

Volume 1, Issue 1, 2006

Anti Reverse Engineering Uncovered

Nicolas Brulez
January 2006

Abstract
Rather than doing another complete analysis of the binary, i will rather present the techniques i have used in
the challenge, and how I have implemented them. The Scan of the Month 33 was released by the Honeynet
Project in November 2004. I invite everyone to read the excellent submissions we received this month once
they have read my paper. I am presenting the binary from the protection author point of view, while they
presented it from the analyst point of view.

ANTI REVERSE ENGINEERING UNCOVERED

1. Introduction

This month's challenge is to analyze an unknown binary, in
an effort to reinforce the value of reverse engineering, and
improve (by learning from the security community) the
methods, tools and procedures used to do it. This challenge
is similar to SotM 32. However, this binary has mechanisms
implemented to make the binary much harder to analyze,
to protect against reverse engineering.

All we are going to tell you about the binary is that it was
'found' on a WinXP system and has now be sent to you for
analysis. You will have to analyse it in-depth and get as
much information as possible about its inner working, and
what is the goal of the binary. The main goal of this
challenge is to teach people how to analyse heavily
armoured binaries. Such techniques could be used in the
future, and its time to get used to them.

About the Author:
Chief of Security for Digital River
working on the SoftwarePassport /
Armadillo protection system,
Nicolas specializes in anti-reverse
engineering techniques to defend
against software attacks. He has
been active in researching viral
threats and sharing that research
with various anti-virus companies.
He regularly writes for the French
security magazine MISC and has
authored a number of papers on
reverse engineering. He currently
teaches assembly programming and
reverse engineering in French
engineering schools. The author has
more than 7 years of Reverse
Engineering Experience on Windows
Operating Systems and is currently
doing Research on Pocket PC
devices. He plans to write a
Protection system for those
devices.

2. Identify and explain any techniques in
the binary that protect it from being
analyzed or reverse engineered

Many techniques have been used in order to slow down
analysis and break reverse engineers tools:

• PE Header Modifications

Many fields of the PE header were modified in order to disturb analysing tools, and thus, the
Reverse Engineer. I will quickly cover the most important changes:

->Optional Header
 Magic: 0x010B (HDR32_MAGIC)
 MajorLinkerVersion: 0x02
 MinorLinkerVersion: 0x19 -> 2.25
 SizeOfCode: 0x00000200
 SizeOfInitializedData: 0x00045400
 SizeOfUninitializedData: 0x00000000
 AddressOfEntryPoint: 0x00002000
 BaseOfCode: 0x00001000
 BaseOfData: 0x00002000
 ImageBase: 0x00DE0000 <--- "Non Standard" ImageBase
 SectionAlignment: 0x00001000
 FileAlignment: 0x00001000
 MajorOperatingSystemVersion: 0x0001
 MinorOperatingSystemVersion: 0x0000 -> 1.00
 MajorImageVersion: 0x0000
 MinorImageVersion: 0x0000 -> 0.00
 MajorSubsystemVersion: 0x0004
 MinorSubsystemVersion: 0x0000 -> 4.00
 Win32VersionValue: 0x00000000
 SizeOfImage: 0x00049000
 SizeOfHeaders: 0x00001000

© 2006 CodeBreakers Magazine Page 2 of 26

ANTI REVERSE ENGINEERING UNCOVERED

 CheckSum: 0x00000000
 Subsystem: 0x0003 (WINDOWS_CUI)
 DllCharacteristics: 0x0000
 SizeOfStackReserve: 0x00100000
 SizeOfStackCommit: 0x00002000
 SizeOfHeapReserve: 0x00100000
 SizeOfHeapCommit: 0x00001000
 LoaderFlags: 0xABDBFFDE <--- Bogus Value
 NumberOfRvaAndSizes: 0xDFFFDDDE <--- Bogus Value

The "standard" ImageBase usually is 400000 for Win32 applications and Reverse Engineers
are used to analyse programs with such an ImageBase. While it isn't a protection by itself,
this simple modification will confuse some Reverse Engineers, because they aren't used to
such memory addresses.

"Anti" OllyDbg:

LoaderFlags and NumberOfRvaAndSizes were modified.. I have Reverse Engineered
OllyDBG and Soft ICE to find a few tricks that could slow down the analysis of a binary. With
those two modifications, Olly will pretend that the binary isn't a good image and will
eventually run the application without breaking at its entry point. This could be a bad thing if
you wanted to debug a malware on your computer, because you would get infected.

Anti Soft ICE : Blue Screen of Death and no Chocolate:

The NumberOfRvaAndSizes field has been modified in order to reboot any computer
running a recent version of Soft ICE. While Disassembling the PE Loader of Soft ICE, i found
a very critical vulnerability in Soft ICE that allows one binary to crash any computer running
Soft ICE without any code execution. This vulnerability (bug) has been reported to
Compuware and should be fixed in the next version. Apparently it didn't happen on some of
the authors of the submissions for some reasons. Oh well.

Here is the disassembly of Soft ICE PE loader to find out why it reboots your computer:

.text:000A79FE
.text:000A79FE loc_A79FE: ; CODE XREF: sub_A79B9+31j
.text:000A79FE ; sub_A79B9+3Cj
.text:000A79FE ; DATA XREF: .text:00012F9Bo
.text:000A79FE sti
.text:000A79FF mov esi, ecx
.text:000A7A01 mov ax, [esi]
.text:000A7A04 cmp ax, 'ZM'
.text:000A7A08 jnz not_PE_file
.text:000A7A08
.text:000A7A0E mov edi, [esi+_IMAGE_DOS_HEADER.e_lfanew]
.text:000A7A11 add edi, esi
.text:000A7A13 mov ax, [edi]
.text:000A7A16 cmp ax, 'EP'
.text:000A7A1A jnz not_PE_file
.text:000A7A1A
.text:000A7A20 movzx ecx, [edi+IMAGE_NT_HEADERS.FileHeader.NumberOfSections]
.text:000A7A24 or ecx, ecx
.text:000A7A26 jz not_PE_file
.text:000A7A26
.text:000A7A2C mov eax,
[edi+IMAGE_NT_HEADERS.OptionalHeader.NumberOfRvaAndSizes]
.text:000A7A2F lea edi,
[edi+eax*8+IMAGE_NT_HEADERS.OptionalHeader.DataDirectory]

