% CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

Volume 1, Issue 1, 2006

Award BIOS Code Injection

Mappatutu Salihun Darmawan
January 2006

Abstract

The possiblity of code injection in firmware, specifically Award Bios is not well explored yet up to this date.
This is due to lack of documentation and understanding about how the whole system works. Code injection in
Award Bios is made possible by the existence of the so called "POST Jump Table". This paper explores this
possibility and provides a proof of concept for this idea.

AWARD BIOS CODE INJECTION

1 Introduction

Based on the Award Bios Reverse Engineering paper by Darmawan Mappatutu Salihun [1], it's very
clear that there's a possibility for code injection in Award Bios. This opportunity is provided by the
existence of the so called "POST jump table”. We can do a code injection by patching this so called
"POST jump table" to include a jump into our custom routine. There are several reasons why this
method is a better approach to Award Bios hacking :

e In theory, this approach is much more safe compared to other bios hacking methods. In this
technique, we are incorporating new functionality into the system bios (original.tmp in Award
Bios) without replacing any functionality in the current system bios. In other words, it's safe
to do it.

e There are lot of places in the "POST jump table" that are safe to patch, since they are only
jump to "dummy" procedures.

e Incorporating an additional routine to bios, specifically Award Bios, as an isa option rom is
not always guaranteed to be flawless. We have experienced a circumstance where this kind
of approach is just unacceptable. When we implant an experimental expansion-rom based
OS-kernel in a hacked Adaptec PCI SCSI controller card, the old isa option rom based bios
patch causes the system to hang if the PCI slots are heavily populated. This is really
unacceptable.

¢ Perhaps, one can add "cool” procedures to POST as cosmetics.

The following is the detail of the testbed used for this radical bios modification :

Processor : Intel Celeron 300A, overclocked to 518 MHz by using ABIT Slotket Il adapter
Mainboard : Iwill VD133 (slot 1) with VIA693A northbridge and VIA596B southbridge
Videocard : PowerColor Nvidia Riva TNT2 M64 32MB

RAM : 256MB SDRAM with unknown chip

Soundcard : Addonics Yamaha YMF724

Network Card : Realtek RTL8139C

Harddrive : Maxtor 20GB 5400RPM

CDROM : Teac 40X

Monitor : Samsung SyncMaster 551v (15%)

Windows 2000, used to run the modification tools
- Real-mode DOS, used to flash the Bios

Operating System :

2 Tools Of The Trade

The tools needed to do the code injection as follows:

1. IDA Pro disassembler. We are using IDA Pro version 4.50. One can use their favourite
interactive disassembler. We found IDA Pro is the most suitable for us. We need an
interactive disassembler since the bios binary that we are going to disassemble is not a
trivial code.

2. A good hex editor. We are using HexWorkshop ver. 3.02. The most beneficial feature of this
hex editor is its capability to calculate checksums for the selected range of file that we open
inside of it. We use this tool to edit the bios binary.

© 2006 CodeBreakers Magazine Page 2 of 16

AWARD BIOS CODE INJECTION

3. Nasm, the netwide assembler. Can be downloaded it at http://nasm.sourceforge.net. We use
this to assemble the code that will be injected to the Bios.

4. A text editor, we use this to edit and write the injected x86 assembly language code.
Anyway, notepad is enough.

5. Some bios modification tools i.e. :

o CBROM, we are wusing version 2.08, 2.07 and 1.24. |It's available at
www.biosmods.com, in the download section

o MODBIN, there are two types of modbin, modbin6 for Award Bios ver. 6 and modbin
4.50.xx for Award Bios ver. 4.5xPGNM. We need this tool to look at the bios
components much more easily. It's available at www.biosmods.com, in the download
section. This tool also used to ensure that the checksum of the modified bios is fine.

o Awardbios editor version 1.0. Thanks to Mike Tedder a.k.a bpoint for providing us with
this very nice tool. It is available at http://awdbedit.sourceforge.net/. We use this tool
to replace the original system bios of our Award Bios (original.tmp) with a new one.
Actually this can be accomplished using any LZH capable compressor such as LHA
2.55 along with a hexeditor. But, we haven't test the robustness of this method, and
it's more easier to do it with Awardbios editor.

o UNIFLASH or Awardflash. This is the tool we use to flash the modified Bios to the
mainboard Bios chip. We won't explain how to use it. It's trivial, just read its manual.
Awardflash can be obtained in many places on the web, including in the mainboard
manufacturer website. Uniflash can be downloaded at http://www.uniflash.org. One
can also use any windows based bios flashing tool that maybe available from the
mainboard vendor.

6. Some chipset datasheets. This depends on the mainboard bios binary that you are going to
dissect. Some datasheets available at www.rom.by in the PDF-s section. I'm dissecting a
VIAB693A-596B mainboard. We have all of the needed datasheets.

3 Prerequisite
There are some issues that won't be explained here and it's the reader task that should be carried
out to comprehend this paper.

