CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

Volume 1, Issue 1, 2006

IDA Plugin Writing in C/C++

Steve Micallef
January 2006

Abstract

After spending a lot of time going through the header files in the IDA SDK as well as looking at the source to other
people’s plug-ins, I figured there should be an easier way to get started with writing IDA plug-ins. Although the header
file commentary is amazingly thorough, I found it a little difficult navigating and finding things when I needed them
without a lot of searching and trial-and-error.

IDA PLUGIN WRITING IN C/C++

Table of Contents

1. INtrodUCtION ... —— 4
1.1 WhY ThiS TULOMIAIT ...t 4
1.2 What'S COVEIEA ...ttt e ettt e e e e e e e e e e e e e e e e e e e nnneees 4
1.3 What's NOt COVEred........coooiiiiiiie et 4
1.4 Knowledge REQUITEMooiiiiiiiiiiiiiii et 4
1.5 Software ReqUIred ... 5
1.6 ARErNAtivEs 10 C/CH ... a e e e e 5
1.7 About This DOCUMENT ... 5
T8 Credits ..o 5
IS B 1 1= = Y= T 11 o PP 5
N N L= 1 N 1 7
20t 1] ¢= 1= 11T 1 8
A 1 =Y (o) YA I Yo 11 | 8
2.3 HEAEE FlES ... 8
2.4 USING e SDK ...t e e e e e e e e e 10
3. Setting Up a Build Environment ... ssssnnnnes 1
3.1 Windows, Using Visual StUdiO........cccoeeiiiiiiiii e 11
3.2 Windows, Using Dev-C++ With GCC and MinGWccccovviiiiniiiniiiiiiiiiiieiininnennns 12
3.3 LINUX, USING GCC ... e e e a eeens 13
3.4 APIUG-IN TEMPIALE ... e e 13
3.5 Configuring and RUNNING PIUG-INSuiiiiiiiiiiiiiieeee e 15
4. FUNAAMENLAIS ..o s e nnn 16
4.1 COre TYPES ..o 16
4.2 Core Structures and ClaSSES.......uuuuii ittt e e e 17
LG 3] (= =T 1 PP PUPPPP 27
Rl a1 I 1Y oW T o = USSP 28
4.5 Event NOtfICAtiONScoiiiiiiiie e 34
L S (4 o T PP PP PEPPPR 40
L 0] T 1 oY TSRS 42
5.1 Common Function Replacementsccoooeeiieiiiiiiiiii 42
LI 1V LY== T | T 42
S.3 UL INAVIGATION ...t e e e e e s e e e e e as 44
LR o o {0 o]]] €= 48
DD AT e 49
5.8 SEOMENTS. ..o e e e 52
B.7 FUNCHIONS ...t 55
5.8 INSITUCHIONS ... 59
5.9 Cross REfEIrENCINGceiiiiiiiiiitee e 62
o Tt 10 =T 0TS 65
L0t I BT = o] 1o 67
STt 22 |15 PRSP 69
ST G B o = T OO PP PP POPPPPPPPRN 74
STt D - | - PRSP 77
5 0t 1 T 1 LSRR 79
5.16 DEDUGGING ...ttt e ettt e e et e e 82
ST A T == 4o o T | £ 92
L T Ik T =T T o 96
LT LIS (1 e T J TP PPPP RSP 103
© 2006 CodeBreakers Magazine Page 2 of 125

IDA PLUGIN WRITING IN C/C++

L2 Y TS To7 =Y F= =T U 104
L0 7 T] o =S 109
6.1 Looking for Calls to sprintf, strcpy, and sscanf ..., 109
6.2 Listing Functions Containing MOVS et al.ccooiiiiiiiiiiiiiiiicccccccccccccccccecceecceeeee e, 112
6.3 Auto-loading DLLs Into the IDA Database..........ccooovveviiiiiiiiciii e 114
6.4 Bulk Breakpoint Setter & Saver ..., 116
6.5 Selective Tracing (Method 1).......cooviiiii e 119
6.6 Selective Tracing (Method 2)........iiiiiiiieeeeeeeeee e, 121
6.7 Binary Copy & Paste.....ccccooiiiiiieiceeecee e, 123
© 2006 CodeBreakers Magazine Page 3 of 125

IDA PLUGIN WRITING IN C/C++
1. Introduction

1.1 Why This Tutorial?

After spending a lot of time going through the header files in the IDA SDK as well as looking at the
source to other people’s plug-ins, I figured there should be an easier way to get started with
writing IDA plug-ins. Although the header file commentary is amazingly thorough, I found it a little
difficult navigating and finding things when I needed them without a lot of searching and trial-and-
error. I thought that I'd write this tutorial to try and help those getting started as well as hopefully
provide a quick reference point for people developing plug-ins. I've also dedicated a section to
setting up a development environment which should make the development process quicker to get
into.

1.2 What's Covered

This tutorial will get you started with writing IDA plug-ins, beginning with an introduction to the
SDK, followed by setting up a development/build environment on various platforms. You'll then
gain a good understanding of how various classes and structures are used, followed by usage of
some of the more widely used functions exported. Finally, I'll show some examples of using the IDA
API for basic things like looping through functions, to hooking into the debugger and manipulating
the IDA database (IDB). After reading this, you should be able to apply the knowledge gained to
write your own plug-ins and hopefully share them with the community.

1.3 What's Not Covered

I'm focusing on x86 assembly because it's what I have most experience in, although most of the
material presented should cover any architecture supported by IDA (which is practically all of them
in the Advanced version). Also, if you want a comprehensive reference to all IDA functions, I
suggest looking through the header files.

This tutorial is focused more on "read only" functionality within the SDK, rather than functions for
adding comments, correcting errors, defining data structures, and so on. These sorts of things are
a big part of the SDK, but aren't covered here in an attempt to keep this tutorial at a managable
size.

I have intentionally left out netnodes from this tutorial, as well as many struct/class members
because the IDA SDK is massive, and contains a lot of things for specialised purposes - a tutorial

cannot cover everything. If there is something you feel really should be in here, drop me a line and
I'll probably include it in the next version if it isn't too specialised.

1.4 Knowledge Required

First and foremost, you must know how to use IDA to the point where you can comfortably
navigate disassembled binaries and step through the debugger. You should be equipped with a
thorough knowledge of the C/C++ language as well as x86 assembly. C++ knowledge is quite

© 2006 CodeBreakers Magazine Page 4 of 125

IDA PLUGIN WRITING IN C/C++

important because the SDK is pretty much all C++. If you don't know C++ but know C, you should
at least understand general OOP concepts like classes, objects, methods and inheritance.

1.5 Software Required

To write and run IDA plug-ins, you will need the IDA Pro disassembler 4.8 or 4.9, the IDA SDK
(which, as a licensed user of IDA, you get for free from http://www.datarescue.com) and a C/C++
compiler with related tools (Visual Studio, GCC toolset, Borland, etc).

Notes have been added throughout the tutorial where things change in 4.9. Also, as of 4.9, the
SDK freezes, and so interfaces to 4.9 functions won't change, and plug-ins written for 4.9 (even in
binary form) will work with future versions.

1.6 Alternatives to C/C++

If C is not your thing, take a look at IDAPython, which has all the functionality the C++ API offers
in the higher-level language of Python. Check out http://d-dome.net/idapython/ for details. There
is a tutorial written on using IDAPython by Ero Carrera at http://dkbza.org/idapython intro.html,
which is obviously more applicable than this text.

There was also an article recently written about using VB6 and C# to write IDA plugins - check it
out here: http://www.openrce.org/articles/full view/13.

1.7 About This Document

If you have any comments, suggestions or if you notice any errors, please contact me, Steve
Micallef, at steve@binarypool.com. If you really feel like you've learnt something from this, I'd also
appreciate an email, just to make this process worth while :-)

As the SDK continues to grow, this document will be updated gradually over time. You will always
be able to obtain the latest copy at http://www.binarypool.com/idapluginwriting/.

1.8 Credits

In no particular order, I'd like to thank the following people for proof reading as well as providing
encouragement and feedback for this tutorial.

IIfak Guilfanov, Pierre Vandevenne, Eric Landuyt, Vitaly Osipov, Scott Madison, Andrew Griffiths,
Thorsten Schneider and Pedram Amini.

1.9 Further Reading

At the time of writing, the only other written material on IDA plug-ins is a tutorial on using the
universal un-packer plug-in in IDA 4.9, which contains information on how it was written and how it

© 2006 CodeBreakers Magazine Page 5 of 125

http://www.datarescue.com/
http://d-dome.net/idapython/
http://dkbza.org/idapython_intro.html
http://www.openrce.org/articles/full_view/13
mailto:steve@binarypool.com
http://www.binarypool.com/idapluginwriting/

IDA PLUGIN WRITING IN C/C++

works. It can be found at http://www.datarescue.com/idabase/unpack pe/unpacking.pdf. If you
get stuck while writing a plug-in, you can always ask for help on the Datarescue Bulletin Board
(http://www.datarescue.com/cgi-local/ultimatebb.cgi), where even though the SDK is officially
unsupported, someone from Datarescue (or one of the many IDA users) is likely to help you out.

Another great resource is http://www.openrce.org/, where you'll find not only some great articles
on reverse engineering, but tools, plug-ins and documentation too. There are also a lot of switched-
on people on this board, who will most likely be able to help you with almost any IDA or general
reverse engineering problem.

© 2006 CodeBreakers Magazine Page 6 of 125

http://www.datarescue.com/idabase/unpack_pe/unpacking.pdf
http://www.datarescue.com/cgi-local/ultimatebb.cgi
http://www.openrce.org/

IDA PLUGIN WRITING IN C/C++
2. The IDA SDK

IDA is a fantastic disassembler and more recently comes with a variety of debuggers too. While IDA
alone has an amazing amount of functionality, there are always things you'll want to automate or
do in some particular way that IDA doesn't support. Thankfully, the guys at Datarescue have
released the IDA SDK - a way for you to hook your own desired functionality into IDA.

There are four types of modules you can write for IDA using the IDA SDK, plug-in modules being
the subject of this tutorial:

Module Type Purpose

Processor Adding support for different processor architectures.
Also known as IDP (IDa Processor) modules.

Plug-in Extending functionality in IDA.

Loader Adding support for different executable file formats.

Debugger Adding support for debugging on different platforms
and/or interacting with other debuggers / remote
debugging.

From here onwards, the term "plug-in" will be used in place of "plug-in module", unless otherwise
stated.

The IDA SDK contains all the header and library files you need to write an IDA plug-in. It supports
a number of compilers on both Linux and Windows platforms, and also comes with an example
plug-in that illustrates a couple of basic features available.

Whether you're a reverse engineer, vulnerability researcher, malware analyst, or a combination of
them, the SDK gives you a tremendous amount of power and flexibility. You could essentially write
your own debugger/disassembler using it, and that's just scratching the surface. Here's a tiny
sample of some very straight-forward things you could do with the SDK:

> Automate the analysis and unpacking of packed binaries.

> Automate the process of finding the use of particular functions (for example,

LoadLibrary(), strcpy (), and whatever else you can think of.)

> Analyse program and/or data flow, looking for things of interest to you.
> Binary diff'ing.

> Write a de-compiler.

> The list goes on..

To see a sample of what some people have written using the IDA SDK, check out the IDA Palace
website, at http://home.arcor.de/idapalace/.

© 2006 CodeBreakers Magazine Page 7 of 125

http://home.arcor.de/idapalace/

IDA PLUGIN WRITING IN C/C++
2.1 Installation

This is simple. Once you obtain the SDK (which should be in the form of a .zip file), unzip it to a
location of your choice. My preference is creating an sdk directory under the IDA installation and
putting everything in there, but it doesn't really matter.

2.2 Directory Layout

Rather than go through every directory and file in the SDK, I'm going to go over the directories
relevant to writing plug-ins, and what's in them.

Directory Contains

/ Some makefiles for different environments as well as the readme. txt
which you should read to get a quick overview of the SDK, in particular
anything that might've changed in recent versions.

include/ Header files, grouped into areas of functionality. I
recommend going through every one of these files and
jotting down functions that look applicable to your needs
once you have gone through this tutorial.

libbor.wxX/ IDA library to link against when compiling with the
Borland C compiler

libgceXX. 1lnx/ IDA library to link against when compiling with GCC under
Linux

libgcc.wXX/ IDA library to link against when compiling with GCC under
Windows

libve.wXx/ IDA library to link against when compiling with Visual

C++ under Windows
plugins/ Sample plug-ins

xx is either 32(bit) or 64(bit), which will depend on the architecture you’re running on.

2.3 Header Files

Of the fifty header files in the inciude directory, I found the following to be most relevant when
writing plug-ins. If you want information on all the headers, look at readme.txt in the SDK root
directory, or in the header file itself. This listing is just here to provide a quick reference point when
looking for certain functionality — more detail will be revealed in the following sections.

© 2006 CodeBreakers Magazine Page 8 of 125

IDA PLUGIN WRITING IN C/C++

File(s) Contains

area.hpp area t and areacb t classes, which represent “areas”
of code, which will be covered in detail later on

bytes.hpp Functions and definitions for dealing with individual
bytes within a disassembled file

dbg.hpp & idd.hpp Debugger classes and functions

diskio.hpp & fpro.h DA equivalents to fopen(), open(), etc. as well as
some misc. file operations (getting free disk space,
current working directory, etc.)

entry.hpp Functions for getting and manipulating executable
entry point information

frame.hpp Functions for dealing with the stack, function frames,
local variables and labels

funcs.hpp func t class and pretty much everything function
related

ida.hpp idainfo struct, which holds mostly meta information
about the file being disassembled

kernwin.hpp Functions and classes for interacting with the IDA
user interface

lines.hpp Functions and definitions that deal with disassembled
text, colour coding, etc.

loader.hpp Mostly functions for loading files into and
manipulating the IDB

name . hpp Functions and definitions for getting and setting
names of bytes (variable names, function names,
etc.)

pro.h Contains a whole range of misc. definitions and
functions

search.hpp Various functions and definitions for searching the
disassembled file for text, data, code and more.

segment.hpp segment t class and everything for dealing with
binary segments/sections

strlist.hpp string info_t structure and related functions for representing
each string in IDA's string list.

ua.hpp insn t, op t and optype t classes representing
instructions, operands and operand types

respectively as well as functions for working with the
IDA analyser

xref.hpp Functions for dealing with cross referencing code and
data references

© 2006 CodeBreakers Magazine Page 9 of 125

IDA PLUGIN WRITING IN C/C++
2.4 Using the SDK

Generally speaking, any function within a header file that's prefixed with ida export is available for
your use, as well as global variables prefixed with ida export data. The rule of thumb is to stay
away from lower level functions (these are indicated in the header files) and stick to using the
higher level interfaces provided. Any defined class, struct and enum is available for your use.

© 2006 CodeBreakers Magazine Page 10 of 125

IDA PLUGIN WRITING IN C/C++
3. Setting Up a Build Environment

Note for Borland users: The only compiler supported by the IDA SDK that
isn't covered in this section is Borland's. You should read the install cb.txt
and makeenv br.mak in the root of the SDK directory to determine the
compiler and linker flags necessary.

Before you start coding away it's best to have a proper environment set up to facilitate the
development process. The more popular environments have been covered, so apologies if yours
isn't. If you're already set up, feel free to skip to the next section.

3.1 Windows, Using Visual Studio

The version of Visual Studio used for this example is Visual Studio.NET 2003, but almost everything
should be applicable to later and even some earlier versions.

Once you have Visual Studio running, close any other solutions and/or projects you might have
open; we want a totally clean slate.

1 Go to File->New->Project.. (Ctrl-Shift-N)

2 Expand the visual c++ Projects folder, followed by the win32 sub-
folder, and then select the win32 Project icon. Name the project
whatever you like and click ok.

3 The Win32 Application Wizard should then appear, click the
Application Settings tab and make sure wWindows Application IS
selected, and then tick the Empty Project checkbox. Click Finish.

4 In the Solutions Explorer on the right hand side, right click on the Source Files
folder and go to Add->Add New Item...

5 Select the c++ File (.cpp)icon and name the file appropriately. Click Open. Repeat
this step for any other files you want to add to the project.

6 Go to Project->projectname Properties...

Change the following settings (some have been put there to reduce the size of the
resulting plug-in, as VS seems to bloat the output file massively):

Configuration Properties->General: Change Configuration Type t0o
Dynamic Library (.d1l1l)

C/C++->General: Set Detect 64-bit Portability Issue checks to No
C/C++->General: Set Debug Information Format to Disabled
C/C++->General: Add the SDK include path to the Additional Include
Directories field. e.g. C:\IDA\SDK\Include

C/C++->Preprocessor: Add NT ; IDP to Preprocessor Definitions
C/C++->Code Generation: Turn off Buffer Security Check, and Basic
Runtime Checks, set Runtime Libraryto Single Threaded
C/C++->Advanced: Calling Conventionis __stdcall

Linker->General: Change Output File from a.exe toa.plwinthe IDA plugins
directory

© 2006 CodeBreakers Magazine Page 11 of 125

IDA PLUGIN WRITING IN C/C++

Linker->General: Add the path to your 1ibvc.wXX to Additional Library
Directories. e.g. C:\IDA\SDK\libvc.w32

Linker->Input: Add ida.lib to Aditional Dependencies
Linker->Debugging: No t0 Generate Debug Info

Linker->Command Line: Add /EXPORT:PLUGIN

Build Events->Post-Build Event: Set Command-1line to your idag.exe to start
IDA after each successful build (Optional)

Click ok

8 Go back to step 6, but before moving on to step 7, change the Configuration drop-
down from Active (Debug) {0 Release and repeat the settings changes in step 7. Click
OK

9 Move on to section 3.4

3.2 Windows, Using Dev-C++ With GCC and MinGW

You can obtain a copy of Dev-C++, GCC and MinGW as one package from
http://www.bloodshed.net/dev/devcpp.html. Installing and setting it up is beyond the scope of this
tutorial, so from here on, it'll be assumed that it's all in working order.

As before, start up Dev-C++ and ensure no project or other files are open - we want a clean slate.

1 GO to File->New Project, ChoOSe Empty Project, make sure cC++
Project is selected and give it any name you wish, click ok

2 Choose a directory to save the project file, this can be anywhere you
wish.

3 Go to Project->New File, this will hold the source code to your plug-in.
Repeat this step for any other files you want to add to the project.

4 Go to Project->Project Options, click on the Parameters tab.
Under C++ compiler, add:
-DWIN32 -D__NT _ -D_IDP__ -v -mrtd

6 Under Linker, add:

../path/to/your/sdk/libgcc.wXX/ida.a -Wl,--dl1 -shared
Just a note here - it's usually best to start with . . /, because msys seems to get confused
with just /, and tries to reference it from the root of the msys directory.

7 Click on the Directories tab, and Include Directories sub-tab. Add the path to
your IDA SDK include directory to the list.
8 Click on the Build Options tab, set the output directory to your IDA plugins
directory, and Override the output filename to be a .plw file. Click OK.
9 Move on to section 3.4
© 2006 CodeBreakers Magazine Page 12 of 125

http://www.bloodshed.net/dev/devcpp.html

IDA PLUGIN WRITING IN C/C++

3.3 Linux, Using GCC

Unlike Windows plug-ins, which end in .plw, Linux plug-ins need to end in .p1x. Also, in this
example, there is no GUI IDE, so rather than go through a step-by-step process, I'll just show the
Makefile you need to use. The below example probably isn't the cleanest mMakefile, but it should
work.

In this example, the IDA installation is in /usr/local/idaadv, and the SDK is located under the sdk
sub-directory. Put the below Makefile into the same directory where the source to your plug-in will
be. You'll also need to copy the plugin.script file from the sdk/plugins directory into the directory
with your source and Makefile.

Set src below to the source files that make up your plug-in, and osJs to the object files they will be
compiled to (same filename, just replace the extension with a .o0).

SRC=filel.cpp file2.cpp

OBJS=filel.o file2.o0

CC=g++

LD=g++

CFLAGS=-D IDP _ -D PLUGIN _ -c -D LINUX \
-I/usr/local/idaadv/sdk/include $ (SRC)

LDFLAGS=--shared $(0OBJS) -L/usr/local/idaadv -lida \
--no-undefined -Wl,--version-script=./plugin.script

all:
$(CC) $ (CFLAGS)
$(LD) S$(LDFLAGS) -o myplugin.plx
cp myplugin.plx /usr/local/idaadv/plugins

To compile your plug-in, make will do the job and copy it into the IDA p1lugins directory for you.

3.4 A Plug-in Template

The way IDA "hooks in" to your plug-in is via the PLUGIN class, and is typically the only thing exported by your plug-in (so
that IDA can use it). Also, the only files you need to #include that are essential for the most basic plug-in are ida.hpp,
idp.hpp and loader.hpp

The below template should serve as a starter for all your plug-in writing needs. If you paste it into a file in your respective
development environment, it should compile, and when run in IDA (Edit->Plugins->pluginname, or the shortcut
defined) , it will insert the text "Hello World" into the IDA Log window.

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>

int IDAP init(void)
{

// Do checks here to ensure your plug-in is being used within

// an environment it was written for. Return PLUGIN SKIP if the // checks fail,
otherwise return PLUGIN KEEP.

© 2006 CodeBreakers Magazine Page 13 of 125

IDA PLUGIN WRITING IN C/C++

void IDAP_ term(void)

{
// Stuff to do when exiting, generally you'd put any sort
// of clean-up jobs here.
return;

// The plugin can be passed an integer argument from the plugins.cfg
// file. This can be useful when you want the one plug-in to do
// something different depending on the hot-key pressed or menu
// item selected.
void IDAP run(int arg)
{
// The "meat" of your plug-in
msg ("Hello world!"™);
return;

// There isn't much use for these yet, but I set them anyway.
char IDAP comment[] = "This is my test plug-in";
char IDAP help[] = "My plugin";

// The name of the plug-in displayed in the Edit->Plugins menu. It can // be overridden in
the user's plugins.cfg file.
char IDAP name/[] = "My plugin";

// The hot-key the user can use to run your plug-in.
char IDAP hotkey[] = "Alt-X";

// The all-important exported PLUGIN object
plugin_t PLUGIN =
{

IDP INTERFACE VERSION, // IDA version plug-in is written for
0, // Flags (see below)
IDAP init, // Initialisation function
IDAP term, // Clean-up function
IDAP run, // Main plug-in body
IDAP_ comment, // Comment - unused
IDAP help, // As above - unused
IDAP name, // Plug-in name shown in
B // Edit->Plugins menu
IDAP hotkey // Hot key to run the plug-in

}i

You can usually get away without setting the flags attribute (second from the top) in the pLUGIN
structure unless it's a debugger module, or you want to do something like hide it from the Edit-
>Plugins menu. See loader.hpp for more information on the possible flags you can set.