© 2006 CodeBreakers Magazine Page 3 of 26

ANTI REVERSE ENGINEERING UNCOVERED

.text:000A7A33 mov eax, ecx

.text:000A7A35 imul eax, 28h

.text:000A7A38 mov al, [eax+edi] ; CRITICAL BUG! One can force EAX+EDI to
be equal to zero. Reading at [0] in ring 0 isn't nice eh ;-)
.text:000A7A3B
.text:000A7A3B loc_A7A3B: ; DATA XREF: .text:00012FA5o
.text:000A7A3B cli
.text:000A7A3C call sub_15C08
.text:000A7A3C
.text:000A7A41 mov byte_FA259, 0
.text:000A7A48 push eax ; Save EAX
.text:000A7A49 mov eax, dword_16B56F ; EAX is modified by a saved dword
.text:000A7A4E mov dr7, eax ; Debug Register 7 take the value in EAX
.text:000A7A51 pop eax ; EAX is restored
.text:000A7A52 mov dword_FC6CC, esp
.text:000A7A58 mov esp, offset unk_FBABC
.text:000A7A5D and esp, 0FFFFFFFCh
.text:000A7A60 xor al, al ; AL is zeroed? Why this mov al,
[eax+edi] then ?
.text:000A7A60 ; I don't see the point. old code?
.text:000A7A62 call sub_4D2EB
.text:000A7A62
.text:000A7A67 call sub_36AC1
.text:000A7A67
.text:000A7A6C xor edx, edx
.text:000A7A6E
.text:000A7A6E loc_A7A6E: ; CODE XREF: sub_A79B9+124j
.text:000A7A6E call sub_74916
.text:000A7A6E

As you can see from the code above, we can force Soft ICE to read at memory location [0] or
something similar using a special value inside the PE header. For this binary i didn't bother
calculating the exact value to read at address [0], that's may explain why it didn't crash for
some people.I won't explain how to calculate this special value because it is trivial and i don't
want Darklords to use that trick without a little brainstorming.

To fix this problems, one needs to patch the value in the PE Header. The standard value for
NumberOfRvaAndSizes is 0x10.Just patch this value in the PE Header and the Soft ICE
wrecking will be gone. The OllyDBG problem as well, because it is based on BOTH fields
modifications. You can also nullify the other field if you want.

• Section Modification: Or how to kill many tools.

->Section Header Table
 1. item:
 Name: CODE
 VirtualSize: 0x00001000
 VirtualAddress: 0x00001000
 SizeOfRawData: 0x00001000
 PointerToRawData: 0x00001000
 PointerToRelocations: 0x00000000
 PointerToLinenumbers: 0x00000000
 NumberOfRelocations: 0x0000
 NumberOfLinenumbers: 0x0000
 Characteristics: 0xE0000020
 (CODE, EXECUTE, READ, WRITE)

 2. item:
 Name: DATA
 VirtualSize: 0x00045000
 VirtualAddress: 0x00002000

© 2006 CodeBreakers Magazine Page 4 of 26

ANTI REVERSE ENGINEERING UNCOVERED

 SizeOfRawData: 0x00045000
 PointerToRawData: 0x00002000
 PointerToRelocations: 0x00000000
 PointerToLinenumbers: 0x00000000
 NumberOfRelocations: 0x0000
 NumberOfLinenumbers: 0x0000
 Characteristics: 0xC0000040
 (INITIALIZED_DATA, READ, WRITE)

 3. item:
 Name: NicolasB
 VirtualSize: 0x00001000
 VirtualAddress: 0x00047000
 SizeOfRawData: 0xEFEFADFF <--- BIG Size of section on the disk.
 PointerToRawData: 0x00047000
 PointerToRelocations: 0x00000000
 PointerToLinenumbers: 0x00000000
 NumberOfRelocations: 0x0000
 NumberOfLinenumbers: 0x0000
 Characteristics: 0xC0000040
 (INITIALIZED_DATA, READ, WRITE)

 4. item:
 Name: .idata
 VirtualSize: 0x00001000
 VirtualAddress: 0x00048000
 SizeOfRawData: 0x00001000
 PointerToRawData: 0x00047000
 PointerToRelocations: 0x00000000
 PointerToLinenumbers: 0x00000000
 NumberOfRelocations: 0x0000
 NumberOfLinenumbers: 0x0000
 Characteristics: 0xC0000040
 (INITIALIZED_DATA, READ, WRITE)

From those informations, we can conclude a few things. First, the binary doesn't seem to be
compressed, because the Virtual Address and Size matche the Raw Offset and Size at one
exception, the NicolasB section. This section has an extremly big size of raw data, which will
crash a few tools and make a few others very very slow.

IDA will try to allocate a LOT of memory because it thinks that the section is THAT big,
turning your computer into a very slow turtle ;-). Eventually, it will load the file, or run out of
memory, depending of the computer you are using to do the analysis.

This modification will also create havoc with many tools such as Objdump, PE editor, some
memory dumpers etc. It is very easy to fix this problem, you need to correct the Raw Size. If
you look at the section following this special one, you will find that it starts at the very same
Raw Offset. This means that the other section is actually null on the disk. You can therefore,
safely replace the big value by zero.

Protection Weakness:

While writing this binary, i knew people were going to patch the PE header but i didn't do any
integrity checks on purpose. Originally i wanted to use the value in the PE Header as keys to
decrypt a few layers of the protection, and the result would have been an unworking binary if
this one had been changed.

© 2006 CodeBreakers Magazine Page 5 of 26

ANTI REVERSE ENGINEERING UNCOVERED

I have also changed a few other things in the PE header, but nothing of real interest here.
(who said Cosmetic?)

• Junk Code

All along the binary, i have added junk code between real instructions, in order to make the
analysis a little harder. The junk code are long blocks of code that does nothing but fancy
operations to disturb the analyst , especially when he choose to do a static analysis of the
binary. Each block of Junk Code is different and have been generated by a personal tool. A
Thrash generator which creates macros to be inserted in the code source around real
instructions.

Here is how it looks inside a disassembler:

The junk code starts with a pushad (save all registers states onto the stack) and finish with a
popad (restore register states).Here is the end of a block of junk:

© 2006 CodeBreakers Magazine Page 6 of 26

ANTI REVERSE ENGINEERING UNCOVERED

Protection Weakness:
The thrash generator isn't perfect (at least with the options i have used here ;) and it is easy
to find the start and the end of a block of junk code. The junk code is bounded by
pushad/popad. When i wrote this binary i was aware of this problem, but this is a perfect
real life example of protection weakness. It allows Reverse Engineers to practice IDA/Ollydbg
scripting. Very interesting scripts were found in the submissions. I invite you to have a look
at them if you didn't know how to write one. When i wrote the binary, i already had a better
version of my Thrash generator that doesn't use any pushad/popad around the blocks of
useless code, but we will keep it for another challenge, if any.

