
 

 
 
 
 
 
 
 
 

 
 
 

Volume 1, Issue 1, 2006 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Towards a Framework for Assembly Language Testing 
 
Dr. Thorsten Schneider [Schneider@Secure-Software-Engineering.com] 
March 2006 
 
Abstract 
Testing of software is crucial for assuring software quality, validity and reliability. With the background of 
many existing software testing frameworks for high level languages, this paper introduces the concept of an 
Assembly Testing Framework (ATF) including Code Metrics, Code Coverage and Unit respective Functional 
Testing for the Assembly programming language. There is no testing framework for Assembly language to my 
knowledge yet. 

 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

 
1 Introduction 
Testing of software is an essential method of 
assuring software quality, validity and 
reliability as described by Perry [1] and Beck 
[2]. Most used testing approaches with focus 
on High Level Languages (HLL) - like Java, 
C++ and similar - are assisted by testing 
frameworks. Examples are are given by Burke 
[3], Marick [4], Clark [5], and Dyuzhev [6]. 
Actually there is no approach covering the 
Assembly language software development 
processes. Most differences between Assembly 
and HL languages like C++ are the non-
existence of direct access to object oriented 
design and the ability of Assembly to work 
nearest to the hardware layer. Assembly is a 
powerful language but the developer has 
absolutely to know what the code might 
induce. Even HL languages are most common 
in software engineering; there still is a need 
for Assembly code, especially if performance 
is a fundamental ingredient. Typical examples 
are server side tools, micro controller 
applications or embedded systems. Another 
example is the maintenance of old software 
systems still in use by banking systems, 
health care and financial departments. The 
community behind Assembly language is 
larger than most HL developers believe: just 
the Win32Asm Community Board alone has 
more than 5200 users with over 110.500 
posts [7]. Considering the importance of such 
a widespread developing language, it is a 
necessity to provide a framework for testing 
Assembly code assisting software quality and 
validity during development processes. 
 
Talking about software testing one has to 
differ between several common keywords: 
Unit Testing, Functional Testing, Performance 
Testing, Automated Testing, Regression 
Testing, Code Coverage and Code Metrics. 
Unit tests are written from a programmer's 
perspective. They ensure that a particular part 
of the software (for example a method or a 
class) successfully performs a set of specific 
tasks. Contrary to this, functional tests are 
written from a user's perspective. These tests 

confirm that the system does what users are 
expecting it to. Performance testing is mostly 
done by profiling tools which detect 
bottlenecks of running applications or 
processes. Automated tests require skill, 
patience and above all, organization. Mostly 
they consist of a suite of tests containing 
repetitive tests which can be broken down to 
several test scripts. As difference to the other 
testing methods, Regression Testing is testing 
that an application has not regressed, which 
means simplified that the functionality that 
was working yesterday is still working today. 
In contrast Code Coverage and Code Metrics 
are no testing methods at all. Both belong to 
the empirical software engineering part 
(quality aspects) and provide information 
about several internal application and test 
statistics. 
 
A framework for Assembly language testing 
(ATF) needs to cover all the above mentioned 
methodologies. As well, it needs either to 
integrate in an Integrated Development 
Environment (IDE) like RadASM [8] or to 
provide a standalone solution which one can 
work with. Additional such framework would 
offer two testing options instead of only one 
provided by HLL testing frameworks. Whereas 
HLL frameworks only inspect at source code 
level, an Assembly framework is able to 
analyse the Assembly source code 
(represented for example by TASM, NASM or 
MASM syntax) as well as the compiled code 
represented by disassembled code, which 
might differ from the original sources due to 
compiler optimization tasks. This is where Unit 
Testing is the most effective way to reveal as 
many errors in code as possible. Additionally 
such modular testing methodologies have a 
high cost-profit-ratio, which make them first 
choice for critical projects at all. Since 
Assembly language projects are organized 
very modular, testing of such small modules 
before integration increases stability and 
reliability of the final software product. In the 
end Assembly programmers at all miss well 
established development environments and 

 
© 2006 CodeBreakers Magazine  Page 2 of 8 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

development tools - in most cases such 
developers work with simple text editors and 
sequential batch files for compiling and 
debugging code, which often leads into brute 
forcing the erroneous code part. 
 
