
Vol. 2, No. 2 (2005) 
http://www.CodeBreakers-Journal.com

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

 
 
 
Beginners Guide to Basic Linux Anti Anti 
Debugging Techniques 
 
 
 
 
Henry Miller (aka 0xf001)*  
 
 
 
 
* Corresponding Author 
 
Received: 22. Jan. 2005, Accepted: 03. Feb. 2005, Published: 03. Feb. 2005 
 
 
 
 
 
 
Abstract 
 
Anti-debugging techniques are a common method for protecting software applications. Meanwhile such kind of 
protection tricks are often used, several approaches work against such kind of protection. One known method 
are anti-anti tricks which circumvent the mentioned protection schemes. This paper confines to techniques and 
methods used for Linux platform applications, especiall dealing with the operation platforms specific tools. 
  
Keywords: Software Protection; Reverse Code Engineering; Linux; Anti-Debugging; Anti-Anti-Debugging 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

1. Introduction  
 
This paper is an introduction for anti anti debugging techniques on the linux OS. It covers the very 
basic anti debugging techniques as introduced by Silvio Cesare's paper [1] (back in 1999) . As I see 
those techniques are still used in applications and crackmes, this paper should show a) how easy and 
outdated those techniques are, and b) explain why ptrace() and objdump are not always your friends, 
but finally there is always a way. Well, as in the mentioned paper one anti dissassembling trick (or 
better anti objdump trick) is described I will discuss it here as well. Actually there were two basic 
tricks used, I will seperate them, and describe more detailed. 
 
 
2 False Disassembly 
 
A common used disassembler used is objdump, or disassembler projects that base on objdumps output. 
Actually there are several ways how to fool objdump as a dissasembler. 
 
2.1 Jumping into the middle of an instruction 
 
Let's take the following code as example: 
 
start: 
 jmp label+1 
label: DB 0x90 
 mov eax, 0xf001 

 
 
The above code is not yet the "trick", just to have the visibility of the problem. As behind label there 
follows a single byte opcode 0x90 (nop), the jmp label+1 is NO problem for objdump, as we did not 
jump into the middle of an instruction: 
 
# objdump -d -M intel anti01 
anti01:     file format elf32-i386 

 
Disassembly of section .text: 
 
08048080 <start>: 
 8048080:       e9 01 00 00 00     jmp    8048086 <label+0x1> 
 
08048085 <label>: 
 8048085:       90                 nop 
 8048086:       b8 01 f0 00 00     mov    eax,0xf001 

 
the code was dissasembled correctly. Now when using an instruction which assembles into more than 
1 byte objdump will not follow this jump, it will just dissassemble linear from start to end. 
 
start: 
 jmp label+1 
label: DB 0xE9 
 mov eax, 0xf001 
 
# objdump -M intel -d anti02 
anti02:     file format elf32-i386 
 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

Disassembly of section .text: 
 
08048080 <start>: 
 8048080:     e9 01 00 00 00      jmp    8048086 <label+0x1> 
 
08048085 <label>: 
 8048085:     e9 b8 01 f0 00      jmp    8f48242 <__bss_start+0xeff1b6> 

 
So the disassembly is false. objdump ignored the jump destination and dissasembled the instruction 
directly following the first jmp. As we placed an 0xe9 byte there, objdump displays it also as a jmp 
instruction. Our mov instruction got "hidden". 
 
2.1.1 How to circumvent this problem   
 
To be able to use objdump you have to manually replace the bogus 0xE9 byte with a hexeditor. Of 
course this helps only for disassembling. As the file is then modified it could behave different when it 
checksums itself. A better choice is to use a dissasembler like bastard [2], IDA [3], or any other that 
does control flow analysis. For example when disassembling the same executable (antia02) with lida 
[4], the result looks like this: 
 
 ---- section .text ----: 
08048080  E9 01 00 00 00     jmp     Label_08048086  
     ; (08048086) 
     ; (near + 0x1) 
08048085  DB E9                                        
 
Label_08048086: 
08048086  B8 01 F0 00 00     mov     eax, 0xF001   
          ; xref ( 08048080 ) 

 
which is correct, so using the right tools you would not even recognize a trick here. 
 
