The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

e Jrerhons

© The CodeBreakers-Journal, VVol.1, No.2. (2004)
http://www.CodeBreakers-Journal.com

Classes Restoration

Author: Hex

Original version @ XTiN.ORG, translated version @ http://www.apriorit.com

Abstract

Classes restoration is a complicated procedure which requires knowledge of OOP and the
way this OOP is organized in specific compiler. Our task is to get class, its methods and
members. Class restoration begins with looking for constructor, because here is the memory
for object is being allocated and also we can gain some insight into constructor’s
components. This paper describes how to work with Classes restoration during Reverse

Code Engineering processes.

Keywords: Classes Restoration; Object Descriptors; Reverse Code Engineering

Contents:

1. INIrOAUCHION ...
2. Restoration of the object StruCtUre.............oooii e
3. Looking for the class MEthOAS..........uuuuuiiiiiiiiii e
4. Determination of the number of method arguments..............coooeeiiiii e,

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use

only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

1. Introduction

Classes restoration is a complicated procedure which requires knowledge of OOP and the
way this OOP is organized in specific compiler. Our task is to get class, its methods and
members. Let's begin with Delphi, because it's relatively easy to find a class here. Class
restoration begins with looking for constructor, because here is the memory for object is
being allocated and also we can gain some insight into constructor’'s components. It's easy to
find a constructor in Delphi — we just need to look for a string in which the class name occurs.
For example, for TList the next structure can be found:

CODE:0040D598 TList dd offset TList VTBL
CODE:0040D59C dd 7 dup(0)

CODE:0040D5B8 dd offset aTlist ; "TList"
CODE:0040D5BC SizeOfObject dd 10h

CODE:0040D5CO dd offset off 4010C8
CODE:0040D5C4 dd offset TObject::SafeCallException
CODE:0040D5C8 dd offset nullsub 8

CODE:0040D5CC dd offset TObject::NewlInstance
CODE:0040D5D0O dd offset TObject::Freelnstance
CODE:0040D5D4 dd offset sub 40EAQ8
CODE:0040D5D8 TList VTBL dd offset TList::Grow
CODE:0040D5DC dd offset unknown libname 107
CODE:0040D5EO0 aTlist db 5,'TList’

This is, if we can say so, an ‘object descriptor’. Pointer to it is being passed to the
constructor. The constructor takes from it the data required for object creation. Using Xref on
40D598 we can find all the places where the constructor is being called. Here is an example
of one of such calls:

CODE:0040E72E mov eax, ds:TList
CODE:0040E733 call CreateClass
CODE:0040E738 mov ds:dword 4A45F8, eax

The constructor function we named by ourselves. We can determine whether it is really a
CreateClass by the contents of the function:

CODE:00402F48 CreateClass proc near ; CODE XREF:
@BeginGloballoading+17p
CODE:00402F48 ;

@CollectionsEqual+48p

CODE:00402F48 test di, di

CODE:00402F4A jz short loc 402F54
CODE:00402F4C add esp, OFFFFFFFOh
CODE:00402F4F call __linkproc_ ClassCreate
CODE:00402F54

CODE:00402F54 loc_402F54: ; CODE XREF':
CreateClass+2]

CODE:00402F54 test di, di

CODE:00402F56 jz short locret 402F62
CODE:00402F58 pop large dword ptr f£s:0
CODE:00402F5F add esp, 0Ch

CODE:00402F62

CODE:00402F62 locret 402F62: ; CODE XREF:
CreateClass+E]

CODE:00402F62 retn

CODE:00402F62 CreateClass endp

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

l.e., if there is __linkproc__ ClassCreate inside the function, it's a constructor. Now we can
look at how particularly the class creation happens:

CODE:00403200 _ linkproc ClassCreate proc near ; CODE XREF:
CreateClass+7p

CODE:00403200 ; sub_ 40AA58+Ap
CODE:00403200

CODE:00403200 arg 0 = dword ptr 10h

CODE:00403200

CODE:00403200 push edx

CODE:00403201 push ecx

CODE:00403202 push ebx

CODE:00403203 call dword ptr [eax-0Ch]
CODE:004032006 XOr edx, edx

CODE:00403208 lea ecx, [esptarg 0]
CODE:0040320C mov ebx, fs:[edx]

CODE:0040320F mov [ecx], ebx

CODE:00403211 mov [ecx+8], ebp

CODE:00403214 mov dword ptr [ecx+4], offset loc 403225
CODE:0040321B mov [ecx+0Ch], eax
CODE:0040321E mov fs:[edx], ecx

