% CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

Volume 1, Issue 1, 2006

Towards a Framework for Assembly Language Testing

Dr. Thorsten Schneider [Schneider@Secure-Software-Engineering.com]
March 2006

Abstract

Testing of software is crucial for assuring software quality, validity and reliability. With the background of
many existing software testing frameworks for high level languages, this paper introduces the concept of an
Assembly Testing Framework (ATF) including Code Metrics, Code Coverage and Unit respective Functional
Testing for the Assembly programming language. There is no testing framework for Assembly language to my
knowledge yet.

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

1 Introduction

Testing of software is an essential method of
assuring software quality, validity and
reliability as described by Perry [1] and Beck
[2]. Most used testing approaches with focus
on High Level Languages (HLL) - like Java,
C++ and similar - are assisted by testing
frameworks. Examples are are given by Burke
[3], Marick [4], Clark [5], and Dyuzhev [6].
Actually there is no approach covering the
Assembly language software development
processes. Most differences between Assembly
and HL languages like C++ are the non-
existence of direct access to object oriented
design and the ability of Assembly to work
nearest to the hardware layer. Assembly is a
powerful language but the developer has
absolutely to know what the code might
induce. Even HL languages are most common
in software engineering; there still is a need
for Assembly code, especially if performance
is a fundamental ingredient. Typical examples
are server side tools, micro controller
applications or embedded systems. Another
example is the maintenance of old software
systems still in use by banking systems,
health care and financial departments. The
community behind Assembly language is
larger than most HL developers believe: just
the Win32Asm Community Board alone has
more than 5200 users with over 110.500
posts [7]. Considering the importance of such
a widespread developing language, it is a
necessity to provide a framework for testing
Assembly code assisting software quality and
validity during development processes.

Talking about software testing one has to
differ between several common keywords:
Unit Testing, Functional Testing, Performance
Testing, Automated Testing, Regression
Testing, Code Coverage and Code Metrics.
Unit tests are written from a programmer’s
perspective. They ensure that a particular part
of the software (for example a method or a
class) successfully performs a set of specific
tasks. Contrary to this, functional tests are
written from a user's perspective. These tests

© 2006 CodeBreakers Magazine

confirm that the system does what users are
expecting it to. Performance testing is mostly
done by profiling tools which detect
bottlenecks of running applications or
processes. Automated tests require skill,
patience and above all, organization. Mostly
they consist of a suite of tests containing
repetitive tests which can be broken down to
several test scripts. As difference to the other
testing methods, Regression Testing is testing
that an application has not regressed, which
means simplified that the functionality that
was working yesterday is still working today.
In contrast Code Coverage and Code Metrics
are no testing methods at all. Both belong to
the empirical software engineering part
(quality aspects) and provide information
about several internal application and test
statistics.

A framework for Assembly language testing
(ATF) needs to cover all the above mentioned
methodologies. As well, it needs either to
integrate in an Integrated Development
Environment (IDE) like RadASM [8] or to
provide a standalone solution which one can
work with. Additional such framework would
offer two testing options instead of only one
provided by HLL testing frameworks. Whereas
HLL frameworks only inspect at source code
level, an Assembly framework is able to
analyse the Assembly source code
(represented for example by TASM, NASM or
MASM syntax) as well as the compiled code
represented by disassembled code, which
might differ from the original sources due to
compiler optimization tasks. This is where Unit
Testing is the most effective way to reveal as
many errors in code as possible. Additionally
such modular testing methodologies have a
high cost-profit-ratio, which make them first
choice for critical projects at all. Since
Assembly language projects are organized
very modular, testing of such small modules
before integration increases stability and
reliability of the final software product. In the
end Assembly programmers at all miss well
established development environments and

Page 2 of 8

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

development tools - in most cases such
developers work with simple text editors and
sequential batch files for compiling and
debugging code, which often leads into brute
forcing the erroneous code part.

2 Code Metrics for Assembly

Programs

Dealing with Assembly programs' code
complexity, one is able to achieve information
on how difficult it is to comprehend, modify
and generally maintain an application.
Software metrics can be classified to program
size, program control structures (CFG and
ICFG) and extensions to control flow metrics
[9]. Other metrics are neural net-based
metrics as described by Boetticher et al. [10].
One most used method in the past is counting
Lines of Code (LOC) or Number of Non-
Commented Source Statements (NCSS) but
has been dropped due their guestionable
significance.

