;
F000:7899 ; ecx = "total
compressed size"
F000:789D mov edx, ds:314h ; mov edx,origsize

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:78A2 push edx
F000:78A4 push ecx ; save ecx (total
compressed component size)
F000:78A6 push bx ; bx = 0000h
F000:78A7 add bx, 5 ; offset 5 ('-lh0-' or
'-lh5-')
F000:78AA call Get_Exp_Src_Byte ; get compress or
store type value
F000:78AD pop bx ; bx = 0000h (1st pass)
F000:78AE cmp al, '0' ; is it "-lh0-" ? first
pass is no
F000:78B0 jnz Not_Store ; No, jump (first pass:
jump taken)
.........
F000:78E1 Not_Store: ; CODE XREF: Expand+127
F000:78E1 push word ptr ds:104h ; push word ptr
TgtSegment
F000:78E5 push word ptr ds:106h ; push word ptr
TgtOffset
F000:78E9 push large dword ptr ds:314h ; push dword
ptr origsize
F000:78EE ; extract content from compressed file
F000:78EE call Extract ; call LZH
decompression routine
F000:78F1 pop dword ptr ds:314h ; pop dword ptr
origsize
F000:78F6 pop word ptr ds:106h ; pop word ptr
TgtOffset
F000:78FA pop word ptr ds:104h ; pop word ptr
TgtSegment
F000:78FE Expand_Over: ; CODE XREF: Expand+156
F000:78FE call ZeroFill_32K_mem ; zero fill 32K in
segmnt pointed by ds
F000:78FE ; i.e. clean up
scratch-pad RAM
F000:7901 pop ecx ; ecx = "total
compressed size" (restore ecx)
F000:7903 pop edx
F000:7905 clc ; decompression success
F000:7906 exit_proc: ; CODE XREF: Expand+E7
Expand+F2
F000:7906 pop es
F000:7907 pop bx
F000:7908 pop eax
F000:790A retn ; Return Near from
Procedure
F000:790A Expand endp

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

8. After looking at these exhaustive list of hints, we managed to
construct the mapping of the decompressed BIOS components as
described below :

Starting
address of

decompressed
BIOS

component in
RAM

Compressed
Size

Decompressed
Size

Decompression
State (by

Bootblock
code)

Component
description

4100:0000h 3A85h 57C0h

Decompressed
to RAM

beginning at
address in

column one.

awardext.rom, this is
a "helper module"
for original.tmp

4001:0000h 5CDCh A000h Not yet
decompressed

cpucode.bin, this is
the CPU microcode

4003:0000h DFAh 21A6h Not yet
decompressed

acpitbl.bin, this is
the ACPI table

4002:0000h 35Ah 2D3Ch Not yet
decompressed

iwillbmp.bmp, this is
the EPA logo

4027:0000h A38h FECh Not yet
decompressed

nnoprom.bin,
explanation N/A

4007:0000h 1493h 2280h Not yet
decompressed

antivir.bin, this is
BIOS antivirus code

4028:0000h F63Ah 14380h Not yet
decompressed

ROSUPD.bin, seems
to be custom Logo
display procedure

5000:0000h 15509h 20000h

Decompressed
to RAM

beginning at
address in

column one.

original.tmp, the
system BIOS

9. Note: The decompression addresses marked with green background
are treated in different fashion as follows :

 It's not the real decompression area of the corresponding
component as you can see from the explanation above. It's
only some sort of "place holder" for the real decompression
area that's later handled by original.tmp. The conclusion is:
only original.tmp and awardext.rom get decompressed
by ExpandBios routine in Bootblock. If you want to verify
this, try summing up the decompressed code size, it won't fit
!

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

 All of these component's decompressed segment address are
changed to 4000h by Expand procedure as you can see in
the routine at F000:7842h above.

 The 40xxh shown in their "Starting Address ... (for
decompression)" actually an ID that works as follows: 40 (hi-
byte) is an ID that mark it as an "Extension BIOS" to be
decompressed later during original.tmp execution. xx is an ID
that will be used in original.tmp execution to refer to the
component to be decompressed. This will be explained more
thoroughly in original.tmp explanation later.

 All of these components are decompressed during
original.tmp execution. The decompression result is placed
starting at address 4000:0000h, but not at the same time.
Some of it (maybe all, I'm not sure yet) also relocated from
that address to retain their contents after another component
also decompressed in there. More explanation on this
available at original.tmp section below.

10.Shadow the BIOS code. Assuming that the decompression routine
successfully completed, the routine above then copy the
decompressed system BIOS (original.tmp) from 5000:0000h -
6000:FFFFh in RAM to E0000h - FFFFFh also in RAM. This is
accomplished as follows:

1. Reprogram the northbridge shadow RAM control register to
enable write only into E0000h - FFFFFh, i.e. forward write
operation into this address range to DRAM (not to the BIOS
ROM chip anymore).

2. Perform a string copy operation to copy the decompressed
system BIOS (original.tmp) from 5000:0000h -
6000:FFFFh to E0000h - FFFFFh.

3. Reprogram the northbridge shadow RAM control register to
enable read only into E0000h - FFFFFh, i.e. forward read
operation into this address range to DRAM (not to the BIOS
ROM chip anymore). This is also to write-protect the system
BIOS code.

11.Enable the microprocessor cache then jump into the decompressed
system BIOS. This step is the last step in the normal Bootblock
code execution path. After enabling the processor cache, the code
then jump into the write-protected system BIOS (original.tmp) at
F000:F80Dh in RAM as seen in the code above. This jump
destination address seems to be the same accross different award
bioses.

• Now, I'll present the "memory map" of the compressed and decompressed
BIOS components just before jump into decompressed original.tmp is
made. This is important since it will ease us in dissecting the
decompressed original.tmp later. We have to note that by now, all code
execution happens in RAM, no more code execution from within BIOS ROM
chip.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Address Range in
RAM

Decompression
State (by

Bootblock
code)

Description

0000:6000h -
0000:6xxxh N/A

This area contains the header of the extension
component (component other than original.tmp
and awardext.rom) fetched from the
compressed BIOS at 8000:0000h -
9000:FFFFh (previously BIOS component at
FFFC0000h - FFFDFFFFh in the BIOS chip).
Note that this is fetched here by part of the
bootblock in segment 2000h.

1000:0000h -
2000:5531h Compressed

This area contains the compressed
original.tmp. It's part of the copy of the last
128KB of the BIOS (previously BIOS
component at E000:0000h - F000:FFFFh in
the BIOS chip). This code is shadowed here by
the bootblock in BIOS ROM chip.

2000:5532h -
2000:5FFFh N/A This area contains only padding bytes.

2000:6000h -
2000:FFFFh

Pure binary
(executable)

This area contains the bootblock code. It's part
of the copy of the last 128KB of the BIOS
(previously BIOS component at E000:0000h -
F000:FFFFh in the BIOS ROM chip). This
code is shadowed here by the bootblock in
BIOS ROM chip. This is where our code
currently executing (the "copy" of bootblock in
segment 2000h).

4100:0000h -
4100:57C0h Decompressed

This area contains the decompressed
awardext.rom. Note that the decompression
process is accomplished by part of the
bootblock in segment 2000h.

5000:0000h -
6000:FFFFh Decompressed

This area contains the decompressed
original.tmp. Note that the decompression
process is accomplished by part of the
bootblock in segment 2000h.

8000:0000h -
9000:FFFFh Compressed

This area contains the copy of the first/lower
128KB of the BIOS (previously BIOS
component at FFFC0000h - FFFD0000h in
the BIOS chip). This code is shadowed here by
the bootblock in segment 2000h.

E000:0000h -
F000:FFFFh Decompressed

This area contains copy of the decompressed
original.tmp, which is shadowed here by the
bootblock in segment 2000h.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The last thing to note is: what I explain about bootblock here only covers the
normal Bootblock code execution path, which means I didn't explain about
the Bootblock POST that takes place in case original.tmp corrupted. I'll try to
cover it later when I have time to dissect it. This is all about the bootblock right
now, from this point on we'll dissect the original.tmp.

6.2. System BIOS a.k.a Original.tmp

We'll just proceed as in bootblock above, I'll just highlight the places where the
"code execution path" are obscure. So, by now, you're looking at the
disassembly of the decompressed original.tmp of my bios.