The above template is also available at http://www.binarypool.com/idapluginwriting/template.cpp.

© 2006 CodeBreakers Magazine Page 14 of 125

http://www.binarypool.com/idapluginwriting/template.cpp

IDA PLUGIN WRITING IN C/C++

3.5 Configuring and Running Plug-ins

This is the easiest of all - copy the compiled plug-in file (make sure it ends in .p1w for Windows or
.plx for Linux) into the IDA plugins directory and IDA will load it automatically at start-up.

Make sure your plug-in can load up all of its DLLs and shared libraries at start-up by ensuring your
environment is set up correctly (1p LIBRARY PATH under Linux, for example). You can start IDA with
the -z20 flag, which will enable plug-in debugging. This will usually indicate if there are errors
during the loading process.

If you put code into the 1pap_init () function, it will get executed when IDA is loading the first file
for disassembly, otherwise, if you put code in the 1pap run () function, it will execute when the user
presses the hot-key combination or goes through the Edit->Plugins menu.

The user can override a few of the pLucIN settings in the plugins.cfg file (like the name and hot-

key), but that's nothing for you to really concern yourself with. The plugins.cfg file can also be
used to pass arguments to your plug-in at start-up.

© 2006 CodeBreakers Magazine Page 15 of 125

IDA PLUGIN WRITING IN C/C++
4. Fundamentals

There are quite a few different classes, data structures and types within the IDA SDK, some more widely used than others.
The aim of this section is to introduce you to them, as they provide great insight into what IDA knows about a disassembled
file, and should get you thinking about the possibilities of what can be done with the SDK.

Some of these classes and structures are quite large, with many member variables and
methods/functions. In this section, it's mostly the variables that are covered, whereas the methods
are covered in Chapter 5 - Functions. Some of the below code commentary is taken straight from
the SDK, some is my commentary, and some is a combination of the two. #defines have, in some
cases, been included beneath various members, the same way as it's been done in the SDK. I left
these in because it's a good illustration of the valid values a member variable can have.

Important note about the examples: Code from any of the examples in
this section should be put into the 1pap run() function from the template in
section 3.4, unless otherwise stated.

4.1 Core Types

The following types are used all throughout the SDK and this tutorial, so it's important that you are
able to recognise what they represent.

All the below types are unsigned long integers, and unsigned long long integers on 64-bit systems.
They are defined in pro.h.

Type Description

ea_t Stands for 'Effective Address', and represents pretty much any
address within IDA (memory, file, limits, etc.)

sel_t Segment selectors, as in code, stack and data segment selectors

uval_t Used for representing unsigned values

asize_t Typically used for representing the size of something, usually a
chunk of memory

The following are signed long integers, and signed long long integers on 64-bit systems. They are
also defined in pro.n.

Type Description
sval_t Used for representing signed values
adiff_t Represents the difference between two addresses

Finally, there are a couple of definitions worth noting; one of these is BapbaDDR, which represents an
invalid or non-existent address which you will see used a lot in loops for detecting the end of a
readable address range or structure. You will also see mMaxsTR used in character buffer definitions,
which is 1024.

© 2006 CodeBreakers Magazine Page 16 of 125

IDA PLUGIN WRITING IN C/C++
4.2 Core Structures and Classes

4.2.1 Meta Information

The idainfo struct, which is physically stored in the IDA database (IDB), holds what I refer to as
'meta’ information about the initial file loaded for disassembly in IDA. It does not change if more
files are loaded, however. Here are some of the more interesting parts of it, as defined in ida.hpp:

struct idainfo

{

char procName[8]; // Name of processor IDA is running on

// ("metapc" = x86 for example)
ushort filetype; // The input file type. See the

// filetype t enum - could be f ELF,
// f_PE, etc.

ea t startSP; // [E]SP register value at the start of
// program execution

ea t startIP; // [E]IP register value at the start of
// program execution

ea t beginEA; // Linear address of program entry point,
// usually the same as startIP

ea t minEA; // First linear address within program

ea t maxEA; // Last linear address within the

// program, excluding maxEA
}i

inf is a globally accessible instance of this structure. You will often see checks done against
inf.procName Within the initialisation function of a plug-in, checking that the machine architecture
is what the plug-in was written to handle.

For example, if you wrote a plug-in to only handle PE and ELF binary formats for the x86
architecture, you could add the following statement to your plug-in's init function (1pap init from
our plug-in template in section 3.4).

// "metapc" represents x86 architecture
if (strncmp (inf.procName, "metapc", 8) != 0
|| inf.filetype != f ELF && inf.filetype != £ PE))

{

error ("Only PE and ELF binary type compiled for the x86 "

"platform is supported, sorry.");
return PLUGIN SKIP; // Returning PLUGIN SKIP means this plug-in
// won't be loaded

}
return PLUGIN KEEP; // Keep this plug-in loaded

4.2.2 Areas

Before going into detail on the “higher level” classes for working with segments, functions and
instructions, let's have a look at two key concepts; namely areas and area control blocks.

© 2006 CodeBreakers Magazine Page 17 of 125

IDA PLUGIN WRITING IN C/C++

4.2.2.1 The area_t Structure

An area is represented by the area t struct, as defined in area.hpp. Based on commentary in this
file, strictly speaking:

"Areas" consists of separate area_t instances. An area is a non-empty contiguous range of addresses (specified
by it start and end addresses, end address is excluded) with characteritics. For example, segments are set of
areas.

As you can see from the below excerpt from the area_t definition, it is defined by a start address (startEA) and
end address (endE2). There are also a couple of functions to see if an area contains an address, if an area is
empty, and to return the size of the area. A segment is an area, but functions are too, which means areas can
also encompass other areas.

struct area t

{

ea t startEA;
ea t endEA; // endEA address is excluded from
// the area
bool contains(ea_t ea) const { return startEA <= ea && endEA > ea; }
bool empty(void) const { return startEA >= endEA; }
asize t size(void) const { return endEA - startEA; }

}i

Technically speaking, saying that functions and segments are areas, is to say that the func _t and segment t
classes inherit from the area t struct. This means that all the variables and functions in the area t structure
are applicable to func t and segment t (so for example, segment t.startEA and func t.contains ()
are valid). func t and segment t also extend the area t struct with their own specialized variables and
functions. These will be covered later however.

A few other classes that inherit from and extend area_t are as follows:

Type (file) Description

hidden area_ t (bytes.hpp) Hidden areas where code/data is replaced and
summarised by a description that can be expanded to
view the hidden information

regvar_t (frame.hpp) Register name replacement with user-defined names
(register variables)
memory info t (idd.hpp) A chunk of memory (when using the debugger)
segreg_t (srarea.hpp) Segment register (Cs, Ss, etc. on x86) information
© 2006 CodeBreakers Magazine Page 18 of 125

IDA PLUGIN WRITING IN C/C++

4.2.2.2 The areacb_t Class

An area control block is represented by the areacb t class, also defined in area.hpp. The commentary for it,
shown below, is slightly less descriptive, but doesn't really need to be anyway:

"areacb_t" is a base class used by many parts of IDA

The area control block class is simply a collection of functions that are used to operate on areas.
Functions include get area gty(), get next area() and so on. You probably won't find yourself
using any of these methods directly, as when dealing with functions for example, you're more likely
to use func t's methods, and the same rule applies to other classes that inherit from area t.

There are two global instances of the areacb t class, namely segs (defined in segment.hpp) and
funcs (defined in funcs.hpp), which represent all segments and functions, respectively, within the
currently disassembled file(s). You can run the following to get the number of segments and
functions within the currently disassembled file(s) in IDA:

#include <segment.hpp>
#include <funcs.hpp>

msg ("Segments: %d, Functions: %d\n",
segs.get area gty(),
funcs.get area gty());

4.2.3 Segments and Functions

As mentioned previously, the segment t and func t classes both inherit from and extend the area t
struct, which means all the area t variables and functions are applicable to these classes and they
also bring some of their own functionality into the mix.

4.2.3.1 Segments
The segment t class is defined in segment.hpp. Here are the more interesting parts of it.

class segment t : public area t
{
public:
uchar perm; // Segment permissions (0-no information). Will
// be one or a combination of the below.
#define SEGPERM EXEC 1 // Execute
#define SEGPERM WRITE 2 // Write
#define SEGPERM READ 4 // Read

uchar type; // Type of the segment. This will be one of the below.
#define SEG_NORM 0 // Unknown type, no assumptions
#define SEG XTRN 1 // Segment with 'extern' definitions,

// where no instructions are allowed
// Code segment

Data segment

// Zero-length segment

// Uninitialized segment

#define SEG_CODE
#define SEG_DATA
#define SEG NULL
#define SEG BSS

O J w N
~
~

b
© 2006 CodeBreakers Magazine Page 19 of 125

IDA PLUGIN WRITING IN C/C++

SEG_XTRN is a special (i.e. not physically existent) segment type, created by IDA upon disassembly
of a file, whereas others represent physical parts of the loaded file. For a typical executable file
loaded in IDA for example, the value of type for the .text segment would be sec cope and the
value of perm would be SEGPERM EXEC | SEGPERM READ.

To iterate through all the segments within a binary, printing the name and address of each one into
IDA's Log window, you could do the following:

#include <segment.hpp>

// This will only work in IDA 4.8, because get segm name () changed
// in 4.9. See the Chapter 5 for more information.

// get segm gty() returns the number of total segments

// for file(s) loaded.

for (int s = 0; s < get _segm gty(); s++)

{
// getnseg() returns a segment t struct for the segment
// number supplied
segment t *curSeg = getnseg(s);

// get segm name () returns the name of a segment
// msg () prints a message to IDA's Log window
msg ("%$s @ %a\n", get segm name (curSeg), curSeg->startEA);

}

Understanding what the functions above do isn't important at this stage — they'll be explained in more detail under
Chapter 5 - Functions.

4.2.3.2 Functions

A function is represented by the func t class, which is defined in funcs.hpp, but before going into
detail on the func t class, it's probably worth shedding some light on function chunks, parents and
tails.

Functions are typically contiguous blocks of code within the binary being analysed, and are usually
represented as a single chunk. However, there are times when optimizing compilers move code
around, and so functions are broken up into multiple chunks with code from other functions
separating them. These loose chunks are known as "tails", and the chunks that reference code (by
a Jvp or something similar) within the tails are known as "parents". What makes things a little
confusing is that all are still of the func t type, and so you need to check the fiags member of
func_t to determine if a func t instance is a tail or parent.

Below is highly stripped-down version of the func t class, along with some slightly edited
commentary taken from funcs.hpp.

class func t : public area t

{
public:

ushort flags; // flags indicating the type of function
// Some of the flags below:

#define FUNC_NORET 0x00000001L // function doesn't return
#define FUNC_LIB 0x00000004L // library function
© 2006 CodeBreakers Magazine Page 20 of 125

IDA PLUGIN WRITING IN C/C++

#define FUNC_HIDDEN 0x00000040L // a hidden function chunk
#define FUNC_THUNK 0x00000080L // thunk (jump) function
#define FUNC_TAIL 0x00008000L // This is a function tail.

// Other bits should be clear
// (except FUNC_HIDDEN)

union // func t either represents an entry chunk or a tail chunk

{

struct //
{
asize t argsize; //
//
ushort pntqgty; //
//
int tailqgty; //
area t *tails; //
}
struct //
{
ea_t owner; //
//

}i

attributes of a function entry chunk

number of bytes purged from the stack

upon returning

number of times the ESP register changes
throughout the function (due to PUSH, etc.)
number of function tails this function owns
array of tails, sorted by ea

attributes of a function tail chunk

the address of the main function
possessing this tail

Because functions are also areas just like segments, iterating through each function is a process

almost identical to dealing

with segments. The following example lists all functions and their

address within a disassembled file, displaying output in IDA's Log window.

#include <funcs.hpp>

// get func gty() returns the number of functions in file(s)

// loaded.
for (int £ = 0; f < get func gty(); £f++)
{
// getn func() returns a func_t struct for the function

// number supplied

func_t *curFunc = getn

char funcName [MAXSTR];

func (f) ;

// get func name gets the name of a function,

// stored in funcName

get func name (curFunc->startEA,
funcName,
sizeof (funcName) -1) ;
msg ("%$s:\t%a\n", funcName, curFunc->startEA);

4.2.4 Code Representation

Assembly language instructions consist of, in most cases, mnemonics (pusH, sHR, cALL, etc.) and

operands (EAX, [EBP+0xAh],

0x0Fh, etc.) Some operands can take various forms, and some

instructions don't even take operands. All of this is represented very cleanly in the IDA SDK.

© 2006 CodeBreakers Magazine Page 21 of 125

IDA PLUGIN WRITING IN C/C++

You have the insn t type to begin with, which represents a whole instruction, for example “mov
EAX, 0x0A”. insn t is made up of, amongst other member variables, up to 6 op t's (one for each
operand supplied to the instruction), and each operand can be a particular optype t (general
register, immediate value, etc.)

Let's look at each component from the bottom-up. They are all defined in ua.hpp.

4.2.4.1 Operand Types

optype t represents the type of operand that is being supplied to an instruction. Here are the more
common operand type values. The descriptions have been taken from the optype t definition in

ua.hpp.
Operand Description Example
disassembly
(respective operand
in bold)
o_void No Operand pusha
o_reg General Register dec eax
o_mem Direct Memory Reference mov eax, ds:1001h
o_phrase Memory Ref [Base Reg + Index push dword ptr [eax]
Reg]
o_displ Memory Ref [Base Reg + Index push [esp+8]
Reg + Displacement]
o_imm Immediate Value add ebx, 10h
o_near Immediate Near Address call _initterm
4.2.4.2 Operands

op_t represents a single operand passed to an instruction. Below is a highly cut-down version of
the class.

class op_ t

{

public:
char n; // number/position of the operand (0,1,2)
optype t type; // type of operand (see previous section)
ushort reg; // register number (if type is o req)
uval t value; // operand value (if type is o_imm)
ea t addr; // virtual address pointed to or used by the //

operand (if type is o _mem)
}:
So, for example, the operand of [esp+8] will result in type being o displ, reg being 4 (which is the

number for the esp register) and addr being 8, because you are accessing 8 bytes from the stack

© 2006 CodeBreakers Magazine Page 22 of 125

IDA PLUGIN WRITING IN C/C++

pointer, thereby being a memory reference. You can use the following snippet of code for getting
the op t value of the first operand of the instruction your cursor is currently positioned at in IDA:

#include <kernwin.hpp>
#include <ua.hpp>

// Disassemble the instruction at the cursor position, store it in

// the globally accessible 'cmd' structure.

ua_anal (get _screen ea());

// Display information about the first operand

msg ("n = %d type = %d reg = %d value = %a addr = %a\n",
cmd.Operands [0] .n,

[
cmd.Operands [0] . type,
cmd.Operands[0] .reqg,
cmd.Operands [0] .value,
cmd.Operands [0] .addr) ;

4.2.4.3 Mnemonics

The mnemonic (pusH, Mov, etc.) within the instruction is represented by the itype member of the
insn_t class (see the next section). This is, however, an integer, and there is currently no textual
representation of the instruction available to the user in any data structure - instead, it is obtained
through use of the ua mnem() function, which will be covered in Chapter 5 - Functions.

There is an enum, named instruc t (allins.hpp) that holds all mnemonic identifiers (prefixed with
NN). If you know what instructions you are after or want to test for, you can utilise it rather than
work off a text representation. For example, to test if the first instruction in a binary is a puss, you
could do the following:

#include <ua.hpp>
#include <allins.hpp>

// Populate 'cmd' with the code at the entry point of the binary
ua_anal (inf.startIP);
// Test if that instruction is a PUSH

if (cmd.itype == NN push)

msg ("First instruction is a PUSH");
else

msg ("First instruction isn't a PUSH");
return;

4.2.4.4 Instructions

insn_t represents a whole instruction. It contains an op t array, named operands, which represents
all operands passed to the instruction. Obviously there are instructions that take no operands (like
PUSHA, CDQ, etc.), in which case the operands(0] variable will have an optype t of o void (no
operand).

class insn_t
{
public:
ea t cs; // code segment base (in paragraphs)

© 2006 CodeBreakers Magazine Page 23 of 125

IDA PLUGIN WRITING IN C/C++

ea t ip; // offset within the segment
ea t ea; // instruction start addresses
ushort itype; // mnemonic identifier
ushort size; // instruction size in bytes
#define UA MAXOP 6
op_t Operands[UA MAXOP];
#define Opl Operands[0] // first operand

1 // second operand

VA

#define Op2 Operands]|
#define Op3 Operands]|
#define Op4 Operands]|
#define Op5 Operands|
#define Op6 Operands]|
}i

]
2]
3]
4]
5]

There is a globally accessible instance of insn t named cmd, which gets populated by the ua ana0 ()
and ua code () functions. More on this later, but in the mean time, here's an example to get the
instruction at a file's entry point and display its instruction number, address and size in IDA's Log
window.

#include <ua.hpp>

// ua_ana0 () populates the cmd structure with a disassembly of the

// address supplied.

ua_ana0l (inf.beginEA); // or inf.startIP

msg ("instruction number: %d, at %a is %d bytes in size.\n",
cmd.itype, cmd.ea, cmd.size);

4.2.5 Cross Referencing

One of the handy features in IDA is the cross-referencing functionality, which will tell you about all
parts of the currently disassembled file that reference another part of that file. For instance, in IDA,
you can highlight a function in the disassembly window, press 'x' and all addresses where that
function is referenced (e.g. calls made to the function) will appear in a window. The same can be
done for data and local variables too.

The SDK provides a simple interface for accessing this information, which is stored internally in a B-
tree data structure, accessed via the xrefblk t structure. There are other, more manual, ways to
retrieve this sort of information, but they are much slower than the methods outlined below.

One important thing to remember is that even when an instruction naturally flows onto the next,
IDA can potentially treat the first as referencing the second, but this can be turned off using flags
supplied to some xrefblk t methods, covered in Chapter 5 - Functions.

4.2.5.1 The xrefblk_t Structure

Central to cross referencing functionality is the xrefblk t structure, which is defined in xref.hpp. This
structure first needs to be populated using its first from() or first to () methods (depending on whether
you want to find references to or from an address), and subsequently populated using next from() or
next to () as you traverse through the references.

© 2006 CodeBreakers Magazine Page 24 of 125

IDA PLUGIN WRITING IN C/C++

The variables within this structure are shown below and commentary is mostly from xref.hpp. The
methods (first from, first to, next from and next to) have been left out, but will be covered in
Chapter 5 - Functions.

struct xrefblk t
{

ea t from; // the referencing address

ea t to; // the referenced address

uchar iscode; // 1-is code reference; 0-is data reference
uchar type; // one of the cref t or dref t types (see

// section 4.2.5.2 and 4.2.5.3)
}i

As indicated by the iscode variable, xrefblk t can contain information about a code reference or a
data reference, each of which could be one of a few possible reference types, as indicated by the
type variable. These code and data reference types are explained in the following two sections.

The below code snippet will give you cross reference information about the address your cursor is
currently positioned at:

#include <kernwin.hpp>
#include <xref.hpp>

xrefblk t xb;

// Get the address of the cursor position

ea t addr = get screen ea();

// Loop through all cross references

for (bool res = xb.first to(addr, XREF FAR); res; res = xb.next to()) {
msg ("From: %a, To: %a\n", xb.from, xb.to);
msg ("Type: %d, IsCode: %d\n", xb.type, xb.iscode);

4.2.5.2 Code

Here is the cref t enum, with some irrelevant items taken out. Depending on the type of
reference, the type variable in xrefblk t will be one of the below if iscode is set to 1. The
commentary for the below is taken from xref.hpp.

enum cref t

{

fl1 CF = 16, // Call Far
// This xref creates a function at the
// referenced location

f1 CN, // Call Near
// This xref creates a function at the
// referenced location

f1 JF, // Jump Far
f1 JN, // Jump Near
f1 F, // Ordinary flow: used to specify execution

// flow to the next instruction.

b
© 2006 CodeBreakers Magazine Page 25 of 125

IDA PLUGIN WRITING IN C/C++

Below is a code cross reference taken from a sample binary file. In this case, 712p98FE is referenced
by 712p9BF6, which is a near jump (£f1 Jn) code reference type.

.text:712D9BF6 jz short loc 712D9BFE

.text:712D9BFE loc_712D9BFE:
.text:712D9BFE lea ecx, [ebpt+var 14]

4.2.5.3 Data

If iscode in xrefblk t is set to o, it is a data cross reference. Here are the possible type member
values when you're dealing with a data cross reference. The commentary for this enum is also
taken from xref.hpp.

enum dref t

{

dr O, // Offset
// The reference uses 'offset' of data
// rather than its value
// OR
// The reference appeared because
// the "OFFSET" flag of instruction is set.
// The meaning of this type is IDP dependent.
dr W, // Write access
dr R, // Read access

}i

Keep in mind that when you see the following in a disassembly, you are actually looking at a data
cross reference, whereby 712p98D9 is referencing 712c119c:

.idata:712C119C extrn wsprintfA:dword

.text:712D9BDY call ds:wsprintfA

In this case, the type member of xrefblk t would be the typical dr R, because it's simply doing a read of the address
represented by ds:wsprintfA. Another data cross reference is below, where the PUSH instruction at 712EABE2 is
referencing a string at 712c255¢C:

.text:712C255C aVersion:
.text:712C255C unicode 0, <Version>,0

.text:712EABE2 push offset aVersion

The type member of xrefblk t would be dr o in this case, because it's accessing the data as an
offset.

© 2006 CodeBreakers Magazine Page 26 of 125

IDA PLUGIN WRITING IN C/C++

4.3 Byte Flags

For each byte in a disassembled file, IDA records a corresponding four byte (32-bits) value, stored
in the id1 file. Of these four bytes, each half-byte (four bits or “nibble”) is a flag, which represents
an item of information about the byte in the disassembled file. The last byte of the four flag bytes
is the actual byte at that address within the disassembled file.

