@ CodeBreakers Journal

Security & Anti-Security - Attack & Defense

Volume 1, Issue 1, 2006

Cryptography in Data Compression

Chung-E Wang [wang@csus.edu]
California State University Sacramento, Computer Science Department
March 2006

Abstract
This paper describes cryptographic methods for concealing information during data compression processes. These include
novel approaches of adding pseudo random shuffles into the processes of dictionary coding (Lampel-Ziv compression),
arithmetic coding, and Huffman coding. An immediate application of using these methods to provide multimedia security
is proposed.

CRYPTOGRAPHY IN DATA COMPRESSION

1 Introduction

Data compression is known for reducing
storage and communication costs. It involves
transforming data of a given format, called
source message, to data of a smaller sized
format, called codeword.

Data encryption is known for protecting
information from eavesdropping. It transforms
data of a given format, called plaintext, to
another format, called cipher text, using an
encryption key.

The major problem existing with the current
compression and encryption methods is the
large amount of processing time required by
the computer to perform the tasks. To lessen
the problem, | combine the two processes into
one.

To combine the two processes, | introduce the
idea of adding a pseudo random shuffle into a
data compression process. The method of
using a pseudo random number generator to
create a pseudo random shuffle is well known.
A simple algorithm as below can do the trick.
Assume that we have a list (X1, X2, ... Xn) and
that we want to shuffle it randomly.

for i = n downto 2 {
k = random(1,1);
swap X; and Xg;

}

Since we are adding pseudo random shuffles
into data compression processes,
understanding all three compression
algorithms used is critical in the
understanding of our algorithms.

Even though our algorithms are based on
random shuffles, our algorithms don’t merely
re-ordering data. Unlike substitution ciphers,
our algorithms don’t encrypt plaintext by
simply replacing a piece of data with another
equal sized data. Unlike transposition cipher,
our algorithms don’t encrypt plaintext by just
playing anagrams.

© 2006 CodeBreakers Journal

As | will explain in detail, simultaneous data
compression and encryption offers an effective
remedy for the execution time problem in data
security. These methods can easily be utilized
in multimedia applications, which are lacking
in security and speed.

2 Adding a Pseudo Random
Shuffle to a Dictionary
Coding (Lampel-Ziv
compression)

During a Lampel-Ziv (LZ) compression [10,
12], a group of consecutive characters is
replaced with an index into a dictionary that is
built during the compression. There are many
implementations of the LZ compression.
Naturally, different implementations of the LZ
compression have different means of
implementing the dictionary.

FIG. 1 illustrates the steps of combining a
random shuffle with a LZ compression to
achieve simultaneous data compression and
encryption. In step 110, the encryption key is
used to initialize a pseudo random number
generator. In step 120, the pseudo random
number generator is used to shuffle the initial
values of the dictionary.

110
%

INITIALIZE THE PSEUDO RANDOM NUMBER
GENERATOR 'WITH THE ENCRYPTION EEY

l 120

SHUFFLE THE INITIAL VALUES OF THE HISTORY ~—/

l 130

PERFORM LZ COMPRESSION -—/

Fig. 1 Combining a random shuffle
with a LZ compression

Page 2 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

In a codebook type of implementation such as
the LZW compression [10], the dictionary
consists of strings of characters that have
been processed. Initially, it contains all strings
of length 1 in alphabetical order. In this case,
step 120 shuffles all strings of length 1 plus a
small number of null strings which is
determined by the first number generated by
the pseudo random number generator. The
purpose of including null strings in the
shuffling is to make chosen plaintext attacks
more difficult. Moreover, it cripples any
unauthorized decompression. FIG.2 shows an
example in which the size of the alphabet, i.e.
the set of permissible characters, is 5 and the
random number is 3.

il d| d| ol

T
random([Q"

&b

Fig. 2 Shuffling an initial codebook

In a sliding window type of implementation,
e.g. LZ77 [12], the dictionary is a window that
consists of the last n characters processed,
where n could be as big as the size of the
window. Initially, the window is empty. In this
case, step 120 first uses the pseudo random
number generator to generate a number, say
m, between s and 2s, where s is the size of
the alphabet. Then the step fills the first m
entries of the window by cycling through all
characters of the alphabet in alphabetical
order and then shuffling the window. Note
that the purpose of choosing m randomly
between s and 2s is to make chosen plaintext
attack more difficult. Again, it also cripples an
unauthorized decompression. FIG. 3 shows an
example in which s=5 and m = 8.