 
2.2 Runtime calculation of destination address 
 
Another trick, to fool even control flow disassemblers is to calculate the destination of jumps during 
runtime. For doing so, the current EIP is to be retreived and then the difference to the address of the 
destination from current EIP is added. To retrieve EIP, the common call+pop "technique" is used, as 
the call instruction stores the return address on the stack, which nobody prevents us to pop it into a 
register.  Here a scheme of a more advanced example than above: 
 
; ----------------------------------------------------------------------------  
    call  earth+1 
   Return: 
      ; x instructions or random bytes here      xb 
   earth:  ; earth = Return + x 
    xor eax, eax; align disassembly, using single byte opcode      1b 
 pop eax ; start of function: get return address ( Return )  1b 
   ; y instructions or random bytes here      yb 
 add eax, x+2+y+2+1+1+z ; x+y+z+6       2b  
 push eax ;          1b 
 ret  ;          1b 
   ; z instructions or random bytes here               zb 
   ; Code: 
   ; !! Code Continues Here !!   
; ---------------------------------------------------------------------------- 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

Now an implementation could look like below. I have used for x and z just one byte, again E9, as it 
eats so many bytes. For Code I have chosen 3 nops, as they are good visible in the outputs you will 
see: 
; ----------------------------------------------------------------------------  
; antia.s 
call         earth+1 
 
earth: DB 0xE9               ; 1    <--- pushed return address,  
        ;           E9 is opcode for jmp to disalign disas- 
        ;           sembly 
             pop     eax     ; 1    hidden 
             nop             ; 1 
             add     eax, 9  ; 2    hidden 
             push    eax     ; 1    hidden 
             ret             ; 1    hidden 
              
       DB 0xE9               ; 1    opcode for jmp to misalign disassembly 
 
Code:      ; code continues here    <--- pushed return address + 9 
             nop 
             nop 
             nop 
             ret 
; ----------------------------------------------------------------------------  

 
I used nasm -f elf antia.s to create the object file. Of course objdump will be fooled allready by the 
first trick "calling earth+1". 
  
# objdump -d antia.o 
antia.o:     file format elf32-i386 

 
Disassembly of section .text: 
 
00000000 <earth-0x5>: 
   0:   e8 01 00 00 00          call   6 <earth+0x1> 
 
00000005 <earth>: 
   5:   e9 58 90 05 09          jmp    9059062 <earth+0x905905d> 
   a:   00 00                   add    %al,(%eax) 
   c:   00 50 c3                add    %dl,0xffffffc3(%eax) 
   f:   e9 90 90 90 c3          jmp    c39090a4 <earth+0xc390909f> 

 
As result you can see our code (3 nops) is fully hidden here at addres 0xf. But not only that, also our 
calculation of EIP is totally hidden for objdump. Indeed this disassembly is totally different than what 
was coded. But our example not only was good for fooling objdump. Now look, what IDA outputs: 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

.text:08000000 ; Segment permissions: Read/Execute 

.text:08000000 _text           segment para public 'CODE' use32 

.text:08000000                 assume cs:_text 

.text:08000000                 ;org 8000000h 

.text:08000000                 assume es:nothing, ss:nothing, ds:_text,  

.text:08000000                fs:nothing, gs:nothing 

.text:08000000                 dd 1E8h 

.text:08000004 ; ------------------------------------------------------------- 

.text:08000004                 add     cl, ch 

.text:08000006                 pop     eax 

.text:08000007                 nop 

.text:08000008                 add     eax, 9 

.text:0800000D                 push    eax 

.text:0800000E                 retn 

.text:0800000E ; ------------------------------------------------------------- 

.text:0800000F                 dd 909090E9h 

.text:08000013 ; ------------------------------------------------------------- 

.text:08000013                 retn 

.text:08000013 _text           ends 

.text:08000013  

.text:08000013  

.text:08000013                 end  

 
Well, I do not know why, but IDA did not like the call +1  instruction. After all at least it shows the 
calculation of EIP, but not from where was called, so you can not immediately say where the code 
finally will continue after the retn instruction. I have loaded the same file into lida as well: 
 
