
 

 
 
 
 
 
 
 
 

 
 
 

Volume 1, Issue 1, 2006 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Cracking with Loaders: Theory, General Approach, and a Framework 
 
 
Shub-Nigurrath [ARTeam], ThunderPwr [ARTeam] 
January 2006 
 
Abstract 
This tutorial aim is to describe the work we did on loaders, to introduce you to the problem and to describe 
two different approaches to write loaders. We’ll also present a framework we used for several many patches 
which worked goodwill and that you can re-use as you like.  This paper reading requires a little of knowledge 
of the C/C++ programming language. 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Table of Contents 
 
Abstract ............................................................................................................................1 
Table of Contents ...............................................................................................................2 
1 Introduction.................................................................................................................3 
2 What’s a loader?...........................................................................................................3 

2.1 Loader classification and behaviour ...........................................................................3 
2.1.1 Standard Loaders .............................................................................................4 
2.1.2 Debugger Loader ..............................................................................................5 

3 Write your first loader ...................................................................................................6 
3.1 Patches Vector .......................................................................................................6 
3.2 Standard Loader.....................................................................................................7 
3.3 Debugger Loader.................................................................................................. 10 

3.3.1 Hiding a debugger to the target process............................................................. 12 
3.3.2 Process Status Helper (PSAPI.DLL).................................................................... 16 
3.3.3 The debugging stage (the attach stage)............................................................. 19 
3.3.4 The debugging stage (the DEBUG_EVENT structure)............................................ 21 

4 An unifying C++ framework for writing loaders............................................................... 22 
4.1 Generics on the framework .................................................................................... 22 

4.1.1 NTInternals ................................................................................................... 23 
4.1.2 ShubLoaderCore............................................................................................. 24 

4.1.2.1 DoMyJob .................................................................................................... 25 
4.1.2.2 Virtual Methods ........................................................................................... 25 
4.1.2.3 Helper Methods ........................................................................................... 28 
4.1.2.4 When could happen to dump a big chunk of memory from a process? ................. 29 

4.1.3 Loader .......................................................................................................... 30 
4.1.4 Patch Class .................................................................................................... 30 

4.1.4.1 Callbacks.................................................................................................... 31 
4.2 How to write a loader using the framework .............................................................. 32 

4.2.1 How to use OllyDumpTranslator........................................................................ 33 
4.2.2 Write the main() function of the loader .............................................................. 34 
4.2.3 Write the derived Loader Class ......................................................................... 35 

4.3 Writing a Debugger Loader using the framework ....................................................... 38 
5 Finding the right module and placing a breakpoint........................................................... 43 
6 Waiting and handling the breakpoint event in a real case ................................................. 46 

6.1 Cracking with Olly instead...................................................................................... 53 
7 Serial fishing example of a real case.............................................................................. 54 
8 Complete example for a debug-loader cycle ................................................................... 56 
9 References ................................................................................................................ 60 
10 Conclusions ............................................................................................................ 60 
 

 

 
© 2006 CodeBreakers Magazine  Page 2 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

1 Introduction  
This tutorial aim is to describe the work we did on loaders, introduce you to the problem and to 
describe two different approaches to write loaders. We’ll also present a framework we used for 
several patches which worked well and that you can re-use as you like.  
 
This paper reading requires a little of knowledge of the C/C++ programming language, all the code 
which we reported into the following chapters had been written in C (and tested using Visual C++ 
6.0 with Console Application project type).  
We also release with this tutorial a framework written in C++, which can be used to more rapidly 
write generic and complex loaders for applications. We didn’t want to release a library, just because 
to write loaders at least you should be able to understand a little C or C++, so do you homework 
also.. 
 
As a practical examples we will also present an approach to VB applications serial sniffing through 
loaders, beside some notes about VB cracking magically performed without using the remote 
thread technique or DLL injection like in [2], [3] [4] and [5].  
 
If you already know how to code a loader on your own you can skip to section 4. If you don’t know 
how to write a debugger loader start skip to section 3.3, otherwise relax, take your time and read it 
all, it’s a long story to tell. 
  

2 What’s a loader? 
For all of you which do not know anything about loaders and how a program is loaded into memory 
we suggest reading [1] and [8] to better understand the rest of this tutorial; this paper will only 
cover few of the base concepts, because readers should already know them.  

2.1 Loader classification and behaviour 
A loader is a program able to load in memory and running another program. Every time you start a 
program the standard window loader make this work for you in invisible way. There is many type of 
loader but basically every loader can be classified in two classes: 
 
• Standard loader 
• Debugger loader 
 

 
 

 
© 2006 CodeBreakers Magazine  Page 3 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

2.1.1 Standard Loaders 
Standard loader is able to create a process in memory from a 
target which is into the disk, then a standard loader must be able 
to handle CreateProcess API function and then use 
ReadProcessMemory, WriteProcessMemory to read/write the 
memory space of the process and also run or stop the process by 
using SuspendThread and ResumeThread API function. Other 
useful API function is related to the process context. More 
generally the context of a process reflect the state of the process 
itself in every instruction cycle, imagine to stop the process and 
look at the registers value (then EAX, EBX, ECX and so on) all the 
registers and flag examined at the same time keep the process 
context and all the values is stored into a CONTEXT structure then 
a CONTEXT structure contains processor-specific register data, 
the system uses CONTEXT structures to perform various internal 
operations (refer to the header file WinNT.h for definitions of this 
structure for each processor architecture). Figure 1 reports what 
we have just described as a flowchart.  

 

 
The Loader launches the program as suspended, or generically 
speaking in a controlled mode, then the GateCondition checks if 
the target reaches a wake-up condition (e.g. the display of a nag, 
a specific pattern is present in the target’s memory, or a specific 
window has been created) then writes to the target’s memory the 
patches we want to do (previously identified with Olly for 
example) and perform some custom actions (or example 
read/write the Context), the resume the thread. 

CreateProcess 
SUSPENDED

Initialize the 
patches vector

ResumeThread

SuspendThread

GateCondition

Finds the place where 
to patch in the targets 

memory space

WriteProcessMemory

ResumeThread

Patch data 
vector

Process 
freely 

running

[not reached]

End

Do Custom 
Actions

Obviously this schema is simple and doesn’t keep in consideration 
cases such as multi-threaded applications, but in these cases the 
actions changes a little bit, but the overall concept remains. 
 
Figure 2 reports the same as UML sequence diagram for those of yo
who’s able to understand it (very simple anyway). 

u Figure 1 - Generic simple loader's 
flowchart 

© 2006 CodeBreakers Magazine  Page 4 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Loader Target

CreateProcess suspended

ResumeThread

Running Process

Init Patches Vector

Patch Vector

[init]

Check GuardCondition

SuspendThread

WriteProcessMemory

ResumeThread

[use]

 
Figure 2 Sequence Diagram of a simple loader 

 
 

2.1.2 Debugger Loader 
Debugger loaders have basically the same feature of the standard loader and can also debug the 
target process by using some specialized API function, debugging can be from a process which has 
to run or from a running process by using the debugger attach feature. 
 
The debugging functions can be used to create a basic, event-driven debugger. Event-driven 
means that the debugger is notified every time certain events occur in the process being debugged. 
Notification enables the debugger to take appropriate action in response to the events (for example 
exception which is generated from the target) then you can wait without do anything until some 
events occur and then take action or just pass the event handling to the target itself. Essentially 
the main body of such program is a big switch-case construct which have in its “case” the handled 
events. It’s the Operative System debugging environment that worries to send the debugger 
events to the registered debugger for that process. As a matter of facts an important step of such a 
loader is to register the loader as a debugger of the target process. This can be easily done through 
Windows APIs of course (anticipating there’s a special switch of the CreateProcess’s API). 
 
Generally speaking then independently of the type of loader you’ll choose you can gain the process 
control and then make some changes into its memory, the basic question when use standard 
loader instead of debugger loader, is strictly dependant from the target and related to the task 
which we have to do.  
 

 
© 2006 CodeBreakers Magazine  Page 5 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Essentially a standard loader is able to interact with the program without using the system’s debug 
APIs while a debug loader works more or less like a ring3 debugger, like OllyDbg, intercepting 
debug events and interacting the program this way. The choice among the two approaches is 
completely application’s dependant. Of course in the case you will choose to use a debugger’s 
loader you will also have to hide the loader to the application, more or less like you are normally 
doing using OllyDbg. There is a simple way to hide that a program is being debugged and we will 
use this approach before doing anything with the loader. 
Generally speaking the usefulness of these two types of loaders is the same. 
 

3 Write your first loader 
For the first example we want to focus on an application protected with Asprotect ealier than 2.0. 
The application itself it is not important, because the only thing that’s tied to the application is the 
patches vector. For this particular application the standard loaders or the debugger loaders are 
both fine, so we’ll write them both. You’ll be able to understand the code at its simplest level. 
 

NOTE 
Writing loaders for AsProtect with different versions will be argument of some 
following tutorials, for specific real applications. See as usual 
http://tutorials.accessroot.com for details. 

3.1 Patches Vector 
First of all we need to create a proper C structure to store the patches. Generally speaking what we 
need are: the original byte, the patched byte, the offset. The original byte is required because we 
want to add a little control before writing a patch into the victim.  
 

NOTE 
Blind Loaders are those loaders which are not doing these additional checks! It is 
important to add these checks (e.g. also the CRC check of the target) to be sure to 
patch the correct target’s version. 

 
In the example below we used a C++ class called Patch, but a C structure would have worked fine 
as well. Even 3 simple vectors of BYTES or DWORD for offset, original bytes, patched bytes would 
have done the work. The concept here is to build up the data-structures properly so as to write a 
simpler code after.  
 
 
<-------------Code Snippet-----------------> 
 // A little class (C++) which is useful to store the single patch data. It’s a facility 
// to use a C++ class, but any other structure is also usable, depending on your knowledge. 
class Patch { 
public: 
 Patch() {orig=address=patch=0;} 
 Patch(DWORD dw, BYTE bt) { orig=0; address=dw; patch=bt; }  
 DWORD address; 
 BYTE patch;  
 BYTE orig; 
}; 
 
// The patch vector is made of Patch objects (there are 15 patches for this specific example). 
Patch crk[15]; 
 
// Fill in the patch vector with the values we want to patch. 
crk[0]=Patch(0x0044337C, 0xEB); 
crk[1]=Patch(0x004795F0, 0xC3); 

 
© 2006 CodeBreakers Magazine  Page 6 of 60 

http://tutorials.accessroot.com/


CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
crk[2]=Patch(0x004795F1, 0x90); 
crk[3]=Patch(0x004795F2, 0x90); 
crk[4]=Patch(0x004795F3, 0x90); 
crk[5]=Patch(0x004795F4, 0x90); 
crk[6]=Patch(0x005E478E, 0x90); 
crk[7]=Patch(0x005E478F, 0x90); 
crk[8]=Patch(0x005E4790, 0x90); 
crk[9]=Patch(0x005E4791, 0x90); 
crk[10]=Patch(0x005E4792, 0x90); 
crk[11]=Patch(0x005E5669, 0xEB); 
crk[12]=Patch(0x005F1552, 0xEB); 
crk[13]=Patch(0x005E626E, 0xEB);  
crk[14]=Patch(0x005E67D0, 0xEB); 
<-------------End Code Snippet-----------------> 

 
As already told, the point is not the patches used in the example. In this very first example we 
have not used the “orig” bytes, because we are writing a blind loader. 
Given this piece of code common to both loaders types, we can go. 
 

3.2 Standard Loader 
As usual we present immediately the core structure of Standard Loader as we presented it so far. 
 
<-------------Code Snippet-----------------> 
int main(int argc, char** argv) { 
 
 //Handle of the victim main window 
 HWND VictimDlghWnd=NULL; 
 
 Patch crk[15]; 
 crk[0]=Patch(0x0044337C, 0xEB); 
 crk[1]=Patch(0x004795F0, 0xC3); 
 crk[2]=Patch(0x004795F1, 0x90); 
 crk[3]=Patch(0x004795F2, 0x90); 
 crk[4]=Patch(0x004795F3, 0x90); 
 crk[5]=Patch(0x004795F4, 0x90); 
 crk[6]=Patch(0x005E478E, 0x90); 
 crk[7]=Patch(0x005E478F, 0x90); 
 crk[8]=Patch(0x005E4790, 0x90); 
 crk[9]=Patch(0x005E4791, 0x90); 
 crk[10]=Patch(0x005E4792, 0x90); 
 crk[11]=Patch(0x005E5669, 0xEB); 
 crk[12]=Patch(0x005F1552, 0xEB); 
 crk[13]=Patch(0x005E626E, 0xEB);  
 crk[14]=Patch(0x005E67D0, 0xEB); 
 //These are process’specific structures 
 PROCESS_INFORMATION pi; 
 STARTUPINFO si;  
 memset(&pi, 0, sizeof(PROCESS_INFORMATION)); 
 memset(&si, 0, sizeof(STARTUPINFO)); 
 si.cb=sizeof(si); 
 
 if( !::CreateProcess( ".\\TargetProcess.exe", // No module name (use command line).  
  NULL,       // Command line.  
  NULL,             // Process handle not inheritable.  
  NULL,             // Thread handle not inheritable.  
  NULL,             // Set handle inheritance to FALSE.  
  CREATE_SUSPENDED, // suspended creation flags.  
  NULL,             // Use parent's environment block.  
  NULL,             // Use parent's starting directory.  
  &si,              // Pointer to STARTUPINFO structure. 
  &pi )             // Pointer to PROCESS_INFORMATION structure. 
  )  
 { 
  char szBuf[80]; 
  GetLastErrorMsg(szBuf); 
  MessageBox(NULL, szBuf, MSG_CAPTION, MB_OK);  
  return 1; 
 } 

 
© 2006 CodeBreakers Magazine  Page 7 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 
 ResumeThread(pi.hThread); 
 
 // CheckGuardCondition implementation 
 // Execute the FindConsole function that locates the console  
 while(VictimDlghWnd==NULL) { 
  EnumDesktopWindows(NULL, EnumWindowsProc, (LPARAM)&VictimDlghWnd); 
  if(VictimDlghWnd!=NULL) { 
 
   ::MessageBox(NULL,"Victim's window found",MSG_CAPTION, MB_OK); 
    
   HANDLE hProcess=NULL; 
   hProcess = pi.hProcess; 
    
   SuspendThread(pi.hThread); 
    
   //find the memory addresses to patch! 
   unsigned long byteswritten[15]; 
   unsigned long bytesread[15]; 
   char errors[15][256]; 
 
   for(int i=0; i<15; i++) { 
    bytesread[i]=0; 
    byteswritten[i]=0; 
    strcpy(errors[i],""); 
   } 
    
    
   for (int idx=0; idx<15;idx++) { 
    ReadProcessMemory(hProcess, 
     (LPVOID)(crk[idx].address),  
     (LPVOID)(&(crk[idx].orig)), 1, 
     &bytesread[idx]); 
    if(bytesread[idx]==0) 
     GetLastErrorMsg(errors[idx]); 
    else 
     strcpy(errors[idx],"OK"); 
 
    WriteProcessMemory(hProcess, 
     (LPVOID)(crk[idx].address),  
     (LPVOID)(&(crk[idx].patch)), 1, 
     &byteswritten[idx]); 
    if(byteswritten[idx]==0) 
     GetLastErrorMsg(errors[idx]); 
    else 
     strcpy(errors[idx],"OK"); 
   } 
 
   ResumeThread(pi.hThread); 
    
   char str[10000]; 
   strcpy(str,""); 
    
   break; 
    
  } 
 } 
 return 0; 
} 
 
void GetLastErrorMsg(char *szBuf)  
{  
    TCHAR szBuf[80];  
    LPVOID lpMsgBuf; 
    DWORD dw = GetLastError();  
  
    FormatMessage( 
        FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, 
        NULL, 
        dw, 
        MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), 
        (LPTSTR) &lpMsgBuf, 
        0, NULL ); 

 
  

© 2006 CodeBreakers Magazine  Page 8 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
    wsprintf(szBuf, "Loader failed with error %d: %s", dw, lpMsgBuf);  
  
    LocalFree(lpMsgBuf); 
} 
 
BOOL CALLBACK EnumWindowsProc( 
  HWND hWnd,      // handle to parent window 
 LPARAM lParam   // application-defined value  
) { 
 char ClassName[256]; 
 
 GetClassName(hWnd,ClassName, 256); 
 char caption[256]; 
 GetWindowText(hWnd, caption,256); 
   
 if(strstr(caption,"Main Target Window Caption")!=0 && _stricmp(ClassName,"TMainForm")==0)  
 { 
  HWND *hw=(HWND*)lParam; 
  *hw=hWnd; 
  return FALSE; 
 } 
 return TRUE; 
} 
 
<-------------End Code Snippet-----------------> 

 
The loader has the same structure of Figure 1 but in this case the guard condition is something that 
in most applications works just fine. The check is simple: if the main application’s window is 
already among the windows that are on the desktop (visible or not) then the application is ready to 
be patched. This guard is used just because any Windows’ application has a so called message 
pump that allows the application to handle messages coming from the GUI and generally 
implements the event-driven architecture of Windows. In Windows, just being brief, the only things 
that have message pumps are the windows (either visible or not). So any application to perform 
some graphical interface requires always a window. If your patch can be applied to the program 
once uncompressed in memory, a reliable method to understand that the program is ready in 
memory and unpacked, is to check for the presence of its main window. Well, what the above code 
does is to enum the windows starting from the desktop, using the following instruction: 
 
EnumDesktopWindows(NULL, EnumWindowsProc, (LPARAM)&VictimDlghWnd) 
 
What this instruction does is to call for all the windows on the desktop the EnumWindowProc with 
the handle of the currently examined window and a custom parameter, which is VictimDlgHwnd in 
our case. If you have a look at what the EnumWindowsProc does you will see that it simply uses two 
APIs, GetClassName and GetWindowText to get the caption of the window and check if it’s the victim’s 
window we are searching (that is of type TMainForm for the example and has a specific caption). 
Returning FALSE the cycle stops and the control returns to the main function. 
 