For example, the instruction below takes up a single byte (0x55) in the file being disassembled:

.text:010060FA push ebp

The IDA flags for the above address in the file being disassembled are 0x00010755; 0001007 being
the flag component and 55 being the byte value at that address in the file. Keep in mind that the
address has no bearing on the flags at all, nor is it possible to derive flags from the address or
bytes themselves - you need to use getrlags() to get the flags for an address (more on this
below).

Obviously, not all instructions are one byte in size; take the below instruction for example, which is
three bytes (0x83 o0xECc 0x14). The instruction is therefore spread across three addresses;
0x010011DE, 0x010011DF and 0x010011E0:

.text:010011DE sub esp, 1l4h
.text:010011E1 ...

Here are the corresponding flags for each byte in this instruction:

010011DE: 41010783
010011DF: 001003EC
010011E0: 00100314

Because these three bytes belong to the one instruction, the first byte of the instruction is referred
to as the head, and the other two are tail bytes. Once again, notice that the last byte of each flag-
set is the corresponding byte of the instruction (0x83, 0xEC, 0x14).

All flags are defined in bytes.hpp, and you can check whether a flag is set by using the flagset
returned from getFlags(ea t ea) as the argument to the appropriate flag-checking wrapper
function. Here are some common flags along with their wrapper functions which check for their
existence. Some functions are covered in Chapter 5 - Functions, for others you should look in

bytes.hpp.
Flag Name Flag Indication Wrapper
function
FF CODE 0x00000600L Is the byte code? isCode ()
FF DATA 0x00000400L Is the byte data? isData ()
FF TAIL 0x00000200L Is this byte a part (nOn- isTail ()
head) of an instruction data
© 2006 CodeBreakers Magazine Page 27 of 125

IDA PLUGIN WRITING IN C/C++

chunk?
FF UNK 0x00000000L Was IDA unable to classify isUnknown ()
this byte?
FF_COMM 0x00000800L Is the byte commented? has_cmt ()
FF REF 0x00001000L Is the byte referenced hasRef ()
elsewhere?
FF_NAME 0x00004000L Is the byte named? has name ()
FF_FLOW 0x00010000L Does the previous isFlow ()

instruction flow here?

Going back to the first “push ebp” example above, if we were to manually check the flags returned
from getFlags (0x010060FA) against a couple of the above flags, we’d get the following results:

0x00010755 & 0x00000600 (FF CODE) = 0x00000600. We know this is code.
0x00010755 & 0x00000800 (FF _COMM) = 0x00000000. We know this isn't commented.

The above example is purely for illustrative purposes - don't do it this way in your plug-in. As
mentioned above, you should always use the helper functions to check whether a flag is set or not.
The following will return the flags for the given head address your cursor is positioned at in IDA.

#include <bytes.hpp>
#include <kernwin.hpp>

msg ("$08x\n", getFlags(get screen ea()));

4.4 The Debugger

One of the most powerful features of the IDA SDK is the ability to interact with the IDA debugger,
and unless you've installed your own custom debugger plug-in, it will be one of the debugger plug-
ins that came with IDA. The following debugger plug-ins come with IDA by default, and can be
found in your IDA plugins directory:

Plugin Filename Description
winsz_nser.piv Windows local debugger
Windows remote debugger
Linux local debugger
Linux remote debugger

win32 stub.plw
linux user.plw

linux stub.plw

These are automatically loaded by IDA and made available at start-up under the bpebugger->Run
menu. From here on, the term "debugger" will represent which ever of the above you are using
(IDA will choose the most appropriate one for you by default).

© 2006 CodeBreakers Magazine Page 28 of 125

IDA PLUGIN WRITING IN C/C++

As mentioned earlier, it is possible to write debugger modules for IDA, but this isn't to be confused
with writing plug-in modules that interact with the debugger. The second type of plug-in is what's
described below.

Aside from all the functions provided for interacting with the debugger, which will be explored later
in Chapter 5 - Functions, there are some key data structures and classes that are essential to
understand before moving ahead.

4.4.1 The debugger_t Struct

The debugger t struct, defined in idd.hpp and exported as *dbg, represents the currently active debugger
plug-in, and is available when the debugger is loaded (i.e. at start-up, not just when you run the debugger).

struct debugger t
{

char *name; // Short debugger name like 'win32' or 'linux'
#define DEBUGGER ID X86 IA32 WIN32 USER 0 // Userland win32 processes
#define DEBUGGER ID X86 IA32 LINUX USER 1 // Userland linux processes

register info t *registers; // Array of registers

int registers size; // Number of registers

}

As a plug-in module, it's likely that you'll need to access the *name variable, possibly to test what debugger your
plug-in is running with. The *registers and registers size variables are also useful for obtaining a list of
registers available (see the following section).

4.4.2 Registers

A common task while using the debugger is accessing and manipulating register values. In the IDA
SDK, a register is described by the register info t struct, and the value held by a register is
represented by the regval t struct. Below is a slightly cut-down register info t struct, which is
defined in idd.nhpp.

struct register info t
{
const char *name; // Register full name (EBX, etc.)
ulong flags; // Register special features,
// which can be any combination
// of the below.
#define REGISTER READONLY 0x0001 // the user can't modify
// the current value of this
// register

#define REGISTER IP 0x0002 // instruction pointer

#define REGISTER SP 0x0004 // stack pointer

#define REGISTER FP 0x0008 // frame pointer

#define REGISTER ADDRESS 0x0010 // Register can contain an address

© 2006 CodeBreakers Magazine Page 29 of 125

IDA PLUGIN WRITING IN C/C++
b

The only instance of this structure is accessible as the array member *registers Of *dbg (an
instance of debugger t), therefore it is up to the debugger you're using to populate it with the list of
registers available on your system.

To obtain the value for any register, it's obviously essential that the debugger be running. The
functions for reading and manipulating register values will be covered in more detail in Chapter 5 -
Functions, but for now, all you need to know is to retrieve the value using the ival member of
regval t, Or use fval if you're dealing with floating point numbers.

Below is regval t, which is defined in idd.hpp.

struct regval t

{
ulonglong ival; // Integer value
ushort fval[6]; // Floating point value in the internal
// representation (see ieee.h)

}i

ival/fval will correspond directly to what is stored in a register, so if EBx contains 0xDEADBEEF, ival
(once populated using get reg val()), will also contain 0xDEADBEEF.

The following example will loop through all available registers, displaying the value in each. If you
run this outside of debug mode, the value will be 0xFFFFFFFF:

#include <dbg.hpp>

// Loop through all registers
for (int 1 = 0; 1 < dbg->registers size; i++) |
regval t val;
// Get the value stored in the register
get reg val ((dbg->registers+i)->name, &val);
msg ("%s: %08a\n", (dbg->registers+i)->name, val.ival);

4.4.3 Breakpoints

A fundamental component of debugging is breakpoints, and IDA represents hardware and software
breakpoints differently using the ppt t struct, shown below and defined in dbg.hpp. Hardware
breakpoints are created using debug-specific registers on the running CPU (pro-bprR3 on x86),
whereas software breakpoints are created by inserting an InT3 instruction at the desired breakpoint
address - although this is handled for you by IDA, it's sometimes helpful to know the difference. On
x86, the maximum number of hardware breakpoints you can set is four.

struct bpt t
{

// read only characteristics:
ea t ea; // starting address of the breakpoint

© 2006 CodeBreakers Magazine Page 30 of 125

IDA PLUGIN WRITING IN C/C++

asize t size; // size of the breakpoint
// (undefined if software breakpoint)
bpttype t type; // type of the breakpoint:

// Taken from the bpttype t const definition in idd.hpp:

// BPT EXEC = O, // Execute instruction
// BPT WRITE = 1, // Write access
// BPT RDWR = 3, // Read/write access
// BPT SOFT = 4; // Software breakpoint

// modifiable characteristics (use update bpt() to modify):

int pass_count; // how many times does the execution reach

// this breakpoint? (-1 if undefined)

int flags;
#define BPT BRK 0x01 // does the debugger stop on this breakpoint?
#define BPT TRACE 0x02 // does the debugger add trace information

// when this breakpoint is reached?
char condition[MAXSTR]; // an IDC expression which will be used as
// a breakpoint condition or run when the
// breakpoint is hit
bi

Therefore, if the type member of bpt t is set to 0, 1 or 3, it is a hardware breakpoint, whereas 4
would indicate a software breakpoint.

There are a lot of functions that create, manipulate and read this struct, but for now, I'll provide a
simple example that goes through all defined breakpoints and display whether they are a software
or hardware breakpoint in IDA's Log window. The functions used will be explained in more detail
further on.

#include <dbg.hpp>

// get bpt gty() gets the number of breakpoints defined
for (int 1 = 0; 1 < get bpt gty(); i++) {
bpt t brkpnt;
// getn bpt fills bpt t struct with breakpoint information based
// on the breakpoint number supplied.
getn bpt (i, &brkpnt);
// BPT_SOFT is a software breakpoint
if (brkpnt.type == BPT SOFT)
msg ("Software breakpoint found at %a\n", brkpnt.ea);
else
msg ("Hardware breakpoint found at %a\n", brkpnt.ea);

4.4.4 Tracing

In IDA, there are three types of tracing you can enable; Function tracing, Instruction tracing and
Breakpoint (otherwise known as read/write/execute) tracing. When writing plug-ins, an additional
form of tracing is available; Step tracing. Step tracing is a low level form of tracing that allows you
to build your own tracing mechanism on top of it, utilising event notifications (see section 4.5) to
inform your plug-in of each instruction that is executed. This is based on CPU tracing functionality,
not breakpoints.

© 2006 CodeBreakers Magazine Page 31 of 125

IDA PLUGIN WRITING IN C/C++

A "trace event" is generated and stored in a buffer when a trace occurs, and what triggers the
generation of a trace event depends on the type of tracing you have enabled, however it's worth
noting that step tracing will not generate trace events, but event notifications instead. The below
table lists all the different trace event types along with the corresponding tev type t enum value,
which is defined in dbg. hpp.

Trace Type Event Type Description
(tev_type t)
Function call and tev _call and A function has been called or
return tev ret returned from
Instruction tev_insn An instruction has been executed

(this is built on top of step tracing in
the IDA kernel)

Breakpoint tev_bpt A breakpoint with tracing enabled has
been hit. Also known as a
Read/Write/Execute trace

All trace events are stored in a circular buffer, so it never fills up, but old trace events will be
overwritten if the buffer is too small. Each trace event is represented by the tev info t struct,
which is defined in dbg.hpp:

struct tev info t

{
tev_type t type; // Trace event type (one of the above or tev none)
thread id t tid; // Thread where the event was recorded
ea t ea; // Address where the event occurred

}i

Based on the ppt t struct described in section 4.4.3, a breakpoint trace is the same as a normal
breakpoint but has the Bpr TrRACE flag set on the fi1ags member. Optionally, the condition buffer
member could have an IDC command to run at each breakpoint.

Trace information is populated during the execution of a process, but can be accessed even once
the process has exited and you are returned to static disassembly mode (unless a plug-in you are
using explicitly cleared the buffer on exit). You can use the following code to enumerate all trace
events (provided you enabled it during exeucution):

#include <dbg.hpp>

// Loop through all trace events

for (int 1 = 0; 1 < get_tev _gty(); 1i++) {
regval t esp;
tev_info t tev;

// Get the trace event information
get tev info (i, &tev);

switch (tev.type) {
case tev _ret:
msg ("Function return at %a\n", tev.ea);
break;

© 2006 CodeBreakers Magazine Page 32 of 125

IDA PLUGIN WRITING IN C/C++

case tev call:
msg ("Function called at %a\n", tev.ea);
break;

case tev_insn:
msg ("Instruction executed at %a\n", tev.ea);
break;

case tev bpt:
msg ("Breakpoint with tracing hit at %a\n", tev.ea);
break;

default:
msg ("Unknown trace type..\n");

It's worth noting at this point that it's not possible for a plug-in to add entries to, or even modify
the trace event log.

All of the functions used above will be covered in Chapter 5 - Functions.

4.4.5 Processes and Threads

IDA maintains information about the processes and threads currently running under the debugger.
Process and Thread IDs are represented by the process id t and thread id t types, respectively
and both are signed integers. All of these types are defined in idd.npp. The only other type,
related to processes, is the process info t type, which is as follows:

struct process info t

{
process_id t pid; // Process ID
char name [MAXSTR]; // Process Name (executable file name)

}i

These are only of use when a binary is being executed under IDA (i.e. you can't use them when in
static disassembly mode). The following example illustrates a basic example usage of the
process_info_t structure.

#include <dbg.hpp>

// Get the number of processes available for debugging.
// get process gty() also initialises IDA's "process snapshot"
if (get process gty () > 0) {

process_info t pif;

get process info (0, é&pif);

msg ("ID: %d, Name: %$s\n", pif.pid, pif.name);
} else {

msg ("No process running!\n");

}

The functions that utilise these structures will be discussed under Chapter 5 - Functions.

© 2006 CodeBreakers Magazine Page 33 of 125

IDA PLUGIN WRITING IN C/C++
4.5 Event Notifications

Typically, plug-ins are run synchronously, in that they are executed by the user, either via pressing
the hot-key or going through the Edit->Plugins menu. A plug-in can, however, run
asynchronously, where it responds to event notifications generated by IDA or the user.

During the course of working in IDA, you'd typically click buttons, conduct searches, and so on. All
of these actions are "events", and so what IDA does is generate "event notifications" each time
these things take place. If your plug-in is setup to receive these notifications (explained below), it
can react in any way you program it to. An application for this sort of thing could be recording
macros for instance. A plug-in can also generate events, causing IDA to perform various functions.

4.5.1 Receiving Notification

To receive event notifications from IDA, all a plug-in has to do is register a call-back function using
hook to notification point (). For generating event notifications, caliui() is used, which is
covered in more detail in Chapter 5 - Functions.

When registering a call-back function with hook to notification point(), you can specify one of
three event types, depending on what notifications you want to receive. These are defined in the
hook type t enum within loader.hpp:

Type Receive Event Enum of All Event
Notifications From Notification Types

HT_IDP Processor module idp notify (not covered here)

HT UI IDA user interface uli notification t

HT DBG Currently running IDA dbg notification t
debugger

Therefore, to receive all event notifications pertaining to the debugger and direct them to your
dbg callback (for example) call-back function, you could put the following inside 1pap init ():

hook to notification point (HT DBG, dbg callback, NULL);

The third argument is typically nurL, unless you want to pass data along to the call-back function
when it receives an event (any data structure of your choosing).

The call-back function supplied to hook to notification point () must look something like this:

int idaapi mycallback (void *user data, int notif code, va list va)

{
return 0;
}

When mycallback () is eventually called by IDA to handle an event notification, user data will point
to any data you specified to have passed along to the call-back function (defined in the call to

© 2006 CodeBreakers Magazine Page 34 of 125

IDA PLUGIN WRITING IN C/C++

hook to notification point()). notif code Will be the actual event identifier (listed in the following
two sections) and va is any data supplied by IDA along with the event, possibly to provide further
information.

The call-back function should return o if it permits the event notification to be handled by
subsequent handlers (the typical scenario), or any other value if it is to be the only/last handler.

Something worth remembering is if you use hook to notification point () in your plug-in, you
must also use unhook_from notification point(), either once you no longer need to receive
notifications, or inside your 1pap term() function. This will avoid unexpected segmentation faults
when exiting IDA. Going by the example above, to unhook the hooked notification point, it would
be done like this:

unhook from notification point (HT DBG, dbg callback, NULL);

4.5.2 UI Event Notifications

ui notification t iS an enum defined in kernwin.hpp, and contains all user interface event
notifications that can be generated by IDA or a plug-in. To register for these event notifications,
you must use HT UI as the first argument to hook to notification point().

The following two lists show some of the event notifications that can be received and/or generated
by a plug-in. These are only a sub-set of possible event notifications; what's listed are the more
general purpose ones.

Although the below can be generated by a plug-in using callui(), most have helper functions,
which means you don't need to use callui () and can just call the helper function instead.

Event Notification Description Helper Function
ui_jumpto Moves the cursor to an Jjumpto
address
ui_screenea Return the address where get_screen_ea
the cursor is currently
positioned
ui refresh Refresh all dSassenﬂﬂy refresh idaview anyway
views
ui_mbox Display a message box to vwarning, vinfo and
the user more.
ui_msg Print some text in IDA's deb, vmsg
Log window
ui askyn D|s|pay a message box askbuttons cv
with Yes and No as
options
ui askfile Prompt the user for a askfile cv
filename
© 2006 CodeBreakers Magazine Page 35 of 125

IDA PLUGIN WRITING IN C/C++

ui_askstr Prompt the user for a vaskstr
single line string

ui_asktext Prompt the user for some vasktext
text

ui form Display a form (very AskUsingForm cv
flexible!)

ui_open_url Open a web browser at a open_url
particular URL

ui load plugin Load a plug-in load plugin

uli run plugin Run a p|ug_in run_plugin

ui_get hwnd Get the uwnp (Window none
Handle) for the IDA
window

ui _get curline Get the colour-coded get curline
disassembled line

uli get cursor Get the X and Y get cursor

coordinates of the current
cursor position

The following event notifications are received by the plug-in, and would be handled by your call-
back function.

Event Notification Description

ui_saving & ui_saved DA is currently saving and has saved the database,
respectively

ui_term IDA has closed the database

For example, the following code will generate a ui screenea event notification and display the
result in an IDA dialog box using an ui mbox event notification.

void IDAP_ run(int arg)
{
ea t addr;
va_ list va;
char buf [MAXSTR];

// Get the current cursor position, store it in addr
callui (ui screenea, &addr):;

gsnprintf (buf, sizeof (buf)-1, "Currently at: %a\n", addr);

// Display an info message box
callui (ui mbox, mbox info, buf, va);

return;

© 2006 CodeBreakers Magazine Page 36 of 125

IDA PLUGIN WRITING IN C/C++

In the above case, you would typically use the helper functions, however caliui () was used for

illustrative purposes.

4.5.3 Debugger Event Notifications

Debugger event notifications are broken up into Low Level, High Level and Function Result event
notifications; the difference between them will be made clear in the following sub-sections. All of
the event notifications mentioned below belong to the dbg notification t enum, which is defined
in dbg.hpp. If you supplied HT DBG tO hook to notification point(), the below event notifications
will be passed to your plug-in while a process is being debugged in IDA.

4.5.3.1 Low Level Events

The following events taken from dbg notification t are all low level event notifications. Low level
event notifications are generated by the debugger.

Event Notification Description

dbg process_start Process started

dbg process_exit Process ended

dog_library_load Library was loaded

dbg_library unload Library was unloaded

dbg_exception Exception was raised

dbg_breakpoint A non-user defined breakpoint was hit

The debug event t struct (idd.npp), which you can use to obtain further information about a
debugger event notification, is always supplied in the va argument to your call-back function (for
low level event notifications only). Here is the whole debug event t struct.

struct debug event t

{

event id t eid; // Event code (used to decipher 'info' union)
process_id t pid; // Process where the event occurred
thread id t tid; // Thread where the event occurred

ea t ea; // Address where the event occurred

bool handled; // Is event handled by the debugger?

// (from the system's point of view)

// The comments on the right indicate what eid value is
// required for the corresponding union member to be set.

union

{

module info t modinfo; //

//
int exit code; //
char info[MAXSTR]; //

e breakpoint t bpt; //
e exception t exc; //

© 2006 CodeBreakers Magazine

PROCESS START, PROCESS ATTACH,

LIBRARY LOAD

PROCESS EXIT, THREAD EXIT

LIBRARY UNLOAD (unloaded library name)
INFORMATION (will be displayed in the
messages window if not empty)
BREAKPOINT (non-user defined!)
EXCEPTION

Page 37 of 125

IDA PLUGIN WRITING IN C/C++

}i
}s

For example, if your call-back function received the dog library load event notification, you could
look at debug event t's modinfo member to see what the file loaded was:

// Our callback function to handle HT DBG event notifications
static int idaapi dbg callback(void *udata, int event id, va list va)
{

// va contains a debug event t pointer

debug event t *evt = va arg(va, debug event t *);

// If the event is dbg library load, we know modinfo will be set
// and contain the name of the library loaded
if (event id == dbg library load)

msqg ("Loaded library, %s\n", evt->modinfo.name) ;

return 0;

// Our init function
int IDAP_ init (void)
{

// Register the notification point as our dbg callback function.
hook to notification point (HT DBG, dbg callback, NULL);

4.5.3.2 High Level Event Notifications
The following events taken from dbg notification t are all high level event notifications, which are
generated by the IDA kernel.

Event Notification Description

dbg bpt User-defined breakpoint was hit

dbg_trace One instruction was executed (needs step tracing
enabled)

dbg_suspend process Process has been suspended

dbg_request_error An error occurred during a request (see section
5.14)

Each of these event notifications has different arguments supplied along with them in the va
argument to your call-back function. None have debug event t supplied, like low level event
notifications do.

The dbg ppt event notification comes with both the Thread ID (thread id t) of the affected thread
and the address where the breakpoint was hit in va. The below example will display a message in
IDA’s Log window when a user-defined breakpoint is hit.

int idaapi dbg callback(void *udata, int event id, va list va)

© 2006 CodeBreakers Magazine Page 38 of 125

IDA PLUGIN WRITING IN C/C++

{
// Only for the dbg bpt event notification
if (event id == dbg bpt)
// Get the Thread ID
thread id t tid = va arg(va, thread id t);
// Get the address of where the breakpoint was hit
ea t addr = va arg(va, ea t);

msg ("Breakpoint hit at: %a, in Thread: %d\n", addr, tid);

return 0;

}

int IDAP_ init (void)
{

hook to notification point (HT DBG, dbg callback, NULL);

4.5.3.3 Function Result Notifications

In later sections, the concept of Synchronous and Asynchronous debugger functions will be
discussed in more detail; until then, all you need to know is that synchronous debugger functions
are just like ordinary functions - you call them, they do something and return. Asynchronous
debugger functions however, get called and return without having completed the task, effectively
having the request put into a queue and run in the background. When the task is completed, an
event notification is generated indicating the completion of the original request.

The following are all function result notifications.

