
Vol. 2, No. 1 (2005) 
http://www.CodeBreakers-Journal.com

 
 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

 
VX Reversing III – Yellow Fever (Griyo 29a) 
 
 
 
 
Eduardo Labir*  
 
 
 
 
* Corresponding Author 
 
Received: 19. Dec. 2004, Accepted: 03. Feb. 2005, Published: 10. Feb. 2005 
 
 
 
 
 
 
Abstract 
 
This article provides an in-depth analysis of the I-Worm "win32.YellowFever", by "Griyo\29A". This is a proof 
of concept virus, meaning it has very sophisticated features which are very hard to find in the wild. Our analysis 
includes: a step-by-step guide to debug it and the construction of a bait file, which we use to run it under a 
controlled environment. Since the virus has not been spread there is no similar description published by the 
Anti-Virus companies. 
  
Keywords: Reverse Engineering, Computer Virus, Debugger, Self-Mailing, System Services 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

1. Introduction  
 
"Win32.Dengue" by "Griyo\29A",  called "YellowFever" at "29A e-zine #6", is an advanced i-worm 
with some really interesting features. In fact, this old i-worm is much more sophisticated than many of 
the 15-minute-fame ones we can see now in the wild. As you will see, nothing to be with Sasser [1] 
and others. In spite of its innovative techniques and quite complex programming, "YellowFever" has 
not received much attention at the Anti-Virus companies. This is simply because the virus has not 
been spread in the wild. Therefore, it is difficult to find even a few lines about it at the Anti-Virus 
home pages, for example [2, 3]. 
 
Our analysis shows how to do an step-by-step analysis of the virus and its techniques. Another 
interesting feature is the use of a home-made application, which we code with the only purpose of 
deceiving the worm. This paper is a natural step after [1, 4]. 
 
Short virus description: the worm installs itself as a system service. On startup, it enumerates all 
running applications looking for its target (Outlook). The infection procedure is very interesting: the 
virus has a small built-in debugger that uses to attach to the host. Next, it impersonates the host and, 
using its own "SMTP" engine, e-mails itself. "YellowFever" is not polymorphic but it it would be 
possible to add a poly-engine to it. The virus can bypass many of the user level firewalls, but it has not 
been coded for spreading. Of course, it has been fully written in Assembly. 
 
Reading this article requires knowing the basics of: assembly programming, user-level debuggers and 
the "SMTP" protocol. See MSDN [5] and the Winsock FAQ [6] for further references. 
 
2 Installing the Virus 
 
We load the virus in the debugger and here we are: 
 
00401000    CALL YELL0W.00401C4D 
00401005    PUSH YELL0W.00402000                        ; /pModule = "KERNEL32.DLL" 
0040100A    CALL <JMP.&KERNEL32.GetModuleHandleA>       ; \GetModuleHandleA 
 
Note that, without decryption, there are some readable strings in the data area: 
 
004020A0  00 FF FF FF FF 5B 20 59 65 6C 6C 6F 77 20 46 65       [ Yellow Fe 
004020B0  76 65 72 20 42 69 6F 43 6F 64 65 64 20 62 79 20  ver BioCoded by 
004020C0  47 72 69 59 6F 20 2F 20 32 39 41 20 5D 5B 20 44  GriYo / 29A ][ D 
004020D0  69 73 63 6C 61 69 6D 65 72 3A 20 54 68 69 73 20  isclaimer: This 
... 
 
An anti-virus might use them to identify YellowFever. Hopefully they do not. This constants could be 
easily modified by some script-kiddy. The routine "401C4Dh" decrypts the virus code. "Edi" points to 
the offset where the plaintext will be put: 
 
00401C4D   CLD                             ; 
00401C4E   MOV ECX,100                     ; length 
00401C53   MOV EDI,YELL0W.00402481         ; 
...                                        ; 
00401C72   LOOPD SHORT YELL0W.00401C58     ; 
00401C74   RETN                            ; return from call 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

2.1 Imports Reconstruction for the virus: APIs from kernel32 
 
Typically (see [4]), one of the first things to do in a virus is to get all the APIs it needs to interact with 
the system. The algorithm used in this case is a standard one, with exports table scanning and 
"CRC32s" for each imported API: 
 
00401017     MOV DWORD PTR [4023E9],EAX   ; save image base of kernel32 
0040101C     MOV EBX,EAX                  ; image base of kernel32 
0040101E     MOV ECX,24                   ; number of imported APIs 
00401023     MOV ESI,YELL0W.00402189      ; crc32 of the api names 
00401028   MOV EDI,YELL0W.004023ED        ; buffer to place the retrieved addresses 
0040102D     CALL YELL0W.00401D44         ; call FindApis 
 
Have a look at the value pointed by "esi" before entering in the (so called) FindApis procedure: 
 
00402189  6F 00 7A B8 9B 3A 7E 02 04 3A D1 3D 6A 13 D7 7E 
00402199  C4 D7 94 D0 F2 D6 07 03 BA 70 57 D1 D4 73 01 B0 
 
They look totally random, right?. This is because they are the "CRC32s" of the different APIs the virus 
needs to import. Debug into the call and you will find some of the constants (check issue "#1") having 
to be with the imports rebuilding method: 
 
00401D47   MOV EAX,DWORD PTR [EBX+3C]        ; 3Ch 
00401D4A   MOV EDX,DWORD PTR [EAX+EBX+78]    ; 78h 
 
Taking a closer look at the (so called) FindApis procedure we have: 
 
00401D5D   PUSH ESI                             ; push offset "ActivateActCtx" 
00401D5E   CALL YELL0W.00401C92                 ; call CRC32String 
... 
00401D68   CMP EAX,EDX                          ; found? 
00401D6A   JE SHORT YELL0W.00401D73             ; yes 
... 
00401D73   PUSH EBX                             ; hModule 
00401D74   CALL <JMP.&KERNEL32.GetProcAddress>  ; get API address 
 
 
List of APIs from kernel32 
 
Then, it will be enough to set a bpx on "GetProcAddress" and another one somewhere after the 
imports reconstruction to get the full list. Mind setting the later bpx, otherwise you will run the whole 
virus. This is the commented full list of APIs from "kernel32": 
 

1. File search: "FindFirstFileA", "FindNextFileA", "FindClose", "WriteFile". 
2. File handling: "CopyFileA", "CreateFileA", "CreateFileMappingA", "MapViewOfFile", 

"UnmapViewOfFile", "CloseHandle" and  "GetModuleFileNameA". 
3. User-level debugger construction: "DebugActiveProcess", "ContinueDebugEvent", 

"WaitForDebugEvent", "GetCurrentProcessID", "FlushInstructionCache", 
"ReadProcessMemory", "WriteProcessMemory", "GetThreadContext" and 
"SetThreadContext". 