Then the program applies one by one the patches of the patches vector. 
 
Obviously there are some assumptions at the base of such a simple loader: 

• the victim is single thread; 
• the used packer once the application is unpacked in memory doesn’t do much checks; 
• the memory of the target process can be written; 
• the security context of the victim allows us to operate on it; 
• the victim doesn’t have complex anti-tampering protections (see [10]). For example with 

Armadillo and COPYMEM2 this approach won’t work. 
 

All these limitations can be overcome, but of course make the sources more complicated. 

 
© 2006 CodeBreakers Magazine  Page 9 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

3.3 Debugger Loader 
First of all, the loader has to create/attach a new/existing process and work on the target memory 
space. Because I’ve to talk about debugging a running process we have to search for some API 
able to open a process which is still active in memory and perform the attach feature. Once the 
process was attached the loader can start to wait for some event by settings a suitable debugging 
loop, in this loop all the event which came from the target is passed to the loader for debugging 
and finally the loader have to pass the control to the target or close the target or detach from the 
target and leave this one to run freely (this last feature is available only with Windows XP). 
 
More schematically we have: 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Create a process  
or 

Open an existing process 

Some 

N Y 

Event 

Figure 3 - Debugger loader main cycle 

 
The CreateProcess function enables a debugger to start a process and debug it, specifying a 
proper creation parameter. 
 
The OpenProcess function enables a debugger to obtain the identifier (PID or process identifier) of 
an existing process. (The DebugActiveProcess function uses this identifier to attach the debugger 
to the process.) Typically, debuggers open a process with the PROCESS_VM_READ and 
PROCESS_VM_WRITE flags. Using these flags enables the debugge\r to read from and write to the 
virtual memory of the process by using the well knows ReadProcessMemory and 
WriteProcessMemory functions. 
 
The CreateProcess function should already be known, from MSDN library and [1], so we’ll describe 
only the latter one. 
 

© 2006 CodeBreakers Magazine  Page 10 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

MSDN states the following about the OpenProcess API : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4 - OpenProcess API description 
 
The first point to understand is about the dwProcessId parameter, this one is a unique identifier 
(namely process ID or PID) of the running process to open moreover ID Process numbers are 
reused, so they only identify a process for the lifetime of that process. 
 
Each process provides the resources needed to execute a program. A process has a virtual address 
space, executable code, open handles to system objects, a security context, a unique process 
identifier, environment variables, a base priority, minimum and maximum working set sizes, and at 
least one thread of execution. Each process is started with a single thread, often called the primary 
thread, but can create additional threads from any of its threads. 
 
A thread is the entity within a process that can be scheduled for execution. All threads of a process 
share its virtual address space and system resources. In addition, each thread maintains exception 
handlers, a scheduling priority, thread local storage, a unique thread identifier, and a set of 
structures the system will use to save the thread context until it is scheduled. The thread context 
includes the thread's set of machine registers, the kernel stack, a thread environment block, and a 
user stack in the address space of the thread's process. Threads can also have their own security 
context, which can be used for impersonating clients. 
 

NOTE 
From above consideration we have another very important remark about the address 
space of the target process, this one is different from the address space of the 
loader, every application have is own address space which is different from other, 
this is a key point and must be keep in mind in order to understand following 
consideration about accessing the process space from the loader space.  

 
Then now we have to look for a methods able to retrieve the (process) identifier related to our 
target process, this goal can be achieved by using the process enumeration and more in detail all 
the feature which came from the PSAPI.DLL. 
 

 
© 2006 CodeBreakers Magazine  Page 11 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

3.3.1 Hiding a debugger to the target process 
Of course if you’re going to debug a program or to attach a debugger to a running process, the first 
thing to worry about is to hide the debugger to the process’s controls. There are plenty of ways for 
a program to check if it is being debugged or not and not all of them can be easily fooled (see also 
[9]). What we are going to insert here is the fooling of the most common (easy) anti-debugging 
check, that lazy programmers use anywhere. As already introduced in [1], the most used API is 
IsDebuggerPresent, which returns 1 if yes otherwise 0 (false). The problem with a loader is that the 
API must be fooled into the target’s process’s space, thus the Hiding function will be a little 
different. 
 
It comes really handy at this point to understand a little a structure each running process has, 
called PEB (Process Environment Block). This structure has several fields which are of interest to us 
especially the BeingDebugged element. We reported the TEB structure with the relative offsets of its 
elements, which are always useful while coding: 
 
TEB 
Offset Elements name Type  
+0x000  InheritedAddressSpace  : UChar  
+0x001  ReadImageFileExecOptions  : UChar  
+0x002  BeingDebugged  : UChar  
+0x003  SpareBool  : UChar  
+0x004  Mutant  : Ptr32 Void  
+0x008  ImageBaseAddress  : Ptr32 Void  
+0x00c  Ldr  : Ptr32 _PEB_LDR_DATA  
+0x010  ProcessParameters  : Ptr32 _RTL_USER_PROCESS_PARAMETERS  
+0x014  SubSystemData  : Ptr32 Void  
+0x018  ProcessHeap  : Ptr32 Void  
+0x01c  FastPebLock  : Ptr32 _RTL_CRITICAL_SECTION  
+0x020  FastPebLockRoutine  : Ptr32 Void  
+0x024  FastPebUnlockRoutine  : Ptr32 Void  
+0x028  EnvironmentUpdateCount  : Uint4B  
+0x02c  KernelCallbackTable  : Ptr32 Void  
+0x030  SystemReserved  : [1] Uint4B  
+0x034  ExecuteOptions  : Pos 0, 2 Bits  
+0x034  SpareBits  : Pos 2, 30 Bits  
+0x038  FreeList  : Ptr32 _PEB_FREE_BLOCK  
+0x03c  TlsExpansionCounter  : Uint4B  
+0x040  TlsBitmap  : Ptr32 Void  
+0x044  TlsBitmapBits  : [2] Uint4B  
+0x04c  ReadOnlySharedMemoryBase  : Ptr32 Void  
+0x050  ReadOnlySharedMemoryHeap  : Ptr32 Void  
+0x054  ReadOnlyStaticServerData  : Ptr32 Ptr32 Void  
+0x058  AnsiCodePageData  : Ptr32 Void  
+0x05c  OemCodePageData  : Ptr32 Void  
+0x060  UnicodeCaseTableData  : Ptr32 Void  
+0x064  NumberOfProcessors  : Uint4B  
+0x068  NtGlobalFlag  : Uint4B  
+0x070  CriticalSectionTimeout  : _LARGE_INTEGER  
+0x078  HeapSegmentReserve  : Uint4B 

 
This is instead the formal declaration of PEB structure, in case you might need it for your code: 
 
typedef struct _PEB { 
  BOOLEAN                 InheritedAddressSpace; 
  BOOLEAN                 ReadImageFileExecOptions; 
  BOOLEAN                 BeingDebugged; 
  BOOLEAN                 Spare; 
  HANDLE                  Mutant; 
  PVOID                   ImageBaseAddress; 
  PPEB_LDR_DATA           LoaderData; 
  PRTL_USER_PROCESS_PARAMETERS ProcessParameters; 
  PVOID                   SubSystemData; 
  PVOID                   ProcessHeap; 
  PVOID                   FastPebLock; 

 
  PPEBLOCKROUTINE         FastPebLockRoutine; 

© 2006 CodeBreakers Magazine  Page 12 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
  PPEBLOCKROUTINE         FastPebUnlockRoutine; 
  ULONG                   EnvironmentUpdateCount; 
  PPVOID                  KernelCallbackTable; 
  PVOID                   EventLogSection; 
  PVOID                   EventLog; 
  PPEB_FREE_BLOCK         FreeList; 
  ULONG                   TlsExpansionCounter; 
  PVOID                   TlsBitmap; 
  ULONG                   TlsBitmapBits[0x2]; 
  PVOID                   ReadOnlySharedMemoryBase; 
  PVOID                   ReadOnlySharedMemoryHeap; 
  PPVOID                  ReadOnlyStaticServerData; 
  PVOID                   AnsiCodePageData; 
  PVOID                   OemCodePageData; 
  PVOID                   UnicodeCaseTableData; 
  ULONG                   NumberOfProcessors; 
  ULONG                   NtGlobalFlag; 
  BYTE                    Spare2[0x4]; 
  LARGE_INTEGER           CriticalSectionTimeout; 
  ULONG                   HeapSegmentReserve; 
  ULONG                   HeapSegmentCommit; 
  ULONG                   HeapDeCommitTotalFreeThreshold; 
  ULONG                   HeapDeCommitFreeBlockThreshold; 
  ULONG                   NumberOfHeaps; 
  ULONG                   MaximumNumberOfHeaps; 
  PPVOID                  *ProcessHeaps; 
  PVOID                   GdiSharedHandleTable; 
  PVOID                   ProcessStarterHelper; 
  PVOID                   GdiDCAttributeList; 
  PVOID                   LoaderLock; 
  ULONG                   OSMajorVersion; 
  ULONG                   OSMinorVersion; 
  ULONG                   OSBuildNumber; 
  ULONG                   OSPlatformId; 
  ULONG                   ImageSubSystem; 
  ULONG                   ImageSubSystemMajorVersion; 
  ULONG                   ImageSubSystemMinorVersion; 
  ULONG                   GdiHandleBuffer[0x22]; 
  ULONG                   PostProcessInitRoutine; 
  ULONG                   TlsExpansionBitmap; 
  BYTE                    TlsExpansionBitmapBits[0x80]; 
  ULONG                   SessionId; 
} PEB, *PPEB; 

 
So the trick is to always set to 0 the byte BeingDebugged of the above structure. The problem is of 
course on how to find the PEB starting address. The PEB block is stored into another structure 
called Thread Environment Block (TEB), also known as Thread Information Block (TIB).  
 
The operating system maintains a structure called Thread Environment Block (TEB) for every 
thread running in the system. The FS segment register is always set such that the address FS:0 
points to the TEB of the thread being executed (as also reported in Figure 5). 
 

 
Figure 5 - Structure of the executive thread block 

 
© 2006 CodeBreakers Magazine  Page 13 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
Its structure is the following one, for reference use:  
 
typedef struct _TEB { 
  NT_TIB                  Tib; 
  PVOID                   EnvironmentPointer; 
  CLIENT_ID               Cid; 
  PVOID                   ActiveRpcInfo; 
  PVOID                   ThreadLocalStoragePointer; 
  PPEB                    Peb; 
  ULONG                   LastErrorValue; 
  ULONG                   CountOfOwnedCriticalSections; 
  PVOID                   CsrClientThread; 
  PVOID                   Win32ThreadInfo; 
  ULONG                   Win32ClientInfo[0x1F]; 
  PVOID                   WOW32Reserved; 
  ULONG                   CurrentLocale; 
  ULONG                   FpSoftwareStatusRegister; 
  PVOID                   SystemReserved1[0x36]; 
  PVOID                   Spare1; 
  ULONG                   ExceptionCode; 
  ULONG                   SpareBytes1[0x28]; 
  PVOID                   SystemReserved2[0xA]; 
  ULONG                   GdiRgn; 
  ULONG                   GdiPen; 
  ULONG                   GdiBrush; 
  CLIENT_ID               RealClientId; 
  PVOID                   GdiCachedProcessHandle; 
  ULONG                   GdiClientPID; 
  ULONG                   GdiClientTID; 
  PVOID                   GdiThreadLocaleInfo; 
  PVOID                   UserReserved[5]; 
  PVOID                   GlDispatchTable[0x118]; 
  ULONG                   GlReserved1[0x1A]; 
  PVOID                   GlReserved2; 
  PVOID                   GlSectionInfo; 
  PVOID                   GlSection; 
  PVOID                   GlTable; 
  PVOID                   GlCurrentRC; 
  PVOID                   GlContext; 
  NTSTATUS                LastStatusValue; 
  UNICODE_STRING          StaticUnicodeString; 
  WCHAR                   StaticUnicodeBuffer[0x105]; 
  PVOID                   DeallocationStack; 
  PVOID                   TlsSlots[0x40]; 
  LIST_ENTRY              TlsLinks; 
  PVOID                   Vdm; 
  PVOID                   ReservedForNtRpc; 
  PVOID                   DbgSsReserved[0x2]; 
  ULONG                   HardErrorDisabled; 
  PVOID                   Instrumentation[0x10]; 
  PVOID                   WinSockData; 
  ULONG                   GdiBatchCount; 
  ULONG                   Spare2; 
  ULONG                   Spare3; 
  ULONG                   Spare4; 
  PVOID                   ReservedForOle; 
  ULONG                   WaitingOnLoaderLock; 
  PVOID                   StackCommit; 
  PVOID                   StackCommitMax; 
  PVOID                   StackReserved; 
} TEB, *PTEB; 
 

The most interesting element for us is the Peb one, which is at an offset of 0x30 (which is the 
summed size of all the preceding elements into the TEB structure). 
 

 
© 2006 CodeBreakers Magazine  Page 14 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Figure 6 shows the correct API to use. Indeed there’s an undocumented function NtCurrentTeb1, 
which will give directly the TEB, but explaining how to use it would take us out of scope. 
 

 
Figure 6 - GetThreadSelectorEntry API 

 
The returned value is another structure LDT_ENTRY (not described here, but essentially it is used to 
store the address in a special way, able to handle very big values, because of all the valid 
addressing space of windows is huge). Anyway once the LDT_ENTRY returned by 
GetThreadSelectorEntry is converted into a linear value, it can be used to access the TEB and then 
the PEB, and then again the BeingDebugged element and set it to 0. 
 
The whole operation is in the code of the HideDebugger function reported here. 
This time you need to pass to the HideDebugger two target’s handles, the thread and the process 
handles. Both of them will be explained later on. 
 
<-------------Code Snippet-----------------> 
BOOL HideDebugger(HANDLE thread, HANDLE hproc) 
{ 
 CONTEXT victimContext;  
 
 // This function is used to patch the IsDebuggerPresent API which might be called from  
 // debugged program (e.g. ASProtect) in order to detect debugger presence. This function  
 // is mainly based on FS:[0] treating. 
 // In an x86 environment, the FS register points to the current value of the Thread  
 // Information Block (TIB) structure. 
 // One element in the TIB structure is a pointer to an EXCEPTION_RECORD structure, which  
 // in turn contains a pointer to an exception handling callback function. Thus, each  
 // thread has its own exception callback function. 
 // The x86 compiler builds exception-handling structures on the stack as it processes  
 // functions. The FS register always points to the TIB, which in turn contains a pointer  
 // to an EXCEPTION_RECORD structure. 
 // The EXCEPTION_RECORD structure points to the exception handler function.  
  
