@@ CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

Volume 1, Issue 1, 2006

Cracking with Loaders: Theory, General Approach, and a Framework

Shub-Nigurrath [ARTeam], ThunderPwr [ARTeam]
January 2006

Abstract

This tutorial aim is to describe the work we did on loaders, to introduce you to the problem and to describe
two different approaches to write loaders. We’'ll also present a framework we used for several many patches
which worked goodwill and that you can re-use as you like. This paper reading requires a little of knowledge
of the C/C++ programming language.

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK
Table of Contents

Y 0 1] = T o PP 1

LIz 21 1= L o) /=T X =N 2

3 R 1 o Y 11 Tt o e o 3

B2 U o= 3= T (o Y= T 1= o P 3

2.1 Loader classification and behavioUrc.viiiiiii i 3

2 R A o= o 1= o [o = T =T 4

7200 72N 7= T8 Lo o 1= il 1o Y= Lo =T 5

G I V) g S IRYZo 10 | ol i) ol (o = [L= PP 6

0 R o=) ol =TI ol uf o 6

G =Y T = 1 I 1 Y= L= 7

G0 TN B 7= o 18 Lo [« =Y gl 1o - s = ol 10

3.3.1 Hiding a debugger to the target proCess......ovviiiiiiiiiiii e 12

3.3.2 Process Status Helper (PSAPL.DLL) ...uuviiii i i e vee s e rnne e s e nnneeees 16

3.3.3 The debugging stage (the attach stage)cccoiiiiiiiiiii s 19

3.3.4 The debugging stage (the DEBUG_EVENT StruCture)c.ocviiiiiiiiiiiiiiiiniineninenns 21

4 An unifying C++ framework for Writing 10aders......ccoviiiiiiiiii i e 22

4.1 GeNnerics 0N the framEWOIKuuiii i i ettt r e r et e e e aae e e eaneeeeranneeeen 22

4.1.1 NV I L= o o =1 P 23

4.1.2 ShUuDLOGAEIrCOre ... e 24

4.1.2.1 DOMYJOD e e 25

4.1.2.2 Virtual MethOds .o e e 25

4.1.2.3 Helper MethOUS ..ottt s r e s e e e e s s e e s an e e s e saneeanneens 28

4.1.2.4 When could happen to dump a big chunk of memory from a process? 29

G T o Y- T [30

2 O S = Y (o o T] = 1] 30

2 I S R = || o = T of < 31

4.2 How to write a loader using the frameworko e 32

4.2.1 How to use OllyDumpTranslator. ...ooeu i e ane 33

4.2.2 Write the main() function of the loader ..o e 34

4.2.3 Write the derived Loader Class ...uviiiiiiiii ittt e e i r e e e e e aneaaneas 35

4.3 Writing a Debugger Loader using the frameworkcooiiiiiiiiiiii e 38

5 Finding the right module and placing a breakpoint........cccoiiiiiiii 43

6 Waiting and handling the breakpoint eventin areal Caseccvviiiiiiiiiiiic e 46

6.1 Cracking With Olly INStead........oiieii e e e aneenees 53

7 Serial fishing example Of @ real Case......iiiiiiiiiii i e aaes 54

8 Complete example for a debug-loader CYClevviiiiiiiii i i e 56

S TR =) =Y /=T o LT 60

10 (@70 o T [8 1] o o F= TP 60
© 2006 CodeBreakers Magazine Page 2 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

1 Introduction

This tutorial aim is to describe the work we did on loaders, introduce you to the problem and to
describe two different approaches to write loaders. We'll also present a framework we used for
several patches which worked well and that you can re-use as you like.

This paper reading requires a little of knowledge of the C/C++ programming language, all the code
which we reported into the following chapters had been written in C (and tested using Visual C++
6.0 with Console Application project type).

We also release with this tutorial a framework written in C++, which can be used to more rapidly
write generic and complex loaders for applications. We didn’t want to release a library, just because
to write loaders at least you should be able to understand a little C or C++, so do you homework
also..

As a practical examples we will also present an approach to VB applications serial sniffing through
loaders, beside some notes about VB cracking magically performed without using the remote
thread technique or DLL injection like in [2], [3] [4] and [5].

If you already know how to code a loader on your own you can skip to section 4. If you don’t know
how to write a debugger loader start skip to section 3.3, otherwise relax, take your time and read it
all, it's a long story to tell.

2 What's a loader?

For all of you which do not know anything about loaders and how a program is loaded into memory
we suggest reading [1] and [8] to better understand the rest of this tutorial; this paper will only
cover few of the base concepts, because readers should already know them.

2.1 Loader classification and behaviour

A loader is a program able to load in memory and running another program. Every time you start a
program the standard window loader make this work for you in invisible way. There is many type of
loader but basically every loader can be classified in two classes:

e Standard loader
e Debugger loader

© 2006 CodeBreakers Magazine Page 3 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

2.1.1 Standard Loaders

Standard loader is able to create a process in memory from a
target which is into the disk, then a standard loader must be able
to handle CreateProcess API function and then use
ReadProcessMemory, WriteProcessMemory to read/write the
memory space of the process and also run or stop the process by
using SuspendThread and ResumeThread API function. Other
useful API function is related to the process context. More
generally the context of a process reflect the state of the process
itself in every instruction cycle, imagine to stop the process and
look at the registers value (then EAX, EBX, ECX and so on) all the
registers and flag examined at the same time keep the process
context and all the values is stored into a CONTEXT structure then
a CONTEXT structure contains processor-specific register data,
the system uses CONTEXT structures to perform various internal
operations (refer to the header file WinNT.h for definitions of this
structure for each processor architecture). Figure 1 reports what
we have just described as a flowchart.

The Loader launches the program as suspended, or generically
speaking in a controlled mode, then the GateCondition checks if
the target reaches a wake-up condition (e.g. the display of a nag,
a specific pattern is present in the target’s memory, or a specific
window has been created) then writes to the target’s memory the
patches we want to do (previously identified with Olly for
example) and perform some custom actions (or example
read/write the Context), the resume the thread.

Obviously this schema is simple and doesn’t keep in consideration
cases such as multi-threaded applications, but in these cases the
actions changes a little bit, but the overall concept remains.

Figure 2 reports the same as UML sequence diagram for those of you

who’s able to understand it (very simple anyway).

© 2006 CodeBreakers Magazine

Patch data
vector

| patches vector

Initialize the

!

CreateProcess
SUSPENDED

N

ResumeThread

v

Process

freely
running

e

Finds the place where
to patch in the targets
memory space

v

Al WiteProcessMemory

v

Do Custom
Actions

y

l
(=)

Figure 1 - Generic simple loader's
flowchart

Page 4 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Loader Target

[init]/— CreateProcess suspended

-—>_______]

ResumeThread
Patch Vector
> Running Process
Check GuardCondition

SuspendThread
[use] .
WriteProcessMemory :
ResumeThread r:
1

-

I
Figure 2 Sequence Diagram of a simple loader

2.1.2 Debugger Loader

Debugger loaders have basically the same feature of the standard loader and can also debug the
target process by using some specialized API function, debugging can be from a process which has
to run or from a running process by using the debugger attach feature.

The debugging functions can be used to create a basic, event-driven debugger. Event-driven
means that the debugger is notified every time certain events occur in the process being debugged.
Notification enables the debugger to take appropriate action in response to the events (for example
exception which is generated from the target) then you can wait without do anything until some
events occur and then take action or just pass the event handling to the target itself. Essentially
the main body of such program is a big switch-case construct which have in its “case” the handled
events. It's the Operative System debugging environment that worries to send the debugger
events to the registered debugger for that process. As a matter of facts an important step of such a
loader is to register the loader as a debugger of the target process. This can be easily done through
Windows APIs of course (anticipating there’s a special switch of the CreateProcess’s API).

Generally speaking then independently of the type of loader you’ll choose you can gain the process
control and then make some changes into its memory, the basic question when use standard

loader instead of debugger loader, is strictly dependant from the target and related to the task
which we have to do.

© 2006 CodeBreakers Magazine Page 5 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Essentially a standard loader is able to interact with the program without using the system’s debug
APIs while a debug loader works more or less like a ring3 debugger, like OllyDbg, intercepting
debug events and interacting the program this way. The choice among the two approaches is
completely application’s dependant. Of course in the case you will choose to use a debugger’s
loader you will also have to hide the loader to the application, more or less like you are normally
doing using OllyDbg. There is a simple way to hide that a program is being debugged and we will
use this approach before doing anything with the loader.

Generally speaking the usefulness of these two types of loaders is the same.

3 Write your first loader

For the first example we want to focus on an application protected with Asprotect ealier than 2.0.
The application itself it is not important, because the only thing that’s tied to the application is the
patches vector. For this particular application the standard loaders or the debugger loaders are
both fine, so we’'ll write them both. You'll be able to understand the code at its simplest level.

NOTE

Writing loaders for AsProtect with different versions will be argument of some
following tutorials, for specific real applications. See as usual
http://tutorials.accessroot.com for details.

3.1 Patches Vector

First of all we need to create a proper C structure to store the patches. Generally speaking what we
need are: the original byte, the patched byte, the offset. The original byte is required because we
want to add a little control before writing a patch into the victim.

NOTE

Blind Loaders are those loaders which are not doing these additional checks! It is
important to add these checks (e.g. also the CRC check of the target) to be sure to
patch the correct target’s version.

In the example below we used a C++ class called Patch, but a C structure would have worked fine
as well. Even 3 simple vectors of BYTES or DWORD for offset, original bytes, patched bytes would
have done the work. The concept here is to build up the data-structures properly so as to write a
simpler code after.

<mmmmmmmmmm Code Snippet----------------- >

// A little class (C++) which is useful to store the single patch data. It’s a facility

// to use a C++ class, but any other structure is also usable, depending on your knowledge.
class Patch {

public:
Patch () {orig=address=patch=0;}
Patch (DWORD dw, BYTE bt) { orig=0; address=dw; patch=bt; }
DWORD address;
BYTE patch;
BYTE orig;

}i

// The patch vector is made of Patch objects (there are 15 patches for this specific example).
Patch crk[15];

// Fill in the patch vector with the values we want to patch.
crk[0]=Patch (0x0044337C, O0xEB);
crk[1]=Patch (0x004795F0, 0xC3);

© 2006 CodeBreakers Magazine Page 6 of 60

http://tutorials.accessroot.com/

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

crk[2]=Patch (0x004795F1, 0x90);
crk[3]=Patch (0x004795F2, 0x90);
crk[4]=Patch (0x004795F3, 0x90);
crk[5]=Patch (0x004795F4, 0x90);
crk[6]=Patch (0x005E478E, 0x90);
crk[7]=Patch (0x005E478F, 0x90);
crk[8]=Patch (0x005E4790, 0x90);
crk[9]=Patch (0x005E4791, 0x90);
crk[10]=Patch (0x005E4792, 0x90);
crk[11]=Patch (0x005E5669, OxEBR);
crk[12]=Patch (0x005F1552, OxEB);
crk[13]=Patch (0x005E626E, OxEB);
crk[14]=Patch (0x005E67D0, OXxEB) ;

As already told, the point is not the patches used in the example. In this very first example we
have not used the “orig” bytes, because we are writing a blind loader.
Given this piece of code common to both loaders types, we can go.

3.2 Standard Loader
As usual we present immediately the core structure of Standard Loader as we presented it so far.

<mmmmmmmmmm Code Snippet----------------- >
int main(int argc, char** argv) {

//Handle of the victim main window
HWND VictimDlghWnd=NULL;

Patch crk([15];

crk[0]=Patch (0x0044337C, O0OxEB);
crk[1]=Patch (0x004795F0, 0xC3);
crk[2]=Patch (0x004795F1, 0x90);
crk[3]=Patch (0x004795F2, 0x90);
crk[4]=Patch (0x004795F3, 0x90);
crk[5]=Patch (0x004795F4, 0x90);
crk[6]=Patch (0x005E478E, 0x90);
crk[7]=Patch (0x005E478F, 0x90);
crk[8]=Patch (0x005E4790, 0x90);
crk[9]=Patch (0x005E4791, 0x90);
crk[10]=Patch (0x005E4792, 0x90);
crk[11]=Patch (0x005E5669, OxEBR);
crk[12]=Patch (0x005F1552, OxEB);
crk[13]=Patch (0x005E626E, OxEB);
crk[14]=Patch (0x005E67D0, OXxEB) ;
//These are process’specific structures
PROCESS_INFORMATION pi;

STARTUPINFO si;

memset (&pi, 0, sizeof (PROCESS INFORMATION)) ;
memset (&si, 0, sizeof (STARTUPINFO)) ;
si.cb=sizeof(si);

if(!::CreateProcess(".\\TargetProcess.exe", // No module name (use command line).
NULL, // Command line.
NULL, // Process handle not inheritable.
NULL, // Thread handle not inheritable.
NULL, // Set handle inheritance to FALSE.
CREATE SUSPENDED, // suspended creation flags.
NULL, // Use parent's environment block.
NULL, // Use parent's starting directory.
&si, // Pointer to STARTUPINFO structure.
&pi) // Pointer to PROCESS INFORMATION structure.

)
char szBuf[80];
GetLastErrorMsg (szBuf) ;

MessageBox (NULL, szBuf, MSG CAPTION, MB OK);
return 1;

© 2006 CodeBreakers Magazine Page 7 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

ResumeThread (pi.hThread) ;

// CheckGuardCondition implementation

// Execute the FindConsole function that locates the console

while (VictimDlghWnd==NULL) {
EnumDesktopWindows (NULL, EnumWindowsProc, (LPARAM)&VictimDlghWnd) ;
if (VictimDlghWnd!=NULL) {

: :MessageBox (NULL, "Victim's window found",MSG_CAPTION, MB OK);

HANDLE hProcess=NULL;
hProcess = pi.hProcess;

SuspendThread (pi.hThread) ;

//find the memory addresses to patch!
unsigned long byteswritten[15];
unsigned long bytesread[15];

char errors[15][256];

for (int 1i=0; i<15; 1i++) {
bytesread[i]=0;
byteswritten[i]=0;
strcpy (errors([i],"");

for (int idx=0; idx<15;idx++) {
ReadProcessMemory (hProcess,
(LPVOID) (crk[idx] .address),
(LPVOID) (& (crk[idx].orig)), 1,
&bytesread[idx]);
if (bytesread[idx]==0)
GetLastErrorMsg (errors[idx]) ;
else
strcpy (errors[idx], "OK") ;

WriteProcessMemory (hProcess,
(LPVOID) (crk[idx] .address),
(LPVOID) (& (crk[idx].patch)), 1,
&byteswritten[idx]);
if (byteswritten[idx]==0)
GetLastErrorMsg (errors[idx]) ;
else
strcpy (errors[idx], "OK") ;

}
ResumeThread (pi.hThread) ;

char str[10000];
strcpy(str,"");

break;

return 0;

}

void GetLastErrorMsg(char *szBuf)
{

TCHAR szBuf[80];

LPVOID lpMsgBuf;

DWORD dw = GetLastError();

FormatMessage (
FORMAT MESSAGE ALLOCATE BUFFER | FORMAT MESSAGE FROM SYSTEM,
NULL,
dw,
MAKELANGID (LANG NEUTRAL, SUBLANG DEFAULT),
(LPTSTR) &lpMsgBuf,
0, NULL);

© 2006 CodeBreakers Magazine Page 8 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

wsprintf (szBuf, "Loader failed with error %d: %s", dw, lpMsgBuf);

LocalFree (1pMsgBuf) ;
}

BOOL CALLBACK EnumWindowsProc (
HWND hWnd, // handle to parent window
LPARAM lParam // application-defined value

char ClassName[256];

GetClassName (hWnd, ClassName, 256);
char caption[256];
GetWindowText (hWnd, caption,256);

if (strstr(caption, "Main Target Window Caption")!=0 && _stricmp(ClassName,"TMainForm")==0)
{
HWND *hw= (HWND*) 1Param;
*hw=hWnd;
return FALSE;
}
return TRUE;

The loader has the same structure of Figure 1 but in this case the guard condition is something that
in most applications works just fine. The check is simple: if the main application’s window is
already among the windows that are on the desktop (visible or not) then the application is ready to
be patched. This guard is used just because any Windows’ application has a so called message
pump that allows the application to handle messages coming from the GUI and generally
implements the event-driven architecture of Windows. In Windows, just being brief, the only things
that have message pumps are the windows (either visible or not). So any application to perform
some graphical interface requires always a window. If your patch can be applied to the program
once uncompressed in memory, a reliable method to understand that the program is ready in
memory and unpacked, is to check for the presence of its main window. Well, what the above code
does is to enum the windows starting from the desktop, using the following instruction:

EnumDesktopWindows (NULL, EnumWindowsProc, (LPARAM) &VictimDlghWnd)

What this instruction does is to call for all the windows on the desktop the EnumWindowProc with
the handle of the currently examined window and a custom parameter, which is VictimDIgHwnd in
our case. If you have a look at what the EnumwindowspProc does you will see that it simply uses two
APIs, GetclassName and cetwindowText tO get the caption of the window and check if it's the victim’s
window we are searching (that is of type TMainForm for the example and has a specific caption).
Returning FALSE the cycle stops and the control returns to the main function.