• SEH - Structured Exception Handling

Windows SEH were used extensively in this binary. It allows one to access the context
structure of the current application, and therefore, access privileged registers such as Debug
Registers. Those registers are used by Hardware Breakpoints (BPM). If you can access them,
you can also erase the hardware breakpoints.

• Timing Detection Through SEH

Here is a little detection i invented to detect debuggers. If we merge SEH (And access to
context structure) with the known Timing Detection Technique, we can detect a lot of Ring 3
debuggers and Tracers. The idea is to read the Time Stamp Counter using RDTSC (number
of cycles executed by the CPU basically) and then generating an Exception.

In the exception handler, we can access the EAX register (previously modified by RDTSC) in
the Context Structure, which contains the TSC. In the Exception Handler, we use RDTSC one
more time, to get the current TSC value. Now, we can compare both TSC to see whether the
program has been debugged/traced or not. If such an action has occured, the difference of
cycles will be huges, thus triggering the Payload. In this binary, i just modified EIP through
the context structure. The application resumes at a different location skipping mandatory
instructions.The application crashes eventually. It seems that on some version on Windows,
it doesn't work as expected because of the utilisation of the CPUID instruction, that will
modify the ECX register.

The detection became less stealth because of this "bug", but it would still have been a
matter of time until someone discovered it anyway. Many people wondered why i used
CPUID in the program before RDTSC. The reason is that on recent CPU such as P4, there is a
feature called: Out of Order Execution. The CPUID is a synchronization instruction which tells
to the CPU not to use Out Of Order execution, avoiding False Positives in the debugger
detection. If you don't tell to the CPU not to use OOO execution, you don't know in which
order the CPU is going to execute your code. It can be different from your source code.
Sometimes, it will create a false positive and your program will crash for no reason.

© 2006 CodeBreakers Magazine Page 7 of 26

ANTI REVERSE ENGINEERING UNCOVERED

Here is the code of this detection:

E0000h is the maximum cycles difference accepted by this detection. If the number is
bigger, then a debugger is most likely running and debugging our application.

Protection Weakness:
I have used a fixed value for the number of cycles: E0000h. I could have (Actually i can do it
with my layer generator) used a random value rather than a constant and therefore, making
the scan for this constant useless. I could also have used different instructions for each SEH
to make the creation of a generic pattern difficult. The biggest weakness of this detection is
the constant and the usage of the same instructions for every checks. It is also possible to
write a Kernel Module Driver to catch every execution of RDTSC (See Intel documentation for
further informations) and return very similar values, thus bypassing the detection
completely.

© 2006 CodeBreakers Magazine Page 8 of 26

ANTI REVERSE ENGINEERING UNCOVERED

• BPX Detection:

As we are going to use API functions, We have to protect them from beeing BPX'ed by an
attacker. Rather than Using GetProcAddress to get the API address and then to check for an
int 3 opcode (0xCC) in the API function code, i have used a different method. I directly
access the Import Table , more precisely, the Import Address Table to read the API function
address and then start to search for breakpoints.

The int 3 opcode is 0xCC and is known by Reverse Engineers. In order to make a little less
obvious, i have obfuscated the breakpoint check using a "SHR" (Shift Right) instruction:
0x660 shr 3 = 0xCC ;-). The program will then check four bytes at API function entry point,
looking for a breakpoint. If a breakpoint is found, i have used a funny way to crash the
application. Im using RDTSC to generate a pseudo random number and i put this number
onto the stack. To modify EIP, i simply use the RET instruction, which will transfer us to
random memory address, crashing our application. Each time a detection occurs, the address
is different, thus hard to monitor. The crash occurs far from the detection code and Soft
ICE's FAULT ON won't catch it either.

Protection Weakness:
First, the Imports aren't protected, therefore anyone can read the Imported functions from
the binary. From The import table we can see that printf, GetCommandLineA and ExitProcess
are used. This is a weakness. A Reverse Engineer can put breakpoints on those functions, or
at least, guess they are going to be used at some point. In the case of our binary, one can
guess that the application is waiting for a special command line. A solution would be to load
the Import Table manually.

For this we could use a home made GetProcAddress function to browse the Export Table of
the dlls we want to import functions from, and then, get the address of the API function from
there. A Kernel32 address is always on the stack when a binary is started, so we could have
used this value to get the dll's ImageBase (Or use the PEB, SEH chaining etc..). We would
have everything needed to get the address of Loadlibrary which allows us to Load ANY dll,
and thus, to get the address of ANY API function. With this method, we don't need any
Import Table at all.

© 2006 CodeBreakers Magazine Page 9 of 26

ANTI REVERSE ENGINEERING UNCOVERED

Well actually, this isn't true. There is a mandatory thing to do to keep compatibility with all
versions of Windows. We have to create a very small Import Table, with at least ONE import
from Kernel32, else the binary won't run on Windows 2000. The Windows 2000 PE Loader is
different from the one in Windows XP. XP doesn't care whether there is any import table or
not.

The small Import Table is just for compatibility issue, the real import table is encrypted and
will be decrypted at runtime by the protection.

Then, it is just a matter of loading the Imports mimicing the Operating System. We need to
put the API address in the Import Address Table (of the decrypted Import Table) manually.
The Reverse Engineer has no clue about the API functions used by the binary until he gets to
the part of the code that will decrypt and load the Imports.

The BPX protection has a few weaknesses. I only check for four bytes at API entry point,
which can be easily bypassed, if the API has many instructions. One could put a breakpoint
to the first instruction after the 4 bytes boundary.A Better check would use a Length
Disassembler Engine (LDE) which tells us the size of the instructions. With this, we can safely
scan a lot of instructions without triggering any false positive.

A genuine instruction can contain the byte 0xCC and yet not beeing a breakpoint. Eg: Mov
eax, 0x4010CC. The detection would trigger a false positive on this instruction, because of
the 0xCC inside of it. On the other hand, a LDE would tell us the size of this instruction (5
Bytes). An int 3 (breakpoint) is either one or two bytes (0xCC or 0xCD 0x03). We would
therefore skip the current instruction and check the following one.

Also, the BPX check is only done once per API at a given location in the binary.Once we have
stepped over those checks , we can put a breakpoint on any API function without triggering
any error. This weakness wasn't fixed on purpose because this is a common error in
Protection Systems.