One typical program size metric is the
Halstead Metric described by Halstead [11].
This metric measures program vocabulary (n
= n; + ny), program length (N = N; + Np),
program volume (V = N log; n), estimated
program level (L* = 2/m n,/N;) and
program effort (E = V/L"), with given n; as
number of unique operators, n, as number of
unique operands, N; as total count of all
usages of operators and N, as total count of
all usages of operands [12, 13].

The McCabe cyclomatic complexity metric
(CCM) is a program control structure metric
which has been described in detail by McCabe
himself [14] but others as well [15]. This
metric converts the application into a directed
graph (DG) representing a control flow graph
(CFG). If this graph confines to sub graphs
representing procedural flow, it is named as
intraprocedural control flow graph (ICFG). The
CCM is defined as V(g) = Edges - Nodes +
2 - \Vertices, where Edges is the total
number of edges within the graph, Nodes is

© 2006 CodeBreakers Magazine

the total number of nodes in the graph and
Vertices is the total number of connected
components of the graph. It has to be noticed,
that the CCM of any application is equivalent
to the number of binary predicates Predicates
in the program (V(g) = Predicates + 1).

Logical complexity has been described by Gilb
as Absolute Logical Complexity (ALC) and as
Relative Logical Complexity (RLC) [12]. ALC is
equivalent to McCabes V(g) - 1 and RLC is
defined as ALC/Ts, with Ts as total number of
statement within the application.

One more complexity measurement for CFGs
by counting knots has been proposed by
Woodward et al. [16], where a knot is defined
as unavoidable crossing of control paths
(branches) in the DG representation.
Compared to the McCabe complexity it offers
a different aspect of routines control
complexity characteristics.

Blaine and Kemmerer extended these
methods with analysis procedures of
Maximum Knot Depth (MKD) and Knots Per
Jump Ratio (KPJR) [9]. MKD is defined as the
number of knots produced by a branch.
Against this the KPJR normalizes the knot
count with respect to the number of branches
in an application.

Regarding to an Assembly Testing Framework,
the developer requires detailed information
about these statistical information to keep
software maintainable by reducing complexity
as much as possible, which reflects the KIS
(Keep It Simple) paradigm praised by the
Assembly Programming Community.

3 Code Coverage of

Assembly Programs
Code Coverage (synonym: test coverage) is
an enhanced method in finding areas within
an application which are not exercised by a
set of test cases. Since HL languages produce
more semantic and syntactic complex code
than Assembly languages, several coverage

Page 3 of 8

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

measures branched, as defined by Cornett
[17]:

e Basic Measures:
o0 (Statement Coverage, Decision
Coverage, Condition Coverage,
Multiple Condition Coverage,
Codition/Decision Coverage, Path
Coverage)

e Other Measures:

o (Function Coverage, Call
Coverage, Linear Code Sequence
and Jump (LCSAJ) Coverage,
Data Flow Coverage, Object Code
Branch Coverage, Loop
Coverage, Race Coverage,
Relational Operator Coverage,
Weak Mutation Coverage, Table
Coverage)

Even reducing to the simple structure of
Assembly language applications, these
coverage metrics can be used to identify non-
tested fragments within the code.

The Code Coverage results in a percentual
value in most cases, which assures the quality
of the test sets, but not of the actual product.
This means, that using coverage methods do
not assure a finally a 100% bug free
application, but means that the involved test
cases cover the existing code with a resulting
percentual value. Therefore the tested
application is only as good as the test cases
are covering all possible events during the
applications life.

In general Code Coverage is a structural
testing technigue known as glass box testing
or white box testing as well. Against this
functional testing is known as black-box
testing. Whereas structural testing compares
test program behaviour against the apparent
intention of the source code, functional testing
compares application behaviour against a
requirements specification. Simplified
structural testing examines how the program
works (structure and logic), and functional

© 2006 CodeBreakers Magazine

testing examines what the
accomplishes (internal working).

program

To refer to Cornett [17], faults (a bug or
defect) relate to control flow and can be
exposed by varying the control flow [18].
Secondly it is possible to look for failures (the
runtime manifestation of a fault) without
knowing what failures might occur [19].
Additional it has to be stated, that coverage
analysis exposes some plausible faults but
does not come close to exposing all classes of
faults.