Then the program applies one by one the patches of the patches vector.

Obviously there are some assumptions at the base of such a simple loader:

e the victim is single thread;
the used packer once the application is unpacked in memory doesn’t do much checks;
the memory of the target process can be written;
the security context of the victim allows us to operate on it;
the victim doesn’t have complex anti-tampering protections (see [10]). For example with
Armadillo and COPYMEM2 this approach won't work.

All these limitations can be overcome, but of course make the sources more complicated.

© 2006 CodeBreakers Magazine Page 9 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

3.3 Debugger Loader

First of all, the loader has to create/attach a new/existing process and work on the target memory
space. Because I've to talk about debugging a running process we have to search for some API
able to open a process which is still active in memory and perform the attach feature. Once the
process was attached the loader can start to wait for some event by settings a suitable debugging
loop, in this loop all the event which came from the target is passed to the loader for debugging
and finally the loader have to pass the control to the target or close the target or detach from the
target and leave this one to run freely (this last feature is available only with Windows XP).

More schematically we have:

Create a process
or
Open an existing process

< Some

Event

Figure 3 - Debugger loader main cycle

The CreateProcess function enables a debugger to start a process and debug it, specifying a
proper creation parameter.

The OpenProcess function enables a debugger to obtain the identifier (PID or process identifier) of
an existing process. (The DebugActiveProcess function uses this identifier to attach the debugger
to the process.) Typically, debuggers open a process with the PROCESS_VM_READ and
PROCESS_VM_WRITE flags. Using these flags enables the debugge\r to read from and write to the

virtual memory of the process by using the well knows ReadProcessMemory and
WriteProcessMemory functions.

The CreateProcess function should already be known, from MSDN library and [1], so we’ll describe
only the latter one.

© 2006 CodeBreakers Magazine Page 10 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK
MSDN states the following about the OpenProcess API :

The OpenProcess function opens an existing process object,

HANDLE OpenProcessy
DWORD dpflesiraediccess,
BOOL ElnberitHapndle,
IMOED dwfrocessId

¥i

Parameters

Fwlesireddcoess
[in] Access to the process object, This access right is checked against any security
descriptor for the process, unless the user has the SeDebugPrivilege privilege granting
full access to the process, This parameter can be one or more of the process access
rights.

binheritHandie
[in] If this parameter is TRUE, the handle is inheritable. If the parameter is FALSE, the
handle cannot be inherited.,

Fwlrocessid
[in] Identifier of the process to open.

Figure 4 - OpenProcess API description

The first point to understand is about the dwProcessid parameter, this one is a unique identifier
(namely process ID or PID) of the running process to open moreover ID Process numbers are
reused, so they only identify a process for the lifetime of that process.

Each process provides the resources needed to execute a program. A process has a virtual address
space, executable code, open handles to system objects, a security context, a unique process
identifier, environment variables, a base priority, minimum and maximum working set sizes, and at
least one thread of execution. Each process is started with a single thread, often called the primary
thread, but can create additional threads from any of its threads.

A thread is the entity within a process that can be scheduled for execution. All threads of a process
share its virtual address space and system resources. In addition, each thread maintains exception
handlers, a scheduling priority, thread local storage, a unique thread identifier, and a set of
structures the system will use to save the thread context until it is scheduled. The thread context
includes the thread's set of machine registers, the kernel stack, a thread environment block, and a
user stack in the address space of the thread's process. Threads can also have their own security
context, which can be used for impersonating clients.

NOTE

From above consideration we have another very important remark about the address
space of the target process, this one is different from the address space of the
loader, every application have is own address space which is different from other,
this is a key point and must be keep in mind in order to understand following
consideration about accessing the process space from the loader space.

Then now we have to look for a methods able to retrieve the (process) identifier related to our
target process, this goal can be achieved by using the process enumeration and more in detail all
the feature which came from the PSAPI.DLL.

© 2006 CodeBreakers Magazine Page 11 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

3.3.1 Hiding a debugger to the target process

Of course if you're going to debug a program or to attach a debugger to a running process, the first
thing to worry about is to hide the debugger to the process’s controls. There are plenty of ways for
a program to check if it is being debugged or not and not all of them can be easily fooled (see also
[9]). What we are going to insert here is the fooling of the most common (easy) anti-debugging
check, that lazy programmers use anywhere. As already introduced in [1], the most used API is
IsDebuggerPresent, which returns 1 if yes otherwise 0 (false). The problem with a loader is that the
API must be fooled into the target’s process’s space, thus the Hiding function will be a little
different.

It comes really handy at this point to understand a little a structure each running process has,
called PEB (Process Environment Block). This structure has several fields which are of interest to us
especially the Beingbebugged element. We reported the TEB structure with the relative offsets of its
elements, which are always useful while coding:

TEB

Offset Elements name Type

+0x000 InheritedAddressSpace : UChar
+0x001 ReadImageFileExecOptions UChar
+0x002 BeingDebugged : UChar
+0x003 SpareBool : UChar
+0x004 Mutant : Ptr32 Void
+0x008 ImageBaseAddress : Ptr32 Void
+0x00c Ldr : Ptr32 _PEB LDR DATA
+0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS_PARAMETERS
+0x014 SubSystemData : Ptr32 Void
+0x018 ProcessHeap : Ptr32 Void
+0x01c FastPebLock : Ptr32 _RTL_CRITICAL_ SECTION
+0x020 FastPebLockRoutine : Ptr32 Void
+0x024 FastPebUnlockRoutine : Ptr32 Void
+0x028 EnvironmentUpdateCount : Uint4B
+0x02c KernelCallbackTable : Ptr32 Void
+0x030 SystemReserved : [1] Uint4B
+0x034 ExecuteOptions : Pos 0, 2 Bits
+0x034 SpareBits : Pos 2, 30 Bits
+0x038 FreeList : Ptr32 _PEB_FREE_BLOCK
+0x03c TlsExpansionCounter : Uint4B
+0x040 TlsBitmap : Ptr32 Void
+0x044 TlsBitmapBits : [2] Uint4B
+0x04c ReadOnlySharedMemoryBase : Ptr32 Void
+0x050 ReadOnlySharedMemoryHeap : Ptr32 Void
+0x054 ReadOnlyStaticServerData : Ptr32 Ptr32 Void
+0x058 AnsiCodePageData : Ptr32 Void
+0x05¢c OemCodePageData : Ptr32 Void
+0x060 UnicodeCaseTableData : Ptr32 Void
+0x064 NumberOfProcessors : Uint4B
+0x068 NtGlobalFlag : Uint4B
+0x070 CriticalSectionTimeout : _LARGE_INTEGER
+0x078 HeapSegmentReserve : Uint4B

This is instead the formal declaration of PEB structure, in case you might need it for your code:

typedef struct PEB {

BOOLEAN InheritedAddressSpace;
BOOLEAN ReadImageFileExecOptions;
BOOLEAN BeingDebugged;
BOOLEAN Spare;
HANDLE Mutant;
PVOID ImageBaseAddress;
PPEB_LDR DATA LoaderData;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID SubSystemData;
PVOID ProcessHeap;
PVOID FastPebLock;
PPEBLOCKROUTINE FastPebLockRoutine;

© 2006 CodeBreakers Magazine Page 12 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

PPEBLOCKROUTINE FastPebUnlockRoutine;

ULONG EnvironmentUpdateCount;
PPVOID KernelCallbackTable;

PVOID EventLogSection;

PVOID EventLog;

PPEB_FREE_BLOCK FreeList;

ULONG TlsExpansionCounter;

PVOID TlsBitmap;

ULONG TlsBitmapBits[0x2];

PVOID ReadOnlySharedMemoryBase;
PVOID ReadOnlySharedMemoryHeap;
PPVOID ReadOnlyStaticServerData;
PVOID AnsiCodePageData;

PVOID OemCodePageData;

PVOID UnicodeCaseTableData;

ULONG NumberOfProcessors;

ULONG NtGlobalFlag;

BYTE Spare2[0x4];

LARGE _INTEGER CriticalSectionTimeout;
ULONG HeapSegmentReserve;

ULONG HeapSegmentCommit;

ULONG HeapDeCommitTotalFreeThreshold;
ULONG HeapDeCommitFreeBlockThreshold;
ULONG NumberOfHeaps;

ULONG MaximumNumberOfHeaps;
PPVOID *ProcessHeaps;

PVOID GdiSharedHandleTable;

PVOID ProcessStarterHelper;

PVOID GdiDCAttributeList;

PVOID LoaderLock;

ULONG OSMajorVersion;

ULONG OSMinorVersion;

ULONG OSBuildNumber;

ULONG OsPlatformId;

ULONG ImageSubSystem;

ULONG ImageSubSystemMajorVersion;
ULONG ImageSubSystemMinorVersion;
ULONG GdiHandleBuffer [0x22];
ULONG PostProcessInitRoutine;
ULONG TlsExpansionBitmap;

BYTE TlsExpansionBitmapBits[0x80];
ULONG SessionId;

} PEB, *PPEB;

So the trick is to always set to 0 the byte Beingpebugged Of the above structure. The problem is of
course on how to find the PEB starting address. The PEB block is stored into another structure
called Thread Environment Block (TEB), also known as Thread Information Block (TIB).

The operating system maintains a structure called Thread Environment Block (TEB) for every
thread running in the system. The FS segment register is always set such that the address FS:0
points to the TEB of the thread being executed (as also reported in Figure 5).

KTHREAD I'_—b‘

Create and exit times

Process ID

> |EPROCESS |

Thread start address

> IAccesstoken |

Impersenation information

LPC message information

Timer information

> I Pending 110 requests |

Figure 5 - Structure of the executive thread block

© 2006 CodeBreakers Magazine Page 13 of 60

-
CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Its structure is the following one, for reference use:

typedef struct TEB {

NT TIB Tib;

PVOID EnvironmentPointer;
CLIENT_ID Cid;

PVOID ActiveRpcInfo;

PVOID ThreadLocalStoragePointer;
PPEB Peb;

ULONG LastErrorValue;

ULONG CountOfOwnedCriticalSections;
PVOID CsrClientThread;

PVOID Win32ThreadInfo;

ULONG Win32ClientInfo[0x1F];
PVOID WOW32Reserved;

ULONG CurrentLocale;

ULONG FpSoftwareStatusRegister;
PVOID SystemReservedl [0x36];
PVOID Sparel;

ULONG ExceptionCode;

ULONG SpareBytesl[0x28];
PVOID SystemReserved2 [0xA];
ULONG GdiRgn;

ULONG GdiPen;

ULONG GdiBrush;

CLIENT ID RealClientId;

PVOID GdiCachedProcessHandle;
ULONG GdiClientPID;

ULONG GdiClientTID;

PVOID GdiThreadLocaleInfo;
PVOID UserReserved([5];

PVOID GlDispatchTable[0x118];
ULONG GlReservedl [0x1A];
PVOID GlReserved?2;

PVOID GlSectionInfo;

PVOID GlSection;

PVOID GlTable;

PVOID GlCurrentRC;

PVOID GlContext;

NTSTATUS LastStatusValue;
UNICODE STRING StaticUnicodeString;
WCHAR StaticUnicodeBuffer[0x105];
PVOID DeallocationStack;
PVOID TlsSlots[0x40];

LIST ENTRY TlsLinks;

PVOID Vdm;

PVOID ReservedForNtRpc;

PVOID DbgSsReserved[0x2];
ULONG HardErrorDisabled;
PVOID Instrumentation[0x10];
PVOID WinSockData;

ULONG GdiBatchCount;

ULONG Spare2;

ULONG Spare3;

ULONG Spared;

PVOID ReservedForOle;

ULONG WaitingOnLoaderLock;
PVOID StackCommit;

PVOID StackCommitMax;

PVOID StackReserved;

} TEB, *PTEB;

The most interesting element for us is the Peb one, which is at an offset of 0x30 (which is the
summed size of all the preceding elements into the TEB structure).

© 2006 CodeBreakers Magazine Page 14 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Figure 6 shows the correct API to use. Indeed there’s an undocumented function NtCurrentTeb?,
which will give directly the TEB, but explaining how to use it would take us out of scope.

GetThreadSelectorEntry
The GetThreadsSelectorEntry function retrieves a descriptor table entry for the specified selector and thread.

BOOL GetThreadSelectorEntry(
HANDLE hThread,
DWORD dwsSelsctor,
LPLDT ENTRY lipSelectorEntry
);

Parameters

hThread
[in] Handle to the thread containing the specified selector, The handle must have THREAD_QUERY_INFORMATION access, For
more information, see Thread Security and Access Rights,

dwSelectar
[in] Global or local selector value to look up in the thread's descriptor tables.

lpSelectorEntry
[out] Pointer to an LDT ENTRY structure that receives a copy of the descriptor table entry if the specified selector has an
entry in the specified thread's descriptor table, This information can be used to convert a segment-relative address to a linear
virtual address.

Figure 6 - GetThreadSelectorEntry API

The returned value is another structure ror entry (not described here, but essentially it is used to
store the address in a special way, able to handle very big values, because of all the valid
addressing space of windows is huge). Anyway once the 1ot entrRY returned by
GetThreadSelectorEntry IS converted into a linear value, it can be used to access the TEB and then
the PEB, and then again the Beingbebugged element and set it to O.

The whole operation is in the code of the nidepebugger function reported here.
This time you need to pass to the nidepebugger two target’s handles, the thread and the process
handles. Both of them will be explained later on.

<—mmmmmmm Code Snippet----------------- >
BOOL HideDebugger (HANDLE thread, HANDLE hproc)
{

CONTEXT victimContext;

// This function is used to patch the IsDebuggerPresent API which might be called from
// debugged program (e.g. ASProtect) in order to detect debugger presence. This function
// is mainly based on FS:[0] treating.

// In an x86 environment, the FS register points to the current value of the Thread

// Information Block (TIB) structure.

// One element in the TIB structure is a pointer to an EXCEPTION RECORD structure, which
// in turn contains a pointer to an exception handling callback function. Thus, each

// thread has its own exception callback function.

// The x86 compiler builds exception-handling structures on the stack as it processes

// functions. The FS register always points to the TIB, which in turn contains a pointer
// to an EXCEPTION RECORD structure.

// The EXCEPTION RECORD structure points to the exception handler function.

// EXCEPTION RECORD structures form a linked list: the new EXCEPTION RECORD structure
// contains a pointer to the previous EXCEPTION RECORD structure,

// and so on. On Intel-based machines, the head of the list is always pointed

// to by the first DWORD in the thread information block, FS:[0]

//7T7TE5276B > 64:A1 18000000 MOV EAX,DWORD PTR FS:[18]

//7TE52771 8B40 30 MOV EAX,DWORD PTR DS: [EAX+30]
//T7TE52774 0FB640 02 MOVZX EAX,BYTE PTR DS:[EAX+2]
//7T7TE52778 C3 RETN

''NTSYSAPI PTEB NTAPI NtCurrentTeb();

© 2006 CodeBreakers Magazine Page 15 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

// Set up the victimContex access flag
victimContext.ContextFlags = CONTEXT SEGMENTS;
// Fill the victim context structure with process data
if (!GetThreadContext (thread, &victimContext))

return FALSE;

// GetThreadSelectorEntry is only functional on x86-based systems.

// For systems that are not x86-based, the function returns FALSE.

// The GetThreadSelectorEntry function fills this structure with

// information from an entry in the descriptor table. You can use this information
// to convert a segment-relative address to a linear virtual address.

// The base address of a segment is the address of offset 0 in the segment.

// To calculate this value, combine the BaselLow, BaseMid, and BaseHi members

LDT ENTRY sel;
if (!GetThreadSelectorEntry(thread, victimContext.SegFs, &sel))
return FALSE;

DWORD fsbase = (sel.HighWord.Bytes.BaseHi << 8| sel.HighWord.Bytes.BaseMid) << 16|
sel.BaseLow;

DWORD RVApeb;

SIZE_T numread;

if (!ReadProcessMemory (hproc, (LPCVOID) (fsbase + 0x30), &RVApeb, 4, &numread) ||
numread != 4)
return FALSE;

WORD beingDebugged;

if (!ReadProcessMemory (hproc, (LPCVOID) (RVApeb + 2), &beingDebugged, 2, &numread)
| | numread != 2)
return FALSE;

beingbDebugged = 0;

if (!WriteProcessMemory (hproc, (LPVOID) (RVApeb + 2), &beingDebugged, 2, &numread)
| | numread != 2)
return FALSE;

return TRUE;

3.3.2 Process Status Helper (PSAPI.DLL)

Looking into the MSDN, we find a lot of useful info about process investigation by using the
PSAPI.DLL (process status API) functions.
The process status API (PSAPI) provides sets of functions for retrieving the following information:

Process Information

Module Information

Device Driver Information

Process Memory Usage Information
Working Set Information
Memory-Mapped File Information

The system maintains a list of running processes (the one you see is when you see open the task
manager). You can retrieve the identifiers (PID) for these processes by calling the
EnumProcesses function. This function fills an array of DWORD values with the identifiers of all
processes which is currently running in the system.

