@@ CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

Volume 1, Issue 1, 2006

Writing Loaders for DLLs: Theory and Techniques

Shub-Nigurrath [ARTeam]
January 2006

Abstract

Generally speaking several applications have a protection implemented into one of its Dlls. This is the case
for example of out-of-the-shelf protectors used by developers, such as TimelLock, for which the protection
checks are implemented into protected Dlls, stored in the Windows’ system32 folder. In other cases the
application itself is an add-on or a plug-in of another application, so usually a Dll. Finally there are also
situations where protection resides into a DIl for specific design reasons.

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

1 Introduction

This tutorial aims to introduce some different approaches to writing loaders for those applications where the
protection or the registration checks resides into one or more Dlls. The tutorial can be read as standalone,
but it’s a natural follow-up of my previous tutorials, written also with ThunderPwr [1, 2].

As usual I will provide sample code with this tutorial, and non-commercial sample victims. All the sources
have been tested with Win2000/XP and Visual Studio 6.0.

The techniques described here are general and not specific to any commercial applications. The whole
document must be intended as a document on programming advanced techniques, how you will use these
information will be totally up to your responsibility.

Generally speaking several applications have a protection implemented into one of its Dlls. This is the case
for example of out-of-the-shelf protectors used by developers, such as TimeLock, for which the protection
checks are implemented into protected Dlls, stored in the Windows’ system32 folder. In other cases the
application itself is an add-on or a plug-in of another application, so usually a DIl. Finally there are also
situations where protection resides into a DIl for specific design reasons.

In all these cases usually a normal patch is enough and solves most of the cases, but like happens with
normal applications there are situations where a loader is a better solution for different reasons, already
explained in [1]: portability, protection of the DIl, dimension of the dumped DIl too great or simply because
we have fun writing a working loader!

Moreover the potentials of debug loaders, sort of mini debuggers, are extremely large and only your
imagination actually is a limit for such technique.

Before continue reading I suggested that you have already understood how a program is loaded into
memory, what is a loader, what it does and how and which are the differences among Debug and Standard
Loaders. I suggest reading [1] and [2] to better understand the rest of this tutorial.

2 Possible methods to take control of Dlis

Generally speaking in order to patch a DIl through a loader (then dynamically in memory) you have to take
control of the DIlI: by definition a loader is something that takes care or controls the target’s
loading/execution process in order to perform its actions.

Generally speaking there are two different ways to take control of a DIl loaded by a program:

= Take Control of the whole application. This allows performing the proper actions when the target DIl is
loading into the application’s memory space. This approach is the most simple to think (because we
are accustomed to debuggers), but requires the most complex code to write and involves Debug
Loaders. Moreover for very large applications the final result might slow down too much the program
or require too much memory: you are in this case debugging the whole application.

= Write a DIl proxy. With this approach you will write a proxy DIl, a DIl written by you exposing exactly
the same interface of the original DIl to the original application. The application then loads the false DII
and invokes its methods as it would have done with the real DIl. The proxy DIl then performs the
required actions (patches) and calls the original DIl passing the parameters coming from the
application. This approach requires a less complex code but also some tricks I'll explain. The
advantage is that you will not debug the whole application.

I just tell now that the two methods are not equivalent of course: there are drawbacks for each. For example
taking control of the whole application on the one hand means to slow down it or eat memory too much, on
the other hand it is much more powerful than writing a Proxy DIl. It will be up to your sensibility and
experience to decide where to use one or another technique.

© 2006 CodeBreakers Magazine Page 2 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

3 Target Application
In order to have a liet-motif through the entire document and to not use commercial applications I coded a
simple application for which the serial number check is inside an external DII, called by a front-end GUI.

The real application is simply a front-end which takes the serial number from the user and asks to the DIl to
check if it's correct, then reports the answer.

The schema is not much different, in its essentials, from several commercial applications, so take the relative
conclusions on your own ;-)

The Target Application code included into this tutorial will not be described in details, just because it is
relatively easy to understand and because would divert the focus. Moreover it is good to approach to these
examples as any other application: think as you do not have sources.

NOTE
The code of this program is under the Simple_Client_1\ folder

The program looks like in Figure 1.

&= Enter UserName an]

Registration Details

Userklame |

Fegistration
MNumber

Check

Figure 1 - Interface of the used sample target program.

The example works as following:
1. enter the registration details,
2. press Check to see if the serial is correct.

First of all let’s try to debug it a little before going further.. as usually with Olly. The program is composed by
two parts: Clients.exe and RegistrationDII.DIl which exposes a method called CheckRegistrationNumber (what
the hell could be the use of this method? ©)

© 2006 CodeBreakers Magazine Page 3 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

Open OllyDbg and let the target program run freely (using F9). You can configure Olly to stop on new
modules so as to see when the DIl is loaded or simply let the program run freely till it shows its interface.
Now follow these steps:

1. Insert two values as in Figure 2.

&Enler UserName and R

Exit

Registration Detail

Userlame shub-nigurrath
Registration arteam
Mumber

Figure 2 - values used for the debugging.

Now press “"Check” then suspend the application in Olly when the badboy MessageBox is shown. Go to
Olly and browse the Call Stack (CTRL-K) until you arrive at the JNZ where the goodboy or the badboy
message is shown (Figure 3).

00401E5EE
004015BC
004015C1
004015C4
00401E5CE
004015C8
00401E5CA
0O0401ECF
00401501
00401503
0040150
00401E5DE
0040150
O0401E5EE
O0401E5E4
O0401E5ES
004015EB
O0401E5F0
O0401EFE

EE

Es 7F000000
23C4 02
2EBCE

ZBES

54 FF

E2 210Z0000
&L FF

SBCF

Es 78020000
23FD Ol

&h 00

58 80304000
7E 07

&8 E0204000
EE 0F

58 Z0304000
A 00

FF1E E2Z14000

PUSH EEP

CALL <JMP_&RegistrationDll CheckRegistrationlumber
ADD ESP,E

MOV ECK,ESI

MOV EEP, EAN

PUSH -1

CALL <JMP.sMFC4Z. #5572~

PUSH -1

MOV ECH,EDT

CALL <JMP_ &MFC4Z gL572x

CHMP EEP,1

PUSH O

PUSH Client 00403020

INZ SHORT Client.00401EEE

PUSH Client.0040%050

JHP SHORT Client.004015F0

PUSH Client 00403020

DPUSH 0O

CALL DUORD PTR D&: [<sUSER3Z.MessageBoxk-]

ASCII "Shub-Nigurrath"
ASCITI "Compliments, well done the serial is correct"
ASCII "MNahh, you have to get a walid serial somehow!"

hommer = HULL
MessageBoxd

Figure 3 - Check routine of the Client

A little above in the code there’s the call to the Dll’s method.

2. Place a breakpoint at the DIl method’s call (0x4015BC) and restart the application (CTRL-F2) then
press F9 to run it. Re-enter the username and serial used before.

3. You should land at the above said call. On the call stack there are the values you entered (the
username and the regnumber):

00374000
O0lzFe04| 00374050
O01ZF208| O01ZFESC

© 2006 CodeBreakers Magazine

ASCIT "shub-niguarrath"
ASCII "arteam"

Page 4 of 27

100010&F
10001073
10001078
10001073
1000107E
10001082
10001037
10001088
1000108
10001030
10001054
1000102&
10001033

loo01osa || -

1000102C
10001040
10001041
1000104e
10001049

1oo01oaa ||

100010AF
100010B2
100010B6
100010E7

100010BA || -

100010BC
10001000

10001006
100010Cs

1ooo1ioca || -

1lo00010CC
100010CE
10001000
100010032
10001005
10001008

100010Da || -

10001000
100010E0
100010EZ2

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

4. Follow the call (F7) and you will land into the DIl (passing through the JMP of the IAT). The
disassembly of the routine is quite easy to follow:

2894C24 24
OFEES434 10
£z

EZ 3z000000
824434 12
OFEE4434 08
50

ES 83000000
23C4 08
884434 02
45

23FE 0OC

7C D3

33F6

244034 04
51

ES SGAFFFFFF
OFEBELOD

5z

E2 1000000
23C4 08
884434 1C
48

S3FE OC

7C E0
8D74z4 10
SD44Z4 1C
8A10

SACH

3416

75 28

2403

74 la

8A50 01
BACA

3456 01

75 LA

283C0 0z
83Ce 02
24C3

75 E0

MOV DWORD PTR £8: [ESP+24], ECH
rHMOVS: EDX,BYTE PTE SS: [ESPHESI+1O0]
PUSH EDX

CALL Registra.l0001110

MOV BYTE PIR S8: [ESPHESI14],4L
MOVEX EAX, BYTE PTR S8: [ESP+ESI+E]
PUSH EAX

CALL Regiscra.l0001110

ADD ESP, S

mov BYTE PTE S8: [ESPHESI+4],AL
INC EST

CMP ESI,0C

LIL SHORT Registra. 10001073

HOR ESI,EST

rMo0v CL,EYTE BTR #8: [ESPHESI+<]
PUSH ECX

CALL Regiscra.l0001010

MOVER EDH, AL

PUSH EDX

CALL Registcra. 10001110

ADD ESP,=

MO0V BYTE PTR SS5: [ESPHESIH1C] AL
INC EST

CMP ESI,0OC
LIL SHORT Registra. 1000109C
LEA ESI,DWORD BTR S8: [ESP+10]
LEA EAX,DWORD PTR SS: [ESP+1C]
MO0V DL, EYTE BTR DS: [EAX]
MOV CL,DL

CMP DL,EYTE PTR DS: [ESI]

JHZ SHORT Registra 100010F4
TEST CL,CL

JE SHORT Registra 100010Ed
MOV DL,BYTE PTR DS: [EAX+1]
MOV CL,DL

CMP DL,BYTE PTR DS: [ESI+1]
JHZ SHORT Registra 100010F4
ADT EAX,Z

ADD ESI,Z

TEST CL,CL

LINZ SHORT Registra.l00010C4

This cycle simple erase the memory locations

AL contains the rotated letter which is copyed in memory
increments the variable used for the loop
check the exit condition. Note the OC walue.