CODE:00403221 pop ebx

CODE:00403222 pop ecx

CODE:00403223 pop edx

CODE:00403224 retn

CODE:00403224 linkproc ClassCreate endp

So, the command

CODE:0040E72E mov eax, ds:TList

loads contents into EAX to the address of TList, i.e. it's TList VTBL. Since we use Delphi,
here is the Borland’s convention of __ fastcall is being used (parameters are being passed in
the next order: EAX, EDX, ECX, stack...). It means that the pointer to the virtual methods
table is being passed to the function CreateClass as a first parameter. Further EAX is not
changing and gets into __linkproc__ ClassCreate, and here we see:

CODE:00403203 call dword ptr [eax-0Ch]

Where is it going? The pointer to TList VTBL=0x40D5D8 is still lying in EAX.
0x40D5D8-0xC=40D5CC, and this is

CODE:0040D5CC dd offset TObject::NewlInstance

This is the ancestor’s constructor. So, TList is inherited by TObject. Let's look what is in the
depth:

CODE:00402F0C TObject::NewlInstance proc near ; DATA XREF:
CODE:004010FCo

CODE:00402F0C ; CODE:004011DCo
CODE:00402F0C push eax

CODE:00402F0D mov eax, [eax-1Ch]

CODE:00402F10 call __linkproc GetMem
CODE:00402F15 mov edx, eax

CODE:00402F17 pop eax

CODE:00402F18 Jmp TObject::InitInstance

CODE:00402F18 TObject::NewInstance endp

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The value of EAX is the same, so 0x40D5D8-0x1C=0x40D5BC. Thus, the object size which
is stored in 0x40D5BC, is being passed into GetMem

CODE:0040D5BC SizeOfObject dd 10h
So, the total size of object members =0x10. The function TObject::Initinstance doesn’t do
anything special, it's just stuffs object members with zero and sets the value of pointer to

VTBL in the just created instance of the object. Then the exit from CreateClass will happen
and the pointer to the instance of the object will be returned into EAX.

That’s why the call of constructors looks like:

CODE:0040E72E mov eax, ds:TList
CODE:0040E733 call CreateClass
CODE:0040E738 mov ds:dword 4A45F8, eax

2. Restoration of the object structure

We have known the object size already. It's 0x10, where 0x4 bytes were taken by the pointer
to VTBL. But there are OxC bytes left and they contain object members, so we need to find
them. Here an intuition is required. First of all, objects can’'t be created for no particular
reason and members can be filled either in constructor (fully or partly) or after creating by
Set-methods. Our TList in the constructor is being stuffed with zero through rep stosd (in
TObject::Initinstance). So there is no info about class members in the constructor. Thus let's
trace life cycle after the creation.

In our example the pointer to the instance of the class is being driven into global variable
dword_4A45F8. So we can just set breakpoint on reading from dword 4A45F8 and look at
how the object methods will be called. First event:

CODE:0041319D mov eax, [ebptvar 4]

CODE:004131A0 mov edx, ds:pTList

CODE:004131A6 mov [eax+30h], edx ; copied a pointer to the instance of
an object

CODE:004131A9 jmp short loc 4131BD

CODE:004131BD

CODE:004131BD loc 4131BD: ; CODE XREF:
sub_ 4130BC+ED]

CODE:004131BD xor eax, eax

CODE:004131BF push ebp

CODE:004131C0O push offset loc 413276

CODE:004131C5 push dword ptr fs:[eax]

CODE:004131C8 mov fs:[eax], esp

CODE:004131CB mov eax, [ebptvar 4]

CODE:004131CE mov edx, [eax+18h]

CODE:004131D1 mov eax, [ebptvar 4]

CODE:004131D4 mov eax, [eax+30h] ;’implicit passing of a pointer to the
object itself’

CODE:004131D7 call Classes::TList: :Add (void *)

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Now look into Classes::TList::Add:

CODE:0040EA28 _ fastcall Classes::TList::Add(void *) proc near

CODE:0040EA28 ; CODE XREF':
@RegisterClass+9Bp

CODE:0040EA28 ;
@RegisterIntegerConsts+20p

CODE:0040EA28 push ebx

CODE:0040EA29 push esi

CODE:0040EA2A push edi

CODE:0040EA2B mov edi, edx

CODE:0040EA2D mov ebx, eax ; a kind of This

CODE:0040EA2F mov esi, [ebx+8] ; addressing to the object member N1
CODE:0040EA32 cmp esi, [ebx+0Ch] ; addressing to the object member N3
CODE:0040EA35 jnz short loc 40EA3D