© 2006 CodeBreakers Journal

randomi)

[S

si| | | | | | o
o 8| | o |

Fig. 3 Shuffling an initial window

In step 130, the compression process is
performed on the input string in its usual
fashion.

FIG. 4 illustrates the steps of simultaneous
decompression and decryption. In step 410,
the encryption key is used to initialize the
pseudo random number generator. Note that
the pseudo random number generator used in
step 410 should be identical to the one used
in step 110. In step 420, the pseudo random
number generator is used to shuffle the initial
values of the dictionary as in step 120. In step
430, the decompression is performed in its
usual fashion. The output of step 430 is the
final decompressed and decrypted string.

{__ssom)

410

[

INTTIALIZE THE PSEUDO RANDOM NUMEBEK
GENEFATOR WITH THE ENCRYFTION KEY

l

SHUFFLE THE INITIAL VALUES OF THE HISTORY o

l

PERFOEM LZ DECOMPRESSION —

\ END /

Fig. 4 Simultaneous decompression
and decryption

420

3 Adding a Pseudo Random
Shuffle to an Arithmetic
Coding

In an arithmetic coding [6, 8, 11], a message
of any length is coded as a real number
between 0 and 1. The length of the message

Page 3 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

determines the precision used in the coding. A
longer message is encoded with more
precision. This is done as follows:

1. Initialize the current interval as [0,1),
i.e. the set of real numbers from O to 1,
including O and excluding 1.

2. Divide the current interval into smaller
intervals according to the probability
distribution of permissible characters.

3. From these new intervals, choose the
one corresponding to the next character
in the source message as the new
current interval.

4. Repeat steps b) and c) until the entire
message is coded.

5. Represent the last current interval's
value using a binary fraction.

FIG. 5 shows an example. The message to be
coded is “CAB”. Probabilities of permissible
characters are shown in all three tables. Part
(a) shows the intervals before the coding of
the first character ‘C’. Part (b) shows the
intervals before the coding of the second
character ‘A’. Part (c) shows the intervals
before the coding of the third character ‘B’.
The number 0.36864 is the final result of the
arithmetic coding. An arithmetic coding could
be static or adaptive. In a static arithmetic
coding, the probabilities of characters stay the
same in the entire coding process. In an
adaptive arithmetic coding, probabilities of
characters are updated according to the data
processed.

© 2006 CodeBreakers Journal

character probability interval
& 024 mon, 024
E 1z 024, 036
o 015 036, 051)
s} 01 051, 6%
E 03t 069, 1.00)
() Interval table hiefare O is coded
character probability interval
& 04 036, 0.396)
E 01z [0.396,0.414)
o 015 [0.414, 0.4365)
o nig [0.4365, 0.4635)
E

031 [0.4635, 0.51)

(1) Iaterval table before & is coded

character probability interval
A 024 0,36, 0.36264)
B 012 [0.36364, 0.37296)
G 015 037296, 037236
D 018 [0.37536, 0.33434)
E a3t 032484, 0.396)

(c) Interval table before B is coded

Fig. 5 Example Interval tables

3.1 The algorithm

The basic approach to concealing information
within the process of an arithmetic coding
entails the use of an encryption key to shuffle
the probability table before the coding begins.
Without the encryption key, the probability
table cannot be shuffled in the same manner.
Thus, the division of an interval into smaller
intervals will not be the same. Because of
these incongruous divisions, decompression
cannot be done properly. Consequently, the
original information cannot be retrieved.

FIG. 6 illustrates the steps of combining a
random shuffle with the arithmetic coding. In
step 610, the encryption key is used to
initialize a pseudo random number generator.
In step 620, the pseudo random number
generator is used to shuffle the probability
table. In step 630, the arithmetic coding
process is performed on the input message in
its usual fashion.

