Vol. 2, No. 2 (2005)

%:9@ @D : (d@, http://www.CodeBreakers-Journal.com

Beginners Guide to Basic Linux Anti Anti
Debugging Techniques

Henry Miller (aka Oxf001)*

* Corresponding Author

Received: 22. Jan. 2005, Accepted: 03. Feb. 2005, Published: 03. Feb. 2005

Abstract

Anti-debugging techniques are a common method for protecting software applications. Meanwhile such kind of
protection tricks are often used, several approaches work against such kind of protection. One known method
are anti-anti tricks which circumvent the mentioned protection schemes. This paper confines to techniques and
methods used for Linux platform applications, especiall dealing with the operation platforms specific tools.

Keywords: Software Protection; Reverse Code Engineering; Linux; Anti-Debugging; Anti-Anti-Debugging

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

1. Introduction

This paper is an introduction for anti anti debugging techniques on the linux OS. It covers the very
basic anti debugging techniques as introduced by Silvio Cesare's paper [1] (back in 1999) . As | see
those techniques are still used in applications and crackmes, this paper should show a) how easy and
outdated those techniques are, and b) explain why ptrace() and objdump are not always your friends,
but finally there is always a way. Well, as in the mentioned paper one anti dissassembling trick (or
better anti objdump trick) is described I will discuss it here as well. Actually there were two basic
tricks used, | will seperate them, and describe more detailed.

2 False Disassembly

A common used disassembler used is objdump, or disassembler projects that base on objdumps output.
Actually there are several ways how to fool objdump as a dissasembler.

2.1 Jumping into the middle of an instruction

Let's take the following code as example:

start:

Jjmp label+1
label: DB 0x90

mov eax, Oxf001

The above code is not yet the "trick", just to have the visibility of the problem. As behind label there
follows a single byte opcode 0x90 (nop), the jmp label+1 is NO problem for objdump, as we did not
jump into the middle of an instruction;

objdump -d -M intel antiOl
antiOl: file format elf32-1386

Disassembly of section .text:

08048080 <start>:

8048080: e9 01 00 00 00 Jjmp 8048086 <label+0x1>
08048085 <label>:

8048085: 90 nop

8048086: b8 01 fO 00 00 mov eax,0xf001

the code was dissasembled correctly. Now when using an instruction which assembles into more than
1 byte objdump will not follow this jump, it will just dissassemble linear from start to end.

start:

Jjmp label+1
label: DB OxE9

mov eax, Oxf001

objdump -M intel -d antiO2
anti02: file format elf32-i386

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

Disassembly of section .text:

08048080 <start>:
8048080: e9 01 00 00 00 jmp 8048086 <label+0x1>

08048085 <label>:
8048085: e9 b8 01 O 00 Jjmp 8F48242 <_ bss_start+Oxefflb6>

So the disassembly is false. objdump ignored the jump destination and dissasembled the instruction
directly following the first jmp. As we placed an 0xe9 byte there, objdump displays it also as a jmp
instruction. Our mov instruction got "hidden".

2.1.1 How to circumvent this problem

To be able to use objdump you have to manually replace the bogus OXE9 byte with a hexeditor. Of
course this helps only for disassembling. As the file is then modified it could behave different when it
checksums itself. A better choice is to use a dissasembler like bastard [2], IDA [3], or any other that
does control flow analysis. For example when disassembling the same executable (antia02) with lida
[4], the result looks like this:

---- section .text ----:
08048080 E9 01 00 00 00 Jjmp Label_08048086
; (08048086)
; (near + 0x1)
08048085 DB E9

Label_08048086:
08048086 B8 01 FO 00 00 mov eax, OxF0O1
: xref (08048080)

which is correct, so using the right tools you would not even recognize a trick here.

2.2 Runtime calculation of destination address

Another trick, to fool even control flow disassemblers is to calculate the destination of jumps during
runtime. For doing so, the current EIP is to be retreived and then the difference to the address of the
destination from current EIP is added. To retrieve EIP, the common call+pop "technique™ is used, as
the call instruction stores the return address on the stack, which nobody prevents us to pop it into a
register. Here a scheme of a more advanced example than above:

call earth+1

Return
; X instructions or random bytes here xb
earth: ; earth = Return + X
xor eax, eax; align disassembly, using single byte opcode 1b
pop eax ; start of function: get return address (Return) 1b
; Yy instructions or random bytes here yb
add eax, X+2+y+2+1+1+z ; X+y+z+6 2b
push eax ; 1b
ret ; 1b
; z instructions or random bytes here zb
; Code:

; 11 Code Continues Here 1!