 ---- section .text ----: 
08048080  E8 01 00 00 00         call     Function_08048086  
     ; (08048086) ; (near + 0x1) 
08048085  DB E9  
Function_08048086: 
08048086  58                     pop     eax  ; xref  
         ;( 08048080 ) 
08048087  90                     nop   
08048088  05 09 00 00 00         add     eax, 0x9  
0804808D  50                     push     eax  
0804808E  C3                     ret   
0804808F  E9 90 90 90 C3         jmp     CB951124  
     ;(near - 0x3C6F6F70) 
08048094  DB 00, 54, 68, 65, 20, 4E, 65, 74, 77, 69, 64, 65, 20, 41, 73, 73  

 
Actually this looks better. Until the ret instruction it is exactly what we have coded. But still the last 
hurdle is that no disassembler can tell where the code after the ret instruction will continue, until it 
does code emulation. In this example we could see the crossreference to the call from address 
08048080. So we could calculate the return address and tell the disassembler to start at address 
08048090. 
 
 
2.2.1 How to circumvent this trick 
 
Actually there is no automated way which is 100% accurate. Possibly when a disassembler does code 
emulation it could do a complete correct disassembly. In reality this is not a big problem, as when 
using interactive disassemblers you can tell the disassembler where the parts of the code start. Also 
while debugging you would see what is really going on. This is why I would call those techniques 
"anti disassembling" techniques. 
 
 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

3. Detecting Breakpoints 
 
The first technique described by Silvio Cesare is really easy to circumvent: 
 
// -- antibreakpoint.c -- 
void foo() 
{ 
        printf("Hello\n"); 
} 
 
int main() 
{ 
        if ((*(volatile unsigned *)((unsigned)foo) & 0xff) == 0xcc) { 
                printf("BREAKPOINT\n"); 
                exit(1); 
        } 
        foo(); 
} 
// -- EOF -- 

 
As described, gdb sets breakpoints by replacing the byte at the address to break with an int 3 opcode, 
which is 0xcc. So it is easy for a program to check addresses for 0xcc presence, as above. When 
running the program, it says "Hello" :), also when running it in gdb. Actually if we place a breakpoint 
at the function foo, and run, gdb will not break and we will see the output "BREAKPOINT". 
 
# gdb ./x 
GNU gdb 6.0-2 
Copyright 2003 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are 
welcome to change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" for details. 
This GDB was configured as "i586-linux-gnu"...Using host libthread_db library "/ 
lib/tls/libthread_db.so.1". 
 
gdb> bp foo 
Breakpoint 1 at 0x804838c 
gdb> run 
BREAKPOINT 
 
Program exited with code 01. 

 
 
3.1 How to circumvent this trick 
 
Well this is also very easy. To avoid this problem but still be able to break into foo, just look at the 
disassembly and simply choose your breakpoint not exactly at the functions entrypoint: 
 
0804838c <foo>: 
 804838c:       55                      push   ebp 
 804838d:       89 e5                   mov    ebp,esp 
 804838f:       83 ec 08                sub    esp,0x8 
 8048392:       83 ec 0c                sub    esp,0xc 
 8048395:       68 c8 84 04 08          push   0x80484c8 
 804839a:       e8 0d ff ff ff          call   80482ac <_init+0x38> 
 804839f:       83 c4 10                add    esp,0x10 
 80483a2:       c9                      leave 
 80483a3:       c3                      ret 