Page 4 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

610

INTTIALIZE THE PSEUDO RANDOM HUMEBER __/
GENERATOR WITH THE ENCRYPTION KEYT

l 620

SHUFFLE THE PROBABILITY TABLE ¢_/

530

PERFORM THE ARITHMETIC CODING e

Fig. 6 Combining a random shuffle
with the arithmetic coding

FIG. 7 shows the effect of a pseudo random
shuffle. As in FIG. 5, Parts (a), (b), and (c)
show the intervals before the coding of
characters ‘C’, ‘A’, and ‘B’ respectively. The
number 0.0477 is the final result of the
arithmetic coding.

character probability interval
C 013 [0.00, 0.15)
A 024 [0.15,039)
E 031 [0.39, 0.70)
B 012 [0.70, 0.32)
D 018 [0.82, 100
(&) luterval tabl before C is coded
character probability interval
C 015 [0.00, 0.0225)
A 024 00225, 0.0385)
E 031 [003585, 0.105)
B 012 [0.103, 0123)
D 01z [133,015

(1) Interval tabls hefors & is coded

character probability interval
c 015 [0.0225, 0.0279)
A 04 [T279, 0103654)
E 03t [0.03654, 0 0477)
B 1z [0477, 01.05207)
o n1g [0.05202, 0.0585)

(e) Interval table before B is coded

Fig. 7 Shuffled Interval tables

3.2 Guarding against chosen plaintext
attacks

Similar to Jones’ algorithm [6], this algorithm
is vulnerable to chosen plaintext attacks [1].
To guard against chosen plaintext attacks, two
different randomly shuffled probability tables
are created from the same probability
distribution of permissible characters. Then
bits of the encryption key are used to
determine which table should be used to
divide the current interval into smaller
intervals. When the 1° source character is

© 2006 CodeBreakers Journal

encoded, the 1° bit of the encryption key is
checked. A value of O indicates that the 1°
table is to be used to divide the current
interval. A value of 1 indicates the other table
is to be used. Similarly, when the 2" source
character is encoded, the 2" bit of the
encryption key will be used, etc. When bits of
the encryption are exhausted, the 1% bit will
be used again.

4 Adding a Pseudo Random
Shuffle to a Huffman
Coding

Huffman coding is a compression algorithm
introduced by David Huffman in 1952. The
basic idea behind Huffman coding is to
construct a tree, called a Huffman tree, in
which each character has it's own branch
determining its code.

There are two types of Huffman coding: static
and adaptive. In a static Huffman coding, the
Huffman tree stays the same in the entire
coding process. In an adaptive Huffman
coding, the Huffman tree changes according
to the data processed. For further discussion
about static and adaptive Huffman coding,
refer to [2, 3, 4, 5, 7, 9].

Source
Character Codeword
a 01

@ o oo o
=
S

Fig. 8 An example Huffman tree

Page 5 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

Once the Huffman tree is built, regardless of
its type, the encoding process is identical. The
codeword for each source character is the
sequence of labels along the path from the
root to the leave node representing that
character. For example, in FIG. 8, the
codeword for ‘a’ is ‘01’, ‘b’ is ‘1101’, etc.

4.1 The algorithm

The essential idea of concealing information in
the process of a Huffman coding is to use an
encryption key to shuffle the Huffman tree
before the encoding process. Without the
encryption key, the Huffman tree cannot be
shuffled in the same way and thus the
decompression cannot be done properly.
Consequently, the original information cannot
be revealed.

To shuffle a Huffman tree, the interior nodes
i.e. nodes with 2 children, are first numbered.
There are many ways of numbering these
interior nodes. For example, by performing a
queue traversal on the Huffman tree, the
interior nodes can be numbered in the top-
down, left-right fashion. In FIG. 8, the labeling
of the interior nodes shows the top-down, left-
right numbering of the interior nodes.

Encryption Key = 101101

Source
Character ~ Codeword
a 11

®m o ao o
=]
=
=

Fig. 9 Shuffled Huffman tree

© 2006 CodeBreakers Journal

Afterward bits of the encryption key are
associated with the interior nodes according to
the numbering; interior node 1 is associated
with the first bit of the encryption key, interior
node 2 is associated with the second bit of the
encryption key, etc. Finally, of each interior
node that has a corresponding encryption bit
of 1, the left child is swapped with the right
child. In FIG. 9, the encryption key used is
“101101”. Thus, the two children of interior
nodes 1, 3, 4, and 6 are swapped. After the
shuffling, the codeword of permissible
characters are changed dramatically and
cannot be decoded without an identically
shuffled Huffman tree.