¢ The most important thing is you have to be able to program and understand x86 assembly
language. We are using masm and nasm syntax throughout this article. Both of them are
variant of Intel syntax.

¢ How to program in x86 real mode. The POST (Power On-Self Test) routine in the Bios is
executed in real mode. So, if we want to inject code there, it should be executing in real
mode.

¢ You have to be able to comprehend datasheets of mainboard chipsets, i.e. the northbridge
and southbridge. This is not a must. But, if you intend to know how the sample "injected
routine” works, you have to acquire this knowledge. In this article we will present an
example routine that reprogram the mainboard chipset to tweak it to achieve better
performance in it's memory subsystem. Basically, this routine reprogram the memory
controller of the northbridge. This routine is injected to POST through the POST jump table.

¢ How to flash the bios binary into your mainboard. This is a trivial thing to do.

¢ We strongly encourage you to do at least preliminary reverse engineering on Award Bios.
This is very useful to comprehend the explanation here. To begin with, you can read the
Award Bios Reverse Engineering paper by Darmawan Mappatutu Salihun [1]. After doing

© 2006 CodeBreakers Magazine Page 3 of 16

http://nasm.sourceforge.net/
http://www.biosmods.com/
http://www.biosmods.com/
http://awdbedit.sourceforge.net/
http://www.uniflash.org/
http://www.rom.by/

AWARD BIOS CODE INJECTION

this, if your Bios is Award Bios or it's variant, it's very possible that you will find the "POST
jump table" location in its system bios (original.tmp) part.

Now, we proceed to some more hints and conventions that we have to agreed upon throughout this
article. In this article we will explain how to inject your own code into Award Bios by patching the
POST jump table. But, before that, let's clarify a few things:

o What we mean by POST is the Power On-Self Test part of the Bios. The routines in this
part do the testing of the system equipment and other intialization tasks.

¢ POST routines is part of the system bios (i.e. original.tmp file in Award Bios).

e POST routines is executed by means of a "jump table"” in Award Bios as explained in the
Award Bios Reverse Engineering paper by Darmawan Mappatutu Salihun [1].

e Based on the the Award Bios Reverse Engineering paper by Darmawan Mappatutu Salihun
[1], it's clear that not all of the "POST jump table™ contents are functioning. Some of them
are just "dummy" routines, i.e. doing nothing at all beside just signaling successful execution
and returning. Below is an example :

Address Hex Values Mnemonic Comment
000:6276 RAM_POST_TESTS proc near ; CODE XREF: last_EOOO_POST+D
E000:6276 ; last_EO00_POST+18 ...
E000:6276 8A C1 mov al, cl ;cl =3
E000:6278 E6 80 out 80h, al ; manufacture®s diagnostic checkpoint
E000:627A 68 00 FO push OFO00h
E000:627D OF Al pop fFs ; Fs = FOOOh
EO000:627F
EO00:627F ;This is the beginning of the call into EOOO segment
EO000:627F ;POST function table
EO00:627F assume fs:F000
EO00:627F 2E 8B 05 mov ax, cs:[di] ; In the beginning :
E000:627F ; di = 61C2h ; ax = cs:[di] = 154Eh
EO00:627F ; called from E000:2489 w/ di=61FCh (dummy)
E000:6282 47 inc di ; Increment by 1
E000:6283 47 inc di ;o di = di + 2
E000:6284 0B CO or ax, ax ; Logical Inclusive OR
E000:6286 74 0B Jz RAM_post_return ; RAM Post Error
E000:6288 57 push di ; save di
E000:6289 51 push cx ; save cXx
E000:628A FF DO call ax ; call [61C2h] = call 154Eh
EO00:628A ; (relative call addr),one of this call
EO000:628A ; won"t return in normal condition
E000:628C 59 pop cx ; restore all
E000:628D 5F pop di
EO00:628E 72 03 jb RAM_post_return ; Jump if Below (CF=1)
E000:6290 41 inc cx ; Increment by 1
E000:6291 EB E3 Jmp short RAM_POST_TESTS ; Jump
E000:6293 -
E000:6293
E000:6293 RAM_post_return: ; CODE XREF: RAM_POST_TESTS+10 j
E000:6293 ; RAM_POST_TESTS+18 j
E000:6293 C3 retn ; Return Near from Procedure
E000:6293 RAM_POST_TESTS endp
E000:61C2 EO_POST_TESTS_TABLE:
E000:61C2 4E 15 dw 154Eh ; Restore boot flag
E000:61C4 6F 15 dw 156Fh ; Chk_Mem_Refrsh_Toggle
E000:61C6 71 15 dw 1571h ; keyboard (and its controller) POST
EO00:61C8 D2 16 dw 16D2h ; chksum ROM, check EEPROM
EO000:61C8 ; on error generate spkr tone
EO00:61CA 45 17 dw 1745h ; Check CMOS circuitry
© 2006 CodeBreakers Magazine Page 4 of 16