 // EXCEPTION_RECORD structures form a linked list: the new EXCEPTION_RECORD structure 
 // contains a pointer to the previous EXCEPTION_RECORD structure, 
 // and so on. On Intel-based machines, the head of the list is always pointed 
 // to by the first DWORD in the thread information block, FS:[0]  
  
 //77E5276B >  64:A1 18000000  MOV EAX,DWORD PTR FS:[18] 
 //77E52771    8B40 30         MOV EAX,DWORD PTR DS:[EAX+30] 
 //77E52774    0FB640 02       MOVZX EAX,BYTE PTR DS:[EAX+2] 
 //77E52778    C3              RETN 
  

                                       

 

1 NTSYSAPI  PTEB NTAPI NtCurrentTeb( ); 

© 2006 CodeBreakers Magazine  Page 15 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 // Set up the victimContex access flag 
 victimContext.ContextFlags = CONTEXT_SEGMENTS; 
 // Fill the victim context structure with process data 
 if (!GetThreadContext(thread, &victimContext)) 
  return FALSE; 
  
 // GetThreadSelectorEntry is only functional on x86-based systems. 
 // For systems that are not x86-based, the function returns FALSE.  
 // The GetThreadSelectorEntry function fills this structure with 
 // information from an entry in the descriptor table. You can use this information  
 // to convert a segment-relative address to a linear virtual address. 
 // The base address of a segment is the address of offset 0 in the segment. 
 // To calculate this value, combine the BaseLow, BaseMid, and BaseHi members 
  
 LDT_ENTRY sel; 
 if (!GetThreadSelectorEntry(thread, victimContext.SegFs, &sel)) 
  return FALSE; 
  
 DWORD fsbase = (sel.HighWord.Bytes.BaseHi << 8| sel.HighWord.Bytes.BaseMid) << 16| 
      sel.BaseLow; 
 DWORD RVApeb; 
 SIZE_T numread; 
  
 if (!ReadProcessMemory(hproc, (LPCVOID)(fsbase + 0x30), &RVApeb, 4, &numread) || 
  numread != 4) 
  return FALSE; 
  
 WORD beingDebugged; 
 if (!ReadProcessMemory(hproc, (LPCVOID)(RVApeb + 2), &beingDebugged, 2, &numread)  
  || numread != 2) 
  return FALSE; 
  
 beingDebugged = 0; 
  
 if (!WriteProcessMemory(hproc, (LPVOID)(RVApeb + 2), &beingDebugged, 2, &numread)  
  || numread != 2) 
  return FALSE; 
  
 return TRUE; 
} 
<-------------End Code Snippet-----------------> 

 

3.3.2 Process Status Helper (PSAPI.DLL) 
Looking into the MSDN, we find a lot of useful info about process investigation by using the 
PSAPI.DLL (process status API) functions. 
The process status API (PSAPI) provides sets of functions for retrieving the following information: 
 

• Process Information 
• Module Information  
• Device Driver Information  
• Process Memory Usage Information  
• Working Set Information  
• Memory-Mapped File Information 

 
The system maintains a list of running processes (the one you see is when you see open the task 
manager). You can retrieve the identifiers (PID) for these processes by calling the 
EnumProcesses function. This function fills an array of DWORD values with the identifiers of all 
processes which is currently running in the system. 
Many functions in PSAPI require a process handle. A handle is a pointer to an object which is 
controlled by the system. To obtain a process handle for a running process, we have to pass its 
process identifier (obtained from EnumProcesses) to the OpenProcess function. Remember also 
to call the CloseHandle function when you are finished with the process handle (this don’t close 

 
© 2006 CodeBreakers Magazine  Page 16 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

the process but simply free the memory related to the opened handle, and allows to keep the 
system more stable). 
 
A module is an executable file or a DLL. Each process consists of one or more modules. You can 
retrieve the list of module handles for a process by calling the EnumProcessModules function. 
This function fills an array of HMODULE values with the module handles for the specified process. 
The first module is the executable file. Remember that these module handles are most likely from 
some other process, so you cannot use them with functions such as GetModuleFileName. 
However, you can use PSAPI functions to obtain information about a module from another process. 
To obtain module information: 
 

• Call the GetModuleBaseName function. This function takes a process handle and a module 
handle as input and fills in a buffer with the base name of a module (for example, 
KERNEL32.DLL). A related function, GetModuleFileNameEx, takes the same parameters as 
input but returns the full path to the module (for example, 
C:\WINNT\SYSTEM32\KERNEL32.DLL).  

 
• Call the GetModuleInformation function. This function takes a process handle and a 

module handle and fills a MODULEINFO structure with the load address of the module, the 
size of the linear address space it occupies, and a pointer to its entry point.  

 
Using this information we can write a code snippet able to find the process ID of the victim process 
and also to enumerate all the modules used by the process, below we will report a first snippet 
code to perform the process enumeration, module enumeration will be show later. 
 
First of all we need to use the PSAPI function then we have to build a valid pointer for each function 
which we have to use then: 
 
<-------------Code Snippet-----------------> 
hPsapi = LoadLibrary("psapi.dll"); 
 
if (!hPsapi) {   
    printf("Cannot load psapi.dll :-(\n"); 
    return; 
} 
 
pEnumProcessModules = (BOOL (WINAPI *)(HANDLE, 
   HMODULE *, 
   DWORD, 
   LPDWORD)) GetProcAddress(hPsapi, "EnumProcessModules"); 
pGetModuleBaseName = (DWORD (WINAPI *)(HANDLE, 
   HMODULE, 
   LPTSTR, 
   DWORD)) GetProcAddress(hPsapi, "GetModuleBaseNameA"); 
pGetModuleInformation=(BOOL (WINAPI *)(HANDLE, 
   HMODULE, 
   LPMODULEINFO, 
   DWORD)) GetProcAddress(hPsapi, "GetModuleInformation"); 
pEnumProcesses = (BOOL (WINAPI *)(DWORD*, 
   DWORD, 
   DWORD*)) GetProcAddress(hPsapi, "EnumProcesses"); 
 
// Make some simple check about right pointer assignment 
if ( (pEnumProcessModules == NULL) || (pGetModuleBaseName  == NULL) ) { 
  printf("Cannot load psapi functions\n"); 
  FreeLibrary(hPsapi); 
  return; 
} 
<-------------End Code Snippet-------------> 

 

 
© 2006 CodeBreakers Magazine  Page 17 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Now we have to collect the list of all the running processes and then for each one check if it is 
equal to our victim process. This task must be performed after the victim process is running then 
we have to sure about user has really started our process: 
 
<-------------Code Snippet-----------------> 
// ----------------------------------------- 
// Wait for user confirmation 
// ----------------------------------------- 
sprintf(szMsgText,"\tStart the installer and press OK when you are into the registration window"); 
MessageBox(NULL, szMsgText, szMsgCapt, MB_OK); 
printf("now go into the registration\nwindow and insert a fake serial...\n"); 
<-------------End Code Snippet-------------> 
 

Then we can start to look for all the running processes and check if at least one of them is the one 
we were searching, while saving the handler for future uses: 
 
<-------------Code Snippet-----------------> 
// ----------------------------------------- 
// Get the list of process identifiers. 
// ----------------------------------------- 
TCHAR szProcessName[MAX_PATH] = TEXT("<unknown>"); 
 
if ( !pEnumProcesses( aProcesses, (DWORD)sizeof(aProcesses), &cbNeeded ) )  
{ 
 if (hPsapi != NULL) 
  FreeLibrary(hPsapi); 
 return; 
} 

cProcesses = cbNeeded / sizeof(DWORD); // Calculate how many process identifiers were returned. 
for ( i = 0; i < cProcesses; i++ )   // Print the name and process identifier for each process. 
{ 
 hTmpProcess = OpenProcess( PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, 

     FALSE, 
     aProcesses[i] ); // Get a handle to the process. 

 if (NULL != hTmpProcess ) // Get the process name. 
 { 

   if ( pEnumProcessModules( hTmpProcess, &hMod, sizeof(hMod), &cbNeededTmp) ) 
   pGetModuleBaseName( hTmpProcess, 

hMod, 
                                            szProcessName, 

sizeof(szProcessName)/sizeof(TCHAR) ); 
  } 

 
    // Print the process name and identifier. 

   if (bDebugStage) 
   printf("%s  (PID: %u)\n", szProcessName, aProcesses[i] );  

 
   // Search for victim process name and retrieve the process ID 

   if ( strcmp(szProcessName,szVictimProcessName) == 0)  
  { 
   bVictimPIDfound = true; 
   aVictimProcessId = aProcesses[i]; 
  } 
    CloseHandle( hTmpProcess ); // Close the process handle 
 } 
  
if (bVictimPIDfound == false) 
{ 
  MessageBox( NULL, 

    "\tVictim process ID not found!\n You've to start the installation before!", 
       szMsgCapt, MB_OK); 

 
 if (hPsapi != NULL) 
  FreeLibrary(hPsapi); 
 return ; 
} 
else { 
 if (bDebugStage)  
  MessageBox(NULL, "\tVictim process ID found!", szMsgCapt, MB_OK); 
} 

 
<-------------End Code Snippet-------------> 

© 2006 CodeBreakers Magazine  Page 18 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

3.3.3 The debugging stage (the attach stage) 
Now we found the target process, the next step is about debugging this target, before going into 
the main debugging task we have to attach the target and this can be done by using the 
DebugActiveProcess API function. 
 
 

 

 
 

 
 
 
 
 

Figure 7 - DebugActiveProcess API description 
 
The process is debugged with DEBUG_ONLY_THIS_PROCESS privilege; for the sake of clarity we 
have these two distinctions: 

 
Figure 8 - DEBUG process situation. 

 
From MSDN we have: the debugger must have appropriate access to the target process in order to 
read and write the process memory, and the debugger must be able to open the process for 
PROCESS_ALL_ACCESS. On Windows Me/98/95, the debugger has appropriate access if the 
process identifier is valid. On other versions of Windows, DebugActiveProcess can fail if the 
target process is created with a security descriptor that grants the debugger anything less than full 
access. If the debugging process (our loader) has the SE_DEBUG_NAME privilege granted and 
enabled, it can debug any process. 
 
After successfully execution of this function the process (debuggee) can be debugged and the 
debugger is expected to wait for debugging events by using the WaitForDebugEvent function. 
 
 
 
 
 

© 2006 CodeBreakers Magazine  Page 19 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
 

Figure 9 - WaitForDebugEvent function API.  
 
This function should be called in two ways, first one have dwMilliseconds value set from 0 to some 
value in this mode this function wait some event for a specified amount of millisecond and then 
return back the control to the debugger, the second way is by using the INFINITE constant; in this 
case the function doesn’t return until some event occurs (during this time the target runs freely 
and the debugger is inactive or frozen). 
 
<-------------Code Snippet-----------------> 
// -------------------------------------------- 
// Main debugger cycle 
// -------------------------------------------- 
 
DEBUG_EVENT DebugEv;                   // debugging event information  
DWORD dwContinueStatus = DBG_CONTINUE; // exception continuation  
HMODULE hDLL;      // temp handle used for target function offset calculation 
   

for(;;) {  
 // Wait for a debugging event to occur. The second parameter indicates 
 // that the function does not return until a debugging event occurs. 
 // We are waiting for infinite time, then wait for each Debug Event. 
  
 WaitForDebugEvent(&DebugEv, INFINITE); 
     
 // If we're into the first event save the process thread handle 
 if (!bFirstEvent) 
 { 
  hVictimThreadHandle = DebugEv.u.CreateProcessInfo.hThread; 
  bFirstEvent = true; 
 } 
   // Process the debugging event code.  
  switch (DebugEv.dwDebugEventCode) { 
  // Event handler … 
 } 
} 
<-------------End Code Snippet-------------> 
 

 
© 2006 CodeBreakers Magazine  Page 20 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

3.3.4 The debugging stage (the DEBUG_EVENT structure) 
When the attach stage is finished the system send to the debugger a 
CREATE_PROCESS_DEBUG_EVENT debugging event, when the WaitForDebugEvent function 
return to the debugger the system fill the DebugEv structure with the process data. 
 
Now is time to give a close look to the DEBUG_EVENT structure that describes a debugging event: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

This structure give a complete situation of the event which have triggered the 
WaitForDebugEvent function and also keep more interesting parameters as the 
CREATE_PROCESS_DEBUG_INFO structure which is a member of the main DEBUG_EVENT 
structure. The CREATE_PROCESS_DEBUG_INFO structure contains process creation information 
that can be used by a debugger, from MSDN we have: 

Figure 10 - The DEBUG_EVENT structure 

Figure 11 - The CREATE_PROCESS_DEBUG_INFO structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE 
A more important thing to do is about the hThread parameter because this handle is 
related to the main thread creation and is also useful when we have to read or 
modify the CONTEXT for the process examined, this it is the right time to save this 
handle because for all the future event this parameter will be set to NULL. 

© 2006 CodeBreakers Magazine  Page 21 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 

4 An unifying C++ framework for writing loaders 
Now it’s time to understand better what we did playing with C++ around loaders. After having 
written several loaders, we tried to cut out the complex or repetitive parts of all loaders placing 
them inside a C++ framework which will hide most of the complexity. We are going now to explain 
how to code a loader using such a framework while the internals are left to the included sources 
(commented). The resulting framework isn’t that simple indeed and took a little to code it. You’ll 
have to integrate this document with the comments in the code. 
 
Obviously there are some assumptions at the base of this framework: 

• the security context of the victim can be modified by the user to allows us to write on 
process’s memory; 

• the victim doesn’t have complex anti-tampering protections (see [10]). For example with 
Armadillo and COPYMEM2 this approach won’t easily work. 

 

4.1 Generics on the framework 
First of all for those of you which have already read [1] there are a lot of classes used also in this 
framework which I already used for Oraculums (and will not explain again). Oraculums are indeed 
special loaders, with a specific scope in mind!  
 

BMG_gsar

CAccessMemory

Loader

NTInternals

ShubLoaderCore

Patch

1 1

0..1

*

 
Figure 12 - Main framework classes structure (class diagram) 

 
Figure 12 reports the main classes’ structure of the framework using an UML notification. There are 
more classes behind these, but are not so important for us and indeed quite complicated to explain. 
 
We will go in details for each one. Anyway briefly: 

• NTInternals class. It is the base class for all the loader’s classes and exposes some useful NT 
methods that are available in the Kernel32, but not exposed by the compiler (such as 
SuspendProcess, DebugActiveProcessStop). 

• ShubLoaderCore class. It is the real core of the framework where all the work is performed.  

 
© 2006 CodeBreakers Magazine  Page 22 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

• Loader class. It is the top part of the loader where all the application specific code is. This is 
or should be the only class that a developer should modify and where the applications 
specific things should be coded. This class is quite complex, but left alone is not able to do 
anything. What it needs is a derived class which instructs the engine on how/when patch the 
victim. 

• Patch is a class, a little more complex than the one presented in section 3.1, which is used to 
easily store the patches of the program. Being the patches application specific by definition, 
this class must be initialized into the Loader’s class. 

• BMG_gsar class. It is a class I have already used in [1] which implements a really fast 
memory patterns searching algorithm (see [1] for details). It is used by the ShubLoaderCore 
class to search patches faster. 

• CAccessMemory class. It is the base class for BMG_gsar, which gives to this class the 
methods for a controlled access to memory (handling read/write rights of accessed pages).  

 
As for all the Object Oriented Programming the guiding concept behind the whole framework is the 
encapsulation of problems. As I already told usually the only thing a developer should modify is the 
Loader class. 
 
Now we will present a little the most important classes: NTInternals, ShubLoaderCore and a sample 
Loader class. 
 

4.1.1 NTInternals 
 

This class implements few wrappers of the NT 
internals functions the loader will use. The 
functions are directly taken from exports in the 
system’s dlls, because Microsoft doesn’t officially 
give support for these APIs (you cannot find the 
prototypes in the standard Visual Studio 
distributions) or because we didn’t want to install 
the whole DDK package (Driver Developer Kit).  

+DebugActiveProcessStop(in dwProcessId : unsigned long)
+GetProcessId(inout Process : void*)
+HideDebugger(inout thread : void*, inout hproc : void*)
+ZwResumeProcess(inout Process : void*)
+ZwSuspendProcess(inout Process : void*)
+ZwSuspendThread(inout hThread : void*, inout pSuspendCount : unsigned long*)

NTInternals

We implemented them here in the following basic way (for example for DebugActiveProcessStop): 
 
<-------------Code Snippet-------------> 
//Function pointer to the export. 
typedef WINBOOL  (STDCALL *fcnDebugActiveProcessStop)(DWORD dwProcessId); 
 
WINBOOL STDCALL NTInternals::DebugActiveProcessStop(DWORD dwProcessId)  
{  
 FARPROC addrIDP;  
 HINSTANCE hKer; 
  
 fcnDebugActiveProcessStop fcn; 
 
 hKer = GetModuleHandle("Kernel32");   
 addrIDP = GetProcAddress(hKer, "DebugActiveProcessStop"); 
  
 //Check API 
 if (addrIDP!=NULL) {  
  //gives to the function pointer the parameters. 
  fcn=(fcnDebugActiveProcessStop)addrIDP;  
  return fcn(dwProcessId); 
 } 
 return 0; 
} 
<-------------End Code Snippet-------------> 

 
© 2006 CodeBreakers Magazine  Page 23 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
Note that the Windows’ API DebugActiveProcessStop is available on Windows only since the XP 
release. Using the NTInternals class, ensures the compatibility of the loader with all the Windows 
systems (9x/NT/2000), just because if the function is present in the system it is used (the addIDP 
variable is not NULL) otherwise the function simply does nothing, returning 0. 
 