4. Thread manipulation: "CreateThreadA", "WaitForSingleObject", "Sleep" and "ExitThread".  
5. Memory allocation: "VirtualAlloc" and "VirtualFree".  
6. Retrieve information about the current system: "GetCommandLineA", 

"GetComputerNameA", "GetSystemDirectoryA" and "GetVersionExA". 
7. Loading a DLL: "LoadLibraryA" and "FreeLibrary". 
8. Other APIs: "CreateProcessA", "DuplicateHandle", "ExitProcess"  and "GetCurrentProcess". 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Observe the virus has imported a group of APIs which is common in user-level debuggers 
implementation. The rest of APIs are very standard. 
 
2.2 Getting system information 
 
The next step for the the virus is to get some basic information about the system it lives in: 
 
00401AA1   CALL DWORD PTR [402449]    ; kernel32.GetVersionExA  
... 
00401ABA   PUSH 0                    ; (path to the file which created this 
process) 
00401ABC   CALL DWORD PTR [40243D]     ; kernel32.GetModuleFileNameA 
... 
00401AD8   CALL DWORD PTR [402431]     ; kernel32.GetComputerNameA 
 
00401AED   CALL DWORD PTR [402441]     ; kernel32.GetSystemDirectoryA 
 
The virus behaviour depends on the system version, for example: 
 

1. "Win9x": to be run on each startup, the virus adds itself to the registry key   
"HKLM\...\CurrentVersion\Run\". 
 

2. "WinNT": it installs itself as a system service. This guarantees being run on each startup   and 
also having more privileges than normal applications.   Indeed, there is an Anti-virus which 
cannot kill   "YellowFever" in memory. Amazing. 

 
We will only concentrate on its "WinNT" variant, but the article should be a good guide for those still 
working under "Win9x". 
 
2.3 Imports Reconstruction for the virus: other DLLs 
 
When the virus has loaded all APIs from "kernel32" and knows where it lives, it can import the rest of 
APIs from other DLLs. Note that the loaded APIs depend on the system version. The method to load 
DLLs different from "kernel32" is rather unusual: 
 

1. Create the string ""*.DLL"" dynamically. Normally,   strings are kept encrypted and decrypted 
on the fly. 
 

2. Enumerate all files in the system directory ending on  ""DLL"". 
 

3. For each DLL found: compute a "CRC32" of its name and compare it to a list of pre-stored 
values. If it matches, load the DLL and retrieve its APIs by means of FindApis (see above). 

 
 
Note: you will see that the virus plays with the system directory name and does some strange 
comparisons. Do not pay attention on them. They will make a sense in the next section. As we 
mentioned, the virus first enumerates all DLLs in the system directory: 
 
00401CB5   MOV EAX,YELL0W.00402A25    ; ASCII "C:\WINDOWS\System32\*.DLL" 
00401CBA   PUSH EAX                   ; 
00401CBB   CALL DWORD PTR [40241D]    ; kernel32.FindFirstFileA 
 
The virus has stored the "CRC32s" of the DLLs it looks for and compares them to the "CRC32" of 
current one. Note that the DLL name is always converted to capital cases before to compute the 
"CRC32", just in case: 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

00401CCB   mov esi,YELL0W.00402B59      ; ASCII "msdvdopt.dll" 
00401CD0   mov edi,YELL0W.00402881      ; output buffer 
00401CD5   call YELL0W.00401D86         ; convert to capital cases 
...                                     ; 
00401C9B   inc ecx                      ; \ 
00401C9C   scasb                        ; | compute length of the DLL name 
00401C9D   jnz short YELL0W.00401C9B    ; / 
00401C9F   call YELL0W.00401C75         ; CRC32 
 
This is how it goes through all dlls: 
 
... 
00401CE1   |CMP EDX,DWORD PTR [402A21] ; dll found? 
00401CE7   |JE SHORT YELL0W.00401D05   ; yes 
... 
00401CF5   |CALL DWORD PTR [402421]    ; No. Try next (call kernel32.FindNextFileA) 
00401CFB   |OR EAX,EAX                 ; end of search? 
00401CFD   \JNZ SHORT YELL0W.00401CC   ; nop, continue searching for more dlls 
00401CFF   POP EDI                    ; end of search, restore registers and return 
00401D00   POP ESI 
00401D01   POP ECX 
 
Why all this sophistication for loading a dll?. Possibly, Griyo wants to avoid having to store the names 
of the DLLs into the virus. This way, he only has to go to the system directory and search until it finds 
a DLL matching one of the pre-computed "CRC32s". Sometimes, AVs are able to look for the 
encrypted strings or the encryption algorithms. Not this time.  
 
We have to set two breakpoints: one at the end of the search, "401CFFh", and the other at the "yes 
found", "401D05h". When the virus finds an interesting DLL it appends its name to the system 
directory path and calls "LoadLibraryA": 
 
00401D21   CALL DWORD PTR [40244D]      ; kernel32.LoadLibraryA 
 
Next, it searches all interesting APIs at the DLLs Exports Table. The procedure to locate the APIs is 
the same we saw above (FindApis) . 
 
 
List of APIs from user32 and wsock32 
 
As we did for "kernel32", here is the list of APIs from both DLLs. Knowing them in advance almost 
provides a description of the virus. 
 

1. APIs from "user32.dll": 
a. "EnumWindows": enumerate all GUI-based applications. 
b. "GetClassNameA": get the class name of the window for a given one. 
c. "GetWindowThreadProcessId": get the process Id of the application owning  a given 

window. 
 

2. APIs "wsock32.dll": 
a. "send": send bytes through a connected socket. 
b. "recv": receive bytes from a connected socket. 
c. "WSAStartup": communications initialisation. 
d. "WSACleanup": closing communications. 
e. "ioctlsocket": controls some features of a socket, for example the maximum number 

of bytes it can send or receive. 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Some comments about the possible use of this APIs: 
 

1. "user32" APIs: as you can see, all those APIs focus on locating an application by the name of 
its window class. This trick is sometimes used by VXers to find AV products and kill them. 
The windows message system is flawed, meaning Windows does not check who sends a given 
message, and this can be used to kill applications. In this case, Griyo will only use these APIs 
to find his target. 
 

2. "Winsock" APIs: the virus has an internal "SMTP" engine that provides self-mailing 
capabilities. 

 
Before to continue getting APIs from "advapi32", the virus makes sure that the correct version of 
"Winsock" is available in the current machine. If not, the virus could not be e-mailed and it does not 
make any sense to stick trying to infect this machine: 
 
00401BB2   PUSH YELL0W.00403C54         ; pointer to data 
00401BB7   PUSH 101                     ; version requested 
00401BBC   CALL DWORD PTR [4029D5]      ; WS2_32.WSAStartup 
00401BC2   OR EAX,EAX                   ; version supported? 
00401BC4   JNZ SHORT YELL0W.00401C13    ; nope 
 
 
List of APIs from advapi32 
 
Finally, it retrieves the following APIs from "advapi32.dll": 
 

1. "CloseServiceHandle" 
2. "CreateServiceA" 
3. "OpenSCManagerA" 
4. "OpenServiceA" 
5. "RegisterServiceControlHandlerA" 
6. "SetServiceStatus StartServiceA" 
7. "StartServiceCtrlDispatcherA" 

 
Observe the API list. The virus will add itself as a system service. Services are run on each startup 
and, apart from it, normal applications cannot kill them. Two interesting features for a virus. Some 
other viruses use this trick as well. 
 