There is another kind of BPX detection that will be described in the next section

• The Crazy Layers

Here is a little more challenging protection. In order to protect the binary from beeing
disassembled, i have written an Encryption Layer generator, that will generate the number of
layers i want. For this binary, i used 175 layers. The Layer Generator has many options. Here
are the options from the config file: (0 means disabled)

SEH=1
RANDOM_LAYER_SIZE=0
RANDOM_REGISTERS=1
RANDOM_ENCRYPTION=0
ENCRYPTED_RETURN_ADDRESS=1
TIMING_DETECTION=1
RANDOM_CONSTANT=0
JUNKS=0
PUSHAD_POPAD=1
RANDOM_ORDER=0
USE_DIFFERENT_LOOP_CODE=0
RANDOM_FIRST_BLOCK=0
NUMBER=175

© 2006 CodeBreakers Magazine Page 10 of 26

ANTI REVERSE ENGINEERING UNCOVERED

I will comment each options below:

SEH:

This tells to my layer generator to use (or not) SEH inside the layers.

RANDOM LAYER SIZE:

This tells to my layer generator to use a different size for each layer. This option wasn't
enabled to simplify the analysis.

RANDOM REGISTERS:

If this option is enabled, all the layers are using different registers. Some kind of
"polymorphism". This option was enabled.

RANDOM ENCRYPTION:

When this option is enabled, Each layer will have a different encryption algorithm. I didn't
enable this option. Therefore all the layers have a static encryption code. (Default layer)

ENCRYPTED RETURN ADDRESS

This option will encrypt the return address inside the layer. It avoids a simple patch to skip
the SEH.This option was enabled

TIMING_DETECTION:

Tells whether the layers must use Timing Detection or not. I enabled this option.

RANDOM_CONSTANT:

The Random constant is to tell whether we want to use a static value for the timing detection
or not. This option wasn't enable. All layers were using the defaut value: E0000h. Enabling
this option will also modify the code that checks for the Difference between both TSC.

JUNKS:

Enable of Disable Junks in the Layers. I disabled this option because the layers are WAY
biggers when it is enabled. The resulting binary is too huge and slow if you use a big number
of layers.

PUSHAD_POPAD:

This option tells the Layer Generator to use (or not) Pushad/Popad around the Junk Code.
The layer generator directly use the Thrash Generator (external tool) i have programmed. I
was using pushad popad in the junk code, that's why it is enabled. This option does nothing
if the Junks option is disabled.

© 2006 CodeBreakers Magazine Page 11 of 26

ANTI REVERSE ENGINEERING UNCOVERED

RANDOM_ORDER:

Each layer use a table to access part of its code. If this option is enabled, Each layer has a
random order of execution. I didn't enable this one on purpose.

USE_DIFFERENT_LOOP_CODE:

Each layer loops a given number of time. With this option, one can use different code to test
the end of the loop. It makes it harder for the reverse engineer to find removal pattern. This
option wasn't enabled. A defaut checking code was used.

RANDOM_FIRST_BLOCK:

This option allows one to use random value inside the first elements of the layers tables. You
will see in some submissions that the static value was used to bypass the layers. I didn't
enable this option to see whether someone was going to use it or not.

NUMBER:

This is the number of the layer, the generator must use. I used 175 layers in this challenge.
I can generate 65000 layers in a few seconds because the generator engine is programmed
in Assembly Language.

Presentation of the encryption layers:

Layer Selector

xor esi,esi ; ESI = 0
mad_loop175_1: ; Loop label
inc esi ; ESI++
mov edi,dword ptr [ebp+(esi*4)+EIPtable175_1] ; Grab block address
mov ebx,dword ptr [ebp+(esi*4)+RETable175_1] ; Grab "Encrypted"
 ; Return address

Add ebx, [ebp+_startloader] ; Add Base.
push ebx ; Save Return Address
 ; from the stack
Call tricky_call175_1 ; Fake call
db 0EBh,01,0E8h ; Some junk crap

fake_ret175_1: ; fake return address label.
Add edi, [ebp+_startloader] ; Add EDI Base. EDI now
 ; contains address of a block ; inside the

layer.
jmp edi ; Execute that block.

return_addy175_1:
cmp esi, 4 ; When we get back from the
 ;block, we check whether we
 ;have done every blocks.
jnz mad_loop175_1 ; if we didn't, loop!

bpxcheck175_1: ; Label used for BPX check.
jmp @layer175_1

tricky_call175_1:
pop ebx ; Ret address is in EBX

© 2006 CodeBreakers Magazine Page 12 of 26

ANTI REVERSE ENGINEERING UNCOVERED

jmp fake_ret175_1 ; Jmp to fake return address.
@layer175_1: ; end of the layer.

This is the main part of a layer. This part loops through the layer blocks using some
obfuscated ways. It prepares the stack with return addresses, and fake a call. If you step
over with your debugger on this call, the binary won't break and it will run. If you were
debugging a malware, you would get infected. And if you were analysing the binary, you
would need to restart from scatch. (Except if you have dumped your position regulary).

Layers Blocks

include obfuscation/junk198.inc ; I have added a few junks macro
 ; manually in order to add a
 ; little fun :)

dec_loader175_1: ; Decrypt label
xor byte ptr [edx],cl ; Defaut options were used.
 ; Very simple encryption.
inc edx ; Code to decrypt++
dec ecx ; Loop index--
test ecx, ecx ; is ECX = 0 ?
jnz dec_loader175_1 ; no :(therefore we continue
 ; to decrypt.

; This encryption can be different for each layer if you enable the option in the layer
Generator.

lea edx , [ebp+bpxcheck175_1] ; Grab address of BPX check.
cmp byte ptr [edx],0CCh ; Any break point ?
jnz return175_1 ; no. Good boy.

rdtsc ; Ah.. he did put a bpx..
 ; EAX = random value
push eax ; push eax on stack
ret ; Return to it :) Crash the
 ; poor guy.

return175_1: ; on return block
include obfuscation/junk199.inc ; a few junk
include obfuscation/junk19A.inc ; ditto.
SEHBLOCK 66137317 28513829 ; SEH block macro with
 ; keys in parameters.
ret ; return

inst175_2_1: ; another block of code
add dword ptr [esp], 41952561 ; fix return address and return.
ret

inst175_3_1: ; Another block.
mov ecx, (offset _end174_1- @layer175_1) ; Get Size of layer
add dword ptr [esp], 13007360 ; Fix return address and return
ret

inst175_1_1: ; Another block
lea edx, [ebp+@layer175_1] ; Get Layer address
add dword ptr [esp], 30560857 ; Fix the return address
 ; and return.
ret

© 2006 CodeBreakers Magazine Page 13 of 26

ANTI REVERSE ENGINEERING UNCOVERED

EIPtable175_1 dd 000DEADh, (offset inst175_1_1 - offset startloader), (offset inst175_2_1 -
offset startloader), (offset inst175_3_1 - offset startloader), (offset _end174_1 - offset
startloader)

; This is a table of offset used to redirect the code.