An important note is about the inclusion in this class of the HideDebugger API already described in 
section 3.3.1. This gives to you the possibility to add extra hiding might be required deriving this 
API into a derived class. Simply you can write code such this: 
 
<------------- Code Snippet-------------> 
BOOL HideDebugger(HANDLE thread, HANDLE hproc) { 
 
 //TODO: Add you own extra hiding customization here 
 return NTInternals:: HideDebugger(thread, hproc); 
} 
<-------------End Code Snippet-------------> 
 

4.1.2 ShubLoaderCore 

+ShubLoaderCore()
+~ShubLoaderCore()
+ActionsAfterCreateProc()
+ActionsAfterGateProcedure()
+ActionsBeforeClosingLoader()
+ActionsBeforeCreateProc()
+ActionsBeforeGateProcedure()
-CRCFile(in strfilename : charconst *, in storedCRC : unsigned long)
+DoMyJob(in argc : int, inout argv[] : char* )
+GateProcedure()
+GetLastErrorMsg()
+GetPI()
+InitializePatchStack(inout p0 : growing_arraystack<Patch>&)
+PushPatchVector(inout stkPatches : growing_arraystack<Patch>&, in startAddr : unsigned long, inout OriVector : unsigned char*, inout PatchVector : unsigned char*, in dimension : int, inout fcn : void (*)(unsigned long))
+ReadProcessMemory(inout hProcess : void*, inout lpBaseAddress : void*, inout lpBuffer : void*, in nSize : unsigned long, inout lpNumberOfBytesRead : unsigned long*)
-Reflect(in ref : unsigned long, in ch : char)
+SetCreateProcessFlags(in dwFlags : unsigned long)
+SetMainWnd(inout hWnd : HWND__*)
+SetSilentMode(in bVal : int)
+SetStartingMsg(inout msg : char*)
+SetStartingMsg(in msg : TextString)
+SetVictimCRC(in crc : unsigned long)
+SetVictimDetails(inout p0 : TextString&)
+WriteProcessMemory(inout hProcess : void*, inout lpBaseAddress : void*, inout lpBuffer : void*, in nSize : unsigned long, inout lpNumberOfBytesWritten : unsigned long*)

-m_bcheckCRC
-m_dwCreationFlags
-m_dwVictimCRCValue
-m_ghMainWnd
-m_SilentMode
-m_startingMsg
-pi

ShubLoaderCore

 
 
This class is quite complex. All of its methods can be classified in two. 
  

• Virtual methods (see a C++ manual for the exact meaning of “virtual methods” of a class): 
briefly this means that if the derived class (Loader) implements them then this 
implementation is used, otherwise a dummy implementation is instead. Virtual functions are 
functions for which a given class has only a default implementation. If a derived class 
implements one of them, then the derived implementation is used, otherwise the default 
one. This mechanism is essential to allow derived classes to specify a different behaviour for 
a given method, thus to customize the loader’s behaviour. 

• Help methods, which can be used from within the virtual methods implementation to easily 
do common operations. 

 

 
© 2006 CodeBreakers Magazine  Page 24 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

4.1.2.1 DoMyJob 
The main flowchart is implemented into the DoMyJob method, which is the real core of the class. 
 
• int DoMyJob(int argc, TCHAR* argv[]). This is the core part of the loader, does all the hard work. 

The parameters are the command-line parameters of the loaders which are passed to the victim 
as well (usually they are coming from parameters with same names from the loader's main).  If 
you don't need them simply set all of them to NULL. A loader is usually a DOS or a Win32 
application, which command line parameters can be passed to the DoMyJob method. The 
function then will pass them transparently to the victim process. This is really useful when the 
loader is applied to a victim that uses command line parameters.  

 
The DoMyJob method is the only one that the main() function of the loader must call in order to 
start the loader. See following sections where a complete loader writing process is described. 
 
With respect to Figure 1 we modified a little the flow chart, inserting some more custom control 
points which usually are needed to perform a loader in most situations. Figure 13 reports the new 
flowchart where the additional methods are coloured differently. These methods are the virtual 
methods mentioned previously that the Loader class can implement to customize the whole loader 
behaviour. 
 
The most important place where to insert the applications dependant things is the GateProcedure 
which is a function that should return TRUE when the application is ready to be patched. The 
GateProcedure then is a continuous test on the victim to find if a patching condition is met. All the 
other virtual functions are ancillary, meant to prepare the things. 
 
The source code of the class is heavily commented, thus for further clarification take a look at 
those comments. 
 
4.1.2.2 Virtual Methods 
Pure virtual methods, MUST be overwritten by the class derived from ShubLoaderCore which 
implements specific actions for the specific loader, such as patches, application path, and a specific 
gate condition. 
 
Only ActionsBeforeCreateProc() and ActionsAfterCreateProc() are not pure virtual, because several 
times you don't need to do anything special here inside (derived classes are not obliged to 
implement them). 
 
• virtual BOOL SetVictimDetails(/*OUT*/ TextString &victimFileName). Set the Victim's name and it's 

CRC (optional, using SetVictimCRC()). The TextString is an OUT parameter, must be set by this 
function if you don't call SetVictimCRC from within the CRC isn't checked. 

 
• virtual BOOL InitializePatchStack(/*OUT*/ growing_arraystack<Patch> &stkPatches). Add to the 

patches stack the patches to do. The stkPatches variable is an OUT parameter and must be filled 
by the function. You can also use matrix of consecutive binary data, such for example coming to 
a dump or a long patch. In this case use the PushPatchVector which pushes on the Patch stack a 
whole matrix of consecutive patches, starting from an initial address. All the patches are stored 
into a stack of patches, which is internally handled. This logic allows adding whatever patches 
you like. If the order of patches is important, consider the stack logic, so the first patch added is 
the last applied. The variable holding the stack is the stkPatches, which must be used. 

  
 
© 2006 CodeBreakers Magazine  Page 25 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

• virtual BOOL ActionsBeforeCreateProc(). Invoke an action just before the call to CreateProcess. 
  
• virtual BOOL ActionsAfterCreateProc(). Invoke an action just after the call to CreateProcess, while 

it is still SUSPENDED 
  
• virtual BOOL ActionsBeforeGateProcedure(). Actions performed just before calling the 

gatecondition, are useful to prepare it if needed. 
  
• virtual BOOL GateProcedure(). It's the condition till the Loader waits before Suspending the 

process and applying patches. Returns TRUE when ready to patch. 
  
• virtual BOOL ActionsAfterGateProcedure(). Actions performed just after the GateProcedure to clean 

eventually the special settings made to reach the GateProcedure. This operation is done after 
having applied all the patches but before resuming the process. 

  
• virtual BOOL ActionsBeforeClosingLoader(). Invoke an action just before closing the loader. 

 
© 2006 CodeBreakers Magazine  Page 26 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

CreateProcess

InitializePatchStack

Resume Thread/
Process

Suspend Thread/
Process

Apply Patches

ActionsAfterGateProcedure

ActionsBeforeClosingLoader

Patch data

Victim 
process 

running freely

[N]

End

Resume Thread/
Process

SetVictimDetails

ActionsBeforeCreateProc

Initialize 
the 

loader

CRC Check End
[fails]

ActionsAfterCreateProc

ActionsBeforeGateProcedure

GateProcedure

Reached

 
Figure 13 - Modified flowchart od the ShubLoaderCore::DoMyJob method 

 
© 2006 CodeBreakers Magazine  Page 27 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

4.1.2.3 Helper Methods 
Helper methods are available to be used into the virtual methods to perform some initializing 
actions (e.g. setting the CRC of the victim, or setting the loader to be silent, not returning any 
message windows). 
 
• TextString GetLastErrorMsg(). Retrieves a formatted message of the last system error message. 

Use for you own error checking/reporting in the derived classes. 
 
• static void SetMainWnd(HWND hWnd). This function might be used from inside the GateCondition 

procedure to set the real main HWND of the application. When a program is difficult to suspend, 
the Loader tries to suspend the whole process using undocumented low level APIs, which 
requires, in order to be executed, the handle of the main process' window. If this method isn’t 
called these undocumented tentatives to stop the victim process are not used. Do not call if you 
are not experiencing problems suspending the victim’s process. 

 
• void SetCreateProcessFlags(DWORD dwFlags). Used to define new creation flags to be passed to 

CreateProcess API. Default value is CREATE_SUSPENDED and you don't need to call this method to 
set it. Otherwise if you want to specify something else, call it properly.  For example if you are 
coding a debugger loader you’ll surely need to call this method with proper parameters. Can be 
called in any function before the call to CreateProcess, thus one of the following: PushPatchVector 
|| SetVictimDetails || InitializePatchStack || ActionsBeforeCreateProc. The most logical place is 
anyway ActionsBeforeCreateProc. For example to create a debugger loader use this combination: 
DEBUG_PROCESS | DEBUG_ONLY_THIS_PROCESS | CREATE_NEW_CONSOLE. 

 
• PROCESS_INFORMATION* GetPI(). Use this function in all the derived classes to get the 

PROCESS_INFORMATION structure. If it's NULL means that the process has not been already 
started or something went wrong! 

 
• void SetVictimCRC(DWORD crc). Set the victim's CRC. If invoked the loader will check against the 

real victim's CRC (calculated on the whole victim’s file). 
 
• void SetSilentMode(BOOL bVal). This function must eventually be called into the derived class and 

modify the whole behavior of the program. If it is defined the loader does not issue most of the 
errors messages which are usually issued. This is useful for those cases with which the dialogs 
are disturbing the program or for those cases where error messages are useless. An example: 
suppose that a victim program creates another internal thread which closes the main thread and 
continue running from that thread or from that thread launches another instance of itself (it’s a 
quite common custom protection). In this case the loader couldn't be able to suspend the 
thread/process because it would not be active anymore. An error message will be issued. But 
anyway properly writing the GateProcedure() the loader would still work (for example waiting for 
the main victim's windows to appear) and the error would be not meaningful. In this case you 
would use the SILENT_MODE set to TRUE. By default is set to FALSE! 

 
• void SetStartingMsg(). Used to modify the starting message of the loader. If not used the loader 

uses a standard string. This function should be called for example in the SetVictimDetails method 
or in the derived class constructor. 

 
• int PushPatchVector(growing_arraystack<Patch> &stkPatches, DWORD startAddr, BYTE *OriVector, BYTE 

*PatchVector, int dimension, fcnPatchCallBack fcn ). Add a whole Vector of patch data. This 

 
© 2006 CodeBreakers Magazine  Page 28 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

function takes two BYTEs vectors and pushes each value to a stack of Patch objects, the 
fcnPatchCallBack is applied to the last Patch of the vector, so as eventually the action is 
performed at the end of the operation.  
 
Input parameters: 
- stkPatches stack of Patch elements where the values are pushed 
- startAddr, the address where the vector starts.  
- OriVector, vector of original bytes, if NULL Patch objects will not check original values 
- PatchVector, vector of new bytes 
- dimension, dimension of the vector (the two vectors should be long the same) 
- fcn, this callback will be applied to the first pushed values of the vector  (due to the stack 

logic will be the last applied). It’s is simply a function callback which is called after the array 
of patches has been applied, which allows to perform any custom operation, just after the 
application of a “mega” patch. Most times for simple loaders is NULL. 

 
Returns 0 if all went fine, otherwise an error code number <0 (see implementation for codes). 
This function is extremely useful when you have to patch several consecutive bytes, so you 
might write a piece of code such this: 
 
<-------------Code Snippet-------------> 
typedef void (*fcnPatchCallBack) (DWORD addr); 
fcnPatchCallBack fcn(DWORD addr) { 

char str[256]; 
sprintf(str,”Patch applied at address %X”, addr); 
::MessageBox(NULL, str, DEFAULT_MSG_CAPTION, 
MB_OK|MB_ICONEXCLAMATION|MB_APPLMODAL); 
} 

  
 BYTE iPatchDataInj[87] ={  
     0x90, 0x90, 0x90, 0x90, 0x90, 0xE9, 0x01, 0x00, 0x00, 0x00, 0xBC, 0x8B, 0x45, 0xFC, 0x8B, 
      0x40, 0x14, 0xE8, 0xC2, 0x21, 0xED, 0xFF, 0x8B, 0x45, 0xFC, 0x8B, 0x58, 0x1C, 0x85, 0xDB, 
   0x74, 0x10, 0x8B, 0xC3, 0xE8, 0x01, 0xB1, 0xF5, 0xFF, 0x8B, 0xD0, 0x8B, 0xC3, 0xE8, 0x84, 
   0xB3, 0xF5, 0xFF, 0x8B, 0x45, 0xFC, 0x8B, 0x40, 0x20, 0x85, 0xC0, 0x74, 0x07, 0x33, 0xD2, 
  0xE8, 0x17, 0x7C, 0xE8, 0xFF, 0xC6, 0x45, 0xFB, 0x01, 0x8B, 0x45, 0xFC, 0xC6, 0x40, 0x19, 
  0x00, 0xEB, 0x04, 0x80, 0x8E, 0x8C, 0x06, 0x90, 0x90, 0x90, 0x90, 0x90 }; 

 
PushPatchVector(stkPatches, 0x005C684C, NULL, iPatchDataInj, 87, fcn); 

 <-------------End Code Snippet-------------> 
 

This piece of code applies the whole matrix (87 bytes) of values starting from the address 
0x005C684C and at the end calls the function fcn, which shows a messagebox. 

• BOOL ReadProcessMemory(HANDLE hProcess, LPVOID lpBaseAddress, LPVOID lpBuffer, DWORD nSize, LPDWORD 
lpNumberOfBytesRead). 
BOOL WriteProcessMemory(HANDLE hProcess, LPVOID lpBaseAddress, LPVOID lpBuffer, DWORD nSize, 
LPDWORD lpNumberOfBytesWritten).  
These two reflectors of the similar methods of the BMG_gsar class (see [1]), allows a controlled 
access to memory automatically handling right to access memory pages and errors. The two 
methods behave exactly like their Windows counterparts, and the programmer writing the 
derived class can use these two functions exactly like in normal code, the C++ inherits 
properties will call these functions instead. Usually hence there’s no need to place further 
controls when calling these two methods from derived classes. 
 
 

4.1.2.4 When could happen to dump a big chunk of memory from a process? 
A very common case where you have to patch a long vector of consecutive bytes is when you have 
an asprotected program using an encrypted section of its code, as described in [12], and a valid 
key for the program (in the so lucky case that you or a friend brought the program). In this case 
 
© 2006 CodeBreakers Magazine  Page 29 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

you already know from [12] that there’s no way to decode the encrypted instructions unless you 
use a brute-force attack. Anyway in this case of course you don’t want to share your key, a solution 
then is to run the program as fully registered and examine its memory. In this case the encrypted 
sections of the program are completely decrypted resulting in real working code.  

 
What you have to do then is to save into a textual file (using OllyDbg and a tool we did, as shown 
in section 4.2.1 in following pages) the memory section from the registered program and insert it 
into a loader which loads the un-registered program (run without the “legal” key) and overwrite the 
same memory portion, substituting the encrypted memory block with the decrypted one.  

 

4.1.3 Loader 
As already told this class should concentrate all the 
victim’s specific things, and should drive the 
ShubLoaderCore class from which it is derived.  

 

 
This class usually is derived from of ShubLoaderCore, 
implements all or some of the parent’s virtual methods 
(depending on the needed customizations), using some 
of the parent’s helping methods.  
 
The better way to describe it is to directly see the 
sources of a working loader (see section 4.2). Our 

experience tells that once you wrote a single loader you’d be able to write the following in a snap. 

+Loader()
+~Loader()
+ActionsAfterCreateProc()
+ActionsAfterGateProcedure()
+ActionsBeforeClosingLoader()
+ActionsBeforeCreateProc()
+ActionsBeforeGateProcedure()
+GateProcedure()
+InitializePatchStack(inout stkPatches : growing_arraystack<Patch>&)
+SetVictimDetails(inout victimFileName : TextString&)

Loader

 

4.1.4 Patch Class 
 

 
The Patch class is simple in its 
meaning, it is a class used to store 
the patch details, composed of 
offset, original byte and patched 
byte. The Patch class represents a 
single byte patch: each object of 
type Patch represents a single 
patched byte. There’s also the 
possibility to perform a custom 
action (callback) for each single 
patch applied: the framework 
worries to eventually call the 
callback after the patch has been 
applied.  

+Patch(in p0 : unsigned long, in p1 : unsigned char)
+Patch(in p0 : unsigned long, in p1 : unsigned char, in p2 : unsigned char)
+Patch(in p0 : unsigned long, in p1 : unsigned char, in p2 : unsigned char, inout p3 : void (*)(unsigned long))
+Patch(in p0 : unsigned long, in p1 : unsigned char, inout p2 : void (*)(unsigned long))
+Patch(in p0 : unsigned long, inout p1 : void (*)(unsigned long))
+Patch()
+~Patch()

+address
+bytesread
+byteswritten
+checkorigByte
+fcnCallBack
+msg
+OnlyDoCallback
+orig
+patch

Patch

 
The class has several constructors which are used to perform the different types of patches you can 
have. Usually all these Patch object are pushed into a Patch object stack, in the InitializePatchStack 
method. 
 