Many functions in PSAPI require a process handle. A handle is a pointer to an object which is
controlled by the system. To obtain a process handle for a running process, we have to pass its
process identifier (obtained from EnumProcesses) to the OpenProcess function. Remember also
to call the CloseHandle function when you are finished with the process handle (this don’t close

© 2006 CodeBreakers Magazine Page 16 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

the process but simply free the memory related to the opened handle, and allows to keep the
system more stable).

A module is an executable file or a DLL. Each process consists of one or more modules. You can
retrieve the list of module handles for a process by calling the EnumProcessModules function.
This function fills an array of HMODULE values with the module handles for the specified process.
The first module is the executable file. Remember that these module handles are most likely from
some other process, so you cannot use them with functions such as GetModuleFileName.
However, you can use PSAPI functions to obtain information about a module from another process.
To obtain module information:

e Call the GetModuleBaseName function. This function takes a process handle and a module
handle as input and fills in a buffer with the base name of a module (for example,
KERNEL32.DLL). A related function, GetModuleFileNameEXx, takes the same parameters as
input but returns the full path to the module (for example,
C:\WINNT\SYSTEM32\KERNEL32.DLL).

e Call the GetModuleInformation function. This function takes a process handle and a
module handle and fills a MODULEINFO structure with the load address of the module, the
size of the linear address space it occupies, and a pointer to its entry point.

Using this information we can write a code snippet able to find the process ID of the victim process
and also to enumerate all the modules used by the process, below we will report a first snippet
code to perform the process enumeration, module enumeration will be show later.

First of all we need to use the PSAPI function then we have to build a valid pointer for each function
which we have to use then:

<—mmmmmmm Code Snippet----------------- >
hPsapi = LoadLibrary ("psapi.dll");

if (!hPsapi) {
printf ("Cannot load psapi.dll :-(\n");
return;

}

pEnumProcessModules = (BOOL (WINAPI *) (HANDLE,

HMODULE *,

DWORD,

LPDWORD)) GetProcAddress (hPsapi, "EnumProcessModules");
pGetModuleBaseName = (DWORD (WINAPI *) (HANDLE,

HMODULE,

LPTSTR,

DWORD)) GetProcAddress (hPsapi, "GetModuleBaseNameA");
pGetModuleInformation=(BOOL (WINAPI *) (HANDLE,

HMODULE,

LPMODULEINFO,

DWORD)) GetProcAddress (hPsapi, "GetModuleInformation");
pEnumProcesses = (BOOL (WINAPI *) (DWORD*,

DWORD,

DWORD*)) GetProcAddress (hPsapi, "EnumProcesses");

// Make some simple check about right pointer assignment

if ((pEnumProcessModules == NULL) || (pGetModuleBaseName == NULL)) {
printf ("Cannot load psapi functions\n");
FreeLibrary (hPsapi) ;

return;
}
<m—mmmmm - End Code Snippet------------- >
© 2006 CodeBreakers Magazine Page 17 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Now we have to collect the list of all the running processes and then for each one check if it is
equal to our victim process. This task must be performed after the victim process is running then
we have to sure about user has really started our process:

<—mmmmmmm Code Snippet----------------- >
[/ mmmm e
// Wait for user confirmation

[/ mmm e e

sprintf (szMsgText, "\tStart the installer and press OK when you are into the registration window");
MessageBox (NULL, szMsgText, szMsgCapt, MB_OK);

printf ("now go into the registration\nwindow and insert a fake serial...\n");

<mmmmmmmmmm End Code Snippet------------- >

Then we can start to look for all the running processes and check if at least one of them is the one
we were searching, while saving the handler for future uses:

<m—mmmm - Code Snippet----------------- >
/e
// Get the list of process identifiers.
/] e
TCHAR szProcessName [MAX PATH] = TEXT ("<unknown>");
if (!pEnumProcesses(aProcesses, (DWORD)sizeof (aProcesses), &cbNeeded))
{

if (hPsapi != NULL)

FreelLibrary (hPsapi) ;

return;

}
cProcesses = cbNeeded / sizeof (DWORD) ; // Calculate how many process identifiers were returned.

for (i = 0; 1 < cProcesses; i++) // Print the name and process identifier for each process.

{
hTmpProcess = OpenProcess(PROCESS QUERY INFORMATION | PROCESS VM READ,

FALSE,
aProcesses[i]); // Get a handle to the process.
if (NULL != hTmpProcess) // Get the process name.

{
if (pEnumProcessModules(hTmpProcess, &hMod, sizeof (hMod), &cbNeededTmp))
pGetModuleBaseName (hTmpProcess,
hMod,
szProcessName,
sizeof (szProcessName) /sizeof (TCHAR));

// Print the process name and identifier.
if (bDebugStage)
printf ("%s (PID: %u)\n", szProcessName, aProcesses[i]);

// Search for victim process name and retrieve the process ID
if (strcmp (szProcessName,szVictimProcessName) == 0)

bVictimPIDfound = true;
aVictimProcessId = aProcesses[i];

}
CloseHandle (hTmpProcess); // Close the process handle

}

if (bVictimPIDfound == false)
{
MessageBox (NULL,
"\tVictim process ID not found!\n You've to start the installation before!",
szMsgCapt, MB OK) ;

if (hPsapi != NULL)
FreeLibrary (hPsapi) ;

return ;
}
else {

if (bDebugStage)

MessageBox (NULL, "\tVictim process ID found!", szMsgCapt, MB_OK);

}
<mmmmmmm End Code Snippet------------- >
© 2006 CodeBreakers Magazine Page 18 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

3.3.3 The debugging stage (the attach stage)

Now we found the target process, the next step is about debugging this target, before going into
the main debugging task we have to attach the target and this can be done by using the
DebugActiveProcess API function.

DebugActiveProcess
The DebugActiveProcess function enables a debugger to attach to an active process and debug it.

BODOL DebugfictiveProcess(
IMORD dwlrocassTd
¥:

Parameters

dwlrocessid
[in] The identifier far the process to be debugged. The debugaer is granted debugaing access to
the process as if it created the process with the DEBUG_ONLY_THIS_PROCESS flag, For mare
information, see the Remarks section of this topic,

Figure 7 - DebugActiveProcess API description

The process is debugged with DEBUG_ONLY_THIS_PROCESS privilege; for the sake of clarity we
have these two distinctions:

CreateProcessi...) CreateProcess(...)
¥
Dabugger Child Precosses
| ..~:Illruwrﬂ{..}

axr DEBUG _EVENT xzxy DEBUG_EVENT

DEBUG_PROCESS
Figure 8 - DEBUG process situation.

From MSDN we have: the debugger must have appropriate access to the target process in order to
read and write the process memory, and the debugger must be able to open the process for
PROCESS_ALL_ACCESS. On Windows Me/98/95, the debugger has appropriate access if the
process identifier is valid. On other versions of Windows, DebugActiveProcess can fail if the
target process is created with a security descriptor that grants the debugger anything less than full
access. If the debugging process (our loader) has the SE_DEBUG_NAME privilege granted and
enabled, it can debug any process.

After successfully execution of this function the process (debuggee) can be debugged and the
debugger is expected to wait for debugging events by using the WaitForDebugEvent function.

© 2006 CodeBreakers Magazine Page 19 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

WaitForDebugEvent

The WaitForDebugEvent function waits for a debuagging event to occur in a process being debugaed.,

BDOL WaitForDebugEvent (
LPDEBVUG EVENT IplebucEvent,
DYOBRD dufillisecconds

¥;

Parameters

pDebugErent
[out] Pointer to @ DEBUG _EYEWNT structure that receives information about the debugging event,

JuMiliseconds
[in] Mumber of milliseconds to wait for a debugging event, If this parameter is zero, the function tests for a
debugging event and returns immmediately, If the parameter is INFIMITE, the function does not return until a
debugging event has occurred,

Figure 9 - WaitForDebugEvent function API.

This function should be called in two ways, first one have dwMilliseconds value set from 0 to some
value in this mode this function wait some event for a specified amount of millisecond and then
return back the control to the debugger, the second way is by using the INFINITE constant; in this
case the function doesn’t return until some event occurs (during this time the target runs freely
and the debugger is inactive or frozen).

<m—mmmmm - Code Snippet----------------- >

/) mmmmmm oo

// Main debugger cycle

[/ mmm e

DEBUG EVENT DebugEv; // debugging event information

DWORD dwContinueStatus = DBG CONTINUE; // exception continuation

HMODULE hDLL; B // temp handle used for target function offset calculation

for(:) {
// Wait for a debugging event to occur. The second parameter indicates
// that the function does not return until a debugging event occurs.
// We are waiting for infinite time, then wait for each Debug Event.

WaitForDebugEvent (&DebugEv, INFINITE) ;

// If we're into the first event save the process thread handle
if (!bFirstEvent)
{
hVictimThreadHandle = DebugEv.u.CreateProcessInfo.hThread;
bFirstEvent = true;
}
// Process the debugging event code.
switch (DebugEv.dwDebugEventCode) {
// Event handler ..

© 2006 CodeBreakers Magazine Page 20 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

3.3.4 The debugging stage (the DEBUG_EVENT structure)

When the attach stage is finished the system send to the debugger a
CREATE_PROCESS_DEBUG_EVENT debugging event, when the WaitForDebugEvent function
return to the debugger the system fill the DebugEv structure with the process data.

Now is time to give a close look to the DEBUG_EVENT structure that describes a debugging event:

typedef struct DEBULE EVENT {
DWORD dwlebugEventCode ;
DWORD dwProcessId:
DUWOERD duThreadId;
union {
EXCEPTION DEBUG INFO Exception;
CREATE THREAD DEEUG INFO CreateThread;
CREATE PROCEEE DEBUG INFO CreateProcessInfo:
EXIT_THREAD DEEUG_INFO ExitThread;
EXIT_PROCESS DEBUG INFO ExitProcess;
LOAD _DLL _DEBUG INFO LoadDll:
UNLOAD DLL_DEEUG INFO UnloadDll:
OUTPUT _DEEUC STRING INFO DebugString,
RIP_INFO RipInfo;
boas
} DEBUG_EVENT,
*LPDEEU: EVENT:

Figure 10 - The DEBUG _EVENT structure

This structure give a complete situation of the event which have triggered the
WaitForDebugEvent function and also keep more interesting parameters as the
CREATE_PROCESS DEBUG_INFO structure which is a member of the main DEBUG_EVENT
structure. The CREATE_PROCESS_DEBUG_INFO structure contains process creation information
that can be used by a debugger, from MSDN we have:

typedef struct _CREATE_PROCESS DEEUG INFO |
HAWNDLE hFile;
HANDLE hProcess;
HANDLE hThread;
LPVOID lpEaselfImadge;
DWORD dulebugInfoFilelffset;
DWORD nlebugInfofize;
LPYVOID lpThreadlocalBase;
LPTHREAD START ROUTINE lpStarthddress;
LPYVOID lpImageMName:
WORD flmicode;
} CREATE PROCEZE DEEUC INFO,
*LPCREATE_PROCESS_DEEUG_INFO;

Figure 11 - The CREATE PROCESS DEBUG _INFO structure.

NOTE

A more important thing to do is about the hThread parameter because this handle is
related to the main thread creation and is also useful when we have to read or
modify the CONTEXT for the process examined, this it is the right time to save this
handle because for all the future event this parameter will be set to NULL.

© 2006 CodeBreakers Magazine Page 21 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

4 An unifying C++ framework for writing loaders

Now it's time to understand better what we did playing with C++ around loaders. After having
written several loaders, we tried to cut out the complex or repetitive parts of all loaders placing
them inside a C++ framework which will hide most of the complexity. We are going now to explain
how to code a loader using such a framework while the internals are left to the included sources
(commented). The resulting framework isn’t that simple indeed and took a little to code it. You’'ll
have to integrate this document with the comments in the code.

Obviously there are some assumptions at the base of this framework:
e the security context of the victim can be modified by the user to allows us to write on
process’s memory;
e the victim doesn’t have complex anti-tampering protections (see [10]). For example with
Armadillo and COPYMEM2 this approach won't easily work.

4.1 Generics on the framework

First of all for those of you which have already read [1] there are a lot of classes used also in this
framework which I already used for Oraculums (and will not explain again). Oraculums are indeed
special loaders, with a specific scope in mind!

Loader
0.
Patch
BMG_gsar ShublLoaderCore
1 1
CAccessMemory NTinternals

Figure 12 - Main framework classes structure (class diagram)

Figure 12 reports the main classes’ structure of the framework using an UML notification. There are
more classes behind these, but are not so important for us and indeed quite complicated to explain.

We will go in details for each one. Anyway briefly:

e NTInternals class. It is the base class for all the loader’s classes and exposes some useful NT
methods that are available in the Kernel32, but not exposed by the compiler (such as
SuspendProcess, DebugActiveProcessStop).

e ShubLoaderCore class. It is the real core of the framework where all the work is performed.

© 2006 CodeBreakers Magazine Page 22 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

e Loader class. It is the top part of the loader where all the application specific code is. This is
or should be the only class that a developer should modify and where the applications
specific things should be coded. This class is quite complex, but left alone is not able to do
anything. What it needs is a derived class which instructs the engine on how/when patch the
victim.

e Patch is a class, a little more complex than the one presented in section 3.1, which is used to
easily store the patches of the program. Being the patches application specific by definition,
this class must be initialized into the Loader’s class.

e BMG_gsar class. It is a class I have already used in [1] which implements a really fast
memory patterns searching algorithm (see [1] for details). It is used by the ShubLoaderCore
class to search patches faster.

e CAccessMemory class. It is the base class for BMG_gsar, which gives to this class the
methods for a controlled access to memory (handling read/write rights of accessed pages).

As for all the Object Oriented Programming the guiding concept behind the whole framework is the
encapsulation of problems. As I already told usually the only thing a developer should modify is the
Loader class.

Now we will present a little the most important classes: NTInternals, ShubLoaderCore and a sample
Loader class.

4.1.1 NTinternals

NTInternals This class implements few wrappers of the NT

internals functions the loader will use. The

+DebugActiveProcessStop(in dwProcessld : unsigned long) functions are directly taken from exports in the
:ﬁ%tﬁmld(iﬁmmzs:mg)Mh " system’s dlls, because Microsoft doesn't officially
+Z&m(i$#&’:'mw)mw) give support for these APIs (you cannot find the
+ZwSuspendProcess(inout Process - void®) prototypes in the standard Visual Studio
+ZwSuspendThread(inout hThread : void®, inout pSuspendCount : unsigned long®) | distributions) or because we didn’t want to install

the whole DDK package (Driver Developer Kit).
We implemented them here in the following basic way (for example for pebugactivepProcessstop):

<mmmmmmmmm Code Snippet------------- >
//Function pointer to the export.
typedef WINBOOL (STDCALL *fcnDebugActiveProcessStop) (DWORD dwProcessId) ;

WINBOOL STDCALL NTInternals::DebugActiveProcessStop (DWORD dwProcessId)
{

FARPROC addrIDP;

HINSTANCE hKer;

fcnDebugActiveProcessStop fcn;

hKer = GetModuleHandle ("Kernel32");
addrIDP = GetProcAddress (hKer, "DebugActiveProcessStop");

//Check API

if (addrIDP!=NULL) {
//gives to the function pointer the parameters.
fcn= (fcnDebugActiveProcessStop) addrIDP;
return fcn (dwProcessId);

}

return 0;
i ————————————— End Code Snippet------------- >
© 2006 CodeBreakers Magazine Page 23 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Note that the Windows’ API bpebugictiverrocessstop iS available on Windows only since the XP
release. Using the NTInternals class, ensures the compatibility of the loader with all the Windows
systems (9x/NT/2000), just because if the function is present in the system it is used (the addIDP
variable is not NULL) otherwise the function simply does nothing, returning O.