Event Notification Description

dbg_attach process Debugger attached to a process (IDA 4.8)
dbg_detach process Debugger detached from a process (IDA 4.8)

dbg process_attach Debugger attached to a process (IDA 4.9)
dbg_process_detach Debugger detached from a process (IDA 4.9)
dbg_step_into Debugger stepped into a function

dbg_step_over Debugger stepped over a function

dbg_run_to Debugger has run to user's cursor position
dbg_step_until ret Debugger has run until return to caller was made

For example, the below code in 1pap run() asks IDA to attach to a process. Once successfully
attached, IDA generates the event notification, dbg attach process, which is handled by the
dbg callback call-back function.

int idaapi dbg callback(void *udata, int event id, va list va)

{
// Get the process ID of what was attached to.

process_id t pid = va arg(va, process id t);

© 2006 CodeBreakers Magazine Page 39 of 125

IDA PLUGIN WRITING IN C/C++

// Change dbg attach process to dbg process attach if you're
// using IDA 4.9
if (event id == dbg attach process)

msg ("Successfully attached to PID %d\n", pid);

return 0;

void IDAP run(int arg)
{
int res;
// Attach to a process. See Chapter 5 for usage.
attach process (NO_ PROCESS, res);
return;

int IDAP_init (void) {
hook to notification point (HT DBG, dbg callback, NULL);

4.6 Strings

The Strings window in IDA can be accessed using the SDK, in particular each string within the
binary (that is detected when the file is opened) is represented by the string info t structure,
which is defined in str1ist.hpp. Below is a slightly cut-down version of that structure.

struct string info t

{

ea t ea; // Address of the string
int length; // String length
int type; // String type (0=C, 1=Pascal, 2=Pascal 2 byte

// 3=Unicode, etc.)
b

Keep in mind that the above structure doesn't actually contain the string. To retrieve the string, you need to extract it from the

binary file using get bytes () orget many bytes (). To enumerate through the list of strings available, you could do the
following:

// Loop through all strings
for (int i = 0; 1 < get strlist gty(); i++) {
char string[MAXSTR];
string info t si;
// Get the string item
get strlist item(i, &si);
if (si.length < sizeof(string)) {
// Retrieve the string from the binary
get many bytes(si.ea, string, si.length);

if (si.type == 0) // C string
msg ("String %d: %s\n", i, string);
if (si.type == 3) // Unicode

msg ("String %d: %S\n", i, string);

© 2006 CodeBreakers Magazine Page 40 of 125

IDA PLUGIN WRITING IN C/C++

The above functions will be covered under Chapter 5 — Functions.

© 2006 CodeBreakers Magazine Page 41 of 125

IDA PLUGIN WRITING IN C/C++

5. Functions

This section is broken up into different areas that the exported IDA SDK functions mostly fit into.
I'll start from the most simple and more frequently used functions to the more complex and "niche"
ones. I'll also provide basic examples with each function and the examples under the Examples
section should provide more context. Obviously, this isn't a complete reference (refer to the header
files in the SDK for that), but more of an overview of the most used and useful functions.

Important note about the examples: All of the functions below can be
called from the 1DAP run(), IDAP init() Or IDAP term() functions, unless
otherwise indicated. Any of the examples can be pasted straight into the
1pAP run() function from the plug-in template in section 3.4 and should
work. The additional header files required for each function and example will
be specified where necessary.

5.1 Common Function Replacements

IDA provides many replacement functions for common C library routines. It is recommended that
you use the replacements listed below instead of those provided by your C library. As of IDA 4.9, a
lot of the C library routines are no longer available - you must use the IDA equivalent.

C Library Functions IDA Replacements Defined In

fopen, fread, fwrite, qfopen, gfread, gfwrite, fpro.h

fseek, fclose gfseek, gfclose

fputc, fgetc, fputs, fgets gfputc, gfgetc, gfputs, fpro.h
gfgets

viprintf, vfscanf, vprintf qgfprintf, gfscanf, gvprintf fpro.h

strcpy, strncpy, strcat, gstrncpy, gstrncat pro.h

strncat

sprintf, snprintf, gsnprintf pro.h

wsprintf

open, close, read, write, gopen, qgqclose, gread, gwrite, pro.h

seek gseek

mkdir, isdir, filesize gmkdir, gisdir, gfilesize pro.h

exit, atexit gexit, gatexit pro.h

malloc, calloc, realloc, galloc, gcalloc, grealloc, pro.h

strdup, free gstrdup, qgfree

It is strongly recommended that you use the above functions, however if you're porting an old
plug-in and for some reason need the C library function, you can compile your plug-in with -
DUSE DANGEROUS FUNCTIONS OF -DUSE STANDARD FILE FUNCTIONS.

5.2 Messaging

© 2006 CodeBreakers Magazine Page 42 of 125

IDA PLUGIN WRITING IN C/C++

These are the functions you will probably use the most when writing a plug-in; not because they
are the most useful, but simply because they provide a means for simple communication with the
user and can be a great help when debugging plug-ins.

As you can probably tell from the definitions, all of these functions are inlined and take printf style
arguments. They are all defined in kernwin.hpp.

5.2.1 msg
A~AnH inline int
Definition msg (const char *format,...)
Greryeee Display a text message in IDA's Log window (bottom of the screen during static
ynop disassembly, top of the screen during debugging).
Example msqg ("Starting analysis at: %a\n", inf.startIP);

5.2.2 info

inline int

Definition info (const char *format,...)

Synopsis Display a text message in a pop-up dialog box with an 'info' style icon.

Example info ("My plug-in v1.202 loaded.");

5.2.3 warning

inline int

Definition warning (const char *format,...)

Synopsis Display a text message in a pop-up dialog box with an 'warning' style icon.

Example warning ("Please beware this could crash IDA!\n");

© 2006 CodeBreakers Magazine Page 43 of 125

IDA PLUGIN WRITING IN C/C++
5.2.4 error

inline int

Definition error (const char *format,...)

S . Display a text message in a pop-up dialog box with an 'error' style icon. Closes
ynopsis IDA (uncleanly) after the user clicks OK.

Example error ("There was a critical error, exiting IDA.\n");

5.3 Ul Navigation

The functions below are specifically for interacting with the user and the IDA GUI. Some of them
use callui () to generate an event to IDA. All are defined in kernwin.hpp.

5.3.1 get_screen_ea

inline ea_t

Definition get_screen_ea(void)
G el Returns the address within the current disassembled file(s) that the user's
kel cursor is positioned at.
#include <kernwin.hpp>
Example
msg ("Cursor position is %al\n", get screen ea());
© 2006 CodeBreakers Magazine Page 44 of 125

IDA PLUGIN WRITING IN C/C++
5.3.2 jumpto

inline bool

Definition jumpto(ea_t ea, int opnum=-1)

Moves the user's cursor to a position within the current disassembled file(s),
Synopsis represented by ea. opnum is the X coordinate that the cursor will be moved to,
or -1 ifitisn't to be changed. Returns true if successful, false if it failed.

#include <kernwin.hpp>

Example // Jump to the binary entry point + 8 bytes, don't move
// the cursor along the X-axis
jumpto (inf.startIP + 8);

5.3.3 get_cursor

inline bool

Definition get_cursor(int *x, int *y)
Frerefe Fills *x and *y with the X and Y coordinates of the user's cursor position
ynop within the current disassembled file(s).
#include <kernwin.hpp>
int x, y;
Example // Store the cursor X coordinate in x, and the Y

// coordinate in Y, display the results in the Log window
get cursor (&x, &y);
msg ("X: %d, Y: %d\n", x, y);

5.3.4 get_curline

inline char *

Definition get curline (void)

Return a pointer to the line of text at the user's cursor position. This will return
everything on the line — the address, code and comments. It will also be
colour-coded, which you would use tag remove () (see section 5.20.1) to
clean.

Synopsis

#include <kernwin.hpp>

Example // Display the current line of text in the Log window

[

msg ("$s\n", get_curline());

© 2006 CodeBreakers Magazine Page 45 of 125

IDA PLUGIN WRITING IN C/C++

5.3.5 read_selection

inline bool

Definition read selection(ea_t *eal, ea_t *ea2)
ST Fills *eal and *ea2 with the start and end addresses, respectively, of the
ynop user's selection. Returns true if there was a selection, false if there wasn't.
#include <kernwin.hpp>
ea t saddr, eaddr;
// Get the address range selected, or return false if
// there was no selection
Example int selected = read selection(&saddr, &eaddr);
if (selected) {
msg ("Selected range: %a -> %a\n", saddr, eaddr);
} else {

msg ("No selection.\n");

}

5.3.6 callui

A—AnA idaman callui t ida export data

Definition (idaapi*calluI) (ui_Hotific;tion_t what,...)

The user interface dispatcher function. This enables you to call the events

listed in section 4.5.2, and many others within the ui_notification t

Synopsis enum. callui () is always passed a ui notification t type as the first
argument (ui jumpto, ui banner, etc.) followed by any arguments required
for the respective notification.

#include <windows.hpp> // For the HWND definition
#include <kernwin.hpp>

// For ui get hwnd, *vptr of callui t has the result
// We need to cast the result because vptr is a void

ointer
Example // pol

HWND hwnd = (HWND)callui (ui get hwnd) .vptr;
// If hwnd is NULL, we're running under the IDA text
// version
if (hwnd == NULL)
error ("Cannot run in the IDA text version!");
© 2006 CodeBreakers Magazine Page 46 of 125

IDA PLUGIN WRITING IN C/C++
5.3.7 askaddr

inline int

Definition askaddr (ea_t *addr,const char *format,...)

Presents a dialog box asking the user to supply an address. *addr will be the
Synopsis default value to start with, and then filled with the user supplied address upon
clicking OK. *format is the printf style text that goes in the dialog box.

#include <kernwin.hpp>

// Set the default value to the entry point of the file
ea t addr = inf.startIP;

// As the user for an address.

askaddr (&addr, "Please supply an address to jump to.");
// Move the cursor to that address (see section 5.3.2)
Jjumpto (addr) ;

Example

5.3.8 AskUsingForm_c

inline int

Definition AskUsingForm c(const char *form,...)

Displays a form to the user, and is too flexible to be covered here but is heavily
Synopsis commented in kernwin. hpp. It effectively allows you to design your own user
form, including buttons, text fields, radio buttons and text as format strings.

#include <kernwin.hpp>

// The text before the first \n is the title, followed
// by the first input field (as indicated by the <>) and
// then a second input field.
// The format of input fields is:
// <label:field type:maximum chars:field length:help
// identifier>
// The result is stored in resultl and resultl
Example // respectively.
// For more information on input fields, see the
// AskUsingForm c section of kernwin.hpp

char form[] = "My Title\n<Please enter some text "
"here:A:20:30::>\n<And here:A:20:30::>\n";
char resultl[MAXSTR] = "";

char result2[MAXSTR] = "";
AskUsingForm c(form, resultl, result2);
msg ("User entered text: %s and %s\n", resultl, result2);

© 2006 CodeBreakers Magazine Page 47 of 125

IDA PLUGIN WRITING IN C/C++
5.4 Entry Points

The following functions are for working with entry points (where execution begins) in a binary.
They can all be found in entry.hpp.

5.4.1 get_entry_qty

idaman size t

Definition ida_export get entry qty(void)
Svnobsis Returns the number of entry points in the currently disassembled file(s). This
ynop will typically return 1, except for DLLs, which can have many.
#include <entry.hpp>
Example

msg ("Number of entry points: %d\n", get entry gty ());

5.4.2 get_entry_ordinal

idaman uval_t

Definition ida_export get entry ordinal (size_t idx)

Returns the ordinal number of the entry point index number supplied as idx.
Synopsis You need the ordinal number because get entry () and
get entry name () use it.

#include <entry.hpp>

Example // Display the ordinal number for all entry points
for (int e = 0; e < get _entry gty(); e++)
msg ("Ord # for %d is %d\n", e, get entry ordinal(e));

© 2006 CodeBreakers Magazine Page 48 of 125

IDA PLUGIN WRITING IN C/C++
5.4.3 get_entry

Definiti idaman ea_t
efinition ida_export get entry(uval_t ord);

Returns the address of an entry point ordinal number, supplied as the ord
Synopsis argument. Use get_entry ordinal () to get the ordinal number of an entry
point number, as shown in section 5.4.2

#include <entry.hpp>

// Loop through each entry point.
for (int e = 0; e < get_entry gty(); e++)
msg ("Entry point found at: %a\n",
get entry(get entry ordinal(e)));

Example

5.4.4 get_entry_name

idaman char *
ida export get entry name (uval_t ord)

Definition
Synopsis Return a pointer to the name of the entry point address (e.g. start)
#include <entry.hpp>
// Loop through each entry point

for (int e = 0; e < get _entry gty (); et++) {
int ord = get entry ordinal (e);

Example // Display the entry point address and name
msg ("Entry point %a: %$s\n",
get entry(ord),
get entry name (ord));
}
5.5 Areas

The following functions work with areas and area control blocks, as described in section 4.2.2 and
4.2.3 respectively. Unlike all the functions covered so far, they are methods within the areacb t
class, and so therefore can only be used on instances of that class. Two instances of areacb t are
funcs and segs, representing all functions and segments within the currently disassembled file(s) in
IDA.

Although you should use the segment-specific functions for dealing with segments, and the
function-specific functions for dealing with functions, working with areas directly gives you a more
abstract way of dealing with functions and segments.

All the below are defined in area.hpp.

© 2006 CodeBreakers Magazine Page 49 of 125

IDA PLUGIN WRITING IN C/C++
5.5.1 get_area

Agna area t *

Definition get area(ea_t ea)

Synopsis Returns a pointer to the area_t structure to which ea belongs.
#include <kernwin.hpp> // For askaddr () definition
#include <funcs.hpp> // For funcs definition
#include <area.hpp>
ea_t addr;
// Ask the user for an address (see section 5.3.7)
askaddr (&addr, "Find the function owner of address:");

Example

// Get the function that owns that address
// You could use segs.get area(addr) to get the
// segment that owned to address here too.

area_t *area = funcs.get area(addr);
msg ("Area holding %a starts at %a, ends at %a\n",
addr,

area->startEA,
area->endEA) ;

5.5.2 get_area_qty

Definiti uint
ernition get_area gty (void)
Synopsis Get the number of areas within the current area control block.
#include <funcs.hpp> // For funcs definition
#include <segment.hpp> // For segs definition
#include <area.hpp>
Example
msg ("%d Functions, and %d Segments",
funcs.get area qty(),
segs.get area gty());
© 2006 CodeBreakers Magazine Page 50 of 125

IDA PLUGIN WRITING IN C/C++
5.5.3 getn_area

Definiti area_t *
erinition getn_area(unsigned int n)

Synopsis Returns a pointer to an area_t struct for the area number supplied as n.
#include <funcs.hpp> // For funcs definition
#include <segment.hpp> // For segs definition
#include <area.hpp>
// funcs represents all functions, so get the first
// function area (0).
area_t *firstFunc = funcs.getn area(0);
msg ("First func starts: %a, ends: %a\n",

Example firstFunc->startEA,

firstFunc->endEA) ;

// segs represents all segments, so get the first
// segment area (0).
area_t *firstSeg = segs.getn area(0);
msg ("First seg starts: %a, ends: %a\n",
firstSeg->startEA,
firstSeg->endEA) ;

5.5.4 get_next_area

Definition ¢
(Ul get_next area(ea_t ea)
Synopsis Returns the number of the area following the area containing address ea.
#include <funcs.hpp> // For funcs definition
#include <area.hpp>
// Loop through functions as areas from first to last
int 1 = 0;
for (area t *func = funcs.getn area (0);
i < funcs.get area qgty();
Example i++)
{
msg ("Area start: %a, end: %a\n",
func->startEA,
func->endEA) ;
int funcNo = funcs.get next area(func->startEA);
func = funcs.getn area (funcNo);
}
© 2006 CodeBreakers Magazine Page 51 of 125

IDA PLUGIN WRITING IN C/C++

5.5.5 get_prev_area

Definition °F
(Ul get_prev_area(ea_t ea)
Synopsis Returns the number of the area preceding the area containing address ea.
#include <segment.hpp> // For segs definition
#include <area.hpp>
// Loop through segments as areas from last to first
int 1 = segs.get area gty();
for (area t *seg = segs.getn area(0); i > 0; i--) |
Example msg ("Area start: %a, end: %a\n",
seg->startEA,
seg->endEA) ;
int segNo = segs.get next area(seg->startEA);
seg = segs.getn area(segNo);
}
5.6 Segments

The following functions work with segments (.text, .idata, etc.) and are defined in segment.hpp. A
lot of these functions are simply wrappers to areacb t methods for the segs variable.

5.6.1 get_segm_qty

inline int

Definition get_segm gty (void)
s , Returns the number of segments in the currently disassembled file(s). This
el simply calls segs.get _area gty ().
#include <segment.hpp>
Example msg ("%d segments in disassembled file(s).\n",
get segm gty ());
© 2006 CodeBreakers Magazine Page 52 of 125

IDA PLUGIN WRITING IN C/C++
5.6.2 getnseg

inline segment t *

Definition getnseg (int n)
. Returns a pointer to the segment t struct for the segment number, n,
Synopsis . . —
supplied. This is a wrapper to segs.getn_area().
#include <segment.hpp>
Example // Get the address of segment 0 (the first segment)

segment t *firstSeg = getnseg(0);
msg ("Address of the first segment is %a\n",
firstSeg->startEA) ;

5.6.3 get_segm_by name

idaman segment t *ida_export

Definition get segm by name(const char *name)

Returns a pointer to the segment _t struct for the segment with name, *name.
Synopsis Will return NULL if there is no such segment. If there are multiple segments
with the same name, the first will be returned.

#include <segment.hpp>

Example // Get the segment t structure for the .text segment.
segment t *textSeg = get segm by name (".text");
msg ("Text segment is at %$a\n", textSeg->startEA);

5.6.4 getseg

inline segment t *

Definition getseg(ea_t ea)
svn - Returns the segment t struct for the segment that contains address ea.
pnief ekt This function is a wrapper to segs.get area().
© 2006 CodeBreakers Magazine Page 53 of 125

IDA PLUGIN WRITING IN C/C++

#include <kernwin.hpp> // For get screen ea() definition
#include <segment.hpp>

// Get the address of the user's cursor position
// see section 5.2.1 for get screen ea()
ea t addr = get screen ea();

Example
// Get the segment that owns that address
area_ t *area = segs.get area(addr);
msg ("Segment holding %a starts at %a, ends at %a\n",
addr,

area—->startEA,
area->endEA) ;

5.6.5 get_segm_name (IDA 4.8)

idaman char *ida_ export

Definition get segm name (const segment t *s)

Synopsis Returns the name ("_text", "_idata", etc.) of segment *s.

#include <segment.hpp>

// Loop through all segments displaying their names
for (int i = 0; 1 < get _segm gty(); 1i++) {

segment t *seg = getnseg(i);
Example msg ("Segment %d at %a is named %s\n",
i,
seg->startEA,
get segm name (seq)) ;
}
© 2006 CodeBreakers Magazine Page 54 of 125

IDA PLUGIN WRITING IN C/C++
5.6.6 get_segm_name (IDA 4.9)

idaman ssize_t ida_export
Definition get_segm name (const segment t *s, char *buf, size t

bufsize)
Svnobsis Fills *buf, limited by bufsize with the name ("_text", " idata", etc.) of
ynop segment *s. Returns the size of the segment name, or -1 if s is NULL.
#include <segment.hpp>
// Loop through all segments displaying their names
for (int 1 = 0; 1 < get_segm gty (); 1i++) {
char segName [MAXSTR];
* = 1 .
Example segment t *seg getnseg (i),

get segm name (seg, segName, sizeof (segName)-1);
msg ("Segment $d at %$a is named %$s\n",

i,

seg->startEA,

segName) ;

5.7 Functions

The below set of functions are for working with functions within the currently disassembled file(s) in
IDA. As with segments, functions are areas, and so some of the below functions are simply
wrappers to areacb t methods, in funcs. All are defined in funcs.hpp.

5.7.1 get_func_qty

idaman size_t ida_ export

Definition get_func gty (void)
Synopsis Returns the number of functions in the currently disassembled file(s).
#include <funcs.hpp>
Example msg ("%d functions in disassembled file(s).\n",
get func gty());
© 2006 CodeBreakers Magazine Page 55 of 125

IDA PLUGIN WRITING IN C/C++
5.7.2 get_func

idaman func_t *ida_export

Definition get func(ea_t ea)
Returns a pointer to the func_t structure representing the function that "owns"
TS address ea. If ea is not part of a function, NULL is returned. Only function entry
ynop chunks are returned (see section 4.2.3.2 for information about chunks and
tails).
#include <kernwin.hpp> // For get screen ea() definition
#include <funcs.hpp>
// Get the address of the user's cursor
ea t addr = get screen ea();
Example func t *func = get func(addr);
if (func != NULL) {
msg ("Current function starts at %a\n", func->startEA);
} else {

msg ("Not inside a function!\n");

}

5.7.3 getn_func

idaman func_t *ida_export

Definition getn_func(size_t n)

Returns a pointer to the func_t representing the function number supplied as
Synopsis n. Will return NULL if n is a non-existent function number. It will also only return
function entry chunks.

#include <funcs.hpp>

// Loop through all functions

Example for (int i = 0; i < get func gty(); i++) {
func_t *curFunc = getn func(i);
msg ("Function at: %a\n", curFunc->startEA);
}
© 2006 CodeBreakers Magazine Page 56 of 125

IDA PLUGIN WRITING IN C/C++
5.7.4 get_func_name

Definiti idaman char *ida_export
erinition get func name(ea_t ea, char *buf, size_t bufsize)
Gets the name of the function owning address ea, and stores it in *buf, limited
Synopsis by the length of bufsize. It returns the *buf pointer or NULL if the function
has no name.

#include <kernwin.hpp> // For get screen ea() definition
#include <funcs.hpp>

// Get the address of the user's cursor
ea t addr = get screen ea();
func t *func = get func(addr);
if (func != NULL) {
// Buffer where the function name will be stored
char funcName [MAXSTR];
if (get func_name (func->startEA, funcName, MAXSTR)
= NULL) {
msg ("Current function %a, named %$s\n",
func->startEA,
funcName) ;

Example

5.7.5 get_next_func

Definiti idaman func t *
ernition ida_export get next_ func(ea_t ea)

STNEESS Returns a pointer to the func_t structure representing the function following
ynop the one owning ea. Returns NULL if there is no following function.