 

2 Code Metrics for Assembly 
Programs 

Dealing with Assembly programs' code 
complexity, one is able to achieve information 
on how difficult it is to comprehend, modify 
and generally maintain an application. 
Software metrics can be classified to program 
size, program control structures (CFG and 
ICFG) and extensions to control flow metrics 
[9]. Other metrics are neural net-based 
metrics as described by Boetticher et al. [10]. 
One most used method in the past is counting 
Lines of Code (LOC) or Number of Non-
Commented Source Statements (NCSS) but 
has been dropped due their questionable 
significance. 
 
One typical program size metric is the 
Halstead Metric described by Halstead [11]. 
This metric measures program vocabulary (n 
= n1 + n2), program length (N = N1 + N2), 
program volume (V = N · log2 n), estimated 
program level (L' = 2/n1 · n2/N2) and 
program effort (E = V/L'), with given n1 as 
number of unique operators, n2 as number of 
unique operands, N1 as total count of all 
usages of operators and N2 as total count of 
all usages of operands [12, 13]. 
 
The McCabe cyclomatic complexity metric 
(CCM) is a program control structure metric 
which has been described in detail by McCabe 
himself [14] but others as well [15]. This 
metric converts the application into a directed 
graph (DG) representing a control flow graph 
(CFG). If this graph confines to sub graphs 
representing procedural flow, it is named as 
intraprocedural control flow graph (ICFG). The 
CCM is defined as V(g) = Edges - Nodes + 
2 · Vertices, where Edges is the total 
number of edges within the graph, Nodes is 

the total number of nodes in the graph and 
Vertices is the total number of connected 
components of the graph. It has to be noticed, 
that the CCM of any application is equivalent 
to the number of binary predicates  Predicates 
in the program (V(g) = Predicates + 1). 

 
Logical complexity has been described by Gilb 
as Absolute Logical Complexity (ALC) and as 
Relative Logical Complexity (RLC) [12]. ALC is 
equivalent to McCabes V(g) - 1 and RLC is 
defined as ALC/TS, with TS as total number of 
statement within the application. 
 
One more complexity measurement for CFGs 
by counting knots has been proposed by 
Woodward et al. [16], where a knot is defined 
as unavoidable crossing of control paths 
(branches) in the DG representation. 
Compared to the McCabe complexity it offers 
a different aspect of routines control 
complexity characteristics. 
 
Blaine and Kemmerer extended these 
methods with analysis procedures of 
Maximum Knot Depth (MKD) and Knots Per 
Jump Ratio (KPJR) [9]. MKD is defined as the 
number of knots produced by a branch. 
Against this the KPJR normalizes the knot 
count with respect to the number of branches 
in an application. 
 
Regarding to an Assembly Testing Framework, 
the developer requires detailed information 
about these statistical information to keep 
software maintainable by reducing complexity 
as much as possible, which reflects the KIS 
(Keep It Simple) paradigm praised by the 
Assembly Programming Community. 
 
 

3 Code Coverage of 
Assembly Programs 

Code Coverage (synonym: test coverage) is 
an enhanced method in finding areas within 
an application which are not exercised by a 
set of test cases. Since HL languages produce 
more semantic and syntactic complex code 
than Assembly languages, several coverage 

 
© 2006 CodeBreakers Magazine  Page 3 of 8 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

measures branched, as defined by Cornett 
[17]: 
 

• Basic Measures: 
o (Statement Coverage, Decision 

Coverage, Condition Coverage, 
Multiple Condition Coverage, 
Codition/Decision Coverage, Path 
Coverage) 
 

• Other Measures: 
o (Function Coverage, Call 

Coverage, Linear Code Sequence 
and Jump (LCSAJ) Coverage, 
Data Flow Coverage, Object Code 
Branch Coverage, Loop 
Coverage, Race Coverage, 
Relational Operator Coverage, 
Weak Mutation Coverage, Table 
Coverage) 

 
Even reducing to the simple structure of 
Assembly language applications, these 
coverage metrics can be used to identify non-
tested fragments within the code.  
 
The Code Coverage results in a percentual 
value in most cases, which assures the quality 
of the test sets, but not of the actual product. 
This means, that using coverage methods do 
not assure a finally a 100% bug free 
application, but means that the involved test 
cases cover the existing code with a resulting 
percentual value. Therefore the tested 
application is only as good as the test cases 
are covering all possible events during the 
applications life. 
 
In general Code Coverage is a structural 
testing technique known as glass box testing 
or white box testing as well. Against this 
functional testing is known as black-box 
testing. Whereas structural testing compares 
test program behaviour against the apparent 
intention of the source code, functional testing 
compares application behaviour against a 
requirements specification. Simplified 
structural testing examines how the program 
works (structure and logic), and functional 

testing examines what the program 
accomplishes (internal working). 
 