Properties of the class: 

© 2006 CodeBreakers Magazine  Page 30 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

• address – is the RVA address of the patch 
• byteswritten – number of bytes written in the process 
• bytesread – number of bytes read from the process 
• checkorigByte – flag value used to check against the original byte read from the process. 
• fcnCallBack – callback called after the patch has been applied, can be different for each single 

Patch object 
• msg – a message reporting the result of the patch up to now, it is set by the framework 

automatically and can be taken to understand the status of a specific patch 
• OnlyDoCallback – flag to specify to only call the callback and do not write patches. Useful in 

some cases when you need special actions to be performed. 
• orig – is the original byte read from the application 
• patch – is the new byte to substitute 

 
Methods of the class: 

• Patch() – This one shouldn't ever be used, it' useless. It’s present only for C++ syntax. 
• Patch(DWORD addr, BYTE ptc) – Use this when you want to write a single byte at a specific 

location, regardless of the original byte. 
• Patch(DWORD addr, BYTE ptc, fcnPatchCallBack fcn) – Use this when you want to only write a 

byte at a specified address and perform a callback after. 
• Patch(DWORD addr, BYTE ori, BYTE ptc) – Use this when you want to also to check the original 

byte value then patch if matches (otherwise the patch is not applied and the msg member is 
set accordingly). 

• Patch(DWORD addr, BYTE ori, BYTE ptc, fcnPatchCallBack fcn) – Use this if you want also to call a 
specified callback after having done a patch. 

• Patch(DWORD addr, fcnPatchCallBack fcn) – Use this when you want to only do a specific 
callback without having to read/write anything. This is more or less like a “virtual” patch, 
where you are not patching anything. Value addr is passed to the callback and can be used 
by this function for whatever scopes you want. 

 
4.1.4.1 Callbacks 
The framework uses in different places some callbacks, they always must be functions with a 
specified prototype or of a specific custom type. 
This is the prototype of functions actions that can be performed to any patch. 
 
typedef void (*fcnPatchCallBack) (DWORD addr); 

 
for example then: 
 
fcnPatchCallBack fcn(DWORD addr) { 

//do whatever you like here 
} 
 
The function receives the address of the patch as unique argument and can then perform any 
operation you like. The callback mechanism is very powerful and flexible so as there’s the 
possibility to have a single callback for each single patched byte. 
 
 
 

 
© 2006 CodeBreakers Magazine  Page 31 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

4.2 How to write a loader using the framework 
We perfectly understand that writing a loader might be simpler than using the framework we are 
proposing, but the complexity you felt is due to the general approach we wanted to keep. The 
framework allows you to write very complex loaders without changing a line of the core code. Thus 
if a simple loader is your target then the framework might be an additional complexity not really 
needed, but as a matter of facts loaders written using the framework we proposed here are almost 
always the same (for simple cases) and we found in everyday RCEing that once you took time to 
write the first loader, it’s a snap to write the following, making the effort of writing them to the 
minimum. So we felt that would have been extremely important to add a section to this long 
tutorial where to teach a step-by-step process for creating a loader using the framework here 
proposed. So, go on with another chapter... 
 
Generally speaking the steps to write a loader are: 

1. Patch the program using OllyDbg; write down the offsets, the original and the modified bytes 
(or only the offset and the modified bytes). 

2. Calculate the CRC of the victim, for example using the CRCCalculator program we provide in 
this tutorial’s archive. 

3. Create a project with Visual C++, generally a DOS CRT Program is enough and shorter than 
a graphical Win32 program, including all the required sources from the framework 

4. Rename the original executable to something else. We’re used to rename the original exe as 
_originalname.exe, placing a leading “_” in the filename. 

5. Fill in the main() program. 
6. Customize the loader behaviour creating a derived class from ShubLoaderCore, called 

normally Loader or whatever you like. 
 
Step 1 is easy or not the target of this tutorial, so we will skip them, except for the usage of 
OllyTranslator. For the step 2 you can use the CRC calculator we provide which is very easy to use, 
just drag & drop the .exe over it to get the CRC value. Step 3 is given as already known because it 
is an everyday operation using Visual C++. Step 4 is easy (☺), step 5 is where the things start to 
be interesting. The 6th is the more complex one.. 
 

 
© 2006 CodeBreakers Magazine  Page 32 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

4.2.1 How to use OllyDumpTranslator 
This simple program [11] has been made to automatically transform the OllyDump file format (txt 
format) into a corresponding C patch data matrix, ready to be used for loaders. 
This utility is able to take an Olly file, like as this one: 
 
005EFD7F  90 90 90 90 90 E9 01 00 00 00 B5 8B C3 E8 0B D2  �����é_...µ‹ÃèÒ 
005EFD8F  FF FF EB 04 EA 04 86 E6 90 90 90 90 90           ÿÿë_ê_†æ����� 

 
and translate it into this C language slice of code: 
 
<-------------Code Snippet-------------> 
// ======================================= 
// Olly File Translator 1.0 by ThunderPwr 
// 03/03/2005 22.02.03 
// translating file utility 
// ======================================= 
  
#define IMAXINDEXINJ 29// Patch size 
 
// -------------------------------------------------------------------------------------------- 
// Definition about the addresses where to apply the patches. 
// -------------------------------------------------------------------------------------------- 
 
DWORD dwPatchaddrInj[IMAXINDEXINJ] = {  0x005EFD7F, 0x005EFD80, 0x005EFD81, 0x005EFD82, 
                                        0x005EFD83, 0x005EFD84, 0x005EFD85, 0x005EFD86, 
                                        0x005EFD87, 0x005EFD88, 0x005EFD89, 0x005EFD8A, 
                                        0x005EFD8B, 0x005EFD8C, 0x005EFD8D, 0x005EFD8E, 
                                        0x005EFD8F, 0x005EFD90, 0x005EFD91, 0x005EFD92, 
                                        0x005EFD93, 0x005EFD94, 0x005EFD95, 0x005EFD96, 
 
                                        0x005EFD97, 0x005EFD98, 0x005EFD99, 0x005EFD9A, 
                                        0x005EFD9B }; 
// -------------------------------------------------------------------------------------------- 
// Definition about the patching value 
// -------------------------------------------------------------------------------------------- 
int iPatchDataInj[IMAXINDEXINJ] ={  0x90, 0x90, 0x90, 0x90, 
                                    0x90, 0xE9, 0x01, 0x00, 
 
                                    0x00, 0x00, 0xB5, 0x8B, 
                                    0xC3, 0xE8, 0x0B, 0xD2, 
                                    0xFF, 0xFF, 0xEB, 0x04, 
                                    0xEA, 0x04, 0x86, 0xE6, 
                                    0x90, 0x90, 0x90, 0x90, 
                                    0x90 }; 
<-------------End Code Snippet-------------> 

 
You can then directly use the last matrix in the framework, using the PushPatchVector method as 
described in section 4.1.2.3 (in this case the dwPatchaddrInj is useless): 

 
PushPatchVector(stkPatches, 0x005EFD7F, NULL, iPatchDataInj, IMAXINDEXINJ, NULL); 
 

or using a loop, if the patched addresses are not all adjacent: 
 
for (int i=0; i<IMAXINDEXINJ; i++) 
 stkPatches.push(Patch(dwPatchaddrInj[i], (BYTE)iPatchDataInj[i])); 
 

For sake of completeness, the whole process is as follow: 
 
The Ollydbg dump files can be obtained using it like in Figure 14. 
 

 
© 2006 CodeBreakers Magazine  Page 33 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
Figure 14 - how to dump to file a binary section from Ollydbg 

 
Then launch the OllyDumpTranslator and press buttons 1, choose the file and then 2, as in Figure 
15. 
 

 
Figure 15 - Main window of OllyDumpTranslator 

 
The program then creates in the same folder of the original dump file, another file with the same 
name plus the suffix “_translated”  

4.2.2 Write the main() function of the loader 
This step is always the same and there’s need that much to discuss: you have to call the DoMyJob 
method of the Loader class you derived from ShubLoaderCore. I report here and example: 
 
<-------------Code Snippet-------------> 
#include "Loader.h" 
int main(int argc, char** argv) 
{ 
 Loader loader; 
 int nRetCode=loader.DoMyJob(argc, argv); 
 
 return nRetCode; 
} 
<-------------End Code Snippet-------------> 

 

 
© 2006 CodeBreakers Magazine  Page 34 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

4.2.3 Write the derived Loader Class 
As you know the C++ classes are divided into a declaration of the class and an implementation. 
The declaration normally goes into a .h file, while the implementation normally into a .cpp file 
(could also be in the .h file indeed). 
 
Here below a declaration of the Loader class: 
 
<-------------Code Snippet LoaderActions.h-------------> 
#include "ShubLoaderCore.h" 
 
class Loader: public ShubLoaderCore { 
public: 
 
 Loader(); 
 ~Loader(); 
 
 BOOL SetVictimDetails(/*OUT*/ TextString &victimFileName); 
 BOOL InitializePatchStack(/*OUT*/ growing_arraystack<Patch> &stkPatches); 
 BOOL ActionsBeforeCreateProc(); 
 BOOL ActionsAfterCreateProc(); 
 BOOL ActionsBeforeGateProcedure(); 
 BOOL GateProcedure(); 
 BOOL ActionsAfterGateProcedure(); 
 BOOL ActionsBeforeClosingLoader(); 
 
}; 
<-------------End Code Snippet LoaderActions.h-------------> 
 

As described in section 4.1.2 the class redefine the virtual methods of ShubLoaderCore being 
publicly derived from it. 
 
Here below the implementation of the Loader class (the patches values don’t refer actually to any 
real application): 
 
<-------------Code Snippet LoaderActions.cpp-------------> 
#include "LoaderActions.h" 
 
////////////////////////////////////////////////////////////////////////// 
 
Loader::Loader()  
{ 
 //TODO: insert specific actions if you require additional initialization 
 SetStartingMsg("Loader working...wait a little\nCreditz 2 Shub-Nigurrath & ThunderPwr [at] ARTEam"); 
} 
 
Loader::~Loader()  
{ 
 //TODO: insert specific actions if you require additional de-initialization 
} 
 
////////////////////////////////////////////////////////////////////////// 
 
//Receives  
//- the Stack of Patch elements that must be properly filled. The variable to use is stkPatches! 
//- the victim file name, containing a valid path to the patched file  
BOOL Loader::InitializePatchStack(growing_arraystack<Patch> &stkPatches)  
{ 
 ////////////////////////////////////////////////////////////////////////// 
 // This is the filling of the patches stack. 
 // you can use one of the constructors available. 
 // - The first only requires the patch address and the new byte so no controls will be  
 //   performed later, the loader will only do a simply write to that memory section,  
 //   regardless of the read value. 
 // - The second way, used here is to also add the original bytes, doing so the loader  
 //   will also check if the byte read at the memory location specified is equal to the  
 //   original byte you expected to be there. If not the patch is not applied and the msg  
 //   buffer is set according. 

 
© 2006 CodeBreakers Magazine  Page 35 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 // - The third one allows to specify a callback which is called when trying to perform  
 //   the patch.  
 // Note that the patches are all applied subsequently after the gate condition is met  
 // (see GateProcedure()) 
  
 //NB 0x00 must explicitly be casted to BYTE because otherwise the complier confuses  
 //it with a NULL pointer and doesn't know which constructor of class Patch to use. 
 
 // Example patches which also checks against the original bytes. If the original byte is  
 // different the Loader will issue and error BEFORE applying the patch 
 stkPatches.push(Patch(0x0044337C, 0x74, 0xEB)); 
 stkPatches.push(Patch(0x005E5669, 0x75, 0xEB)); 
 stkPatches.push(Patch(0x005F1552, 0x75, 0xEB)); 
 stkPatches.push(Patch(0x005E626E, 0x75, 0xEB)); 
 stkPatches.push(Patch(0x005E67D0, 0x75, 0xEB)); 
 stkPatches.push(Patch(0x005E6921, 0x7E, 0xEB)); 
 
 //Example of patches which don’t check against the original bytes 
 stkPatches.push(Patch(0x005F3898, 0x41)); //A 
 stkPatches.push(Patch(0x005F3899, 0x52)); //R 
 stkPatches.push(Patch(0x005F389A, 0x54)); //T 
 stkPatches.push(Patch(0x005F389B, 0x65)); //e 
 stkPatches.push(Patch(0x005F389C, 0x61)); //a 
 stkPatches.push(Patch(0x005F389D, 0x6D)); //m 
 stkPatches.push(Patch(0x005F389E,(BYTE)0x00)); //end string 
 
 //0x00 must explicitly be casted to BYTE because otherwise the complier confuses  
 //it with a NULL pointer and doesn't know which constructor of class Patch to use. 
 stkPatches.push(Patch(0x005F37C2, 0x75, (BYTE)0x00)); 
 
 //Injected code sections. 
  BYTE iPatchDataInj[87] ={  
      0x90, 0x90, 0x90, 0x90, 0x90, 0xE9, 0x01, 0x00, 0x00, 0x00, 0xBC, 0x8B, 0x45, 0xFC, 
   0x8B, 0x40, 0x14, 0xE8, 0xC2, 0x21, 0xED, 0xFF, 0x8B, 0x45, 0xFC, 0x8B, 0x58, 0x1C, 
    0x85, 0xDB ,0x74, 0x10, 0x8B, 0xC3, 0xE8, 0x01, 0xB1, 0xF5, 0xFF, 0x8B, 0xD0, 0x8B, 
    0xC3, 0xE8, 0x84, 0xB3, 0xF5, 0xFF, 0x8B, 0x45, 0xFC, 0x8B, 0x40, 0x20, 0x85, 0xC0, 
   0x74, 0x07, 0x33, 0xD2, 0xE8, 0x17, 0x7C, 0xE8, 0xFF, 0xC6, 0x45, 0xFB, 0x01, 0x8B,  
   0x45, 0xFC, 0xC6, 0x40, 0x19, 0x00, 0xEB, 0x04, 0x80, 0x8E, 0x8C, 0x06, 0x90, 0x90,  
   0x90, 0x90, 0x90 }; 

 PushPatchVector(stkPatches, 0x005C684C, NULL, iPatchDataInj, 87, NULL); 
 
 return TRUE; 
} 
 
////////////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////////////// 
 
//Simply used to specify the victim's filename, received the storing variable. 
BOOL Loader::SetVictimDetails(TextString &victimFileName)  
{ 
 victimFileName=TextString(".\\_TargetProgram.exe"); 
 
 //Set this parameter to true when you want the loader to check the CRC of the file! 
 SetVictimCRC(0x8281dfe6); 
 
 return TRUE; 
} 
 
// It is called just before calling the GateProceduce, then should contain steps required to perform the action or 
special settings..  
BOOL Loader::ActionsBeforeGateProcedure()  
{ 
 return TRUE; 
} 
 
// The function GateProcedure must always be defined with this prototype.  
// Returned value is TRUE when the matching condition required to start the patch is met. 
// Often this function simply checks against a specified DWORD value in a specified 
// memory location or the presence of a specific window, after which the patch can be successfully 
// applied. 
BOOL Loader::GateProcedure()  
{ 
 BOOL bRet=FALSE; 

 
 //Enum all the windows starting from the desktop, one by one, also the 

© 2006 CodeBreakers Magazine  Page 36 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 //hidden windows. Each handle is passed to EnumWindowsProc which decides 
 //what to do with that handle. Actually it returns if it's the victim's window. 
 EnumDesktopWindows(NULL, EnumWindowsProc, (LPARAM)&bRet); 
  
 return bRet; 
} 
 
BOOL Loader::ActionsAfterGateProcedure()  
{ 
 //Stop debugger action and let program run freely 
 DWORD dwProcessId = GetProcessId(GetPI()->hProcess); 
 BOOL  bDbgStopFlag = DebugActiveProcessStop(dwProcessId); 
  
 return TRUE; 
} 
 
//This function is called just before the call to CreateProcess. Could be left empty. 
BOOL Loader::ActionsBeforeCreateProc()  
{  
 return TRUE; 
} 
 
//This function is called just before the process has been created but it is still in waiting mode 
BOOL Loader::ActionsAfterCreateProc()  
{ 
 HideDebugger(GetPI()->hThread, GetPI()->hProcess); 
 return TRUE; 
} 
 
//This function is called just before closing the loader, after all the actions have been performed. 
BOOL Loader::ActionsBeforeClosingLoader()  
{  
 return TRUE;  
} 
 
////////////////////////////////////////////////////////////////////////////////// 
//Callback of EnumDesktopWindows 
BOOL CALLBACK EnumWindowsProc( 
    HWND hWnd,      // handle to parent window 
    LPARAM lParam   // application-defined value  
    )  
{ 
 char ClassName[256]; 
  
 //Retrieve the classname of the given handle 
 GetClassName(hWnd,ClassName, 256); 
 char caption[256]; 
 //Retrieve the caption of the given handle 
 GetWindowText(hWnd, caption,256); 
  
 //Check of the window I want to find, It's specific of the application 
 //We have to wait till the window is visible because all the checks happens before  
 //this point. 
 if(strstr(caption,"Application titlebar")!=0 &&  
  IsWindowVisible(hWnd) && 
  _stricmp(ClassName,"TMainForm")==0)  
 { 
  //a little of tricky casting required to return the final BOOL to the caller,  
  //via an LPARAM parameter, which after all is a generic LPVOID. 
  BOOL *flag=(BOOL*)lParam; 
  *flag=TRUE; 
  return FALSE; 
 } 
 return TRUE; 
}   
<-------------End Code Snippet LoaderActions.cpp-------------> 
 

The Loader class implementation is not that difficult, being a derived class of ShubNigurrathCore and 
NTInternals (see Figure 12), can use directly all their public methods, without special notations (see 
the C++ inherit proprieties). 
 