EO0O:
EOO0O:
EO0O:
EO0O:
EO0O:
EOO0O:
EO0O:
EO0O:
EO0O:

61CC
61CC
61CE
61D0
61D0
61D0
61D2
61D2
61D4

8A

98

B8

4B

BC

controller

EOO00:
EO00:
EOO00:
EO00:
EO00:
EO00:
EOO00:
EO00:
EOO00:
E000:
EO000:
E000:
EO00:
E000:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
E000:
EO00:

61D4
61D6
61D6
61D8
61DA
61DC
61DE
61EO
61E2
61E4
61E6
61ES8
61EA
61EC
61EE
61FO0
61F2
61F4
61F6
61F8
61F8
61FA
61FA

08

F8
C3

F8
C3

F8
C3

17

17

17

19

1A

AWARD BIOS CODE INJECTION

dw

dw
dw

dw

dw

dw

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

dw

END_EO_POST_TESTS_TABLE

178Ah

1798h
17B8h

194Bh

1ABCh

1B0O8h

1DC8h
2342h
234Eh
2353h
2355h
2357h
2359h
23A5h
23B6h
23F%h
23FBh
2478h
247Ah
247Ah
247Ah
247Ah
247Ch

0

; ""chipset defaults" initialization
; File: EOPOST.ASM and CT_TABLE.ASM

init CPU cache (both Cyrix and Intel)
init interrupt vector, also initialize

; '""'sighatures'" used for Ext_Bios components
; decompression

Init_mainboard_equipment & CPU microcode

; chk ISA CMOS chksum ?

Check checksum. Initialize keyboard

and set up all of the 40: area data.
Relocate extended Bios code

init CPU MTRR, PCl REGs(Video Bios ?)
Video_Init (including EPA proc)

dummy

dummy

dummy

init Programmable Timer (PIT)

init PIC_1 (programmable Interrupt Ctlr)
same as above ?

dummy

init PIC_2

dummy

dummy

this will call RAM_POST_tests again
for values below(a.k.a ISA POST)

; Clear Carry Flag

Return Near from Procedure

; Clear Carry Flag

Return Near from Procedure

sub_EO00_247A proc nhear

clc
ret

sub_EO000_247A endp

n

Clear Carry Flag
Return Near from Procedure

Clear Carry Flag
Return Near from Procedure

The clc (clear carry flag) routine above is used to signal the caller of the POST routine that
went OK.

everything

© 2006 CodeBreakers Magazine

Page 5 of 16

AWARD BIOS CODE INJECTION
4 Hacking the POST Jump Table

Now we've already known all the prerequisite knowledge to do the code injection. We'd like to
formulate the steps that we need to do this :

e Reverse engineer the Bios to look where the "POST jump table" located in the system bios
(original.tmp). We suggest to begin the reverse engineering process in the bootblock and
proceed to system bios (original.tmp) accordingly.

e Analyze the "POST jump table", and try to find a jump to dummy procedure. If we find one,
continue to next step, otherwise we stop here since it's not possible to carry out this method
on the Bios.

e Assemble our custom procedure using nasm. Note the resulting binary size. Try to minimize
the injected code size to ensure that the injected code will fit into the "free space™ of the
system bios.

e Extract the genuine system bios (original.tmp) from the bios binary file using AwardBios
editor.

¢ Analyze the system bios using hexeditor to look for padding bytes, where we can inject our
code. If we don't find any suitable area, then we're out of luck and cannot proceed. But this
is a very seldom case.

¢ Inject our assembled custom procedure to the extracted system bios (original.tmp) by using
hexeditor.

e Modify the "POST jump table" to include a jump to our procedure. Use hexeditor to edit the
system bios "POST jump table".

¢ Replace the genuine system bios (original.tmp) with the modified system bios by using
AwardBios editor.

e Ensure the checksum of the modified Bios is fine by opening it using modbin and cbrom. |
suggest to change the Bios name string using modbin and saving the change, since
sometimes in "weird" Award Bios there are false checksums that were failed to be patched
by Awardbios editor. Do a double check using modbin and cbrom to ensure the validity of the
hacked Bios binary.

¢ Flash the hacked bios binary to the mainboard.

By following the above guidelines, we will finally arrive at our modified Bios which incorporate the
injected code.

4.1 Bios Reverse Engineering and Analysis

We have done this, the result can be seen in the Award Bios Reverse Engineering paper by
Darmawan Mappatutu Salihun [1]. The "POST jump table" location is provided in the Prerequisite
section. It's very clear there that we have several candidates of dummy procedure jumps that we
can replace with our own procedure jump. They are highlighted with red color).