4.2 Guarding against chosen plaintext
attacks

In order to guard against chosen plaintext
attacks, two extra steps are added to the
algorithm.

First, the pseudo random number generator is
used to generate a sequence of m random
bits, where m is an integer bigger than the
height of the Huffman tree, i.e. the length of
the longest codeword. Then, the mathematical
bit-wise exclusive or operation will be
performed on the random sequence and the
first m output bits of the Huffman coding.

Second, a node swapping scheme is added to
the algorithm. In this scheme, interior nodes
are associated with bits of the encryption key
according to the order of the interior nodes
being visited during the encoding process.
After the encoding of a character, the two
children of a visited interior node with an
associated bit of 1 are swapped. Assume that
we want to use the Huffman tree of FIG. 9 to
encode the message “ab”. When ‘a’ is
encoded, interior nodes 1 and 2 are visited.
Interior node 1 is associated with the 1°' bit of
the encryption key and interior node 2 is
associated with the 2" bit of the encryption
key. Since the 1° bit of the encryption key is 1
and the 2™ bit of the encryption key is 0, only
the two children of interior node 1 are

Page 6 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

swapped. FIG. 10 shows the resulting
Huffman tree.

Fig. 10 Shuffled Huffiman tree after 'a' is encoded.

When ‘b’ is encoded, interior nodes 1, 3, 5,
and 6 are visited and thus are associated with
bits 3, 4, 5, and 6 of the encryption key. Since

bits 3, 4, and 6 are 1, children of interior
nodes 1, 3, and 6 are swapped. FIG. 11 shows

the final Huffman tree.

IR

.-"f ‘
/ iy .
o] ls

Fig. 11 Shuffled Huffman tree after 'b' is encoded

5 An Immediate Application
- Scrambling Multimedia
Data

© 2006 CodeBreakers Journal

These methods of simultaneous encryption
and compression may serve to remedy the
security and speed issues that currently
concern the multimedia world.

A multimedia encoder such as JPEG, MPEG,
H.263, or H.264 usually consists of two parts:
a lossy compression part and a lossless
compression part. The lossy compression part
eliminates redundant or unnecessary
information. The lossless compression part
uses a traditional compression algorithm such
as Huffman coding or arithmetic coding to
reduce the size of the data.

A simple and efficient way of scrambling
multimedia data is to use the methods
described in this paper to convert the lossless
compression part of a multimedia encoder into
a simultaneous encryption and compression
process.

Since chosen plaintext attacks rarely happen
in multimedia applications such as video
conferencing, video on-demand, video
broadcasting, and pay-TV, the extra steps
mentioned for guarding against chosen
plaintext attacks can be omitted in order to
achieve better performance.

6 Conclusions

In this paper, three different methods for
converting three different types of
compression algorithms into encryption
algorithms have been described. An
immediate multimedia application of our
methods is proposed. Extra steps for guarding
against chosen plaintext attacks are also
suggested.

In reality, chosen plaintext attacks are mostly
applicable to public key encryption algorithms.
For secret key encryption algorithms, chosen
plaintext attacks rarely happen. Moreover, in
most applications, a session key is used to do
the encrypting rather than the secret key.
Since the session key is changed constantly,
plaintext attacks are essentially impossible.
Thus, in reality, algorithms described in this

Page 7 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

paper are the most simple and yet effective
simultaneous encryption and compression
algorithms.

6.1 Compression efficacy

The three methods presented in this paper
maintain the effectiveness of their respective
antecedents. The dictionary built in the first
method is almost identical to the dictionary
built in the original compression algorithm.
The second method creates interval tables
identical to those created in the original
compression algorithm, with the exception of
the order in which they occur. In the third
method, the length of the codeword of a
character is the same as that of the original
compression algorithm. These imply that the
efficacy of the compressions is not
compromised by our methods.

6.2 Encryption strength

As stated in Section 1, our algorithms are
much more than substitution ciphers or
transposition ciphers. Our algorithms can be
classified as stream ciphers. Without the
identical initial shuffle, the decompression
process, i.e. the decryption process, will be
crippled and thus the cryptanalysis can’t even
be completed. The following two paragraphs
discuss the numerical measures of encryption
strengths of our algorithms.