The entry point from Bootblock:

Address Hex Mnemonic
F000:F80D This code is jumped into by the
bootblock code
F000:F80D if everything went OK
F000:F80D E9 02 F6 jmp sysbios_entry_point ;

This is where the bootblock jumps after relocating and write-protecting the system
BIOS.

The awardext.rom and extension BIOS components (lower 128KB bios-code)
relocation routine :

Address Assembly Code
F000:EE12 sysbios_entry_point: ; CODE XREF: F000:F80D
F000:EE12 mov ax, 0
F000:EE15 mov ss, ax ; ss = 0000h
F000:EE17 mov sp, 1000h ; setup stack at 0:1000h
F000:EE1A call setup_stack ; Call Procedure
F000:EE1D call init_DRAM_shadowRW ; Call Procedure
F000:EE20 mov si, 5000h ; ds=5000h (look at copy_mem_word)
F000:EE23 mov di, 0E000h ; es=E000h (look at copy_mem_word)
F000:EE26 mov cx, 8000h ; copy 64KByte
F000:EE29 call copy_mem_word ; copy E000h segment routine, i.e.
F000:EE29 ; copy 64Kbyte from 5000:0h to
E000:0h
F000:EE2C call j_init_DRAM_shadowR ; Call Procedure
F000:EE2F mov si, 4100h ; ds = XGroup segment decompressed,
i.e.
F000:EE2F ; at this point 4100h
F000:EE32 mov di, 6000h ; es = new XGroup segment
F000:EE35 mov cx, 8000h ; copy 64KByte
F000:EE38 call copy_mem_word ; copy XGroup segment , i.e.
F000:EE38 ; 64Kbyte from 4100:0h to 6000:0h
F000:EE3B call Enter_UnrealMode ; jump below in UnrealMode
F000:EE3E Begin_in_UnrealMode

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

F000:EE3E mov ax, ds

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:EE40 mov es, ax ; es = ds (3rd entry in GDT)
F000:EE40 ; base_addr=0000 0000h;limit 4GB
F000:EE42 assume es:nothing
F000:EE42 mov esi, 80000h ; mov esi,(POST_Cmprssed_Temp_Seg
shl 4)
F000:EE42 ; relocate lower 128KB bios code
F000:EE48 mov edi, 160000h
F000:EE4E mov ecx, 8000h
F000:EE54 cld ; Clear Direction Flag
F000:EE55 rep movs dword ptr es:[edi], dword ptr [esi] ; move
F000:EE55 ; 128k data to 160000h (phy addr)
F000:EE59 call Leave_UnrealMode ; Call Procedure
F000:EE59 End_in_UnrealMode
F000:EE5C mov byte ptr [bp+214h], 0 ; mov byte ptr
F000:EE5C ; POST_SPEED[bp],Normal_Boot
F000:EE61 mov si, 626Bh ; offset 626Bh (E000h POST tests)
F000:EE64 push 0E000h ; segment E000h
F000:EE67 push si ; next instruction offset (626Bh)
F000:EE68 retf ; jmp to E000:626Bh

F000:7440 Enter_UnrealMode proc near ; CODE XREF: F000:EE3B
F000:7440 mov ax, cs
F000:7442 mov ds, ax ; ds = cs
F000:7444 assume ds:F000
F000:7444 lgdt qword ptr GDTR_F000_5504 ; Load Global Descriptor
Table Register
F000:7449 mov eax, cr0
F000:744C or al, 1 ; Logical Inclusive OR
F000:744E mov cr0, eax
F000:7451 mov ax, 10h
F000:7454 mov ds, ax ; ds = 10h (3rd entry in GDT)
F000:7456 assume ds:nothing
F000:7456 mov ss, ax ; ss = 10h (3rd entry in GDT)
F000:7458 assume ss:nothing
F000:7458 retn
F000:7458 Enter_UnrealMode endp

 ; Return Near from Procedure

F000:5504 GDTR_F000_5504 dw 30h ; DATA XREF: Enter_PMode+4
F000:5504 ; GDT limit (6 valid desc)
F000:5506 dd 0F550Ah ; GDT phy addr (below)
F000:550A dq 0 ; null desc
F000:5512 dq 9F0F0000FFFFh ; code desc (08h)
F000:5512 ;
base_addr=F0000h;seg_limit=64KB;code,execute/ReadOnly
F000:5512 ;
conforming,accessed;granularity=1Byte;16-bit segment;
F000:5512 ; segment present,code,DPL=0
F000:551A dq 8F93000000FFFFh ; data desc (10h)
F000:551A ; base_addr=0000
0000h;seg_limit=4GB;data,R/W,accessed;
F000:551A ; granularity=4KB;16-bit segment;
segment present,
F000:551A ; data,DPL=0
F000:5522 dq 0FF0093FF0000FFFFh ; data desc 18h
F000:5522 ;
base_addr=FFFF0000h;seg_limit=64KB;data,R/W,accessed;
F000:5522 ; 16-bit segment,granularity = 1
byte;
F000:5522 ; segment present, data, DPL=0.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:552A dq 0FF0093FF8000FFFFh ; data desc 20h
F000:552A ;
base_addr=FFFF8000h;seg_limit=64KB;data,R/W,accessed;
F000:552A ; 16-bit segment,granularity = 1
byte;
F000:552A ; segment present, data, DPL=0.
F000:5532 dq 930F0000FFFFh ; data desc 28h
F000:5532 ;
base_addr=F0000h;seg_limit=64KB;data,R/W,accessed;
F000:5532 ; 16-bit segment,granularity = 1
byte;
F000:5532 ; segment present, data, DPL=0.

Note: after the execution of code above, the "memory map" is changed once again.
But this time only for the compressed "BIOS extension" i.e. the lower 128KB of BIOS
code and the decompressed awardext.rom, the "memory map" mentioned in the
Bootblock explanation above partially overwritten.

New Address
Range in RAM

Decompression
State Description

6000:0000h -
6000:57C0h Decompressed This is the relocated awardext.rom

160000h -
17FFFFh Compressed

This is the relocated compressed "BIOS
extension", including the compressed
awardext.rom. (i.e. this is the copy of
FFFC0000h - FFFDFFFF in the BIOS rom
chip.

At call to the POST routine a.k.a "POST jump table execution".

Address Assembly Code
E000:626B The last of the these POST routines starts the EISA/ISA
E000:626B section of POST and thus this call should never return.
E000:626B If it does, we issue a POST code and halt.
E000:626B
E000:626B This routine called from F000:EE68h
E000:626B
E000:626B sysbios_entry_point_contd a.k.a NORMAL_POST_TESTS
E000:626B mov cx, 3 ; mov cx,STD_POST_CODE
E000:626E mov di, 61C2h ; mov di,offset STD_POST_TESTS
E000:6271 call RAM_POST_tests ; this won't return in normal
condition
E000:6274 jmp short Halt_System ; Jump

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:6276 ; --------------- S U B R O U T I N E ---------------------

E000:6276
E000:6276 RAM_POST_tests proc near ; CODE XREF: last_E000_POST+D
E000:6276 ; last_E000_POST+18 ...
E000:6276 mov al, cl ; cl = 3
E000:6278 out 80h, al ; manufacture's diagnostic
checkpoint
E000:627A push 0F000h
E000:627D pop fs ; fs = F000h
E000:627F
E000:627F ;This is the beginning of the call into E000 segment
E000:627F ;POST function table
E000:627F assume fs:F000
E000:627F mov ax, cs:[di] ; in the beginning :
E000:627F ; di = 61C2h ; ax = cs:[di] = 154Eh
E000:627F ; called from E000:2489 w/ di=61FCh
(dummy)
E000:6282 inc di ; Increment by 1
E000:6283 inc di ; di = di + 2
E000:6284 or ax, ax ; Logical Inclusive OR
E000:6286 jz RAM_post_return ; RAM Post Error
E000:6288 push di ; save di
E000:6289 push cx ; save cx
E000:628A call ax ; call 154Eh (relative call addr)
E000:628A ; ,one of this call
E000:628A ; won't return in normal condition
E000:628C pop cx ; restore all
E000:628D pop di
E000:628E jb RAM_post_return ; Jump if Below (CF=1)
E000:6290 inc cx ; Increment by 1
E000:6291 jmp short RAM_POST_tests ; Jump
E000:6293 ; ---

E000:6293
E000:6293 RAM_post_return: ; CODE XREF: RAM_POST_tests+10
E000:6293 ; RAM_POST_tests+18
E000:6293 retn ; Return Near from Procedure
E000:6293 RAM_POST_tests endp