4 ATF CFG Reconstruction

from Assembly Code

For reconstructing the control flow graph
(CFG) from Assembly Code ATF confines to
the interprocedural control flow graph (ICFG)
as described by Kastner and Wilhelm [20].
Using the ICFG results in two different
subgraphs: (1) a call graph (CG) which
describes relationships between program's
procedures and (2) a basic block graph (BBG)
describing the intraprocedural control flow of
each procedure.

The CG describes the relationships between
procedures. Nodes are procedures and edges
(vertices) are procedure calls. A BBG
describes the ICFG for every procedure. Nodes
are basic blocks, and a basic block is defined
as sequence if instructions that are executed
under the same control conditions. The
interested reader is pointed to references [20]
and [21] for detailed information about CFG
reconstruction from Assembly code.

5 Software Testing with the
Assembly Testing
Framework (ATF)

The Assembly Testing Framework (ATF) (see
figure 1) provides a testing environment
including Code Metrics and Code Coverage

Page 4 of 8

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

methods. Similar to other HLL testing binary compiled code. This comes handy when
frameworks it offers Asserts for testing code one is dealing with testing of compiler
implementations. As difference to HLL testing optimization processes or Reverse Code
environments it assists in using source code Engineering (RCE) tasks.
as well as disassembli resolved directli from
Software Testing Process
Software testing

Unit Testing Functional Testing

= e
e

/
Test Case

Example: AssertEquals(EAX,"2")

Source Code Disassembly
Code Fragmentation
Control Flow Graph (CFG) »| Code Metrics
CFG Slicing
Start Values
(TearUp / TearDown)
Source Code Annotation (Coverage Counting)
CFG Annotation

TestCase = fp------eccoa--- > (Tracer)
Annotated Code Emulation |- - - - »{ Loader)

Coverage Report
Example: 72,1 % Methods Coverage

Coverage Result

Test Resuit
Example: Failed (EAX expected 2, but is 0)

Test Resuit EAX equals 0

Figure 1: Overview of the Assembly Testing Framework (ATF). The diagram shows the three main layers of the
framework structure: the software testing process layer, the framework layer and the result layer. After defining Test
Cases the framework uses either source code or disassembly for code fragementation and CFG construction. Before
running source code annotation and emulator for the input code it is possible to detach Code Metrics from the CFG. Using
predefined startup values and code annotation, the emulator extracts Coverage Metrics and Coverage Counting using a
Tracer and reports the results as Code Coverage and Assert test results to the Result Layer.

© 2006 CodeBreakers Magazine Page 5 of 8

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

Beginning the software testing process one
has to define Test Cases using Assert
Statements. Common used Asserts are
AssertEquals or AssertTrue respective
AssertFalse. As comparison to HLL testing
frameworks, Assembly setUp and tearDown
methods differ. Since assembly language is
based on heavy usage of processor registers,

polymorphic code, self-modifying code (SMC)
or anti-debugging and anti-tracing tricks
which are common techniques for copy
protected applications. Additional one future
feature of ATF can be to generate automated
tests from code as described by Boyapati et
al. [22] and Marinov et al. [23]. This gives the
ability to compare self-defined tests against

ROI

.286

-model tiny

.code A
org 100h

entry: I B
jmp start

; your data and subroutine here C
istart: I D

mov cx, 10 : The counter is in CX E

mov ax, 0 ;1 use AX as a sum holder
Lo |F crg :
| add ax, cx jax=ax +cx IG

cmp ax, &

e quit H
| loap myloop I |
fauit: | J

: here ax will hold the value of 1+2+...+10 K

mov ax, 4c00h

int 21h
|end entry I L

extracted (right).

Figure 2: Code fragmentation of a MASM style source code (left). After source code fragmentation the fragments are
converted to the corresponding control flow graph (CFG, center). Using Program Slicing the Region Of Interest (ROI) is

one is able only to preset and to evaluate
values within registers like EAX, EBX, ESI and
others including corresponding Flags. This
differs from HLL testing since it is not possible
to use complex constructs within an Assert
Statement, like
[AssertEquals(''2" ,myClass.getResult("'1+
1'"))]. Instead a valid Assert statement would
be [AssertEquals(EAX,"2')]. Note the
different sequence in comparison to HLL
asserts, which reflects the reverse parameters
of Assembly opcode mnemonics. Playing with
these registers needs careful handling and a
secure emulation engine to prevent buffer
overflows or abuse of registers which might
crash the testers host machine. Especially for
high security applications this raises to
problems due possible heavy usage of

© 2006 CodeBreakers Magazine

the automated results to increase code
coverage productivity.