 
© 2006 CodeBreakers Magazine  Page 37 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Note that the DebugActiveProcessStop called in the code above is not the real Windows API (which is 
available only since Windows XP), but rather the method exposed by the class NTInternals (see [1] 
or section 4.1.1) which also ensure Loader’s compatibility with Windows 9x/NT/2000. In those 
cases it will simply do nothing at all. 
 
In the above example we have a GateCondition testing the presence of a specific window (with a 
specific class and title). The situation is quite common, because even hardly compressed programs 
(with AsProtect for example) often do all their checks during decompression, inside the AsProtect 
code. When the first target’s window appears (often not visible) the program is completely 
unprotected in memory (most programs doesn’t have anti-tampering protections, see [10]) and 
can be patched by the loader. 
 
In order to obtain the window’s details inside OllyDbg when you are at the OEP (uncompressing 
inside OllyDbg, at the last exception for AsProtect) see the list of handles belonging to the target 
and choose the right one. 
 

NOTE 
We successfully tested the trick (wait for a given window before doing the patch) on 
several targets protected with AsProtect. The resulting loader is much smaller and 
compatible with all the Windows versions, because the used APIs are available since 
Windows 9x. Debugger loaders might have some problems on older Windows 
versions.  
The framework we did accomplish all the compatibility problems but simply not doing 
specific operations on not supported Windows. As a result the loader will not crash 
the system, but might not work as expected. 

 
 

4.3 Writing a Debugger Loader using the framework 
As told at the beginning the Debugger Loader are special loaders which interact with the target 
application like debuggers. We already described the essential things you should know (a complete 
description would take too much) and we are going now to write the skeleton of a debugger loader 
which you’ll be able to reuse (it’s also included in the tutorial’s archive). The steps are the same 
used in section 4.2, what differs mostly is the GateCondition which is a little more complex. 
 
Theory of the GateCondition is the same described in section 2.1.2 and following. 
 
I report here the main differences with the code of section 4.2.3
 
<-------------Code Snippet LoaderActions.cpp-------------> 
//Simply used to specify the victim's filename, received the storing variable. 
BOOL Loader::SetVictimDetails(TextString &victimFileName)  
{ 
 victimFileName=TextString(".\\_TargetProgram.exe"); 
 
 //Set this parameter to true when you want the loader to check the CRC of the file! 
 SetVictimCRC(0x8281dfe6); 
 
 SetCreateProcessFlags(DEBUG_PROCESS | DEBUG_ONLY_THIS_PROCESS | CREATE_NEW_CONSOLE); 
 
 return TRUE; 
} 
<-------------End Code Snippet LoaderActions.cpp-------------> 
 

 
© 2006 CodeBreakers Magazine  Page 38 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Note the SetCreateProcessFlags which was not called before, because by default the process is 
created as SUSPENDED. These parameters are useful to create the process in debug mode. 
 
<-------------Code Snippet LoaderActions.cpp-------------> 
BOOL Loader::GateProcedure()  
{ 
 BOOL bRet=FALSE; 
  
 DEBUG_EVENT DebugEv;                   // debugging event information  
 DWORD dwContinueStatus = DBG_CONTINUE; // exception continuation  
  
 // Define the CONTEXT structure used to load the victim process context 
 // when debugged process break due to exception event 
 CONTEXT victimContext; 
 int iExceptionCounter = 0; 
 
 BYTE OridataRead[2]; 
 
 try { 
  for(;;) 
  {  
   // Wait for a debugging event to occur. The second parameter indicates 
   // that the function does not return until a debugging event occurs. 
   // We are waiting for infinite time, then wait for each Debug Event. 
   WaitForDebugEvent(&DebugEv, INFINITE);  
 
   // Process the debugging event code.  
   switch (DebugEv.dwDebugEventCode)  
   {  
    case EXCEPTION_DEBUG_EVENT: { 
     // Process the exception code. When handling  
     // exceptions, remember to set the continuation  
     // status parameter (dwContinueStatus). This value  
     // is used by the ContinueDebugEvent function.  
 
     // Increment exception counter (not used) 
     iExceptionCounter++;  
 
     #ifdef _DEBUG 
     // Show the current exception number 
     char str[256]; 
     sprintf(str,"Exception number %d", iExceptionCounter); 
     ::MessageBox(NULL, str, DEFAULT_MSG_CAPTION, MB_OK); 
     #endif 
 
     // Check if this is the right exception by reading the context 
     // structure for the victim process. Before to do it set the 
     // ContextFlags to READ_ALL 
     victimContext.ContextFlags = 0x1003F; 
 
     // Fill the process CONTEXT with the process information 
     GetThreadContext(GetPI()->hThread , &victimContext); 
 
     // Now I've to scan the process memory in order to see if I  
     // can found the PUSH 0C instruction (19 byte after exception) 
     ReadProcessMemory(GetPI()->hProcess,  
      (LPVOID)((victimContext.Eip) + 19),  
      OridataRead, 2, NULL); 
             
     //6A 0C PUSH 0C 
     if ((OridataRead[0] == 0x6A) && (OridataRead[1] == 0x0C)) 
     { 
      // Key location found, now we can apply the patch 
      #ifdef _DEBUG 
      char str[256]; 
      sprintf(str,"Found PUSH 0C location"); 
      MessageBox(NULL, str, DEFAULT_MSG_CAPTION, MB_OK); 
      #endif 
            
      throw TRUE; //jump to the catch block at the end 
     } 
 

 
     // Debugger’s Exception handler 

© 2006 CodeBreakers Magazine  Page 39 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
     switch(DebugEv.u.Exception.ExceptionRecord.ExceptionCode) 
     {  
      case EXCEPTION_ACCESS_VIOLATION: { 
       // First chance: Pass this on to the system.  
       // Last chance: Display an appropriate error.  
       dwContinueStatus = DBG_EXCEPTION_NOT_HANDLED; 
      } 
      break; 
 
      case EXCEPTION_BREAKPOINT: { 
       // First chance: Display the current  
       // instruction and register values.  
      } 
      break; 
 
      case EXCEPTION_DATATYPE_MISALIGNMENT: { 
       // First chance: Pass this on to the system.  
       // Last chance: Display an appropriate error. 
      } 
      break; 
 
      case EXCEPTION_SINGLE_STEP: { 
       // First chance: Update the display of the  
       // current instruction and register values.  
      } 
      break; 
 
      case DBG_CONTROL_C: { 
       // First chance: Pass this on to the system.  
       // Last chance: Display an appropriate error. 
      } 
      break; 
 
      default: { 
       // Handle other exceptions.  
      } 
      break; 
     }  
    } 
 
    case CREATE_THREAD_DEBUG_EVENT: { 
     // As needed, examine or change the thread's registers  
     // with the GetThreadContext and SetThreadContext functions;  
     // and suspend and resume thread execution with the  
     // SuspendThread and ResumeThread functions. 
    } 
    break; 
 
    case CREATE_PROCESS_DEBUG_EVENT: { 
     // As needed, examine or change the registers of the 
     // process's initial thread with the GetThreadContext and 
     // SetThreadContext functions; read from and write to the 
     // process's virtual memory with the ReadProcessMemory and 
     // WriteProcessMemory functions; and suspend and resume 
     // thread execution with the SuspendThread and ResumeThread 
     // functions. Be sure to close the handle to the process image 
     // file with CloseHandle. 
 
      dwContinueStatus = DBG_CONTINUE; 
    } 
    break; 
 
    case EXIT_THREAD_DEBUG_EVENT: { 
     // Display the thread's exit code.  
    } 
    break; 
 
    case EXIT_PROCESS_DEBUG_EVENT: { 
     // Target Process is closed from user, then we have 
     // to stop the debugger work and exit from loader 
     // Exit form loader 
     ContinueDebugEvent(DebugEv.dwProcessId,DebugEv.dwThreadId, 
       DBG_CONTINUE); 

 
 

© 2006 CodeBreakers Magazine  Page 40 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
     throw FALSE; 
    } 
    break; 
 
    case LOAD_DLL_DEBUG_EVENT: { 
     // Read the debugging information included in the newly  
     // loaded DLL. Be sure to close the handle to the loaded DLL  
     // with CloseHandle. 
    } 
    break; 
 
    case UNLOAD_DLL_DEBUG_EVENT: { 
     // Display a message that the DLL has been unloaded.  
    } 
    break; 
 
    case OUTPUT_DEBUG_STRING_EVENT: { 
     // Display the output debugging string.  
    } 
    break; 
 
   }  
 
   // Resume executing the thread that reported the debugging event.  
    ContinueDebugEvent(DebugEv.dwProcessId,DebugEv.dwThreadId, dwContinueStatus); 
  } //end for(;;) 
 
 } //end try 
 
 catch(BOOL bRet) { 
  return bRet; //gate condition met, returns to the framework! 
 } 
} 
<-------------End Code Snippet LoaderActions.cpp-------------> 
 

The GateCondition here presented has a quite general structure. If you study the code, you might 
see that essentially its core is a switch-case-break construct where all the types of debug events 
are mapped. Several of the “case” present are not used indeed in our example; we wrote them 
anyway to help you understanding where your loaders can place controlling actions following to 
specific exceptions the target might raise and also to understand which exception types you can 
catch2.  
 
The whole switch is inserted into an endless for loop (for(;;)) and then into a try-catch block. So to 
exit from this function there are several ways, but the safer one we decided to implement is to 
throw an exception. When the condition you are searching for (when the loader can apply patches) 
is met, you should throw a TRUE value (throw TRUE;) caught by the final “catch” statement. This 
ensures a correct stack unwinding and a safer returning from the deepest levels of the 
GateCondition. 
 
A special “case” is the EXCEPTION_DEBUG_EVENT which includes another switch-case-break construct 
used to differentiate among the different debug exceptions might happens. 
 
A little of explanation for this specific example is also needed: the real core of the GateCondition is 
on the EXCEPTION_DEBUG_EVENT exception. The code there is thought for a generic AsProtected program 
with versions 1.2x and earlier.  
 
<-------------Code Snippet-------------> 
// Process the exception code. When handling  
// exceptions, remember to set the continuation  

                                       

 

2 Of course these are not all the possible exceptions this structure can catch, if you target plays with custom exceptions, it’s simple to add 
them to the loader. 

© 2006 CodeBreakers Magazine  Page 41 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
// status parameter (dwContinueStatus). This value  
// is used by the ContinueDebugEvent function.  
 
// Increment exception counter (not used) 
iExceptionCounter++;  
#ifdef _DEBUG 
// Show the current exception number 
char str[256]; 
sprintf(str,"Exception number %d", iExceptionCounter); 
::MessageBox(NULL, str, DEFAULT_MSG_CAPTION, MB_OK); 
#endif 
 
// Check if this is the right exception by reading the context 
// structure for the victim process. Before to do it set the 
// ContextFlags to READ_ALL 
victimContext.ContextFlags = 0x1003F; 
 
// Fill the process CONTEXT with the process information 
GetThreadContext(GetPI()->hThread , &victimContext); 
 
// Now I've to scan the process memory in order to see if I  
// can found the PUSH 0C instruction (19 byte after exception) 
ReadProcessMemory(GetPI()->hProcess, (LPVOID)((victimContext.Eip) + 19), OridataRead, 2, NULL); 
             
//6A 0C PUSH 0C 
if ((OridataRead[0] == 0x6A) && (OridataRead[1] == 0x0C)) 
{ 
 // Key location found, now we can apply the patch 
 #ifdef _DEBUG 
 char str[256]; 
 sprintf(str,"Found PUSH 0C location"); 
 MessageBox(NULL, str, DEFAULT_MSG_CAPTION, MB_OK); 
 #endif 
            
 throw TRUE; //jump to the catch block at the end 
} 
<-------------End Code Snippet LoaderActions.cpp-------------> 
 

Briefly, the GateCondition is trapping all the exceptions coming from AsProtect (case 
EXCEPTION_DEBUG_EVENT), till the last one, which is recognized because there’s a PUSH 0C instruction 
just near the EIP address. Then the condition is met and you can jump out of the debugger’s cycle 
and leave the patcher the rest of the work. Our code is placed at the generic event 
EXCEPTION_DEBUG_EVENT and not for a specific exception type, in order to support all the possible 
AsProtect exceptions sequences. 
 
Some specific tutorials will follow focusing on writing a loader for the different AsProtect versions or 
different packers. 
 

NOTE 
As a general note to the wondering one might have here, we want to tell that you 
can also patch the program even if the target has some anti-tampering protection in 
memory, or some memory CRC on the target’s code, preventing an easy 
modification of the process’s memory.  
The Set/GetThreadContext APIs allow getting and setting all the flags and registry at 
a given point of execution. So for example the result of a TEST or a CMP may be 
changed handling the context at a given time (exactly how you do using OllyDbg). 
The problem of course is to suspend the target program at the right point, passing 
control the loader. How to do this is not the scope of the present document, anyway 
generally speaking a smart loader for a complex program may be built without 
modifying a single byte of code either in memory or on the disk. 

  
For a complete debug cycle refers also to  [XX] 

 
© 2006 CodeBreakers Magazine  Page 42 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Generic method to fish serials from a VB Application 
What we will explain here is another nice application loaders will be able to do. We are building this 
approach without the framework just presented, to show you a comparison of complexity needed to 
write an articulated loader, performing complex debugging interactions with the target.  
The sources are included and explained below in the most crucial parts. Consider anyway that the 
approach for this specific loader is general for any VB application, because the API that we are 
trapping is always used by VB programs to compare strings, and often serials (see [13], [14]).  
Of course the same program could be coded as well, but we left it out intentionally .. you now have 
an exercise to do on your own! ^__^ 
 
This argument falls into an appendix because it’s a little “ancillary” to the main argument of the 
present tutorial, but not less important or easy!  
 
 

5 Finding the right module and placing a breakpoint 
When the first event about the process creation is finished the system loads all the modules used 
by the target, for each dynamic-link library (DLL) that is currently loaded into the address space of 
the target process, the system sends a LOAD_DLL_DEBUG_EVENT debugging event. 
 

NOTE 
From above consideration again we point to the fact that each module is loaded into 
the address space of the target process not into the address space of the debugger, 
this is more important when we have to set the breakpoint into the target module. 

 
After all of this is done, the system resumes all threads in the process. When the first thread in the 
process resumes, it executes a breakpoint instruction that causes an EXCEPTION_DEBUG_EVENT 
debugging event to be sent to the debugger. All future debugging events are sent to the debugger 
by using the normal mechanism and rules. 
 