CODE:0040EA37 mov eax, ebx

CODE:0040EA39 mov edx, [eax] ;addressing to TList->pVTBL
CODE:0040EA3B call dword ptr [edx]

CODE:0040EA3D

CODE:0040EA3D loc_4OEA3D: ; CODE XREF:
Classes::TList::Add (void *)+Dj

CODE:0040EA3D mov eax, [ebx+4] ; addressing to the object member N2
CODE:0040EA40 mov [eax+esi*4], edi

CODE:0040EA43 inc dword ptr [ebx+8]

CODE:0040EA46 mov eax, esi

CODE:0040EA48 pop edi

CODE:0040EA49 pop esi

CODE:0040EA4A pop ebx

CODE:0040EA4B retn
CODE:0040EA4B __ fastcall Classes::TList::Add(void *) endp

That is... 3 last members have been found. All of them are of 4 bytes size. To simplify the
work with classes in IDA Pro we use structures. Classes are the same structures, anyway:
After using the next structure:

00000000 TList obj struc ; (sizeof=0X10)
00000000 pVTBL dd ?

00000004 Propertyl dd ?

00000008 Property2 dd ?

0000000C Property3 dd ?

00000010 TList obj ends

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

things become more clear:

CODE:0040EA28 fastcall Classes::TList::Add(void *) proc near

CODE:0040EA28 ; CODE XREF':
@RegisterClass+9Bp

CODE:0040EA28 ;
@RegisterIntegerConsts+20p

CODE:0040EA28 push ebx

CODE:0040EA29 push esi

CODE:0040EA2A push edi

CODE:0040EA2B mov edi, edx

CODE:0040EA2D mov ebx, eax

CODE:0040EA2F mov esi, [ebx+TList obj.Property2]
CODE:0040EA32 cmp esi, [ebx+TList obj.Property3]
CODE:0040EA35 jnz short loc 40EA3D

CODE:0040EA37 mov eax, ebx

CODE:0040EA39 mov edx, [eax+TList obj.pVTBL]
CODE:0040EA3B call dword ptr [edx] ;TList::Grow
CODE:0040EA3D

CODE:0040EA3D loc_ 40EA3D: ; CODE XREF:
Classes::TList::Add(void *)+Dj

CODE:0040EA3D mov eax, [ebx+TList obj.Propertyl]
CODE:0040EA40 mov [eaxtesi*4], edi

CODE:0040EA43 inc [ebx+TList obj.Property2]
CODE:0040EA46 mov eax, esi

CODE:0040EA48 pop edi

CODE:0040EA49 pop esi

CODE:0040EA4A pop ebx

CODE:0040EA4B retn
CODE:0040EA4B _ fastcall Classes::TList::Add(void *) endp

Think of VBTL look and it will be easy to guess that:
CODE:0040EA3B call dword ptr [edx]

is TList::Grow, because

CODE:0040D5D8 pVTBL dd offset TList::Grow

Now we can make a deeper analyze of the class members. For example, if we have a look at
the next code:

CODE:0040EA3D mov eax, [ebx+TList obj.Propertyl]
CODE:0040EA40 mov [eaxtesi*4], edi
CODE:0040EA43 inc [ebx+TList obj.Property2]

we can say that Property2 is a counter for the list elements, because it increases when an
element is added. And Property1 is the pointer to the array of list elements. Property 2 in this
array is an index. Property 3 is the maximum number of the elements in a list, as method
TList::Grow is being called just when Property2==Property3. We found out this by using
logic. Now, when all is clear, we may look in Help and give names to the members:

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

CODE:0040EA28 fastcall Classes::TList::Add(void *) proc near

CODE:0040EA28 ; CODE XREF':
@RegisterClass+9Bp

CODE:0040EA28 ;
@RegisterIntegerConsts+20p

CODE:0040EA28 push ebx

CODE:0040EA29 push esi

CODE:0040EA2A push edi

CODE:0040EA2B mov edi, edx

CODE:0040EA2D mov ebx, eax

CODE:0040EA2F mov esi, [ebx+TList obj.Count]
CODE:0040EA32 cmp esi, [ebx+TList obj.Capacity]
CODE:0040EA35 jnz short loc 40EA3D
CODE:0040EA37 mov eax, ebx