An important note is about the inclusion in this class of the HideDebugger API already described in
section 3.3.1. This gives to you the possibility to add extra hiding might be required deriving this
API into a derived class. Simply you can write code such this:

<—mmmmmmm Code Snippet------------- >
BOOL HideDebugger (HANDLE thread, HANDLE hproc) {

//TODO: Add you own extra hiding customization here
return NTInternals:: HideDebugger (thread, hproc);

4.1.2 ShubLoaderCore

-m_bcheckCRC
-m_dwCreationFlags
-m_dwVictimCRCValue
-m_ghMainWhd
-m_SilentMode
-m_startingMsg

-pi

+Shubl oaderCore()
+~ShubloaderCore()
+ActionsAfterCreateProc()
+ActionsAfterGateProcedure()

+ActionsBeforeClosingLoader()

+ActionsBeforeCreateProc()

+ActionsBeforeGateProcedure()

-CRCFile(in strfilename : charconst *, in storedCRC : unsigned long)

+DolVyJob(in argc : int, inout argv] : char*)

+GateProcedure()

+GetlastErorVisg()

+GetPl()

+nitializePatchStack(inout p0 : growing_arraystack<Patch>&)

+PushPatchVector(inout stkPatches : growing_amaystack<Patch>&, in startAddr : unsigned long, inout OriVector : unsigned char*, inout PatchVector : unsigned char*, in dimension : int, inout fen : void (*)(unsigned long))
+ReadProcessMemory(inout hProcess : void®, inout IpBaseAddress : void®, inout IpBuffer : void®, in nSize : unsigned long, inout IpNumberOfBytesRead : unsigned long®)
-Reflect(in ref : unsigned long, in ch : char)

+SetCreateProcessFlags(in dwFlags : unsigned long)

+SetMainWhd(inout hwhd : HWIND__*)

+SetSilentMode(in bVal : int)

+SetStartingMsg(inout msg : char*)

+SetStartingMsg(in msg : TextString)

+SetVictimCRC(in crc : unsigned long)

+SetVictimDetails(inout p0 : TextString&)

+WiteProcessMemory(inout hProcess : void*, inout IpBaseAddress : void*, inout IpBuffer : void*, in nSize : unsigned long, inout IpNumberOfBytesWitten : unsigned long™)

This class is quite complex. All of its methods can be classified in two.

e Virtual methods (see a C++ manual for the exact meaning of “virtual methods” of a class):
briefly this means that if the derived class (Loader) implements them then this
implementation is used, otherwise a dummy implementation is instead. Virtual functions are
functions for which a given class has only a default implementation. If a derived class
implements one of them, then the derived implementation is used, otherwise the default
one. This mechanism is essential to allow derived classes to specify a different behaviour for
a given method, thus to customize the loader’s behaviour.

e Help methods, which can be used from within the virtual methods implementation to easily
do common operations.

© 2006 CodeBreakers Magazine Page 24 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

4.1.2.1 DoMyJob
The main flowchart is implemented into the DoMyJob method, which is the real core of the class.

e int DoMyJob(int argc, TCHAR* argv[]). This is the core part of the loader, does all the hard work.
The parameters are the command-line parameters of the loaders which are passed to the victim
as well (usually they are coming from parameters with same names from the loader's main). If
you don't need them simply set all of them to NULL. A loader is usually a DOS or a Win32
application, which command line parameters can be passed to the DoMylob method. The
function then will pass them transparently to the victim process. This is really useful when the
loader is applied to a victim that uses command line parameters.

The DoMylob method is the only one that the main() function of the loader must call in order to
start the loader. See following sections where a complete loader writing process is described.

With respect to Figure 1 we modified a little the flow chart, inserting some more custom control
points which usually are needed to perform a loader in most situations. Figure 13 reports the new
flowchart where the additional methods are coloured differently. These methods are the virtual
methods mentioned previously that the Loader class can implement to customize the whole loader
behaviour.

The most important place where to insert the applications dependant things is the GateProcedure
which is a function that should return TRUE when the application is ready to be patched. The
GateProcedure then is a continuous test on the victim to find if a patching condition is met. All the
other virtual functions are ancillary, meant to prepare the things.

The source code of the class is heavily commented, thus for further clarification take a look at
those comments.

4.1.2.2 Virtual Methods

Pure virtual methods, MUST be overwritten by the class derived from ShublLoaderCore which
implements specific actions for the specific loader, such as patches, application path, and a specific
gate condition.

Only ActionsBeforeCreateProc() and ActionsAfterCreateProc() are not pure virtual, because several
times you don't need to do anything special here inside (derived classes are not obliged to
implement them).

® virtual BOOL SetVictimDetails (/*0OUT*/ TextString &victimFileName) . Set the Victim's name and it's
CRC (optional, using SetVictimCRC()). The TextString is an OUT parameter, must be set by this
function if you don't call SetVictimCRC from within the CRC isn't checked.

® virtual BOOL InitializePatchStack(/*OUT*/ growing arraystack<Patch> &stkPatches). Add to the
patches stack the patches to do. The stkPatches variable is an OUT parameter and must be filled
by the function. You can also use matrix of consecutive binary data, such for example coming to
a dump or a long patch. In this case use the pushratchvector Which pushes on the Patch stack a
whole matrix of consecutive patches, starting from an initial address. All the patches are stored
into a stack of patches, which is internally handled. This logic allows adding whatever patches
you like. If the order of patches is important, consider the stack logic, so the first patch added is
the last applied. The variable holding the stack is the stkpatches, which must be used.

© 2006 CodeBreakers Magazine Page 25 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

e virtual BOOL ActionsBeforeCreateProc(). Invoke an action just before the call to CreateProcess.

e virtual BOOL ActionsAfterCreateProc(). INVOKe an action just after the call to CreateProcess, while
it is still SUSPENDED

e virtual BOOL ActionsBeforeGateProcedure(). Actions performed just before caIIing the
gatecondition, are useful to prepare it if needed.

e virtual BOOL GateProcedure(). It's the condition till the Loader waits before Suspending the
process and applying patches. Returns TRUE when ready to patch.

e virtual BOOL ActionsAfterGateProcedure (). Actions performed just after the GateProcedure to clean
eventually the special settings made to reach the GateProcedure. This operation is done after
having applied all the patches but before resuming the process.

e virtual BOOL ActionsBeforeClosingLoader (). INnvoke an action just before closing the loader.

© 2006 CodeBreakers Magazine Page 26 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

ﬂf—{lmwm&wﬁax ‘4‘4* .
Initialize

! hrd

‘ SetVictimDetails ‘4‘4‘

/ :

‘ ActionsBeforeCreateProc ‘

Y

‘ CreateProcess

| I

‘/uu@mmmmmx‘

¢

Resume Thread/
| Process

‘ \
| \ 4
‘ ActionsBeforeGateProcedure ‘

Y Victim

GateProcedure ‘ LeeEs
running freely

Suspend Thread/
Process

\\ ¢
.

> ApplyPeiches

-

‘Admwm@mﬂwﬂm‘

!

Resume Thread/
Process

v

‘Ammﬁwmawmuah‘
!

Figure 13 - Modified flowchart od the ShubLoaderCore::DoMyJob method

© 2006 CodeBreakers Magazine Page 27 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

4.1.2.3 Helper Methods

Helper methods are available to be used into the virtual methods to perform some initializing
actions (e.g. setting the CRC of the victim, or setting the loader to be silent, not returning any
message windows).

e TextString GetlLastErrorMsg(). Retrieves a formatted message of the last system error message.
Use for you own error checking/reporting in the derived classes.

e static void SetMainWnd (HWND hwnd). This function might be used from inside the GateCondition
procedure to set the real main HWND of the application. When a program is difficult to suspend,
the Loader tries to suspend the whole process using undocumented low level APIs, which
requires, in order to be executed, the handle of the main process' window. If this method isn't
called these undocumented tentatives to stop the victim process are not used. Do not call if you
are not experiencing problems suspending the victim’s process.

e void SetCreateProcessFlags (DWORD dwFlags). Used to define new creation flags to be passed to
CreateProcess API. Default value is create suspenpep and you don't need to call this method to
set it. Otherwise if you want to specify something else, call it properly. For example if you are
coding a debugger loader you’ll surely need to call this method with proper parameters. Can be
called in any function before the call to CreateProcess, thus one of the following: pushpatchvector
|| SetVictimDetails || InitializePatchStack || ActionsBeforeCreateProc. The most Iogical place is
anyway ActionsBeforeCreateProc. FOr example to create a debugger loader use this combination:
DEBUG PROCESS | DEBUG ONLY THIS PROCESS | CREATE NEW CONSOLE.

e PROCESS INFORMATION* GetPI(). Use this function in all the derived classes to get the
PROCESS_INFORMATION structure. If it's NULL means that the process has not been already
started or something went wrong!

e void setvictimcRC (DWORD crc). Set the victim's CRC. If invoked the loader will check against the
real victim's CRC (calculated on the whole victim’s file).

e void SetSilentMode (BOOL bval). This function must eventually be called into the derived class and
modify the whole behavior of the program. If it is defined the loader does not issue most of the
errors messages which are usually issued. This is useful for those cases with which the dialogs
are disturbing the program or for those cases where error messages are useless. An example:
suppose that a victim program creates another internal thread which closes the main thread and
continue running from that thread or from that thread launches another instance of itself (it's a
quite common custom protection). In this case the loader couldn't be able to suspend the
thread/process because it would not be active anymore. An error message will be issued. But
anyway properly writing the cateprrocedure () the loader would still work (for example waiting for
the main victim's windows to appear) and the error would be not meaningful. In this case you
would use the strenT MoDE Set to TRUE. By default is set to FALSE!

e void SetStartingMsg(). Used to modify the starting message of the loader. If not used the loader
uses a standard string. This function should be called for example in the setvictimpetails method
or in the derived class constructor.

® int PushPatchVector (growing arraystack<Patch> &stkPatches, DWORD startAddr, BYTE *OriVector, BYTE
*PatchVector, int dimension, fcnPatchCallBack fcn). Add a whole Vector of patch data. This

© 2006 CodeBreakers Magazine Page 28 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

function takes two BYTEs vectors and pushes each value to a stack of Patch objects, the
fenPatchcallBack iS applied to the last Patch of the vector, so as eventually the action is

performed at the end of the operation.

Input parameters:
- stkpatches Stack of Patch elements where the values are pushed

- startaAddr, the address where the vector starts.
- orivector, vector of original bytes, if NULL Patch objects will not check original values

- Patchvector, vector of new bytes

dimension, dimension of the vector (the two vectors should be long the same)

fen, this callback will be applied to the first pushed values of the vector (due to the stack
logic will be the last applied). It's is simply a function callback which is called after the array
of patches has been applied, which allows to perform any custom operation, just after the
application of a "mega” patch. Most times for simple loaders is NULL.

Returns 0 if all went fine, otherwise an error code number <0 (see implementation for codes).
This function is extremely useful when you have to patch several consecutive bytes, so you

might write a piece of code such this:

typedef void (*fcnPatchCallBack) (DWORD addr);
fcnPatchCallBack fcn (DWORD addr)
char str[256];
sprintf (str,”Patch applied at address %X”, addr);
: :MessageBox (NULL, str, DEFAULT MSG CAPTION,
MB OK|MB ICONEXCLAMATION|MB APPLMODAL) ;

}

BYTE iPatchDataInj[87] ={
0x90, 0x90, 0x90, 0x90, 0x90, OxE9, 0x01, 0x00, 0x00, 0x00, OxBC, 0x8B, 0x45, OxFC, 0x8B,

0x40, Ox14, O0xE8, 0xC2, 0x21, OxED, OxFF, 0x8B, 0x45, OxFC, 0x8B, 0x58, 0x1C, 0x85, OxDB,
0x74, 0x10, 0x8B, 0xC3, 0xE8, 0x01, O0xBl, O0xF5, OxFF, 0x8B, 0xD0O, 0x8B, 0xC3, 0xE8, 0x84,
0xB3, OxF5, OxFF, 0x8B, 0x45, 0OxFC, 0x8B, 0x40, 0x20, O0x85, 0xCO0, 0x74, 0x07, 0x33, 0xD2,
0xE8, 0x17, 0x7C, 0xE8, O0xFF, 0xCo6, 0x45, O0xFB, 0x01, 0x8B, 0x45, OxFC, 0xCé6, 0x40, 0x19,
0x00, O0xEB, 0x04, 0x80, 0x8E, 0x8C, 0x06, 0x90, 0x90, 0x90, 0x90, 0x90 };

PushPatchVector (stkPatches, 0x005C684C, NULL, iPatchDataInj, 87, fcn);
<—mmmmmm End Code Snippet------------- >

This piece of code applies the whole matrix (87 bytes) of values starting from the address

ox005ce84c and at the end calls the function fcn, which shows a messagebox.
® BOOL ReadProcessMemory (HANDLE hProcess, LPVOID lpBaseAddress, LPVOID lpBuffer, DWORD nSize, LPDWORD

lpNumberOfBytesRead) .
BOOL WriteProcessMemory (HANDLE hProcess, LPVOID 1lpBaseAddress, LPVOID IlpBuffer,

LPDWORD lpNumberOfBytesWritten) .
These two reflectors of the similar methods of the BMG_gsar class (see [1]), allows a controlled

access to memory automatically handling right to access memory pages and errors. The two
methods behave exactly like their Windows counterparts, and the programmer writing the
derived class can use these two functions exactly like in normal code, the C++ inherits
properties will call these functions instead. Usually hence there’s no need to place further
controls when calling these two methods from derived classes.

DWORD nSize,

4.1.2.4 When could happen to dump a big chunk of memory from a process?

A very common case where you have to patch a long vector of consecutive bytes is when you have
an asprotected program using an encrypted section of its code, as described in [12], and a valid
key for the program (in the so lucky case that you or a friend brought the program). In this case

© 2006 CodeBreakers Magazine Page 29 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

you already know from [12] that there’s no way to decode the encrypted instructions unless you
use a brute-force attack. Anyway in this case of course you don’t want to share your key, a solution
then is to run the program as fully registered and examine its memory. In this case the encrypted
sections of the program are completely decrypted resulting in real working code.

What you have to do then is to save into a textual file (using OllyDbg and a tool we did, as shown
in section 4.2.1 in following pages) the memory section from the registered program and insert it
into a loader which loads the un-registered program (run without the “legal” key) and overwrite the
same memory portion, substituting the encrypted memory block with the decrypted one.

4.1.3 Loader
Loader As already told this class should concentrate all the
victim’s specific things, and should drive the
+Loaden ShubLoaderCore class from which it is derived.
0
+~Loader()
:ﬁ:m%em&r This class usually is derived from of ShubLoaderCore,
+AdimBeforeOOSingLoad?0 implements all or some of the parent’s virtual methods
+ActionsBeforeCreateProcy) (depending on the needed customizations), using some
+ActionsBeforeGateProcedure() of the parent’s helping methods.
+GateProcedure()
+nitializePatchStack(inout stkPatches : growing_arraystack<Patch>&) . .)
+SetVicimDetails(inout victimFileNarme : TextString&) The better way to describe it is to directly see the

sources of a working loader (see section 4.2). Our
experience tells that once you wrote a single loader you’d be able to write the following in a snap.

4.1.4 Patch Class

Patch The Patch class is simple in its
Taddress meaning, it is a class used to store
+bytesread the patch details, composed of
+byteswitten offset, original byte and patched
:S“ed@”gByte byte. The Patch class represents a
enCallBack . -
+meg single byte patch: each object of
+OnlyDoCallback type Patch represents a single
*ong patched byte. There’s also the
*petch ossibility to perform a custom
+Patch(in p0 : unsigned long, in p1 : unsigned char) P . Y I E f h sinal
+Patch(in p0 : unsigned long, in p1 : unsigned char, in p2 : unsigned char) action (callback) for each single
+Patch(in p0 : unsigned long, in p1 : unsigned char, in p2 : unsigned char, inout p3: void (*)(unsigned long)) | patch applied: the framework
+Patd1(?np05uns?gnedlong,?np1:ur?sig.necimar,.inouth:void(*)(unsignedlong)) worries to eventually call the
fl,ittﬂ')”po'“m'gned'mg"mm'Vo'd()(““s'gned'mg» callback after the patch has been
+~Patch() applied.

The class has several constructors which are used to perform the different types of patches you can
have. Usually all these Patch object are pushed into a Patch object stack, in the tnitializePatchstack
method.

Properties of the class:

© 2006 CodeBreakers Magazine Page 30 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

address — is the RVA address of the patch

byteswritten — NuMber of bytes written in the process

bytesread — NUMber of bytes read from the process

checkorigByte — flag value used to check against the original byte read from the process.

fencallBack — callback called after the patch has been applied, can be different for each single

Patch object

e nsg — @ message reporting the result of the patch up to now, it is set by the framework
automatically and can be taken to understand the status of a specific patch

e onlyDoCallback — flag to specify to only call the callback and do not write patches. Useful in
some cases when you need special actions to be performed.

e orig — is the original byte read from the application

e patch — is the new byte to substitute

Methods of the class:
e patch() — This one shouldn't ever be used, it' useless. It's present only for C++ syntax.

e patch(DWORD addr, BYTE ptc) — Use this when you want to write a single byte at a specific
location, regardless of the original byte.
® Patch(DWORD addr, BYTE ptc, fcnPatchCallBack fen) — Use this when you want to only write a

byte at a specified address and perform a callback after.

® Patch(DWORD addr, BYTE ori, BYTE ptc) — Use this when you want to also to check the original
byte value then patch if matches (otherwise the patch is not applied and the nsg member is
set accordingly).