#include <kernwin.hpp> // For get screen ea() definition

#include <funcs.hpp>

ea t addr = get screen eal();

// Get the function after the one containing the
Example // address where the user's cursor is positioned

func t *nextFunc = get next func(addr);

if (nextFunc != NULL)
msg ("Next function starts at %a\n",
nextFunc->startEA) ;

© 2006 CodeBreakers Magazine Page 57 of 125

IDA PLUGIN WRITING IN C/C++
5.7.6 get_prev_func

Definiti idaman func_t *
R ida_export get prev_func(ea_t ea)
Returns a pointer to the func_t structure representing the function before the

Synopsis one owning ea. Returns NULL if there is no previous function.

#include <kernwin.hpp> // For get screen ea() definition
#include <funcs.hpp>

ea t addr = get screen ea();

// Get the function before the one containing the
Example // address where the user's cursor is positioned

func t *prevFunc = get prev_ func(addr);

if (prevFunc != NULL)
msg ("Previous function starts at %a\n",
prevEFunc->startEA) ;

5.7.7 get_func_comment

Definiti inline char *
efinition get_func _comment (func_t *fn, bool repeatable)

Return any commentary added by the user or IDA for the function indicated by
Synopsis *fn. If repeatable is true, repeatable comments are included. NULL is
returned if there are no comments.

#include <funcs.hpp>

// Loop through all functions, displaying their comments
// including repeatable comments.
for (int i = 0; 1 < get func gty (); i++) {

Example func_t *curFunc = getn func(i);
msg ("%a: %s\n",
curFunc->startEA,
get func comment (curFunc, false));
}
© 2006 CodeBreakers Magazine Page 58 of 125

IDA PLUGIN WRITING IN C/C++
5.8 Instructions

The functions below work with instructions within the currently disassembled file(s) in IDA. All are
defined in ua.hpp, except for generate disasm line (), Which is defined in 1ines.hpp.

5.8.1 generate_disasm_line

idaman bool ida_export
Definition generate disasm line(ea_t ea, char *buf, size_t bufsize,
int flags=0)

Fills *buf, limited by bufsize, with the disassembly at address ea. This text
Synopsis is colour coded, so you need to use tag remove () (see section 5.20.1) to get
printable text.

#include <kernwin.hpp> // For get screen ea() definition
#include <lines.hpp>

ea t ea = get screen eal();
// Buffer that will hold the disassembly text
char buf [MAXSTR];

Example
// Store the disassembled text in buf
generate disasm line(ea, buf, sizeof (buf)-1);

// This will appear as colour-tagged text (which will
// be mostly unreadable in IDA's Log window)
msg ("Current line: %s\n", buf);

5.8.2 ua_ana0

idaman int

Definition ida_export ua_ana0(ea_t ea)
Disassemble ea. Returns the length of the instruction in bytes and fills the
Svnopsis global cmd structure with information about the instruction. If ea doesn't contain
ynop an instruction, 0 is returned. This is a read-only function and doesn't modify the
IDA database.
#include <kernwin.hpp> // For get screen ea() definition
#include <ua.hpp>
ea t ea = get screen ea();
Example
if (ua_anal(ea) > 0)
msg ("Instruction size: %d bytes\n", cmd.size);
else
msg ("Not at an instruction.\n");
© 2006 CodeBreakers Magazine Page 59 of 125

IDA PLUGIN WRITING IN C/C++

5.8.3 ua_code

Definiti idaman int

efinition ida_export ua_code(ea_t ea)

Disassemble ea. Returns the length of the instruction in bytes, fills the global

Synopsis cmd structure with information about the instruction and updates the IDA
database with the results. If ea doesn't contain an instruction, O is returned.

#include <kernwin.hpp> // For read selection() definition
#include <ua.hpp>

ea t saddr, eaddr;
ea_t addr;

// Get the user selection
Example int selected = read selection (&saddr, &eaddr);
if (selected) {
// Re-analyse the selected address range
for (addr = saddr; addr <= eaddr; addr++) {
ua_code (addr) ;
}
} else {
msg ("No selection.\n");

}

© 2006 CodeBreakers Magazine Page 60 of 125

IDA PLUGIN WRITING IN C/C++
5.8.4 ua_outop

idaman bool ida_export

Definition ua outop(ea_t ea, char *buf, size t bufsize, int n)
Fills *buf, limited by bufsize, with the text representation of operand number
n to the instruction at ea and updates the IDA database with the instruction if it
- isn't alr fined. Returns false if ran n't exist.
Synopsis sn't already defined. Returns false if operand n doesn't exist
The text returned in *buf is colour coded, so you need to use tag remove ()
(see section 5.20.1) to get printable text.
#include <ua.hpp>
// Get the entry point address
ea t addr = inf.startIP;
// Fill cmd with information about the instruction
// at the entry point
Example ua_ anal (addr) ;

// Loop through each operand (until one of o void type
// 1s reached), displaying the operand text.
for (int i = 0; cmd.Operands[i].type != o void; i++) {
char op[MAXSTR];
ua_outop (addr, op, sizeof(op)-1, 1i);
msg ("Operand %d: %$s\n", i, op);

5.8.5 ua_mnem

idaman const char *ida_ export

Definition ua mnem(ea_t ea, char *buf, size_t bufsize)

Fills *buf, limited by bufsize, with the mnemonic used in the instruction at
Synopsis ea and updates the IDA database with the instruction if it isn't already defined.
Returns the *buf pointer or NULL if there is no instruction at ea.

#include <segment.hpp> // For segment functions
#include <ua.hpp>

// Loop through each executable segment, displaying
// the mnemonic used in each instruction

for (int s = 0; s < get _segm gty(); s++) {
segment t *seg = getnseg(s);
Example if (seg->type == SEG_CODE) {

int bytes = 0;

// a should always be the address of an
// instruction, which is why bytes is dynamic
// depending on the result of ua mnem/()
for (ea t a = seg->startEA;
a < seg->endEA; a += bytes) {

© 2006 CodeBreakers Magazine Page 61 of 125

IDA PLUGIN WRITING IN C/C++

char mnem[MAXSTR];
const char *res;

// Get the mnemonic at a, store it in mnem
res = ua mnem(a, mnem, sizeof (mnem)-1);

// If this was an instruction, display
// the mnemonic, set the bytes counter
// to cmd.size, so that the next address
// processed by ua mnem() is the next

// instruction.

if (res != NULL) {
msg ("Mnemonic at %a: %s\n", a, mnem);
bytes = cmd.size;

} else {

msg ("No code\n");

// If there was no code at this address,
// increment the byte counter by 1 so that
// ua mnem() works off the next address.
bytes = 1;

5.9 Cross Referencing

The following four functions are a part of the xrefblk t structure, defined in xref.hpp. They are used to
populate and enumerate cross references to or from an address. All functions take flags as an argument, which
can be one of the following, as taken from xref . hpp:

#define XREF ALL 0x00 // return all references
#define XREF _ FAR 0x01 // don't return ordinary flow xrefs
#define XREF DATA 0x02 // return data references only

An ordinary flow is when execution normally passes from one instruction to another without the use of a CALL or
JMP (or equivalent) instruction. If you are only interested in code cross references (ignoring ordinary flows), then
you would use XREF_ALL and check if the isCode member of xrefblk t is true in each case. Use XREF DATA
if you are only interested in data references.

© 2006 CodeBreakers Magazine Page 62 of 125

IDA PLUGIN WRITING IN C/C++

5.9.1 first_from

Definition

Synopsis

Example

bool
first from(ea_t from, int flags)

Populates the xrefblk t structure with the first cross reference from the
from address. £lags dictates what cross references you are interested in.
Returns false if there are no references from from.

#include <kernwin.hpp> // For get screen ea() definition
#include <xref.hpp>

ea t addr = get screen ea();
xrefblk t xb;
if (xb.first from(addr, XREF ALL)) {
// xb is now populated
msg ("First reference FROM %a is %a\n", xb.from,
xb.to);

5.9.2 first_to

Definition

Synopsis

Example

bool
first_to(ea_t to,int flags)

Populates the xrefblk t structure with the first cross reference to the to
address. flags dictates what cross references you are interested in. Returns
false if there are no references to to

#include <kernwin.hpp> // For get screen ea() definition
#include <xref.hpp>

ea t addr = get screen ea();
xrefblk t xb;
if (xb.first to(addr, XREF ALL)) {
// xb is now populated
msg ("First reference TO %a is %a\n", xb.to,
xb.from) ;

© 2006 CodeBreakers Magazine Page 63 of 125

IDA PLUGIN WRITING IN C/C++

5.9.3 next_from

A~BnA bool
Definition next from(void)
, Populates the xrefblk t structure with the next cross references from the
Synopsis P

from address. Returns false if there are no more cross references.

#include <kernwin.hpp> // For get screen ea() definition
#include <lines.hpp> // For tag remove () and

// generate disasm line()
#include <xref.hpp>

xrefblk t xb;
ea t addr = get screen ea();

// Replicate IDA 'x' keyword functionality
for (bool res = xb.first to(addr, XREF FAR); res;
Example res = xb.next to()) {
char buf [MAXSTR];
char clean buf [MAXSTR];

// Get the disassembly text for the referencing addr
generate disasm line(xb.from, buf, sizeof (buf)-1);

// Clean out any format or colour codes
tag _remove (buf, clean buf, sizeof(clean buf)-1);
msg ("%a: %s\n", xb.from, clean buf);

© 2006 CodeBreakers Magazine Page 64 of 125

IDA PLUGIN WRITING IN C/C++

5.9.4 next_to

- a2 bool
Definition next_to (void)
q Populates the xrefblk t structure with the next cross references to the to
Synopsis

address. Returns false if there are no more cross references.

#include <kernwin.hpp> // For get screen ea() definition
#include <xref.hpp>

xrefblk t xb;
ea t addr = get screen ea();

// Get the first cross reference to addr
Example if (xb.first to(addr, XREF FAR)) {
if (xb.next to())
msg ("There are multiple references to %a\n",
addr) ;
else
msg ("The only reference to %a is at %a\n",
addr, xb.from);

5.10 Names

The following functions deal with function (sub_*), location (1oc_*) and variable (arg *, var *)

names, set by IDA or the user. All are defined in name.hpp. Register names are not recognised by
these functions.

5.10.1 get_name

idaman char *ida_ export

Definition get_name(ea_t from, ea_t ea, char *buf, size_t bufsize)
Fill *buf, limited by bufsize, with the uncoloured name for ea. The *buf
S , pointer is returned if ea has a name, or NULL if it doesn't. If you are after a
ynopsis name that is local to a function, from should be within the same function, or it
won't be seen. If you are not after a local name, f£rom should just be BADADDR.
© 2006 CodeBreakers Magazine Page 65 of 125

IDA PLUGIN WRITING IN C/C++

#include <name.hpp>
char name [MAXSTR];

// Get the name of the entry point, should be start
// in most cases.
char *res = get name (BADADDR,
Example inf.startIP, // Entry point
name,
sizeof (name)-1);

if (res != NULL)
msg ("Name: %s\n", name);
else
msg ("No name for %a\n", inf.startIP);

5.10.2 get_name_ea

idaman ea_t ida_export

Definition get name ea(ea_t from, const char *name)
Return the address of where the name supplied in *name is defined. If you
Svnobsis are after a name that is local to a function, £from should be within the same
ynop function, or it won't be seen. If you are not after a local name, from should just
be BADADDR.
#include <kernwin.hpp> // For askstr and get screen ea
#include <name.hpp>
// Get the cursor address
ea t addr = get screen ea();
// Ask the user for a string (see kernwin.hpp), which
// will be the name we search for.
Example char *name = askstr (HIST IDENT, // History identifier
"start", // Default value
"Please enter a name"); // Prompt

// Display the address that the name represents. You will
// get FFFFFFFF for stack variables and nonexistent

// names.

msg ("Address: %a\n", get name ea(addr, name)) ;

5.10.3 get_name_value

idaman int ida_export

Definition get name value(ea_t from, const char *name, uval t *value)

© 2006 CodeBreakers Magazine Page 66 of 125

IDA PLUGIN WRITING IN C/C++

Returns the value into *value, represented by the name *name, relative to
the address from. *value will contain either a stack offset or linear address.

If you are after a name that is local to a function, from should be within the
same function, or it won't be seen. If you are not after a local name, from
should just be BADADDR. The return value is one of the following, representing
the type of name it is. Taken from name.hpp:

. #define NT NONE
Synopsis #define NT BYTE
#define NT LOCAL
#define NT STKVAR
#define NT ENUM
#define NT ABS

// name doesn't exist or has no value
// name is byte name (regular name)
// name is local label

name is stack variable name

// name is symbolic constant

// name is absolute symbol

// (SEG_ABSSYM)

name 1is segment or segment register
// name

name is structure member

name is a bit group mask name

g d w N O
~
~

#define NT SEG

[e)}
~
~

#define NT STROFF
#define NT BMASK

0 J
~ O
NS

#include <kernwin.hpp> // For get screen ea() and askstr()
#include <name.hpp>

uval t value;
ea t addr = get screen ea();

// Ask the user for a name
char *name = askstr (HIST IDENT, "start",
"Please enter a name");
Example
P // Get the value of that name, relative to addr
int type = get name value (addr, name, &value);

// The type will correspond to one of the NT_ values

// defined in name.hpp.

// Value will be FFFFFFF4 for the first local variable
// or 8 for the first argument to a function. It could
// also be the linear address of the strcpy() definition
// for example.

msg ("Type: %d, Value: %a\n", type, value);

5.11 Searching

The following functions are used for doing simple searching within the disassembled file(s) in IDA,
and are defined in search.hpp. There are also other search functions for specific search types
(errors, etc.) which can also be found in search.hpp. The search functions take flags, which dictate
how the search is conducted, what is searched for, etc. These flags are, as taken from search.hpp:

#define SEARCH UP 0x000 // only one of SEARCH UP or
// SEARCH DOWN can be specified
#define SEARCH DOWN 0x001
#define SEARCH NEXT 0x002 // Search for the next occurrence
© 2006 CodeBreakers Magazine Page 67 of 125

IDA PLUGIN WRITING IN C/C++

#define SEARCH CASE 0x004 // Make the search case-sensitive
#define SEARCH REGEX 0x008 // Use the regular expression parser
#define SEARCH NOBRK 0x010 // don't test ctrl-break

#define SEARCH NOSHOW 0x020 // don't display the search progress
#define SEARCH UNICODE 0x040 // treat strings as unicode
#define SEARCH IDENT 0x080 // search for an identifier

// 1t means that the characters before
// and after the pattern can not be
// is_visible char()

#define SEARCH BRK 0x100 // return BADADDR if break is

// pressed during find imm()

Typically, you'd just use searcH pown to conduct a case-insensitive search, towards the bottom of

the file(s).

5.11.1 find_text (IDA 4.9 only)

Definition

Synopsis

Example

idaman ea_t ida_export
find text(ea_t startEA, int y, int x, const char *ustr,
int sflagqg);

Searches the currently disassembled file(s), starting at startEA and x-
coordinate x, y-coordinate y (both can be 0), for the text *ustr. sflag can be
any of the previously mentioned flags.

#include <kernwin.hpp> // For askstr() definition
#include <search.hpp>

char *s = askstr (0, "", "String to search for", NULL);

// Find the first occurrence of the string
ea t foundAt = find text (inf.minkEA, 0, 0, s, SEARCH DOWN) ;
while (foundAt != BADADDR) {

msg ("%s was found at %a\n", s, foundAt);

}

5.11.2 find_binary

Definition

Synopsis

idaman ea_t ida_export
find binary(ea_t startea, ea_t endea, const char *ubinstr,
int radix, int sflagqg)

Searches between startea and endea for the string in *ubinstr. radix is
the numeric base (if you're searching for numbers), which can be 8 (octal), 10
(decimal) or 16 (hex). sflag can be any of the previously mentioned flags.

Note that this function doesn't search the disassembled text that you see in
IDA, but the binary itself.

The content of *ubinstr will differ depending on the type of search you are
conducting. For strings, the string itself must be wrapped in quotes ("), for
single characters, they must be wrapped in single quotes ('). A question-mark

© 2006 CodeBreakers Magazine Page 68 of 125

IDA PLUGIN WRITING IN C/C++

(?) can be used to indicate a single wildcard byte.

#include <kernwin.hpp> // for askstr () and Jjumpto ()
#include <search.hpp>

// Ask the user for a search string
char *name = askstr (HIST SRCH, "",

"Please enter a string");
char searchstring[MAXSTR];

// Encapsulate the search string in quotes
gsnprintf (searchstring, sizeof (searchstring)-1,

"\"%S\"", name);

Example ea t res = find binary(inf.minEA, // Top of the file
inf.maxEA, // Bottom of the file
searchstring,

0, // radix not applicable

SEARCH_DOWN) ;

if (res != NULL) {
msg ("Match found at %a\n", res);
// Move the cursor to the address
jumpto (res) ;

} else {
msg ("No match found.\n");

}

5.121DB

The following functions are for working with IDA database (IDB) files, and can be found in
loader.hpp. Although there is no actual definition of the 1input t class, you need to call the
open linput () (diskio.hpp) function to create an instance of the class, which some functions use as
an argument. You can also use make linput() to convert a FILE pointer to a linput t instance; see
loader.hpp for more information.

5.12.1 open_linput

idaman linput t *ida export

Definition open_linput (const char *file , bool remote)
Create an instance of the 1input_t class for file path *£ile. If the file is
Synopsis remote, set the remote argument to true. Returns NULL if it failed to open the
file.
© 2006 CodeBreakers Magazine Page 69 of 125

IDA PLUGIN WRITING IN C/C++

#include <kernwin.hpp> // For askfile cv definition
#include <diskio.hpp>

// Prompt the user for a file
char *file = askfile cv (0, "", "File to open", NULL);

// Open the file

Example linput t *myfile = open linput(file, false);
if (myfile == NULL)
msg ("Failed to open or corrupt file.\n");
else

// Return the size of the opened file.
msg ("File size: %d\n", glsize(myfile));

5.12.2 close_linput

idaman void ida export

Definition close linput(linput t *1i)

Close the file represented by the 1input t instance, *11, created by

SynopS|s open_ linput ().
#include <loader.hpp>
Example linput t *myfile = open linput ("C:\\temp\\myfile.exe",

false);
close linput (myfile);

5.12.3 load_loader_module

idaman int ida_ export
Definition load loader module(linput t *1i, const char *1lname, const
char *fname, bool is_remote)

Load a file into the current IDB, either as a 1input t instance, *11, or file
Synopsis path in *fname, using the loader module *1name. If *11 is NULL, * fname
must be supplied and vise versa. Returns 1 on success, 0 on failure.

© 2006 CodeBreakers Magazine Page 70 of 125

Example

IDA PLUGIN WRITING IN C/C++

#include <kernwin.hpp> // For askfile cv ()
#include <loader.hpp>

// Prompt the user for a file to open.
char *file = askfile cv (0, "", "DLL file..", NULL);

// Load it into the IDB using the PE loader module
int res = load loader module (NULL, "pe", file, false)

if (res < 1)
msg ("Failed to load %s as a PE file.\n", file);

5.12.4 load_binary_file

idaman bool ida_export
load binary file(const char *filename, 1linput t *1i,

Definition ushort neflags, long fileoff, ea_t basepara, ea_t binoff,
ulong nbytes) ;
Load a binary file *1i, named *filename starting at offset, fileoff.
_nflags is any of the NEF flags defined in 1oader.hpp. nbytes specifies
the number of bytes to load from the file, or 0 for the whole file.
basepara is the paragraph where this new binary will be loaded, and binoff
is the offset within that segment. You can safely set basepara to the adress
Synopsis you want the file loaded at, and set binoff to 0.
Returns false if the load failed.
This is not the function you would use for loading a DLL or executable file (a
PE file for instance) into the IDB. For that, you would use use
load loader module () above.
© 2006 CodeBreakers Magazine Page 71 of 125

IDA PLUGIN WRITING IN C/C++

#include <kernwin.hpp> // For askfile cv ()
#include <diskio.hpp> // For open linput ()
#include <loader.hpp>

// Ask the user for a filename
char *file = askfile cv (0, "", "DLL file..", NULL);

// Create a linput t instance for that file
linput t *1i = open linput(file, false);

// Load the file at the end of the currently loaded
// file (inf.maxEA).
Example bool status = load binary file(file,
14,
NEF_SEGS,
0,
inf.maxEA,
0,
0);

if (status)
msg ("Successfully loaded %s at %a\n", file,
inf.maxEA) ;
else
msg ("Failed to load file.\n");

5.12.5 gen_file

idaman int ida_export
Definition gen file(ofile_type t otype, FILE *fp, ea t eal, ea t ea2,
int flags)

Generate an output file, * £p, based on the currently open IDB file. eal and
ea? are the start and end addresses respectively, however these are ignored
for some output types. ot ype must be one of the following, taken from

loader.hpp:
OFILE MAP = 0, // MAP file
OFILE EXE = 1, // Executable file
OFILE IDC = 2, // IDC file
OFILE LST = 3, // Disassembly listing
) OFILE ASM = 4, // Assembly
Synopsis OFILE DIF = 5; // Difference

flags can be any combination of the following, also taken from loader.hpp:

#define GENFLG MAPSEG 0x0001 // map: generate map

// of segments
#define GENFLG MAPNAME 0x0002 // map: include dummy
names
#define GENFLG MAPDMNG 0x0004 // map: demangle names
#define GENFLG MAPLOC 0x0008 // map: include local

© 2006 CodeBreakers Magazine Page 72 of 125

Example

IDA PLUGIN WRITING IN C/C++

names
#define GENFLG IDCTYPE 0x0008 // idc: gen only
// information about
types
#define GENFLG ASMTYPE 0x0010 // asm&lst: gen
// information about
// types too
#define GENFLG_GENHTML 0x0020 // asm&lst: generate
html
// (ui_genfile callback
// will be used)
#define GENFLG ASMINC 0x0040 // asm&lst: gen information
// only about types

The function will return -1 if there was an error, or the number of lines
generated if it was a success. For OFILE_EXE files, it returns 0 for failure, 1 for
success.

#include <loader.hpp>

// Open the output file

FILE *fp = gfopen("C:\\output.idc", "w");

// Generate an IDC output file

gen file(OFILE IDC, fp, inf.minEA, inf.maxEA, 0);
// Close the output file

gfclose (fp);

5.12.6 save_database

Definition

Synopsis

Example

idaman void ida_export
save_database (const char *outfile, bool delete unpacked)

Save the database to the file path, *output. If delete unpacked is false,
temporary unpacked files are not deleted. As this function doesn't return
anything, there is no way to determine if the save was successful, except for
testing whether the file exists after the function call is made.