Here the real serial appears on the register EAX

Figure 4 - portion of the disassembly of CheckRegistrationNumber.

Figure 4 reports a commented section of the DIl method. The interesting point is the value of EAX
when we are at the instruction at 0x100010C4.

Eax
ECH
EL
EEX
EZT
EET
EST
ELT

OO1zF7F0
aooooooo
aoooooaon
OO1zZFEZC
OO01zF 74
aoz74000
O01ZF7?E4
O01ZFEEC

AZCII "fuho: {vthee"

AECII "shub-nigurrath"
AECIT "arteam"

Figure 5 - values of registers when stopped at Ox100010CH4.

As you can see EAX points to the correct serial which is in this case “fuho:{vthee”.

5. Write down the real serial, reopen the application and insert it to check if it is ok.

NOTE

I suggest printing the DIl sources and compare them with this disassembly to see how the
compiler optimizes the sources and which the correspondences between ASM and C
structures are. It's an exercise I suggest to do at least once in your RCE life ;-)

Well we have successfully fished a serial, now what can we do? We could patch the application in different
ways, but of course the better way is to patch the DIl, which is probably changing less among releases (this is
generally true for applications using out-of-the-shelf protectors). Anyway remember that the general rule is:
patch at the deepest level possible!

© 2006 CodeBreakers Magazine

Page 5 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

For this document we will patch the DIl in the simplest way possible: changing the conditional jump at

0x100010CA:

Becomes:

1o0010céa
loooloce
1lo00l0Ch
looolocc
100010CE
10001000
10001002
1l00010DE
l000lonse
100010D4A
1000100T
100010EOQ
100010EZ
100010E4
100010EE
100010ES
1O00010EA
100010ED
1O00010EF
1l00010FQ
100010F2
100010F4
100010F&
100010F7
1l00010F&
100010FC
100010FE
10001101
looolioz
10001106

100010CcA

100010CcA

2A10
BACA
2AlE

78 12
84C3

74 14
BAED O1
2ACH
ZAEE 01
7?5 la
23C0 0z
B3CE 02
2403

785 E0O
33C0
FECH
a5co
OF34C1
BEC1

EE

23C4 Z4

22C4 z4
C3

/75 28

/75 18

rMOV DL,EYTE PTR DE: [EAX]
MOV CL,DL

CHMP DL,EYTE PTE DE: [ESI]
JNZ SHORT Registra.lO00l0E4
TEST CL,CL

JE SHORT Registra.lO00l0E4
MOV DL,EYTE PTE D&: [EAX+1]
MOV CL,DL

CHMP DL,EYTE PTER DS: [ESI+1]
JHZ SHORT Registra.lO0010F4
ADD EAX,Z

ADD ESI, =

TEST CL,CL

LINZ SHORT Registra.l00010Cd
HOR EAX,EAM

HOR ECX,ECH

TEST EA&M,EAX

SETE CL

MOV EAN,ECH

POP ESI

ADD ESF,Zd

RETH

SEE EAXN, EAX

PO EST

SEE EAX,-1

HOR ECH,ECH

TEST EA&M,EAX

SETE CL

MOV EAN,ECH

ADD ESDP,Z4

RETH

JNZ

JNZ

SHORT Registra.l00010F4

SHORT Registra.l100010E4

Hers the real serial appears on the register EAX

compares the real serial chars with the serial inserted
if a char iz different then jumps away

destination of the routine in case it's all fine

destination of the routine in case the serial is not ok

Figure 6 - CheckRegistrationNumber patched disassembly details

NOTE

We can also write an Oraculum which is always a good solution in these cases, but for the
moment we will simply force the check to always return TRUE. The difference with the code
here presented is only that, instead of patching you will have to get the application’s context
and then store it away.

Suppose, for the sake of simplicity that we cannot patch the DIl on disk (for example because it's heavily
protected); the only solution would be to code a loader which takes control of the application or of the DIl and
patch it at the right time (that is after it has been loaded in memory and before execution).

© 2006 CodeBreakers Magazine

Page 6 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

4 Take Control of the whole application

The idea is pretty simple I think, especially for those of you who already read the tutorial on Loaders [1]. In
the Appendix 1 “Complete example of a debug-loader cycle” of document [1] (note that this appendix has
been added since version 1.2) I already have introduced the argument, but here I will extend it.

The basic concept is: we want to write a debug-loader which takes control of the whole application more or
less like a ring3 debugger, like Olly then. The loader will reach specifically to the debug event
LOAD_DLL_DEBUG_EVENT, coming from the application.

Then the gate-condition (activation of the loader) this time will be the loading in memory of a specific DII.
The next thing the loader should do is to understand where in memory the DIl is loaded and then properly
apply the patch.

All the following code can be written quite easily and once for all with the framework I introduced in [1] (The
real advantage of the framework is to maximize code reusability), but for this tutorial I will not use my
framework and will use instead simple C code, which being simpler should help to understand faster.

4.1 Writing first debug loader and introducing the code structure

This paragraph will extend what document [1] introduced, in order to successfully patch the DIl as told in
Section 3. The code presented is always well commented. I will only focus on the most important parts.

NOTE

I used some functions of the DDK package. Just because I didn't want to install the whole
DDK I wrote some wrappers. You can find them into the NTInternals.h and NTInternals.cpp
files. These two files are different version of the two similar found in [1], because have been
converted in C (thus less readable). I will not comment on them, just read the sources if you
are curious.

The only comment is that these wrappers have been written to allow the programmer who’s
writing the main() to use them transparently, as they were normal Win32 APIs. So indeed it's
not strictly required to know how they are implemented.

NOTE

Note that the code reported here is simplified and that I left out all the debug events not
occurring with this target program.

The code of this program is under the Simple_Client_Loader_2\ folder.

The complete loader with also all the debug events erased by this simple loader is in the
folder Complete_Client_Loader_3\ or can be found in [1].

© 2006 CodeBreakers Magazine Page 7 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

—————————————————————— Start Code Snippet ---------------------->

int main(int argc, char* argv[])

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

#ifdef DEBUG
MODULEINFO mi;
#endif

//ISDEBUGGERPRESENT PATCH INFO:
DWORD DebugPatch[] = {0x00000000};
//Patch byte info:

//Search (read) byte

BYTE scanbytd[] = {0x02};
//Found (write) byte
BYTE replbytd[] = {0x01};

JIL)I 0770077700777 77777 7777777777777 7777777777777777777777

//MAIN PROGRAM PATCH INFO:

//Patch Address info: # elements in following arrays must be synchronized for Address/scan/replace
DWORD AddressOfPatch[] = {0x100010CA, 0x100010CB};

//Patch byte info:

//Search (read) byte. Original bytes read from the D11 in memory (attn: # elements must be the same
//of AddressOfPatch)

BYTE scanbyte[] = {0x75, 0x28};

//Found (write) byte. New patch bytes to be written in memory (attn: # elements must be the same
//of AddressOfPatch)

BYTE replbyte[] = {0x75, 0x18};

//Target file system information

char FileName[] = "..\\Simple Client\\bin\\Client.exe";
//specific D11 for loaddll event (if required). This variable must be UPPERCASE.
char *mydll = "REGISTRATIONDLL.DLL";

L1117 7007 777777777770 777 77777777 777

BYTE DataRead[] = {0};

char b[1024];

BOOL contproc;

HMODULE hMods [2048] ;

DWORD cbNeeded;

DWORD nMods;

DWORD nPatches;

DWORD Pid[2];

DWORD dwPid;

HANDLE hSaveFile;

HANDLE hSaveProcess;

HANDLE hSaveThread;

LPVOID 1pMsgBuf;

DWORD dwRead;

DWORD dwWritten;

DWORD dwContinueStatus;

char *dbdll = "KERNEL32.DLL"; //IsDebuggerPresent dll for loaddll event (if required)
FARPROC ProcAdd;

unsigned int i;

unsigned int j;

unsigned int k = 0; //count # of processes
unsigned int 1 = 0; //count # of breakpoints
unsigned int modlist[200];

DEBUG_EVENT DebugEv; //debugging event information
contproc = TRUE; //default; continue processing = TRUE
dwContinueStatus = DBG_CONTINUE;

ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof (pi));

char commandline[1024];
//This function builds up the commandline string to be given to CreateProcess
BuildCommandLine (argc, argv, FileName, commandline);

//Start the child process.
if (!CreateProcess(NULL, //No module name (use command line).

commandline, //Command line.
NULL, //Process handle not inheritable.
NULL, //Thread handle not inheritable.
TRUE, //Set handle inheritance.
DEBUG_PROCESS, //No creation flags (use for more than 1 process
//DEBUG_PROCESS+DEBUG_ONLY THIS PROCESS, // (use for only 1 process)
NULL, //Use parent's environment block.
NULL, //Use parent's starting directory.
© 2006 CodeBreakers Magazine Page 8 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

&si, //Pointer to STARTUPINFO structure.
spi) //Pointer to PROCESS INFORMATION structure.