® Patch(DWORD addr, BYTE ori, BYTE ptc, fcnPatchCallBack fen) — Use this if you want also to call a
specified callback after having done a patch.

e Ppatch(DWORD addr, fcnPatchCallBack fen) — Use this when you want to only do a specific
callback without having to read/write anything. This is more or less like a “virtual” patch,
where you are not patching anything. Value aadr is passed to the callback and can be used
by this function for whatever scopes you want.

4.1.4.1 Callbacks

The framework uses in different places some callbacks, they always must be functions with a
specified prototype or of a specific custom type.

This is the prototype of functions actions that can be performed to any patch.

typedef void (*fcnPatchCallBack) (DWORD addr) ;

for example then:

fcnPatchCallBack fcn (DWORD addr) {
//do whatever you like here

}

The function receives the address of the patch as unique argument and can then perform any
operation you like. The callback mechanism is very powerful and flexible so as there’s the
possibility to have a single callback for each single patched byte.

© 2006 CodeBreakers Magazine Page 31 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

4.2 How to write a loader using the framework

We perfectly understand that writing a loader might be simpler than using the framework we are
proposing, but the complexity you felt is due to the general approach we wanted to keep. The
framework allows you to write very complex loaders without changing a line of the core code. Thus
if a simple loader is your target then the framework might be an additional complexity not really
needed, but as a matter of facts loaders written using the framework we proposed here are almost
always the same (for simple cases) and we found in everyday RCEing that once you took time to
write the first loader, it's a snap to write the following, making the effort of writing them to the
minimum. So we felt that would have been extremely important to add a section to this long
tutorial where to teach a step-by-step process for creating a loader using the framework here
proposed. So, go on with another chapter...

Generally speaking the steps to write a loader are:

1. Patch the program using OllyDbg; write down the offsets, the original and the modified bytes
(or only the offset and the modified bytes).

2. Calculate the CRC of the victim, for example using the CRCCalculator program we provide in
this tutorial’s archive.

3. Create a project with Visual C++, generally a DOS CRT Program is enough and shorter than
a graphical Win32 program, including all the required sources from the framework

4. Rename the original executable to something else. We're used to rename the original exe as
originalname.exe, placing a leading *" in the filename.

5. Fill in the main() program.

6. Customize the loader behaviour creating a derived class from ShublLoaderCore, called
normally Loader or whatever you like.

Step 1 is easy or not the target of this tutorial, so we will skip them, except for the usage of
OllyTranslator. For the step 2 you can use the CRC calculator we provide which is very easy to use,
just drag & drop the .exe over it to get the CRC value. Step 3 is given as already known because it
is an everyday operation using Visual C++. Step 4 is easy (©), step 5 is where the things start to
be interesting. The 6 is the more complex one..

© 2006 CodeBreakers Magazine Page 32 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

4.2.1 How to use OllyDumpTranslator

This simple program [11] has been made to automatically transform the OllyDump file format (txt
format) into a corresponding C patch data matrix, ready to be used for loaders.
This utility is able to take an Olly file, like as this one:

O05EFD7F 90 90 90 90 90 E9 01 00 00 00 B5 8B C3 E8 OB D2 [IIl] é ...pcAe0

005EFD8F FF FF EB 04 EA 04 86 E6 90 90 90 90 90 yye é tell]

and translate it into this C language slice of code:

<mmmmmmmmmm Code Snippet------------- >

//

// Olly File Translator 1.0 by ThunderPwr

// 03/03/2005 22.02.03

// translating file utility

//

#define IMAXINDEXINJ 29// Patch size

[T oo

// Definition about the addresses where to apply the patches.

/T oo

DWORD dwPatchaddrInj [IMAXINDEXINJ] = { 0x005EFD7F, Ox005EFD80, O0xOO05EFD81, 0x005EFD82,
0x005EFD83, Ox005EFD84, 0x005EFD85, Ox00SEFDSE,
0x005EFD87, Ox005EFD88, 0x005EFD89, Ox00SEFDSA,
0x005EFD8B, Ox005EFD8C, 0xOO05EFD8D, 0x005EFDSE,
0x005EFD8F, 0x005EFD90, O0x005EFD91, O0x005EFD92,
0x005EFD93, Ox005EFD94, 0xO005EFD95, 0x005EFD96,
0x005EFD97, Ox005EFD98, 0x005EFD99, 0x005EFD9A,
0x005EFD9B };

[/ T oo

// Definition about the patching value

/T oo

int iPatchDatalInj [IMAXINDEXINJ] ={ 0x90, 0x90, 0x90, 0x90,
0x90, OxE9, 0x01, 0x00,

0x00, 0x00, 0xB5, 0x8B,
0xC3, 0xE8, 0x0B, 0xD2,
OxFF, OxFF, OxEB, 0x04,
OxEA, 0x04, 0x86, OxE®6,
0x90, 0x90, 0x90, 0x90,

You can then directly use the last matrix in the framework, using the rpushratchvector method as
described in section 4.1.2.3 (in this case the awratchaddrinj is useless):

PushPatchVector (stkPatches, 0x005EFD7F, NULL, iPatchDataInj, IMAXINDEXINJ, NULL);

or using a loop, if the patched addresses are not all adjacent:

for (int i=0; i<IMAXINDEXINJ; i++)
stkPatches.push (Patch (dwPatchaddrInj[i], (BYTE)iPatchDatalInj[i]));

For sake of completeness, the whole process is as follow:

The Ollydbg dump files can be obtained using it like in Figure 14.

© 2006 CodeBreakers Magazine Page 33 of 60

CRACKING WITH

LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

SFSFDS| . FE7S EG PUSH DUORD PTR_SS: [EBP-2@]
EFZ70E| . &8 D438EFBE |PUSH AdwRegDo. &l Backu p | ASCIT "—day trlal perl
EES7ES| o ba boaomopg |MOD EDAC - .
g?g;EE : ggsgaégElFF ﬁﬂ AdvReaDo Undo selection Alt+BksSp
SoE LR S el B i oA T
SFICES| | BE AGhiEeFr | CALL AdUAesba.m ONETY 4
SFIPFE| . BB4E FC MOU EA%, DUORD F| Label

FOEEL| . EO BAFEFFFF |CALL_AdvRegDo. S| Select all

F3gps| > 3acm HOR ERX, EAX Breakpoint 3
SF380E| . 5A POP EDK

F . 52 POP ECH Search For 3
SF3ged| . 59 POP ECH)
SF38EE| . 64:8918 Mou DWoORD PTR F{ Find references Ctrl+R
SF3BAE| .v EB 19 JFP SHORT AclURe:

F3818| .~ E9 D385E1 JFP AduRedg 1 Wiew executable file

3815| . A1 DO336888 |NOV EAK, DUORD P :
SFERIE| | EB ClfEerr |CALL AdbRecho.m| Copy o execubsble file

381F| . EB CCSDEBFF |CALL AdwRegDo. &) Goko »

; E3 ZOSELFF |CALL AdyReaDo. D

CFocod| . A3 oe2iaces | o EAR, DUORD P| , Hex >

G| . ES DBEEEAFF |CALL_AdvRegDo.

S| . Esns Oy EBX, £ Tesxt b
3845 . BB1S 1817608| NDU EDH DllgRD P Shart » | AdvRealo. BB400068
Faa4d| . EE ET49ERFF CRLL "ot Fepo. o Long 4
3843(. 8845 U EAR, OU
FS4c| . Bose odoapon|MoU EAY. DUORD H Float »

BBSF3E5Z 5580 ssmipen| 110V EAX, DUORD P

BOSF SeSooAdvReoho. DESFIo08 [FECIT "ARTeam| Disassemble

Special *

Address | Hex dumy Appearance L4

GOSFooos |41 G2 B4 65 61 €0 28 20 20 20 20

@ . days e

GSFSEAC|FF FF FF PP 19 08 80 @0 20 64 6L 79 r3 20 60 85| 4.
BOSFIEES|66 74 20 P4 G6F 28 P4 68|65 20 65 6E 64 20 €F 66

% %o the end of

Figure 14 - how to dump to file a binary section from Ollydbg

Then launch the OllyDumpTranslator and press buttons 1, choose the file and then 2,

15.

<’ Olly File

File translating utility for OllvDhbg

Olly file

Translate

as in Figure

T 1LIFJ.’7E7’PN7’

,\.‘huul

TP

Figure 15 - Main window of OllyDump Translator

The program then creates in the same folder of the original dump file, another file with the same

A\Y

name plus the suffix “_translated”

4.2.2 Write the main() function of the loader

This step is always the same and there’s need that much to discuss: you have to call the pomMyJob
method of the Loader class you derived from ShubLoaderCore. I report here and example:

<m—mmmmm - Code Snippet------------- >
#include "Loader.h"
int main(int argc, char** argv)
{
Loader loader;
int nRetCode=loader.DoMyJob (argc, argv);
return nRetCode;
}
<emmmmmmm End Code Snippet------------- >

© 2006 CodeBreakers Magazine

Page 34 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

4.2.3 Write the derived Loader Class

As you know the C++ classes are divided into a declaration of the class and an implementation.
The declaration normally goes into a .h file, while the implementation normally into a .cpp file
(could also be in the .h file indeed).

Here below a declaration of the Loader class:

#include "ShubLoaderCore.h"

class Loader: public ShubLoaderCore {
public:

Loader () ;
~Loader () ;

BOOL SetVictimDetails (/*OUT*/ TextString &victimFileName) ;

BOOL InitializePatchStack(/*0OUT*/ growing arraystack<Patch> &stkPatches);
BOOL ActionsBeforeCreateProc();

BOOL ActionsAfterCreateProc();

BOOL ActionsBeforeGateProcedure();

BOOL GateProcedure () ;

BOOL ActionsAfterGateProcedure () ;

BOOL ActionsBeforeClosingLoader () ;

As described in section 4.1.2 the class redefine the virtual methods of ShublLoaderCore being
publicly derived from it.

Here below the implementation of the Loader class (the patches values don't refer actually to any
real application):

<mmmmmmmmmm Code Snippet LoaderActions.cpp------------- >
#include "LoaderActions.h"

L1117 007 7777007777770 777770777777 7077777777777771777777177777717777771777

Loader: :Loader ()
{

//TODO: insert specific actions if you require additional initialization

SetStartingMsg ("Loader working...wait a little\nCreditz 2 Shub-Nigurrath & ThunderPwr [at] ARTEam");
}

Loader: :~Loader ()
{
//TODO: insert specific actions if you require additional de-initialization

}
N o o NN

//Receives
//- the Stack of Patch elements that must be properly filled. The variable to use is stkPatches!
//- the victim file name, containing a valid path to the patched file
BOOL Loader::InitializePatchStack(growing arraystack<Patch> &stkPatches)
{
L1777 7777 0007777777 77
// This is the filling of the patches stack.
// you can use one of the constructors available.

// - The first only requires the patch address and the new byte so no controls will be
// performed later, the loader will only do a simply write to that memory section,
// regardless of the read value.
// - The second way, used here is to also add the original bytes, doing so the loader
// will also check if the byte read at the memory location specified is equal to the
// original byte you expected to be there. If not the patch is not applied and the msg
// buffer is set according.
© 2006 CodeBreakers Magazine Page 35 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

// - The third one allows to
// the patch.

// Note that the patches are
// (see GateProcedure())

//NB 0x00 must explicitly be

specify a callback which is called when trying to perform

all applied subsequently after the gate condition is met

casted to BYTE because otherwise the complier confuses

//it with a NULL pointer and doesn't know which constructor of class Patch to use.

// Example patches which also checks against the original bytes. If the original byte is
// different the Loader will issue and error BEFORE applying the patch
stkPatches.push (Patch (0x0044337C, 0x74, OxEB));

stkPatches.push (Patch (0x005E5669, 0x75, OxEB));

stkPatches.push (Patch (0x005F1552, 0x75, OxEB));

stkPatches.push (Patch (0x005E626E, 0x75, OxEB));

stkPatches.push (Patch (0x005E67D0, 0x75, OxEB));

stkPatches.push (Patch (0x005E6921, Ox7E, OxEB));

//Example of patches which don’t check against the original bytes

stkPatches.push (Patch (0x005F3898, 0x41)); //A
stkPatches.push (Patch (0x005F3899, 0x52)); //R
stkPatches.push (Patch (0x005F389A, 0x54)); //T
stkPatches.push (Patch (0x005F389B, 0x65)); //e
stkPatches.push (Patch (0x005F389C, 0x61)); //a
stkPatches.push (Patch (0x005F389D, 0x6D)); //m
stkPatches.push (Patch (0x005F389E, (BYTE) 0x00)); //end string

//0x00 must explicitly be casted to BYTE because otherwise the complier confuses
//it with a NULL pointer and doesn't know which constructor of class Patch to use.
stkPatches.push (Patch (0x005F37C2, 0x75, (BYTE)O0x00));

//Injected code sections.

BYTE iPatchDataInj[87] ={
0x90, 0x90, 0x90, 0x90, 0x90, O0xE9, 0x01, 0x00, 0x00, 0x00, OxBC, 0x8B, 0x45, OxFC,
0x8B, 0x40, Ox14, OxE8, 0xC2, 0x21, OxED, OxFF, 0x8B, 0x45, OxFC, 0x8B, 0x58, 0x1C,
0x85, 0xDB ,0x74, 0x10, 0x8B, 0xC3, 0xE8, 0x01, 0xBl, OxF5, OxFF, 0x8B, 0xDO, 0x8B,
0xC3, 0xE8, 0x84, 0xB3, 0OxF5, OxFF, 0x8B, 0x45, OxFC, O0x8B, 0x40, 0x20, 0x85, 0xCO,
0x74, 0x07, 0x33, 0xD2, 0xE8, 0x17, 0x7C, 0xE8, OxFF, 0xC6, 0Ox45, OxFB, 0x01, 0x8B,
0x45, OxFC, 0xCe6, 0x40, 0x19, 0x00, OxEB, 0x04, 0x80, Ox8E, 0x8C, 0x06, 0x90, 0x90,
0x90, 0x90, 0x90 };

PushPatchVector (stkPatches, 0x005C684C, NULL, iPatchDataInj, 87, NULL);

return TRUE;
}

L1777 7007 7777007777777 777771777777 70777777777777771777777777777717777771777
N o o o o o NN

//Simply used to specify the victim's filename, received the storing variable.
BOOL Loader::SetVictimDetails (TextString &victimFileName)

{
victimFileName=TextString (".\\ TargetProgram.exe");

//Set this parameter to true when you want the loader to check the CRC of the file!
SetVictimCRC (0x8281dfe6) ;

return TRUE;
}

// It is called just before calling the GateProceduce, then should contain steps required to perform the action or
special settings..
BOOL Loader::ActionsBeforeGateProcedure ()

{
return TRUE;

// The function GateProcedure must always be defined with this prototype.
// Returned value is TRUE when the matching condition required to start the patch is met.
// Often this function simply checks against a specified DWORD value in a specified
// memory location or the presence of a specific window, after which the patch can be successfully
// applied.
BOOL Loader::GateProcedure ()
{
BOOL bRet=FALSE;
//Enum all the windows starting from the desktop, one by one, also the

© 2006 CodeBreakers Magazine Page 36 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

//hidden windows. Each handle is passed to EnumWindowsProc which decides
//what to do with that handle. Actually it returns if it's the victim's window.
EnumDesktopWindows (NULL, EnumWindowsProc, (LPARAM) &bRet) ;

return bRet;

}

BOOL Loader::ActionsAfterGateProcedure ()
{
//Stop debugger action and let program run freely
DWORD dwProcessId = GetProcessId(GetPI ()->hProcess);
BOOL bDbgStopFlag = DebugActiveProcessStop (dwProcessId);

return TRUE;
}

//This function is called just before the call to CreateProcess. Could be left empty.
BOOL Loader::ActionsBeforeCreateProc ()

{
return TRUE;

}

//This function is called just before the process has been created but it is still in waiting mode
BOOL Loader::ActionsAfterCreateProc ()

{
HideDebugger (GetPI () ->hThread, GetPI()->hProcess);

return TRUE;
}

//This function is called Jjust before closing the loader, after all the actions have been performed.
BOOL Loader::ActionsBeforeClosingLoader ()
{
return TRUE;
}

[T 7777777777777 777777777
//Callback of EnumDesktopWindows
BOOL CALLBACK EnumWindowsProc (

HWND hWnd, // handle to parent window

LPARAM lParam // application-defined value

)
char ClassName[256];

//Retrieve the classname of the given handle
GetClassName (hWnd, ClassName, 256);

char caption[256];

//Retrieve the caption of the given handle
GetWindowText (hWnd, caption,?256);

//Check of the window I want to find, It's specific of the application
//We have to wait till the window is visible because all the checks happens before
//this point.
if (strstr(caption,"Application titlebar") !=0 &&
IsWindowVisible (hWnd) &&
_stricmp (ClassName, "TMainForm")==0)

//a little of tricky casting required to return the final BOOL to the caller,
//via an LPARAM parameter, which after all is a generic LPVOID.