CODE:0040EA39 mov edx, [eax+TList obj.pVTBL]
CODE:0040EA3B call dword ptr [edx]
CODE:0040EA3D

CODE:0040EA3D loc 40EA3D: ; CODE XREF':
Classes::TList::Add (void *)+Dj

CODE:0040EA3D mov eax, [ebx+TList obj.Items]
CODE:0040E240 mov [eax+esi*4], edi
CODE:0040EA43 inc [ebx+TList obj.Count]
CODE:0040ER46 mov eax, esi

CODE:0040EA48 pop edi

CODE:0040EA49 pop esi

CODE:0040EA4A pop ebx

CODE:0040EA4B retn

CODE:0040EA4B _ fastcall Classes::TList::Add(void *) endp

We have restored the structure, let’s look into the class methods.

3. Looking for the class methods

Methods can be: public/private (protected), virtual/non-virtual and static.

Static methods can’'t be found because after the compilation was made they look like
common procedures. Affiliation of such function with a specific class is also impossible to
determine. But is there a sense in such search? If the function is called somewhere in the
class methods, it, anyway, will be viewed while the code is being extracted. Otherwise, it is
wasting of time. Virtual functions are easy to find to— they all are in VTBL. But how we should
look for non-virtual ones? Let’s think of OOP: when the object methods are called, the pointer
to the object itself is implicitly passed to them. In fact, it means that each method accepts
the pointer to the object as its first parameter. l.e., if the method was declared as __fastcall,
the pointer to the object will be pushed into EAX. But for __cdecl or __stdcall methods it’s the
first parameter in the stack. Let's look on where is the pointer to the object is
stored...absolutely right! In dword 4A45F8. On XREF to 4A45F8 we can find lots of non-
virtual methods. Further we can set a breakpoint on 4A45F8 and trace the copying of a
pointer to the instance to find where else the call of methods can take place. All is easy in our
example, because global variable is used. But what we should do, if the local variable is
used or if the code can’t be executed (for example, we research driver's code or the code is
not allowed for execution)? Here we need a specific method.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

Step-by-step:
1) We have to find all the points of constructor’s calls.
For each call:

2) Trace where the pointer to the instance of an object is being written (local variable)

3) Looking through the function which has called the constructor for all the calls of the
object methods

4) |If there are no such calls, look at the next call of the constructor, otherwise look for all
xref to the method that had been found. In such way we can find calls that are not
beside the constructor. And, as we know that the first parameter is the pointer to an
object, we can go to each xref and look where else the pointer to an object was used.
And in such way we are going up the levels of the code, till we reach a deadlock or
the method that had been found.

5) Reviewing the next method that had been found

For example, we have found Classes::TList::Add method. On one of the Xref we find
Classes::TList::Add method here:

CODE:0040F020 TThreadList::Add proc near ; CODE XREF:
TCanvas:: ...'+9Ep
CODE:0040F020 ;

Graphics:: 16725+Cdp
CODE:0040F020

CODE:0040F020 var 4 = dword ptr -4
CODE:0040F020

CODE:0040F020 push ebp

CODE:0040F021 mov ebp, esp
CODE:0040F023 push ecx

CODE:0040F024 push ebx

CODE:0040F025 mov ebx, edx
CODE:0040F027 mov [ebptvar 4], eax
CODE:0040F022A mov eax, [ebptvar 4]
CODE:0040F02D call TThreadList::LockList
CODE:0040F032 XOr eax, eax
CODE:0040F034 push ebp

CODE:0040F035 push offset loc 40F073
CODE:0040F032A push dword ptr fs:[eax]
CODE:0040F03D mov fs:[eax], esp
CODE:0040F040 mov eax, [ebptvar 4]
CODE:0040F043 mov eax, [eax+4]
CODE:0040F046 mov edx, ebx
CODE:0040F048 call TList::IndexOf
CODE:0040F04D inc eax

CODE:0040F04E jnz short loc 40F05D
CODE:0040F050 mov eax, [ebptvar 4]
CODE:0040F053 mov eax, [eax+4]
CODE:0040F056 mov edx, ebx
CODE:0040F058 call Classes::TList::Add(void *)

|.e. we have found TList::IndexOf method.