MessageBox (0, "Unexpected load error","Create Process Failed",MB OK+MB TASKMODAL+MB ICONERROR) ;
return 1;

}

//Hides the debugger more deeply to the target. IsDebuggerPresent patch is often not enough
//to effectively hide the loader.
HideDebugger (pi.hThread, pi.hProcess);

while (TRUE) {
//Wait for a debugging event to occur. The second parameter indicates
//that the function does not return until a debugging event occurs.

if (WaitForDebugEvent (&DebugEv, 1000)) { //wait 1 second
//Process the debugging event code.

switch (DebugEv.dwDebugEventCode) {

case CREATE_PROCESS_ DEBUG_EVENT: {
//As needed, examine or change the registers of the process's initial thread with
//the GetThreadContext and SetThreadContext functions; read from and write to the
//process's virtual memory with the ReadProcessMemory and WriteProcessMemory functions;
//and suspend and resume thread execution with the SuspendThread and ResumeThread
//functions. Be sure to close the handle to the process image file with CloseHandle.

contproc = TRUE;
dwContinueStatus = DBG_CONTINUE;

hSaveFile = DebugEv.u.CreateProcessInfo.hFile;
hSaveProcess = DebugEv.u.CreateProcessInfo.hProcess;
hSaveThread = DebugEv.u.CreateProcessInfo.hThread;
Pid[k] = GetProcessId(hSaveProcess);

dwPid = Pid[k];

//more than 1 process
if (k > 0)
{
//DebugActiveProcessStop (Pid[0]) ;

//OpenProcess (

// PROCESS ALL_ACCESS, //access flag
// FALSE, //handle inheritance flag
// dwPid //process identifier

/7Y

//DebugActiveProcess (dwPid) ;

//no need to go further
contproc = FALSE;

k++;

//include process info

sprintf(b, "hFile:%$X\n"
"ProcessId:%X\n"
"hProcess:%X\n"
"hThread:%X\n"
"lpBaseOfImage:%08X\n"
"dwDebugInfoFileOffset:%d\n"
"nDebugInfoSize:%d\n"
"lpThreadLocalBase:%08X\n"
"lpStartAddress:%08X\n"
"lpImageName:%08X\n"
"fUnicode:%d",

DebugEv.u.CreateProcessInfo.hFile, Pid[k -1], DebugEv.u.CreateProcessInfo.hProcess,
DebugEv.u.CreateProcessInfo.hThread, DebugEv.u.CreateProcessInfo.lpBaseOflImage,
DebugEv.u.CreateProcessInfo.dwDebugInfoFileOffset,

DebugEv.u.CreateProcessInfo.lpThreadLocalBase,
DebugEv.u.CreateProcessInfo.lpStartAddress,
DebugEv.u.CreateProcessInfo.lpImageName, DebugEv.u.CreateProcessInfo.fUnicode
)i

u

u

u
DebugEv.u.CreateProcessInfo.nDebugInfoSize,

u

u

u

MessageBox (NULL, b, "CREATE PROCESS DEBUG EVENT",MB OK+MB TASKMODAL) ;
}

break;

case LOAD DLL DEBUG EVENT: {
//Read the debugging information included in the newly loaded DLL.
//Be sure to close the handle to the loaded DLL with CloseHandle.

© 2006 CodeBreakers Magazine Page 9 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

contproc = TRUE;
dwContinueStatus = DBG_CONTINUE;

if (DebugEv.u.LoadDll.hFile == NULL) {
break;

}

//EnumProcessModules returns an array of hMods for the process
//Fails first time for ntdll.dll
//Do not worry it's a normal behavior

if (!EnumProcessModules (hSaveProcess, hMods, sizeof (hMods), &cbNeeded)) {
FormatMessage (
FORMAT MESSAGE_ALLOCATE_BUFFER | FORMAT MESSAGE_FROM SYSTEM,
NULL,
GetLastError (),

MAKELANGID (LANG NEUTRAL, SUBLANG DEFAULT), //Default language
(LPTSTR) &lpMsgBuf,

0,

NULL

)i

#ifdef DEBUG

//Display any error msg.

: :MessageBox (NULL, (const char*)lpMsgBuf, "EnumProcessModules Error",
MB_OK+MB_TASKMODAL) ;

#endif

//Free the buffer.
LocalFree(lpMsgBuf);
SetLastError (ERROR_SUCCESS) ;

//close handle to load dll event
CloseHandle (DebugEv.u.LoadDll.hFile);
break;

}

//Calculate number of modules in the process
nMods = cbNeeded / sizeof (HMODULE) ;

for (1 = 0; 1 < nMods; i++) {
HMODULE hModule = hMods[i];
char szModName [MAX PATH];

//GetModuleFileNameEx is like GetModuleFileName, but works in other process
//address spaces. Get the full path to the module's file.
GetModuleFileNameEx (hSaveProcess, hModule, szModName, sizeof (szModName)) ;

if (0 ==1i) { //First module is the EXE. Add to list and skip it.
modlist([i] = i;

}

else //Not the first module. It's a DLL

{

//Determine if this is a DLL we've already seen

if (i == modlist([i]) {
continue;

}

else {
//We haven't see it, add it to the list
modlist([i] = i;

#ifdef _DEBUG
//Get the module information
GetModuleInformation (
hSaveProcess,
hModule,
&mi,
cbNeeded
)i
//include DLL entry, name and base image address, etc. info
sprintf(b, "DLL entry:%d\n"
"DLL module:%s\n"
"Load address:%08X\n"
"Size of image:%08X\n"
"Entry Point:%08X", i, szModName, hModule, mi.SizeOfImage, mi.EntryPoint
)i
MessageBox (NULL, b, "LOAD DLL DEBUG EVENT",
MB OK+MB TASKMODAL+MB ICONINFORMATION) ;
#endif

//Find the last '\\' to obtain a pointer to just the base module name part

//(i.e. mydll.dll w/o the path)

PSTR pszBaseName = strrchr(szModName, '\\');

if (pszBaseName) { //We found a path, so advance to the base module name
pszBaseName++;

© 2006 CodeBreakers Magazine Page 10 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

}
else {
pszBaseName = szModName; //No path. Use the same name for both

}

//optionally, if module name = "DB.DLL"
if (strcmp (strupr (pszBaseName), dbdll)==0) {

//Get the address of the specified exported dynamic-link library
// (DLL) function
ProcAdd = GetProcAddress (

hModule, //handle to DLL module
"IsDebuggerPresent" //name of function
)i

//Add offset 0x0C to ProcAddress
if (NULL != ProcAdd) {
DebugPatch[0] = (DWORD) ProcAdd + 0x0C;

//apply the IsDebuggerPresent patch
ReadProcessMemory (hSaveProcess, (LPVOID) DebugPatch[0], DataRead,
sizeof (BYTE), &dwRead);

if (DataRead[0] == scanbytd[0]) {

WriteProcessMemory (hSaveProcess, (LPVOID) DebugPatch([0],
&replbytd[0],
sizeof (BYTE), &dwWritten);

#ifdef DEBUG

sprintf (b, "Patch applied at address: $08X (
(LPVOID) DebugPatch[0], (LPVOID)scanbytd[0
(LPVOID) replbytd([0]);

MessageBox (0, b ,"Attention",MB_OK+MB_TASKMODAL) ;

#endif

$02X -> %02x)",
]

’

}

L1011 00 0770007777007 77770 7777777777777 7777777777777777777777777777777777
//If module name = "MY.DLL". Here is where the patch to the DLL is applied.
//The real core of the loader is all into this if!

if (strcmp (strupr (pszBaseName), mydll)==0)

{

//Rpply the patches to the *.exe or *.dll module

//Calculate number of patches / addresses (not always this formula works,
//but here it 1is)

nPatches = sizeof (AddressOfPatch) / sizeof (AddressOfPatch[0]) ;

[::> for (j = 0; j < nPatches; j++) {
LPVOID CurrentAddress= (LPVOID) (AddressOfPatch[]j]);
ReadProcessMemory (hSaveProcess, CurrentAddress, DataRead,
sizeof (BYTE), &dwRead);

if (DataRead[0] == scanbyte[]j])

{
WriteProcessMemory (hSaveProcess, CurrentAddress, &replbytelj],

sizeof (BYTE), &dwWritten);
#ifdef _DEBUG
sprintf (b, "One Patch applied at address: %08X (%02X -> %02X)",
CurrentAddress, (LPVOID) scanbyte[j], (LPVOID) replbytel[j]);
MessageBox (0, b ,"Attention",MB_OK+MB_TASKMODAL) ;
#endif
}

}
} //end MY.DLL patch! If you need break here to jump to DebugActiveProcessStop!