E000:61C2 E0_POST_TESTS_TABLE:
E000:61C2 dw 154Eh ; Restore boot flag
E000:61C4 dw 156Fh ; Chk_Mem_Refrsh_Toggle
E000:61C6 dw 1571h ; keyboard (and its controller)
POST
E000:61C8 dw 16D2h ; chksum ROM, check EEPROM
E000:61C8 ; on error generate spkr tone
E000:61CA dw 1745h ; Check CMOS circuitry
E000:61CC dw 178Ah ; "chipset defaults" initialization
E000:61CE dw 1798h ; init CPU cache (both Cyrix and
Intel)
E000:61D0 dw 17B8h ; init interrupt vector, also
initialize
E000:61D0 ; "signatures" used for Ext_BIOS
components
E000:61D0 ; decompression
E000:61D2 dw 194Bh ; Init_mainboard_equipment & CPU
microcode

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:61D2 ; chk ISA CMOS chksum ?
E000:61D4 dw 1ABCh ; Check checksum. Initialize
keyboard controller
E000:61D4 ; and set up all of the 40: area
data.
E000:61D6 dw 1B08h ; Relocate extended BIOS code
E000:61D6 ; init CPU MTRR, PCI REGs(Video
BIOS ?)
E000:61D8 dw 1DC8h ; Video_Init (including EPA proc)
E000:61DA dw 2342h
E000:61DC dw 234Eh
E000:61DE dw 2353h ; dummy
E000:61E0 dw 2355h ; dummy
E000:61E2 dw 2357h ; dummy
E000:61E4 dw 2359h ; init Programmable Timer (PIT)
E000:61E6 dw 23A5h ; init PIC_1 (programmable
Interrupt Ctlr)
E000:61E8 dw 23B6h ; same as above ?
E000:61EA dw 23F9h ; dummy
E000:61EC dw 23FBh ; init PIC_2
E000:61EE dw 2478h ; dummy
E000:61F0 dw 247Ah ; dummy
E000:61F2 dw 247Ah
E000:61F4 dw 247Ah
E000:61F6 dw 247Ah
E000:61F8 dw 247Ch ; this will call RAM_POST_tests
again
E000:61F8 ; for values below(a.k.a ISA POST)
E000:61FA dw 0
E000:61FA END_E0_POST_TESTS_TABLE

E000:247C last_E000_POST proc near
E000:247C cli ; Clear Interrupt Flag
E000:247D mov word ptr [bp+156h], 0
E000:2483 mov cx, 30h ; '0'
E000:2486 mov di, 61FCh ; this addr contains 0000h
E000:2489
E000:2489 repeat_RAM_POST_tests: ; CODE XREF: last_E000_POST+10
E000:2489 call RAM_POST_tests ; this call immediately return
E000:2489 ; since cs:[di]=0000h
E000:248C jb repeat_RAM_POST_tests ; jmp if CF=1; not taken
E000:248E mov cx, 30h ; '0'
E000:2491 mov di, 61FEh ; cs:[di] contains 249Ch
E000:2494
E000:2494 repeat_RAM_POST_tests_2: ; CODE XREF: last_E000_POST+1B
E000:2494 call RAM_POST_tests ; this call should nvr return if
E000:2494 ; everything is ok
E000:2497 jb repeat_RAM_POST_tests_2 ; Jump if Below (CF=1)
E000:2499 jmp Halt_System ;
E000:2499 last_E000_POST endp

E000:61FC ISA_POST_TESTS
E000:61FC dw 0
E000:61FE dw 249Ch
E000:6200 dw 26AFh
E000:6202 dw 29DAh
E000:6204 dw 2A54h ; dummy
E000:6206 dw 2A54h
E000:6208 dw 2A54h

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:620A dw 2A54h
E000:620C dw 2A54h
E000:620E dw 2A54h
E000:6210 dw 2A56h ; dummy
E000:6212 dw 2A56h
E000:6214 dw 2A56h
E000:6216 dw 2A58h
E000:6218 dw 2A64h
E000:621A dw 2B38h
E000:621C dw 2B5Eh ; dummy
E000:621E dw 2B60h ; dummy
E000:6220 dw 2B62h
E000:6222 dw 2BC8h ; HD init ?
E000:6224 dw 2BF0h ; game io port init ?
E000:6226 dw 2BF5h ; dummy
E000:6228 dw 2BF7h ; FPU error interrupt related
E000:622A dw 2C53h ; dummy
E000:622C dw 2C55h
E000:622E dw 2C61h ; dummy
E000:6230 dw 2C61h
E000:6232 dw 2C61h
E000:6234 dw 2C61h
E000:6236 dw 2C61h
E000:6238 dw 2C61h
E000:623A dw 2CA6h
E000:623C dw 6294h ; set cursor charcteristic
E000:623E dw 62EAh
E000:6240 dw 6329h
E000:6242 dw 6384h
E000:6244 dw 64D6h ; dummy
E000:6246 dw 64D6h
E000:6248 dw 64D6h
E000:624A dw 64D6h
E000:624C dw 64D6h
E000:624E dw 64D6h
E000:6250 dw 64D6h
E000:6252 dw 64D6h
E000:6254 dw 64D6h
E000:6256 dw 64D6h
E000:6258 dw 64D6h
E000:625A dw 64D6h
E000:625C dw 64D6h
E000:625E dw 64D8h ; bootstrap
E000:6260 dw 66A1h
E000:6262 dw 673Ch
E000:6264 dw 6841h ; issues int 19h (bootstrap)
E000:6266 dw 0
E000:6266 END_ISA_POST_TESTS

Note:

o The "POST jump table" procedures will set the Carry Flag (CF=1) if they
encounter something wrong during their execution. Upon returning of the
POST procedure, the Carry Flag will be tested, if it's set, then the
"RAM_POST_TESTS" will immediately returns which will Halt the machine
and output sound from system speaker.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

• At the "segment vector" routine. Below is only an example of its usage.
There are lot of places where it's implemented. There are couple of
variation of this "segment vector". Some will jump from segment E000h
to F000h, some will jump from segment F000h to E000h, some jump
from E000h to 6000h(relocated decompressed awardext.rom) and some
jump from F000h to 6000h(relocated decompressed awardext.rom).

First variant: jump from segment E000h to F000h

Address Assembly Code

E000:1553 Restore_WarmBoot_Flag proc near ; CODE XREF:
Restore_Boot_Flag
.........
E000:155A call F000_read_cmos_byte ; Call Procedure
.........
E000:156E Restore_WarmBoot_Flag endp

Address Machine Code Assembly Code
E000:6CA2 F000_read_cmos_byte proc near
E000:6CA2 ; CODE XREF:
Restore_WarmBoot_Flag+7
E000:6CA2 ;
sub_E000_1745+2
E000:6CA2 68 00 E0 push 0E000h
E000:6CA5 68 B3 6C push 6CB3h
E000:6CA8 68 31 EC push 0EC31h
E000:6CAB 68 FD E4 push 0E4FDh ; Read_CMOS_byte
E000:6CAE 008 EA 30 EC 00 F0 jmp far ptr F000_func_vector ;
Jump
E000:6CB3 ; -----------------------------------

E000:6CB3 008 C3 retn ; Return Near
from Procedure
E000:6CB3 F000_read_cmos_byte endp ; sp = -8

F000:EC30 F000_func_vector: ; CODE XREF:
sub_E000_1745+3C
F000:EC30 ;
reinit_CPU?+12
F000:EC30 C3 retn ; jump to
target function
F000:EC31 ; -----------------------------------

F000:EC31 CB retf ; E000h
segment vector

F000:E4FD read_CMOS_byte proc near ; CODE XREF:
sub_F000_3CEE+1A
F000:E4FD ;
sub_F000_3CEE+2A
F000:E4FD 87 DB xchg bx, bx ; Exchange
Register/Memory with Register

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

F000:E4FF 90 nop ; No Operation
F000:E500 E6 70 out 70h, al ; CMOS Memory:
F000:E500 ; used by
real-time clock
F000:E502 E3 00 jcxz $+2 ; Jump if CX is 0
F000:E504 E3 00 jcxz $+2 ; Jump if CX is 0
F000:E506 87 DB xchg bx, bx ; Exchange
Register/Memory with Register
F000:E508 E4 71 in al, 71h ; CMOS Memory
F000:E50A E3 00 jcxz $+2 ; Jump if CX is 0
F000:E50C E3 00 jcxz $+2 ; Jump if CX is 0
F000:E50E C3 retn ; Return Near
from Procedure
F000:E50E read_CMOS_byte endp