2.4 Adding the new "service" to the current machine 
 
Again, you will see some string manipulation. Let us postpone it for a while; it shall be much easier 
later. After it, the virus will try to copy itself to the system directory, where services need to be placed: 
 
0012FFB8    00402D95  |ExistingFileName = "C:\...\YELL0W.EXE" 
0012FFBC    00402C91  |NewFileName = "C:\WINDOWS\SYSTEM32\io32.EXE" 
0012FFC0    00000001  \FailIfExists = TRUE 
 
If the computer is already infected the call fails and the virus terminates. This explains why we have 
"FailIfExists = TRUE". The name of the virus is not constant, it can also be "nk32", "mj32" and 
others. 
 
As we commented above, the virus has imported from "Advapi32" procedures to add a new service to 
the system. A service is, in plain words, a resident program that responds to different inquires from the 
user. 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

The steps for starting a new service are well documented: first in all, open the 
"ServiceControlManager": 
 
004010B3   PUSH 2                        ; SC_MANAGER_ALL_ACCESS 
004010B5   PUSH 0                        ; ServiceActive database 
004010B7   PUSH 0                        ; local machine 
004010B9   CALL DWORD PTR [4029A1]       ; ADVAPI32.OpenSCManagerA 
004010BF   MOV DWORD PTR [4029F9],EAX    ; save returned handle 
 
Now, open the service. Note that the access we request needs to match the one in the previous call. On 
the other hand, the name of the service is the one of the file you have copied to the system directory: 
 
004010CC   PUSH 0F01FF                  ; fdwDesiredAccess = SERVICE_ALL_ACCESS 
004010D1   MOV EDI,YELL0W.00402A11      ; ASCII "io32", name of the service 
004010D6   PUSH EDI                     ; 
004010D7   PUSH EAX                     ; handle returned by OpenSCManagerA 
004010D8   CALL DWORD PTR [4029A5]      ; ADVAPI32.OpenServiceA 
 
This will start the virus as a service. The virus still needs to define the parameters of the new service, 
for example it needs to tell the "SCM" (Service Control Manager) that this service has to be run at 
startup. The set-up of the service is done by "CreateService": 
 
... 
00401108   CALL DWORD PTR [40299D]            ; CreateServiceA 
 
This API has many parameters (see "Win32.hlp"), but we are only interested in: 
 

1. "ServiceName = io32":  name of the file into the system directory. 
2. "lpDisplayName = NULL": name of the service that the user will see (for example, in 

"TaskManager"). 
3. "DesiredAccess = SERVICE_ALL_ACCESS". 
4. "ServiceType = 

SERVICE_WIN32_SHARE_PROCESS|SERVICE_INTERACTIVE_PROCESS": The 
second flag is to let the service to interact with the desktop. 

5. "StartType = SERVICE_AUTO_START": the service will be started at system startup. 
 
Finally, the virus starts execution of the service. We will run the service later, under a controlled 
environment. Therefore, replace the call by an "add esp, 0Ch" and let us see what happens next: 
 
00401117   PUSH 0                       ; 
00401119   PUSH 0                       ; 
0040111B   PUSH EAX                     ; 
0040111C   CALL DWORD PTR [4029B1]      ; ADVAPI32.StartServiceA 
 
 
2.5 Shutting down 
 
Job done!. The virus closes all handles, frees DLLs and exits: 
 
00401128   CALL DWORD PTR [402999]           ; ADVAPI32.CloseServiceHandle 
... 
004011CE   PUSH 0                            ; /ExitCode = 0 
004011D0   CALL DWORD PTR [402411]           ; \ExitProcess 
 
 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Our next step is to see what the new "service" does. For this, we have two alternatives: 
 

1. Attach to the virus after rebooting the machine. In this case, you would better patch the virus 
so it gets into an infinite loop at the very beginning. 
 

2. Start the copy of the virus at the system directory with a debugger and try to fool it. Mind the 
virus believes it is a service. 

 
The second way is the best one. Hands on. 
 
 
3. Manually "starting" the service 
 
Service installation has required adding some keys to the registry (use regedit to find them) and 
copying the virus to the system directory. Remember to get rid of these all after studying the virus. 
 
The service does not run in ring-0 and therefore has not any special privilege we do not have as admin. 
Note that the we are going to debug the copy of the virus at the system directory. Thus, there are not 
so many differences to care about. Let us start: 
 
00401000   CALL nk32.00401C4D                    ; little decryption algorithm 
00401005   PUSH nk32.00402000                    ; /pModule = "KERNEL32.DLL" 
0040100A   CALL <JMP.&KERNEL32.GetModuleHandleA> ; \GetModuleHandleA 
... 
 
Now, as we know, comes the imports reconstruction and some calls to get information about the 
system: system version, computer name, path to the file which created this process and system 
directory. Everything goes exactly as we saw above. In the previous section, we omitted some string 
manipulations arguing they would be easier to understand now. Let us see what we meant: 
 
00401053   MOV ESI,nk32.00402D95       ;  ASCII "C:\WINDOWS\SYSTEM32\nk32.EXE" 
00401058   MOV EDI,nk32.00402881       ;  ASCII "C:\WINDOWS\SYSTEM32\ADVAPI32.DLL" 
0040105D   PUSH EDI                    ; 
0040105E   CALL nk32.00401D86          ; 
... 
00401081   CMP EAX,EDX                 ; compare CRC32 of both paths 
00401083   JE nk32.004011D6            ; 
 
The virus takes the path to the current program and compares it to the path to the service, which is 
constructed concatenating the name of the service to the system directory. If they agree then it runs as 
a service. After checking whether it is a service or not, the virus will retrieve the command line: 
 
004011E4   CALL DWORD PTR [40242D]       ; kernel32.GetCommandLineA 
 
And later it will start the service dispatcher: 
 
0040121F   CALL DWORD PTR [4029B5]       ; ADVAPI32.StartServiceCtrlDispatcherA 
 
The only parameter of "StartServiceCtrlDispatcherA" is a pointer to the Service Table, which 
describes the service. In this case we have "pServiceTable = 402A10h", pointing to: 
 
dd 402A11 
dd 401232 
dd 0 
dd 0 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

If you review "win32.hlp" you will see that this is a "NULL" terminated array of 
"SERVICE_TABLE_ENTRY" elements, each one has two fields: 
 

1. "lpServiceName": pointer to the service name, "io32" in this case. 
2. "lpServiceProc": pointer to the service procedure. The service procedure is similar to the 

"EntryPoint" of a DLL. 
 