RETable175_1 dd 0031000h, (offset return_addy175_1 - offset startloader - 30560857) , (offset
return_addy175_1 - offset startloader - 41952561),(offset return_addy175_1 - offset startloader
- 13007360),(offset return_addy175_1 - offset startloader - 37623488)

; This is a table of return address with a little "encryption".

; You can notice the first member of the tables : DEADh and 31000h. Those values are constants
and can be random using the RANDOM_FIRST_BLOCK
; option in the layer generator.

The layer presented above has been generated by the little Layer generator Engine i have
programmed. I have added comments for the readers.

Protection Weakness:
Those layers have a few weaknesses. You can use BPM (Hardware Break Point) on the next
layer once you have passed the SEH that is going to clear the debug registers. Another
weakness is the static size of the layer. Using this information, one can pass the layers
rather quickly with a few Soft ICE macros for instance. I didn't turn the random size option
on, on purpose to allow such attacks.

Those layers always use the same encryption algo, which can allow one to write scripts to
decrypt the binary. And as you can read in a few submissions, some people did it. I did put
this weakness on purpose as well. In a challenge i had done in the past, i had used random
encryption for each layers, this time i choose not to use it. It is possible to bypass the 175
layers in a few seconds easily as well using a live approach. As we know wich API functions
are going to be used, we can set a break point after the BPX checks have occured.Another
possibility is to create a little utility that will PATCH the system dll in memory (each
application has a copy of the dll) and to redirect them to a place that you contol. This way
you can put breakpoints without triggering any Detection code.

Talking of patching the Windows dll files, it is possible to patch ntdll to avoid the Debug
Registers access in the context structure, by hooking the Exception Handling Mechanism of
Windows. This allows one to put Hardware Breakpoints anywhere without ever having
problems, never seeing his debug breakpoints beeing erased etc. The cool thing is you don't
even need a Kernel Mode Driver to do that. I leave this as an exercice for interested people.

• Virtual Machine

The final protection of the binary is a complete Virtual Machine i wrote for the challenge. I
have designed a Virtual CPU that will interpret my own Assembly language. The Virtual
Machine is quite simple to understand and isn't very complex.

Virtual Machines seem to be a new trend in protection systems, so i thought it could be a
good thing to write one for such a challenge. The instruction encoding is very trivial, and
could have been a lot harder to understand. The first Version i had in mind was a lot more
complex. I wanted not only to have a pseudo language, but also to program the instructions

© 2006 CodeBreakers Magazine Page 14 of 26

ANTI REVERSE ENGINEERING UNCOVERED

handlers emulating real x86 instructions. Each handler would be a few hundred instructions
long and a lot harder to analyse.

A small program has been written with this Virtual Machine Assembly language, and it was
used to authenticate the user running the binary.
Read next part for further informations

3. Something uncommon has been used to protect the code from
beeing reverse engineered, can you identificate what it is and
how it works?

Even though, a few protection systems are using some kind of Virtual Machines, those aren't very
common. Especially in Malwares and other exploits.

Virtual CPU description and Inner working:

Registers:

REGISTERS STRUC
 R0_ dd ? ; 000
 R1_ dd ? ; 001
 R2_ dd ? ; 002
 COUNTER_ dd ? ; 003
 EIP_ dd ? ; 004 -> reserved
 STATE_ dd ? ; 005
REGISTERS ENDS

This is the original structure from my code source. Every registers is a DWORD. Some registers
weren't used because they are reserved for futur version of the Virtual Machine. One can read
"EIP_". I planned to add another information per instruction, but i didn't do it, because i didn't want
it to be too complex. I will add the ability to change the Instruction pointer for any instruction. The
result will be a completely mad code flow. The instruction order in the file will have nothing to do
with the real execution flow.

The STATE Register is some kind of mini Eflags. This register changes depending of other
instructions.

The COUNTER Register is used for loop instructions. Similar to the ECX register when we use the
LOOP instruction.

regs REGISTERS <>

R0 equ 000b
R1 equ 001b
R2 equ 010b
COUNTER equ 011b
EIP equ 100b
STATE equ 101b

Here are a few other definitions used in my program.I started to represent the registers in binary
because i wanted to do complex opcode decoding. I will do that for another version ;)

© 2006 CodeBreakers Magazine Page 15 of 26

ANTI REVERSE ENGINEERING UNCOVERED

Registers Initialisation:

mov dword ptr [regs.R0_],"livE" ; Registers are initialized with a
 ; Slayer Song Title.
..
mov dword ptr [regs.R1_],"saH " ; Evil Has No Boundaries!
..
mov dword ptr [regs.R2_]," oN "
..
mov dword ptr [regs.COUNTER_],"nuoB"
..
mov dword ptr [regs.EIP_],"irad"
mov dword ptr [regs.STATE_],"! se"

At the start of the VM, i first begin to initialise my own registers with the song's title of a thrash
metal band. This title was selected because i planned to do real evil things with the Virtual Machine.
It isn't as hard as the initial version, but still evil enough to keep that funny string ;-).

There is about 34 Instructions in the Virtual Machine. (I count instructions having different
utilisation as unique)

I will present a few instruction handlers to explain the inner working of the Virtual Machine, but not
every instruction will be presented here.

Pcode Fectcher:
The first thing the Virtual Machine does after the Register Init is to Fetch the Pcode entry point and
jmp to the first Pcode handler.
movzx eax, byte ptr [esi] ; ESI is Pcode Entry Point. This code
 ; gets the first instruction Prefix.

mov edi, dword ptr [eax*4+poffset] ; It uses it with the offset table to
 ; find the Pcode family it has to
 ; execute.

movzx eax, byte ptr [esi+1] ; get second byte, use it as an
 ; index into last table.
 ; The VM now knows what instruction it
 ; has to emulate and goes to it.

JMPNEXT ; Emulate a jmp dword ptr [eax*4+edi]
 ; with Exception Handling and
 ; Context Manipulation.
 ; Jmp to the next Pcode
 ; instruction handler

Examples of Instructions implemented inside the Virtual Machine:
Before i start with those examples, i would like to say that a few instructions present in the Virtual
Machine weren't used and were left as decoy.Three of them are using Self modifying code. People
are reporting that they don't work, but they should. The off by one difference is because the
opcode is beeing called from other instruction handlers. Two instructions are modifying one
instruction on the fly as they need to execute a particular piece of code. They then restore the
instruction state. I am too lazy to check whether those instructions are really bugged or if they
didn't use the good parameters. One of the _unused_ instruction HAS a bug, and i am glad some
people noticed it. The instruction isn't used therefore, it is just a decoy instruction. The instruction
is supposed to be a Virtual BSWAP, but it doesn't save the result of the swaping. Another unused
instruction is the INT 3. This instruction allows one to put breakpoint in his Pcode program and

© 2006 CodeBreakers Magazine Page 16 of 26

ANTI REVERSE ENGINEERING UNCOVERED

trace with his debugger from that instruction. I left this instruction in the final Virtual Machine and
im glad some people found it and abused it!.