Second variant: jump from segment E000h to 6000h

Address Machine Code Assembly Code

E000:171F Check_F_Next proc near ; CODE XREF:
chksum_ROM+2D
.........
E000:1737 0E push cs
E000:1738 68 43 17 push 1743h ; ret addr below
E000:173B 68 29 18 push 1829h ; func addr in
XGroup seg (Detect EEPROM)
E000:173E EA 02 00 00 60 jmp far ptr 6000h:2 ; jump to XGroup
code
E000:1743 ; ---------------------------------------

E000:1743 F8 clc ; Clear Carry
Flag
E000:1744 C3 retn ; Return Near
from Procedure
E000:1744 Check_F_Next endp ; sp = -6

6000:0000 locret_6000_0: ; CODE
XREF: 6000:0017
6000:0000 C3 retn ; jump
to target procedure
6000:0001 ; ---------------------------------

6000:0001 CB retf ; back
to caller
6000:0002 ; ---------------------------------

6000:0002 68 01 00 push 1 ; push
return addr for retn
6000:0002 ;
(addr_of retf above)
6000:0005 50 push ax
6000:0006 9C pushf ; Push
Flags Register onto the Stack
6000:0007 FA cli ; Clear
Interrupt Flag

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

6000:0008 87 EC xchg bp, sp ;
Exchange Register/Memory with Register
6000:000A 8B 46 04 mov ax, [bp+4] ; mov
ax,1 ; look at 1st inst above
6000:000D 87 46 06 xchg ax, [bp+6] ; xchg
ax,word_pushed_by_org_tmp
6000:0010 89 46 04 mov [bp+4], ax ;
[sp+4] = word_pushed_by_org_tmp
6000:0013 87 EC xchg bp, sp ;
modify sp
6000:0015 9D popf ; Pop
Stack into Flags Register
6000:0016 58 pop ax
6000:0017 EB E7 jmp short locret_6000_0 ; jump
into word_pushed_by_original.tmp

6000:1829 FA cli ; Clear
Interrupt Flag
.........
6000:18B3 C3 retn ;
Return Near from Procedure

Third variant: jump from segment 6000h to F000h

Address Assembly Code

6000:4F60 reinit_chipset proc far
6000:4F60 push ds
6000:4F61 mov ax, 0F000h
6000:4F64 mov ds, ax ; ds = F000h
6000:4F66 assume ds:nothing
6000:4F66 mov bx, 0E38h ; ptr to PCI reg vals (ds:bx =
F000:E38h)
6000:4F69
6000:4F69 next_PCI_reg: ; CODE XREF: reinit_chipset+3D
6000:4F69 cmp bx, 0EF5h ; are we finished ?
6000:4F6D jz exit_PCI_init ; if yes, then exit
6000:4F6F mov cx, [bx+1] ; cx = PCI addr to read
6000:4F72 call setup_read_write_PCI ; on ret, ax = F70Bh, di =
F725h
6000:4F75 push cs
6000:4F76 push 4F7Fh
6000:4F79 push ax ; goto F000:F70B
(Read_PCI_Byte)
6000:4F7A jmp far ptr 0E000h:6188h ; goto_seg_F000
6000:4F7F ; ---

6000:4F7F mov dx, [bx+3] ; reverse-and mask
.........

E000:6188 goto_F000_seg: ; CODE XREF:
HD_init_?+3BD
E000:6188 ; HD_init_?+578
...
E000:6188 68 31 EC push 0EC31h
E000:618B 50 push ax

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:618C 9C pushf ; Push Flags
Register onto the Stack
E000:618D FA cli ; Clear Interrupt
Flag
E000:618E 87 EC xchg bp, sp ; Exchange
Register/Memory with Register
E000:6190 8B 46 04 mov ax, [bp+4] ; mov ax, EC31h
E000:6193 87 46 06 xchg ax, [bp+6] ; xchg ret addr
and EC31h
E000:6196 89 46 04 mov [bp+4], ax ; mov
[sp+4],[sp+6]
E000:6199 87 EC xchg bp, sp ; Exchange
Register/Memory with Register
E000:619B 9D popf ; Pop Stack into
Flags Register
E000:619C 58 pop ax
E000:619D EA 30 EC 00 F0 jmp far ptr F000_func_vector ; Jump

F000:EC30 F000_func_vector: ; CODE XREF:
chk_cmos_circuit+3C
F000:EC30 C3 retn ; jump to target
function
F000:EC31 ; ---------------------------------------

F000:EC31 CB retf ; return to
calling segment:offset (6000:4F7F)

F000:F70B read_PCI_byte proc near ; CODE XREF: enable_ROM_write?+4
.........
F000:F724 retn ; Return Near to F000:EC31h
F000:F724 read_PCI_byte endp

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

• At "chksum_ROM" procedure. This procedure is part of the
"E0_POST_TESTS", which is the POST routine invoked using the "POST
jump table". There's no immediate return from within this procedure. But,
a call into "Check_F_Next" will accomplish the "near return" needed to
proceed into the next "POST procedure" execution.

E000:16D2 chksum_ROM proc near
.........
E000:16FF 74 1E jz Check_F_Next ; yes. This jump
will return this routine
E000:16FF ; to where it's
called
.........
E000:171D EB E6 jmp short spkr_endless_loop ; Jump
E000:171D chksum_ROM endp

E000:171F Check_F_Next proc near ; CODE XREF:
chksum_ROM+2D
.........
E000:1743 F8 clc ; signal
successful execution

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:1744 C3 retn ; retn to
RAM_POST_TESTS, proceed to next POST proc
E000:1744 Check_F_Next endp ; sp = -6

• The original.tmp decompression routine for the "Extension_BIOS
components" is one of the most confusing thing to comprehend at first.
But, by understanding it, we "virtually" have no more thing to worry about
the "BIOS code execution path". I suspect that the same technique as
what I'm going to explain here is used accross the majority of award bios.
The basic run-down of this routine explained below.

1. Expand_Bios procedure called from the "main bootblock code
execution path" saved the needed "signature" to the predefined
area in RAM as shown below :

F000:E512 Expand_Bios proc near ; CODE XREF: F000:E3DC
.........
F000:E555 mov bx, 0 ; mov bx,Temp_VGA_Seg
F000:E558 mov es, bx ; es = 0000h
F000:E55A assume es:nothing
F000:E55A mov word ptr es:7004h, 0FFFFh ; mov word
es:[Temp_VGA_Off+4],ffffh
F000:E55A ; later used for other
Ext_BIOS
F000:E55A ; component decompression
F000:E561
F000:E561 xor al, al ; clr expand flag
F000:E563 mov bx, 1000h
F000:E566 mov es, bx ; es = 1000h; SrcSegment,i.e.
seg_E000h
F000:E566 ;
F000:E568 assume es:nothing
F000:E568 xor bx, bx ; bx = 0000h ; SrcOffset
F000:E56A call BootBlock_Expand ; read compressed
original.tmp header and
F000:E56A ; extract original.tmp to
segment 5000h
F000:E56A ; on return
ecx=total_component_cmprssd_size
.........
F000:E5B8 Expand_Bios endp

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

2. Expand procedure called from Bootblock_Expand procedure during
Bootblock execution modify the header as needed and save the result in
predefined area in RAM. The code as follows:

F000:7789 Expand proc near
.........
F000:77FF push gs ; save gs
F000:7801 mov di, 0 ; mov di,Temp_EXP_Seg
F000:7804 mov gs, di ; gs = Temp_Exp_Seg (0000h)
F000:7806 assume gs:nothing
F000:7806 mov di, 6000h ; mov di,Temp_EXP_Off
F000:7809 mov word ptr gs:[di], 7789h ; 0000:6000h = 7789h
F000:7809 ; mov word ptr gs:[di],offset
Expand
F000:780E add bx, 12h ; bx = 12h
F000:7811 call Get_Exp_Src_Byte ; get es:[bx+12h] to AL
(ExpSegment hi byte)
F000:7814 sub bx, 12h ; restore bx value (first
pass = 0000h)
F000:7817 cmp al, 40h ; is "extension component" ?
F000:7817 ; at 1st: al equ 50h
(original.tmp)
F000:7817 ; at 2nd: al equ 41h
(awdext.rom)
F000:7817 ; at all other components: al
equ 40h
F000:7817 ; The decompression caveat is
here d00d !!!
F000:7819 jnz Not_POST_USE ; jmp if no: for original.tmp
and awadext.rom
F000:7819 ; goto decompress, otherwise
no
F000:781B add bx, 11h ; bx = ExpSegment_lo_byte
index
F000:781E call Get_Exp_Src_Byte ; al = ExpSegment_lo_byte
F000:7821 sub bx, 11h ; restore bx
F000:7824 or al, al ; segment 4000h ?
F000:7824 ; this is always 00h when
Expand
F000:7824 ; called from within
original.tmp
F000:7826 jnz Record_to_buffer ; jmp if no
F000:7826 ; (all "extension component"
jump here)
F000:7828 cmp dword ptr gs:[di+4], 0 ; cmp dword
[0000:6004]:0
F000:7828 ; 1st pass from original.tmp,
F000:7828 ; [0000:6004]=FFFFh
(programmed by
F000:7828 ; Expand BIOS before jmp to
original.tmp
F000:782E jnz Not_POST_USE ; jmp always taken from
within original.tmp
F000:7830
F000:7830 Record_to_buffer: ; CODE XREF: Expand+9D
F000:7830 movzx dx, al ; dx = ExpSegment_lo_byte
F000:7833 inc bx ; bx = header_chksum_index

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:7834 call Get_Exp_Src_Byte ; al = header_chksum
F000:7837 sub al, dl ; al = header_chksum -
ExpSegment_lo_byte
F000:7839 call Set_Exp_Src_Byte ; header_chksum = al
F000:783C dec bx ; restore bx
F000:783D xor al, al ; al = 00h
F000:783F add bx, 11h ; bx = ExpSegment_lo_byte
F000:7842 call Set_Exp_Src_Byte ; ExpSegment_lo_byte = 00h
(ExpSegment=4000h)
F000:7845 sub bx, 11h ; restore bx
F000:7848 inc dx ; dx = ExpSegment_lo_byte + 1
F000:7849 shl dx, 2 ; dx = 4*(ExpSegment_lo_byte
+ 1)
F000:784C add di, dx ; di = 6000h + dx (look
above!)
F000:784E mov gs:[di], bx ; 0000:[di] =
CmprssedCompnnt_offset_addr
F000:784E ; (offset addr in compressed
Ext_BIOS)
F000:7851 mov cx, es ; cx = ExpSegment
F000:7853 mov gs:[di+2], cx ; 0000:[di+2]=ExpSegment
F000:7857 call Get_Exp_Src_Byte ; al = header_len
F000:785A movzx ecx, al ; ecx = header_len
F000:785E add bx, 7 ; bx --> point to compressed
file size
F000:7861 call Get_Exp_Src_Dword ; eax = compressed file
size
F000:7864 sub bx, 7 ; restore bx
F000:7867 add ecx, eax ; ecx = header_len +
compressed_file_size
F000:786A add ecx, 3 ; ecx =
total_compressed_component_size
F000:786E pop gs ; restore gs
F000:7870 assume gs:nothing
F000:7870 jmp exit_proc ; Jump
F000:7873 Not_POST_USE: ;
F000:7873 pop gs ; restore gs value
F000:7875 call MakeCRCTable ; initialize CRC-16 lookup
table used later
F000:7878 call ReadHeader ; read compressed component
header into
F000:7878 ; scratchpad @RAM, on error
CF=1
F000:7878 ; bx preserved
F000:787B jb exit_proc ; error, something wrong
(CF=1)
F000:787F mov ax, ds:108h ; mov ax,ExpSegment
F000:7882 mov ds:104h, ax ; mov TgtSegment,ax
F000:7885 mov ax, ds:10Ah ; mov ax,ExpOffset
F000:7888 mov ds:106h, ax ; mov TgtOffset,ax
F000:788B ;--calculate compressed total size and return when
decompress complete
F000:788B mov ecx, ds:310h ; mov ecx,compsize
;compressed size
F000:7890 xor eax, eax ; eax = 0000 0000h
F000:7893 mov al, ds:571Ch ; mov al,headersize;
compressed header size
F000:7896 add ecx, eax ; Add
F000:7899 add ecx, 3 ; add
ecx,COMPRESSED_UNKNOWN_BYTE;

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:7899 ; ecx = "total compressed
size"
F000:789D mov edx, ds:314h ; mov edx,origsize
F000:78A2 push edx
F000:78A4 push ecx ; save ecx (total compressed
component size)
F000:78A6 push bx ; bx = 0000h
F000:78A7 add bx, 5 ; offset 5 ('-lh0-' or '-lh5-
')
F000:78AA call Get_Exp_Src_Byte ; get compress or store type
value
F000:78AD pop bx ; bx = 0000h (1st pass)
F000:78AE cmp al, '0' ; is it "-lh0-" ? first pass
is no
F000:78B0 jnz Not_Store ; No, jump (first pass: jump
taken)
F000:78B2 push ds
F000:78B3 push si
F000:78B4 push bx
F000:78B5 mov di, ds:10Ah ; mov di,ExpOffset
F000:78B9 movzx ax, byte ptr ds:571Ch ; movzx ax,byte ptr
headersize
F000:78BE add ax, 2 ; ax = hdrsize + 2
F000:78C1 add bx, ax ; bx = hdrsize + 2 (assuming
bx is 0000h)
F000:78C3 mov cx, ds:310h ; mov cx,word ptr
compressed_size_lo_word
F000:78C7 mov ax, ds:108h ; mov ax,ExpSegment
F000:78CA mov es, ax ; es = ExpSegment
F000:78CC add cx, 3 ; cx =
ceiling(compressed_size_lo_word)
F000:78CF shr cx, 2 ; transfer to dword unit
(cmprssd_size/4)
F000:78D2
F000:78D2 Get_Store_Data_Loop: ; CODE XREF: Expand+151
F000:78D2 call Get_Exp_Src_Dword ; read dword from
compressed file in RAM
F000:78D5 add bx, 4 ; point to next dword
F000:78D8 stosd ; store in es:di
(ExpSegment:ExpOffset)
F000:78DA loop Get_Store_Data_Loop ; Loop while CX != 0
F000:78DC
F000:78DC pop bx ; bx =
offset_after_cmprssed_filename
F000:78DD pop si
F000:78DE pop ds
F000:78DF jmp short Expand_Over ; Jump
F000:78E1 ; ---

F000:78E1
F000:78E1 Not_Store: ; CODE XREF: Expand+127
F000:78E1 push word ptr ds:104h ; push word ptr TgtSegment
F000:78E5 push word ptr ds:106h ; push word ptr TgtOffset
F000:78E9 push large dword ptr ds:314h ; push dword ptr
origsize
F000:78EE ; extract content from compressed file
F000:78EE call Extract ; call LZH decompression
routine
F000:78F1 pop dword ptr ds:314h ; pop dword ptr origsize
F000:78F6 pop word ptr ds:106h ; pop word ptr TgtOffset
F000:78FA pop word ptr ds:104h ; pop word ptr TgtSegment

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:78FE
F000:78FE Expand_Over: ; CODE XREF: Expand+156
F000:78FE call ZeroFill_32K_mem ; zero fill 32K in segmnt
pointed by ds
F000:78FE ; i.e. clean up scratch-pad
RAM
F000:7901 pop ecx ; ecx = "total compressed
size" (restore ecx)
F000:7903 pop edx
F000:7905 clc ; decompression success
F000:7906 exit_proc: ;
F000:7906 pop es
F000:7907 pop bx
F000:7908 pop eax
F000:790A retn
F000:790A Expand endp

 ; Return Near from Procedure

The lines marked in blue color are the lines which are executed
when this "decompression engine" is invoked from within
original.tmp as in this nnoprom.bin decompression process.
The lines marked with red color is where the "signature" are written
into memory. For example, nnoprom.bin component is defined
with ID: 4027h. This "component's handling" will arrive at
Record_to_buffer where it's ID is processed. In this routine it's
"index" will be saved. The index is calculated as follows (also look at
the code above):
index = 4*(lo_byte(ID) + 1)
this index is used to calculate the address to save the information,
in nnoprom.bin's case it is A0h (from [4 * (27h + 1)]), so the
address to save the information begins at 60A0h. As you can see
above, the info first saved is the component's offset address within
the compressed "Extension_BIOS components", saved to address
60A0h, then the "expansion/decompression segment address"
saved to 60A2h. This "expansion/ decompression segment address"
always 4000h for all "extension BIOS components" as you can see
in the code above. The same process is carried out for all other
"extension BIOS components". I also have to note here that the
source segment used for "extension BIOS components"
decompression is 8000h this is due to the fact that
Record_to_buffer in the Expand routine above only executed
when called from Extern_execute2 routine as follows :