 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

So we can set the breakpoint on all those addresses != 0x804838c. I should mention, that the problem 
with this anti breakpoint technique is not in circumventing it, but to detect it. In this example 
obviously you will realize it, because the program tells it. In real life it would probably not print 
something out, but your breakpoint will simply not break. To find the comparison you could either 
search the disassembly for your address to break for example: 
 
# objdump -M intel -d x | grep 804838c 
0804838c <foo>: 
 804838c:       55                      push   ebp 
 80483b4:       a1 8c 83 04 08          mov    eax,ds:0x804838c 
 80483df:       e8 a8 ff ff ff          call   804838c <foo> 

 
and examine the code after 80483b4. But this potentially could not help you, since the address could 
be calculated as well. You could also use a short perl script to find all occurences of an operand 0xcc 
like 
 
#!/usr/bin/perl 
 
while(<>) 
{ 
  if($_ =~ m/([0-9a-f][4]:\s*[0-9a-f \t]*.*0xcc)/ ){ print; } 
} 

 
and run it as a filter for objdump: 
 
# objdump -M intel -d x | ./antibp.pl 
 80483be:       3d cc 00 00 00          cmp    eax,0xcc 

 
which will give you the address of the compare. Now you can either change the byte 0xcc to 0x00 or 
nop the instruction out, or do anything you like. Should the code check itself for any changes in the 
function where the compare is done (in this example main() ), changing the 0xcc byte would be 
detected. It is possible, that not only the functions entrypoint, but the whole function is being checked 
for 0xcc bytes in a loop. Therefore you can manually place an ICEBP (0xF1) instruction into foo() 
with a hexeditor or gdb instead of an INT 3. ICEBP also causes gdb to break. And no 0xCC byte is 
detected, of course. 
 
 
4. Detecting debugging 
 
// -- antiptrace.c -- 
int main() 
{ 
        if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) { 
                printf("DEBUGGING... Bye\n"); 
                return 1; 
        } 
        printf("Hello\n"); 
        return 0; 
} 
// -- EOF -- 

 
This program checks if it could let it debug itself, by trying to set a debugging request to itself. Now if 
the program is being debugged by gdb, this call to ptrace() fails, as there can only be one debugger. 
The failure of the call indicates the program it is being debugged. 
 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

4.1 How to circumvent this trick (Method 1) 
 
Obviously as this check is only working for debuggers using ptrace(), any debugger not using ptrace() 
can be used. Alternatively one can patch/wrap the ptrace() function which is a more advanced task. 
Easier is to either "nop out" the ptrace() call or the checking afterwards. To comfortably be able to do 
so, we need to find where this ptrace() check is done. If the executable in the unlikely case was 
compiled without the -s switch ( -s  Remove all symbol table and relocation information from the 
executable) then this is very easy: 
 
# objdump -t test_debug | grep ptrace 
080482c0       F *UND*  00000075              ptrace@@GLIBC_2.0 

 
So ptrace is called by the address 080482c0 in this executable. Simply typing: 
 
# objdump -d -M intel test_debug |grep 80482c0 
 80482c0:       ff 25 04 96 04 08       jmp    ds:0x8049604 
 80483d4:       e8 e7 fe ff ff          call   80482c0 <_init+0x28> 

 
shows us where ptrace gets called. Now we can do whatever we like. But before, what to do if the -s 
option was used while compiling? Then objdump does not show us the output as above. For the above 
example we can do that easily by using gdb: 
 
# gdb test_debug 
GNU gdb 6.0-2 
Copyright 2003 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are 
welcome to change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" for details. 
This GDB was configured as "i586-linux-gnu"...Using host libthread_db  
library "/lib/tls/libthread_db.so.1". 
 