STOPVM

The first instruction i will present here is a very simple one. It tells to the Virtual Machine to stops
and the program will get back to normal x86 assembly program.

@STOPVM:
 pop dword ptr fs:[0] ; Im using SEH to jmp from handlers to
 ;handlers in the VM.
 add esp,4 ; Therefore i need to remove the handler
 ; installed before i do anything.
 popad ; i restore the registers..
 ..
 push dword ptr [Pret] ; Put the Return Address (to get out of
 ; the VM) on the stack.
 ..
 xor [esp],'HAX0 '; Decrypt it with a funny string:
 ;HAXO(R)
 ..
 ret ; Get out of the VM.

This instruction is not using any bytecode fetcher because it doesn't need to jmp to another
handler. I will now present a real instruction. A Virtual PUSH:

LOAD

@Load:
 pop dword ptr fs:[0]
 add esp,4
 popad

 ; Same as every handler, remove SEH and restore registers.

 mov eax,dword ptr [esi+2] ; Get into EAX the first operand
 ; of the instruction.

 xor eax,37195411h ; Decrypt it.
 push eax ; Push it onto the stack.
 mov eax,0FFFFFF3Fh ; EAX = FFFFFF3Fh
 not eax ; EAX = not(EAX) = C0h
 shr eax,5 ; EAX = EAX shr 5 = 6 :
 ; This is the instruction length
 lea esi, [esi+eax] ; ESI = Instruction Pointer.
 ; Deplace the Instruction Pointer
 ; 6 bytes further.
 movzx eax, byte ptr [esi] ; ESI now points to the new
 ; instruction to be executed.
 mov edi, dword ptr [eax*4+poffset] ; It uses it with the offset
 ; table to find the Pcode family
 ;it has to execute.

 movzx eax, byte ptr [esi+1] ; get second byte, use it as an
 ; index into last table.
 ; The VM now knows what instruction it
 ; has to emulate and goes to it.

 JMPNEXT ; Emulate a jmp dword ptr [eax*4+edi]
 ; with Exception Handling and

 ; Context Manipulation.

© 2006 CodeBreakers Magazine Page 17 of 26

ANTI REVERSE ENGINEERING UNCOVERED

 ; Jmp to the next Pcode
 ; instruction handler

As you can see from this little handler, the instruction is 6 bytes long. It takes only one parameter
and it is placed 2 bytes after the start of the instruction. (ESI+2). The parameter is encrypted with
37195411h. The decrypted parameter is pushed on the stack and then the Virtual Machine calls the
next instruction.

From this, we can say that this instruction is a push. since push is already a x86 instruction, i
named my virtual push : LOAD.

One can use it like this: "LOAD number"

VMXOR

@VMXORDISPATCHER:
 pop dword ptr fs:[0]
 add esp,4
 popad
; Same as every handler, remove SEH and restore registers.

 movzx eax, byte ptr [esi+2] ; Get the Index Register to acces
 ; the Virtual CPU registers.
 mov eax, dword ptr [regs+eax*4] ; edi = Register value to know
 ; which register is going to be
 ; concerned (RO, R1 , R2)
 ; EAX = value used by the XOR.

 movzx ecx, byte ptr [esi+3] ; ECX = type of XOR.
 ; Byte ptr ? Word Ptr ? or
 ; Dword Ptr..

 jmp dword ptr [xortable+ecx*4] ; Jmp to the good handler
 ; accordingly.

@VMXORBPTR:

 movzx ecx, byte ptr [esi+4] ; Get Index Register for the
 ; destination.

 mov ecx, dword ptr [regs+ecx*4] ; edi = Register value to know
 ; which register is going to be
 ; used (RO, R1 , R2)

 xor byte ptr [ecx],al ; XOR BYTE PTR

 add esi,5 ; Instruction Length is 5

 movzx eax, byte ptr [esi] ; ESI now points to the new
 ; instruction to be executed.

 mov edi, dword ptr [eax*4+poffset] ; It uses it with the offset
 ; table to find the Pcode family
 ; it has to execute.

 movzx eax, byte ptr [esi+1] ; get second byte, use it as an
 ; index into last table.
 ; The VM now knows what
 ; instruction it has to emulate
 ; and goes to it.

© 2006 CodeBreakers Magazine Page 18 of 26

ANTI REVERSE ENGINEERING UNCOVERED

 JMPNEXT ; Emulate a jmp dword ptr
 ; [eax*4+edi] with Exception
 ; Handling and Context
 ; Manipulation.
 ; Jmp to the next Pcode
 ; instruction handler

@VMXORWPTR:

 movzx ecx, byte ptr [esi+4] ; Get Index Register for the
 ; destination

 mov ecx, dword ptr [regs+ecx*4] ; edi = Register value to know
 ; which register is going to be
 ; used (RO, R1 , R2)

 xor word ptr [ecx],ax ; XOR WORD PTR

 add esi,5 ; Instruction Length is 5

 movzx eax, byte ptr [esi] ; ESI now points to the new instruction to be
executed.

 mov edi, dword ptr [eax*4+poffset] ; It uses it with the offset
 ; table to find the Pcode family
 ; it has to execute.

 movzx eax, byte ptr [esi+1] ; get second byte, use it as an
 ; index into last table.
 ; The VM now knows what
 ; instruction it has to emulate
 ; and goes to it.

 JMPNEXT ; Emulate a jmp dword ptr
 ; [eax*4+edi] with Exception
 ; Handling and Context
 ; Manipulation.
 ; Jmp to the next Pcode
 ; instruction handler

@VMXORDPTR:

 movzx ecx, byte ptr [esi+4] ; Get Index Register for the
 ; destination

 mov ecx, dword ptr [regs+ecx*4] ; edi = Register value to know
 ; wich register is going to be
 ; used (RO, R1 , R2)

 xor dword ptr [ecx],eax ; XOR DWORD PTR

 add esi,5 ; Instruction Length is 5

 movzx eax, byte ptr [esi] ; ESI now points to the new
 ; instruction to be executed.

 mov edi, dword ptr [eax*4+poffset] ; It uses it with the offset
 ; table to find the Pcode family
 ; it has to execute.

 movzx eax, byte ptr [esi+1] ; get second byte, use it as an
 ; index into last table.
 ; The VM now knows what

© 2006 CodeBreakers Magazine Page 19 of 26

ANTI REVERSE ENGINEERING UNCOVERED

 ; instruction it has to emulate
 ; and goes to it.