In the next step the Test Case is connecting to
ATF. According to the decision of the tester,
ATF takes either source code or disassembly
for further testing and analysis. Since source
code - given in a special syntax like the
MASM, TASM or NASM syntax - differs only
slightly from the resulting assembly code, it is
an easy task to convert source statements to
resulting assembly code.

Within the next steps the Assembly code is
fragmented (see figure 2) into its substantial
parts and converted into a control flow graph
(CFG) as described by Cooper et al. [24]. The
resulting CFG is used to gain first information

Page 6 of 8

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

about the code structure. At this point code
complexity measures like Code Metrics are
detached. Using the CFG one is able to reduce
the working element by using Program Slicing
methodologies on the CFG as proposed by
Beck and Eichmann [25] to produce slices
containing the Region Of Interest (ROI). While
non-interesting parts are dropped out of the
process, the remaining parts obtain more
importance for the following testing process.

After extraction of CFG and Code Metrics, ATF
annotates the (source) code for further
processing by Test Cases. In difference to HLL
testing frameworks, in the case of Assembly it
is the most important task to define setUp and
tearDown parameters, including initialization
of register settings which are needed for
program consistency. Missing these
parameters, the Annotated Code Emulation
(ACE) is not able to emulate the code
segment properly and could cause an
emulator crash. This is where a good
structured exception handling within the
emulator engine is necessary, which is part of
future research.

The Emulator consists of three main parts: (1)
a Loader, (2) a Tracer and (3) a Coverage
Counting Method. The Loader takes the
annotated (source) code, presets the
necessary startup register settings and hooks
the injected code to the emulation engine. To
force a loader reading dynamic code ATF uses
reflection methods similar to those described
by Knizhnik [26] and Roiser [27]. For injecting
the code routine ATF uses dynamic injected
inline assembly structures containing the to-
test Assembly code. One main ATF feature is
the Tracer which connects to the emulation
process using the internal debugging abilities
of ATF and reports each hit of an annotated
mnemonical opcode operation to the Coverage
Counting Method. Finishing the Trace, the
emulator reports two main results: (1) The
Coverage Result represented by the Coverage
Counting Method result and (2) the status of
the registers after the trace which is evaluated
later to build up the result of Test Cases and
Asserts.

© 2006 CodeBreakers Magazine

Reaching the Result Layer (see figure 1) a
Coverage Report is produced by the results of
the ATF emulator (Tracer-Coverage Counting)
and can be evaluated by further analysis. For
checking Test Cases respective their
associated Asserts, the register settings of the
ATF emulator are checked against the
corresponding Assert Statements. One
example is to check a register against a given
value ([AssertEquals(EAX,'"2"]) or another
register value ([AssertEquals(EAX,EBX)]).
One extension to the standard Assert is
AssertFlag which checks directly against flag
settings.

6 Conclusions and Future
Work

An Assembly Language Framework (ATF) for
unit and functional testing of Assembly
language opens testing processes even to
lower programming languages. With reference
to industrial applications, several current
systems are not programmed with HL
languages like C++ or Java. Mostly such
systems need Assembly when a HLL does not
come handy - for example increasing
performance (e.g. banking) or using very
specialised chipset functionalities (e.q.
security applications). Since such systems are
common within high security or high risk
environments (e.g. medicine, banking or
space-related projects) it is of high relevance
to control the internal quality and validity of
developed or maintained code. ATF is leaned
on current existing frameworks and adapts to
existing standards (e.g. Test Cases or Assert
methodology). Additional it is easy to
understand from the developer's and user's
point of view. Future work will include
implementing and enhancing ATF as well as
testing within real Assembly coding processes.
Additional automated testing methods should
be applied to improve testing processes.

Page 7 of 8

TOWARDS A FRAMEWORK FOR ASSEMBLY LANGUAGE TESTING

7 Acknowledgments

We thank R.A. Kemmerer for giving assistance
during our enquiry of existing literature.

8 References

1.

10.

11.

12.

13.

14.

15.

Perry WE: Effective Methods for
Software Testing, 2nd edn: John Wiley &
Sons; 2000.

Beck K: Test Driven Development: By
Example: John Wiley & Sons; 2002.

Burke E: eXtreme Testing. St Louis Java
User's Group,
http://wwwociwebcom/javasig/knowledgeb
ase/Oct2000/ 2000.