F000:C05B Extern_execute2 proc near ; CODE XREF: Expand_Bios+9B
F000:C05B mov bx, 8000h ; mov
bx,Temp_Extra_BIOS_Addres
F000:C05E mov es, bx ; es = 8000h
F000:C060 assume es:nothing
F000:C060 xor bx, bx ; bx = 0000h
F000:C062 xor ecx, ecx ; ecx= 0000 0000h
F000:C065 push cx ; assume no award external
code
F000:C066
F000:C066 Expand_ROM_loop: ; CODE XREF:
Extern_execute2+30

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:C066 add bx, cx ; [bx] = next compressed
component
F000:C068 jb Next_segment ; Jump if Below (CF=1)
F000:C06A test ecx, 0FFFF0000h ; Logical Compare
F000:C071 jz expand_awdext ; Jump if Zero (ZF=1)
F000:C073
F000:C073 Next_segment: ; CODE XREF:
Extern_execute2+D
F000:C073 mov cx, es
F000:C075 add cx, 1000h ; Add
F000:C079 mov es, cx ; es = es + 1000h (next
segment)
F000:C07B assume es:nothing
F000:C07B jmp short Expand_ROM_Next ; Jump
F000:C07D ; ---

F000:C07D
F000:C07D expand_awdext: ; CODE XREF:
Extern_execute2+16
F000:C07D cmp byte ptr es:[bx+12h], 41h ; Is award external
code?
F000:C082 jnz not_awdext_rom ; No,skip
F000:C084 pop ax ; restore flag
F000:C085 or al, 1 ; set found flag
F000:C087 push ax ; store it to stack
F000:C088
F000:C088 not_awdext_rom: ; CODE XREF:
Extern_execute2+27
F000:C088 call BootBlock_Expand ; on retn, cx =
total_comprssd_cmpnent_size
F000:C08B jnb Expand_ROM_loop ; Jump if Not Below (CF=0)
F000:C08D
F000:C08D ;----- decompress secondary extra BIOS area (0D000h)

F000:C08D mov bx, es
F000:C08F add bx, 1000h ; Add
F000:C093 mov es, bx
F000:C095 assume es:nothing
F000:C095 xor bx, bx ; Logical Exclusive OR
F000:C097
F000:C097 Expand_ROM_Next: ; CODE XREF:
Extern_execute2+20
F000:C097 xor cx, cx ; cx = 0000h
F000:C099
F000:C099 Expand_ROM_loop1: ; CODE XREF:
Extern_execute2+4E
F000:C099 add bx, cx ; [bx] =
compressed_component_1st_byte
F000:C09B cmp byte ptr es:[bx+12h], 41h ; Is award external
code?
F000:C0A0 jnz @@@F ; No,skip
F000:C0A2 pop ax ; restore flag
F000:C0A3 or al, 1 ; set found flag
F000:C0A5 push ax ; store it to stack
F000:C0A6
F000:C0A6 @@@F: ; CODE XREF:
Extern_execute2+45
F000:C0A6 call BootBlock_Expand ; Call Procedure
F000:C0A9 jnb Expand_ROM_loop1 ; Jump if Not Below (CF=0)
F000:C0AB pop ax

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

F000:C0AC or al, al ; check award external code
has found?
F000:C0AE retn
F000:C0AE Extern_execute2 endp

 ; Return Near from Procedure

F000:E5B9 BootBlock_Expand proc near ; CODE XREF:
Extern_execute2+2D
F000:E5B9 ; Extern_execute2+4B ...
F000:E5B9 cmp dword ptr es:[bx+0Fh], 40000000h ; 1st addr
contain 5000 0000h
F000:E5B9 ; decomp_Seg:Offset equ 4000
0000h ?
F000:E5B9 ; (is extension component ?)
F000:E5C2 jnz not_40000000h ; No,skip; at first this jump
is taken
.........
F000:E5EA not_40000000h: ; CODE XREF:
BootBlock_Expand+9
F000:E5EA mov dx, 3000h ; mov dx,Exp_Data_Seg; decomp
scratch pad
F000:E5ED push ax
F000:E5EE push es
F000:E5EF call Search_BBSS_label ; on return si = 7D06h
F000:E5EF ; (cs:di = 2000:7D06h -- bios
in ram)
F000:E5F2 pop es
F000:E5F3 assume es:nothing
F000:E5F3 push es
F000:E5F4 mov ax, es ; ax = 1000h (1st pass); ax
=8000h(2nd pass)
F000:E5F6 shr ax, 0Ch ; ax = 1h
F000:E5F9 mov es, ax ; es = 1h(1st pass);es=8h(2nd
pass)
F000:E5FB assume es:nothing
F000:E5FB mov ax, cs:[si+0Eh] ; mov ax,7789h (addr of
decompression code)
F000:E5FF call ax ; call 7789h i.e Expand
(decompression engine)
F000:E601 pop es ; es = 1000h (1st pass); es =
8000h (2nd pass)
F000:E602 assume es:nothing
F000:E602 pop ax
F000:E603 retn ; Return Near from Procedure
F000:E603 BootBlock_Expand endp

3. Next, the POST routine POST_8S a.k.a Init_Interrupt_Vector in
original.tmp responsible for preparing the needed "signature" for the
decompression as you can see below :

E000:17B8 init_ivect proc near
.........
E000:1834 ;for run time decompress code ret
E000:1834 mov bx, 2000h
E000:1837 mov es, bx
E000:1839 assume es:nothing

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:1839 mov byte ptr es:0DFFFh, 0CBh ; 'T'
E000:183F mov si, 0
E000:1842 mov ds, si ; ds = 0000h
E000:1844 assume ds:nothing
E000:1844 mov si, 7000h
E000:1847 mov ax, [si+4] ; ax = FFFFh (0000:7004h
filled before by
E000:1847 ; Expand_Bios routine in
bootblock)
E000:184A mov di, 0 ; es = 0000h
E000:184D mov es, di
E000:184F assume es:nothing
E000:184F mov di, 6000h
E000:1852 mov es:[di+4], ax ; [0000:6004] = FFFFh
E000:1856 cmp ax, 0FFFFh ; Compare Two Operands
E000:1859 jz signature_ok ; Jump if Zero (ZF=1)
E000:185B mov ax, [si]
E000:185D mov es:[di+4], ax
E000:1861 mov ax, [si+2]
E000:1864 shr ax, 0Ch ; Shift Logical Right
E000:1867 mov es:[di+6], ax
E000:186B
E000:186B signature_ok: ; CODE XREF: init_ivect+A1
E000:186B call sub_E000_8510 ; Call Procedure
E000:186E clc ; Clear Carry Flag
E000:186F retn ; Return Near from Procedure
E000:186F init_ivect endp

4. Next, init_NNOPROM_BIN routine (this is just an example, other
component will differ slightly) decompressed by the following code :

E000:71C1 init_NNOPROM_BIN proc near ; CODE XREF: POST_13S
.........
E000:71CF mov di, 0A0h ; 'a' ; di = offset_nnoprom.bin [
nnoprom.bin-->4027h
E000:71CF ; di = 6000h +
4*(ExpSegment_lo_byte + 1) ;
E000:71CF ; A0h = 4h*(27h+1h)]
E000:71CF ; look at Expand proc in
bootblock for info
E000:71D2 call near ptr POST_decompress ; Call Procedure
E000:71D5 jb exit_proc ; jmp if CF=1, 1st pass CF=0
E000:71D9 push 4000h
E000:71DC pop ds ; ds = 4000h
E000:71DD assume ds:nothing
E000:71DD xor si, si ; si = 0000h
E000:71DF push 7000h
E000:71E2 pop es ; es = 7000h
E000:71E3 assume es:nothing
E000:71E3 xor di, di ; di = 0000h
E000:71E5 mov cx, 4000h
E000:71E8 cld ; Clear Direction Flag
E000:71E9 rep movsd ; move 64KB from seg_4000h to
seg_7000h
E000:71E9 ; i.e. relocate decompressed
code