 JMPNEXT ; Emulate a jmp dword ptr
 ; [eax*4+edi] with Exception
 ; Handling and Context
 ; Manipulation.
 ; Jmp to the next Pcode
 ; instruction handler

From this piece of code we can learn many things. The XOR instructions are coded with 5 Bytes. It
has two parameters.One register has the value used to do the XOR and One Register has a pointer
to the location to be xored.It also have a byte saying whether it is a XOR BYTE PTR, a XOR WORD
PTR or a XOR DWORD PTR.

This instruction handler is therefore handling Virtual XOR instruction.

How were the virtual instruction used to create a program ?
I will now show how i did to create virtual instruction, because the x86 assembler doesn't know
them and will never compile a LOAD or a VMXOR.To do so, i used a very simple way: MACRO. For
each instruction, a corresponding macro has been created, and is used to encode the instruction for
me. This way i can write a program with my Assembly mnemonics without caring of the opcodes
representation.I will now show the 3 Macros used for the examples Virtual Instruction descrived
above

STOPVM macro
 db 02,00
endm

This is the macro for the STOPVM instruction. Usage: STOPVM

Load macro x
 db 00,00
 dd x xor 37195411h
endm

This is the macro for the LOAD instruction. Usage: LOAD x

VMXOR macro reg0,kind,reg1
 db 01,03,reg0,kind,reg1
endm

This is the macro for the VMXOR instruction. Usage: VMXOR Rx xPTR Rx

© 2006 CodeBreakers Magazine Page 20 of 26

ANTI REVERSE ENGINEERING UNCOVERED

P-code Program used in this challenge:
The P-code is my own assembly language, thus IDA doesn't know anything about it. Here is how it
looks under a disassembler:

Ok, it doesn't look so good. So now, here is the complete program (copy pasted from my source) i
have written with my OWN assembly language. Cool isn't it ? :-)

CODE@:

Pcode1:

 MOVE pcrypt COUNTER
 LOADPTR startpcodecrypted
 RestoreREG R0
 MOVE 'S' R2

decryptpcode:

 VMXOR R2 BPTR R0
 INCR R0
 DECR COUNTER
 BNZ decryptpcode

startpcodecrypted:

© 2006 CodeBreakers Magazine Page 21 of 26

ANTI REVERSE ENGINEERING UNCOVERED

 MOVE 05CC80E31h R1
 APICALL GetCommandLineA
 SCANB " " 255h
 BZ youwishdude
 DLOAD R0 R2

 ADDREG R2 01D9BDC45h
 ADDREG R1 74519745h
 SUBREG R2 0AD45DFE2h
 ADDREG R1 0DEADBEEFh
 ADDREG R2 "hell"
 SUBREG R1 17854165h
 SUBREG R2 "Awai"
 ADDREG R1 "show"
 ADDREG R2 "its "
 SUBREG R1 " no "
 ADDREG R2 "driv"
 ADDREG R1 "merc"
 SUBREG R2 "nuts"
 SUBREG R1 "y!!!"
 SUBREG R2 "eh?!"
 ANDREG R2 0DFFFFFFFh

 LOADREG R2
 LOADREG R1
 CMPQ firstcheckdone
 CLEAR COUNTER
 BZ youwishdude

firstcheckdone:

 INCR R0
 ADDREG R0 2
 INCR R0
 WLOAD R0 R1

 LOADREG R1

 RESTOREREG R2
 LOADREG R0
 LOADPTR tricky-98547h
 RESTOREREG R0
 ADDREG R0 98548h
 DECR R0

 VMXOR R2 WPTR R0

 RESTOREREG R0

 BLOAD R0 R2
 ADDREG R0 2

 BLOAD R0 R1
 RADD R2 R1
 VMCALL sub_check_routine

tricky:

 ENCRYPTEDCLEAR COUNTER ; This one get patched at run time!

© 2006 CodeBreakers Magazine Page 22 of 26

ANTI REVERSE ENGINEERING UNCOVERED

cracked:
 LOADREG COUNTER
 LOADPTR congrats
 APICALL printf
 CleanStack 8
 BR outout

youwishdude:

 LOAD 0
 LOADPTR notgood
 APICALL printf
 CleanStack 8
outout:
 STOPVM

sub_check_routine:

 MOVE 'L' R1
 INCR R1
 INCR R1
 ADDREG R1 5
 DECR R1
 SUBREG R1 4
 SUBREG R2 'Z'
 CMPREG R1 R2
 BNZ youwishdude

 DECR R0
 BLOAD R0 R2
 ADDREG R0 2
 BLOAD R0 R1
 RADD R2 R1
 INCR R2
 SUBREG R2 4Eh

 LOADPTR retdecrypt-0DEADh ; push ptr to patch
 RESTOREREG R0
 ADDREG R0 0DEACh
 INCR R0
 VMXOR R2 BPTR R0

 MOVE msgcrypt COUNTER
 LOADPTR goodboy
 RestoreREG R0
 INCR R2

decryptmsg:

 VMXOR R2 BPTR R0
 INCR R0
 DECR COUNTER
 BNZ decryptmsg

retdecrypt:

 VMRETCRYPTED

DATA@:

notgood db "Please Authenticate!",10,13,0

© 2006 CodeBreakers Magazine Page 23 of 26

ANTI REVERSE ENGINEERING UNCOVERED

goodboy:
congrats db "Welcome...",10,13
 db "Exploit for it doesn't matter 1.x Courtesy of Nicolas Brulez",0
goodboyend:

This little routine is the password protection used in the binary. For more informations about it, i
will let you read the submissions. As you can see, the password protection is VERY SHORT. I could
have written a very complex algo with hundreds of lines to make it harder to analyse. Also this
code is clear of junk. I could also have placed P-code Junk instructions inside the program. The
password check was very simple and sadly, some people concentrated on the password rather than
the Virtual Machine. Next time i will make it a lot more complex so people has no choice but to
analyse the Virtual Machine and Instruction set.

You can compare the original P-code program here with the one inside the submissions to realize
that they have done a very good job.