In our case, the name of the service is "io32" and the entry point of the handler "401232h".  The 
simplest thing to do here is to substitute the call to "StartServiceCtrlDispatcherA" by a call to the 
dispatcher itself. This way, we can run its code and analyse it: 
 
0040121F   CALL DWORD PTR [4029B5]       ; replace by call 401232 
 
Note that this is possible because the virus does not run at "ring-0". A very different problem would be 
to debug a kernel-driver virus. Anyway, we are at the start of the service: 
 
00401232   pushad 
00401233   mov eax,io32.00401260 
 
The service saves all registers and then calls "RegisterServiceCtrlHandlerA". This registers its own 
handler, which should be later called by the applications requesting some service from it: 
 
00401239  MOV EAX,io32.00402A11     ; ASCII "io32" (name of service) 
0040123E  PUSH EAX                  ; address of handler 
0040123F  CALL DWORD PTR [4029A9]   ; ADVAPI32.RegisterServiceCtrlHandlerA 
 
Substitute the previous call by an "add esp, 8". This equilibrates the stack and let us to continue. Note: 
this is the same than emulators do with known calls. The service name is "io32" and the address of the 
handler is "401260h". This handler only consists of two instructions: 
 
00401260  ADD ESP,4 
00401263  RETN 
 
Therefore, a do nothing handler. The service simply returns when is called. In fact, the service will not 
be called by any program, because the virus does not worry about it and the rest of applications do not 
know its existence. Now the service informs the system that it is active and can be called: 
 
00401249  PUSH io32.00402089         ; status information 
0040124E PUSH EAX                  ; handle returned by RegisterServiceCtrlHandlerA 
0040124F  CALL DWORD PTR [4029AD]    ; ADVAPI32.SetServiceStatus 
 
Note: again, substitute the previous call by "add esp, 8". 
 
As we said, this service consists of a do-nothing procedure which will not be called by any 
application. This guarantees that the service will run until the system is shut down. On the other hand, 
the "main" of the service works independently of the handler. Its work is to infect the system: 
 
00401259  CALL io32.00401298          ; call InfectSystem 
 
 
 
 
 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

4. Finding the target 
 
 
This is the beginning of the so called "InfectSystem" procedure. The first instructions only get the 
pointer to the PE header for "wsock32". Later, we will see that it needs this value to hook the APIs in 
the target process: 
 
... 
00401298  MOV EAX,DWORD PTR [4029C9]         ; image base of wsock32 
0040129D  MOV ESI,DWORD PTR [EAX+3C] 
004012A0  ADD ESI,EAX 
 
 
The virus is going to send itself by e-mail. Therefore, it needs to manipulate (encode) a copy of itself 
in memory that will be attached to the mails: 
 
... 
004012C4  PUSH io32.00402C91         ; FileName = "C:\WINDOWS\SYSTEM32\io32.EXE" 
004012C9  CALL DWORD PTR [4023F9]    ; CreateFileA 
... 
004012DF  PUSH EAX                   ; hFile 
004012E0  CALL DWORD PTR [4023FD]    ; CreateFileMappingA 
... 
004012F4  PUSH EAX                   ; hMapObject 
004012F5  CALL DWORD PTR [402451]    ; MapViewOfFile 
 
 
Now, the virus allocates some memory and overwrites it with the word "0DA0h" (this is "CTRL-F", 
used to format lines into "SMTP" protocols): 
 
... 
00401313  CALL DWORD PTR [402465]   ; VirtualAlloc 
... 
0040132A  MOV AX, 0A0D              ; Fill with CTRL-F 
0040132E  REP  STOS WORD PTR [EDI]  ; 
 
00401332  call mj32.00401877        ; EncodeVirus 
 
As you can see, the virus has allocated a buffer, filled it with "CTRL-F" and encoded there the virus 
body ("edi" points to the "MZ" header before the call). The encoding algorithm is, most likely, 
"BASE64". We know it because: first, this is a common algorithm used to send mails. Second and last, 
the next string was visible in the data section at the very beginning, before the first decryption: 
 
00402040                          41 42 43 44 45 46 47 48          ABCDEFGH 
00402050  49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58  IJKLMNOPQRSTUVWX 
00402060  59 5A 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E  YZabcdefghijklmn 
00402070  6F 70 71 72 73 74 75 76 77 78 79 7A 30 31 32 33  opqrstuvwxyz0123 
00402080  34 35 36 37 38 39 2B 2F                                456789+/ 
 
Exactly 64 different characters, the ones appearing in the encoded virus. After this, the virus closes all 
unnecessary handles: 
 
00401337     CALL DWORD PTR [402461]      ; UnmapViewOfFile 
0040133D     CALL DWORD PTR [4023ED]      ; CloseHandle 
00401343     CALL DWORD PTR [4023ED]      ; CloseHandle 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Here begins the real fun: the virus creates a new thread. This does not mean this is a multi-threaded 
application. In fact, threads are used only to never stop looking for its target. The new thread will be in 
charge of locating, debugging  and hooking the victim: 
 
0040136C    push eax                       ; ThreadFunction = 4013AA 
...                                        ; 
0040136F    call dword ptr [402405]        ; CreateThread 
 
The thread creation is included in the following loop: 
 
00401349    /xor eax,eax 
0040134B    |mov dword ptr [402FC5],eax 
... 
0040136F    |call dword ptr [402405]        ; CreateThread 
... 
0040137C    |call dword ptr [402471]        ; WaitForSingleObject 
00401382    \jmp short io32.00401349 
 
We simply set a bpx at the beginning of the thread, "4013AAh", and let the virus run. Sooner or later 
the debugger will be prompted there. Then, you can patch the main thread so it does not interfere with 
more calls to "CreateThread". 
 
As we are going to see, the thread is going to enumerate all windows in the desktop. The virus 
compares the hash of the class name of each found window with a pre-stored value. Thus, it is 
impossible to know in advance what it is looking for. There are two alternatives: 
 

1. Patch the virus so it admits any application having some characteristics (for a start, it should 
be able to send mails). 

2. Try our luck: most likely, the virus is looking for "IExplorer", "Eudora", "Outlook"… Fire 
them up and see what happens. 

 
The second approach makes easy to identify the target: Outlook. Let us have a look at how the 
windows enumeration works. The method is interesting because is also present in some anti-cracking 
protections: 
 
004013BA    push eax                        ; |Callback => io32.0040194B 
004013BB    call dword ptr [402989]         ; \EnumWindows 
 
"EnumWindows" defines a recursive procedure, see the parameter "callback", which is called until no 
more windows are found. The "callback" receives a handle to the current window and, after checking 
it, has to decide whether it continues the enumeration or stops. To cover all cases, we set a bpx at the 
start of the "callback" procedure and another one after the call to "EnumWindows": 
 
0040194B    mov eax,dword ptr [esp+4]       ; start of CallBack procedure 
0040194F    push ebx 
 
The "CallBack" procedure gets the class name, hashes it and compares the hash to a given value.  If 
they are not equal then it continues with the enumeration. Otherwise, it gets the "Process Id" of the 
current application and terminates: 
 
 
 
 
 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

0040195D    push eax                         ; hWnd 
0040195E    call dword ptr [40298D]          ; GetClassNameA 
 
00401968    call mj32.00401C92               ; compute hash 
0040196D    cmp edx,0CFA7A89                 ; compare to target 
00401973    jnz short mj32.0040198E          ; 
 
; if found, get pId and return 
 
0040197A    push eax                         ; /pProcessID => mj32.00402FC5 
0040197B    push edi                         ; |hWnd 
0040197C    call dword ptr [402991]          ; \GetWindowThreadProcessId 
00401982    mov dword ptr [402FC9],eax 
 
 
 
5. Deceiving the virus 
 
What we are going to do is to create a small windows based application which hijacks the windows 
class name of Outlook. This way, the virus will detect our application and will try to infect it. Note 
that there is no need to have the actual target running, which could be very dangerous. The only 
inconvenient is that we need to send mails, because the virus is a self-mailing one.  
 