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

Now an implementation could look like below. | have used for x and z just one byte, again E9, as it
eats so many bytes. For Code | have chosen 3 nops, as they are good visible in the outputs you will
see:

; antia.s
call earth+1
earth: DB OxE9 ;1 <--- pushed return address,
; E9 is opcode for jmp to disalign disas-
; sembly
pop eax ;1 hidden
nop ;1
add eax, 9 ; 2 hidden
push eax ;1 hidden
ret ;1 hidden
DB OxE9 ;1 opcode for jmp to misalign disassembly
Code: ; code continues here <--- pushed return address + 9
nop
nop
nop
ret

I used nasm -f elf antia.s to create the object file. Of course objdump will be fooled allready by the
first trick "calling earth+1".

objdump -d antia.o
antia.o: file format elf32-i1386

Disassembly of section .text:

00000000 <earth-0x5>:

0: e8 01 00 00 00 call 6 <earth+0x1>
00000005 <earth>:
5: e9 58 90 05 09 Jjmp 9059062 <earth+0x905905d>
a: 00 00 add %al , (%eax)
c: 00 50 c3 add %d 1, OXFFFFFfc3(%eax)
f: €9 90 90 90 c3 Jjmp c39090a4 <earth+0xc390909f>

As result you can see our code (3 nops) is fully hidden here at addres Oxf. But not only that, also our
calculation of EIP is totally hidden for objdump. Indeed this disassembly is totally different than what
was coded. But our example not only was good for fooling objdump. Now look, what IDA outputs:

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

-text:08000000 ; Segment permissions: Read/Execute

-text:08000000 _text segment para public "CODE" use32

-text:-08000000 assume cs:_text

. text:08000000 ;org 8000000h

-text:08000000 assume es:nothing, ss:nothing, ds:_text,
-text:08000000 fs:nothing, gs:nothing

-text:08000000 dd 1E8h

.text:08000004 ; ————————
-text:08000004 add cl, ch

-text:-08000006 pop eax

-text:08000007 nop

- text:08000008 add eax, 9

-text:0800000D push eax

-text:0800000E retn

.text:0800000E ; —-——————————— -
- text:0800000F dd 909090ESh

.text:08000013 ; —-———————— -
-text:08000013 retn

-text:08000013 _text ends

.text:08000013
. text:08000013
.text:08000013 end

Well, I do not know why, but IDA did not like the call +1 instruction. After all at least it shows the
calculation of EIP, but not from where was called, so you can not immediately say where the code
finally will continue after the retn instruction. | have loaded the same file into lida as well:

--—- section .text ----:
08048080 E8 01 00 00 00 call Function_08048086
; (08048086) ; (near + 0x1)
08048085 DB E9
Function_08048086:
08048086 58 pop eax ; xref
;(08048080)

08048087 90 nop

08048088 05 09 00 00 00 add eax, 0x9
0804808D 50 push eax
0804808E C3 ret

0804808F E9 90 90 90 C3 Jjmp CB951124

;(near - Ox3C6F6F70)
08048094 DB 00, 54, 68, 65, 20, 4E, 65, 74, 77, 69, 64, 65, 20, 41, 73, 73

Actually this looks better. Until the ret instruction it is exactly what we have coded. But still the last
hurdle is that no disassembler can tell where the code after the ret instruction will continue, until it
does code emulation. In this example we could see the crossreference to the call from address
08048080. So we could calculate the return address and tell the disassembler to start at address
08048090.

2.2.1 How to circumvent this trick

Actually there is no automated way which is 100% accurate. Possibly when a disassembler does code
emulation it could do a complete correct disassembly. In reality this is not a big problem, as when
using interactive disassemblers you can tell the disassembler where the parts of the code start. Also
while debugging you would see what is really going on. This is why | would call those techniques
"anti disassembling” techniques.