Because our goal is to set a breakpoint into some API function exported from some DLL used by 
the target now we have to: 
 

1. look for the target module  and keep the base address 
2. retrieve the function address inside the module and place a breakpoint into the function EP 
3. wait when the target call our function by a breakpoint event send from the system to the 

debugger 
4. doing what you want to do in order to patch… 
5. restore the EP of the target function 
6. back to the victim target and leave it run freely 

 
We have then to look when we are into the system breakpoint, this is the first 
EXCEPTION_BREAKPOINT event and we can store this by using a flag: 
 
<-------------Code Snippet CrackMe.cpp-----------------> 

case EXCEPTION_BREAKPOINT:  
 // First chance: Display the current instruction and register values. 
     // This exception will be called during the system breakpoint, then we have to 
 // check about system breakpoint, if yes we have to place a breakpoint 
 // into the target module and target exported function 
       if (!bSystemBreakpoint) 

 { 
    // Enumerate all module 

    iVictimDLLBaseAddress = EnumAllProcesModule( aVictimProcessId, 

 
© 2006 CodeBreakers Magazine  Page 43 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
szVictimDLLname, 
bDebugStage); 

    if (!iVictimDLLBaseAddress){ 
 sprintf(szMsgText,"Can't read proces module\n"); 

MessageBox(NULL, szMsgText, szMsgCapt, MB_OK); 
return;  

    } 
 ... 
<-------------End Code Snippet-------------> 
 
by using the custom function EnumAllProcesModule we can search and retrieve the base address for the target module, below the 
code for this function: 
 
<-------------Code Snippet CrackMe.cpp-----------------> 
// ----------------------------------------------------------------------------------------------- 
// EnumAllProcesModule routine 
// ----------------------------------------------------------------------------------------------- 
FARPROC EnumAllProcesModule(DWORD, char *, BOOL); 
FARPROC EnumAllProcesModule(DWORD aVictimProcessId, char * VictimDLLNamePtr, BOOL bDebugFlag) 
{ 
 HANDLE hTmpProcess; // Handle used when target is open by OpenProcess 
 HMODULE hMods[1024]; // Structure filled by all modules base address handle 
 DWORD cbNeeded; 
 char szModName[MAX_PATH]; 
 
 unsigned int j; 
 
 hTmpProcess = OpenProcess( PROCESS_ALL_ACCESS, FALSE, aVictimProcessId ); 
 if  ( pEnumProcessModules(hTmpProcess, hMods, sizeof(hMods), &cbNeeded)) 
  { 

   for ( j = 0; j < (cbNeeded / sizeof(HMODULE)); j++ ) 
       { 
   // Get the full path to the module's file. 
   if ( pGetModuleBaseName( hTmpProcess, hMods[j], szModName, sizeof(szModName))) 
      { 
        if (bDebugFlag) 
     printf("\t%s\t(0x%08X)\n", szModName, hMods[j] ); 
        if (!strcmp(szModName,VictimDLLNamePtr)) // I’ve find the module 
     return( (FARPROC)hMods[j]); 
       } 
       } 
   } 
  CloseHandle( hTmpProcess ); // Close the handle to the process previously opened 
  return(0); 
} 
<-------------End Code Snippet-------------> 
 

first we have to find a way to refer the victim process space and this is easily obtained by using the 
OpenProcess API function (with all the process access rights set by using the 
PROCESS_ALL_ACCESS flag) which is able to opens an existing process object (in other word a 
running process). After that we can enumerate all the modules running into the opened process by 
using the EnumProcessModule and GetModuleBaseName API functions. 
 
About EnumProcessModule we have pinpoint just one note, this API need the hMods size to be 
set large enough to store all the possible modules loaded by the process; a value equal to 1024 is 
sufficient for almost all applications. 
 
Each element of this array is related to each module loaded into the target process space and it is 
equal to the base address for each module. Base address is really important in our analysis 
because starting from it we can find the right address into the target space where we have to place 
the breakpoint. 
 
Now we have to find the real address (then into the target space) for some function which is inside 
the searched module. 
 
 
© 2006 CodeBreakers Magazine  Page 44 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

To do this we use a trick based on a simple consideration: when a DLL is loaded into the process 
space this is a copy from the original DLL that must reside into the system directory (e.g. 
SYSTEM32) or into the target process folder or in some other well know process path. The main 
difference from two copy of the same DLL for different process is into the module base address 
because the system can place this module into the process space regard the position that we can 
have in other process address space (relocation), but the fixed point is the offset for the exported 
function which is the same in each module due to the copy nature. 
 

MYMOD.DLL 
 
Myfunc() 

PROCESS#1 

BASE ADDR  

PROCESS#2 

BASE ADDR  MYMOD.DLL 
 
Myfunc() 

….. 

….. 

Figure 16 - Module mapping in different process. 

 
 
 
 
 
 
 
 
 
 
 
 
Then our work consists in finding the offset from the base address and the exported function by 
using a copy of the module (in our case a DLL) that can be load into the loader address space, then 
when we have the offset make the sum from this one and the base address which came from the 
previous module enumeration in order to obtain the real function EP (entry point) address into the 
target process space. 
 
Summing up the trick is made of these steps: 
 

7. load the DLL into the Loader and store the hModule (starting address of the library) 
8. find in the loader the address of the API we want to hook into the target process through 

GetProcAddress (it’s an export of the DLL), and store it in hProc 
9. calculate the delta, meant as hDelta=hProc – hModule. hDelta represent the offset where the 

API starts from the beginning of the DLL 
10.sum the hDelta to the handle of the already loaded module into the target process. You will 

this way find the real address in the target process of the API. 
11.Place a breakpoint in the target process in the found address: write an INT3 (0xCC) at the 

address found (see [15]) 
 
<-------------Code Snippet CrackMe.cpp-----------------> 
// LoadLibrary in order to know the function address, the right address 
// into the victim memory space can be found by using the right offset from 
// the base address and the API address when the same DLL is loaded into the 
// loader address space (copy is the same then offset is the same). 
// When you've the offset to find the real address into the victim space simply 
// add this offset to the base address of the target DLL mapped into the victim space 
// base address came from EnumAllProcesModule function. 
 
hDLL = LoadLibrary(szVictimDLLname);  // Base address into the loader space 
FARPROC addrIDPBreakpoint;   // Used to store the real address (victim space) 
DWORD apiOffset;    // Used to store the function offset into the victim DLL 
              
// Load the absolute address for the victim function into the loader space 
addrIDPBreakpoint = GetProcAddress(hDLL, szVictimDLLfunc);  
 
// Calculate the function offset (same for loader and victim space) 

 
apiOffset = (DWORD)addrIDPBreakpoint-(DWORD)hDLL;        

© 2006 CodeBreakers Magazine  Page 45 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 
// Calculate the real address into the victim space 
addrIDPBreakpoint = (FARPROC)((DWORD)iVictimDLLBaseAddress + (DWORD)apiOffset);  
 
if (addrIDPBreakpoint != NULL) 
   { 
 if (bDebugStage) 
 { 
  sprintf(szMsgText,"__vbaStrComp Address %X",(DWORD)addrIDPBreakpoint); 
  MessageBox(NULL, szMsgText, szMsgCapt, MB_OK); 
 } 
   } 
else { 
             
 sprintf(szMsgText,"Can't place breakpoint"); 
 MessageBox(NULL, szMsgText, szMsgCapt, MB_OK); 
 if (hDLL != NULL) 
  FreeLibrary(hDLL); 
 CloseHandle(hTmpProcess); 
 return; 
} 
<-------------End Code Snippet-------------> 
 
Now we have into addrIDPBreakpoint the function address into the target process space then we 
can use WriteProcessMemory to place a breakpoint (INT3) in this EP in order to stop the process 
execution when this function will be call. 
 
<-------------Code Snippet CrackMe.cpp-----------------> 
// ----------------------------------------------------------------------------- 
// Now we can open the process to place breakpoint (iPatchData[0] = 0xCC -> INT3 
// ----------------------------------------------------------------------------- 
hTmpProcess = OpenProcess( PROCESS_ALL_ACCESS | PROCESS_VM_READ | PROCESS_VM_WRITE, 

     FALSE, 
     aVictimProcessId); 

if (!WriteProcessMemory(hTmpProcess, (LPVOID)(addrIDPBreakpoint), &iPatchData[0], 1, NULL)) 
   { 
 ErrorExit("WriteProcessMemory ERROR: "); 
 MessageBox(NULL, "I can't write process memory :-(", szMsgCapt, MB_OK); 
 if (hDLL != NULL) 
    FreeLibrary(hDLL); 
 CloseHandle(hTmpProcess); 
 return; 
   } 
bSystemBreakpoint = true; 

 
<-------------End Code Snippet-------------> 
 
After this all we have finish with the first goal, place a breakpoint into a module into the target 
process space. 
 

6 Waiting and handling the breakpoint event in a real case 
Now we have place the breakpoint, our work for now is all, we have to wait when the target use 
our examined function because when this occur a INT3 instruction will be executed on the function 
EP, system will stop the process and related thread and return the EXCEPTION_BREAKPOINT event 
to the debugger by the WaitForDebugEvent function. 
 

First we have to check if the system breakpoint was done, and this can be made by checking the 
bSystemBreakpoint flag, after this we have to read the process CONTEXT in order to keep the 
registers value that can be useful for collect information from our target function, then after all 
the work is done restore the original code and leave the process run freely. 

 

 
© 2006 CodeBreakers Magazine  Page 46 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

To show in a real case how to act we coded a simple program coded in Microsoft Visual Basic 6.0 
which perform a check from the user input and one hardcoded serial (you can find the source 
attached to this tutorial) but the main things used to fish the right serial is more general and 
later you can show how to use this concept for fish a serial directly from the installation stage 
(again this example was for a VB target). 

 

The CrackMeVB has a simple main dialog where the user must write the serial, checking is made 
by pushing the “Check it!” button. 

 

 

 

 

 

Figure 17 - CrackMeVB 
 

As usual write some fake serial and push the checking button: 

 

 

 

 

 

 

 

Figure 18 - CrackMeVB example 
 

You know the target is coded in VB, then an useful function where we can place a breakpoint is 
__vbaStrComp, then in our serial sniffer we have to search for the MSVBVM60.DLL module and 
place a breakpoint into the comparing function. 

 
<-------------Code Snippet CrackMe.cpp-----------------> 
// Now I've to read the stack in order to fish the right serial 

// then first I've to keep the process CONTEXT 

             
victimContext.ContextFlags = 0x1003F;   // Select all the flag and register 

 

if (!GetThreadContext( hVictimThreadHandle, &victimContext)) 

    { 

      ErrorExit("GetThreadContext ERROR: "); 

      return; 

    } 

 
© 2006 CodeBreakers Magazine  Page 47 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
if (bDebugStage) 

    { 

      printf("Stack pointer ESP = %X\n",victimContext.Esp); 

      printf("Stack pointer EIP = %X\n",victimContext.Eip); 

    } 

              

// First we have to keep a process handle 

hTmpProcess = OpenProcess( PROCESS_ALL_ACCESS | PROCESS_VM_READ | PROCESS_VM_WRITE, 

     FALSE, 

     aVictimProcessId); 

 

// Read the stack into the ESP+8 address, in this address we have 

// the pointer to the first argument which is in UNICODE format 

DWORD FakeSerialPtr; 

if (!ReadProcessMemory(hTmpProcess,(LPVOID)((victimContext.Esp) + 8),  

 &FakeSerialPtr, sizeof(DWORD), NULL)) 

{ 

   ErrorExit("ReadProcessMemory ERROR: "); 

  MessageBox(NULL, "I can't read process memory :-(", szMsgCapt, MB_OK); 

  CloseHandle(hTmpProcess); 

  return; 

} 

else 

{ 

  if (bDebugStage)                
printf("Fake serial pointer: %X\n", FakeSerialPtr); 

} 

 

// Read the stack into the ESP+12 address, in this address we have 

// the pointer to the first argument which is in UNICODE format 

DWORD RightSerialPtr; 

if (!ReadProcessMemory(hTmpProcess, (LPVOID)((victimContext.Esp) + 12),  

 &RightSerialPtr, sizeof(DWORD), NULL)) 

 { 

    ErrorExit("ReadProcessMemory ERROR: "); 

   MessageBox(NULL, "I can't read process memory :-(", szMsgCapt, MB_OK); 

   CloseHandle(hTmpProcess); 

   return; 

 } 

else 

 { 

  if (bDebugStage) 

    printf("Right serial pointer: %X\n", RightSerialPtr); 

  }  

 

 
© 2006 CodeBreakers Magazine  Page 48 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
// Now we have to collect the serial code byte by using ReadProcessMemory, remember 
// this is in UNICODE format then we have to check about the string end, this is easily 
// achieved by checking the current data byte, if this is 0 we have reached the string end 
int iAddrPtr, iBufferPtr; 
iAddrPtr=0; 
iBufferPtr=0; 
do 
{ 
 ReadProcessMemory(hTmpProcess, (LPVOID)(FakeSerialPtr + (DWORD)iAddrPtr),  

&iOridataReadOne, 1, NULL); 
  iAddrPtr=iAddrPtr+2; 

szFakeSerial[iBufferPtr++]=iOridataReadOne; 
} 
while (iOridataReadOne != 0); 
szFakeSerial[iBufferPtr]='\0';  // Place the string terminator 
 
// Now we have to read the second serial number (same things as the previous one 
iAddrPtr=0; 
iBufferPtr=0; 
do 
{ 
 ReadProcessMemory(hTmpProcess, (LPVOID)(RightSerialPtr + (DWORD)iAddrPtr),  

   &iOridataReadOne, 1, NULL);       
iAddrPtr=iAddrPtr+2; 
szRightSerial[iBufferPtr++]=iOridataReadOne; 

} 
while (iOridataReadOne != 0);      
szRightSerial[iBufferPtr]='\0';  // Place the string terminator 
 
// Now we have to show our serial fishing to the user :) 
sprintf(szMsgText,"\tFirst serial: %s\n\tSecond serial: %s\n\tYou know where is the right serial ;-)\n\tWrite it 
down to register appz!",szFakeSerial,szRightSerial); 
printf(szMsgText); 
MessageBox(NULL, szMsgText, szMsgCapt, MB_OK); 
 
// Before finish we have to restore the original value into the 
// target DLL and restore the EIP to the breakpoint address 
hDLL = LoadLibrary(szVictimDLLname); 
FARPROC addrIDPBreakpoint; 
DWORD apiOffset; 
             addrIDPBreakpoint = 
GetProcAddress(hDLL, szVictimDLLfunc); 
apiOffset = (DWORD)addrIDPBreakpoint-(DWORD)hDLL; 
addrIDPBreakpoint = (FARPROC)((DWORD)iVictimDLLBaseAddress + (DWORD)apiOffset); 
if (!WriteProcessMemory(hTmpProcess, (LPVOID)addrIDPBreakpoint, &iOridata[0], 1, NULL)) 
{ 
 ErrorExit("WriteProcessMemory ERROR: "); 
 MessageBox(NULL, "I can't write process memory :-(", szMsgCapt, MB_OK); 
 return; 
} 
 
if (hDLL != NULL) 
 FreeLibrary(hDLL); 
if (hPsapi != NULL) 
       FreeLibrary(hPsapi); 
              
// Restore the EIP by writing the right value into the process CONTEXT 
victimContext.Eip =(victimContext.Eip) - 1; 
if (!SetThreadContext( hVictimThreadHandle, &victimContext)) 
    ErrorExit("GetThreadContext ERROR: ");  
  
// Close the temp handle for the process 
CloseHandle(hTmpProcess); 
 
// Run the victim process 
ContinueDebugEvent(DebugEv.dwProcessId,DebugEv.dwThreadId, DBG_CONTINUE); 
              
// Stop debugger action and let program run freely (only for WinXP) 
BOOL  bDbgStopFlag = DebugActiveProcessStop(aVictimProcessId); 
 
// Exit from debugger 
return; 
 

 
<-------------End Code Snippet-------------> 

© 2006 CodeBreakers Magazine  Page 49 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 

Now the most important parts of the sources are over, so it’s time to launch the target and then 
the loader.  
First of all there’s a message for the user, we can press the OK button because the victim process 
(CrackMeVB.exe) is already running: 
 
 

Figure 19 - Loader in action…

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2006 CodeBreakers Magazine  Page 50 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

When you push the OK button a list of all process is shown: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20 - The victim process has been found. 

Next step is about the process attach and when all this is done the loader has to do the module 
enumeration, find the victim module and then the __vbaStrComp address (the function Entry 
Point): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 21 - Looking for the victim function into the target DLL.
 
Press OK, now the target can run freely until you make the serial verification (press again the 
Check it! button into the CrackMeVB dialog). 
 

 
© 2006 CodeBreakers Magazine  Page 51 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

Immediately the breakpoint event (INT3) will be triggered by the system to the debugger through 
the WaitForDebugEvent function: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Push the OK button and we are on the end: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 - The INT3 exception is send to the debugger. 

Figure 23 - Final fishing from the __vbaStrComp function. 

Now is time to check if the fished serial is right if you have some doubt ;-): 
 
 
 
 

© 2006 CodeBreakers Magazine  Page 52 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
 
 
Some final word about the target application, this is the source code: 

 
<-------------Code Snippet CrackMeVB.frm-----------------> 
Private Sub Command1_Click() 
 
If ("ARTeam is the best" = txtSerial.Text) Then 
    MsgBox "Very nice!" 
Else 
    MsgBox "Try again!" 
End If 
 
End Sub 
<-------------End Code Snippet-------------> 
 
the argument sequence which is pushed into the stack before call the __vbaStrComp function is 
related to the code used to make the verification then: 
 
If ( "ARTeam is the best" = txtSerial.Text ) Then 
 

gives a different pushed sequence from: 
 
If ( txtSerial.Text = "ARTeam is the best") Then 
 
 

6.1 Cracking with Olly instead 
Below the classical cracking approach using OllyDbg debugger. Just after having loaded the 
target put a “BP __vbaStrComp” using the Command line plugin and press F9 to run the 
application. You will land here: 

 
 

 
 
 
 
 
 
 
 

 Figure 25 - OllyDbg breakpoint into the __vbaStrComp function. 
 

 
© 2006 CodeBreakers Magazine  Page 53 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
 

 

 
 
 
 
 

 
 

 
 
 
 

 

Figure 26 - Registers window at the breakpoint. 

Figure 27 - Stack window at the breakpoint. 