In the first two methods, the encryption key is
mainly used to initialize the pseudo random
number generator. Thus, the strength of the
resulting encryption doesn’t depend on the
length of the encryption key. Instead, the
strength depends on the size of an internal
variable, called the seed of the pseudo
random number generator. Since there are
256! (factorial of 256) different permutations
for 8-bit characters, the maximum size of the
seed of the pseudo random number generator
could be as big as 10g,256! This is equivalent
to a 2048-bit encryption key.

The encryption strength of the method of
combining a random shuffle with a Huffman
coding depends on the length of the
encryption key. Since a Huffman tree can

© 2006 CodeBreakers Journal

have at most 255 interior nodes, the
maximum effective key length of the third
method is 255.

6.3 Time efficiency

Excluding those extra steps for guarding
against chosen plaintext attacks, the only
overhead of methods described in this paper
is the CPU time needed for shuffling a
dictionary, a probability table, or a Huffman
tree before a compression process. This
overhead is a fixed cost, independent of the
size of the data to be compressed and
encrypted.

The CPU time required by the extra steps for
guarding against chosen plaintext attacks is
also cheap comparing with traditional
encryption algorithms such as DES and RCA.
In arithmetic coding, the cost of the extra step
is proportional to the size of the data to be
compressed. In the Huffman coding, the cost
of the extra step is proportional to the number
of interior nodes processed, which is the same
as the number of compressed output bits.

Furthermore, the encryption algorithms
resulted from methods of this paper are
classified as stream ciphers. Therefore, in the
case that the compression is adaptive, there is
no need to re-shuffle the interval table or the
Huffman tree after the re-computation of
probabilities of characters.

Thus, methods described in this paper provide
prudent and time saving approaches to
simultaneous data compression and
encryption.

7 References

[1] H.A. Bergen, J.M. Hogan, A chosen plaintext attack
on an adaptive arithmetic coding compression algorithm,
in: Computers and Security, vol. 12, 1993, pp. 157-167.
[2] G.V. Cormack, R.N. Horspool, Algorithms for
Adaptive Huffman Codes, in: Inform. Process. Lett. 18, 3
(Mar.), 1984, pp. 159-165.

[3] N. Faller, An adaptive system for data
compression, in: Record of the 7th Asilomar Conference

Page 8 of 9

CRYPTOGRAPHY IN DATA COMPRESSION

on Circuits, Systems and Computers. Naval Postgraduate
School, Monterey, Calif., Nov. 1973, pp. 593-597.

[4] R.G. Gallager, Variations on a theme by Huffman, in:
IEEE Trans. Inf. Theory, 24, 6 (Nov.), 1978, 668-674.
[5] D.A. Huffman, A Method for the Construction of
Minimum-Redundancy Codes, in: Proc. IRE, 40, 9
(Sept.), 1952, pp. 1098-1101.

[6] C.B. Jones, An efficient Coding system for long
source sequences, in IEEE Trans. Inf. Theory, vol IT-27,
1984, pp. 280-291.

[7] D.E. Knuth, Dynamic Huffman Coding, in: J.
Algorithms, 6, 2 (June), 1985, pp. 163-180.

[8] A. Moffat, R.M. Neal, I.H. Witten, Arithmetic
coding revisited, in: ACM Transactions on Information
Systems, vol. 16, 1995, 256-294.

[9] J.S. Vitter, Design and analysis of dynamic Huffman
codes, in: J. ACM, 34, 4 (Oct.), 1987, 825-845.

[10] T.A. Welch, A technique for high-performance data
compression, in: Computer 17, 6 (June) 1984, 8-19.
[11] I.H. Witten, R.M. Neal, R.J. Cleary, Arithmetic
coding for data compression, in: Communications of the
ACM, vol. 30, 1987, pp. 520-540.

[12] J. Ziv, A. Lampel, A universal algorithm for
sequential data compression, in: IEEE Trans. Inf. Theory
23, 3 (May) 1977, pp. 337-343.

© 2006 CodeBreakers Journal Page 9 of 9

	3.1 The algorithm
	3.2 Guarding against chosen plaintext attacks
	4.1 The algorithm
	4.2 Guarding against chosen plaintext attacks
	6.1 Compression efficacy
	6.2 Encryption strength
	6.3 Time efficiency