}

//close handle to load dll event

CloseHandle (DebugEv.u.LoadDll.hFile) ;
} /// end case LOAD DLL_DEBUG_EVENT
break;

default: {
contproc = TRUE;

dwContinueStatus = DBG_EXCEPTION_NOT HANDLED;
}

break;

} //end switch DebugEv.dwDebugEventCode

© 2006 CodeBreakers Magazine Page 11 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

if (!contproc)
break;

ContinueDebugEvent (DebugEv.dwProcessId, DebugEv.dwThreadlId, dwContinueStatus);
} //end if
} //end while

//Close process and thread handles.
CloseHandle (pi.hProcess);
CloseHandle (pi.hThread);

//Detach from debugger/debuggee
sprintf(b, "ProcessIdl:%X\nProcessId2:%X", Pid[0], PidI[1l]);

MessageBox (NULL, b, "Process Ids", MB_OK+MB_ TASKMODAL+MB_ ICONASTERISK) ;
DebugActiveProcessStop (Pid[0]) ;
DebugActiveProcessStop (Pid[1]) ;

ExitProcess(0);

return O;

The most interessing part is the case LOAD_DLL _DEBUG_EVENT (the most important points are shown
beside the sources). This case is quite simple in its logic and if you follow step-by-step the debug version of
this program in your C compiler, you would understand what it does:

1. When the debug event is raised it checks what the loaded DIl is through EnumProcessModules,

2. if it's name (without path) matches with the one we want to patch applies the patch using
WriteProcessMemory.

3. Before writing to memory it does an additional check to see if the original bytes are those we expect
to have.

This code section of the program has also a particular attention in case the loaded DIl is KERNEL32.DLL
(stored in the dbdll variable). When this occurs it also patches the IsDebuggerPresent API.

Well try to run the already compiled programs attached to this tutorial (either Debug or Release) to see what
happens (see Figure 7).

x|

hFile:55
Processld:440
hProcess: 34
hThread: 30

IpBaseOflmage: 00400000 LOAD DLL DI il

dwDebuginfoFileOffset:0 = =

nDebuglnfoSize:0 i DLL entry:2

IpThreadlocalBase: FFFOFOOD \) DLL module: CWYINDOWSisystem32tkernal32 dil "

IpStartAddress: 00401840 Load address: 7C800000 Attention il
Iplmagehame: 00000000 Size of image: 000F4000

fUnicode: 1 Entry Paint: 7C80B436 Patch applied st address: FCB12EDF (02 -> 01)

x|
LOAD_DLL _DEBUG_EVEN il One Patch applied at address: 100010CA (75 -> 75)

\y DLL entry:3
DLL module: - - — ~SourcestSimple_Client_1thintRegistrationDll.dll
Load address: 10000000

Size of image:0000C000
Entry Point: 10001427

Figure 7 — Part of the sequence of dialogs in the Simple Client Loader Debug's build (from left to right).

© 2006 CodeBreakers Magazine Page 12 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

This code, despite working excellently, has a little problem. It's not sensible to DIl relocations in memory. The
variable AddressOfPatch is used blindly when reading and writing to memory. We obtained that address using
OllyDbg, thus the assumption this code does it that the DIl is loaded by the program in exactly the same
place where it was loaded into OllyDbg.

We will solve this problem using some math!

As you can see from Figure 7 we have pretty much information to use either for the process or for each DII.
The most important of which are the “Load Address” (This is the hModule: the handle of the module is
by definition the address where it has been loaded in memory. OllyDbg calls this “"Base Address”)
and the “Size of Image”. The “Entry Point” is obtained for the DIl as the address of the DIIMain method each
DIl has.

Well, to accomplish portability, with the meaning told, it's enough to convert absolute patch addresses to
offsets relative to the Load Address (hModule).

DWORD AddressOfPatch[] = {Ox10CA, 0x10CB}; //becomes a relative offset
And the code where the target DIl is patched (point 2 in the previous code snippet) changes a little:
LPVOID CurrentAddress= (LPVOID)((DWORD)hModule + (DWORD)AddressOfPatch[j]);

Always remember to convert address to DWORD before adding them, otherwise the compiler uses the C
arithmetic of pointers, and the final result is something different.

NOTE

The given examples are not stopping when the application exits, but generally speaking if the
loader is running on an XP system it can use the DebugActiveProcessStop API and terminate
just after the patch is done, leaving the application run freely. To enable this insert where
you want to stop the instruction contproc = FALSE;

Moreover using the NTInternals files I wrote, ensures compatibility with older system,
because if the operative system doesn’t support this API, it will not do anything.

4.2 Write a debug loader for a protected DIl

It is now clear what can be done taking full control of the application, but what happens when the DIl is
protected with some packer? To try it out I protected both the Client.exe and the RegistrationDIl.dll using
ASProtect (just to try it out, not for commercial purposes). Let see in this case what happens.

NOTE
The code of this program is under the Simple_Client_Protected_4\ folder

I protected both the client and the DIl with ASProtect SKE 2.11 build 03.13, using the settings of Figure 8.

— Protection Options

[~ Resources Protection [v Anti-Debugger Protection [
[v CheckSum Pratection 0
[~ Preserve Extra Data [v Pratect Original EntryFaint

v Emulate standard system functions

v Advanced Impon protection

Figure 8 - Settings used to protect Client and DIl with AsProtect

© 2006 CodeBreakers Magazine Page 13 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

Well, before writing a loader doing the same things of Section 4.1, just take time to analyze what ASProtect
did to our program; it will also be the occasion to write some considerations on ASProtect SKE 2.11

4.3 Analysis of the protected program

Launch as usual your program into Olly and follow the same approach we did on Section 3: launch the
program, skip all the exceptions, insert a fake serial and when the badboy message appears press pause in
Olly. Now, inside Olly, take a look at the Calling Stack. You should have something like the following:

Address | Stack Procedure < arquments Called from Frameg
Ba12F118[7r043418] Includes ntdll.KiFastSystenCal [Ret USER32. WaitHessage+BA BE12F140
BE12F11C) FFOSE2A2| USERZ2. WaitMeszage USER3Z. FFOSEZ2S0 BE1Z2F 140
BE12F156| FFOSE1CE| USERSE, FFOSELLS USERZZ. FFOSE1C1 BE1ZF 140
BE12F178| FPOGAYZE| USERSZ, FrOSE118 USER3Z. FFOSAZ2S BE12F174
BE12F428| FPDEA294| USERZE, Sof tModalMessagebon USERZ2, FrDERZEF BE12F424
BE12FE88| FFDYSFER| USERSE. FFOEALLF USERZZ. FFOSEFEE @1 2ZFE2d
BE12FSEA| PP096868| USERSE, MessageBox T imeoutll USER3Z. MessageBon T ineout A+37 Ba1zFS0C
8812Fe14| FPDSBEF?| 7 USER3Z. MessageBonT ineouth USERS2, MessageBorExA+1d Ba1ZFela
BE12FE34| FPOBESEF | USER22. MessageBorERA USER3Z. FFOSES2A 81 2FE28
BE12FE35) BEEARAEE| hOwner = MULL

BA12FESC) BB403628) Text = "Mahh, you have to get a walid serial somehowt™
BE12FE48) BR4E3026| Titls = "Shub-Nigurrath™

BE12FE4d | BRABBBEA| Sty le = ME_OKIME_AFFLMODAL

BE12FE43| BEEEEPEA| Langusgel0 = 8 (LANG_NEUTRAL)

A first consideration: the call stack is extremely different from the not protected application, because there
are no elements of it which are inside the client application. Indeed ASProtect transforms all the normal calls
to the Windows APIs to Windows Messages, through a dispatching service it added to the program. This
makes the program'’s flow not linear and thus not so easy to follow for complex applications.

Anyway place a breakpoint in the top level call of the stack at 0x77D8052A into User32.dll, where the
MessageBox is prepared by the system for display. Let run the application and insert another time the serial.
You should land on the BP. Look the Call Stack, is empty!

Do not worry, there’s always the Data Stack which helps us. Look the data stack into Olly, you should have
something like below:

00000000 || hlwvner = NULL
OD1ZFe2C| 004030Z0() Text = "Nahh, you have to get a walid serial somehow!"
O01ZFe40| 00403080(] Title = "Shub-Nigurrath"

O0lZFe44| 00000000 (| style = MB_OK|ME_APPLMODAL
0012F&42| 00000000 |(LLanguageIl = 0 (LANG MEUTPAL)
O001ZFe4C| 00000000
0012F&50| OOCEABA4
O001l£Fe54| 00000000
O01zFeb2| 004030Z0(ASCII "Nahh, you have to get a walid serial somehow!"
O0LZFEEC| 00402080 |ASCII "Shub-Nigurrath"

00lZFesd| 00000000
00lzFeed | DO1ZFEEC
001ZFees| 0040Z300|Client . 00402300
0012Feal| D01Z2FE04
O001£F&70| 00000001
O012F&74| 72DDZ4CO0(RETUBN to mfcdZ. 73DDE4CO
O01ZFE7E| 00402200 |Client . 00402200

O0LlZFe70| 00000111
0012Fesl |[FO01ZFE34
001ZFeg4 [TSDDZSBF BETURN to mfcdZ 73DDESEF from mfcdi. AfxDispatchCmdMsg

What we notice immediately is the call to the _AfxDispatchCmdMsg function of the mfc42 DIl. Well this is an
internal part of the dispatching mechanism of Windows and it’s the door through which we will find where the
hell the routine, calling our DII, is gone.