The class name the virus looks for is  "Outlook Express Browser Class". To know the class name of an 
application run it under Olly and see the list of windows. The code of our fake Outlook, with 
explanations, has been included in the Appendix. Have a look at it before the next section. 
 
 
 
6. Hooking the target 
 
The virus is going to attach to our fake Outlook. This provides it a lot of information about it: loaded 
DLLs, existing threads, exceptions,\dots. If you have never debugged a debugger this is a nice chance 
to start. Please, note this is not a tutorial on how to build a user level debugger, consult "win32.hlp" for 
details. 
 
The first step, given the "ProcessId", is to call "DebugActiveProcess". This attaches to the target 
application: 
 
004013D8    push esi                        ; /ProcessId = 3CC 
004013D9    call dword ptr [402409]         ; \DebugActiveProcess 
 
Now, you have to enter into an infinite loop that awaits for the debug events and replies accordingly: 
 
004013F2    call dword ptr [40246D]         ; WaitForDebugEvent 
 
Well, let us have a look at what the virus does for each debug event. Consult "win32.hlp" and you will 
see the following events defined: 
 
EXCEPTION_DEBUG_EVENT                equ 1 
CREATE_THREAD_DEBUG_EVENT            equ 2 
CREATE_PROCESS_DEBUG_EVENT           equ 3 
EXIT_THREAD_DEBUG_EVENT              equ 4 
EXIT_PROCESS_DEBUG_EVENT             equ 5 
LOAD_DLL_DEBUG_EVENT                 equ 6 
UNLOAD_DLL_DEBUG_EVENT               equ 7 
OUTPUT_DEBUG_STRING_EVENT            equ 8 
RIP_EVENT                            equ 9 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Some of this cases are distinguished in a switch inside the virus: 
 
00401402      cmp eax,1 
00401405      je mj32.0040153D 
0040140B      cmp eax,2 
0040140E      je mj32.0040149C 
00401414      cmp eax,3 
 
The first debug event we receive is a "CREATE_PROCESS_DEBUG_EVENT". This is always 
received, therefore not very interesting for a virus. In this case, YellowFever duplicates the handle to 
the main thread of the target application, manipulates a list and continues. To continue the debuggee 
one always has to call "ContinueDebugEvent" and go to await another event: 
 
00401442      push edx                       ; |ProcessId = 6A0 
00401443      call dword ptr [4023F1]        ; \ContinueDebugEvent 
... 
004013F2      call dword ptr [40246D]        ; WaitForDebugEvent 
 
Now, we receive a "LOAD_DLL_DEBUG_EVENT". This informs the debugger about a new loaded 
DLL. The virus reads the image base of the DLL, which is sent to the debuggee in the information 
associated to the debug event, and compares it to the one of Wsock32. If they do not match, it simply 
goes to await another event: 
 
004019A4      mov ebx,eax                    ;  ntdll.77F40000 
004019A6      cmp ebx,dword ptr [4029C9]     ;  WSOCK32.#1139 
004019AC      jnz short mj32.00401A0E        ; 
 
You will see several more DLLs until "wsock32" is loaded. Then, it reads "e_lfanew" at the "PE-
header" of the target process: 
... 
00401A4C      push eax                        ; |pBaseAddress = 71A5003C 
00401A4D      push dword ptr [402FCD]         ; |hProcess = 0000006C 
00401A53      call dword ptr [402455]         ; \ReadProcessMemory 
 
And, with this information, moves to read a piece of the "IMAGE_OPTIONAL_HEADER32": 
 
00401A4A      push ecx                        ; |BytesToRead  = 14 
... 
00401A4C      push eax                        ; |pBaseAddress = 71A500D8 
... 
00401A53      call dword ptr [402455]         ; \ReadProcessMemory 
 
Actually, "wsock32" is always loaded at the same image base in all processes in the same Operating 
System. Thus, retrieving this information is a loss of time. Anyway, this would let to generalise this 
hooking procedure for other DLLs: 
 
00401A4A      push ecx                       ; |BytesToRead  = 1 
... 
00401A4C      push eax                       ; |pBaseAddress = 71A31AF4 
... 
00401A53      call dword ptr [402455]        ; \ReadProcessMemory 
 
"71A31AF4h" is the address of "WS2_32.send", the API to send information through a 
communication socket. To hook this API, the virus only needs to overwrite its first byte with an "int3". 
This way, every time the API is called the virus will receive an "EXCEPTION_DEBUG_EVENT": 
 
... 
00401A73      call dword ptr [402479]        ; WriteProcessMemory 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

After hooking the API, the virus awaits the next event. It receives more events corresponding to 
loaded DLLs and also a "CREATE_THREAD_DEBUG_EVENT", which corresponds to the creation 
of the primary thread. This event is not interesting at all. We want to know what the virus does when it 
receives the "int3" above.  
 
 
 
7. Self-mailing 
 
In this last part of the virus analysis we will try to understand how the self-mailing mechanism works. 
For now, the virus has attached to the target process and has hooked the entry point of the API 
"WS2_32.send", which is used to send information through a socket. Please, review the basics of 
Winsock programming in case you need it. 
 
Finally, we receive the first "EXCEPTION_DEBUG_EVENT". Note that this exception is always at 
"NTDLL.DebugBreak", because the application is being debugged. Thus, the user-level debugger 
needs to discard those "int3" not taking place at the "EntryPoint" of the hooked API. The following 
switch checks the exception code: 
 
0040153D    mov eax,dword ptr [esi+8]   ; read exception code 
00401540    cmp eax,80000004            ; STATUS_SINGLE_STEP 
00401545    je short io32.00401558 
00401547    cmp eax,80000003            ; STATUS_BREAKPOINT 
0040154C    je short io32.004015A0 
0040154E    mov ecx,80010001            ; DBG_EXCEPTION_NOT_HANDLED 
00401553    jmp io32.00401436 
 
So, the virus handles "int1", "int3" and unhandled exceptions. Why so many ones?. We will see it in a 
few minutes. 
 