To refer to Cornett [17], faults (a bug or 
defect) relate to control flow and can be 
exposed by varying the control flow [18]. 
Secondly it is possible to look for failures (the 
runtime manifestation of a fault) without 
knowing what failures might occur [19]. 
Additional it has to be stated, that coverage 
analysis exposes some plausible faults but 
does not come close to exposing all classes of 
faults. 
 
 

4 ATF CFG Reconstruction 
from Assembly Code 

For reconstructing the control flow graph 
(CFG) from Assembly Code ATF confines to 
the interprocedural control flow graph (ICFG) 
as described by Kästner and Wilhelm [20]. 
Using the ICFG results in two different 
subgraphs: (1) a call graph (CG) which 
describes relationships between program's 
procedures and (2) a basic block graph (BBG) 
describing the intraprocedural control flow of 
each procedure. 
 
The CG describes the relationships between 
procedures. Nodes are procedures and edges 
(vertices) are procedure calls. A BBG 
describes the ICFG for every procedure. Nodes 
are basic blocks, and a basic block is defined 
as sequence if instructions that are executed 
under the same control conditions. The 
interested reader is pointed to references [20] 
and [21] for detailed information about CFG 
reconstruction from Assembly code. 
 
 

5 Software Testing with the 
Assembly Testing 
Framework (ATF) 

 
The Assembly Testing Framework (ATF) (see 
figure 1) provides a testing environment 
including Code Metrics and Code Coverage 

 
© 2006 CodeBreakers Magazine  Page 4 of 8 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

methods. Similar to other HLL testing 
frameworks it offers Asserts for testing code 
implementations. As difference to HLL testing 
environments it assists in using source code 
as well as disassembly resolved directly from 

binary compiled code. This comes handy when 
one is dealing with testing of compiler 
optimization processes or Reverse Code 
Engineering (RCE) tasks. 
 

 
 

Figure 1: Overview of the Assembly Testing Framework (ATF). The diagram shows the three main layers of the 
framework structure: the software testing process layer, the framework layer and the result layer. After defining Test 
Cases the framework uses either source code or disassembly for code fragementation and CFG construction. Before 
running source code annotation and emulator for the input code it is possible to detach Code Metrics from the CFG. Using 
predefined startup values and code annotation, the emulator extracts Coverage Metrics and Coverage Counting using a 
Tracer and reports the results as Code Coverage and Assert test results to the Result Layer. 

 
© 2006 CodeBreakers Magazine  Page 5 of 8 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

 
 
Beginning the software testing process one 
has to define Test Cases using Assert 
Statements. Common used Asserts are 
AssertEquals or AssertTrue respective 
AssertFalse. As comparison to HLL testing 
frameworks, Assembly setUp and tearDown 
methods differ. Since assembly language is 
based on heavy usage of processor registers, 

one is able only to preset and to evaluate 
values within registers like EAX, EBX, ESI and 
others including corresponding Flags. This 
differs from HLL testing since it is not possible 
to use complex constructs within an Assert 
Statement, like 
[AssertEquals("2",myClass.getResult("1+
1"))]. Instead a valid Assert statement would 
be [AssertEquals(EAX,"2")]. Note the 
different sequence in comparison to HLL 
asserts, which reflects the reverse parameters 
of Assembly opcode mnemonics. Playing with 
these registers needs careful handling and a 
secure emulation engine to prevent buffer 
overflows or abuse of registers which might 
crash the testers host machine. Especially for 
high security applications this raises to 
problems due possible heavy usage of 

polymorphic code, self-modifying code (SMC) 
or anti-debugging and anti-tracing tricks 
which are common techniques for copy 
protected applications. Additional one future 
feature of ATF can be to generate automated 
tests from code as described by Boyapati et 
al. [22] and Marinov et al. [23]. This gives the 
ability to compare self-defined tests against 

the automated results to increase code 
coverage productivity. 

 
Figure 2: Code fragmentation of a MASM style source code (left). After source code fragmentation the fragments are 
converted to the corresponding control flow graph (CFG, center). Using Program Slicing the Region Of Interest (ROI) is 
extracted (right). 
 

 
In the next step the Test Case is connecting to 
ATF. According to the decision of the tester, 
ATF takes either source code or disassembly 
for further testing and analysis. Since source 
code - given in a special syntax like the 
MASM, TASM or NASM syntax - differs only 
slightly from the resulting assembly code, it is 
an easy task to convert source statements to 
resulting assembly code.    
 