#include <loader.hpp>

msg ("Saving database...");
char *outfile = "c:\\myidb.idb";
save database (outfile, false);

// There was an error if the filesize is <= 0
if (gfilesize(outfile) <= 0)

msg ("failed.\n");
else

msqg ("ok\n") ;

© 2006 CodeBreakers Magazine Page 73 of 125

IDA PLUGIN WRITING IN C/C++
5.13 Flags

The functions below are for checking whether particular flags (see section 4.3) are set for a byte
within the currently disassembled file(s). They are all defined in bytes.hpp.

5.13.1 getFlags

idaman flags_t ida_export

Definition getFlags (ea_t ea)
svn i Returns the flags set for address ea. You will need to run this to obtain the
VEIOBSES flags for an address to then use with functions like i sHead (), isCode (), etc.
#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>
Example

msg ("Flags for %a are %08x\n",
get screen ea(),
getFlags (get screen ea()));

5.13.2 isEnabled

idaman bool ida export

Definition isEnabled(ea_t ;a)

Synopsis Does the address, ea, exist within the currently disassembled file(s)?

#include <kernwin.hpp> // For askaddr () definition
#include <bytes.hpp>

ea_t addr;
askaddr (&addr, "Address to look for:");
Example
if (isEnabled (addr))
msg ("%a found within the currently opened file(s).",
addr) ;
else
msg ("%a was not found.\n");

5.13.3 isHead

© 2006 CodeBreakers Magazine Page 74 of 125

IDA PLUGIN WRITING IN C/C++

inline bool idaapi

Definition isHead (flags_t F)

Synopsis Does the flagset, F, denote the start of code or data?

#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>

ea_t addr = get screen ea();

// Cycle through 20 bytes from the cursor position
Example // printing a message if the byte is a head byte.

for (int i = 0; 1 < 20; i++) {

flags t flags = getFlags (addr);

if (isHead(flags))

msg ("%a is a head (flags = %08x).\n",
addr, flags);
addr++;

5.13.4 isCode

inline bool idaapi

Definition isCode (flags_t F)

Does the flagset, F, denote the start of an instruction? This is the same as
Synopsis isHead (), but only returns true for code, not data. Therefore, if used on a
code byte that is not a head byte, it will return false.

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

for (int i = 0; 1 < get _segm gty (); i++) {
segment t *seg = getnseg(i);
if (seg->type == SEG _CODE) {

// Look for any bytes in the code segment that
// aren't code.
Example for (ea t a = seg->startEA; a < seg->endEA; a+t+) {
flags t flags = getFlags(a);
if (isHead(flags) && !isCode(flags))
msg ("Non-code at %a in segment: %s.\n",
a,
get segm name (seq)) ;

© 2006 CodeBreakers Magazine Page 75 of 125

IDA PLUGIN WRITING IN C/C++

5.13.5 isData

inline bool idaapi

Definition isData(flags_t F)

Does the flagset, F, denote the start of some data? This is the same as
Synopsis isHead (), but only returns true for data, not code. Therefore, if used on a
data byte that is not a head byte, it will return false.

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

for (int i = 0; 1 < get _segm gty(); 1i++) {
segment t *seg = getnseg(i);
if (seg->type == SEG DATA) ({

// Look for any bytes in the data segment that
// aren't data (possibly code).
Example for (ea t a = seg->startEA; a < seg->endEA; a+t+) {
flags t flags = getFlags(a);
if (isHead(flags) && !isData(flags))
msg ("Non-data at %a in segment: %s.\n",
a,
get segm name (seq)) ;

5.13.6 isUnknown

inline bool idaapi

Definition isUnknown (flags_t F)

q Does the flagset, F, denote a byte that hasn't been successfully analysed by
Synopsis IDA?

#include <segment.hpp> // For segment functions

#include <bytes.hpp>

// Loop through every segment
for (int 1 = 0; 1 < get_segm gty(); 1i++) {
segment t *seg = getnseg(i);
// Look for any unexplored bytes in this segment
for (ea t a = seg->startEA; a < seg->endEA; a+t+) {
flags t flags = getFlags(a);
if (isUnknown (flags))

Example

© 2006 CodeBreakers Magazine Page 76 of 125

IDA PLUGIN WRITING IN C/C++

msg ("Unknown bytes at %a in segment: %s.\n",
a,
get segm name (seq)) ;

5.14 Data

When working with a disassembled file, it can often be very useful to bypass the disassembler and
work directly with the bytes in the binary file itself. IDA provides the functionality to do this with
the below functions (plus some more). All of the below are defined in bytes.hpp. These functions
work with bytes, however there are also functions to work with words, longs and qwords
(get_word (), patch word() and so on), which are also to be found in bytes.hpp. Aside from using
these functions to read data from the binary file itself, they can also be used to read process
memory while a process is executing under the debugger. More on this under the Debugger
functions section.

5.14.1 get_byte

idaman uchar ida_export

Definition get byte(ea t ea)

Returns the byte at address ea within the disassembled file(s) currently open in
IDA. Returns BADADDR if ea doesn't exist. Also available for working with larger
chunks is get word (), get long() and get gword(). Use

get many bytes () for working with multiple byte chunks.

Synopsis

#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>

Example // Display the byte value for the current cursor
// position. The values returned should correspond
// to those in your IDA Hex view.
msg ("$x\n", get byte(get screen ea()));

5.14.2 get_many_bytes

idaman bool ida export

Definition get _many bytes(ea_t ea, void *buf, ssize t size)

© 2006 CodeBreakers Magazine Page 77 of 125

IDA PLUGIN WRITING IN C/C++
Synopsis Fetch size bytes starting at ea, and store them into *buf.

#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>

char string[MAXSTR];
flags t flags = getFlags(get screen ea());

// Only get a string if we're at actual data.
if (isData(flags)) {

Example // Get a string from the binary
get many bytes(get screen ea(),
string,

sizeof (string)-2);
// NULL terminate the string, if not already
// terminated in the binary (so strlen doesn't barf)
string [MAXSTR-1] = '\0';
msg ("String length: %d\n", strlen(string));

5.14.3 patch_byte

idaman void ida_export

Definition patch_byte(ea_t ea, ulong x)
Replace the byte at ea with x. The original byte is saved to the IDA database,
and can be retrieved using get _original byte () (see bytes.hpp). To
Crrenefs not save the original byte, use put byte (ea t ea, ulong x) instead.
ynop Also available for working with larger chunks is put word (), put_long ()
and put_gword (). Use put many bytes () for working with multiple byte
chunks.
#include <kernwin.hpp> // For get screen ea()
#include <bytes.hpp>
// Get the flags for the byte at the cursor position.
flags t flags = getFlags(get screen ea());
Example

// Replace the instruction at the cursor position with
// a NOP instruction (0x90).
// Unless used carefully, your executable will probably
// not work correctly after this :-)
if (isCode(flags))

patch byte (get screen ea(), 0x90);

5.14.4 patch_many_bytes

© 2006 CodeBreakers Magazine Page 78 of 125

IDA PLUGIN WRITING IN C/C++

idaman void ida export

Definition patch_many_byte;(ea_t ea, const void *buf, size t size)

Synopsis Replace size bytes at ea with the contents of *buf.

#include <kernwin.hpp> // For get screen ea() et al
#include <bytes.hpp>

// Prompt the user for an address, then a string
ea t addr = get screen ea();
Example askaddr (&addr, "Address to put string:");
char *string = askstr (0, "", "Please enter a string");

// Write the user supplied string to the address
// the user specified.
patch many bytes (addr, string, strlen(string));

5.151/0

As mentioned in section 5.1, a lot of standard C library functions for I/O have IDA SDK equivalents,
and it's recommended you use them instead of their standard C counterparts. These are all defined
in diskio.hpp.

5.15.1 fopenWT

idaman FILE *ida_ export

Definition fopenWT (const char *file)

Open the text file, *fi1le, in write mode, return a FILE pointer or NULL if
Synopsis opening the file failed. To open the file in read mode, use fopenRT (), and for
binary files, replace the R with w. For read/write, use fopenM ().

#include <diskio.hpp>

Example FILE *fp = fopenWT ("c:\\temp\\txtfile.txt");
if (fp == NULL)
warning ("Failed to open output file.");

5.15.2 openR

© 2006 CodeBreakers Magazine Page 79 of 125

IDA PLUGIN WRITING IN C/C++

idaman FILE *ida export

Definition openR (const char *file)

Open the binary file, *file, in read-only mode, return a FILE pointer or exit
Synopsis (display an error and close IDA) if it fails. To open a text file in read-only mode,
exiting on failure, use openRT (), for read-write use openM ().

#include <diskio.hpp>

Example
FILE *fp = openR("c:\\temp\\binfile.exe");

5.15.3 ecreate

idaman FILE *ida_ export

Definition ecreate (const char *file)

Create the binary file, *file, returning a FILE pointer of the file for write only.
Synopsis Displays an error and exits if it is unable to create the file. To create a text file,
use ecreateT ().

#include <diskio.hpp>

Example
FILE *fp = ecreate("c:\\temp\\newbinfile.exe");

5.15.4 eclose

idaman void ida_export

Definition eclose (FILE *£fp)
STNEESS Closes the file represented by FILE pointer * £p. Displays an error and exits if
ynop it is unable to close the file.
#include <diskio.hpp>
// Open the file first.
Example FILE *fp = openR("c:\\temp\\binfile.exe");
// Close it
eclose (fp);
© 2006 CodeBreakers Magazine Page 80 of 125

IDA PLUGIN WRITING IN C/C++
5.15.5 eread

idaman void ida_export

Definition eread (FILE *fp, void *buf, ssize t size)

Read size bytes from file represented by FILE pointer * fp, into buffer *buf.

Synopsis If the read is unsuccessful, an error is displayed followed by exiting IDA.

#include <diskio.hpp>
char buf [MAXSTR];

// Open the text file
Example FILE *fp = openRT ("c:\\temp\\txtfile.txt");

// Read MAXSTR bytes from the start of the file.
eread (fp, buf, MAXSTR-1);

eclose (fp);

5.15.6 ewrite

idaman void ida_export

Definition ewrite (FILE *fp, const void *buf, ssize t size)

Givirral Write size bytes of *buf to the file represented by FILE pointer * fp. If the

ynop write operation fails, an error is displayed followed by exiting IDA.
#include <kernwin.hpp> // For read selection()
#include <bytes.hpp> // For get many bytes ()
#include <diskio.hpp>

char buf [MAXSTR];
ea_t saddr, eaddr;

// Create the binary dump file
FILE *fp = ecreate ("c:\\bindump") ;
Example
// Get the address range selected, or return false if
// there was no selection
if (read selection(&saddr, &eaddr)) {
int size = eaddr - saddr;
// Dump the selected address range to a binary file
get many bytes(saddr, buf, size);
ewrite (fp, buf, size);
1

eclose (fp);

© 2006 CodeBreakers Magazine Page 81 of 125

IDA PLUGIN WRITING IN C/C++

5.16 Debugging

Unlike most of the functions covered so far, the next three sections are for working with a binary
during execution. This section in particular is for high level operations (like process and thread
control) on a binary/process. Debugging and tracing is covered in the following two sections. All
functions below are defined in dbg.hpp with the exception of invalidate dbg contents() and
invalidate dbg config(), which are defined in bytes.hpp. To get the most out of the examples, you
should run them (i.e. invoke your plug-in) whilst a binary is being debugged in IDA.

You will probably notice that all of these functions aren't prefixed with ida export. They don't need
to be because they are all inlined wrappers to caliui(), and use event notifications to carry out
their respective functionality.

5.16.0 A Note on Requests

Unlike most functions in the SDK, most debugger functions (and some tracing functions too) come
in two forms; their normal asynchronous form, for example run to(), and a synchronous, or
request form, like request run to(). Both forms of the function will take the same arguments, but
it's the way they carry out the respective operation that makes the difference.

The synchronous form of the function (request) will enter the function into a queue, and
eventually be executed by IDA when you call run requests (). The other, asynchronous form, will
run straight away, just like a normal function.

The synchronous form of a function can be very handy when you want to queue a bunch of things
to be run by IDA in one hit. 5.17.5 is a good example of this, where deleting a bunch of
breakpoints using del bpt() would fail unless done synchronously, as the ID number of the
breakpoints would be re-organised by the time you went to fetch the next one using getn bpt ().
Something important worth noting is that you must use the synchronous form of a function when
you are in an debugger event notification handler (see section 4.5, specifically 4.5.3).

All functions in sections 5.16, 5.17 and 5.18 that are also available as requests will have a *
following the function name.

5.16.1 run_requests

bool idaapi

Definition run_requests (void)
Synopsis Runs any requests (synchronous functions) that have been queued.
© 2006 CodeBreakers Magazine Page 82 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

// Run to the entry point of the binary
request run to(inf.startIP);

Example // Enable function tracing
request enable func trace();

// Run the above requests
run_requests();

5.16.2 get_process_state

A—AnA int idaapi
Definition get_process_state(void)

Returns the state of the process currently being debugged. If the process is
Synopsis suspended, -1 is returned, 1 if the process is running or 0 if there is no
process running under the debugger.

#include <dbg.hpp>

switch (get process state()) {

case 0:
msg ("No process running.\n");
break;

case -1:

Example msg ("Process is suspended.\n");

break;

case 1:
msg ("Process is running.\n");
break;

default:

msqg ("Unknown status.\n");

5.16.3 get_process_qty

int idaapi

Definition get process_qty(void)
Returns the number of running processes matching the image of the
Svn i executable currently open in IDA. This function also needs to be called to
HEURSES initialise the process snapshot, which is used by IDA for populating data
structures utilised by other process-related functions.
© 2006 CodeBreakers Magazine Page 83 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>
Example msg ("There are %d processes running.\n",
get process gty());

5.16.4 get_process_info

process_id_t idaapi

Definition get process_info(int n, process_info_ t *process_info);

Populate *process info with information about process number n (this is
Synopsis not the PID). The process ID of the process number n is returned. If
*process_info is NULL, only the PID of the process is returned.

#include <dbg.hpp>

// Only get the info if a process is actually running..
if (get process gty() > 0) {

process info t pif;

Example // Populate pif

get process _info (0, &pif);

msg ("ID: %d, Name: %s\n", pif.pid, pif.name);
} else {

msg ("No process running!\n");

}

5.16.5 start_process *

int idaapi
Definition start_process(const char *path = NULL, const char *args =
NULL, const char *sdir = NULL);

Start debugging the process *path, with the arguments *args, in the
directory *sdir. If any of the arguments are NULL, they are taken from the

Synopsis process options specified under Debugger->Process Options.... This is
essentially the same as pressing F9 in IDA.
© 2006 CodeBreakers Magazine Page 84 of 125

IDA PLUGIN WRITING IN C/C++

#include <kernwin.hpp> // For askstr()
#include <dbg.hpp>

// Ask the user for arguments to supply.
Example N _ wn o "y .
char *args = askstr (HIST IDENT, , Arguments") ;
// Run the process with those arguments
start process(NULL, args, NULL);

5.16.6 continue_process *

O bool idaapi
Definition continue process (void)

Continue the execution of a process. Returns false if continuing the process
Synopsis fails. This is equivalent to pressing F9 in IDA when a process is in the
suspended state (breakpoint-hit or suspended).

#include <dbg.hpp>

// Continue running the process when the user
// involkes this plug-in.
if (continue process())
msg ("Continuing process..\n");
else

msg ("Failed to continue process execution.\n");

Example

5.16.7 suspend_process *

bool idaapi

Definition suspend process (void)
Suspend the process currently being debugged. Returns false if suspending
Synopsis the process failed. This is the same as pressing the 'Pause Process' button in
IDA.
#include <dbg.hpp>
// Suspend the process being debugged.
Example if (suspend process())
msg ("Suspended process.\n");
else
msg ("Failed to suspend process.\n");
© 2006 CodeBreakers Magazine Page 85 of 125

IDA PLUGIN WRITING IN C/C++
5.16.8 attach_process *

int idaapi
Definition attach_process(process_id t pid=NO_PROCESS, int event id=-
1)

Attach to the process with PID pid. The process being attached to must be the
same executable image as the one currently being disassembled in IDA. If the
pidargumentis NO PROCESS, the user is prompted with a list of potential
processes to attach to. The possible return codes are as follows, which is taken
from dbg . hpp:

// -2 - impossible to find a compatible process
Synopsis // -1 - impossible to attach to the given process

// (process died, privilege

// needed, not supported by the debugger

// plugin, ...)

// 0 - the user cancelled the attaching to the

// process

// 1 - the debugger properly attached to the

// process

#include <dbg.hpp>

// Present the user with a list of processes to
// attach to. If there is no executable running that
// matches what's open in IDA, no dialog box will

Example // be presented.
int err;
if ((err = attach process (NO PROCESS)) == 1)
msg ("Successfully attached to process.\n");
else

msg ("Unable to attach, error: %d\n", err);

5.16.9 detach_process *

bool idaapi

Definition detach_process (void)
Detach from the process currently being debugged. This can be a process that
e was attached to or run through IDA. Returns false if it was unable to detach.
ynop Detaching from a process is only supported on Windows XP SP2 and Windows
2003.
© 2006 CodeBreakers Magazine Page 86 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

// Detach from the debugged process.
Example if (detach process())
msg ("Successfully detached from process.\n");
else
msg ("Failed to detach.\n");

5.16.10 exit_process *

bool idaapi

Definition exit _process (void)

Terminate the process currently being debugged. Returns false if it was unable

Synopsis to terminate the process.

#include <dbg.hpp>
// Terminate the debugged process.
Example if (exit process())
msg ("Successfully terminated the process.\n");

else
msg ("Failed to terminate the proces.\n");

5.16.11 get_thread_qty

int idaapi

Definition get_thread gty (void)

Synopsis Returns the number of threads that exist in the debugged process.
#include <dbg.hpp>

Example // Only display if there is a process being debugged.
if (get process gty() > 0)
msg ("Threads running: %d\n", get thread gty());

5.16.12 get_reg_val

© 2006 CodeBreakers Magazine Page 87 of 125

IDA PLUGIN WRITING IN C/C++

bool idaapi

Definition get _reg val (const char *regname, regval t *regval)

Get the value stored in register *regname and store it in *regval. Returns

Synopsis false if it was unable to retrieve the value from the register. The register name
is case insenstive.

#include <dbg.hpp>
// Process needs to be suspended for this to work.

regval t eax;

regval t eax upper;

char *regname = "eax";
Example char *regname upper = "EAX";

// Prooving that the register name is case insenstive
if (get reg val (regname, &eax))
msg ("eax = %08a\n", eax.ival);

if (get reg val(regname upper, &eax upper))
msg ("EAX = %08a\n", eax upper.ival);

5.16.13 set_reg_val *

Definiti bool idaapi
ernition set_reg val(const char *regname, const regval_t *regval)
Set the register *regname to value *regval in the current thread. If

the write fails, false is returned. Like get reg val (), *regname is case

n i . I . . L
Synopsis insensitive. Unlike other asynchronous functions, this is safe to call from a
debug event notification handler.
#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>
// Suspend the currently executing process.
suspend process () ;
Example // Continuf execution from the user's cursor position.
ea t addr = get screen ea();
char *regname = "EIP";
if (set reg val(regname, addr)) {
msg ("Continuing execution from %a\n", addr);
continue process();
}
© 2006 CodeBreakers Magazine Page 88 of 125

IDA PLUGIN WRITING IN C/C++
5.16.14 invalidate_dbgmem_contents

idaman void ida_export

Definition invalidate_dbgmem contents(ea_t ea, asize_t size)

Invalidate size bytes of memory, starting at ea. If you want to invalidate the
whole of a processes memory, set ea to BADADDR and size to 0.

Synopsis Invalidating memory contents is essentially flushing the IDA kernel's memory
cache for a process, which ensures you are accessing the latest memory
contents from a processes memory. You should call this function after a
process is suspended, or if you suspect the memory contents have changed.

#include <dbg.hpp>
#include <bytes.hpp>

// Process must be suspended for this to work

// Get the address stored in the ESP register
regval t esp;
get reg val ("ESP", é&esp);

// Get the value at the address stored in the ESP reg.

Example _ - .
uchar before = get byte(esp.ival);

// Invalidate memory contents

invalidate dbgmem contents (BADADDR, O0);

// Re—-fetch contents of the address stored in ESP
uchar after = get byte(esp.ival);

msg ("%08a: Before: %a, After: %a\n",
esp.ival, before, after);

5.16.15 invalidate_dbgmem_config

idaman void ida_export

Definition invalidate dbgmem config(void)

Like invalidate dbgmem contents (), you use this function to ensure
IDA is looking at the latest memory configuration. You need to run this function

Synopsis if the debugged process has allocated or deallocated memory since it was last
suspended. This function also flushes the IDA memory cache, however is
much slower than invalidate dbgmem contents () .

© 2006 CodeBreakers Magazine Page 89 of 125

Example

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>
#include <bytes.hpp>

regval t esp;

// Get ESP before invalidate config
get reg val ("ESP", é&esp);
uchar before = get byte(esp.ival);

// Invalidate memory config
invalidate dbgmem config();

// After invalidate

uchar after = get byte(esp.ival);

msg ("%08a Before: %a, After: %a\n",
esp.ival, before, after);

5.16.16 run_to *

Definition

Synopsis

Example

bool idaapi
run_to(ea_t ea)

Run the process until execution gets to address ea. If there is no process
running, the currently disassembled file is executed. Returns false if it was
unable to execute the process.

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

// Replicate F4 functionality
if (!run to(get screen ea()))
msg ("Failed to run to %a\n", get screen ea());

5.16.17 step_into *

bool idaapi

Definition step_into(void)
Run one instruction within the current thread of the debugged process. This is
Synopsis the same as F7 in IDA. Returns false if it was unable to step into the
instruction.
© 2006 CodeBreakers Magazine Page 90 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

// Go to the entry point (queued)
request run_ to(inf.startIP);

Example // Run 20 instructions (queued)
for (int i = 0; 1 < 20; 1 ++)
request step into();

// Run through the queue
run_requests();

5.16.18 step_over *

bool idaapi

Definition step_over (void)

Run one instruction within the current thread of the debugged process, but
Synopsis don't step into functions, treat them as one instruction. This is the same as F8
in IDA. Returns false if it was unable to step over the instruction.