BOOL *flag=(BOOL*)1lParam;

*flag=TRUE;

return FALSE;

}
return TRUE;

The Loader class implementation is not that difficult, being a derived class of shubNigurrathcore and
NTInternals (See Figure 12), can use directly all their public methods, without special notations (see
the C++ inherit proprieties).

© 2006 CodeBreakers Magazine Page 37 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Note that the pebugactiveprocessstop called in the code above is not the real Windows API (which is
available only since Windows XP), but rather the method exposed by the class nTinternals (see [1]
or section 4.1.1) which also ensure Loader’s compatibility with Windows 9x/NT/2000. In those
cases it will simply do nothing at all.

In the above example we have a catecondition testing the presence of a specific window (with a
specific class and title). The situation is quite common, because even hardly compressed programs
(with AsProtect for example) often do all their checks during decompression, inside the AsProtect
code. When the first target’'s window appears (often not visible) the program is completely
unprotected in memory (most programs doesn’t have anti-tampering protections, see [10]) and
can be patched by the loader.

In order to obtain the window’s details inside OllyDbg when you are at the OEP (uncompressing
inside OllyDbg, at the last exception for AsProtect) see the list of handles belonging to the target
and choose the right one.

NOTE

We successfully tested the trick (wait for a given window before doing the patch) on
several targets protected with AsProtect. The resulting loader is much smaller and
compatible with all the Windows versions, because the used APIs are available since
Windows 9x. Debugger loaders might have some problems on older Windows
versions.

The framework we did accomplish all the compatibility problems but simply not doing
specific operations on not supported Windows. As a result the loader will not crash
the system, but might not work as expected.

4.3 Writing a Debugger Loader using the framework

As told at the beginning the Debugger Loader are special loaders which interact with the target
application like debuggers. We already described the essential things you should know (a complete
description would take too much) and we are going now to write the skeleton of a debugger loader
which you'll be able to reuse (it’s also included in the tutorial’s archive). The steps are the same
used in section 4.2, what differs mostly is the catecondition Which is a little more complex.

Theory of the catecondition is the same described in section 2.1.2 and following.

I report here the main differences with the code of section 4.2.3

<mmmmmmmmm Code Snippet LoaderActions.cpp------------- >
//Simply used to specify the victim's filename, received the storing variable.
BOOL Loader::SetVictimDetails (TextString &victimFileName)
{
victimFileName=TextString (".\\ TargetProgram.exe");

//Set this parameter to true when you want the loader to check the CRC of the file!
SetVictimCRC (0x8281dfe6) ;

SetCreateProcessFlags (DEBUG_PROCESS | DEBUG_ONLY THIS PROCESS | CREATE NEW CONSOLE) ;

return TRUE;

© 2006 CodeBreakers Magazine Page 38 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Note the setcreateprocessFlags Which was not called before, because by default the process is
created as SUSPENDED. These parameters are useful to create the process in debug mode.

BOOL Loader::GateProcedure ()

{

BOOL bRet=FALSE;

DEBUG_EVENT DebugEv; // debugging event information
DWORD dwContinueStatus = DBG_CONTINUE; // exception continuation

// Define the CONTEXT structure used to load the victim process context
// when debugged process break due to exception event

CONTEXT victimContext;

int iExceptionCounter = 0;

BYTE OridataRead[2];

try {
for(;;)
{
// Wait for a debugging event to occur. The second parameter indicates
// that the function does not return until a debugging event occurs.
// We are waiting for infinite time, then wait for each Debug Event.
WaitForDebugEvent (&DebugEv, INFINITE) ;

// Process the debugging event code.

switch (DebugEv.dwDebugEventCode)

{

case EXCEPTION_ DEBUG _EVENT: {

// Process the exception code. When handling
// exceptions, remember to set the continuation
// status parameter (dwContinueStatus). This value
// is used by the ContinueDebugEvent function.

// Increment exception counter (not used)
iExceptionCounter++;

#ifdef DEBUG

// Show the current exception number

char str[256];

sprintf (str, "Exception number %d", iExceptionCounter);
: :MessageBox (NULL, str, DEFAULT MSG_CAPTION, MB OK);
#endif

// Check if this is the right exception by reading the context
// structure for the victim process. Before to do it set the
// ContextFlags to READ ALL

victimContext.ContextFlags = 0x1003F;

// Fill the process CONTEXT with the process information
GetThreadContext (GetPI () ->hThread , &victimContext) ;

// Now I've to scan the process memory in order to see if I
// can found the PUSH 0C instruction (19 byte after exception)
ReadProcessMemory (GetPI () ->hProcess,

(LPVOID) ((victimContext.Eip) + 19),

OridataRead, 2, NULL);

//6A 0C PUSH 0C
if ((OridataRead[0] == 0x6A) && (OridataRead[l] == 0x0C))
{
// Key location found, now we can apply the patch
#ifdef DEBUG
char str[256];
sprintf (str, "Found PUSH 0C location");
MessageBox (NULL, str, DEFAULT MSG_CAPTION, MB_OK);
#endif

throw TRUE; //jump to the catch block at the end
}

// Debugger’s Exception handler

© 2006 CodeBreakers Magazine Page 39 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

switch (DebugEv.u.Exception.ExceptionRecord.ExceptionCode)
{
case EXCEPTION_ ACCESS VIOLATION: ({
// First chance: Pass this on to the system.
// Last chance: Display an appropriate error.
dwContinueStatus = DBG_EXCEPTION NOT HANDLED;
}

break;

case EXCEPTION BREAKPOINT: {
// First chance: Display the current
// instruction and register values.
}
break;

case EXCEPTION_ DATATYPE MISALIGNMENT: ({
// First chance: Pass this on to the system.
// Last chance: Display an appropriate error.
}

break;

case EXCEPTION SINGLE STEP: {
// First chance: Update the display of the
// current instruction and register values.
}
break;

case DBG_CONTROL C: {
// First chance: Pass this on to the system.
// Last chance: Display an appropriate error.
}

break;

default: {
// Handle other exceptions.

}

break;

case CREATE THREAD DEBUG_EVENT: {
// As needed, examine or change the thread's registers
// with the GetThreadContext and SetThreadContext functions;
// and suspend and resume thread execution with the
// SuspendThread and ResumeThread functions.
}
break;

case CREATE PROCESS DEBUG_EVENT: {
// As needed, examine or change the registers of the
// process's initial thread with the GetThreadContext and
// SetThreadContext functions; read from and write to the
// process's virtual memory with the ReadProcessMemory and
// WriteProcessMemory functions; and suspend and resume
// thread execution with the SuspendThread and ResumeThread
// functions. Be sure to close the handle to the process image
// file with CloseHandle.

dwContinueStatus = DBG_CONTINUE;
}

break;

case EXIT THREAD DEBUG EVENT: {
// Display the thread's exit code.
}

break;

case EXIT PROCESS DEBUG EVENT: {
// Target Process is closed from user, then we have
// to stop the debugger work and exit from loader
// Exit form loader
ContinueDebugEvent (DebugEv.dwProcessId, DebugEv.dwThreadId,
DBG_CONTINUE);

© 2006 CodeBreakers Magazine Page 40 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

throw FALSE;
}

break;

case LOAD DLL DEBUG EVENT: {
// Read the debugging information included in the newly
// loaded DLL. Be sure to close the handle to the loaded DLL
// with CloseHandle.

}

break;

case UNLOAD DLL DEBUG EVENT: ({
// Display a message that the DLL has been unloaded.

}

break;

case OUTPUT DEBUG STRING EVENT: {
// Display the output debugging string.
}

break;

}

// Resume executing the thread that reported the debugging event.
ContinueDebugEvent (DebugEv.dwProcessId, DebugEv.dwThreadId, dwContinueStatus);
} //end for(;;)

} //end try

catch (BOOL bRet) {
return bRet; //gate condition met, returns to the framework!

The catecondition here presented has a quite general structure. If you study the code, you might
see that essentially its core is a switch-case-break construct where all the types of debug events
are mapped. Several of the “case” present are not used indeed in our example; we wrote them
anyway to help you understanding where your loaders can place controlling actions following to
specifzic exceptions the target might raise and also to understand which exception types you can
catch”.

The whole switch is inserted into an endless for loop (for(;;)) and then into a try-catch block. So to
exit from this function there are several ways, but the safer one we decided to implement is to
throw an exception. When the condition you are searching for (when the loader can apply patches)
is met, you should throw a TRUE value (throw TrRUE;) caught by the final “catcn” statement. This
ensures a correct stack unwinding and a safer returning from the deepest levels of the

GateCondition.

A special “case” is the excerprion pEBUG EVENT Which includes another switch-case-break construct
used to differentiate among the different debug exceptions might happens.

A little of explanation for this specific example is also needed: the real core of the catecondition is
on the excerrron DEBUG EVENT exception. The code there is thought for a generic AsProtected program
with versions 1.2x and earlier.

<m—mmmmm - Code Snippet------------- >
// Process the exception code. When handling
// exceptions, remember to set the continuation

2 Of course these are not all the possible exceptions this structure can catch, if you target plays with custom exceptions, it’s simple to add
them to the loader.

© 2006 CodeBreakers Magazine Page 41 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

// status parameter (dwContinueStatus). This value
// is used by the ContinueDebugEvent function.

// Increment exception counter (not used)
iExceptionCounter++;

#ifdef DEBUG

// Show the current exception number

char str[256];

sprintf (str, "Exception number %d", iExceptionCounter);
: :MessageBox (NULL, str, DEFAULT MSG CAPTION, MB_OK);
#endif

// Check 1f this is the right exception by reading the context
// structure for the victim process. Before to do it set the
// ContextFlags to READ ALL

victimContext.ContextFlags = 0x1003F;

// Fill the process CONTEXT with the process information
GetThreadContext (GetPI () ->hThread , &victimContext);

// Now I've to scan the process memory in order to see if I
// can found the PUSH 0C instruction (19 byte after exception)
ReadProcessMemory (GetPI () ->hProcess, (LPVOID) ((victimContext.Eip) + 19), OridataRead, 2, NULL);

//6A 0C PUSH 0C
if ((OridataRead[0] == 0x6A) && (OridataRead[l] == 0x0C))
{
// Key location found, now we can apply the patch
#ifdef DEBUG
char str[256];
sprintf (str,"Found PUSH 0C location");
MessageBox (NULL, str, DEFAULT MSG CAPTION, MB_OK);
#endif

throw TRUE; //jump to the catch block at the end

Briefly, the catecondition is trapping all the exceptions coming from AsProtect (case
excepTION DEBUG EVENT), till the last one, which is recognized because there’s a PUSH 0OC instruction
just near the EIP address. Then the condition is met and you can jump out of the debugger’s cycle
and leave the patcher the rest of the work. Our code is placed at the generic event
excepTTON DEBUG EVENT and not for a specific exception type, in order to support all the possible
AsProtect exceptions sequences.

Some specific tutorials will follow focusing on writing a loader for the different AsProtect versions or
different packers.

NOTE

As a general note to the wondering one might have here, we want to tell that you
can also patch the program even if the target has some anti-tampering protection in
memory, or some memory CRC on the target’s code, preventing an easy
modification of the process’s memory.

The Set/GetThreadContext APIs allow getting and setting all the flags and registry at
a given point of execution. So for example the result of a TEST or a CMP may be
changed handling the context at a given time (exactly how you do using OllyDbg).
The problem of course is to suspend the target program at the right point, passing
control the loader. How to do this is not the scope of the present document, anyway
generally speaking a smart loader for a complex program may be built without
modifying a single byte of code either in memory or on the disk.

For a complete debug cycle refers also to [XX]

© 2006 CodeBreakers Magazine Page 42 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Generic method to fish serials from a VB Application

What we will explain here is another nice application loaders will be able to do. We are building this
approach without the framework just presented, to show you a comparison of complexity needed to
write an articulated loader, performing complex debugging interactions with the target.

The sources are included and explained below in the most crucial parts. Consider anyway that the
approach for this specific loader is general for any VB application, because the API that we are
trapping is always used by VB programs to compare strings, and often serials (see [13], [14]).

Of course the same program could be coded as well, but we left it out intentionally .. you now have
an exercise to do on your own! ~__ A~

This argument falls into an appendix because it's a little “ancillary” to the main argument of the
present tutorial, but not less important or easy!

5 Finding the right module and placing a breakpoint

When the first event about the process creation is finished the system loads all the modules used
by the target, for each dynamic-link library (DLL) that is currently loaded into the address space of
the target process, the system sends a LOAD_DLL_DEBUG_EVENT debugging event.

NOTE

From above consideration again we point to the fact that each module is loaded into
the address space of the target process not into the address space of the debugger,
this is more important when we have to set the breakpoint into the target module.

After all of this is done, the system resumes all threads in the process. When the first thread in the
process resumes, it executes a breakpoint instruction that causes an EXCEPTION_DEBUG_EVENT
debugging event to be sent to the debugger. All future debugging events are sent to the debugger
by using the normal mechanism and rules.

Because our goal is to set a breakpoint into some API function exported from some DLL used by
the target now we have to:

1. look for the target module and keep the base address

2. retrieve the function address inside the module and place a breakpoint into the function EP

3. wait when the target call our function by a breakpoint event send from the system to the
debugger

4. doing what you want to do in order to patch...

5. restore the EP of the target function

6. back to the victim target and leave it run freely

We have then to look when we are into the system breakpoint, this is the first
EXCEPTION_BREAKPOINT event and we can store this by using a flag:

case EXCEPTION_BREAKPOINT:
// First chance: Display the current instruction and register values.
// This exception will be called during the system breakpoint, then we have to
// check about system breakpoint, if yes we have to place a breakpoint
// into the target module and target exported function
if (!bSystemBreakpoint)

// Enumerate all module
iVictimDLLBaseAddress = EnumAllProcesModule (aVictimProcessId,

© 2006 CodeBreakers Magazine Page 43 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

szVictimDLLname,
bDebugStage) ;
if (!iVictimDLLBaseAddress) {
sprintf (szMsgText, "Can't read proces module\n");
MessageBox (NULL, szMsgText, szMsgCapt, MB OK);
return;

by using the custom function EnumAllProcesModule we can search and retrieve the base address for the target module, below the
code for this function:

<mmmmmmmm Code Snippet CrackMe.cpp--------—---——----- >

[T T T o=
// EnumAllProcesModule routine

/) ST T oo

FARPROC EnumAllProcesModule (DWORD, char *, BOOL);
FARPROC EnumAllProcesModule (DWORD aVictimProcessId, char * VictimDLLNamePtr, BOOL bDebugFlag)

{
HANDLE hTmpProcess; // Handle used when target is open by OpenProcess
HMODULE hMods[1024]; // Structure filled by all modules base address handle
DWORD cbNeeded;
char szModName [MAX PATH];

unsigned int j;

hTmpProcess = OpenProcess(PROCESS ALL ACCESS, FALSE, aVictimProcessId);
if (pEnumProcessModules (hTmpProcess, hMods, sizeof (hMods), &cbNeeded))

{
for (j = 0; j < (cbNeeded / sizeof(HMODULE)); j++)
{
// Get the full path to the module's file.
if (pGetModuleBaseName (hTmpProcess, hMods[j], szModName, sizeof (szModName)))

{
if (bDebugFlag)
printf ("\t%$s\t (0x%08X)\n", szModName, hMods[]]);
if (!strcmp (szModName,VictimDLLNamePtr)) // I’ve find the module
return((FARPROC)hMods[j]);

}
}
CloseHandle (hTmpProcess); // Close the handle to the process previously opened
return (0);

first we have to find a way to refer the victim process space and this is easily obtained by using the
OpenProcess APl function (with all the process access rights set by using the
PROCESS_ALL_ACCESS flag) which is able to opens an existing process object (in other word a
running process). After that we can enumerate all the modules running into the opened process by
using the EnumProcessModule and GetModuleBaseName API functions.

About EnumProcessModule we have pinpoint just one note, this API need the hMods size to be
set large enough to store all the possible modules loaded by the process; a value equal to 1024 is
sufficient for almost all applications.

Each element of this array is related to each module loaded into the target process space and it is
equal to the base address for each module. Base address is really important in our analysis
because starting from it we can find the right address into the target space where we have to place
the breakpoint.

Now we have to find the real address (then into the target space) for some function which is inside
the searched module.

© 2006 CodeBreakers Magazine Page 44 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

To do this we use a trick based on a simple consideration: when a DLL is loaded into the process
space this is a copy from the original DLL that must reside into the system directory (e.g.
SYSTEM32) or into the target process folder or in some other well know process path. The main
difference from two copy of the same DLL for different process is into the module base address
because the system can place this module into the process space regard the position that we can
have in other process address space (relocation), but the fixed point is the offset for the exported
function which is the same in each module due to the copy nature.

BASE ADDRA|[{ MYMOD.DLL ||] ...
i Myfunc()
BASE ADDRr MYMOD.DLL
i Myfunc()
PROCESS#1 PROCESS#2

Figure 16 - Module mapping in different process.