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:71EC mov di, 3
E000:71EF cmp dword ptr es:[di], 'ONN$' ; match
nnoprom.bin signature
E000:71F7 jnz exit_proc ; Jump if Not Zero (ZF=0)
E000:71FB push 9FF8h
E000:71FE pop es ; es = 9FF8h
E000:71FF assume es:nothing
E000:71FF xor di, di ; di = 0000h
E000:7201 mov cx, 68h ; 'h'
E000:7204 xor al, al ; al = 0000h
E000:7206 rep stosb ; Store String
E000:7208 mov di, 0A4h ; 'a'
E000:720B call near ptr POST_decompress ; Call Procedure
E000:720E jb exit_proc ; Jump if Below (CF=1)
E000:7212 push ds
E000:7213 push es
E000:7214 push fs
E000:7216 push gs
E000:7218 call Update_Descriptor_Cache ; Call Procedure
E000:721D xor esi, esi ; esi = 0000 0000h
E000:7220 mov ds, si ; ds = 0000h
E000:7222 assume ds:nothing
E000:7222 mov es, si ; es = 0000h
E000:7224 assume es:nothing
E000:7224 push 4000h
E000:7227 pop si ; si = 4000h
E000:7228 shl esi, 4 ; esi = 40000h
E000:722C mov edi, 100000h
E000:7232 mov ecx, ebx
E000:7235 shr ecx, 2 ; Shift Logical Right
E000:7239 cld ; Clear Direction Flag
E000:723A db 26h
E000:723A rep movs dword ptr [edi], dword ptr [esi] ; Move
Byte(s) from String to String
E000:723F pop gs
E000:7241 pop fs
E000:7243 pop es
E000:7244 assume es:nothing
E000:7244 pop ds
E000:7245 assume ds:nothing
E000:7245 push 9FF8h
E000:7248 pop es
E000:7249 assume es:nothing
E000:7249 mov dword ptr es:0, 100000h
E000:7253 mov dword ptr es:4, 40000h
E000:725D xor eax, eax ; Logical Exclusive OR
E000:7260 mov ax, 0E000h
E000:7263 shl eax, 4 ; Shift Logical Left
E000:7267 add eax, 7156h ; Add
E000:726D mov es:8, eax
E000:7272 mov ax, 7
E000:7275 mov es:0Ch, ax
E000:7279 mov ax, 7000h
E000:727C mov es:0Eh, ax
E000:7280 xor eax, eax ; Logical Exclusive OR
E000:7283 mov ax, 0E000h
E000:7286 shl eax, 4 ; Shift Logical Left
E000:728A add eax, 71AAh ; Add
E000:7290 mov es:10h, eax
E000:7295 mov esi, 9FF80h
E000:729B add esi, 0 ; Add

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:72A2 mov al, 36h ; '6'
E000:72A4 push cs
E000:72A5 push 72B0h
E000:72A8 push 0E4FDh ; read CMOS byte
E000:72AB jmp far ptr goto_F000_seg ; Jump
E000:72B0 ; ---

E000:72B0 mov bl, al
E000:72B2 mov ax, 0
E000:72B5 call near ptr init_nnoprom? ; Call Procedure
E000:72B8 pushf ; Push Flags Register onto
the Stack
E000:72B9 popf ; Pop Stack into Flags
Register
E000:72BA jb exit_proc ; Jump if Below (CF=1)
E000:72BC mov ax, 0
E000:72BF mov ds, ax
E000:72C1 assume ds:nothing
E000:72C1 or byte ptr ds:4B7h, 3 ; Logical Inclusive OR
E000:72C6
E000:72C6 exit_proc: ; CODE XREF:
init_NNOPROM_BIN+14�j
E000:72C6 ; init_NNOPROM_BIN+36�j ...
E000:72C6 popad ; Pop all General Registers
(use32)
E000:72C8 pop es
E000:72C9 assume es:nothing
E000:72C9 pop ds
E000:72CA assume ds:nothing
E000:72CA retn ; Retur
E000:72CA init_NNOPROM_BIN endp ; sp = 6

n Near from Procedure

E000:6E49 POST_decompress proc far ; CODE XREF:
EPA_Procedure+43
E000:6E49 ; EPA_Procedure+5E ...
E000:6E49 push ds
E000:6E4A push es
E000:6E4B push bp
E000:6E4C push di ; store DI
E000:6E4D push si ; store SI
E000:6E4E and di, 3FFFh ; mask DI bit 14 and 15; 1st
pass di = A0h
E000:6E52 cli ; Clear Interrupt Flag
E000:6E53 mov al, 0FFh ; mov al,TRUE
E000:6E55 call F000_Cpu_Cache ; enable caching
E000:6E58 push 0E000h
E000:6E5B push 6E69h
E000:6E5E push 0EC31h
E000:6E61 push 0E3D4h ; A20_On
E000:6E64 jmp far ptr F000_call ; turn on gate A20
E000:6E69 ; ---

E000:6E69 call E000_enter_FlatPMode ; Call Procedure
E000:6E6C mov ax, ds
E000:6E6E mov es, ax ; es = ds (flat 4GB addr
space);
E000:6E6E ; base_addr=0000 0000h
E000:6E70 assume es:nothing
E000:6E70 call E000_Back_to_RealMode ; restore ss
E000:6E73 pop dx ; dx = si

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:6E74 pop ax ; ax = di
E000:6E75 mov ebx, es:[di+6000h] ; mov
ebx,es:[di+Temp_EXP_Off]
E000:6E75 ;
ebx=0008[nnoprom_cmpressd_offset]h (nnoprom.bin)
E000:6E7B or ebx, ebx ; Logical Inclusive OR
E000:6E7E jz Decomp_Data_Empty ; Jump if Zero (ZF=1)
E000:6E82 cmp bx, 0FFFFh ; Compare Two Operands
E000:6E85 jz Decomp_Data_Empty ; Jump if Zero (ZF=1)
E000:6E89 test ah, 40h ; 1st pass is 00h (ax = A0h)
E000:6E8C jz Go_on ; 1st pass this jump is taken
E000:6E8E clc ; Clear Carry Flag
E000:6E8F jmp POST_decomp_Ret ; Jump
E000:6E92 ; ---

E000:6E92
E000:6E92 Go_on: ; CODE XREF:
POST_decompress+43
E000:6E92 mov di, es:6000h ; di = offset_Expand
(decompression engine
E000:6E92 ; offset addr saved by
bootblock)
E000:6E97 mov esi, ds:160000h ; mov esi,[awardext.rom
4Byte hdr]
E000:6E9F not esi ; One's Complement Negation
E000:6EA2 mov ds:80000h, esi
E000:6EAA cmp ebx, 100000h ; ExpSeg-CompOffset (ebx =
8xxxxh)
E000:6EB1 jb Is_New_Decomp_Method ; 1st pass this jmp IS
taken
E000:6EB3 push di ; save offset_Expand to stack
E000:6EB4 mov esi, 90000h ; ds:[esi] = 90000h (last
64KB of Ext_BIOS)
E000:6EBA mov edi, 140000h ; es:[edi] = 140000h
E000:6EC0 mov ecx, 4000h ; copy last 64 KB of Ext_BIOS
to 140000h - 14FFFFh
E000:6EC6 cld ; Clear Direction Flag
E000:6EC7 rep movs dword ptr es:[edi], dword ptr [esi] ;
Move Byte(s) from String to String
E000:6ECB mov esi, 160000h ; ds:[esi] = addr_of_last
Ext_BIOS (128KB)
E000:6ED1 mov edi, 80000h ; es:[edi] = target addr
E000:6ED7 mov ecx, 8000h ; copy 128KB from 160000h-
17FFFFh to 80000h-9FFFFh
E000:6EDD cld ; Clear Direction Flag
E000:6EDE rep movs dword ptr es:[edi], dword ptr [esi] ;
Move Byte(s) from String to String
E000:6EE2 pop di ; di = offset_Expand
E000:6EE3 ror ebx, 10h ; Rotate Right
E000:6EE7 mov es, bx ; es = ExpSegment (of the
compressed component)
E000:6EE9 assume es:nothing
E000:6EE9 ror ebx, 10h ; restore ebx
E000:6EED mov cx, es:[bx+11h] ; store decompress_segment
for
E000:6EED ; checksum recalculation
E000:6EF1 push cx ; store it to stack
E000:6EF2 push word ptr es:[bx] ; store original checksum
value
E000:6EF5 test ah, 80h ; test SI is available?
E000:6EF8 jz decompress ; 1st pass this jmp is taken