Further we see that we are in the method of TthreadList object and TList is its member. Here
we have nothing to look at. Let’'s assume that there are no more xref to Classes::TList::Add.
Go in TList::IndexOf method and look at its xref. One of them directs us here:

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

CODE:0040EE38 TList::Remove proc near ; CODE XREF:
TThreadList: :Remove+28p

CODE:0040EE38 ;
TCollection: :Removeltem+Bp

CODE:0040EE38 push ebx
CODE:0040EE39 push esi
CODE:0040EE3A mov ebx, eax
CODE:0040EE3C mov eax, ebx
CODE:0040EE3E call TList::IndexOf
CODE:0040EE43 mov esi, eax
CODE:0040EE45 cmp esi, OFFFFFFFFh
CODE:0040EE48 jz short loc 40EE53
CODE:0040EE4A mov edx, esi
CODE:0040EE4C mov eax, ebx
CODE:0040EE4E call TList::Delete
CODE:0040EES53

CODE:0040EES3 loc_4OEE53: ; CODE XREF':
TList::Remove+107

CODE:0040EES53 mov eax, esi
CODE:0040EES55 pop esi
CODE:0040EE56 pop ebx
CODE:0040EES57 retn

CODE:0040EE57 TList::Remove endp

So, TList::Delete and TList::Remove are found. And so forth for all xref and variables that
contain a pointer to the instance of a class. Here is an example of looking through the
variable:

CODE:0041319D mov eax, [ebptvar 4]

CODE:004131A0 mov edx, ds:pTList

CODE:004131A6 mov [eax+30h], edx ;a pointer to the instance of an
object is being copied

CODE:004131A9 jmp short loc 4131BD

We see below:

CODE:00413236 mov eax, [eax+30h]
CODE:00413239 mov edx, [ebp+var 10]
CODE:0041323C call TList::Get

How we can identify public or private methods? We can try to do that only when all the set of
methods is found. Private methods are called only inside the other object methods. l.e. we
should look at xref. While looking for methods we advise to number them first. It means as
you find the method, you name it Object1::Method1, Object1::Method2 and so on, and when
all the methods are found you may begin restoration of type and number of elements.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

4. Determination of the number of method arguments

For _ cdecl n _ stdcall there are few things to tell about, you just need to look on how much
of them have IDA found and subtract the 1 (i.e. the 1 is a pointer to the instance of an object,
and others are method arguments). There are more complications for __ fastcall. First we
need to remember the sequence order of arguments: EAX,EDX,ECX,stack. The analyze
begins with how much arguments that had been transmitted via stack does IDA have
counted. If there are at least one, we add to it 3 (3 register’s plus the ones for stack). As first
argument is allocated for This, we need to subtract the 1 from the number. The summary
value is the net number of arguments. If there are no stack arguments, we look at the
beginning of the function. Delphi tries not to spoil arguments values, so each __ fastcall

function begins with copying from registers EAX, EDX and ECX in such way:

mov esi,
mov ebx,
mov edi,

Depending on the number of registers that are being copied, one can conclude what is the
number of arguments. For example:

CODE:0040EBEO TList::Get

@GetClass+1Dp

CODE :

0040EBEO

edx ;

first parameter
eax ; pThis
ecx ;

second parameter

proc near

@UnRegisterModuleClasses+24p ...

CODE :
CODE :
CODE:
CODE :
CODE:
CODE:
CODE :
CODE:
CODE:
CODE:
CODE :

0040EBEO
0040EBEO
0040EBEO
0040EBEO
0040EBE1
0040EBE3
0040EBES
0040EBE6
0040EBE7
0040EBEY
0040EBEB

var_ 4

= dword ptr -4

push
mov
push
push
push
mov
mov
XOr

ebp

ebp, esp
0

ebx

esi

esi, edx
ebx, eax
eax, eax

’

CODE XREF':

There are 2 arguments, 1 of them is pThis, thus TList::Get has 1 argument.

CODE:
CODE :
CODE:
CODE:
CODE :
CODE:
CODE:
CODE :
CODE:

There are 3 arguments, 1 of them is for pThis, so total is 2 arguments. We should remind
you that we restore the number of arguments in initial method which is described in Delphi,
and in IDA, naturally, while declaring the function type we should write all the arguments in

004198cCC
004198CD
004198CF
004198D2
004198D3
004198D4
004198D5
004198D8
004198DB

push
mov
add
push
push
push
mov
mov
mov

ebp

ebp, esp

esp, OFFFFFF8Ch
ebx

esi
edi
[ebpt+var C], ecx
[ebptvar 8], edx
[ebpt+var 4], eax

consideration with This. Types of arguments try to determine on your own.

Copyright © 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use
only are permitted. Reproduction and distribution without permission is prohibited.