© 2006 CodeBreakers Magazine Page 6 of 16

AWARD BIOS CODE INJECTION

4.2 Assembling The Custom Procedure

The following is the source code of the procedure that is injected into the bios (using nasm syntax):
G ————— BEGIN TWEAK.ASM - - - - - -
BITS 16 ;just to make sure nasm prefix 66 to 32 bit instructions, we"re assuming the uP

;is in 16 bits mode up to this point (from the boot state)

section -text
start:
pushf
push eax
push dx

mov eax, ioq_reg ;patch the ioq register of the chipset
mov dx,in_port

out dx,eax

mov dx,out_port

in eax,dx

or eax,ioq_mask

out dx,eax

mov eax,dram_reg ;patch the DRAM controller of the chipset,
mov dx,in_port ;i.e. the interleaving part

out dx,eax

mov dx,out_port

in eax,dx

or eax,dram _mask

out dx,eax

mov eax,bank_reg ;Allow pages of different bank to be active simultanoeusly
mov dx,in_port

out dx,eax

mov dx,out_port

in eax,dx

or eax,bank_mask

out dx,eax

mov eax,tlb_reg ;Activate Fast TLB lookup
mov dx,in_port

out dx,eax

mov dx,out_port

in eax,dx

or eax,tlb_mask

out dx,eax

pop dx

pop eax

popT

clc ;indicate that this POST routine successful
retn ;return near to the header of the rom file

section .data

in_port equ Ocf8h
out _port equ Ocfch

© 2006 CodeBreakers Magazine Page 7 of 16

dram_mask
dram_reg
ioq_mask
iog_reg
bank_ mask
bank_reg
tlb_mask
tlb_reg

00020202h
80000064h
00000080h
80000050h
20000840h
80000068h
00000008h
8000006¢ch

AWARD BIOS CODE INJECTION

; END TWEAK.ASM

The code is assembled using nasm with the invocation syntax :

nasm -fbin tweak.asm -o tweak.bin

The resulting binary file is tweak.bin. The following is the hex-dump of this binary in hexworkshop

v3.02

Address Hexadecimal Values ASCI 1
00000000 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRF.P...... f..
00000010 FCOC 66ED 660D 8000 0000 G66EF 66B8 6400 ..f.f..... f.f.d.
00000020 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0202 f....F.f
00000030 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h...... f..
00000040 FCOC 66ED 660D 4008 0020 66EF 66B8 6CO0 ..f.f.@.. F.Ff._I.
00000050 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0800 f....F.f.
00000060 0000 66EF 5A66 589D F8C3 f.ZFX

The dump above shows that we need OX6A bytes (106 bytes) free space to inject this code in
system bios.

4.3 Injecting The Procedure

Now,extract the system bios by using AwardBios editor. It's very simple, just open the bios file
then select the System Bios tree-item in the left pane, then click the Action]|Extract File to save
the system bios as a separate uncompressed binary file. As convention in this paper, let's name it
original.tmp.

Then, open original.tmp using hexeditor. In this particular original.tmp, we found a lot of
padding FFh bytes in the end of segment EOOOh. Perhaps, this quite confusing at first, an easier
explanation: In the the Award Bios Reverse Engineering paper by Darmawan Mappatutu Salihun
[1], it's mentioned that the POST jump table resides in the EOOOh segment and the jump table
contains addresses in Little-Endian 16 bit value. This means that the jump table is only for intra-
segment jumps, hence, the injected procedure must reside in the same segment as the POST jump
table itself, i.e. segment EOOOh. So, the "free space" that can be used for the injected procedure
must reside in segment EOOOh. Most of the time this "free space” is padding bytes.

If you still confused, let refresh your memory about the mapping between original.tmp in the real
system address space and in the hexeditor that we use. Original.tmp size is 128KB, it uses the
EOOOh and FOOOh segment during its execution. So, if you see address 0000 0O0OOOh in your
hexeditor for this file, it's basically address EO00:0000h when original.tmp gets executed, and so
forth. Due to this fact, we have to look for "free space”, i.e. unused area or padding bytes below
the address 0001 O00Oh in the hexeditor.

Below is the snapshot of the beginning of the padding bytes in both IDA Pro 4.50 and Hexworkshop
v3.02 for exactly the same address.

© 2006 CodeBreakers Magazine Page 8 of 16

AWARD BIOS CODE INJECTION

In IDA Pro 4.50:

Address Hex Values Mnemonic Comment
EOOO:EFEO C3 db 0C3h ; +
EOOO:EFE1 00 db 0 ;
EOOO:EFE2 00 db 0 ;
EOOO:EFE3 00 db 0 ;
EOOO:EFE4 00 db 0 ;
EOOO:EFE5 00 db 0 ;
EOOO:EFE6 00 db 0 ;
EOOO:EFE7 00 db 0 ;
EOOO:EFES 00 db 0 ;
EOOO:EFE9 00 db 0 ;
EOOO:EFEA 00 db 0 ;
EOOO:EFEB 00 db 0 ;
EOOO:EFEC 00 db 0 ;
EOOO:EFED 00 db 0 ;
EOOO:EFEE 00 db 0 ;
EOOO:EFEF 00 db 0 ;
EOOO:EFFO FF db OFFh ;
EOOO:EFF1 FF db OFFh ;
EOOO:EFF2 FF db OFFh ;
EOOO:EFF3 FF db OFFh ;
EOOO:EFF4 FF db OFFh ;
EOOO:EFF5 FF db OFFh ;
EOOO:EFF6 FF db OFFh ;
EOOO:EFF7 FF db OFFh ;
EOOO:EFF8 FF db OFFh ;
EOOO:EFF9 FF db OFFh ;
EOOO:EFFA FF db OFFh ;
EOOO:EFFB FF db OFFh ;
EOOO:EFFC FF db OFFh ;
EOOO:EFFD FF db OFFh ;
EOOO:EFFE FF db OFFh ;
EOOO:EFFF FF db OFFh ;