Then our work consists in finding the offset from the base address and the exported function by
using a copy of the module (in our case a DLL) that can be load into the loader address space, then
when we have the offset make the sum from this one and the base address which came from the
previous module enumeration in order to obtain the real function EP (entry point) address into the
target process space.

Summing up the trick is made of these steps:

7. load the DLL into the Loader and store the hModule (starting address of the library)

8. find in_the loader the address of the API we want to hook into the target process through
GetProcAddress (it's an export of the DLL), and store it in hProc

9. calculate the delta, meant as hDelta=hProc — hModule. hDelta represent the offset where the
API starts from the beginning of the DLL

10.sum the hDelta to the handle of the already loaded module into the target process. You will
this way find the real address in the target process of the API.

11.Place a breakpoint in the target process in the found address: write an INT3 (OxCC) at the
address found (see [15])

// LoadLibrary in order to know the function address, the right address

// into the victim memory space can be found by using the right offset from

// the base address and the API address when the same DLL is loaded into the

// loader address space (copy is the same then offset is the same).

// When you've the offset to find the real address into the victim space simply

// add this offset to the base address of the target DLL mapped into the victim space
// base address came from EnumAllProcesModule function.

hDLL = LoadLibrary(szVictimDLLname) ; // Base address into the loader space
FARPROC addrIDPBreakpoint; // Used to store the real address (victim space)
DWORD apiOffset; // Used to store the function offset into the victim DLL

// Load the absolute address for the victim function into the loader space
addrIDPBreakpoint = GetProcAddress (hDLL, szVictimDLLfunc);

// Calculate the function offset (same for loader and victim space)
apiOffset = (DWORD)addrIDPBreakpoint- (DWORD)hDLL;

© 2006 CodeBreakers Magazine Page 45 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

// Calculate the real address into the victim space
addrIDPBreakpoint = (FARPROC) ((DWORD) iVictimDLLBaseAddress + (DWORD)apiOffset);

if (addrIDPBreakpoint != NULL)
{
if (bDebugStage)
{
sprintf (szMsgText," vbaStrComp Address 3%X", (DWORD)addrIDPBreakpoint) ;
MessageBox (NULL, szMsgText, szMsgCapt, MB_OK);

else {

sprintf (szMsgText,"Can't place breakpoint");
MessageBox (NULL, szMsgText, szMsgCapt, MB_OK);
if (hDLL != NULL)

FreelLibrary (hDLL) ;
CloseHandle (hTmpProcess) ;
return;

Now we have into addrIDPBreakpoint the function address into the target process space then we
can use WriteProcessMemory to place a breakpoint (INT3) in this EP in order to stop the process
execution when this function will be call.

<emmmmmm Code Snippet CrackMe.cpp--------—---——---- >

/e

// Now we can open the process to place breakpoint (iPatchData[0] = 0xCC -> INT3

it

hTmpProcess = OpenProcess(PROCESS_ALL_ ACCESS | PROCESS_VM READ | PROCESS_ VM WRITE,
FALSE,

aVictimProcessId) ;
if (!WriteProcessMemory (hTmpProcess, (LPVOID) (addrIDPBreakpoint), &iPatchbData[O], 1, NULL))
{
ErrorExit ("WriteProcessMemory ERROR: ") ;
MessageBox (NULL, "I can't write process memory :-(", szMsgCapt, MB OK);
if (hDLL != NULL)
FreeLibrary (hDLL) ;
CloseHandle (hTmpProcess) ;
return;

}

bSystemBreakpoint = true;

After this all we have finish with the first goal, place a breakpoint into a module into the target
process space.

6 Waiting and handling the breakpoint event in a real case

Now we have place the breakpoint, our work for now is all, we have to wait when the target use
our examined function because when this occur a INT3 instruction will be executed on the function
EP, system will stop the process and related thread and return the EXCEPTION_BREAKPOINT event
to the debugger by the WaitForDebugEvent function.

First we have to check if the system breakpoint was done, and this can be made by checking the
bSystemBreakpoint flag, after this we have to read the process CONTEXT in order to keep the

registers value that can be useful for collect information from our target function, then after all
the work is done restore the original code and leave the process run freely.

© 2006 CodeBreakers Magazine Page 46 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

To show in a real case how to act we coded a simple program coded in Microsoft Visual Basic 6.0
which perform a check from the user input and one hardcoded serial (you can find the source
attached to this tutorial) but the main things used to fish the right serial is more general and
later you can show how to use this concept for fish a serial directly from the installation stage
(again this example was for a VB target).

The CrackMeVB has a simple main dialog where the user must write the serial, checking is made
by pushing the “Check it!” button.

CrackMe¥B by ThunderPwr

Ertter Serial |

Check it |

Figure 17 - CrackMeVB

As usual write some fake serial and push the checking button:

CrackMeVB E|

CrackMe¥B by ThunderPwr

Enter Serial 12345678 Try again!
Check i | |::> :

Figure 18 - CrackMeVB example

You know the target is coded in VB, then an useful function where we can place a breakpoint is
___vbaStrComp, then in our serial sniffer we have to search for the MSVBVM60.DLL module and
place a breakpoint into the comparing function.

// Now I've to read the stack in order to fish the right serial

// then first I've to keep the process CONTEXT

victimContext.ContextFlags = 0x1003F; // Select all the flag and register
if (!GetThreadContext (hVictimThreadHandle, &victimContext))
{

ErrorExit ("GetThreadContext ERROR: ");

return;

© 2006 CodeBreakers Magazine Page 47 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK
if (bDebugStage)
{
printf ("Stack pointer ESP = 3X\n",victimContext.Esp);

printf ("Stack pointer EIP = $X\n",victimContext.Eip);

// First we have to keep a process handle
hTmpProcess = OpenProcess(PROCESS_ALL ACCESS | PROCESS_VM READ | PROCESS_ VM WRITE,
FALSE,

aVictimProcessId) ;

// Read the stack into the ESP+8 address, in this address we have

// the pointer to the first argument which is in UNICODE format
DWORD FakeSerialPtr;

if (!ReadProcessMemory (hTmpProcess, (LPVOID) ((victimContext.Esp) + 8),

&FakeSerialPtr, sizeof (DWORD), NULL))

ErrorExit ("ReadProcessMemory ERROR: ") ;
MessageBox (NULL, "I can't read process memory :- (", szMsgCapt, MB OK) ;
CloseHandle (hTmpProcess) ;

return;
else

if (bDebugStage)
printf ("Fake serial pointer: %X\n", FakeSerialPtr);

}

// Read the stack into the ESP+12 address, in this address we have

// the pointer to the first argument which is in UNICODE format

DWORD RightSerialPtr;

if (!ReadProcessMemory (hTmpProcess, (LPVOID) ((victimContext.Esp) + 12),

&RightSerialPtr, sizeof (DWORD), NULL))

ErrorExit ("ReadProcessMemory ERROR: ") ;
MessageBox (NULL, "I can't read process memory :- (", szMsgCapt, MB_OK) ;
CloseHandle (hTmpProcess) ;

return;

else
{
if (bDebugStage)
printf ("Right serial pointer: %X\n", RightSerialPtr);
}
© 2006 CodeBreakers Magazine Page 48 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

// Now we have to collect the serial code byte by using ReadProcessMemory, remember
// this is in UNICODE format then we have to check about the string end, this is easily
// achieved by checking the current data byte, if this is 0 we have reached the string end
int iAddrPtr, iBufferPtr;
1AddrPtr=0;
iBufferPtr=0;
do
{
ReadProcessMemory (hTmpProcess, (LPVOID) (FakeSerialPtr + (DWORD) iAddrPtr),
&iOridataReadOne, 1, NULL);
iAddrPtr=iAddrPtr+2;
szFakeSerial [iBufferPtr++]=iOridataReadOne;
}
while (iOridataReadOne != 0);
szFakeSerial [iBufferPtr]="\0"; // Place the string terminator

// Now we have to read the second serial number (same things as the previous one
iAddrPtr=0;
iBufferPtr=0;

do
{
ReadProcessMemory (hTmpProcess, (LPVOID) (RightSerialPtr + (DWORD)iAddrPtr),
&iOridataReadOne, 1, NULL);
iAddrPtr=iAddrPtr+2;
szRightSerial [iBufferPtr++]=iOridataReadOne;
}
while (iOridataReadOne != 0);
szRightSerial [iBufferPtr]="\0"; // Place the string terminator

// Now we have to show our serial fishing to the user :)

sprintf (szMsgText, "\tFirst serial: %s\n\tSecond serial: $%s\n\tYou know where is the right serial ;-)\n\tWrite it
down to register appz!",szFakeSerial,szRightSerial);

printf (szMsgText) ;

MessageBox (NULL, szMsgText, szMsgCapt, MB OK);

// Before finish we have to restore the original value into the
// target DLL and restore the EIP to the breakpoint address
hDLL = LoadLibrary(szVictimDLLname) ;

FARPROC addrIDPBreakpoint;

DWORD apiOffset;

addrIDPBreakpoint =

GetProcAddress (hDLL, szVictimDLLfunc) ;
apiOffset = (DWORD)addrIDPBreakpoint- (DWORD)hDLL;
addrIDPBreakpoint = (FARPROC) ((DWORD) iVictimDLLBaseAddress + (DWORD)apiOffset);
if (!WriteProcessMemory (hTmpProcess, (LPVOID)addrIDPBreakpoint, &iOridata([0], 1, NULL))
{

ErrorExit ("WriteProcessMemory ERROR: ") ;

MessageBox (NULL, "I can't write process memory :-(", szMsgCapt, MB OK);

return;
}
if (hDLL != NULL)

FreeLibrary (hDLL) ;
if (hPsapi != NULL)

FreelLibrary (hPsapi) ;
// Restore the EIP by writing the right value into the process CONTEXT
victimContext.Eip =(victimContext.Eip) - 1;
if (!SetThreadContext (hVictimThreadHandle, &victimContext))

ErrorExit ("GetThreadContext ERROR: ");

// Close the temp handle for the process
CloseHandle (hTmpProcess) ;
// Run the victim process
ContinueDebugEvent (DebugEv.dwProcessId, DebugEv.dwThreadId, DBG_CONTINUE) ;
// Stop debugger action and let program run freely (only for WinXP)
BOOL bDbgStopFlag = DebugActiveProcessStop (aVictimProcessId);
// Exit from debugger
return;
<mmmmmm End Code Snippet--------—--—- >
© 2006 CodeBreakers Magazine Page 49 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Now the most important parts of the sources are over, so it's time to launch the target and then

the loader.
First of all there’s a message for the user, we can press the OK button because the victim process

(CrackMeVB.exe) is already running:

| - o) x|

ThunderPur of ARTeam - Serial sniffer

Loader iz working, please wait...

%)

Start the installer and press OK when you are into the registration window

oK

Enter Serial [12345678
| Check it |

Figure 19 - Loader in action...

© 2006 CodeBreakers Magazine Page 50 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

When you push the OK button a list of all process is shown:

ULCDRSvwr.exe <(PID: 1572
PDhSched.exe (PID: 16282
mPFu_H 'P]D- 19H4J

DPAlea'. 2
WPSCIPSW.EXE (PID: 18562
loneCDTrav.exe <(PID: 1824)>
RUNDLL32 .EXE <(PID: 18682
PDUDServ.exe <C(PID: 289762
i {PID: 2184
i2: 252
SNAS PID: 2) irn pr f I
MZQKPICK.EXE (PID: 2488) O P D I
puauc lt.exe CPID: 2464)
MSDEU.EXE <PID: 2576
IEXRPLORE.EXE <PID: 3284>
mntsru.exe C(PID: 3944>
tmproxy.exe C(PID: 4844>
notepad.exe (PID: 3562
AcroRd32.exe (PID: 9245
ntvdm.exe (PID: 3584)
CrackMeUB.exe <(PID: 1112)>
WINWORD.EXE <PID: 3816>
CrackMe.exe (PID: 1464>

Figure 20 - The victim process has been found.

Next step is about the process attach and when all this is done the loader has to do the module
enumeration, find the victim module and then the ___vbaStrComp address (the function Entry

Point):
o ——— - o x|
AcroRd32.exe (PID: 224> a

ntuvdm.exe <C(PID: 3584)
CrackMelUB.exe <(PID: 1112>
WINWORD.EXE <(PID: 3816
CrackMe.exe <C(PID: 1464)
DLL load addx 77F40000
DLL load 77E40000
DLL load addres 66AAAAAA
DLL load address: 77D1808088
DLL load address: YFABBBBH
DLL load addres 77DABBAB
D].i].l 1.U E'ld. A LT
DLL load 4FECBA00 __vbaStrComp Address 6601B0C6
DLL load ac Y7aFa08n
DLL load 77BEAAAA I
DLL load g3000A 04 g
DLL load - 6630808 e S e
DLL load address: S5B1880888
DLL load address: 7S5E488088
CREATE_THREAD_DEBUG_EUENT 84
CrackMeUB.exe (H“HHQHHHHHJ
ntdll.dll F4BRHEH >
kernel32.dll ka!!h4EEEBW
HEUVBUHG68 . DLL CAx66ARRAAA >

Figure 21 - Looking for the victim function into the target DLL.

Press OK, now the target can run freely until you make the serial verification (press again the
Check it! button into the CrackMeVB dialog).

© 2006 CodeBreakers Magazine Page 51 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Immediately the breakpoint event (INT3) will be triggered by the system to the debugger through
the WaitForDebugEvent function:

(PID: 3816>
tPID 1464>
: ?7F48888
77E48B86
. - LhBBBEBAB
address: 770188868
address: 7FE00E0H0
address: ?7DABBAA
;: YEHBBBAA __vbaStrComp BREAKPOINT
4FECHOBA
Y78F8088
77BEBBOA OK
83000R
GhHHIARAA
SEi8ARAA
a : 75 E400068
CREATE_THREAD_ DEBHG _EUENT &4
CrackHMelB.exe CAxAR400000 >
ntdll.dll CBx?7?F40008 >
kernel3i2.dll CBx?7E488088 >
MSUBUMGEA . DLL C{Bx66A0B6B0H >
CREATE_THREAD_DEBUG_EUENT 208088603

Figure 22 - The INT3 exception is send to the debugger.

Push the OK button and we are on the end:

load : 77D1888RA
load ss: 7FAA0000
load s 77DABBBA
load adﬂrers: 78080888
load address: 4FECBBBB
load add; :
load Y7BEOGBBA
load a z '.‘:I JHHHH
load a -
a 55 |
{3 ;5‘ e 32 EESSSE First serial: 12345678 ;
r~]:-Eg TE_THREAD_DEBUG_EUENT B84 Second serial: ARTeam is the best
CrackMeUB.exe (BxAR4BRAAA> You know where is the right serial ;-)
ntdll.dll C(Bx7?F4008064 > Write it down to register appz!
kernel3i2.dll (Bx77E40888 >
MEUBUMGH . DLL CBx66BB0804 >
CREATE_THREAD_DEBUG_EUENT 8080RGAA3
Stack pointer ESP = 12F458
Stack pointer EIP = 66@1BACT
i gserial pointer: 14EEEC
Right serial pointer: 481888
First serial: 12345678

Second szerial: ARTeam iz the bhest
u know where is the pic
Write it down to r»registe

Figure 23 - Final fishing from the __ vbaStrComp function.
Now is time to check if the fished serial is right if you have some doubt ;-):

i x| [j:

Wery nice!

Entter Seial [4RTeam is the best
| Check il o

© 2006 CodeBreakers Magazine Page 52 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Some final word about the target application, this is the source code:

Private Sub Commandl Click()

If ("ARTeam is the best" = txtSerial.Text) Then
MsgBox "Very nice!"

Else
MsgBox "Try again!"

End If

End Sub

<Lemmmmmm End Code Snippet----—--—----- >

the argument sequence which is pushed into the stack before call the ___vbaStrComp function is

related to the code used to make the verification then:
If ("ARTeam is the best" = txtSerial.Text) Then

gives a different pushed sequence from:

If (txtSerial.Text = "ARTeam is the best") Then

6.1 Cracking with Olly instead

Below the classical cracking approach using OllyDbg debugger. Just after having loaded the
target put a “"BP __vbaStrComp” using the Command line plugin and press F9 to run the

application. You will land here:

- [CPU - main thread, module MSYBYM60]
|C| File View Debug Plugins Options Window i-le1|:|

e eI+ 3 A

F SP+41, Mo Entry
CE|~ BFSN SDGHBMB JE HSUBIMEB GEBEIBSE
] &8 B1086az08 FUSH
FF7424 B8 FUSH I:IIJ.IDRI:I PTR 551 [ESP+3]
FFr424 1@ PUSH QWORD PTR SS5: [ESP+18]
FF7424 18 FUSH DWORD PTR 5%:[ESF+18]
FF]S ZBEE1866 | CALL HEM I:IHCIRI:I FPTR DS:[&510EEZ2@] OLEAUT3Z. VarBstrlmp

TEST ERX,.E
EF| v EFSIC ESeReeaa | Ju HSUEUHEB 6632‘[345

Figure 25 - OllyDbg breakpoint into the __vbaStrComp function.