Press enter into the Data Stack to land to this API and place a breakpoint here:

73DD23BA E8 7F000000 CALL mfc42. AfxDispatchCmdMsg

Now let the application again run freely (F9) and insert another time the username and regnumber. Notice
that each time you do something in the interface (not just moving the mouse) you stop at the above
breakpoint. To make it shorter just enter a single letter username and regnumber and press check (you
should have stopped at the BP 3 times then).

© 2006 CodeBreakers Magazine Page 14 of 27

After having pressed Check you land on the BP, this time we will follow the call to discover where the

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

message is dispatched.

Step by step the function arrives at the place shown below:

T3DDZ2482
T3DDZ454
T3IDDZ487
73DDZ483
T3DDZ48C
T3DDZ48F
T3DDZ2492
73DDZ24397
TIDDEZ494
73DDZ49C
T3DDZ49F
T3DDZ4AZ
T3DDZ4AS
TIDDZ4AR
T3DDZ4AD
73DDZ4B0
T3DDZ4BE
TEDDZ4EE
73DDZ4E.

w

W

55: [EEFt18]

TE &9 JHE SHORT mfcdZ. 73DDZ4ED
SB4L 18 N0V EAX,DWOED PTE

FFz0 PUSH DWOED PTR DE: [ELX]

2B4D 08 MOw ECH,DWORD PTER S55: [EEP+8]
FF70 04 PUEH DWORD PTR D3: [EdkK+d]
FFLEL 14 CALL DWORD PTE 85: [EEP+14]
E3 Az000000 JHP mfcdZ. 73DDZERF

SB4L 18 N0V EAX,DWOED PTE S5: [EERt1S]
FF20 PUOEH DWORD PTR DA3: [EAX]

2B4D 08 MOW ECH,DWORD PTER 55: [EEP+8]
FF70 04 PUOEH DWORD PTR D3: [EAkK+d]
FFLE 14 CALL DWORD PTE E2: [EEP+14]
E3 57000000 JHP mfcdZ.730DZ541

gB4D 08 MOV ECH,DWORD PTE 55: [EEP+E]
FFLE 14 CALL DWORD PTR 55: [EEP+14]
E3 si000000 JMP mfcdZ 73DDZE3F

FF75L 0OC PIIZH DWOED PTR E3: [EEP+C]

EB 4& JHP SHORT mfcdZ. 73DDZ4FF
SB4D 08 N0V ECK,DWOED PTR S5: [EEF1S]
FFRE 14 CALL DWORD PTRE 55: [EEF+14]

The call at 0x73DD24BD is really important, follow it!

You land into a part of the Client code, which should look like below:

Just remove the Analysis and magically we will see the

00401531
00401593
00401534
00401595
00401532
00401598
00401530C
0040159E
00401541
00401547
00401547
00401548
00<401E5AT
0040154F
00401ERZ
004015B4
O00401EEE
O004015B&
00401EEE
004015BC
00401ECL
00401504
00401ECE
00401508
004015CA
004015CF
004015D1
00401503
004015D8
00<401E5DE
004015DT
00401E5EZ
O004015E4
00<401E5E3
004015EE

Client 00401550

Client.00401E30

Client 00401550

Client 00401530

53 B 53 CHAR '8!
00401591 iE B 3B
00401592 D3 IE D3
00401593 55 B 55 CHAR 'TM
00401594 13 DB 56 CHAR 'V

place where things are called:

£3

SED2

55
55
sB
2D
57
2B
sB
E0
ES
2B
2D
2B
2B
=B
50
E8
50
EE
ES
23
=B
=B
5%
E8
5%
sB
E2
a3
A
&8
7E
58
EE
58

43
73

54
&d

CE
40 FS
AFOZOOOO
4B &0
7B &0
E2
a1
CF

Fg2
SCo0z0000

7FO000000
c4 og
CE
E8
FF
8lo0z0000
FF
CF
720Z0000
FD 01
oo
80304000
o7
50304000
23
Z0z04000

IUIEH EEBX
MOV EEX, ECX
FIISH EBP
PUSH EST

FITSH EDT
MOV ECH,ESI

PUZH EaX
CALL Client

MOV EET ,EAX

MOV ECXK,EDI
PUSH EiX
CALL Client
PUSH EiX
TUSH EEP
CALL Client
ADD ESD, &
MOV ECX,ESI
MOV EED, EAX
PUSH -1
CALL Client
PUSH -1

MOV ECXK, EDI
CALL Client
CMF EEBF, 1

MOV EAX, DWORD FTER DS:
LEa ESI ,DWORD ITR DE:

MOV EAX, DWORD FTER DS:

MOV ECH, DWORD IPTR DE:

LE4i EDI,DWORD FTR DS:

MOV EAX,DWORD FTR DS:

[EEX+654]
[EEXR+54]

[Eix-8]

.00401856

[EEX+50]

[EEX+50]

[ECH-2]

_00401856

.00401640

. 00401850

.00401250

Client.

Client.

JMP to

Client.

IME to

JHMP to

Client.

JMF to

JHP to

00402300

00402200

mfcdZ 2915

004010F32

mfodZ 2915

registra.CheckRegistrationNumber

00402300

mfcdZ 5572

mfcdZ. #5572

PUZH O

FIISH Client. 00403080

JHZ SHORT Client.004015EE
PUSH Client.00403050

JHP SHORT Client.00401E5F0
PUSH Client.00403020

ASCIT "Shub-Nigurrach®
ASCII "Compliments, well done the serial is
ASCII "Hshh, you have to get = walid serial

correct”

somehaonr! "

You should have recognized the place where we are now. Compare Figure 3 and Figure 9, something has
changed, but leave all these considerations for another tutorial.
The most important thing is that we found again the checking routine (I could have done it faster, but I
preferred to follow this way to better illustrate some concepts).

© 2006 CodeBreakers Magazine

Page 15 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

004015BC E8 7F000000 CALL Client.00401640 ; JMP to
registra.CheckRegistrationNumber

After this point the story is exactly the same, the address where to patch is exactly the same as before!

4.4 Writing the loader for the protected program

Try to run the loader we just created with the protected program and see what happens. There are two news,
the first is good and the second is bad:

= The good news is that ASProtect doesn’t complain about being debugged by the loader. We wrote the
HideDebugger properly.
» The bad news is that the loader won’t patch our DIl. Why?

Consider that the patch is applied when the event LOAD_DLL_DEBUG_EVENT is raised, but if the DIl is
protected at that time it has only been loaded in memory and not yet unpacked. So we are patching too early
and we will need to change the patch condition.

NOTE
The code of this loader is under the Simple_Client_Loader_Protected_5\ folder
The protected version of the demo Client is under the folder Simple_Client_Protected_4\

The way I chose, (but it’s only to do something different), is to use the Hardware Breakpoints and place a
Hardware Breakpoint on write, at the memory location of one of the patches (just one, the first for example).
Other valid approaches are those described in [5, 6].

Then when the loader reaches the breakpoint it applies the patches.

NOTE

Please refer to [3] to understand Debug Registers, Hardware Breakpoint vs Software
Breakpoints Then look [4] to understand the meaning of the bit fields of DR7 (chapter 15.2.4
specifically).

Anyway here I wrote the essential things.

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0

LEN|R/W | LEN|R/W|LEN|R/W|LEN|R/W G G|L|G|L|G|L|G|L|G|L DR7
3 3 2 2 1 1 0 0 D EIE|3|3|2|2|1]1]|0

Figure 10 - Bytes position for register DR7

Figure 10 show the bytes meaning of DR7 register [4].