In Hexworkshop 3.02:

Address Hex values ASCI I
OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000 .- e iececceae-
OOOOEFFO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF oo oo

Looking at the amount of padding bytes in original.tmp, we know that we have enough space to do
the code injection. What we need to do is: use the hexeditor to replace 106 bytes beginning at
EOOO:EFFOh (OOOOEFFOh) with the code that already assembled (in 16-bit x86 executable binary
format) in the previous step. In hexworkshop, this step is trivial, just open original.tmp and
tweak.bin in the same hexworkshop, then copy and paste tweak.bin contents to original.bin,
that's it. The result in hexworkshop as follows (the hex-values highlighted in red is the injected
code):

© 2006 CodeBreakers Magazine Page 9 of 16

AWARD BIOS CODE INJECTION

Address Hex values ASCIHI
OOOOEFDO C300 0000 0000 0000 0000 0000 0000 0000 . .ceieieceeenne-
OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000 . .ceiececcaeana-

OOOOEFFO 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRF.P...... T..
OOOOF000 FCOC 66ED 660D 8000 0000 G66EF 66B8 6400 ..f.F..... f.f.d.
OOOOF010 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0202 f....F.f...
00OOF020 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.F.h...... f..
OOOOF030 FCOC 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.F.@.. F.F.L.
OO00OF040 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0800 fo...F.f._.

0000F050 0000 66EF 5A66 589D F8C3 FFFF FFFF FFFF .. F.ZfX.........
0000F060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF o iiiiiiiaaaann.
0000F070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF o iiiiiiieaaann.

If you eager to know what the code above accomplished, the snapshot of the chipset datasheet is provided below.
Unfortunately, you still need know PCI protocol to make use of it. This is the snapshot for PCI device at address bus O -
device 0 - function 0, i.e. the hostbridge of the corresponding mainboard.

Device 0 Configuration Registers - Host Bridge
These registers are normally programmed once at system
initialization time.
Host CPU Control
Device 0 Offset 50 — Request Phase Control (0O0Oh) RW
7 CPU Hardwired 10Q (In Order Queue) Size
Default per strap on pin MABl1#During reset. This
register can be written 0O to restrict the chip to one
level of 10Q.
0 1-Level
1 4-Level
6 Read-Around-Write
O Disable ... e e e eaiaaaaaan default
1 Enable
B Reserved e e eeaaaaaaaan always reads 0O
4 Defer Retry When HLOCK Active
O Disable ... e e e e default
1 Enable
Note: always set this bit to 1
3-1 Reserved e e d e e aaaaaaaaa always reads 0O
0 CPU / PCI Master Read DRAM Timing
0 Start DRAM read after snoop complete def
1 Start DRAM read before snoop complete

DRAM Control

These registers are normally set at system initialization time
and not accessed after that during normal system operation.

Some of these registers, however, may need to be

programmed using specific sequences during power-up
initialization to properly detect the type and size of installed
memory (refer to the VIA Technologies VT82C693A Bios

porting guide for details).

© 2006 CodeBreakers Magazine Page 10 of 16

AWARD BIOS CODE INJECTION

SDRAM Settings for Registers 67-64
7 Precharge Command to Active Command Period
0O TRP = 2T
O I default
6 Active Command to Precharge Command Period
0 TRAS = 5T
1 TRAS = BT .o e e e e e e e e eeec e e ccccccaaaaaaaan default
5-4 CAS Latency
00 1T
01 271
10 3T e e e e e aiaaaa default
11 reserved
3 DIMM Type
0 Standard
1 Registered e e e ecacaecaaaaaaaaan default
2 ACTIVE Command to CMD Command Period /
VCM Prefetch Read Latency
02T /7 3T
R) I default
1-0 Bank Interleave
00 No Interleavet a e e a e e default
01 2-way
10 4-way
11 Reserved

Device 0 Offset 68 - DRAM Control (OOh) RW
7 SDRAM Open Page Control
0 Always precharge SDRAM banks when
accessing EDO/FPG DRAMso ooo.. default
1 SDRAM banks remain active when accessing
EDO/FPG banks
6 Bank Page Control
0 Allow only pages of the same bank active.. def.
1 Allow pages of different banks to be active
B Reserved ... e eeaaaaaaaan always reads 0
4 DRAM Data Latch Delay for EDO/FPG DRAM
O Latch DRAM data at CCLK rising edge def.
1 Delay latch of DRAM data by ? CCLK
3 EDO Test Mode

O Disable ... e e e default

1 Enable
2 Burst Refresh

O Disable .. e default

1 Enable (burst 4 times)
1 System Frequency Divider i e i e aaaaaaan RO

This bit is latched from MAB8# at the rising edge of RESET# (see table below).