Now, the virus enters into the case "int3" and checks the address where the exception has taken place. 
If this is not the "EntryPoint" of "WS2_32.send" the exception is ignored and it waits for the next one:: 
 
004015A6      mov edi,dword ptr [esi+14]   ; ntdll.DbgBreakPoint 
004015A9      cmp edi,dword ptr [4029CD]   ; WS2_32.send 
004015AF      jnz short mj32.004015D5 
 
Note: here you will receive an "EXIT_THREAD_DEBUG_EVENT". This is totally irrelevant. We 
omit it for not to make a mess with the rest of the analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

The virus receives another "int3", but this time it has taken place at "WS2_32.send" and it will be 
handled. Let us see the steps the virus takes when this happens: 
 

1. Read the context of the thread in the target which has provoked the exception: 
 
004015C9      call dword ptr [402445]       ; GetThreadContext 
 

2. Reads the value of "Cx_Esp" from the context of the offending thread. This lets the virus to 
know the parameters of the call:  
 
0040183C      mov eax,dword ptr [edi+C4]    ; address in target (Cx_Esp) 
00401842      mov ecx,14                    ; number of bytes to read 
00401847      mov esi,mj32.0040385A         ; buffer 
0040184C      call mj32.00401A42            ; ReadTargetMemory 
 
Note: see the context structure at "windows.inc" to check that "Cx_Esp" is actually at 
displacement "0C4h". 
 

3. Read the data sent by the target application. As you can see, the second parameter of 
"WS2_32.send" is a pointer to the buffer containing the data. This can be found at "[esp+8]", 
its length is at "[esp+0Ch]": 
 
00401855      mov ecx,dword ptr [esi+C]         ; read length of data 
00401858      jecxz short mj32.00401874         ; check length 
0040185A      cmp ecx,100                       ; 
00401860      jnb short mj32.00401874           ; 
00401862      mov eax,dword ptr [esi+8]         ; read pointer to data 
00401865      mov esi,mj32.00403B54             ; buffer to store the data 
0040186A      call mj32.00401A42                ; ReadTargetMemory 

 
The virus knows now what the virus is sending. The next step is to modify the message so it contains a 
copy of the worm as attachment. At this point, it is recommendable to read the "RFC" of the "SMTP" 
protocol. 
 
The virus computes a hash of the first "dword" of the data to some magic values: 
 
004015EC      call mj32.00401C75        ; hash 
... 
004015F3      cmp edx,D15EC8BC 
004015F9      je short mj32.00401637 
004015FB      cmp edx,6A304C39 
00401601      je short mj32.00401656 
00401603      cmp edx,3DDCB44E 
00401609      je short mj32.00401675 
 
This three cases need to be common headers sent along the "SMTP" protocol. Our fake Outlook sends 
a complete mail and, therefore, the virus should happily find all cases now. As you can well imagine, 
the virus will modify the protocol adding the "MIME" headers and the "BASE64"-encoded virus body. 
 
If non of the previous cases is detected the virus sets the trap flag and makes "Cx_Eip" to go back one 
instruction: 
 
0040160D      dec dword ptr [edi+B8]            ; move Cx_Eip to WS2_32.send 
00401613      or dword ptr [edi+C0],100         ; set trap flag 
...                                             ; 
0040161F      call dword ptr [402459]           ; kernel32.SetThreadContext 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Next, it replaces the int3 with the original instruction: 
 
00401625      mov edi,dword ptr [4029CD]         ; write to WS2_32.send 
0040162B      mov esi,mj32.00402FE9              ; read from 
00401630      call mj32.00401A32                 ; WriteTargetMemory 
 
Therefore, the original instruction will be run and then the virus will receive an 
"EXCEPTION_SINGLE_STEP". Then, the virus can take advantage to hook again the API, 
overwriting its first instruction with an int3. Apart from it, the virus has to clear the trap flag so 
execution can continue. Note that, without this trick, we would loose the hook in the first API call. 
 
00401558      mov edi,dword ptr [4029CD]         ; WS2_32.send 
0040155E      call mj32.00401A1B                 ; hook API (writes an int3) 
... 
0040157E      push esi                           ; |hThread 
0040157F      call dword ptr [402445]            ; \GetThreadContext 
... 
00401589      and dword ptr [edi+C0],FFFFFEFF    ; clear TF 
... 
00401595      call dword ptr [402459]            ; SetThreadContext 
... 
00401443      call dword ptr [4023F1]            ; ContinueDebugEvent 
 
The target sends the data through the socket and moves to send the next part of the mail. Therefore, the 
virus will be eventually called. The next piece of the mail that the fake Outlook sends is: 
 
00403B54  4D 41 49 4C 20 46 52 4F 4D 3A 20 3C 59 65 6C 6C  MAIL FROM: <Yell 
00403B64  6F 77 46 65 76 65 72 40 32 39 41 2E 63 6F 6D 3E  owFever@29A.com> 
00403B74  0F 0A                                            . 
 
This matches the first case of the switch above: 
 
004015F3      cmp edx, D15EC8BC            ; FROM 
004015F9      je short mj32.00401637 
 
The virus copies all the data ""FROM:<...>"" to a buffer and proceeds to set the trap flag and let the 
target to continue. Next, the target sends: 
 
00403B54  52 43 50 54 20 54 4F 3A 20 3C 65 6C 61 62 69 72  RCPT TO: <elabir 
00403B64  40 68 6F 74 6D 61 69 6C 2E 63 6F 6D 3E 0F 0A   @hotmail.com> 
 
This matches this case: 
 
004015FB      cmp edx, 6A304C39              ; RCPT TO 
00401601      je short mj32.00401656 
 
Again, the data is copied to another buffer and the virus sets the trap flag and so on. After this, the 
target sends the "DATA" header of the message, which is not handled, and finally the terminating 
"DOT", which matches the following case: 
 
00401603      cmp edx, 3DDCB44E 
00401609      je short mj32.00401675 
 
Now, the behaviour is rather different: the virus duplicates the handle to the socket used by the target. 
Then, it can use this fake handle to impersonate the target and call "WS2_32.send" on its behalf. Note 
that the handle to the socket in the target process was one of the parameters of "WS2_32.send": 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

004016A0      call dword ptr [40240D]        ; DuplicateHandle 
... 
004016B7      push dword ptr [40393C]        ; |Socket = B4 
004016BD      call dword ptr [4029CD]        ; \send 
 
In this last call, the virus has sent the terminating " 0Dh, 0Ah, 2Eh, 0Dh, 0Ah", which marks the end 
of a mail.  Next, the virus sends a second mail having itself as the attachment.  Note that this is only a 
"proof of concept" virus. In real life one can do more suitable  things, for example: adjust the language 
 of the mail, add some picture, add random message bodies,… The virus needs to adjust some 
parameters of the socket before to call "WS2_32.send", for example the maximum number of bytes to 
send. This stuff can be controlled by means of the API "ioctlsocket". Observe that, either the virus has 
a bug or "win32.hlp" is wrong (the second one, i am afraid), because otherwise the next comparison 
would lead to an infinite loop: 
 
004017FE      call dword ptr [4029DD]        ; call ioctlsocket 
00401804      cmp dword ptr [403DE4],0       ; 
0040180B      je short mj32.004017E4         ; ??? 
 