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions. The flags
and fields in this register control the following things:
= LO through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enable (when set) the
breakpoint condition for the associated breakpoint for the current task. When a breakpoint condition is
detected and its associated Ln flag is set, a debug exception is generated. The processor automatically
clears these flags on every task switch to avoid unwanted breakpoint conditions in the new task.
* GO through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enable (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is

© 2006 CodeBreakers Magazine Page 16 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

detected and its associated Gn flag is set, a debug exception is generated. The processor does not
clear these flags on a task switch, allowing a breakpoint to be enabled for all tasks.
= R/WO through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies
the breakpoint condition for the corresponding breakpoint. For the Intel386™ and Intel486™
processors, bits are interpreted as follows:
00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.
= LENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size
of the memory location at the address specified in the corresponding breakpoint address register (DRO
through DR3). These fields are interpreted as follows:
00 — 1-byte length
01 — 2-byte length
10 — Undefined (or 8 byte length, see note below)
11 — 4-byte length

So, according to Intel documentation if we want a breakpoint with these characteristics:
= a break which location is stored in DRO,
= alocal break,
= which breaks on execution,
= for which the corresponding DRn is a byte.
We have to set DR7 bits as following:

Bit number | O 1 16, 18,
17 19
Field Name | LO | GO | R/WO | LENO
Value 1 0 01 00

The final DR7 value will be: 00100000000000000001 binary —» 0x20001 hex

The code of Point 2 of the code snippet of Section 4.1 then becomes the following:

<mmmmmmm e Start Code Snippet ------—-----—————————- >

L1177 77770 7777777777777 77771777777777777777777777777777777777777777177777
//I1f module name = "MY.DLL". Here is where the patch to the DLL is applied.
//The real core of the loader is all into this if!

if (strcmp (strupr (pszBaseName), mydll)==0)

{

//Rpply the patches to the *.exe or *.dll module
//Calculate number of patches / addresses (not always this thing works, but here it is)
DWORD FirstPatchAddress= (DWORD)hModule + (DWORD)AddressOfPatch[0];

//This is requires because when we will apply the patch the hModule will be different
lpBaseofDll=hModule;

_CONTEXT processContext;
//CONTEXT DEBUG_REGISTERS must be explicitly added to the code.
processContext.ContextFlags = CONTEXT FULL | CONTEXT_FLOATING_POINT | CONTEXT DEBUG_REGISTERS;

GetThreadContext (pi.hThread, &§processContext) ;

try {
throw 1;

}

catch(int) {
processContext.Dr0=FirstPatchAddress;
processContext.Dr7=0;

//According to Intel documentation I use these values:

v bits # |0 | 1 | 16, 17 | 18, 19 |
//| field name | LO | GO | RWO | LENO |
/71 value 1 |10 | 01 | 00 |
//

//This way DR7 is:

© 2006 CodeBreakers Magazine Page 17 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

// - a break which location is stored in DRO,
// - a local break,
// - which breaks on execution,

// -for which the corresponding DRn is a byte.
//Value: 00100000000000000001b -> 0x20001

processContext.Dr7 = (DWORD)0x20001;
SetThreadContext (pi.hThread, &processContext);
}

} //end MY.DLL patch!

When a Hardware Breakpoint is reached by the program the CPU raises an EXCEPTION_SINGLE_STEP and
just after an EXCEPTION_BREAKPOINT exception. Thus we need to add two cases to the switch contained
into the case EXCEPTION_DEBUG_EVENT.

These two switches will handle our breakpoint properly

The new parts of the code become:

while (TRUE) {
// Wait for a debugging event to occur. The second parameter indicates
// that the function does not return until a debugging event occurs.

if (WaitForDebugEvent (&DebugEv, 1000)) { // wait 1 second
// Process the debugging event code.

switch (DebugEv.dwDebugEventCode) {

case EXCEPTION DEBUG_EVENT: {
// Process the exception code. When handling
// exceptions, remember to set the continuation
// status parameter (dwContinueStatus). This value
// 1is used by the ContinueDebugEvent function.
switch (DebugEv.u.Exception.ExceptionRecord.ExceptionCode) {

|1> case EXCEPTION SINGLE STEP: {
// First chance: Update the display of the
// current instruction and register values.

if (DebugEv.u.Exception.dwFirstChance) {
contproc = TRUE;
dwContinueStatus = DBG_CONTINUE;

}

else {
contproc = FALSE;

}

sprintf(b, "Exception Code: %08X\nException address: %08X",
DebugEv.u.Exception.ExceptionRecord.ExceptionCode,
DebugEv.u.Exception.ExceptionRecord.ExceptionAddress) ;

#ifdef DEBUG

: :MessageBox (NULL, b, "EXCEPTION SINGLE STEP", MB OK+MB TASKMODAL+MB ICONWARNING) ;

#endif

}

break;

case EXCEPTION_BREAKPOINT: {
// First chance: Display the current
// instruction and register values.
1++;

if (DebugEv.u.Exception.dwFirstChance) {
contproc = TRUE;
//1 == # of bp's note: (ntdll has debugbreak X 2 open processes)
//note: if ONLY 1 process and want to avoid INT3 debugger trick,
//change to (1 > 1) below:
if (1 > 2) {
dwContinueStatus = DBG_EXCEPTION NOT HANDLED;
}

© 2006 CodeBreakers Magazine Page 18 of 27

=)

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

else {
dwContinueStatus = DBG_CONTINUE;
}
}
else {
contproc = FALSE;
}

sprintf(b, "Exception Code: %08X\nException address: %08X",
DebugEv.u.Exception.ExceptionRecord.ExceptionCode,
DebugEv.u.Exception.ExceptionRecord.ExceptionAddress) ;

#ifdef DEBUG

: :MessageBox (NULL, b, "EXCEPTION BREAKPOINT", MB_OK+MB_ TASKMODAL+MB_ ICONWARNING) ;

#endif

L1717 777777777777777777777777777771777777777777777777777777777777777777777
if (1pBaseofD11l!=NULL) {
//Rpply the patches to the *.exe or *.dll module
//Calculate number of patches / addresses (not always this thing works,
//but here it 1is)
nPatches = sizeof (AddressOfPatch) / sizeof (AddressOfPatch[0]);

DWORD AppliedPatches=0;
for (j = 0; j < nPatches; j++) {
//MODULEINFO.1lpBaseOfD1ll is exactly the same meaning of hModule.
LPVOID CurrentAddress= (LPVOID) ((DWORD) lpBaseofDll + (DWORD)AddressOfPatch[j]);
ReadProcessMemory (hSaveProcess, CurrentAddress, DataRead,
sizeof (BYTE), &dwRead);

if (DataRead[0] == scanbyte[j])
{
WriteProcessMemory (hSaveProcess, CurrentAddress, &replbytelj],
sizeof (BYTE), &dwWritten);
#ifdef _DEBUG
sprintf (b, "One Patch applied at address: $%$08X (%02X -> $02X)",
CurrentAddress, (LPVOID) scanbyte[j], (LPVOID) replbytel[j]);
: :MessageBox (0, b ,"Attention",MB_OK+MB_TASKMODAL) ;
#endif
AppliedPatches++;

}

//Have we successfully patched all the things? If yes clean what we did before.
if (AppliedPatches==nPatches) {
//To avoid repeating the patch this variable must be set to NULL again.
lpBaseofDl11=NULL;

//Remove the breakpoint from target's context.

_CONTEXT context;

context.ContextFlags = CONTEXT FULL | CONTEXT FLOATING_ POINT |
CONTEXT_DEBUG_REGISTERS;

GetThreadContext (pi.hThread, &context);

context.Dr0=0;

context.Dr7=0;

SetThreadContext (pi.hThread, &context) ;

}
}
L1777 7 007777777 77

break;

For the complete source code see the folder Simple_Client_Loader_Protected_5\ into the
accompanying this tutorial.

Some comments on few code points:
When an HW Breakpoint is reached the CPU raises a EXCEPTION_SINGLE_STEP exception and falls
there. We do nothing special here.
After having the processor raises an EXCEPTION_BREAKPOINT this is the place where to do patches.

IpBaseofDIl was the HMODULE of RegistrationDIl.dll we stored before, when we set the HW Breakpoint,
this value is used when the loader stops at the breakpoint to correctly find where to patch.
Once all the patches are done we can delete the unused variables and remove the HW Breakpoint.

1.

2.
3.

4.

© 2006 CodeBreakers Magazine

sources

Page 19 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

Note that this approach might generally not work for protectors checking the presence of HW breakpoints, in
those cases you will have to follow different approaches..

Remember that you have full control of the code and of the debug events/exceptions the program arises; so
generally speaking I suggest this blind procedure to rapidly find when to place the patching loop.

1. Compile the loader in debug mode, thus with all the messageboxes appearing. I suggest using the
complete debugger cycle I provided in Complete_Client_Loader_3\ which traps all supported
exceptions, just to not miss any. If required also trap custom exceptions (the code reports some
examples).

2. Run the loader beside a memory inspection tool running into another task (such for example WinHex
or MemoryHacker from L.Spiro).

3. Take a look at the memory address you want to patch and when a specific exception occurs check the
memory with the other tool and see if the values you expect are already in place.

4. If they are, write the source code that applies patches in the “case” that handles the last exception.

This is a blind process as 1 told, because doesn’t suppose you to know what the packer does, it simply checks
memory if the expected value is already there.

So, why the loader cannot do the same things directly? Well, the answer is that doing this way the solution is
more general and exclude the situation where the searched bytes at a given address would never appear (i.e.
because the target version is changed).

5 Write a DIl Proxy

As told in Section 2 the other possible solution to solve our problem on Dlls is to write a DIl Proxy. Well the
solution is less powerful than mini-debugger approaches (debugger loaders) but have some advantages: is
simple to code, it's faster to execute.

An easy way for hacking APIs is just to replace a DLL with one that has the same name and exports all the
symbols of the original one. This technique can be effortlessly implemented using function forwarders. A
function forwarder basically is an entry in the DLL's export section that delegates a function call to another
DLL's function.

As described in [7, 8] we will use the so called “Export Forwarding”.