0 System Frequency Divider i RO

This bit is latched from MAB12# at the rising edge of RESET#.
00 CPU Frequency = 66 MHz
01 CPU Frequency 100 MHz
10 CPU Frequency 133 MHz
11 Reserved
Note: See also Rx69[7-6]
Note: MDO is internally pulled up for EDO detection.

© 2006 CodeBreakers Magazine Page 11 of 16

AWARD BIOS CODE INJECTION

Device 0 Offset 6C - SDRAM Control (OOh) RW
7-5 Reserved i aaiaaao always reads 0O
4 CKE Configuration
0 Rx6B[4]=0 RASA = CSA, RASB = CSB,
CKEO=CKEO, CKEl1l = CKE1l
X Rx6B[4]=1 RASA = CSA, RASB = Float,

CASB = Float, MAB = Float,
CKEO = CKEO, CKEl1l = CKEO
1 Rx6B[4]=0 RASA = CSA, RASB = CSB,
CKE3-2 = CSA7-6
CKE5-4 = CSB7-6
CKE1l = GCKE (Global CKE)
CKEO = FENA (FET Enable)
3 Fast TLB Lookup
(O T =71 o} = default
1 Enable
2-0 SDRAM Operation Mode Select
000 Normal SDRAM Mode . ..o ie i e i e e eeeeaans default

001 NOP Command Enable

010 All-Banks-Precharge Command Enable
(CPU-to-DRAM cycles are converted
to All-Banks-Precharge commands) .

011 MSR Enable
CPU-to-DRAM cycles are converted to
commands and the commands are driven on
MA[14:0]. The Bios selects an appropriate
host address for each row of memory such that
the right commands are generated on
MA[14:0].

100 CBR Cycle Enable (if this code is selected,
CAS-before-RAS refresh is used; if it is not
selected, RAS-Only refresh is used)

101 Reserved

11x Reserved

After this step, we proceed to next step to patch the jump table.

1.1. Modifying The Jump Table

Modifying the POST jump table is just a trivial task after we do the reverse engineering in the bios
binary. As presented above, in the prerequisite section, there are lots of jump table entries that
points to "dummy" procedures.

We decided to redirect/replace the jump table entry at EOOO:61DEh to point to our injected
procedure (at EOOO:EFFOh) instead to the previous "dummy" procedure. Below is the snapshot in
both IDA Pro 4.50 and Hexworkshop, before the modification takes place :

© 2006 CodeBreakers Magazine Page 12 of 16

AWARD BIOS CODE INJECTION

In IDA Pro 4.50:

Address Hex Values Mnemonic Comment

EO00:61DC 4E 23 dw 234Eh

EOO0:61DE 53 23 dw 2353h 5 dummy

EO00:61E0 55 23 dw 2355h ; dummy

EO00:61E2 57 23 dw 2357h ; dummy

EO00:61E4 59 23 dw 2359h ; Init Programmable Timer (PIT)
EOO0:61E6 A5 23 dw 23A5h ; Init PIC_1 (programmable Interrupt
ctir)

EO00:61E8 B6 23 dw 23B6h ; same as above ?

EOOO:61EA F9 23 dw 23F9h ; dummy

EOO00:61EC FB 23 dw 23FBh ; Init PIC_2

EOOO:61EE 78 24 dw 2478h ; dummy

EOO00:61F0 7A 24 dw 247Ah ; dummy

EOO00:61F2 7A 24 dw 247Ah

EOO00:61F4 7A 24 dw 247Ah

EOO00:61F6 7A 24 dw 247Ah

E000:2353 F8 clc ; Clear Carry Flag

E000:2354 C3 retn ; Return Near from Procedure

In Hexworkshop 3.02:

Address Hex values ASCI 1
000061D0 BS17 4B19 BC1A 081B C81D 4223 4E23 5323 . .K....... BHNHSH
000061E0 5523 5723 5923 A523 B623 FO23 FB23 7824 UHWHYH.#.#.#.#xS$
000061F0 7A24 7A24 7A24 TA24 2$7$7$2%

Below is the snapshot in both IDA Pro 4.50 and Hexworkshop, after the modification takes place :

In IDA Pro 4.50:

Address Hex Values Mnemonic Comment

E000:61DC 4E 23 dw 234Eh

EOO00:61DE FO EF dw OEFFOh ;jump to our injected code
EO00:61E0 55 23 dw 2355h

EOOO:EFFO 9C push¥f ; Push Flags Register onto the
Stack

EOOO:EFF1 66 50 push eax

EOOO:EFF3 52 push dx

EOOO:EFF4 66 B8 50 00 00 80 mov eax, 80000050h

EOOO:EFFA BA F8 0OC mov dx, OCF8h

EOOO:EFFD 66 EF out dx, eax

EOOO:EFFF BA FC OC mov dx, OCFCh

EO00:F002 66 ED in eax, dx

EO00:F004 66 OD 80 00 00 00 or eax, 80h ; Logical Inclusive OR
EO00:FOOA 66 EF out dx, eax

EO00:FOOC 66 B8 64 00 00 80 mov eax, 80000064h

EO000:F012 BA F8 0OC mov dx, OCF8h

EOO00:FO015 66 EF out dx, eax

EO00:F017

EO00:F017 loc_EFO017: ; DATA XREF: EO000:19975
© 2006 CodeBreakers Magazine Page 13 of 16

AWARD BIOS CODE INJECTION

EOO00:FO17 ; E000:1997A

EO00:F017 BA FC OC mov dx, OCFCh

EOO00:FO1A

EOO00:FO1A loc EFO1A: ; DATA XREF: E000:19962
EOOO:FO1A 66 ED in eax, dx

EOO00:FO1C 66 OD 02 02 02 00 or eax, 20202h ; Logical Inclusive OR
EO00:F022 66 EF out dx, eax

EO00:F024 66 B8 68 00 00 80 mov eax, 80000068h

EOO00:F02A BA F8 0OC mov dx, OCF8h

EOO0:FO2D 66 EF out dx, eax

EO00:FO2F BA FC OC mov dx, OCFCh

EO00:F032 66 ED in eax, dx

EOO0:F034 66 OD 40 08 00 20 or eax, 20000840h ; Logical Inclusive OR
EOO0:FO3A 66 EF out dx, eax

EOO0:FO3C 66 B8 6C 00 00 80 mov eax, 8000006Ch

EO00:F042 BA F8 0OC mov dx, OCF8h

EO00:F045 66 EF out dx, eax

EO00:F047 BA FC 0OC mov dx, OCFCh

EOOO:FO4A 66 ED in eax, dx

EO00:F04C 66 OD 08 00 00 00 or eax, 8 ; Logical Inclusive OR
EOO00:F052 66 EF out dx, eax

EO00:F054 5A pop dx

EOOO:FO55 66 58 pop eax

EO00:FO57 9D popf ; Pop Stack into Flags Register
EO00:FO058 F8 clc ; Clear Carry Flag
EOO00:F059 C3 retn ; Return Near from Procedure

In Hexworkshop 3.02:

Address Hex values ASCI 1
000061D0 BS17 4B19 BC1A 081B C81D 4223 4E23 FOEF . .K....... BHN#. .
000061E0 5523 5723 5923 A523 B623 FO23 FB23 7824 UHWHYH.#.#.#.#xS$

OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000 . ..evvceeennannn-

OOOOEFFO 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA _fPRF.P...... f..
OOOOF000 FCOC 66ED 660D 8000 0000 66EF 66B8 6400 ..f.F..... f.f.d.
OOOOF010 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0202 fo...F.f._.
O0O00F020 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h...... T..
OOOOF030 FCOC 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. f.f.I.
OO0O0F040 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0800 f....F.f...

OOOOF050 0000 66EF 5A66 589D F8C3 FFFF FFFF FFFF .. F.ZFX.

By now, we have patched original.tmp to suit our need. The next thing to do is combining it back
into one functional bios binary.

4.4 Recombining Bios Component and Fixing Checksums

This step is also trivial. Just open the previous bios binary from which we extract the original.tmp
using awardbios editor. Then select the System Bios tree-item in the left pane, and proceed to
click the Action|Replace File menu. After that select the modified original.tmp as the file used to
replace the genuine original.tmp in that bios binary. Then save this change in awardbios editor.

Actually we are done at this point, but some "nasty" Award Bios sometimes causes awardbios

editor failed to fix its checksum. To guard against this possible bug, open this modified bios binary
using modbin, then do some minor changes, such as changing the bios string and then saving this

© 2006 CodeBreakers Magazine Page 14 of 16

AWARD BIOS CODE INJECTION

change in modbin. This step, will causes modbin to recalculate all checksums and fix the possibly
wrong checksums. That's all, voila' we're done :).

4.5 Testing The Modified Bios

Testing is also a trivial task, just flash the modified bios binary. We are using uniflash to do this in
our testbed, since the awardflash is unable to handle my Atmel AT29C020C-90 backup-bios chip
that were used in the testbed's mainboard, whereas uniflash v1.34 can handle flawlessly. Thanks to
Ondrej Zary a.k.a Rainbow, who provide us with this great uniflash bios flashing utility.