Marick B: Testing for Programmers.
http://wwwtestingcom/writings/half-day-
programmerpdf 2000.

Clark M: JuUnit Primer.
http://wwweclarkwarecom/articles/JUnitPrim
erhtml 2000.

Dyuzhev V: TUT: C++ Unit Test
Framework. 2004.

Hiroshimator: Win32ASM Community

Messageboard.
http://boardwin32asmcommunitynet/ 2005.
KetilO: RadASM assembler IDE.

http://wwwradasmcom/ 2006.

Blaine JD, Kemmerer RA: Complexity
Measures for Assembly Language
Programs. Journal of Systems and
Software, Elsevier Science Publishing Co Inc
1985:229-245.

Boetticher G, Srinivas K, Eichmann D: A
Neural Net-Based Approach to
Software Metrics. In: Fifth International
Conference on Software Engineering and
Knowledge Engineering: June 16-18 1993;
San Francisco, CA; 1993: 271-274.
Halstead MH: Elements of Software
Science. Elsevier North-Holland, New York
1977.

Gilb T: Software Metrics.
Publishers, Cambridge, MA 1977.
Bailey CT, Dingee WL: A Software Study
Using Halstead Metrics. ACM
SIGMETRICS Performance Evaluation
Review 1981, 10(1):189-197.

McCabe T: A Complexity Measure. IEEE
Transactions Software Eng 1976:308-320.
Watson AH, McCabe T: Structured
Testing: A Testing Methodology Using

Winthrop

© 2006 CodeBreakers Magazine

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

the Cyclomatic Complexity Metric. NIST
Special Publication 500-235 1996.
Woodward M, Hennell M, Hedley D: A
Measure of Control Flow Complexity in
Program Text. IEEE Trans Software Eng
1979:45-50.

Cornett S: Code Coverage Analysis.
http://wwwbullseyecom/coveragehtmi
2004.

Beizer B: Software Testing Techniques,
2nd edn: Van Nostrand Reinhold, New York;
1990.

Morell L: A Theory of Fault-Based
Testing. IEEE Trans Software Eng 1990,
16(8):844-857.

Kastner D, Wilhelm S: Generic Control
Flow Reconstruction from Assembly
Code. In: LCTES'02-SCOPES'02, Berlin,
Germany: 2002; 2002.

Venkitaraman R, Gupta G: Static Analysis
of Embedded Executable Assembly
Code. 2004.

Boyapati C, Khurshid S, Marinov D: Korat:
Automated Testing Based on Java
Predicates. In: ACM International
Symposium on Software Testing and
Analysis (ISSTA): July 2002 2002: ACM;
2002.

Marinov D, Khurshid S: TestEra: A Novel
Framework for Automated Testing of
Java Programs. 2002.

Cooper KD, Harvey JT, Waterman T:
Building a Control-Flow Graph from
Scheduled Assembly Code. Rice
Technical Report, TRO2-399 1999.

Beck J, Eichmann D: Program and
interface slicing for reverse
engineering. In: Proceedings of the 15th
international conference on Software
Engineering: 1993; Baltimore, Maryland,
United States: IEEE Computer Society
Press; 1993: 509--518.

Knizhnik K: Reflection for C++.
http://wwwgarretru/~knizhnik/cppreflection
/docs/reflecthtml 2004.

Roiser S: Seal C++ Reflection Package.
http://sealwebcernch/seal/snapshot/workbo
ok/reflectionhtml 2004.

Page 8 of 8

http://wwwociwebcom/javasig/knowledgebase/Oct2000/
http://wwwociwebcom/javasig/knowledgebase/Oct2000/
http://wwwtestingcom/writings/half-day-programmerpdf
http://wwwtestingcom/writings/half-day-programmerpdf
http://wwwclarkwarecom/articles/JUnitPrimerhtml
http://wwwclarkwarecom/articles/JUnitPrimerhtml
http://boardwin32asmcommunitynet/
http://wwwradasmcom/
http://wwwbullseyecom/coveragehtml
http://wwwgarretru/%7Eknizhnik/cppreflection/docs/reflecthtml
http://wwwgarretru/%7Eknizhnik/cppreflection/docs/reflecthtml
http://sealwebcernch/seal/snapshot/workbook/reflectionhtml
http://sealwebcernch/seal/snapshot/workbook/reflectionhtml

	4 ATF CFG Reconstruction from Assembly Code