© 2006 CodeBreakers Magazine

Page 53 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

Registers [FFU)

ERX BA14EEEC UMICODE 123456737
EC¥ 7FPF49837 ntdll.7rF49@37
ED¥ BEEERRER

ESI Bacsarag
EDI Aaa8aaE6

EIF &8@1BBACE HMSUBUMEA. __wbaStrConmp
Figure 26 - Registers window at the breakpoint.

v

ESP EEBECALZ| FETURN to MoWELNEH. GEBESALE From MEUEUNED. _wBattriomD
BA1ZF4E4| HOREHGEE

ESP+ BE1ZF453| BO14EEEC|UMICODE "1z34Se7a
BR1ZF45C| PE4819368| OMICODE "ARTeam is the best”

ESP+1

Figure 27 - Stack window at the breakpoint.

7 Serial fishing example of a real case

In order to check our theory we can attack for serial fishing a real crackme coded in VB. We will
use the same crackme used for [13] (also included in this tutorial), the Abel’s 2nd crackme.

For further details see there. The approach to this crackme is interesting because the API used is
different than ___vbaStrComp. According to analysis described in [13] the API which are used are
instead ___vbaVarTstEq or ___vbaVarTstNe (guess what these APIs do). We will modify then the
loader just coded to hook the ___vbaVarTstEq API and get the parameters.

First of all this API receives two VARIANT, which are a specific type of strings that are stored in
memory in a particular way (string length, address of control, text chars).

Here is how it looks in OllyDbg.

Using the commandline addin place a “"BP __vbaVarTstEq” and press F9 to let the program run
freely. You will stop here:

FF74z4 03 PUSZH DWORD PTR 55: [ESP+E]
e5l03830 FF7424 03 PUSZH DWORD PTR 55: [ESP+5]
&5l0223E cA 00 PUZH O
eel0f240 ES S1FEFFFF CALL MEVEVIMGO.Sel09606
65109845' SBD485 L4E30zZ66 | MOV EAX DWORD PTR DS: [EAN*4+cc0ZEDE4]

And the stack will look similar to the following:

ESP [001ZFZFS Then what we have to is clear. After the
Fe breakpoint has been set, using the already

2rs EETTCEECEIR explained code, we will read the two pointers
L e pointed by ESP+4 and ESP+8 (4 is the
coizrasc| oolsoprd|mmrcope t1z:aserssr | DWORD size in bytes) and then at an
additional offset of 8 from those values we find
S01z74z4| 0000000 our UNICODE strings.
O012ZF478| 001ZF414
O01F4ZC| 001504384 |TNICODE "AEBSESCS"

What we changed are the program
informations:

© 2006 CodeBreakers Magazine Page 54 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

/] T oo
// General target information
e
char szTargetName[]="abex'2nd crackme"; // Target name

char szTargetVersion[]="1.0"; // Target version

char szTargetBuild[]="-"; // Target build (if applicable)

char szTargetURL[]="-"; // Target URL

char szTargetPacker[]="-"; // Target packer

BOOL bDebugStage = true; // Set the debug mode (show the message from loader to user)
BOOL bShowExcpNumber=false; // Exception number flag

BOOL bSystemBreakpoint = false; // System breakpoint

BOOL bFirstEvent = false;

char szVictimProcessName[]="abexcrackme2.exe"; // Program name

char notloaded[]="Process can be loaded :-("; // There is one error into loading process stage
char szMsgText[128]; // Used as a buffer for message to user

char szMsgCapt[]="ARTeam Serial Registration Code Sniffer";

FARPROC iVictimDLLBaseAddress; // API base address

char szVictimDLLname[]="MSVBVM60.DLL"; // Target DLL

char szVictimDLLfunc[]="__vbaVarTstEq"; // Target function where we have to break

char szFakeSerial[128]; // Buffer for the fake serial

char szRightSerial[128];

<mmmmmm e End Code Snippet--------—--—- >

Note the different values of szVictimDLLfunc, szTargetName and szVictimProcessName.

Then the reading of the process’s memory, just after the OpenProcess call has changed accordingly
to what we saw in Olly

<m—mmmmm - Code Snippet------------- >
// Read the pointer to the fake serial
DWORD FakeSerialPtr;

DWORD FakeVariantPtr, RightVariantPtr;

//skip a DWORD

ReadProcessMemory (hTmpProcess, (LPVOID) ((victimContext.Esp) + 4), &FakeVariantPtr,
sizeof (DWORD), NULL);

ReadProcessMemory (hTmpProcess, (LPVOID) ((victimContext.Esp) + 4*2), &RightVariantPtr,
sizeof (DWORD), NULL) ;

ReadProcessMemory (hTmpProcess, (LPVOID) ((FakeVariantPtr) + 8), &FakeSerialPtr,
sizeof (DWORD), NULL) ;

if (bDebugStage) {

printf ("Fake serial pointer: %X\n",FakeSerialPtr);

}

// Read the pointer value to the right serial which is in ESP+12
DWORD RightSerialPtr;
ReadProcessMemory (hTmpProcess, (LPVOID) (RightVariantPtr + 8), &RightSerialPtr, sizeof (DWORD), NULL);

if (bDebugStage) {
printf ("Right serial pointer: %$X\n",RightSerialPtr);

Just after this we also convert the UNICODE strng into an ANSI one. This thing anyway is always
done with VB program and were already in the other crackme.cpp file.

The result is then:

© 2006 CodeBreakers Magazine Page 55 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

ARTeam Serial Registration Code Sniffer

Fake serial; 1234567589
Right serial; ASBEBECS
Copy and paste to register appz!

O

Figure 28 — Final MessageBox showing the real and the fake serials.

Those of you who read the tutorial [1] should recognize that what we created is an Oraculum.
Oraculums are indeed just specialized loaders which aim is just fishing the real serial for you
directly from the program.

8 Complete example for a debug-loader cycle

What I introduced before is not a complete cycle of debug a loader can use. There are several
events you can handle and to which you can attach you patching actions. In the code reported in
the Sections 3.3 and below several has been omitted for sake of brevity. Here instead I report a
much more complete source you can use for your own cateconditions (thanks also to condzero).
The whole source is also part of this archive, read it out because including it here would take too
much pages.

Anyway you can use that code to see how much additional debug conditions you can add to your
GateCondition tO precisely handle the loading process.

The source included in complete Debug GateCondition.cpp iS built for a target where what must be
patched is one of its DLLs. This time it is a simple C source (but easily convertible to our
framework).

What the loader does is to debug the main application (might slow down a little), then apply the
patch only when the event roap b peBuc EvenT iS raised.
In this case these are the operations done:
1. extract the name of the DLL being loaded among all those loaded (using EnumProcessModules
and GetModuleFileNameEx)
2. if match the victim that must be patched apply the ispebuggerpresent patch (see Section
3.3.1) and patch the DLL location as offset from the base (handle)
3. exits from the debugger and let it run freely.

case LOAD DLL DEBUG_EVENT: {
// Read the debugging information included in the newly loaded DLL.
// Be sure to close the handle to the loaded DLL with CloseHandle.
contproc = TRUE;
dwContinueStatus = DBG_CONTINUE;

if (DebugEv.u.LoadDll.hFile == NULL) {
break;

}

// EnumProcessModules returns an array of hMods for the process
// Fails first time for ntdll.dll

© 2006 CodeBreakers Magazine Page 56 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

if (!'EnumProcessModules (hSaveProcess, hMods, sizeof (hMods), &cbNeeded)) {
FormatMessage (
FORMAT MESSAGE ALLOCATE BUFFER | FORMAT MESSAGE FROM SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,
OI
NULL
)i

// Display any error msg.
//MessageBox (NULL, lpMsgBuf, "EnumProcessModules Error", MB OK+MB TASKMODAL) ;

// Free the buffer.
LocalFree(lpMsgBuf);
SetLastError (ERROR_SUCCESS) ;

//close handle to load dll event
CloseHandle (DebugEv.u.LoadDll.hFile);
break;

}

// Calculate number of modules in the process
nMods = cbNeeded / sizeof (HMODULE) ;

for (1 = 0; i < nMods; i++) {
HMODULE hModule = hMods[i];
char szModName [MAX PATH];
// GetModuleFileNameEx is like GetModuleFileName, but works in other process
//address spaces
// Get the full path to the module's file.
GetModuleFileNameEx (hSaveProcess, hModule, szModName, sizeof (szModName)) ;

if (0 ==1i) { // First module is the EXE. Add to list and skip it.
modlist[i] = 1i;
}
else { // Not the first module. It's a DLL
// Determine if this is a DLL we've already seen
if (1 == modlist[i]) {
continue;
}
else {

// We haven't see it, add it to the 1list
modlist[i] = 1i;

// Find the last '\\' to obtain a pointer to just the base module
// name part

// (i.e. mydll.dll w/o the path)

PCSTR pszBaseName = strrchr(szModName, '\\');

// We found a path, so advance to the base module

if (pszBaseName) { name
pszBaseName++;
}
else {
pszBaseName = szModName; //No path. Use the same name for both
}
//optionally, if module name = "DB.DLL"

if (strcmp (strupr (pszBaseName), dbdll)==0) {

// Get the address of the specified exported

// dynamic-link library (DLL) function

ProcAdd = GetProcAddress (
hModule, // handle to DLL module

)i

// Add offset 0x0C to ProcAddress

if (NULL != ProcAdd) {
DebugPatch[0] = (DWORD) ProcAdd + 0x0C;
// apply the IsDebuggerPresent patch

ReadProcessMemory (hSaveProcess, (LPVOID) DebugPatch[O0],
DataRead,

© 2006 CodeBreakers Magazine Page 57 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

sizeof (BYTE), &dwRead);
if (DataRead[0] == scanbytd[0]) {
WriteProcessMemory (hSaveProcess,
(LPVOID) DebugPatch[0], &replbytd[0],
sizeof (BYTE), &dwWritten);

}

// close handle to load dll event
CloseHandle (DebugEv.u.LoadDll.hFile);

Once more, as you can see reading the complete Debug GateCondition.cpp Source, the debugging cycle
is quite complex, because there are a lot of cases and nested sub-cases which complicates reading.
But consider that once you written it once most of the times you’ll re-use the same structure.

Other things that you might find immediately interesting from the above source are:
» Debugging more than one process at time:

when calling the CreateProcess use these parameters..
DEBUG_ PROCESS, // No creation flags (use for more than 1 process
//DEBUG_PROCESS+DEBUG_ONLY THIS PROCESS, //(use for only 1 process)

= Avoid locks of debugger loader

at the beginning of the debug cycle instead of INFINITE use a timeout, so as to avoid hangs.
if (WaitForDebugEvent (&DebugEv, 1000))

* How to write current exception address:
this for example writes the ExceptionAddress of the ExceptionRecord, but this record contains
also a lot of other interesting informations

sprintf(b, "Exception address:%08X", DebugEv.u.Exception.ExceptionRecord.ExceptionAddress);
* How to print some process’ information

for example a much more rich printf of process information

sprintf(b, "hFile:%$X\n"
"ProcessId:$X\n"
"hProcess:%$X\n"
"hThread:$X\n"
"lpBaseOfImage:%08X\n"
"dwDebugInfoFileOffset:%d\n"
"nDebugInfoSize:%d\n"
"lpThreadLocalBase:%08X\n"
"lpStartAddress:%08X\n"
"lpImageName:%08X\n"
"fUnicode:%d",
DebugEv.u.CreateProcessInfo.hFile,
Pid[k -1],
DebugEv.u.CreateProcessInfo.hProcess,

DebugEv.u.CreateProcessInfo.hThread,
DebugEv.u.CreateProcessInfo.lpBaseOfImage,
DebugEv.u.CreateProcessInfo.dwDebugInfoFileOffset,
DebugEv.u.CreateProcessInfo.nDebugInfoSize,
DebugEv.u.CreateProcessInfo.lpThreadLocalBase,
DebugEv.u.CreateProcessInfo.lpStartAddress,
DebugEv.u.CreateProcessInfo.lpImageName,
DebugEv.u.CreateProcessInfo.fUnicode

© 2006 CodeBreakers Magazine

Page 58 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

These are only examples, because as you can see from MSDN and from the code above, the
involved structures are one inside the other much like a Matrioska (the Russian dolls) and are very
rich of really interesting elements (from the RCE point of view). We think that you can easily find
now you own way out of how to print your information and how to write a complex debugger..

NOTE

The code reported into complete Debug GateCondition.cpp IS directly compilable,
because if you try to compile it there are some misses, some include and libraries

declaration, that you must add to your Visual Studio Project. The code is anyway
perfectly working.

© 2006 CodeBreakers Magazine Page 59 of 60

CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK

9 References
There are several tutorial about loader and code injection argument I here will report those I found
to be more interesting.

[1] “Guide on How to play with processes memory, write loaders and Oraculums”, Shub-
Nigurrath of ARTeam, http://tutorials.accessroot.com

[2] “Three Ways to Inject your code into Another Process”, Robert Kuster,
http://www.codeguru.com/system/winspy.html

[3] “RemotelLib - DLL Injection for Win9x & NT”, Abin,
http://www.codeproject.com/dll/RemoteLib.asp [Interesting approach to memory injection
into a remote process, which works also for Win9x systems]

[4] “Injecting a DLL into Another Process's Address Space”, Zoltan Csizmadia,
http://www.codeguru.com/Cpp/W-P/dll/article.php/c105/

[5] “DLL Injection and function interception tutorial, 20037, CrankHank, ,
http://www.codeproject.com/dll/DLL Injection tutorial.asp

[6] "“Creating Loaders & Dumpers - Crackers Guide to Program Flow Control”, yAtEs, 2004,
http://www.yates2k.net/lad.txt

[7] “9x/NT API Hooking via Import Tables”, yAtEs, http://www.yates2k.net/import.html

[8] "“Portable Executable File Format Compendium”, Goppit, http://tutorials.accessroot.com

[9] “CrackProof your software”, Pavol Cerven, Nostarch Press, 2002 (available as bookz)

[10] "Beginner Olly Tutorial #10, Anti-tampering Theory”, Shub-Nigurrath of ARTeam,
http://tutorials.accessroot.com

[11] “OllyDumpTranslator”, ThunderPwr of ARTeam, http://releases.accessroot.com

[12] "Beginner Olly Tutorial #6, Packer’'s Theory”, Shub-Nigurrath of ARTeam,
http://tutorials.accessroot.com

[13] “Fishing Primer with SmartCheck”, Palaryel, http://tutorials.accessroot.com

[14] “Fishing Primer with SmartCheck number 2", Palaryel, http://tutorials.accessroot.com

[15] “Beginner Olly Tutorial #8, Breakpoints Theory”, Shub-Nigurrath of ARTeam,
http://tutorials.accessroot.com

10Conclusions

Well, this is the end of this story, we hope all the things here said will be useful to better
understand how process is handled by the OS and in which manners we can keep process control
and make debugging with some advanced technique. We have also show how to modify code into
module which is loaded into the target space.

All the code provided with this tutorial is free for public use, just make a
greetz to the authors and the ARTeam if you find it useful to use. Don’t
use these concepts for making illegal operation, all the info here reported

are only meant for studying and to help having a better knowledge of
annlication cade securitv techniaues.

© 2006 CodeBreakers Magazine Page 60 of 60

http://tutorials.accessroot.com/
http://www.codeguru.com/system/winspy.html
http://www.codeproject.com/dll/RemoteLib.asp
http://www.codeguru.com/Cpp/W-P/dll/article.php/c105/
http://www.codeproject.com/dll/DLL_Injection_tutorial.asp
http://www.yates2k.net/lad.txt
http://www.yates2k.net/import.html
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://releases.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/

	1 Introduction
	2 What’s a loader?
	2.1 Loader classification and behaviour
	2.1.1 Standard Loaders
	2.1.2 Debugger Loader

	3 Write your first loader
	3.1 Patches Vector
	3.2 Standard Loader
	3.3 Debugger Loader
	3.3.1 Hiding a debugger to the target process
	3.3.2 Process Status Helper (PSAPI.DLL)
	3.3.3 The debugging stage (the attach stage)
	3.3.4 The debugging stage (the DEBUG_EVENT structure)

	4 An unifying C++ framework for writing loaders
	4.1 Generics on the framework
	4.1.1 NTInternals
	4.1.2 ShubLoaderCore
	4.1.2.1 DoMyJob
	4.1.2.2 Virtual Methods
	4.1.2.3 Helper Methods
	4.1.2.4 When could happen to dump a big chunk of memory from a process?

	4.1.3 Loader
	4.1.4 Patch Class
	4.1.4.1 Callbacks

	4.2 How to write a loader using the framework
	4.2.1 How to use OllyDumpTranslator
	4.2.2 Write the main() function of the loader
	4.2.3 Write the derived Loader Class

	4.3 Writing a Debugger Loader using the framework
	6.1 Cracking with Olly instead

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