5 Possible Downside and Its Workaround

During the experiment using this method to patch our bios, we encounter a weird situation that
confusing at first. The bug that we encounter would hang my machine at boot, but it's very seldom
and hard to reproduce, i.e. around 1 out of 30 tries. This bug is in effect if the following jump table
modification is carried out.

Note : 1. The modification explained in the previous sections proved to be bug free after lots of
testing and verifications.
2. The code is injected in the same place as explained in the previous sections.

The following is the jump table before the "buggy" patch incorporated :

Address Hex Values Mnemonic Comment

EO00:61DE 53 23 dw 2353h ; dummy

EO00:61E0 55 23 dw 2355h ; dummy

EOO00:61E2 57 23 dw 2357h 5 dummy

EO00:61E4 59 23 dw 2359h ; Init Programmable Timer (PIT)
EO00:61E6 A5 23 dw 23A5h ; Init PIC_1 (programmable Interrupt
ctlr)

EOO0:61E8 B6 23 dw 23B6h ; same as above ?

EOOO:61EA F9 23 dw 23F9h 5 dummy

EOO0:61EC FB 23 dw 23FBh ; Init PIC_2

EOOO:61EE 78 24 dw 2478h ; dummy

EO00:61F0 7A 24 dw 247Ah ; dummy

EO00:61F2 7A 24 dw 247Ah

EO00:61F4 7A 24 dw 247Ah

EOO00:61F6 7A 24 dw 247Ah

The following is the jump table after the "buggy" patch incorporated :

Address Hex Values Mnemonic Comment

EO00:61DE 53 23 dw 2353h ; dummy

EO00:61E0 55 23 dw 2355h ; dummy

EO00:61E2 57 23 dw 2357h ; dummy

EO00:61E4 59 23 dw 2359h ; Init Programmable Timer (PIT)
EOOO:61E6 A5 23 dw 23A5h ; Init PIC_1 (programmable Interrupt
ctlr)

EOO00:61E8 B6 23 dw 23B6h ; same as above ?

EOOO:61EA F9 23 dw 23F9h ; dummy

EOO00:61EC FB 23 dw 23FBh ; Init PIC 2

EOOO:61EE 78 24 dw 2478h 5 dummy

EOO00:61F0 FO EF dw EFFOh ; dummy

© 2006 CodeBreakers Magazine Page 15 of 16

AWARD BIOS CODE INJECTION

EOO00:61F2 7A 24 dw 247Ah
EOO0:61F4 7A 24 dw 247Ah
EOO0:61F6 7A 24 dw 247Ah

After further analysis, we conclude that this kind of bug very possibly related to timing issue and
race condition during the code execution in POST. If we take a look closely at the jump table
redirection, we see that this bug occur if we modify/redirect the jump table entry after the
initialization of the Programmable Interrupt Controller (PIC) in the mainboard. Perhaps, the best
way to avoid this is to place our jump table modification before the PIC initialization. Based on the
testing result, doing so proved to be flawless and successfully eradicate the bug. We summarised
some guidelines to avoid this bug in your jump table modification below :

¢ Analyze your code carefully and preserve the machine state during the execution of your
code and don't forget to restore the machine state after execution of your code. The machine
state we mean here is the registers affected by your code, such as the general purpose
registers and the flag register. We've been bitten by this bug due to not preserving the flag
register.

e Only save the registers and flags that are used/influenced by your routines as we already
shown in our flawlessly executed example in the Assembling Our Custom Procedure section
above.

e Don't forget to clear the carry flag (execute clc) prior to returning from your custom
procedure. This is needed in Award Bioses to indicate that the POST procedure (in this case
our injected custom procedure) is successfully executed.

e« Patch/redirect the jump table entry only before the Programmable Interrupt Controller (PIC)
initialization. This is perhaps a quite weird advice, but based on our experience, bios is a
very strict software component in terms of timing. We don't guarantee that the assumption
in this case is strictly right, but that's the best logical explanation to the bug that we
encounter during the modification process. Also, we have to underline that the sample jump
table modification in the Modifying The Jump Table section is flawless and have been tested
thoroughly.

That's all about the possible downsides of this method and their workaround. It's possible that the
explanation in this section is wrong. We really sorry about that, since we are still in the process of
learning about this subject too.

6 Closing

Finally we are done. This bios code injection method is very possibly the most elegant trick to date.
We haven't found any new elegant way to accomplish it. In this paper we have proved that the
opportunity to carry out Award bios code injection is not only a mere possiblity, but also can be
implemented flawlessly using tools widely available today.

7 References

1. Darmawan Mappatutu Salihun, Award Bios Reverse Engineering: The CodeBreakers-Journal, Vol.
1, No.2 (2004)

© 2006 CodeBreakers Magazine Page 16 of 16

	4.1 Bios Reverse Engineering and Analysis
	4.2 Assembling The Custom Procedure
	4.3 Injecting The Procedure
	1.1. Modifying The Jump Table
	4.4 Recombining Bios Component and Fixing Checksums
	4.5 Testing The Modified Bios