#include <dbg.hpp>
// This can only run when the process is suspended

Example // Step over 5 instructions. This needs to be done as
// a request, otherwise only one step will execute.
for (int i = 0; 1 < 5; 1 ++)

request step over();
run_requests();

5.16.19 step_until_ret *

bool idaapi

Definition step until ret(void)
S q Execute each instruction in the current thread of the debugged process until
PAIODSRS the current function returns. This is the same as CTRL-F7 in IDA.
© 2006 CodeBreakers Magazine Page 91 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

// Get the address of where the function named
// 'myfunc' is.
ea t addr = get name ea (BADADDR, "myfunc");

if (addr != BADADDR) {
// Run until execution hits myfunc (queued)
Example request run to(addr);

// Step into the function (queued)
request step into();

// Continue executing until myfunc returns (queued)
request step until ret();

// Run through the queue
run_requests();

5.17 Breakpoints

An essential part of debugging is having the ability to set and manipulate breakpoints, which can
be set on any address within a process memory space and be hardware or software breakpoints.
The following set of functions work with breakpoints, and are defined in dbg.hpp.

5.17.1 get_bpt_qty

int idaapi

Definition get_bpt_qty (void)
Svn i Return the current number of breakpoints that exist (regardless of whether they
HEURSES are enabled or not).
#include <dbg.hpp>
Example

msg ("There are currently %d breakpoints set.\n",
get_bpt_qgty());

5.17.2 getn_bpt

© 2006 CodeBreakers Magazine Page 92 of 125

IDA PLUGIN WRITING IN C/C++

bool idaapi

Definition getn_bpt(int n, bpt_t *bpt)

Fill *bpt with information about breakpoint number n. Returns false if there is

Synopsis | . 4 breakpoint number.

#include <dbg.hpp>

// Go through all breakpoints, displaying the address
// of where they are set.
Example for (int i = 0; i < get bpt gty (); i++) {
bpt t bpt;
if (getn bpt (i, &bpt))
msg ("Breakpoint found at %a\n", bpt.ea);

5.17.3 get_bpt

bool idaapi

Definition get _bpt(ea_t ea, bpt t *bpt)

Fill *bpt with information about the breakpoint set at ea. If no breakpoint is set
Synopsis at ea, false is returned. If *bpt is NULL, this function simply returns true or
false depending if a breakpoint is set at ea.

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

Example if (get bpt(get screen ea(), NULL))
msg ("Breakpoint is set at %a.\n", get screen ea());
else
msg ("No breakpoint set at %a.\n", get screen ea());

5.17.4 add_bpt *

bool idaapi

Definition add bpt(ea t ea, asize t size = 0, bpttype t type =
BPT_SOFT)
© 2006 CodeBreakers Magazine Page 93 of 125

IDA PLUGIN WRITING IN C/C++

Add a breakpoint at ea of type type and size size. Returns false if it was
unable to set the breakpoint. Refer to section 4.4.2 for an explanation of

Synopsis different breakpoint types. size is irrelevant when setting software
breakpoints.
#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

Example // Add a software breakpoint at the cursor position

if (add bpt(get screen ea(), 0, BPT_SOFT))
msg ("Successfully set software breakpoint at %a\n",
get screen ea());

5.17.5 del_bpt *

bool idaapi

Definition del bpt(ea t ea)
Givirral Delete the breakpoint defined at ea. If there is no breakpoint defined there,
ynop returns false.
#include <dbg.hpp>
// Go through all breakpoints, deleting each one.
for (int 1 = 0; 1 < get_bpt gty (); 1i++) {
bpt t bpt;
if (getn bpt(i, &bpt)) |
// Because we are performing many delete
// operations, queue the request, otherwise the
// getn bpt call will fail when the id
// numbers change after the delete operation.
if (request del bpt (bpt.ea))
Example msg ("Queued deleting breakpoint at %a\n",
bpt.ea);
}
}
// Run through request queue
run_requests();
// Make sure there are no breakpoints left over
if (get bpt gty() > 0)
msg ("Failed to delete all breakpoints.\n");
© 2006 CodeBreakers Magazine Page 94 of 125

IDA PLUGIN WRITING IN C/C++
5.17.6 update_bpt

bool idaapi

Definition update bpt(const bpt t *bpt)
e nels Update modifiable elements of the breakpoint represented by *bpt. Returns
ynop false if the modification was unsuccessful.
#include <dbg.hpp>
// Loop through all breakpoints
for (int 1 = 0; 1 < get bpt gty (); 1i++) {
bpt t bpt;
if (getn bpt(i, &bpt)) {
// Change the breakpoint to not pause
// execution when it's hit
bpt.flags ”*= BPT BRK;
// Change the breakpoint to a trace breakpoint
Example bpt.flags |= BPT TRACE;

// Run a little IDC every time it's hit
gstrncpy (bpt.condition,
"Message (\"Trace hit!\"™)",
sizeof (bpt.condition));

// Update the breakpoint
if (!update bpt (&bpt))
msg ("Failed to update breakpoint at %a\n",
bpt.ea);

5.17.7 enable_bpt *

bool idaapi

Definition enable bpt(ea_t ea, bool enable = true)

Enable or disable the breakpoint set at ea. If no breakpoint is defined at ea, or
Synopsis there was an error enabling/disabling the breakpoint, false is returned. If
enable is set to false, the breakpoint is disabled.

© 2006 CodeBreakers Magazine Page 95 of 125

IDA PLUGIN WRITING IN C/C++

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

bpt t bpt;

Example // If a breakpoint exists at the user's cursor, disable

// it.
if (get bpt(get screen ea(), &bpt)) {
if (enable bpt(get screen ea(), false))
msg ("Disabled breakpoint.\n");
}
5.18 Tracing

The functions available for tracing mostly revolve around checking whether a certain type of tracing
is enabled, enabling or disabling a type of tracing and retrieving trace events. All the below are
defined in dbg.hpp.

5.18.1 set_trace_size

bool idaapi

Definition set_trace_size(int size)

Set the tracing buffer size to size. Returns false if there was an error
allocating size. Setting size to 0 sets an unlimited buffer size (dangerous). If
you set size to a value lower than the current number of trace events, size
events are deleted.

Synopsis

#include <dbg.hpp>

Example // 1000 trace events allowed
if (set trace size(1000))
msg ("Successfully set the trace buffer to 1000\n");

5.18.2 clear_trace *

void idaapi

Definition clear_ trace(void)

Synopsis Clear the trace buffer.

© 2006 CodeBreakers Magazine Page 96 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

Example // Start our plug-in with a clean slate

clear trace();

5.18.3 is_step_trace_enabled

bool idaapi

Definition is_step_trace_enabled(void)

Synopsis Returns true if step tracing is currently enabled.

#include <dbg.hpp>

Example if (is_step trace enabled())

msg ("Step tracing is enabled.\n");

5.18.4 enable_step_trace *

bool idaapi

Definition enable step trace(int enable = true)

Synopsis Enable step tracing. If enable is set to false, step tracing is disabled.

#include <dbg.hpp>

// Toggle step tracing
Example if (is_step trace enabled())
enable step trace(false);
else
enable step trace();

5.18.5 is_insn_trace_enabled

bool idaapi

Definition is_insn_trace_enabled (void)

© 2006 CodeBreakers Magazine Page 97 of 125

IDA PLUGIN WRITING IN C/C++

Synopsis Returns true if instruction tracing is enabled.

#include <dbg.hpp>
Example if (is _insn trace enabled())
msg ("Instruction tracing is enabled.\n");

5.18.6 enable_insn_trace *

bool idaapi

Definition enable insn_ trace(int enable = true)

Enable instruction tracing. If enable is set to false, instruction tracing is

Synopsis ;o ied.

#include <dbg.hpp>

// Toggle instruction tracing
Example if (is_insn_trace enabled())
enable insn trace(false);
else
enable insn trace();

5.18.7 is_func_trace_enabled

bool idaapi

Definition is_func_trace_ enabled(void)

Synopsis Returns true if function tracing is enabled.

#include <dbg.hpp>

Example if (is_func trace enabled())

msg ("Function tracing is enabled.\n");

5.18.8 enable_func_trace *

© 2006 CodeBreakers Magazine Page 98 of 125

IDA PLUGIN WRITING IN C/C++

bool idaapi

Definition enable func trace(int enable = true)
Synopsis Enable function tracing. If enable is set to false, function tracing is disabled.
#include <dbg.hpp>
// Toggle function tracing
Example if (is_func_ trace enabled())
enable func trace (false);
else

enable func trace();

5.18.9 get_tev_qty

int idaapi

Definition get tev_gty(void)

Synopsis Returns the number of trace events in the trace buffer.
#include <dbg.hpp>

Example

msg ("There are %d trace events in the trace buffer.\n",
get_tev_qgty());

5.18.10 get_tev_info

bool idaapi

Definition get_tev_info(int n, tev_info t *tev_info)
S . Fills *tev_info about the trace buffer entry number n. Returns false if there is
ynopsis no such trace event number n.
© 2006 CodeBreakers Magazine Page 99 of 125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

// Loop through all trace events

for (int i = 0; 1 < get _tev gty(); 1i++) {
tev_info t tev;
Example // Get the trace event information

get tev info (i, &tev);

// Display the address the event took place
msg ("Trace event occurred at %$a\n", tev.ea);

5.18.11 get_insn_tev_reg_val

bool idaapi
Definition get_insn _tev_reg val(int n, const char *regname, regval_ t
*regval)

Store the value of register *regname into *regval when instruction trace
event number n happened, before execution of the instruction. Returns false if
Synopsis the event wasn't an instruction trace event.

See get insn tev reg result () for obtaining registers after execution.
#include <dbg.hpp>

// Loop through all trace events

for (int i = 0; 1 < get _tev gty (); i++) {
regval t esp;
tev _info t tev;

// Get the trace event information
get tev_info (i, &tev);
Example . . .
// If it's an instruction trace event...
if (tev.type == tev_insn) {
// Get ESP, store into &esp
if (get insn tev reg val(i, "ESP", é&esp))
// Display the value of ESP
msg ("TEV #%d before exec: %a\n", i, esp.ival);
else
msg ("No ESP change for TEV #%d\n", 1);

5.18.12 get_insn_tev_reg_result

© 2006 CodeBreakers Magazine Page 100 of
125

IDA PLUGIN WRITING IN C/C++

bool idaapi

Definition get_insn tev_reg result(int n, const char *regname,
regval_t *regval)

Store the value of register *regname into *regval when instruction trace
event number n happened, after execution of the instruction. Returns false if
Synopsis the register wasn't modified or n doesn't represent an instruction trace event.

See get _insn tev reg val () for obtaining registers before execution.
#include <dbg.hpp>

// Loop through all trace events

for (int i = 0; 1 < get _tev gty (); i++) {
regval t esp;
tev _info t tev;

// Get the trace event information
get tev _info (i, &tev);
Example . . .
// If it's an instruction trace event...
if (tev.type == tev_insn) {
// Get ESP, store into &esp
if (get insn tev reg result (i, "ESP", &esp))
// Display the value of ESP
msg ("TEV #%d after exec: %a\n", i, esp.ival);
else
msg ("No ESP change for TEV #%d\n", 1);

5.18.13 get_call_tev_callee

T ea_t idaapi
Definition get call tev_callee(int n)
Returns the address of the function called for function trace event number n.

Synopsis Returns BADADDR if there is no such function trace event number n. The type
of the function trace event must be tev_call.

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; 1 < get _tev gty(); i++) {
regval t esp;

Example tev_info t tev;

// Get the trace event information

get tev _info (i, &tev);
© 2006 CodeBreakers Magazine Page 101 of
125

IDA PLUGIN WRITING IN C/C++

// If it's an function call trace event...

if (tev.type == tev_call) {
ea_t addr;
// Get ESP, store into &esp
if ((addr = get call tev callee(i)) != BADADDR)

msg ("Function at %a was called\n", addr);

5.18.14 get_ret_tev_return

ea_t idaapi

Definition get ret tev_return(int n)

Returns the address of the calling function for function trace event number n.
Synopsis Returns BADADDR if there is no such function trace event number n. The type
of the function trace event must be tev_ret.

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; 1 < get _tev gty(); i++) {
tev_info t tev;

// Get the trace event information
get tev _info (i, &tev);

Example
// If it's an function return trace event...
if (tev.type == tev_ret) ({
ea_ t addr;
if ((addr = get ret tev return(i)) != BADADDR)

msg ("Function returned to %a\n", addr);

5.18.15 get_bpt_tev_ea

ea_t idaapi

Definition get_bpt tev_ea(int n)
Frrerche Returns the address of the read/write/execution trace number n. Returns false
ynop if the trace event wasn't that of a read/write/execution trace.
© 2006 CodeBreakers Magazine Page 102 of
125

IDA PLUGIN WRITING IN C/C++

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; 1 < get _tev gty(); 1i++) {
tev_info t tev;

// Get the trace event information
get tev _info (i, &tev);

Example
// If it's an breakpoint trace event...
if (tev.type == tev_bpt) ({
ea t addr;
if ((addr = get bpt tev _ea(i)) != BADADDR)
msg ("Breakpoint trace hit at %a\n", addr);
1
}
5.19 Strings

The following functions are used for reading the list of strings in IDA's Strings window, which is
derived from strings found in the currently disassembled file(s). The below functions are defined in
strlist.hpp.

5.19.1 refresh_strlist

idaman void ida_export

Definition refresh strlist(ea_t eal, ea t ea2)
Svnobsis Refresh the list of strings in IDA's Strings window. Search between eal and
ynop ea?2 in the currently disassembled file(s) for these strings.
#include <strlist.hpp>
Example

// Refresh the string list.
refresh strlist();

5.19.2 get_strlist_qty

idaman size_t ida_export

Definition get_strlist gty (void)

Synopsis Returns the number of strings found in the currently disassembled file(s).

© 2006 CodeBreakers Magazine Page 103 of
125

IDA PLUGIN WRITING IN C/C++

#include <strlist.hpp>

Example msg ("%d strings were found in the currently open file(s)",

get strlist qgty());

5.19.3 get_strlist_item

idaman bool ida_export

Definition get_strlist item(int n, string info_t *si)
Svn i Fills *s1i with information about string number n. Returns false if there is no
ynopsis such string number n.
#include <strlist.hpp>
int largest = 0;
// Loop through all strings, finding the largest one.
for (int i = 0; 1 < get strlist gty(); i++) {
string info t si;
Example - -

get strlist item(i, &si);
if (si.length > largest)
largest = si.length;
}

msg ("Largest string is %d characters long.\n", largest);

5.20 Miscellaneous

These are functions that don’t really fit into any particular category. The headers they are defined
in are mentioned in each case.

5.20.1 tag_remove

Definiti idaman int ida_ export
efnition tag _remove (const char *instr, char *buf, int bufsize)
Remove any colour tags from *instr, and store the result in *buf, limited by
Synopsis bufsize. Supplying the same pointer for *instr and *buf is also supported,
in which case bufsize is 0. This function is defined in 1ines.hpp.

© 2006 CodeBreakers Magazine Page 104 of
125

IDA PLUGIN WRITING IN C/C++

#include <ua.hpp> // For ua_ functions
#include <lines.hpp>

// Get the entry point address
ea t addr = inf.startIP;

// Fill cmd with information about the instruction
// at the entry point
ua_anal (addr) ;
Example // Loop through each operand (until one of o void type
// is reached), displaying the operand text.
for (int 1 = 0; cmd.Operands[i].type != o void; i++) {
char op[MAXSTR];
ua_outop(addr, op, sizeof(op)-1, 1i);

// Strip the colour tags off
tag_remove (op, op, 0);
msqg ("Operand %d: %s\n", i, op);

5.20.2 open_url

inline void

Definition open_url (const char *url)
, Opens *url in the system default web browser. This function is defined in
Synopsis K .
ernwin.hpp.
#include <kernwin.hpp>
Example

open_url ("http://www.binarypool.com/idapluginwriting/");

5.20.3 call_system

idaman int ida_ export

Definition call system(const char *command)
, Runs the command, *command, from a system shell. This function is defined in
Synopsis di ski
iskio.hpp.

#include <diskio.hpp>
Example // Run notepad

call system("notepad.exe");
© 2006 CodeBreakers Magazine Page 105 of
125

IDA PLUGIN WRITING IN C/C++

5.20.4 idadir

Definiti idaman const char *ida_ export

efnition idadir (const char *subdir)

Returns the IDA path if *subdir is NULL. If *subdir is not NULL, the IDA
sub-directory path is returned. These are the possible sub-directories, as taken
from diskio.hpp:

#define CFG_SUBDIR "cfg"
#define IDC_SUBDIR "idc"
Synopsis #define IDS SUBDIR "ids"
#define IDP_SUBDIR "procs"
#define LDR SUBDIR "loaders"
#define SIG_SUBDIR "sig"
#define TIL SUBDIR "til"

This function is defined in diskio.hpp.

#include <diskio.hpp>

Example
msg ("IDA directory is %s\n", idadir (NULL));
5.20.5 getdspace
A~BnA idaman ulonglong ida_export
Definition getdspace (const char *path)
SYRODoIS Returns the amount of disk space available on the disk hosting *path. This
ynop function can be found in diskio.hpp.
#include <diskio.hpp>
Example ;; Ci;it the disk space on the disk with IDA installed on
if (getdspace(idadir (NULL)) < 100*1024%1024)
msg ("You need at least 100 MB free to run this.");
© 2006 CodeBreakers Magazine Page 106 of
125

IDA PLUGIN WRITING IN C/C++
5.20.6 str2ea

Definiti idaman bool ida_export
erinition str2ea(const char *p, ea_t *ea, ea t screenEA)
Convert the string *p to an address stored in *ea if it exists within the currently
Synopsis disassembled file(s), return true on success. This function is defined in
kernwin.hpp.

#include <kernwin.hpp>

// Just some random address
char *addr_s = "010100FO0";
Example ea t addr;

// If 010100F0 is in the binary, print the address
if (str2ea(addr_s, &addr, 0))
msg ("Address: %a\n", addr);

5.20.7 ea22str

. as idaman char *ida export

Definition ea2str(ea_t ea, char *buf, int bufsize)

Convert the address, ea, to string, stored in *buf, limited by bufsize. The
format of the string produced is segmentname: address, so for example,
supplying the 01001 02A address from the . text segment would produce
.text:0100102A. This function is defined in kernwin. hpp.

Synopsis

#include <kernwin.hpp>

ea t addr = get screen eal();

char addr s[MAXSTR];
Example -

// Convert addr into addr_s
eaZstr (addr, addr_s, sizeof (addr_s)-1);
msg ("Address: %s\n", addr_s);

5.20.8 get_nice_colored_name

idaman ssize_t ida_export
Definition get_nice colored name(ea_ t ea, char *buf, size_t bufsize,
int flags=0);

© 2006 CodeBreakers Magazine Page 107 of
125

IDA PLUGIN WRITING IN C/C++

Get the formatted name of ea, store it in *buf limited by bufsize. If flags is
set to GNCN_NOCOLOR, no colour codes will be included in the name. If ea

Synopsis doesn't have a name, its address will be returned in a "human readable" form,
like start+56 or .text:01002010 for example. This function is defined in
name . hpp.

#include <kernwin.hpp> // For get screen ea() definition
#include <name.hpp>

char buf [MAXSTR];

// Get the nicely formatted name/address of the
// current cursor position. No colour codes will
// be included.

Example get nice colored name(get screen ea(),
buf,
sizeof (buf) -1,
GNCN_NOCOLOR) ;
msg ("Name at cursor position: %s\n", buf);
© 2006 CodeBreakers Magazine Page 108 of
125

IDA PLUGIN WRITING IN C/C++

6 Examples

The below examples have been included to provide a bit of context to the use of the structures and
functions covered in this tutorial. All are extensively commented and will compile as-is, i.e. not
requiring any modification or inclusion of headers, etc. like previous examples did.

The code for each of the below is also available at http://www.binarypool.com/idapluginwriting/.

6.1 Looking for Calls to sprintf, strcpy, and sscanf

The below example will find “low hanging fruit” when auditing a binary. It does this by finding calls
to usually misused functions like sprintf, strcpy and sscanf (feel free to add more of your
choosing). It first finds the address of the extern definitions of these functions, then uses IDA’s
cross referencing functionality to find all the addresses within the binary that reference those
extern definitions.

//
// unsafefunc.cpp

//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>

int IDAP_ init(void)
{
if (inf.filetype != f ELF && inf.filetype != f PE) {
error ("Executable format must be PE or ELF, sorry.");
return PLUGIN SKIP;
}

return PLUGIN KEEP;
}

void IDAP_ term(void)
{

return;

}

void IDAP run(int arg)
{

// The functions we're interested in.
char *funcs[] = { "sprintf", "strcpy", "sscanf", 0 };

// Loop through all segments

for (int 1 = 0; 1 < get segm gty (); i++) {
segment t *seg = getnseg(i);

© 2006 CodeBreakers Magazine Page 109 of
125

http://www.binarypool.com/idapluginwriting/

IDA PLUGIN WRITING IN C/C++

// We are only interested in the pseudo segment created by
// IDA, which is of type SEG XTRN. This segment holds all
// function 'extern' definitions.

if (seg->type == SEG_XTRN) {

// Loop through each of the functions we're interested in.
for (int i = 0; funcs[i] !'= 0; i++) {
// Get the address of the function by its name
ea t loc = get name ea(seg->startEA, funcs[i]);
// If the function was found, loop through it's
// referrers.
if (loc != BADADDR) {
msg ("Finding callers to %s (%a)\n", funcs[i], loc);
xrefblk t xb;
// Loop through all the TO xrefs to our function.
for (bool ok = xb.first to(loc, XREF DATA);
ok;
ok = xb.next to()) {
// Get the instruction (as text) at that address.
char instr[MAXSTR];
char instr clean[MAXSTR];
generate disasm line(xb.from, instr, sizeof (instr)-1);
// Remove the colour coding and format characters
tag remove (instr, instr clean, sizeof(instr clean)-1);
msg ("Caller to %s: %a [%s]\n",
funcs[i],
xb.from,
instr clean);

return;
}
char IDAP comment[] = "Insecure Function Finder";
char IDAP help[] = "Searches for all instances"
" of strcpy(), sprintf() and sscanf().\n";
char IDAP name[] = "Insecure Function Finder";
char IDAP hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
IDP INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,

© 2006 CodeBreakers Magazine Page 110 of
125

IDA PLUGIN WRITING IN C/C++

IDAP hotkey
i

© 2006 CodeBreakers Magazine Page 111 of
125

IDA PLUGIN WRITING IN C/C++
6.2 Listing Functions Containing MOVS et al.