5.1 Export Forwarding

A particularly slick feature of exports is the ability to "forward" an export to another DLL. For example, in
Windows NT®, Windows® 2000, and Windows XP, the KERNEL32 HeapAlloc function is forwarded to the
RtlAllocHeap function exported by NTDLL. Forwarding is performed at link time by a special syntax in the
EXPORTS section of the .DEF file. Using HeapAlloc as an example, KERNEL32's DEF file would contain:

EXPORTS

HeapAlloc = NTDLL.RtlAllocHeap

How can you tell if a function is forwarded rather than exported normally? It's somewhat tricky. Normally,
the EAT contains the RVA of the exported symbol. However, if the function's RVA is inside the exports section
(as given by the VirtualAddress and Size fields in the DataDirectory), the symbol is forwarded.

When a symbol is forwarded, its RVA obviously can't be a code or data address in the current module.
Instead, the RVA points to an ASCII string of the DLL and symbol name to which it is forwarded. In the prior
example, it would be NTDLL.RtlAllocHeap.

Another way you can accomplish this task is using #pragma comment

© 2006 CodeBreakers Magazine Page 20 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

#pragma comment (linker, "/export:DoSomething=Dl11Impl.ActuallyDoSomething")

However, remember that if you decide to employ this method, you should take the responsibility of providing
compatibilities with newer versions of the original library. For more details see [8] section "Export
forwarding" and [9] "Function Forwarders" (Chapter 20).

5.2 Writing first proxy DIl and introducing the code structure
What I want to do strongly depends on what you already know of the target DIl. Let consider two cases:

= The DIl is a plug-in of another program. In this case most of the times its interface methods are well
known, and also their prototypes,

= The DIl is an undocumented DIl. This is the situation with most programs; the DIl exports are unknown
or just known by their name.

In any case what we have to write is a normal DIl which loader the original DIl internally and forward the
program’s requests to this local istance of the DII.

So these are the actions:
1. the proxy loads an internal copy of the original DIl
2. patch it in its own memory space or somehow elaborates answer coming from the DIl (for example
inverting Booleans),
3. send answers to the client program

Remember that the client has loaded the proxy DIl instead of the original DII.

NOTE
The code of this part of the document is under the Proxy_DII_6\ folder, also with a local copy
of the client and of the RegistrationDIl.dll, renamed to _RegistrationDIl.dll

The complete code is shown below..

#include "stdafx.h"

//Forward declaration of Prototypes
BOOL PerformPatch () ;

L1177 77777 777777 777777777770777777777777777777777777777777777777777177777
// Function forwarders to functions in DllWork
#pragma comment (linker, "/export:CheckRegistrationNumber= RegistrationDll.CheckRegistrationNumber")

//Other things to do in order to create a new project:

//1. add to the linker's path the path where to find the forwarded dll'

//2. add to not use the precompiled headers

//3. add the /force commandline to the linker, to ignore stupid missing include files errors.
// These linker errors will not influence the final output

L1777 7 1770777777777 7 777777777 777

//Module of the loaded Library, it's a global variable.
HMODULE hD11Mod=0;
char b[1024]; //messages buffer

L1011 000 7777707777777 777777777 777777777777 77777777777777777777777777

//MAIN PROGRAM PATCH INFO:

//Patch Address info: # elements in following arrays must be synchronized for Address/scan/replace
DWORD AddressOfPatch[] = {0x10CA, 0x10CB};

//Patch byte info:
//Search (read) byte. Original bytes read from the dll in memory (attn: # elements must be the same of AddressOfPatch)

BYTE scanbyte[] = {0x75, 0x28};

//Found (write) byte. New patch bytes to be written in memory (attn: # elements must be the same of AddressOfPatch)

BYTE replbyte[] = {0x75, 0x18};

© 2006 CodeBreakers Magazine Page 21 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

char szDllName[]="._RegistrationDll.dl1l";
L1777 077 1070777777777 77777777777 777

BOOL APIENTRY Dl1lMain(HANDLE hModule,

DWORD wul reason_for_call,
LPVOID lpReserved
)

// Remove this if you use lpReserved
UNREFERENCED PARAMETER (lpReserved) ;

switch(ulireasoniforicall)

{

case DLL_PROCESS_ATTACH:

{
hDl1Mod=::LoadLibrary ((LPCSTR) szD11lName) ; <t::
if (hD11Mod==NULL) {
//Find the last '\\' to obtain a pointer to just the base module name part
//(i.e. mydll.dll w/o the path)
PSTR pszBaseName = strrchr(szDllName, '\\');
if (pszBaseName) { //We found a path, so advance to the base module name
pszBaseName++;
}
else {
pszBaseName = szDllName; //No path. Use the same name for both

}

sprintf (b, "$s not found.\r\nHave you renamed it as _%s\r\n Is this dll into the same path?",
pszBaseName, (pszBaseName+l));
: :MessageBox (NULL, b, "Load Library Failed", MB_OK+MB_TASKMODAL+MB_ICONERROR) ;

return TRUE;
}

PerformPatch () ;

}

break;

case DLL_PROCESS_ DETACH:
{
if (hD11Mod!=NULL) {
::FreelLibrary (hD11Mod) ;
hD11Mod=NULL;
}
}

break;

case DLL THREAD ATTACH: {} break; //not used at the moment
case DLL THREAD DETACH: {} break; //not used at the moment

}

return TRUE;

}

BOOL PerformPatch() {

int
int
DWO
DWO
BYT
int

/17
/ /A
//C
nPa

for

i=0, 3=0;
nPatches=0;

RD dwRead=0;

RD dwWritten=0;

EDataRead[] = {0};
AppliedPatches=0;

J1110707 77070 7771777777

pply the patches to the *.exe or *.dll module

alculate number of patches / addresses (not always this thing works, but here it is)
tches = sizeof (AddressOfPatch) / sizeof (AddressOfPatch[0]);

(3 = 0; j < nPatches; j++) {
LPVOID CurrentAddress= (LPVOID) ((DWORD)hDl11Mod + (DWORD)AddressOfPatchl[j]);

//Pay attention that you have to arrive to the patch address through the CurrentProcess HANDLE

//and not through the hDllmod, otherwise access to memory will be denied.

//The GetCurrentProcess API returns the HANDLE of the process owning the program.

ReadProcessMemory (GetCurrentProcess (), CurrentAddress, DataRead, sizeof (BYTE), &dwRead); <ﬁ::

if (DataRead[0] == scanbyte[]])

{
WriteProcessMemory (GetCurrentProcess (), CurrentAddress, &replbyte[j], sizeof (BYTE), &dwWritten);
#ifdef DEBUG

© 2006 CodeBreakers Magazine Page 22 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

sprintf (b, "One Patch applied at address: $08X (%02X -> $02X)",
CurrentAddress, (LPVOID) scanbyte[j], (LPVOID) replbyte[j]);
MessageBox (0, b ,"Attention",MB OK+MB TASKMODAL) ;
#endif
AppliedPatches++;
}
}

//Have we successfully patched all the things? If yes clean things and return ok.
if (AppliedPatches==nPatches)
return TRUE;

return FALSE;

First of all you should note the easiness of this second sources compared to the debug loader. Indeed we are
not debugging anything indeed, because we already have an anchor (a system event) where to insert our
code: the DIIMain DLL_PROCESS_ATTACH is a proper place where to insert the patching process.

There are 3 points for which I would spend few words, before you study the whole code.

1. Note the pragma directive syntax. Beside it you should add to the linker’s path where the DIl is
located.

2. The real library is loaded by the DIIMain when the event DLL_PROCESS_ATTACH is raised. This is also
the place where the patches can be done.

3. This time you have to give to the Read/WriteProcessMemory APIs the handle of the process owning
the DII, otherwise the access to memory will fail. This handle is got trough the GetCurrentProcess API.

5.3 Write a proxy for a protected DII

As did in Section 4.2 we will now worry to write a proxy DIl patching the same DIl protected with ASProtect.

NOTE

The code of this part of the document is under the Proxy_DII_Protected_7\ folder, also with a
local copy of the protected client and of the RegistrationDIl.dll, renamed to
_RegistrationDIl.dll

The loader of Section 5.2 doesn’t work for this DIl, for exactly the same reasons we had in Section 4.2: at the
time the DLL_PROCESS_ATTACH event is issued the DIl is still not uncompressed in memory and the patch
would be overwritten by the unpacking procedure of ASProtect. As it will be clearer in a few, we are facing to
the point where this technique is less powerful: using this approach we will not have anything can be used to
intercept the decryption of the DIl in memory. Using Debug Loaders we used the exceptions: the more
exceptions there were in the unpacking process the easier were to find a place where to patch the code.

We can anyway do something. The hypothesis is that we are able to understand at least one prototype of an
exported method of the DII, which is called before the code to be patched is executed. We can use OllyDbg
and reverse it using the Call Stack or, as said before, taking it from the plug-in documentation of the main
application to which the target DIl applies.

The important assumption is that we are able to understand the prototype of one of the exports of the
original DII. We will implement locally in the proxy DIl this method and forward all the others as before. Note
also that export forwarding doesn’t require the forwarder DIl to know the prototype of the forwarded function.