gdb> bp ptrace 
Breakpoint 1 at 0x80482c0 
gdb> run 
Breakpoint 1 at 0x400e02f0 
_______________________________________________________________________________ 
     eax:00000000 ebx:40143218  ecx:00000001  edx:4014449C     eflags:00200246 
     esi:BFFFF5E4 edi:BFFFF570  esp:BFFFF53C  ebp:BFFFF558     eip:400E02F0 
     cs:0073  ds:007B  es:007B  fs:0000  gs:0033  ss:007B    o d I t s Z a P c 
[007B:BFFFF53C]---------------------------------------------------------[stack] 
BFFFF56C : C4 A9 00 40  18 32 14 40 - 00 00 00 00  70 F5 FF BF ...@.2.@....p... 
BFFFF55C : A0 BE 03 40  01 00 00 00 - E4 F5 FF BF  EC F5 FF BF ...@............ 
BFFFF54C : 00 00 00 00  00 00 00 00 - 40 44 01 40  B8 F5 FF BF ........@D.@.... 
BFFFF53C : D9 83 04 08  00 00 00 00 - 00 00 00 00  01 00 00 00 ................ 
[007B:BFFFF5E4]---------------------------------------------------------[ data] 
BFFFF5E4 : 8A F7 FF BF  00 00 00 00 - B1 F7 FF BF  C0 F7 FF BF ................ 
BFFFF5F4 : D3 F7 FF BF  E4 F7 FF BF - F7 F7 FF BF  0B F8 FF BF ................ 
[0073:400E02F0]---------------------------------------------------------[ code] 
0x400e02f0 <ptrace>:    push   %ebp 
0x400e02f1 <ptrace+1>:  mov    %esp,%ebp 
0x400e02f3 <ptrace+3>:  sub    $0x10,%esp 
0x400e02f6 <ptrace+6>:  mov    %edi,0xfffffffc(%ebp) 
0x400e02f9 <ptrace+9>:  mov    0x8(%ebp),%edi 
0x400e02fc <ptrace+12>: mov    0xc(%ebp),%ecx 
------------------------------------------------------------------------------ 
 
Breakpoint 1, 0x400e02f0 in ptrace () from /lib/tls/libc.so.6 
gdb> 

 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

What we have done is set a breakpoint on ptrace() itself. Now after typing pret we are back in the 
test_debug executable: 
 
gdb> pret 
_______________________________________________________________________________ 
     eax:FFFFFFFF ebx:40143218  ecx:FFFFFFFF  edx:FFFFFF00     eflags:00200246 
     esi:BFFFF5E4 edi:BFFFF570  esp:BFFFF540  ebp:BFFFF558     eip:080483D9 
     cs:0073  ds:007B  es:007B  fs:0000  gs:0033  ss:007B    o d I t s Z a P c 
[007B:BFFFF540]---------------------------------------------------------[stack] 
BFFFF570 : 18 32 14 40  00 00 00 00 - 70 F5 FF BF  B8 F5 FF BF .2.@....p....... 
BFFFF560 : 01 00 00 00  E4 F5 FF BF - EC F5 FF BF  C4 A9 00 40 ...............@ 
BFFFF550 : 00 00 00 00  40 44 01 40 - B8 F5 FF BF  A0 BE 03 40 ....@D.@.......@ 
BFFFF540 : 00 00 00 00  00 00 00 00 - 01 00 00 00  00 00 00 00 ................ 
[007B:BFFFF5E4]---------------------------------------------------------[ data] 
BFFFF5E4 : 8A F7 FF BF  00 00 00 00 - B1 F7 FF BF  C0 F7 FF BF ................ 
BFFFF5F4 : D3 F7 FF BF  E4 F7 FF BF - F7 F7 FF BF  0B F8 FF BF ................ 
[0073:080483D9]---------------------------------------------------------[ code] 
0x80483d9 <main+29>:    add    $0x10,%esp 
0x80483dc <main+32>:    test   %eax,%eax 
0x80483de <main+34>:    jns    0x80483fa <main+62> 
0x80483e0 <main+36>:    sub    $0xc,%esp 
0x80483e3 <main+39>:    push   $0x80484e8 
0x80483e8 <main+44>:    call   0x80482e0 
------------------------------------------------------------------------------ 
0x080483d9 in main () 

 
From here we also see by where we landed, the return address from ptrace(). Now we can patch the 
file and nop out the jns instruction, or change the eax register during runtime. 
 
gdb> set $eax=0 
gdb> c 
everything ok 
 
Program exited with code 016. 
_______________________________________________________________________________ 
No registers. 
gdb> 

 
So everything is OK although we were debugging. That is fine! 
 