So, change the conditional jump and continue. After this, there is a call to "WS2_32.recv", which 
receives the reply from the server. Of course, we will not have any reply. Change the return, "eax", to 
the number of bytes received so the virus thinks everything is ok. Right after this the virus sends a 
second mail with the added attachment. This is what it sends: 
 
0040394C  4D 41 49 4C 20 46 52 4F 4D 3A 20 3C 59 65 6C 6C  MAIL FROM: <Yell 
0040395C  6F 77 46 65 76 65 72 40 32 39 41 2E 63 6F 6D 3E  owFever@29A.com> 
0040396C  0F 0A                                            . 
 
00403A50  52 43 50 54 20 54 4F 3A 20 3C 65 6C 61 62 69 72   RCPT TO: <elabir@hotm 
00403A60  40 68 6F 74 6D 61 69 6C 2E 63 6F 6D 3E 0F 0A      ail.com>. 
 
00402269  44 41 54 41 0D 0A                                DATA.. 
 
00403951  46 52 4F 4D 3A 20 3C 59 65 6C 6C 6F 77 46 65 76  FROM: <YellowFev 
00403961  65 72 40 32 39 41 2E 63 6F 6D 3E 0F 0A           er@29A.com>. 
 
 
00403A55  54 4F 3A 20 3C 65 6C 61 62 69 72 40 68 6F 74 6D  TO: <elabir@hotm 
00403A65  61 69 6C 2E 63 6F 6D 3E 0F 0A                    ail.com>. 
 
; now comes a block declaring the attachment 
 
0040226F  53 75 62 6A 65 63 74 3A 20 70 69 63 2E 67 69 66  Subject: pic.gif 
0040227F  20 20 ... 
... 
00402370                 20 20 2E 73 63 72 0D 0A 4D 49 4D         .scr..MIM 
00402380  45 2D 56 65 72 73 69 6F 6E 3A 20 31 2E 30 0D 0A  E-Version: 1.0.. 
00402390  43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 69 6D  Content-Type: im 
004023A0  61 67 65 2F 67 69 66 3B 20 63 68 61 72 73 65 74  age/gif; charset 
004023B0  3D 75 73 2D 61 73 63 69 69 0D 0A 43 6F 6E 74 65  =us-ascii..Conte 
004023C0  6E 74 2D 54 72 61 6E 73 66 65 72 2D 45 6E 63 6F  nt-Transfer-Enco 
004023D0  64 69 6E 67 3A 20 62 61 73 65 36 34 0D 0A 0D 0A  ding: base64.... 
 
; finally, the encoded virus 
 
003C0000  54 56 70 51 41 41 49 41 41 41 41 45 41 41 38 41  TVpQAAIAAAAEAA8A 
003C0010  2F 2F 38 41 41 4C 67 41 41 41 41 41 41 41 41 41  //8AALgAAAAAAAAA 
003C0020  51 41 41 61 41 41 41 41 41 41 41 41 41 41 41 41  QAAaAAAAAAAAAAAA 
... 
 
After sending itself, the virus sets again the trap flag at the "EntryPoint" of "WS2_32.send", restores 
the original instruction and the story starts again. This completes our analysis of "Win32.Dengue". 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

7. Summary 
 
Let us do a small summary of all new concepts we have learnt so far: 
 

1. Dynamic data: the virus avoids having stored or encrypted information. Instead, it builds its 
data dynamically. This is a good weapon again static analysers. 
 

2. User-level debuggers: the virus contains a user-level debugger that it uses to attach to the host. 
This provides important information, which can be used for hooking APIs and interfering with 
the "SMTP" protocol. We needed to review user-level debuggers and devise a method to 
extract information from only the debugger (we did not have information from the debuggee). 
 

3. "SMTP" protocol: nowadays, most viruses implement an internal "SMTP" engine which they 
use to e-mail themselves. In this article, we have review this protocol and built a small 
application that we used to deceive the virus. 
 

4. System services: the virus uses the Service Control Manager to install itself as a system 
service. Therefore, we also need a method to debug an application which is loaded before the 
debugger. Fortunately, the virus does not make extensive use of services features, making our 
job much easier. 

 
To defeat the virus, we have debugged into each one of its parts and constructed a small application to 
use as bait file. This file has been coded after having collected a minimum information about the virus. 
Of course, one needs to update its bait file as he finds out more characteristics of the software to 
analyse. 
 
8. Conclusions 
 
"Win32.YellowFever" shows that conceptual complexity of current i-worms in the wild is well far 
from what can be done. Analysis of "Win32.YellowFever" has required understanding user-level 
debuggers and basic knowledge of the "SMTP" protocol, which we implemented in a small "Anti-
YellowFever" application. On the other hand, we have seen there is no need of buying expensive 
software or using sophisticated tools to reverse malware. 
 
 
 
 
 
References 
 
1. Labir, E., VX-Reversing II, Sasser.B. CBJ, 2004. 1(1). 
2. Symantec, Symantec Antivirus Software and Information. http://www.symantec.com, 

2005. 
3. F-Prot, F-Prot Antivirus Software. http://www.f-prot.com, 2005. 
4. Labir, E., VX-Reversing I, the Basics. CBJ, 2004. 1(1). 
5. Microsoft, MSDN - Microsoft Development Network. http://www.msdn.com, 2005. 
6. Socket-Internet, Winsock Programmers FAQ. http://www.socket.com, 2005. 
 
 
 
 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

Appendix: AntiYellow.asm 
 
.386 
.model flat,stdcall 
option casemap:none 
 
 
;........................................................................... 
;                          includes 
;........................................................................... 
 
  include \masm32\include\windows.inc 
 
  include \masm32\include\user32.inc 
  include \masm32\include\kernel32.inc 
  include \masm32\include\wsock32.inc 
 
  includelib \masm32\lib\user32.lib 
  includelib \masm32\lib\kernel32.lib 
  includelib \masm32\lib\wsock32.lib 
 
 
  WinMain proto :DWORD,:DWORD,:DWORD,:DWORD 
 
 
; my own constants and stuff 
 
SOCKET_VERSION    EQU 0202h         ; no need to request such a high version 
LOCAL_HOST        EQU 0100007FH     ; 127.0.0.1 
 
;......................................................................... 
;                       data section 
;.......................................................................... 
 