When looking for the use of vulnerable functions like strcpy for example, you might need to look
deeper than simple uses of the function and identify functions that use instructions in the movs
family (movsb, movsd, etc.). This plug-in will go through all the functions, then each of their
instructions looking for anything that uses a movs-like mnemonic.

//
// movsfinder.cpp

//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <allins.hpp>

int IDAP_ init (void)
{
// Only support x86 architecture
if (strncmp (inf.procName, "metapc", 8) != 0) {
error ("Only x86 binary type supported, sorry.");
return PLUGIN SKIP;
}

return PLUGIN KEEP;

void IDAP term(void)
{

return;

}

void IDAP run(int arg)

{
// Instructions we're interested in. NN movs covers movsd,
// movsw, etc.
int movinstrs[] = { NN _movsx, NN movsd, NN movs, 0 };

// Loop through all segments
for (int s = 0; s < get segm gty(); s++) {
segment t *seg = getnseg(s);

// We are only interested in segments containing code.
if (seg->type == SEG CODE) {

// Loop through each function

for (int x = 0; x < get func gty (); x++) {
func t *f = getn func(x);
char funcName [MAXSTR];

// Get the function name
get func name (f->startEA, funcName, sizeof (funcName)-1);

© 2006 CodeBreakers Magazine Page 112 of
125

IDA PLUGIN WRITING IN C/C++

// Loop through the instructions in each function
for (ea_t addr = f->startEA; addr < f->endEA; addr++) {

// Get the flags for this address
flags_t flags = getFlags(addr);

// Only look at the address if it's a head byte, i.e.
// the start of an instruction and is code.
if (isHead(flags) && isCode(flags)) {

char mnem[MAXSTR];

// Fill the cmd structure with the disassembly of
// the current address and get the mnemonic text.
ua mnem(addr, mnem, sizeof (mnem)-1);

// Check the mnemonic of the address against all
// mnemonics we're interested in.
for (int i = 0; movinstrs([i] != 0; i++) {
if (cmd.itype == movinstrs[i])
msg ("%$s: found %s at %a!\n", funcName, mnem, addr);

return;

char IDAP comment[] = "MOVSx Instruction Finder";
char IDAP help[] =
"Searches for all MOVS-like instructions.\n"
" \nn
"This will display a list of all functions along with\n"
"the movs instruction used within.";

char IDAP name[] = "MOVSx Instruction Finder";
char IDAP hotkey[] = "Alt-M";

plugin_t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey
bi

© 2006 CodeBreakers Magazine Page 113 of
125

IDA PLUGIN WRITING IN C/C++
6.3 Auto-loading DLLs Into the IDA Database

Most binaries will spread their functionality across multiple files (DLLs), loading them at runtime
using LoadLibrary. In these cases, it can be useful to have IDA auto-load these DLLs into the one
IDB. This plug-in will search through the strings in a binary looking for anything containing .d11.
For strings that do, it is assumed they are DLLs intended to be loaded by the binary and will
prompt the user for the full path of that DLL and load it into the IDB.

//
// loadlib.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <strlist.hpp>

// Maximum number of library files to load into the IDB
#define MAXLIBS 5

int IDAP init (void)
{
if (inf.filetype != f PE) {
error ("Only PE executable file format supported.\n");
return PLUGIN SKIP;
}

return PLUGIN KEEP;
}

void IDAP term(void)
{

return;

}

void IDAP run(int arg)

{
char loadLibs[MAXLIBS] [MAXSTR];
int libno = 0, 1i;

// Loop through all strings to find any string that contains
// .dll. This will eventuall be our list of DLLs to load.
for (1 = 0; 1 < get strlist gty(); i++) {

char string[MAXSTR];

string info t si;

// Get the string item
get strlist item(i, &si);

if (si.length < sizeof(string)) {

// Retrieve the string from the binary
get many bytes(si.ea, string, si.length);

© 2006 CodeBreakers Magazine Page 114 of
125

IDA PLUGIN WRITING IN C/C++

// We're only interested in C strings.
if (si.type == 0) {

// .. and if the string contains .dl1l
if (stristr(string, ".dll") && libno < MAXLIBS) {

// Add the string to the list of DLLs to load later on.
strncpy (loadLibs[libno++], string, MAXSTR-1);
}

}

// Now go through the list of libraries found and load them.
msg ("Loading the first %d libraries found...\n", MAXLIBS);

for (i = 0; 1 < MAXLIBS; i++) {
msg ("Lib: %s\n", loadLibs([i]);

// Ask the user for the full path to the DLL (the executable will
// only have the file name).
char *file = askfile cv (0, loadLibs[i], "File path...\n", NULL);

// Load the DLL using the pe loader module.
if (load loader module (NULL, "pe", file, 0)) {
msg ("Successfully loaded %s\n", loadLibs[i]);
} else {
msg ("Failed to load %s\n", loadLibs[i]);
}

char IDAP comment[] = "DLL Auto-Loader";
char IDAP help[] = "Loads the first 5 DLLs"
" mentioned in a binary file\n";

char IDAP name[] = "DLL Auto-Loader";
char IDAP hotkey[] = "Alt-D";

plugin_t PLUGIN =
{
IDP INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

© 2006 CodeBreakers Magazine Page 115 of
125

IDA PLUGIN WRITING IN C/C++
6.4 Bulk Breakpoint Setter & Saver

This single plug-in gives you the ability to save the currently set breakpoints to a file, as well as
load a list of addresses from a file and set breakpoints on them. To keep the plug-in simple, it
expects the format of the input file to be sane, otherwise it will fail. You will also need to modify
your plugins.cfg file to be able to use the one plug-in for both functions (setting and saving), as
shown below.

//
// bulkbpt.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <diskio.hpp>
#include <dbg.hpp>

// Maximum number of breakpoints that can be set
#define MAX BPT 100

// Insert the following two lines into your plugins.cfg file
// Replace pluginname with the filename of your plugin minus
// the extension

//

// Write Breakpoints pluginname Alt-D 0
// Read Breakpoints pluginname Alt-E 1
//

void read breakpoints() {

char ¢, eal[9];
int x = 0, b = 0;
ea t ea list[MAX BPT];

// Ask the user for the file containing the breakpoints
char *file = askfile cv (0, "", "Breakpoint list file...", NULL);

// Open the file in read-only mode
FILE *fp = fopenRT (file);

if (fp == NULL) {
warning ("Unable to open breakpoint list file, %s\n", file);
return;

}

// Grab 8-byte chunks from the file
while ((c = gfgetc(fp)) != EOF && b < MAX BPT) {
if (isalnum(c)) {
ea[x++] = c;
if (x == 8) {
// NULL terminate the string
ea[x] = 0;
x = 0;

© 2006 CodeBreakers Magazine Page 116 of
125

IDA PLUGIN WRITING IN C/C++

// Convert the 8 character string to an address
str2ea(ea, &ea list[b], 0);

msg ("Adding breakpoint at %a\n", ea list[b]);
// Add the breakpoint as a software breakpoint
add bpt(ea list[b], 0, BPT SOFT);

b+ - -

}

// Close the file handle
gfclose (fp);

void write breakpoints () {
char ¢, eal[9];
int x = 0, b = 0;
ea t ea list[MAX BPT];

// Ask the user for the file to save the breakpoints to
char *file = askstr (0, "", "Breakpoint list file...", NULL);

// Open the file in write-only mode
FILE *fp = ecreateT (file);

for (int 1 = 0; 1 < get bpt gty (); i++) {
bpt t bpt;
char buf [MAXSTR];

getn bpt (i, &bpt);

gsnprintf (buf, sizeof (buf)-1, "%08a\n", bpt.ea);
ewrite (fp, buf, strlen(buf));
}

// Close the file handle
eclose (fp);

void IDAP run(int arg)

// Depending on the argument supplied,
// read the breakpoint list from a file and
// apply it, or write the current breakpoints
// to a file.
switch (arg) {
case 0:
write breakpoints();
break;
case 1:
default:
read breakpoints();
break;

int IDAP init (void)

© 2006 CodeBreakers Magazine Page 117 of
125

IDA PLUGIN WRITING IN C/C++

{
return PLUGIN KEEP;

}

void IDAP term(void)
{
return;

}

// These are irrelevant because they will be overridden by
// plugins.cfg.
char IDAP comment[] = "Bulk Breakpoint Setter and Recorder";
char IDAP help[] =
"Sets breakpoints at a list of addresses in a text file"
" or saves the current breakpoints to file.\n"
"The read list must have one address per line.\n";

char IDAP name[] = "Bulk Breakpoint Setter and Recorder";
char IDAP hotkey[] = "Alt-B";

plugin_t PLUGIN =
{
IDP INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

© 2006 CodeBreakers Magazine Page 118 of
125

IDA PLUGIN WRITING IN C/C++
6.5 Selective Tracing (Method 1)

This plug-in gives you the ability to turn on instruction tracing only for a specific address range. It
does this by running to the start address, turning on instruction tracing, running to the end
address, and then turning instruction tracing off. Method 2 demonstrates a more flexible approach,
utilising step tracing.

//
// snaptrace.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <dbg.hpp>

int IDAP init (void)
{

return PLUGIN KEEP;
}

void IDAP_ term(void)
{
return;

}

void IDAP run(int arg)

{
// Set the default start address to the user cursur position
ea t eaddr, saddr = get screen eaf();

// Allow the user to specify a start address
askaddr (&saddr, "Address to start tracing at");

// Set the end address to the end of the current function
func t *func = get func(saddr);
eaddr = func->endEA;

// Allow the user to specify an end address
askaddr (&eaddr, "Address to end tracing at");

// Queue the following

// Run to the start address

request run to(saddr);

// Then enable tracing

request enable insn trace();

// Run to the end address, tracing all stops in between
request run to(eaddr);

// Turn off tracing once we've hit the end address
request disable insn trace();

// Stop the process once we have what we want

© 2006 CodeBreakers Magazine Page 119 of
125

IDA PLUGIN WRITING IN C/C++

request exit process();

// Run the above queued requests
run_requests();

// These are actually pointless because we'll be overriding them
// in plugins.cfg
char IDAP comment[] = "Snap Tracer";
char IDAP help[] = "Allow tracing only between user "
"specified addresses\n";

char IDAP name[] = "Snap Tracer";
char IDAP hotkey[] = "Alt-T";

plugin_t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey
bi

© 2006 CodeBreakers Magazine Page 120 of
125

IDA PLUGIN WRITING IN C/C++
6.6 Selective Tracing (Method 2)

Utilising step tracing, this plug-in sets up a debug event notification handler to handle a trace event
(one instruction executed). Within this handler, it checks whether e1p is within the user-defined
range, and if is, displays esp. Obviously there are much more interesting things you can do with
this sort of functionality like alerting based on the contents of registers and/or memory.

//
// snaptrace2.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <dbg.hpp>
ea t start ea = 0;
ea t end ea = 0;

// Handler for HT DBG events
int idaapi trace_handler(void *udata, int dbg event id, va list va)
{

regval t esp, eip;

// Get ESP register value
get reg val ("esp", &esp);
// Get EIP register value
get reg val ("eip", é&eip);

// We'll also receive debug events unrelated to tracing,
// make sure those are filtered out
if (dbg _event id == dbg trace) {
// Make sure EIP is between the user-specified range
if (eip.ival > start ea && eip.ival < end ea)
msg ("ESP = %a\n", esp.ival);

return 0;

int IDAP init(void)

{
// Receive debug event notifications
hook to notification point (HT DBG, trace handler, NULL);
return PLUGIN KEEP;

}

void IDAP term(void)
{

// Unhook from the notification point on exit
unhook from notification point (HT DBG, trace handler, NULL);
return;

© 2006 CodeBreakers Magazine Page 121 of
125

IDA PLUGIN WRITING IN C/C++

void IDAP_ run(int arg)

{
// Ask the user for a start and end address
askaddr (&start_ea, "Start Address:");
askaddr (&end_ea, "End Address:");

// Queue the following

// Run to the binary entry point
request run to(inf.startIP);

// Enable step tracing
request enable step trace();

// Run queued requests
run_requests () ;

// These are actually pointless because we'll be overriding them
// in plugins.cfg
char IDAP comment[] = "Snap Tracer 2";
char IDAP help[] = "Allow tracing only between user "
"specified addresses\n";

char IDAP name[] = "Snap Tracer 2";
char IDAP hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
IDP INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey
bi

© 2006 CodeBreakers Magazine Page 122 of
125

IDA PLUGIN WRITING IN C/C++
6.7 Binary Copy & Paste

Seeing there isn’t any binary copy-and-paste functionality in IDA, this plug-in will take care of both
copy and paste operations allowing you to take a chunk of binary from one place and overwrite
another with it. You need to modify your plugins.cfg file as this is a multi-function plug-in, needing
one invocation for copy and another for paste. Obviously it only supports copying and pasting
within IDA, however it could probably be extended to go beyond that.

//
// copypaste.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>

#define MAX COPYPASTE 1024

// This will hold our copied buffer for pasting
char data[MAX COPYPASTE];

// Bytes copied into the above buffer
ssize t filled = 0;

// Insert the following two lines into your plugins.cfg file
// Replace pluginname with the filename of your plugin minus
// the extension.

//
// Copy Buffer pluginname Alt-C O
// Paste Buffer pluginname Alt-vV 1
//

int IDAP_ init (void)
{

return PLUGIN_KEEP;
}

void IDAP term(void)
{

return;

}

void copy buffer () {
ea_ t saddr, eaddr;
ssize t size;

// Get the boundaries of the user selection

if (read selection(&saddr, &eaddr)) |
// Work out the size, make sure it doesn't exceed the buffer
// we have allocated.
size = eaddr - saddr;

© 2006 CodeBreakers Magazine Page 123 of
125

IDA PLUGIN WRITING IN C/C++

if (size > MAX COPYPASTE) ({
warning ("You can only copy a max of %d bytes\n", MAX COPYPASTE);

return;

// Get the bytes from the file, store it in our buffer
if (get many bytes(saddr, data, size)) {
filled = size;
msg ("Successfully copied %d bytes from %$a into memory.\n",

size,
saddr) ;
} else {
filled = 0;
}
} else {
warning ("No bytes selected!\n");
return;

void paste buffer() {

// Get the cursor position. This is where we will paste to
ea t curpos = get screen eaf();

// Make sure the buffer has been filled with a Copy operation first.
if (filled) {

// Patch the binary (paste)

patch many bytes (curpos, data, filled);

msg ("Patched %d bytes at %a.\n", filled, curpos);
} else {

warning ("No data to paste!\n");

return;

void IDAP run(int arg) {

// Based on the argument supplied in plugins.cfg,
// we can use the one plug-in for both the copy
// and paste operations.
switch(arg) {
case 0:
copy buffer();
break;
case 1:
paste buffer();
break;
default:
warning ("Invalid usage!\n");
return;

// These are actually pointless because we'll be overriding them
// in plugins.cfg

© 2006 CodeBreakers Magazine Page 124 of
125

IDA PLUGIN WRITING IN C/C++

char IDAP comment[] = "Binary Copy and Paster";

char IDAP help[] = "Allows the user to copy and paste binary\n";
char IDAP name[] = "Binary Copy and Paster";

char IDAP hotkey[] = "Alt-I";

plugin t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey
}i

© 2006 CodeBreakers Magazine Page 125 of
125

	Table of Contents
	 1. Introduction
	1.1 Why This Tutorial?
	1.2 What's Covered
	1.3 What's Not Covered
	1.4 Knowledge Required
	1.5 Software Required
	1.6 Alternatives to C/C++
	1.7 About This Document
	1.8 Credits
	1.9 Further Reading

	2. The IDA SDK
	2.1 Installation
	2.2 Directory Layout
	2.3 Header Files
	2.4 Using the SDK

	3. Setting Up a Build Environment
	3.1 Windows, Using Visual Studio
	3.2 Windows, Using Dev-C++ With GCC and MinGW
	3.3 Linux, Using GCC
	3.4 A Plug-in Template
	3.5 Configuring and Running Plug-ins

	4. Fundamentals
	4.1 Core Types
	4.2 Core Structures and Classes
	4.2.1 Meta Information
	4.2.2 Areas
	4.2.2.1 The area_t Structure
	4.2.2.2 The areacb_t Class

	4.2.3 Segments and Functions
	4.2.3.1 Segments
	4.2.3.2 Functions

	4.2.4 Code Representation
	4.2.4.1 Operand Types
	4.2.4.2 Operands
	4.2.4.3 Mnemonics
	4.2.4.4 Instructions

	4.2.5 Cross Referencing
	4.2.5.1 The xrefblk_t Structure
	4.2.5.2 Code
	4.2.5.3 Data

	4.3 Byte Flags
	4.4 The Debugger
	4.4.1 The debugger_t Struct
	4.4.2 Registers
	4.4.3 Breakpoints
	4.4.4 Tracing
	4.4.5 Processes and Threads

	4.5 Event Notifications
	4.5.1 Receiving Notification
	4.5.2 UI Event Notifications
	4.5.3.1 Low Level Events
	4.5.3.2 High Level Event Notifications
	4.5.3.3 Function Result Notifications

	4.6 Strings

	5. Functions
	5.1 Common Function Replacements
	5.2 Messaging
	5.2.1 msg
	5.2.2 info
	5.2.3 warning
	5.2.4 error

	5.3 UI Navigation
	5.3.1 get_screen_ea
	5.3.2 jumpto
	5.3.3 get_cursor
	5.3.4 get_curline
	5.3.5 read_selection
	5.3.6 callui
	5.3.7 askaddr
	5.3.8 AskUsingForm_c

	5.4 Entry Points
	5.4.1 get_entry_qty
	5.4.2 get_entry_ordinal
	5.4.3 get_entry
	5.4.4 get_entry_name

	5.5 Areas
	5.5.1 get_area
	5.5.2 get_area_qty
	5.5.3 getn_area
	5.5.4 get_next_area
	5.5.5 get_prev_area

	5.6 Segments
	5.6.1 get_segm_qty
	5.6.2 getnseg
	5.6.3 get_segm_by_name
	5.6.4 getseg
	5.6.5 get_segm_name (IDA 4.8)
	5.6.6 get_segm_name (IDA 4.9)

	5.7 Functions
	5.7.1 get_func_qty
	5.7.2 get_func
	5.7.3 getn_func
	5.7.4 get_func_name
	5.7.5 get_next_func
	5.7.6 get_prev_func
	5.7.7 get_func_comment

	 5.8 Instructions
	5.8.1 generate_disasm_line
	5.8.2 ua_ana0
	5.8.3 ua_code
	5.8.4 ua_outop
	5.8.5 ua_mnem

	5.9 Cross Referencing
	5.9.1 first_from
	5.9.2 first_to
	 5.9.3 next_from
	 5.9.4 next_to

	5.10 Names
	5.10.1 get_name
	5.10.2 get_name_ea
	5.10.3 get_name_value

	5.11 Searching
	5.11.1 find_text (IDA 4.9 only)
	5.11.2 find_binary

	5.12 IDB
	5.12.1 open_linput
	5.12.2 close_linput
	5.12.3 load_loader_module
	5.12.4 load_binary_file
	5.12.5 gen_file
	5.12.6 save_database

	5.13 Flags
	5.13.1 getFlags
	5.13.2 isEnabled
	5.13.3 isHead
	5.13.4 isCode
	5.13.5 isData
	5.13.6 isUnknown

	5.14 Data
	5.14.1 get_byte
	5.14.2 get_many_bytes
	5.14.3 patch_byte
	5.14.4 patch_many_bytes

	5.15 I/O
	5.15.1 fopenWT
	5.15.2 openR
	5.15.3 ecreate
	5.15.4 eclose
	5.15.5 eread
	5.15.6 ewrite

	5.16 Debugging
	5.16.0 A Note on Requests
	5.16.1 run_requests
	5.16.2 get_process_state
	5.16.3 get_process_qty
	5.16.4 get_process_info
	5.16.5 start_process *
	5.16.6 continue_process *
	5.16.7 suspend_process *
	5.16.8 attach_process *
	5.16.9 detach_process *
	5.16.10 exit_process *
	5.16.11 get_thread_qty
	5.16.12 get_reg_val
	5.16.13 set_reg_val *
	5.16.14 invalidate_dbgmem_contents
	5.16.15 invalidate_dbgmem_config
	5.16.16 run_to *
	5.16.17 step_into *
	5.16.18 step_over *
	5.16.19 step_until_ret *

	5.17 Breakpoints
	5.17.1 get_bpt_qty
	5.17.2 getn_bpt
	5.17.3 get_bpt
	5.17.4 add_bpt *
	5.17.5 del_bpt *
	5.17.6 update_bpt
	5.17.7 enable_bpt *

	5.18 Tracing
	5.18.1 set_trace_size
	5.18.2 clear_trace *
	5.18.3 is_step_trace_enabled
	5.18.4 enable_step_trace *
	5.18.5 is_insn_trace_enabled
	5.18.6 enable_insn_trace *
	5.18.7 is_func_trace_enabled
	5.18.8 enable_func_trace *
	5.18.9 get_tev_qty
	5.18.10 get_tev_info
	5.18.11 get_insn_tev_reg_val
	5.18.12 get_insn_tev_reg_result
	5.18.13 get_call_tev_callee

	5.19 Strings
	5.19.1 refresh_strlist
	5.19.2 get_strlist_qty
	5.19.3 get_strlist_item

	5.20 Miscellaneous
	5.20.1 tag_remove
	5.20.2 open_url
	5.20.3 call_system
	5.20.4 idadir
	5.20.5 getdspace
	5.20.6 str2ea
	5.20.7 ea2str
	5.20.8 get_nice_colored_name

	6 Examples
	6.1 Looking for Calls to sprintf, strcpy, and sscanf
	6.2 Listing Functions Containing MOVS et al.
	6.3 Auto-loading DLLs Into the IDA Database
	6.4 Bulk Breakpoint Setter & Saver
	6.5 Selective Tracing (Method 1)
	6.6 Selective Tracing (Method 2)
	6.7 Binary Copy & Paste

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