Within the next steps the Assembly code is 
fragmented (see figure 2) into its substantial 
parts and converted into a control flow graph 
(CFG) as described by Cooper et al. [24]. The 
resulting CFG is used to gain first information 

 
© 2006 CodeBreakers Magazine  Page 6 of 8 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

about the code structure. At this point code 
complexity measures like Code Metrics are 
detached. Using the CFG one is able to reduce 
the working element by using Program Slicing 
methodologies on the CFG as proposed by 
Beck and Eichmann [25] to produce slices 
containing the Region Of Interest (ROI). While 
non-interesting parts are dropped out of the 
process, the remaining parts obtain more 
importance for the following testing process. 
 
After extraction of CFG and Code Metrics, ATF 
annotates the (source) code for further 
processing by Test Cases. In difference to HLL 
testing frameworks, in the case of Assembly it 
is the most important task to define setUp and 
tearDown parameters, including initialization 
of register settings which are needed for 
program consistency. Missing these 
parameters, the Annotated Code Emulation 
(ACE) is not able to emulate the code 
segment properly and could cause an 
emulator crash. This is where a good 
structured exception handling within the 
emulator engine is necessary, which is part of 
future research. 
 
The Emulator consists of three main parts: (1) 
a Loader, (2) a Tracer and (3) a Coverage 
Counting Method. The Loader takes the 
annotated (source) code, presets the 
necessary startup register settings and hooks 
the injected code to the emulation engine. To 
force a loader reading dynamic code ATF uses 
reflection methods similar to those described 
by Knizhnik [26] and Roiser [27]. For injecting 
the code routine ATF uses dynamic injected 
inline assembly structures containing the to-
test Assembly code. One main ATF feature is 
the Tracer which connects to the emulation 
process using the internal debugging abilities 
of ATF and reports each hit of an annotated 
mnemonical opcode operation to the Coverage 
Counting Method. Finishing the Trace, the 
emulator reports two main results: (1) The 
Coverage Result represented by the Coverage 
Counting Method result and (2) the status of 
the registers after the trace which is evaluated 
later to build up the result of Test Cases and 
Asserts. 

Reaching the Result Layer (see figure 1) a 
Coverage Report is produced by the results of 
the ATF emulator (Tracer-Coverage Counting) 
and can be evaluated by further analysis. For 
checking Test Cases respective their 
associated Asserts, the register settings of the 
ATF emulator are checked against the 
corresponding Assert Statements. One 
example is to check a register against a given 
value ([AssertEquals(EAX,"2"]) or another 
register value ([AssertEquals(EAX,EBX)]). 
One extension to the standard Assert is 
AssertFlag which checks directly against flag 
settings. 
 
 

6 Conclusions and Future 
Work 

 
An Assembly Language Framework (ATF) for 
unit and functional testing of Assembly 
language opens testing processes even to 
lower programming languages. With reference 
to industrial applications, several current 
systems are not programmed with HL 
languages like C++ or Java. Mostly such 
systems need Assembly when a HLL does not 
come handy - for example increasing 
performance (e.g. banking) or using very 
specialised chipset functionalities (e.g. 
security applications). Since such systems are 
common within high security or high risk 
environments (e.g. medicine, banking or 
space-related projects) it is of high relevance 
to control the internal quality and validity of 
developed or maintained code. ATF is leaned 
on current existing frameworks and adapts to 
existing standards (e.g. Test Cases or Assert 
methodology). Additional it is easy to 
understand from the developer's and user's 
point of view. Future work will include 
implementing and enhancing ATF as well as 
testing within real Assembly coding processes. 
Additional automated testing methods should 
be applied to improve testing processes. 
 

 
© 2006 CodeBreakers Magazine  Page 7 of 8 



TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING 

7 Acknowledgments 
We thank R.A. Kemmerer for giving assistance 
during our enquiry of existing literature. 
 
 

8 References  
 
1. Perry WE: Effective Methods for 

Software Testing, 2nd edn: John Wiley & 
Sons; 2000. 