Let see just now which the resulting code is and later discuss it a little

© 2006 CodeBreakers Magazine Page 23 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

#include "stdafx.h"

//Forward declaration of Prototypes
BOOL PerformPatch();

//Module of the loaded Library, it's a global variable.
HMODULE hD11Mod=0;
char b[1024]; //messages buffer

L1010 7700077700077 7770 7777777777777 7777777777777777777777777777777777

//MAIN PROGRAM PATCH INFO:

//Patch Address info: # elements in following arrays must be synchronized for Address/scan/replace
DWORD AddressOfPatch[] = {0x10CA, 0x10CB};

//Patch byte info:
//Search (read) byte. Original bytes read from the dll in memory (attn: # elements must be the same of AddressOfPatch)

BYTE scanbyte[] = {0x75, 0x28};

//Found (write) byte. New patch bytes to be written in memory (attn: # elements must be the same of AddressOfPatch)
BYTE replbyte[] = {0x75, 0x18};

char szDllName[]="._ RegistrationDll.dll";

L1110 11077770071707177771777177777777717071707717771717717107717171777117717

BOOL APIENTRY Dl1lMain(HANDLE hModule,
DWORD ul_ reason_for call,
LPVOID lpReserved
)

// Remove this if you use lpReserved
UNREFERENCED PARAMETER (lpReserved) ;

switch(ul_reason_for_call)

{
case DLL_PROCESS_ATTACH:
{

#ifdef _DEBUG

//Needed to be able to debug the program from the compiler.
HideDebugger (GetCurrentThread (), GetCurrentProcess());
#endif

hD11Mod=: :LoadLibrary ((LPCSTR) szD11Name) ;

if (hD11Mod==NULL) {
//Find the last '\\' to obtain a pointer to just the base module name part
//(i.e. mydll.dll w/o the path)
PSTR pszBaseName = strrchr(szDllName, '\\');

if (pszBaseName) { //We found a path, so advance to the base module name
pszBaseName++;

}

else {
pszBaseName = szDllName; //No path. Use the same name for both

}

sprintf (b, "$s not found.\r\nHave you renamed it as _%s\r\n Is this dll into the same path?",
pszBaseName, (pszBaseName+l));
: :MessageBox (NULL, b, "Load Library Failed", MB_OK+MB_TASKMODAL+MB_ICONERROR) ;

return TRUE;
}
}

break;

case DLL_PROCESS_DETACH:
{
if (hD11Mod!=NULL) {
::FreelLibrary (hD11Mod) ;
hD11Mod=NULL;
}
}

break;

case DLL THREAD ATTACH: {} break; //not used at the moment
case DLL THREAD DETACH: {} break; //not used at the moment

}
return TRUE;

}

BOOL PerformPatch() {

© 2006 CodeBreakers Magazine Page 24 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

int i=0, j=0;

int nPatches=0;

DWORD dwRead=0;

DWORD dwWritten=0;

BYTE DataRead[] = {0};

int AppliedPatches=0;

L1011 000 7770007770707 77777 777777777777 777 777777777777 77777777777777777777

//Rpply the patches to the *.exe or *.dll module

//Calculate number of patches / addresses (not always this thing works, but here it is)
nPatches sizeof (AddressOfPatch) / sizeof (AddressOfPatch([0]);

for (jJ = 0; j < nPatches; j++) {
LPVOID CurrentAddress= (LPVOID) ((DWORD)hD11Mod + (DWORD)AddressOfPatch([]j]);

//Pay attention that you have to arrive to the patch address through the CurrentProcess
//HANDLE and not through the hDllmod, otherwise access to memory will be denied.
//The GetCurrentProcess API returns the HANDLE of the process owning the program.
ReadProcessMemory (GetCurrentProcess (), CurrentAddress, DataRead, sizeof (BYTE), &dwRead);
if (DataRead[0] == scanbyte[j])
{

WriteProcessMemory (GetCurrentProcess(), CurrentAddress, &replbyte[j], sizeof(BYTE), &dwWritten);

#ifdef DEBUG

sprintf (b, "One Patch applied at address: $08X (%02X -> $02X)",

CurrentAddress, (LPVOID) scanbyte[j], (LPVOID) replbytel[j]);

MessageBox (0, b ,"Attention",MB OK+MB TASKMODAL) ;

#endif

AppliedPatches++;

}

//Have we successfully patched all the things? If yes clean what we did before.
if (AppliedPatches==nPatches)
return TRUE;

return FALSE;
}

BOOL CheckRegistrationNumber (char *a, char* b) { <t::

//Performs the patch
PerformPatch () ;

//Call the original method and returns to the caller the result.
BOOL (*fp) (char *, char*);
fp = (BOOL (*) (char *, char*)) GetProcAddress (hD11Mod, "CheckRegistrationNumber") ;

if (fp!=NULL)

return fp(a,b);
else

return FALSE;

As you can see (point 1) I eliminated the forwarder #pragma line used before in example of Section 5.2 (the
method forwarded from the proxy DIl to the original DIl). Please note that I eliminated only the one I will
explicitly implement in my Proxy DIl here and not all the others: if there were other exports I would have left
them forwarded.

I then added a method (point 3) which simply performs the patch and then call the original method from the
original (now patched) DII. The whole thing is done through function pointers and using the GetProcAddress
Win32 API.

A note at point 2: I added a call to HideDebugger only in debug mode to be able to debug the code of the

proxy DII, without ASProtect complaining. In Release mode there’s no need of this patch, because the Proxy
DIl is not using any debugging function.

© 2006 CodeBreakers Magazine Page 25 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES

6 Comparison of the two presented methods

Let summarize the main differences between the two methods.

= Take Control of the whole application. This allows performing the proper actions when the target DIl is
loading into the application’s memory space. This approach is the most simple to think but requires
the most complex code to write and involves the Debug Loaders. Moreover for very large applications
the final result might slow down too much the program or require too much memory: you are in this
case debugging the whole application.

» Write a DIl proxy. With this approach you will write a proxy DIl, a DIl written by you exposing exactly
the same interface of the original DIl to the original application. The application then loads the false DII
and invokes its methods as it would have done with the real DIl. The proxy DIl then performs the
required actions (patches) and calls the original DIl passing the parameters coming from the
application or just forwards its exports. This approach requires a less complex code but also some
tricks. The advantage is that you will not debug the whole application. In case of protected
applications there are some limitations which are bypassed only knowing at least one prototype of an
export of the original Dll, called before the code to be patched code is executed.

An alternative approach is using API Hooks: if you consider using API Hooking you will have to hook a
System API called before the code to be patched and then patch from there the victim DII.
This approach is also commonly used by trojans to gather information from the system

Of course as always a best approach doesn’t exist, just evaluate and possibly mix the two I proposed here.

7 Conclusions

Well, this is the end of this story, I hope all the things here said will be useful to better understand how
process is handled by the OS and in which manners we can keep process control and make debugging with
some advanced techniques. I suggest as usual to use this tutorial for learning more in deep how the
operative system works and to use these examples to evolve your RCE techniques and not to crack
programs.

© 2006 CodeBreakers Magazine Page 26 of 27

WRITING LOADERS FOR DLLS: THEORY AND TECHNIQUES
8 References

[1] “Cracking with Loaders: Theory, General Approach and a Framework, Version 1.2”, Shub-
Nigurrath, ThunderPwr, http://tutorials.accessroot.com or on Code-Breakers Journal Vol.2
No.2

[2] “Guide on How to play with processes memory, write loaders and Oraculums”, Shub-
Nigurrath, http://tutorials.accessroot.com or on Code-Breakers Journal Vol. 2 No.2

[3] "“Beginner Olly Tutorial #8, Breakpoints Theory”, Version 4,1, Shub-Nigurrath,
http://tutorials.accessroot.com

[4] “IA-32 Intel Architecture Software Developer’'s Manual, Volume 3”, Section “Debug
Registers”, Chapter 15, http://developer.intel.com/design/pentium4/manuals/253668.htm

[5] “Writing Loader 2 Patch Apps Protected With Asprotect 2.0 V10”, Shub-Nigurrath,
Thunderpwr, http://tutorials.accessroot.com

[6] “Writing Loader 2 Patch Apps Protected With Asprotect 1.2x And Earlier V10", Shub-
Nigurrath, Thunderpwr, http://tutorials.accessroot.com

[7] “An In-Depth Look into the Win32 Portable Executable File Format, Part 1”, Matt Pietrek,
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx

[8] “An In-Depth Look into the Win32 Portable Executable File Format, Part 2”, Matt Pietrek,
http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/default.aspx

[9] "Programming Application for MS Windows" , Jeffrey Richter, Microsoft Press

All the code provided with this tutorial is free for public use, just make a
greetz to the authors and the ARTeam if you find it useful to use. Don’t
use these concepts for making illegal operation, all the info here reported

are only meant for studying and to help having a better knowledge of
annlication cade securitv techniaues.

© 2006 CodeBreakers Magazine Page 27 of 27

http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://developer.intel.com/design/pentium4/manuals/253668.htm
http://tutorials.accessroot.com/
http://tutorials.accessroot.com/
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/default.aspx

	4.1 Writing first debug loader and introducing the code structure
	4.2 Write a debug loader for a protected Dll
	4.3 Analysis of the protected program
	4.4 Writing the loader for the protected program
	5.1 Export Forwarding
	5.2 Writing first proxy Dll and introducing the code structure
	5.3 Write a proxy for a protected Dll
	8 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