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

3. Detecting Breakpoints

The first technique described by Silvio Cesare is really easy to circumvent:

// —-- antibreakpoint.c --
void foo()

{
}

int main(Q)

printf("'Hello\n");

if ((*(volatile unsigned *)((unsigned)foo) & Oxff) == Oxcc) {
printf("BREAKPOINT\N™);
exit(l);

3

foo();

by
// -- EOF --

As described, gdb sets breakpoints by replacing the byte at the address to break with an int 3 opcode,
which is Oxcc. So it is easy for a program to check addresses for Oxcc presence, as above. When
running the program, it says "Hello" :), also when running it in gdb. Actually if we place a breakpoint
at the function foo, and run, gdb will not break and we will see the output "BREAKPOINT".

gdb ./x

GNU gdb 6.0-2

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of It under certain conditions.
Type "'show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "'show warranty' for details.

This GDB was configured as "i586-linux-gnu’...Using host libthread_db library "/
lib/tls/libthread_db.so.1".

gdb> bp foo

Breakpoint 1 at 0x804838c
gdb> run

BREAKPOINT

Program exited with code 01.

3.1 How to circumvent this trick

Well this is also very easy. To avoid this problem but still be able to break into foo, just look at the
disassembly and simply choose your breakpoint not exactly at the functions entrypoint:

0804838c <foo>:

804838c: 55 push ebp

804838d: 89 e5 mov ebp,esp

804838f: 83 ec 08 sub esp,0x8

8048392: 83 ec Oc sub esp,0xc

8048395: 68 c8 84 04 08 push 0x80484c8

804839a: e8 0d ff ff ff call 80482ac <_init+0x38>
804839f: 83 c4 10 add esp,0x10

80483a2: c9 leave

80483a3: c3 ret

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

So we can set the breakpoint on all those addresses '= 0x804838c. | should mention, that the problem
with this anti breakpoint technique is not in circumventing it, but to detect it. In this example
obviously you will realize it, because the program tells it. In real life it would probably not print
something out, but your breakpoint will simply not break. To find the comparison you could either
search the disassembly for your address to break for example:

objdump -M intel -d x | grep 804838c
0804838c <foo>:

804838c: 55 push ebp
80483b4: al 8c 83 04 08 mov eax,ds:0x804838c
80483dTf: e8 a8 ff ff ff call 804838c <foo>

and examine the code after 80483b4. But this potentially could not help you, since the address could
be calculated as well. You could also use a short perl script to find all occurences of an operand Oxcc
like

#1/usr/bin/perl
while(<>)
{
if($_ =~ m/([0-9a-F][4]:\s*[0-9a-F \t]*.*Oxcc)/){ print; }
}

and run it as a filter for objdump:

objdump -M intel -d x | ./antibp.pl
80483be: 3d cc 00 00 00 cmp eax,0xcc

which will give you the address of the compare. Now you can either change the byte Oxcc to 0x00 or
nop the instruction out, or do anything you like. Should the code check itself for any changes in the
function where the compare is done (in this example main()), changing the Oxcc byte would be
detected. It is possible, that not only the functions entrypoint, but the whole function is being checked
for Oxcc bytes in a loop. Therefore you can manually place an ICEBP (0xF1) instruction into foo()
with a hexeditor or gdb instead of an INT 3. ICEBP also causes gdb to break. And no OxCC byte is
detected, of course.

4. Detecting debugging

// —-- antiptrace.c --
int main(Q)
{

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
printf("'DEBUGGING. .. Bye\n");
return 1;

}
printf('Hello\n");
return O;

by
// -- EOF —-
This program checks if it could let it debug itself, by trying to set a debugging request to itself. Now if

the program is being debugged by gdb, this call to ptrace() fails, as there can only be one debugger.
The failure of the call indicates the program it is being debugged.