2. Beck K: Test Driven Development: By 
Example: John Wiley & Sons; 2002. 

3. Burke E: eXtreme Testing. St Louis Java 
User's Group, 
http://wwwociwebcom/javasig/knowledgeb
ase/Oct2000/ 2000. 

4. Marick B: Testing for Programmers. 
http://wwwtestingcom/writings/half-day-
programmerpdf 2000. 

5. Clark M: JUnit Primer. 
http://wwwclarkwarecom/articles/JUnitPrim
erhtml 2000. 

6. Dyuzhev V: TUT: C++ Unit Test 
Framework. 2004. 

7. Hiroshimator: Win32ASM Community 
Messageboard. 
http://boardwin32asmcommunitynet/ 2005. 

8. KetilO: RadASM assembler IDE. 
http://wwwradasmcom/ 2006. 

9. Blaine JD, Kemmerer RA: Complexity 
Measures for Assembly Language 
Programs. Journal of Systems and 
Software, Elsevier Science Publishing Co Inc 
1985:229-245. 

10. Boetticher G, Srinivas K, Eichmann D: A 
Neural Net-Based Approach to 
Software Metrics. In: Fifth International 
Conference on Software Engineering and 
Knowledge Engineering: June 16-18 1993; 
San Francisco, CA; 1993: 271-274. 

11. Halstead MH: Elements of Software 
Science. Elsevier North-Holland, New York 
1977. 

12. Gilb T: Software Metrics. Winthrop 
Publishers, Cambridge, MA 1977. 

13. Bailey CT, Dingee WL: A Software Study 
Using Halstead Metrics. ACM 
SIGMETRICS Performance Evaluation 
Review 1981, 10(1):189-197. 

14. McCabe T: A Complexity Measure. IEEE 
Transactions Software Eng 1976:308-320. 

15. Watson AH, McCabe T: Structured 
Testing: A Testing Methodology Using 

the Cyclomatic Complexity Metric. NIST 
Special Publication 500-235 1996. 

16. Woodward M, Hennell M, Hedley D: A 
Measure of Control Flow Complexity in 
Program Text. IEEE Trans Software Eng 
1979:45-50. 

17. Cornett S: Code Coverage Analysis. 
http://wwwbullseyecom/coveragehtml 
2004. 

18. Beizer B: Software Testing Techniques, 
2nd edn: Van Nostrand Reinhold, New York; 
1990. 

19. Morell L: A Theory of Fault-Based 
Testing. IEEE Trans Software Eng 1990, 
16(8):844-857. 

20. Kästner D, Wilhelm S: Generic Control 
Flow Reconstruction from Assembly 
Code. In: LCTES'02-SCOPES'02, Berlin, 
Germany: 2002; 2002. 

21. Venkitaraman R, Gupta G: Static Analysis 
of Embedded Executable Assembly 
Code. 2004. 

22. Boyapati C, Khurshid S, Marinov D: Korat: 
Automated Testing Based on Java 
Predicates. In: ACM International 
Symposium on Software Testing and 
Analysis (ISSTA): July 2002 2002: ACM; 
2002. 

23. Marinov D, Khurshid S: TestEra: A Novel 
Framework for Automated Testing of 
Java Programs. 2002. 

24. Cooper KD, Harvey JT, Waterman T: 
Building a Control-Flow Graph from 
Scheduled Assembly Code. Rice 
Technical Report, TR02-399 1999. 

25. Beck J, Eichmann D: Program and 
interface slicing for reverse 
engineering. In: Proceedings of the 15th 
international conference on Software 
Engineering: 1993; Baltimore, Maryland, 
United States: IEEE Computer Society 
Press; 1993: 509--518. 

26. Knizhnik K: Reflection for C++. 
http://wwwgarretru/~knizhnik/cppreflection
/docs/reflecthtml 2004. 

27. Roiser S: Seal C++ Reflection Package. 
http://sealwebcernch/seal/snapshot/workbo
ok/reflectionhtml 2004. 

 
 

 
© 2006 CodeBreakers Magazine  Page 8 of 8 

http://wwwociwebcom/javasig/knowledgebase/Oct2000/
http://wwwociwebcom/javasig/knowledgebase/Oct2000/
http://wwwtestingcom/writings/half-day-programmerpdf
http://wwwtestingcom/writings/half-day-programmerpdf
http://wwwclarkwarecom/articles/JUnitPrimerhtml
http://wwwclarkwarecom/articles/JUnitPrimerhtml
http://boardwin32asmcommunitynet/
http://wwwradasmcom/
http://wwwbullseyecom/coveragehtml
http://wwwgarretru/%7Eknizhnik/cppreflection/docs/reflecthtml
http://wwwgarretru/%7Eknizhnik/cppreflection/docs/reflecthtml
http://sealwebcernch/seal/snapshot/workbook/reflectionhtml
http://sealwebcernch/seal/snapshot/workbook/reflectionhtml

	4 ATF CFG Reconstruction from Assembly Code