ESP 
ESP+
ESP+1

 
 
 

7 Serial fishing example of a real case 
In order to check our theory we can attack for serial fishing a real crackme coded in VB. We will 
use the same crackme used for [13] (also included in this tutorial), the Abel’s 2nd crackme.  
For further details see there. The approach to this crackme is interesting because the API used is 
different than __vbaStrComp. According to analysis described in [13] the API which are used are 
instead __vbaVarTstEq or __vbaVarTstNe (guess what these APIs do). We will modify then the 
loader just coded to hook the __vbaVarTstEq API and get the parameters. 
First of all this API receives two VARIANT, which are a specific type of strings that are stored in 
memory in a particular way (string length, address of control, text chars). 
 
Here is how it looks in OllyDbg. 
 
Using the commandline addin place a “BP __vbaVarTstEq” and press F9 to let the program run 
freely. You will stop here: 
 

 
 
And the stack will look similar to the following: 
 

Then what we have to is clear. After the 
breakpoint has been set, using the already 
explained code, we will read the two pointers 
pointed by ESP+4 and ESP+8 (4 is the 
DWORD size in bytes) and then at an 
additional offset of 8 from those values we find 
our UNICODE strings.  
 
What we changed are the program 

informations: 
 
<-------------Code Snippet-------------> 

© 2006 CodeBreakers Magazine  Page 54 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
// ------------------------------------------------------------------------------------- 
// General target information 
// ------------------------------------------------------------------------------------- 
char szTargetName[]="abex'2nd crackme";     // Target name 
char szTargetVersion[]="1.0";         // Target version 
char szTargetBuild[]="-";         // Target build (if applicable) 
char szTargetURL[]="-";         // Target URL 
char szTargetPacker[]="-";         // Target packer 
 
BOOL bDebugStage = true;  // Set the debug mode (show the message from loader to user) 
BOOL bShowExcpNumber=false;  // Exception number flag 
BOOL bSystemBreakpoint = false; // System breakpoint 
BOOL bFirstEvent = false; 
 
char szVictimProcessName[]="abexcrackme2.exe"; // Program name 
char notloaded[]="Process can be loaded :-(";  // There is one error into loading process stage  
char szMsgText[128];      // Used as a buffer for message to user 
char szMsgCapt[]="ARTeam Serial Registration Code Sniffer"; 
FARPROC iVictimDLLBaseAddress;  // API base address       
char szVictimDLLname[]="MSVBVM60.DLL"; // Target DLL 
char szVictimDLLfunc[]="__vbaVarTstEq"; // Target function where we have to break 
char szFakeSerial[128];   // Buffer for the fake serial 
char szRightSerial[128];  
<-------------End Code Snippet-------------> 

 
Note the different values of szVictimDLLfunc, szTargetName and szVictimProcessName. 
 
Then the reading of the process’s memory, just after the OpenProcess call has changed accordingly 
to what we saw in Olly 
 
<-------------Code Snippet-------------> 
// Read the pointer to the fake serial 
DWORD FakeSerialPtr; 
DWORD FakeVariantPtr, RightVariantPtr; 
 
//skip a DWORD 
ReadProcessMemory(hTmpProcess, (LPVOID)((victimContext.Esp) + 4), &FakeVariantPtr,  
   sizeof(DWORD), NULL); 
ReadProcessMemory(hTmpProcess, (LPVOID)((victimContext.Esp) + 4*2), &RightVariantPtr,  
   sizeof(DWORD), NULL); 
      
ReadProcessMemory(hTmpProcess, (LPVOID)((FakeVariantPtr) + 8), &FakeSerialPtr,  
   sizeof(DWORD), NULL); 
      
if (bDebugStage) { 
 printf("Fake serial pointer: %X\n",FakeSerialPtr); 
} 
      
// Read the pointer value to the right serial which is in ESP+12 
DWORD RightSerialPtr; 
ReadProcessMemory(hTmpProcess, (LPVOID)(RightVariantPtr + 8), &RightSerialPtr, sizeof(DWORD), NULL); 
      
if (bDebugStage) { 
 printf("Right serial pointer: %X\n",RightSerialPtr); 
} 
... 
<-------------End Code Snippet-------------> 

 
Just after this we also convert the UNICODE strng into an ANSI one. This thing anyway is always 
done with VB program and were already in the other crackme.cpp file. 
 
The result is then: 

 
© 2006 CodeBreakers Magazine  Page 55 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

 
Figure 28 – Final MessageBox showing the real and the fake serials. 

 
Those of you who read the tutorial [1] should recognize that what we created is an Oraculum. 
Oraculums are indeed just specialized loaders which aim is just fishing the real serial for you 
directly from the program.  
 

8 Complete example for a debug-loader cycle  
 
What I introduced before is not a complete cycle of debug a loader can use. There are several 
events you can handle and to which you can attach you patching actions. In the code reported in 
the Sections 3.3 and below several has been omitted for sake of brevity. Here instead I report a 
much more complete source you can use for your own GateConditions (thanks also to condzero). 
The whole source is also part of this archive, read it out because including it here would take too 
much pages. 
Anyway you can use that code to see how much additional debug conditions you can add to your 
GateCondition to precisely handle the loading process.  
 
The source included in Complete_Debug_GateCondition.cpp is built for a target where what must be 
patched is one of its DLLs. This time it is a simple C source (but easily convertible to our 
framework).  
 
What the loader does is to debug the main application (might slow down a little), then apply the 
patch only when the event LOAD_DLL_DEBUG_EVENT is raised.  
In this case these are the operations done: 

1. extract the name of the DLL being loaded among all those loaded (using EnumProcessModules 
and GetModuleFileNameEx) 

2. if match the victim that must be patched apply the isDebuggerPresent patch (see Section 
3.3.1) and patch the DLL location as offset from the base (handle) 

3. exits from the debugger and let it run freely. 
 
 
 
 
<-------------Code Snippet-------------> 
case LOAD_DLL_DEBUG_EVENT: { 
 // Read the debugging information included in the newly loaded DLL.  
 // Be sure to close the handle to the loaded DLL with CloseHandle. 
 contproc = TRUE; 
 dwContinueStatus = DBG_CONTINUE; 
 
 if (DebugEv.u.LoadDll.hFile == NULL) { 
  break; 
 } 
 
 // EnumProcessModules returns an array of hMods for the process 
 // Fails first time for ntdll.dll 

 
© 2006 CodeBreakers Magazine  Page 56 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
 if (!EnumProcessModules(hSaveProcess, hMods, sizeof(hMods), &cbNeeded)) { 
  FormatMessage( 
   FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, 
   NULL, 
   GetLastError(), 
   MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language 
   (LPTSTR) &lpMsgBuf, 
   0, 
   NULL 
  ); 
 
  // Display any error msg. 
  //MessageBox(NULL, lpMsgBuf, "EnumProcessModules Error", MB_OK+MB_TASKMODAL); 
 
  // Free the buffer. 
  LocalFree( lpMsgBuf ); 
  SetLastError(ERROR_SUCCESS); 
 
  //close handle to load dll event 
  CloseHandle(DebugEv.u.LoadDll.hFile); 
  break; 
 } 
 
 // Calculate number of modules in the process 
 nMods = cbNeeded / sizeof(HMODULE); 
 
 for ( i = 0; i < nMods; i++ ) { 
  HMODULE hModule = hMods[i]; 
  char szModName[MAX_PATH]; 
  // GetModuleFileNameEx is like GetModuleFileName, but works in other process  
  //address spaces 
  // Get the full path to the module's file. 
  GetModuleFileNameEx( hSaveProcess, hModule, szModName, sizeof(szModName)); 
 
  if ( 0 == i ) {  // First module is the EXE. Add to list and skip it. 
   modlist[i] = i; 
  } 
  else {   // Not the first module. It's a DLL 
   // Determine if this is a DLL we've already seen 
   if ( i == modlist[i] ) { 
    continue; 
   } 
   else { 
    // We haven't see it, add it to the list 
    modlist[i] = i; 
 
     
    // Find the last '\\' to obtain a pointer to just the base module  
    // name part 
    // (i.e. mydll.dll w/o the path) 
    PCSTR pszBaseName = strrchr( szModName, '\\' ); 
    // We found a path, so advance to the base module 
    if ( pszBaseName ) { name 
     pszBaseName++; 
    } 
    else { 
     pszBaseName = szModName; //No path. Use the same name for both 
    } 
 
    //optionally, if module name = "DB.DLL" 
    if (strcmp(strupr(pszBaseName), dbdll)==0) { 
     // Get the address of the specified exported  
     // dynamic-link library (DLL) function 
     ProcAdd = GetProcAddress( 
      hModule, // handle to DLL module      
     ); 
 
     // Add offset 0x0C to ProcAddress 
     if (NULL != ProcAdd) { 
      DebugPatch[0] = (DWORD) ProcAdd + 0x0C; 
 
      // apply the IsDebuggerPresent patch 
      ReadProcessMemory(hSaveProcess, (LPVOID) DebugPatch[0], 

 
       DataRead, 

© 2006 CodeBreakers Magazine  Page 57 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 
       sizeof(BYTE), &dwRead); 
       if(DataRead[0] == scanbytd[0]) { 
        WriteProcessMemory (hSaveProcess, 
         (LPVOID) DebugPatch[0], &replbytd[0], 
        sizeof(BYTE), &dwWritten); 
     
       } 
     } 
 
    } 
   } 
  } 
 } 
 
 // close handle to load dll event 
 CloseHandle(DebugEv.u.LoadDll.hFile); 
} 
break; 
 
<-------------End Code Snippet-------------> 

 
Once more, as you can see reading the Complete_Debug_GateCondition.cpp source, the debugging cycle 
is quite complex, because there are a lot of cases and nested sub-cases which complicates reading. 
But consider that once you written it once most of the times you’ll re-use the same structure. 
 
 
Other things that you might find immediately interesting from the above source are: 
� Debugging more than one process at time: 

when calling the CreateProcess use these parameters.. 
 DEBUG_PROCESS,      // No creation flags (use for more than 1 process 
 //DEBUG_PROCESS+DEBUG_ONLY_THIS_PROCESS,   //(use for only 1 process) 

� Avoid locks of debugger loader 
at the beginning of the debug cycle instead of INFINITE use a timeout, so as to avoid hangs. 

 if (WaitForDebugEvent(&DebugEv, 1000)) 

� How to write current exception address:  
this for example writes the ExceptionAddress of the ExceptionRecord, but this record contains 
also a lot of other interesting informations 

 sprintf( b, "Exception address:%08X", DebugEv.u.Exception.ExceptionRecord.ExceptionAddress); 

� How to print some process’ information 
for example a much more rich printf of process information 

 sprintf( b, "hFile:%X\n" 
  "ProcessId:%X\n" 
  "hProcess:%X\n" 
  "hThread:%X\n" 
  "lpBaseOfImage:%08X\n" 
  "dwDebugInfoFileOffset:%d\n" 
  "nDebugInfoSize:%d\n" 
  "lpThreadLocalBase:%08X\n" 
  "lpStartAddress:%08X\n" 
  "lpImageName:%08X\n" 
  "fUnicode:%d", 
  DebugEv.u.CreateProcessInfo.hFile,  
  Pid[k -1],  
  DebugEv.u.CreateProcessInfo.hProcess, 
  DebugEv.u.CreateProcessInfo.hThread,  
  DebugEv.u.CreateProcessInfo.lpBaseOfImage, 
  DebugEv.u.CreateProcessInfo.dwDebugInfoFileOffset,  
  DebugEv.u.CreateProcessInfo.nDebugInfoSize, 
  DebugEv.u.CreateProcessInfo.lpThreadLocalBase, 
  DebugEv.u.CreateProcessInfo.lpStartAddress, 
  DebugEv.u.CreateProcessInfo.lpImageName,  
  DebugEv.u.CreateProcessInfo.fUnicode 
 ); 

 

 
© 2006 CodeBreakers Magazine  Page 58 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

These are only examples, because as you can see from MSDN and from the code above, the 
involved structures are one inside the other much like a Matrioska (the Russian dolls) and are very 
rich of really interesting elements (from the RCE point of view). We think that you can easily find 
now you own way out of how to print your information and how to write a complex debugger.. 
 

NOTE 
The code reported into Complete_Debug_GateCondition.cpp is directly compilable, 
because if you try to compile it there are some misses, some include and libraries 
declaration, that you must add to your Visual Studio Project. The code is anyway 
perfectly working. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2006 CodeBreakers Magazine  Page 59 of 60 



CRACKING WITH LOADERS: THEORY, GENERAL APPROACH, AND A FRAMEWORK 

9 References 
There are several tutorial about loader and code injection argument I here will report those I found 
to be more interesting. 
 

[1] “Guide on How to play with processes memory, write loaders and Oraculums”, Shub-
Nigurrath of ARTeam, http://tutorials.accessroot.com 

[2] “Three Ways to Inject your code into Another Process”, Robert Kuster, 
http://www.codeguru.com/system/winspy.html  

[3] “RemoteLib - DLL Injection for Win9x & NT”, Abin, 
http://www.codeproject.com/dll/RemoteLib.asp [Interesting approach to memory injection 
into a remote process, which works also for Win9x systems] 

[4] “Injecting a DLL into Another Process's Address Space”, Zoltan Csizmadia, 
http://www.codeguru.com/Cpp/W-P/dll/article.php/c105/  

[5] “DLL Injection and function interception tutorial, 2003”, CrankHank, , 
http://www.codeproject.com/dll/DLL_Injection_tutorial.asp  

[6]  “Creating Loaders & Dumpers - Crackers Guide to Program Flow Control”, yAtEs, 2004,  
http://www.yates2k.net/lad.txt  

[7] “9x/NT API Hooking via Import Tables”, yAtEs, http://www.yates2k.net/import.html  
[8] “Portable Executable File Format Compendium”, Goppit, http://tutorials.accessroot.com 
[9] “CrackProof your software”, Pavol Cerven, Nostarch Press, 2002 (available as bookz) 
[10] “Beginner Olly Tutorial #10, Anti-tampering Theory”, Shub-Nigurrath of ARTeam, 

http://tutorials.accessroot.com  
[11] “OllyDumpTranslator”, ThunderPwr of ARTeam, http://releases.accessroot.com  
[12] “Beginner Olly Tutorial #6, Packer’s Theory”, Shub-Nigurrath of ARTeam, 

http://tutorials.accessroot.com 
[13] “Fishing Primer with SmartCheck”, Palaryel, http://tutorials.accessroot.com  
[14] “Fishing Primer with SmartCheck number 2”, Palaryel, http://tutorials.accessroot.com  
[15] “Beginner Olly Tutorial #8, Breakpoints Theory”, Shub-Nigurrath of ARTeam, 

http://tutorials.accessroot.com 
 

10 Conclusions 
Well, this is the end of this story, we hope all the things here said will be useful to better 
understand how process is handled by the OS and in which manners we can keep process control 
and make debugging with some advanced technique. We have also show how to modify code into 
module which is loaded into the target space. 
 
 

 

 
  

 

All the code provided with this tutorial is free for public use, just make a 
greetz to the authors and the ARTeam if you find it useful to use. Don’t 

use these concepts for making illegal operation, all the info here reported 
are only meant for studying and to help having a better knowledge of 

application code security techniques. 

© 2006 CodeBreakers Magazine  Page 60 of 60 

http://tutorials.accessroot.com/
http://www.codeguru.com/system/winspy.html
http://www.codeproject.com/dll/RemoteLib.asp
http://www.codeguru.com/Cpp/W-P/dll/article.php/c105/
http://www.codeproject.com/dll/DLL_Injection_tutorial.asp
http://www.yates2k.net/lad.txt
http://www.yates2k.net/import.html
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://releases.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/

	1  Introduction 
	2 What’s a loader?
	2.1 Loader classification and behaviour
	2.1.1  Standard Loaders
	2.1.2 Debugger Loader


	3 Write your first loader
	3.1 Patches Vector
	3.2 Standard Loader
	3.3  Debugger Loader
	3.3.1 Hiding a debugger to the target process
	3.3.2 Process Status Helper (PSAPI.DLL)
	3.3.3 The debugging stage (the attach stage)
	3.3.4  The debugging stage (the DEBUG_EVENT structure)


	4 An unifying C++ framework for writing loaders
	4.1 Generics on the framework
	4.1.1 NTInternals
	4.1.2 ShubLoaderCore
	4.1.2.1 DoMyJob
	4.1.2.2 Virtual Methods
	4.1.2.3 Helper Methods
	4.1.2.4 When could happen to dump a big chunk of memory from a process?

	4.1.3 Loader
	4.1.4 Patch Class
	4.1.4.1 Callbacks


	4.2 How to write a loader using the framework
	4.2.1  How to use OllyDumpTranslator
	4.2.2 Write the main() function of the loader
	4.2.3 Write the derived Loader Class

	4.3 Writing a Debugger Loader using the framework
	6.1 Cracking with Olly instead



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