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

4.1 How to circumvent this trick (Method 1)

Obviously as this check is only working for debuggers using ptrace(), any debugger not using ptrace()
can be used. Alternatively one can patch/wrap the ptrace() function which is a more advanced task.
Easier is to either "nop out" the ptrace() call or the checking afterwards. To comfortably be able to do
so, we need to find where this ptrace() check is done. If the executable in the unlikely case was
compiled without the -s switch (-s Remove all symbol table and relocation information from the
executable) then this is very easy:

objdump -t test_debug | grep ptrace

080482c0 F *UND* 00000075 ptrace@@GLIBC_2.0

So ptrace is called by the address 080482c0 in this executable. Simply typing:

objdump -d -M intel test_debug |grep 80482c0O
80482c0: f 25 04 96 04 08 jmp
80483d4: e8 e7 fe ff ff call

ds:0x8049604
80482c0 <_init+0x28>

shows us where ptrace gets called. Now we can do whatever we like. But before, what to do if the -s
option was used while compiling? Then objdump does not show us the output as above. For the above
example we can do that easily by using gdb:

gdb test_debug

GNU gdb 6.0-2

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "'show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "'show warranty' for details.
This GDB was configured as "i586-linux-gnu'..._Using host libthread_db

library "/lib/tls/libthread_db.so.1".

gdb> bp ptrace

Breakpoint 1 at 0x80482c0
gdb> run

Breakpoint 1 at 0x400e02f0

eax:00000000 ebx:40143218 ecx:00000001 edx:4014449C
esi:BFFFF5E4 edi:BFFFF570 esp:BFFFF53C ebp:BFFFF558

eflags:00200246
eip:400E02F0

cs:0073 ds:007B es:007B ¥s:0000 @gs:0033 ss:007B odltsZaPc
[007B:BFFFF53C]-—-—————————— === e [stack]
BFFFF56C : C4 A9 00 40 18 32 14 40 - 00 00 00 00 70 F5 FF BF ...@-2.@----p---
BFFFF55C : AO BE 03 40 01 00 00 00 - E4 F5 FF BF EC F5 FF BF ...@-------o---.
BFFFF54C : 00 00 00 OO0 00 00 00 00 - 40 44 01 40 B8 F5 FF BF @b.@
BFFFF53C : D9 83 04 08 00 00 00 00 - 00 00 00 OO 01 00 00 00-cococmcan--
[007B:BFFFF5E4] - ———————————— = e [data]
BFFFF5E4 : 8A F7 FF BF 00 00 00 00 - B1 F7 FF BF CO F7 FF BF
BFFFF5F4 : D3 F7 FF BF E4 F7 FF BF - F7 F7 FF BF OB F8 FF BF
[0073:400E02F0]-—-----——————————— === == [code]
0x400e02f0 <ptrace>: push %ebp
0x400e02f1 <ptrace+l>: mov %esp , %ebp
0x400e02f3 <ptrace+3>: sub $0x10, %esp
0x400e02f6 <ptrace+6>: mov %edi , OXFFFFFFfc(%ebp)
0x400e02f9 <ptrace+9>: mov 0x8(%ebp) ,%edi
0x400e02fc <ptrace+12>: mov Oxc(%ebp) ,%ecx
Breakpoint 1, 0x400e02f0 in ptrace () from /lib/tls/libc.so.6
gdb>

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

What we have done is set a breakpoint on ptrace() itself. Now after typing pret we are back in the
test_debug executable:

gdb> pret

eax:FFFFFFFF ebx:40143218 ecx:FFFFFFFF edx:FFFFFFOO
esi:BFFFF5E4 edi:BFFFF570 esp:BFFFF540 ebp:BFFFF558
cs:0073 ds:007B es:007B fs:0000 @gs:0033 ss:007B

eflags:00200246
eip:080483D9
odltsZaPc

[007B 1 BFFFF540] === == — = = — — — o oo [stack]
BFFFF570 - 18 32 14 40 00 00 00 OO0 - 70 F5 FF BF B8 F5 FF BF .2.@....p----- ..
BFFFF560 - 01 00 00 OO E4 F5 FF BF - EC F5 FF BF C4 A9 00 40o @
BFFFF550 - 00 00 OO0 OO0 40 44 01 40 - B8 F5 FF BF A0 BE 03 40 @.0.------ @
BFFFF540 - 00 00 00 OO 00 OO0 OO0 OO - 01 00 OO0 OO 00 00 00 00 .ccccccmaaaaann
[007B :BFFFF5EA] == === = == — oo e e [data]
BFFFF5E4 - 8A F7 FF BF 00 00 OO0 00 - B1 F7 FF BF CO F7 FF BF o.....
BFFFF5F4 - D3 F7 FF BF E4 F7 FF BF - F7 F7 FF BF OB F8 FF BF
[0073:080483D9] - —————— == ———mm [code]
0x80483d9 <main+29>: add $0x10, %esp