4.2 How to circumvent this trick (Method 2) 
 
Another option to bypass the debugger would be to write your own ptrace() function, which as a 
minimum always returns 0. Then the LD_PRELOAD environment variable can be set to point the 
executable to the own ptrace() function. Example: First we make a test executable, that implements the 
anti debugging technique: 
 
// -- antiptrace.c -- 
int main() 
{ 
  if (ptrace(0,0,1,0) < 0) { 
          printf("DEBUGGER PRESENT!\n"); 
          exit(1); 
  } 
  printf("Hello World!\n"); 
} 
// -- EOF -- 

 
compile it with # gcc antiptrace.c -o antiptrace.  
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

Then we  will use a simple ptrace() function and build a shared object of it: 
 
// -- ptrace.c -- 
int ptrace(int i, int j, int k, int l) 
{ 
        printf("  PTRACE CALLED!\n"); 
} 
// -- EOF -- 

 
compile it with 
 
# gcc -shared ptrace.c -o ptrace.so 

 
running the program, it prints: 
 
# ./antiptrace 
Hello World! 

 
runnig it in gdb, it prints: 
 
# gdb ./antiptrace 
GNU gdb 6.0-2 
Copyright 2003 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are 
welcome to change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" for details. 
This GDB was configured as "i586-linux-gnu"...Using host libthread_db 
library "/lib/tls/libthread_db.so.1". 
 
gdb> run 
DEBUGGER PRESENT! 
 
Program exited with code 01. 
gdb> 

 
Now we can use our own ptrace function by setting the environment variable LD_PRELOAD for our 
executable. In gdb this is done by: 
 
gdb> set environment LD_PRELOAD ./ptrace.so 
gdb> run 
  PTRACE CALLED! 
Hello World! 
 
Program exited with code 015. 
gdb> 

 
We can see the executable did not detect the debugger and our ptrace() function was called. 
 
 
 
 
 
 
 
 
 

 



Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com 
 

 

 
Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are 
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com. 

5. Conclusions 
 
These anti debugging (and anti anti) techniques are the very basic ones, all relying on gdb is used as 
debugger, and are easy to defeat as you can see.  
 
 
 
About the Author: Henry Miller (pseudonym 0xf001) works as independant IT consultant in the field of large 
scaled UNIX environments. He is a specialist in systems monitoring integration from kernel messages to 
business services including host security tasks. His first contact with Assembly language programming goes 
back to C64 computer systems. Additionally he has done several research in the field of protection analysis and 
broke most commercial protection systems so far. One additional research field is the analysis of virus code and 
malicious code, coping mainly with retro viruses of the DOS times. He developed full stealth polymorphic 
software system. Several tools for reverse code engineering tasks have been developed by him as well, especially 
for th Linux operating system. 
 
References 
 
1. Cesare, S., Linux Anti Debugging Techniques - Fooling the Debugger. 1999. 
2. mammon_, et al., bastard - The Bastard Disassembly Environment. 2002. 
3. Datarescue, IDA Pro - Disassembler and Debugger. 2004. 
4. Schallner, M., lida - Linux Interactive DisAssembler. 2004. 
5. Mammon, Mammons Tales, in Assembly Programming Journal. 2004. 
6. Unknown, LinIce - Linux Debugger, http://www.linice.com/. 
7. Unknown, The Dude, http://the-dude.sourceforge.net/. 
 
 

 