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:6EFA mov es:[bx+11h], dx ; reset decompress segment
E000:6EFE add cl, ch ; original segment of
checksum
E000:6F00 add dl, dh ; new segment of checksum
E000:6F02 sub cl, dh ; difference segment of
checksum
E000:6F04 sub es:[bx+1], cl ; recalculate checksum
E000:6F08 jmp short decompress ; No,skip process SI
E000:6F0A ; ---

E000:6F0A
E000:6F0A Is_New_Decomp_Method: ; CODE XREF:
POST_decompress+68
E000:6F0A add ebx, 0E0000h ; ebx = (80000h+E0000h) =
160000h
E000:6F11 mov cx, es:[ebx+11h] ; cx=ExpSegment(changed to
4000h by bootblock)
E000:6F16 push cx ; save ExpSegment
E000:6F17 push word ptr es:[ebx] ; save chksum and hdr_len
E000:6F1B test ah, 80h ; SI available? (1st pass no
i.e. 00h)
E000:6F1E jz decompress ; 1st pass this jmp is taken
E000:6F20 mov es:[ebx+11h], dx
E000:6F25 add cl, ch ; Add
E000:6F27 add dl, dh ; Add
E000:6F29 sub cl, dh ; Integer Subtraction
E000:6F2B sub es:[ebx+1], cl ; Integer Subtraction
E000:6F30
E000:6F30 decompress: ; CODE XREF:
POST_decompress+AF
E000:6F30 ; POST_decompress+BF ...
E000:6F30 ror ebx, 10h ; Rotate Right
E000:6F34 mov es, bx ; es = SrcSegment (16h i.e.
160000h_linear_addr)
E000:6F36 ror ebx, 10h ; restore ebx(ebx = 16xxxxh ;
E000:6F36 ; 1st pass: xxxx-> cmpressed
nnoprom offset)
E000:6F3A push cs ; save current code segment
E000:6F3B push 6F49h ; ret addr below
E000:6F3E push 0DFFFh
E000:6F41 mov dx, 3000h
E000:6F44 push 2000h
E000:6F47 push di
E000:6F48 retf ; jmp 2000:addr_of_Expand
E000:6F48 ; (goto decompression engine
at seg_2000h)
E000:6F49 ; ---

E000:6F49 push 0E000h
E000:6F4C push 6F5Ah
E000:6F4F push 0EC31h
E000:6F52 push 0E3D4h ; A20_On
E000:6F55 jmp far ptr F000_call ; jmp F000_A20_On
E000:6F5A ; ---

E000:6F5A call E000_enter_FlatPMode ; Call Procedure
E000:6F5D mov ax, ds
E000:6F5F mov es, ax ; es-->BaseAddr=0000 0000h;
limit 4GB
E000:6F61 assume es:nothing
E000:6F61 call E000_Back_to_RealMode ; Call Procedure

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:6F64 mov eax, ds:80000h
E000:6F6B cmp eax, ds:160000h ; 1st pass, ds:80000h equ
(Not-dx:160000h)
E000:6F73 jnz Is_New_Decomp ; 1st pass this jmp is taken
E000:6F75 ror ebx, 10h ; Rotate Right
E000:6F79 mov es, bx
E000:6F7B assume es:nothing
E000:6F7B ror ebx, 10h ; Rotate Right
E000:6F7F pop word ptr es:[bx]
E000:6F82 pop word ptr es:[bx+11h]
E000:6F86 mov ebx, es:[bx+0Bh]
E000:6F8B jmp short disable_A20 ; Jump
E000:6F8D ; ---

E000:6F8D
E000:6F8D Is_New_Decomp: ; CODE XREF:
POST_decompress+12A
E000:6F8D pop word ptr es:[ebx] ; restore original
checksum
E000:6F91 pop word ptr es:[ebx+11h] ; restore original
segment
E000:6F96 mov ebx, es:[ebx+0Bh] ; get decompressed data
size
E000:6F9C
E000:6F9C disable_A20: ; CODE XREF:
POST_decompress+142
E000:6F9C push 0E000h
E000:6F9F push 6FADh
E000:6FA2 push 0EC31h
E000:6FA5 push 0E424h ; turn gate A20 off
E000:6FA8 jmp far ptr F000_call ; F000_CALL A20_Off
E000:6FAD ; ---

E000:6FAD clc ; Clear Carry Flag
E000:6FAE jmp short POST_decomp_Ret ; Jump
E000:6FB0 ; ---

E000:6FB0
E000:6FB0 Decomp_Data_Empty: ; CODE XREF:
POST_decompress+35
E000:6FB0 ; POST_decompress+3C
E000:6FB0 stc ; Set Carry Flag
E000:6FB1
E000:6FB1 POST_decomp_Ret: ; CODE XREF:
POST_decompress+46
E000:6FB1 ; POST_decompress+165
E000:6FB1 pushf ; Push Flags Register onto
the Stack
E000:6FB2 push ebx
E000:6FB4 push 0E000h
E000:6FB7 push 6FC5h
E000:6FBA push 0EC31h
E000:6FBD push 0E3D4h ; turn on a20 gate
E000:6FC0 jmp far ptr F000_call ; F000_call A20_On
E000:6FC5 ; ---

E000:6FC5 call E000_enter_FlatPMode ; Call Procedure
E000:6FC8 mov ax, ds
E000:6FCA mov es, ax ; es = 4GB segment,
base_addr=0000 0000h
E000:6FCC assume es:nothing

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

E000:6FCC call E000_Back_to_RealMode ; Call Procedure
E000:6FCF mov eax, ds:80000h
E000:6FD6 cmp eax, ds:160000h ; Compare Two Operands
E000:6FDE jnz Not_Old_Decomp_Method ; 1st pass this jmp is
taken
E000:6FE0 mov edi, 80000h
E000:6FE6 mov ecx, 4000h
E000:6FEC xor eax, eax ; Logical Exclusive OR
E000:6FEF cld ; Clear Direction Flag
E000:6FF0 rep stos dword ptr es:[edi] ; clear 80000h to
8FFFFh
E000:6FF4 mov esi, 140000h
E000:6FFA mov edi, 90000h
E000:7000 mov ecx, 4000h
E000:7006 cld ; Clear Direction Flag
E000:7007 rep movs dword ptr es:[edi], dword ptr [esi] ;
Move Byte(s) from String to String
E000:700B
E000:700B Not_Old_Decomp_Method: ; CODE XREF:
POST_decompress+195
E000:700B push 0E000h
E000:700E push 701Ch
E000:7011 push 0EC31h
E000:7014 push 0E424h ; turn gate A20 off
E000:7017 jmp far ptr F000_call ; F000_CALL A20_Off
E000:701C ; ---

E000:701C pop ebx
E000:701E mov al, 0 ; mov al,FALSE
E000:7020 call F000_Cpu_Cache ; disable CPU cache
E000:7023 popf ; Pop Stack into Flags
Register
E000:7024 pop bp
E000:7025 pop es
E000:7026 assume es:nothing
E000:7026 pop ds
E000:7027 retn ; Return Near from Procedure
E000:7027 POST_decompress endp ; sp = -18h

what I've explained above only applies exactly to nnoprom.bin in
my BIOS, but it's very possible that this mechanism still in use for
other versions of award bios.

• After all of the explanation above, we only need to follow the "POST jump
table execution" to be able to know which "execution path" is taken by the
BIOS in which circumstances. Having doing this approach we'll be able to
do what we please to our "to be hacked" award bios >:).

What I've explained above possibly far too premature to be ended here. But, I
consider this article finished here as the Beta2 version of this article. If you
follow this article from beginning to end, you'll absolutely be able to understand
the "BIG Picture" of how the Award BIOS works. I think all of the issue dissected
here is enough to do any type of modification you wish to do with award bios. If
you find any mistake(s) within this article, please contact me. Goodluck with you
BIOS reverse engineering journey, I hope you enjoy it as much as I do :) .

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

mailto:mamanzip@yahoo.com

	Award BIOS Reverse Engineering
	Author: Darmawan Mappatutu Salihun

	Contents
	Foreword
	Prerequisite
	PCI BUS
	ISA BUS
	Some Hardware "Peculiarities"
	Some Software "Peculiarities"
	Our Tools of Trade
	Award BIOS File Structure
	Disassembling the BIOS
	Bootblock
	System BIOS a.k.a Original.tmp