0x80483dc <main+32>: test Y%eax,%eax

0x80483de <main+34>: jns 0x80483fa <main+62>

0x80483e0 <main+36>: sub $0xc, %esp

0x80483e3 <main+39>: push $0x80484e8

0x80483e8 <main+44>: call 0x80482e0

0x080483d9 in main

From here we also see by where we landed, the return address from ptrace(). Now we can patch the
file and nop out the jns instruction, or change the eax register during runtime.

gdb> set $eax=0
gdb> ¢
everything ok

Program exited with code 016.

No registers.
gdb>

So everything is OK although we were debugging. That is fine!

4.2 How to circumvent this trick (Method 2)

Another option to bypass the debugger would be to write your own ptrace() function, which as a
minimum always returns 0. Then the LD_PRELOAD environment variable can be set to point the
executable to the own ptrace() function. Example: First we make a test executable, that implements the
anti debugging technique:

// —- antiptrace.c --
int main(Q)

if (ptrace(0,0,1,0) < 0) {
printf("'DEBUGGER PRESENTI\n");
exit(l);

}

printf('Hello World!\n");

ks
// -- EOF --

compile it with# gcc antiptrace.c -o antiptrace.

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

Then we will use a simple ptrace() function and build a shared object of it:

// —- ptrace.c --
int ptrace(int i, int j, int k, int I)

printf(" PTRACE CALLEDI\N");

by

// -- EOF --

compile it with

gcc -shared ptrace.c -o ptrace.so
running the program, it prints:

./antiptrace
Hello World!

runnig it in gdb, it prints:

gdb ./antiptrace

GNU gdb 6.0-2

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "'show copying'" to see the conditions.

There is absolutely no warranty for GDB. Type "'show warranty" for details.
This GDB was configured as "i586-linux-gnu'..._Using host libthread_db

library "/lib/tls/libthread_db.so.1".

gdb> run
DEBUGGER PRESENT!

Program exited with code 01.
gdb>

Now we can use our own ptrace function by setting the environment variable LD_PRELOAD for our
executable. In gdb this is done by:

gdb> set environment LD_PRELOAD ./ptrace.so
gdb> run

PTRACE CALLED!
Hello World!

Program exited with code 015.
gdb>

We can see the executable did not detect the debugger and our ptrace() function was called.

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

Vol. 2, No. 2 (2005), http://www.CodeBreakers-Journal.com

5. Conclusions

These anti debugging (and anti anti) techniques are the very basic ones, all relying on gdb is used as
debugger, and are easy to defeat as you can see.

About the Author: Henry Miller (pseudonym 0xf001) works as independant IT consultant in the field of large
scaled UNIX environments. He is a specialist in systems monitoring integration from kernel messages to
business services including host security tasks. His first contact with Assembly language programming goes
back to C64 computer systems. Additionally he has done several research in the field of protection analysis and
broke most commercial protection systems so far. One additional research field is the analysis of virus code and
malicious code, coping mainly with retro viruses of the DOS times. He developed full stealth polymorphic
software system. Several tools for reverse code engineering tasks have been developed by him as well, especially
for th Linux operating system.

References

Cesare, S., Linux Anti Debugging Techniques - Fooling the Debugger. 1999.
mammon_, et al., bastard - The Bastard Disassembly Environment. 2002.
Datarescue, IDA Pro - Disassembler and Debugger. 2004.

Schallner, M., lida - Linux Interactive DisAssembler. 2004.

Mammon, Mammons Tales, in Assembly Programming Journal. 2004.
Unknown, Linlce - Linux Debugger, http://www.linice.com/.

Unknown, The Dude, http://the-dude.sourceforge.net/.

NoogkrwbdPE

Copyright 2005 by the author and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are
permitted. Reproduction and distribution without permission is prohibited. This article can be found at http://www.CodeBreakers-
Journal.com.