.data 
 
zsClassName  db "Outlook Express Browser Class",0   ; target class 
zsAppName    db "Hello YelloFever",0                ; title of window 
zsWsockError db 'Winsock Error',0 
 
;  Constants for the mini-SMTP engine. 
 
zsHelo        db 'HELO <hotmail.com>', 0Dh, 0Ah 
zsMailFrom    db 'MAIL FROM: <YellowFever@29A.com>', 0Dh, 0Ah 
zsRcptTo      db 'RCPT TO: <elabir@hotmail.com>', 0Dh, 0Ah 
zsData        db 'DATA', 0Dh, 0Ah 
zsMsgBody     db 'regards', 0Dh, 0Ah 
zsDot         db  0Dh, 0Ah, '.', 0Dh, 0Ah 
zsQuit        db 'QUIT', 0Dh, 0Ah 
 
; for working with WSOCK 
 
LocalAddr sockaddr_in <0> 
mySocketOut    SOCKET  0 
mySocketIn     SOCKET  0 
 
SocketData WSADATA <0> 
 
; some general variables 
 
hInstance HINSTANCE 0 
CommandLine dd 0 
buffer      dd 0 
ThreadID    dd 0 
hfile       dd 0 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

hmap        dd 0 
LOG_SIZE    dd 10000h        ; size of buffer to create 
 
 
;............................................................................ 
;                       AntiYellow code 
;............................................................................ 
; Description: The application keeps a log of all sent mails. Then 
; it creates a window with the same class name than outlook and also 
; a new thread. The thread is an infinite loop that sends a mail 
; ONLY when it is debugged (because YellowFever will debug it). 
;............................................................................ 
 
.code 
start: 
 
      ;............................................................... 
      ;    create the window (see iczelion homepage for details) 
      ;............................................................... 
 
 
    invoke GetModuleHandle, NULL 
    mov    hInstance,eax 
 
    invoke GetCommandLine 
    mov    CommandLine,eax 
 
    invoke WinMain, hInstance,NULL,CommandLine, SW_SHOWDEFAULT 
    invoke ExitProcess,eax 
 
 
WinMain proc hInst:HINSTANCE,hPrevInst:HINSTANCE,CmdLine:LPSTR,CmdShow:DWORD 
    LOCAL wc:WNDCLASSEX 
    LOCAL msg:MSG 
    LOCAL hwnd:HWND 
    mov   wc.cbSize,SIZEOF WNDCLASSEX 
    mov   wc.style, CS_HREDRAW or CS_VREDRAW 
    mov   wc.lpfnWndProc, OFFSET WndProc 
    mov   wc.cbClsExtra,NULL 
    mov   wc.cbWndExtra,NULL 
    push  hInstance 
    pop   wc.hInstance 
    mov   wc.hbrBackground,COLOR_WINDOW+1 
    mov   wc.lpszMenuName,NULL 
    mov   wc.lpszClassName,OFFSET zsClassName   ; Outlook class name (above) 
 
 
; load the icon 
 
    invoke LoadIcon,NULL,IDI_APPLICATION 
    mov   wc.hIcon,eax 
    mov   wc.hIconSm,eax 
 
; load the cursor 
 
    invoke LoadCursor,NULL,IDC_ARROW 
    mov   wc.hCursor,eax 
 
; register our window class 
    invoke RegisterClassEx, addr wc 
 
 
; create window 
 
    INVOKE CreateWindowEx,NULL,ADDR zsClassName, ADDR zsAppName,\ 
           WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,\ 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

           CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,\ 
           hInst,NULL 
 
        mov hwnd,eax 
 
; show and update the window 
 
    invoke ShowWindow, hwnd,SW_SHOWNORMAL 
    invoke UpdateWindow, hwnd 
 
;............................................................... 
;         start a new thread for sending the messages 
;............................................................... 
 
    mov eax, OFFSET ThreadProc 
    xor ebx, ebx 
    invoke CreateThread,\ 
            ebx,\               ; security attributes 
            ebx,\               ; stack size 
            eax,\               ; start address 
            ebx,\               ; parameter for thread 
            ebx,\               ; creation flags 
            ADDR ThreadID       ; storage for thread id 
 
; message loop 
 
    .WHILE TRUE 
                invoke GetMessage, ADDR msg, NULL, 0, 0 
        .BREAK .IF (!eax) 
        invoke TranslateMessage, ADDR msg 
        invoke DispatchMessage, ADDR msg 
    .ENDW 
 
    mov     eax, msg.wParam 
    ret 
 
WinMain endp 
 
 
;.......................................................................... 
;                       Window Procedure 
;.......................................................................... 
 
 
 
WndProc proc hWnd:HWND, uMsg:UINT, wParam:WPARAM, lParam:LPARAM 
 
    .IF uMsg==WM_DESTROY 
        invoke PostQuitMessage,NULL 
    .ELSE 
        invoke DefWindowProc,hWnd,uMsg,wParam,lParam 
        ret 
    .ENDIF 
    xor eax,eax 
    ret 
 
WndProc endp 
 
;........................................................................... 
;                   My thread to send messages to the server 
;.......................................................................... 
 
ThreadProc proc     lpParam:DWORD 
 
; initialize winsock 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

    invoke WSAStartup, SOCKET_VERSION, ADDR SocketData 
    .if eax != NULL 
        jmp @@ErrorWinsock 
    .endif 
 
 
; create an origin socket (to send data from) 
 
    invoke socket, PF_INET, SOCK_RAW, IPPROTO_IP 
    mov mySocketIn, eax 
 
    .if eax == INVALID_SOCKET 
        jmp @@ErrorWinsock 
    .endif 
 
; create a destination socket (to send data to) 
 
    invoke socket, PF_INET, SOCK_RAW, IPPROTO_IP 
    mov mySocketOut, eax 
 
    .if eax == INVALID_SOCKET 
        jmp @@ErrorWinsock 
    .endif 
 
; fill the local address to bind the destination socket to it 
 
    mov LocalAddr.sin_family, PF_INET       ; 
    mov LocalAddr.sin_addr, LOCAL_HOST      ; 127.0.0.1 
    invoke htons, IPPORT_ECHO               ; this is the port for "pings" 
    mov LocalAddr.sin_port, ax              ; 
 
; bind the output socket to the local address 
 
    invoke bind, mySocketOut, ADDR LocalAddr, SIZEOF sockaddr 
 
    .if eax != NULL 
        jmp @@ErrorWinsock 
    .endif 
 
; connect the input socket to the local address 
 
    invoke connect, mySocketIn, ADDR LocalAddr, SIZEOF sockaddr 
 
    .if eax != NULL 
        jmp @@ErrorWinsock 
    .endif 
 
; Send messages to the local address. We only do this when we are debugged, meaning 
; the virus is trying to hook our calls. All mails we send, an only one, are 
logged. 
 
    .WHILE (TRUE) 
 
          invoke IsDebuggerPresent 
          .if eax != 0 
 
                invoke send, mySocketIn, ADDR zsHelo      , 18+2, 0 
                invoke send, mySocketIn, ADDR zsMailFrom  , 32+2, 0 
                invoke send, mySocketIn, ADDR zsRcptTo    , 29+2, 0 
                invoke send, mySocketIn, ADDR zsData      , 4+2 , 0 
                invoke send, mySocketIn, ADDR zsMsgBody   , 7+2 , 0 
                invoke send, mySocketIn, ADDR zsDot       , 1+2 , 0 
                invoke send, mySocketIn, ADDR zsQuit      , 4+2 , 0 
 
                invoke ExitProcess, 0 
 



Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 
 

          .endif 
 
    .ENDW 
 
@@ErrorWinsock: 
 
    invoke MessageBoxA, 0,0, ADDR zsWsockError, 0 
    ret 
 
ThreadProc endp 
 
end start 
 
 
 
 