A Few notes regarding the Password Protection
The password is checked using a very simple algorithm, but it is also used to decrypt yet another
part of the pcode program. There is a little weakness allowing one to find the correct value without
any brute forcing or analysis of the Opcodes:

Here is the encrypted String :

 0x14, 0x26, 0x2F, 0x20, 0x2C, 0x2E, 0x26, 0x6D,
 0x6D, 0x6D, 0x49, 0x4E, 0x06, 0x3B, 0x33, 0x2F,
 0x2C, 0x2A, 0x37, 0x63, 0x25, 0x2C, 0x31, 0x63,
 0x2A, 0x37, 0x63, 0x27, 0x2C, 0x26, 0x30, 0x2D,
 0x64, 0x37, 0x63, 0x2E, 0x22, 0x37, 0x37, 0x26,
 0x31, 0x63, 0x72, 0x6D, 0x3B, 0x63, 0x00, 0x2C,
 0x36, 0x31, 0x37, 0x26, 0x30, 0x3A, 0x63, 0x2C,
 0x25, 0x63, 0x0D, 0x2A, 0x20, 0x2C, 0x2F, 0x22,
 0x30, 0x63, 0x01, 0x31, 0x36, 0x2F, 0x26, 0x39,
 0x43

Everyone knows that a C String ends with a null byte. Therefore, the value used to encrypt this
string is 0x43. The key is the last byte of the encrypted string. X xor 0 = X. :-)

The other possible ways to find the good value was to look at the code structure.. We were doing a
Call routine, therefore we must have an instruction to do a RET. This instruction is the Virtual RET
implemented in the Virtual Machine. From this, we just had to find the opcode of this instruction to
compute the key.

© 2006 CodeBreakers Magazine Page 24 of 26

ANTI REVERSE ENGINEERING UNCOVERED

4. Provide a mean to "quickly" analyse this uncommon feature.
With this question, i was expecting a disassembler for my Virtual Machine. A few people sent me
fully working disassemblers, so i didn't write yet another one. I invite you once again to have a look
at their submissions.One of the author emailed me after the deadline with a working IDA processor
module with source code included. This Processor module wasn't used in my judgement because it
was sent after the deadline, but it is well worth studying it. It will be uploaded on the honeynet web
site shortly after the publication of the Results.

5. Which tools are the most suited for analysing such binaries, and
why?

In my opinion the best tools to analyse such binaries are Interactive Disassemblers or CPU
emulators. The disassembler can be used to analyse the code statically, to remove the
obfuscations, to decrypt binaries etc. If it offers possibility to write processor module, you can even
write a disassembler for the Virtual Machine and thus, do a full static analysis of the whole thing. A
CPU emulator can be used to quickly decrypt the code , layers etc. If it can be scripted not to show
the obfuscations you have a perfect weapon. I don't like Debuggers because they aren't reliable. I
could have easily written a driver to hook debug interupts to decrypt the binary for instance.
Debuggers would have been useless and would have rebooted the computer if used.

6. Identify the purpose (fictitious or not) of the binary.
This binary is waiting for an user to authenticate with a password that is passed to the application
through the command line. Once the user has been identified, the binary will print a little message.
It looks like a fake exploit. In the real world, it could have been a real exploit protected from prying
eyes.

7. What is the binary waiting from the user? Please detail how you
found it.

The binary is waiting for a password through the command line. The password is used to access the
real program. To find this password, you have to Reverse Engineer the binary. Decrypt every layers
to access the Virtual Machine. This Virtual Machine has a virtual program used to check the
password entered. One has to Reverse Engineer the Virtual Machine (or trace it blindly) in order to
understand its instruction set. Then it is just a very simple algo using a few easy operations to
reverse. I invite you to read submissions for details about the algo itself.

8. Bonus Question - What techniques or methods can you think of
that would make the binary harder to reverse engineer?

This binary has a lot of security flaws that were left on purpose and it has a lot of things needing
improvements.

• Junk Code without pushad/popad

© 2006 CodeBreakers Magazine Page 25 of 26

ANTI REVERSE ENGINEERING UNCOVERED

• P-code Junk code to really drive people tracing the protection nuts: 80% of useless
instructions would definitevely drive anyone mad.

• The encryption has a few weaknesses that were presented in the document. Mainly the static
encryption algo and the static size of every layers.

• Random constants in the first value of the address tables used by the Layers
• Better BPX detection, it could be greatly improved.
• The SEH could be used to initialise/decrypt part of the code in order to make sure they won't

be nopped out.
• Random Constants and code for the timing detection would make it harder to bypass with

scripts.
• The protection has been generated by my own tools and it is a bit repetitive. More variations

would make automatic removal harder.
• The Virtual Machine handlers are fairly simples. More code obfuscation (code flow and logic)

could be used.
• More Instructions in the Virtual Machine would have made it longer to analyse.
• Complex Opcodes encoding would make it quite challenging to Reverse Engineer.
• Utilisation of Cryptography rather than a simple algo to check for the serial number
• More Layers and different ones. There are a lot of ways to stop ring 3 debuggers that could

have been used to stop anyone trying to debug it.
• Imports Protection to make sure noone knows the API function used until he meets them in

the code.
• Emulation Macros to emulate simple x86 instructions. With those macros remplacing simple

instruction, it would be a lot harder to analyse. one instruction would have a 20 instructions
equivalent block of code for instance.

•

9. Conclusion
Anti Reverse Engineering Techniques can be used to really slow down the analysis of a binary.
Malwares could be using such techniques in a near futur and it is time to get used to it. Even
though most of the malwares are programmed by clueless idiots without any programming skill,
there is a minority able to write complex code. In the futur we could find exploit binaries on
compromised systems that would be protected against Reverse Engineering to hide the
vulnerability exploited. Spywares could also use such techniques to hide their activity. This binary
had a lot of vulnerabilities, yet it was really challenging , even with a trivial password protection
algorithm. The protection has been written within a week (a few hours per day), so with a little
more effort, it can be a LOT harder.Finally, I would like to point out that Reverse Engineering isn't a
pirate technique and that it is used by the Security Community on a daily basis. Some people in
France doesn't seem to agree though..

Acknowledgements
I would like to thank the following people:

• The Honeynet Project and Lance Spitzner who allowed me to create the challenge.
• The authors of the submissions for taking the time to look at my binary and write a complete

report. Thank you.
• People at Datarescue for their Excellent tool IDA Pro used extensively while writing this

binary.
• You for reading this document

© 2006 CodeBreakers Magazine Page 26 of 26

	1. Introduction
	3. Something uncommon has been used to protect the code from beeing reverse engineered, can you identificate what it is and how it works?
	Virtual CPU description and Inner working:
	Examples of Instructions implemented inside the Virtual Machine:
	How were the virtual instruction used to create a program ?
	 P-code Program used in this challenge:

	A Few notes regarding the Password Protection

	4. Provide a mean to "quickly" analyse this uncommon feature.
	5. Which tools are the most suited for analysing such binaries, and why?
	6. Identify the purpose (fictitious or not) of the binary.
	7. What is the binary waiting from the user? Please detail how you found it.
	8. Bonus Question - What techniques or methods can you think of that would make the binary harder to reverse engineer?
	9. Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

