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Abstract 
This paper describes cryptographic methods for concealing information during data compression processes. These include 
novel approaches of adding pseudo random shuffles into the processes of dictionary coding (Lampel-Ziv compression), 
arithmetic coding, and Huffman coding. An immediate application of using these methods to provide multimedia security 
is proposed. 
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1 Introduction 
 
Data compression is known for reducing 
storage and communication costs. It involves 
transforming data of a given format, called 
source message, to data of a smaller sized 
format, called codeword.  
Data encryption is known for protecting 
information from eavesdropping. It transforms 
data of a given format, called plaintext, to 
another format, called cipher text, using an 
encryption key. 
 
The major problem existing with the current 
compression and encryption methods is the 
large amount of processing time required by 
the computer to perform the tasks. To lessen 
the problem, I combine the two processes into 
one. 
 
To combine the two processes, I introduce the 
idea of adding a pseudo random shuffle into a 
data compression process. The method of 
using a pseudo random number generator to 
create a pseudo random shuffle is well known. 
A simple algorithm as below can do the trick. 
Assume that we have a list (x1, x2, ... xn) and 
that we want to shuffle it randomly. 
 
     for i = n downto 2 {  
         k = random(1,i);  
         swap xi and xk; 
     } 
 
Since we are adding pseudo random shuffles 
into data compression processes, 
understanding all three compression 
algorithms used is critical in the 
understanding of our algorithms. 
 
Even though our algorithms are based on 
random shuffles, our algorithms don’t merely 
re-ordering data. Unlike substitution ciphers, 
our algorithms don’t encrypt plaintext by 
simply replacing a piece of data with another 
equal sized data. Unlike transposition cipher, 
our algorithms don’t encrypt plaintext by just 
playing anagrams.  

 
As I will explain in detail, simultaneous data 
compression and encryption offers an effective 
remedy for the execution time problem in data 
security. These methods can easily be utilized 
in multimedia applications, which are lacking 
in security and speed. 
 
 

2 Adding a Pseudo Random 
Shuffle to a Dictionary 
Coding (Lampel-Ziv 
compression) 

 
During a Lampel-Ziv (LZ) compression [10, 
12], a group of consecutive characters is 
replaced with an index into a dictionary that is 
built during the compression. There are many 
implementations of the LZ compression. 
Naturally, different implementations of the LZ 
compression have different means of 
implementing the dictionary. 
 
FIG. 1 illustrates the steps of combining a 
random shuffle with a LZ compression to 
achieve simultaneous data compression and 
encryption. In step 110, the encryption key is 
used to initialize a pseudo random number 
generator. In step 120, the pseudo random 
number generator is used to shuffle the initial 
values of the dictionary. 
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In a codebook type of implementation such as 
the LZW compression [10], the dictionary 
consists of strings of characters that have 
been processed. Initially, it contains all strings 
of length 1 in alphabetical order. In this case, 
step 120 shuffles all strings of length 1 plus a 
small number of null strings which is 
determined by the first number generated by 
the pseudo random number generator. The 
purpose of including null strings in the 
shuffling is to make chosen plaintext attacks 
more difficult. Moreover, it cripples any 
unauthorized decompression. FIG.2 shows an 
example in which the size of the alphabet, i.e. 
the set of permissible characters, is 5 and the 
random number is 3. 
 
 

 
 
In a sliding window type of implementation, 
e.g. LZ77 [12], the dictionary is a window that 
consists of the last n characters processed, 
where n could be as big as the size of the 
window. Initially, the window is empty. In this 
case, step 120 first uses the pseudo random 
number generator to generate a number, say 
m, between s and 2s, where s is the size of 
the alphabet. Then the step fills the first m 
entries of the window by cycling through all 
characters of the alphabet in alphabetical 
order and then shuffling the window. Note 
that the purpose of choosing m randomly 
between s and 2s is to make chosen plaintext 
attack more difficult. Again, it also cripples an 
unauthorized decompression. FIG. 3 shows an 
example in which s=5 and m = 8. 
 

 
 
In step 130, the compression process is 
performed on the input string in its usual 
fashion. 
 
FIG. 4 illustrates the steps of simultaneous 
decompression and decryption. In step 410, 
the encryption key is used to initialize the 
pseudo random number generator. Note that 
the pseudo random number generator used in 
step 410 should be identical to the one used 
in step 110. In step 420, the pseudo random 
number generator is used to shuffle the initial 
values of the dictionary as in step 120. In step 
430, the decompression is performed in its 
usual fashion. The output of step 430 is the 
final decompressed and decrypted string.  

 

 
 
3 Adding a Pseudo Random 

Shuffle to an Arithmetic 
Coding 

 
In an arithmetic coding [6, 8, 11], a message 
of any length is coded as a real number 
between 0 and 1. The length of the message 
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determines the precision used in the coding. A 
longer message is encoded with more 
precision. This is done as follows: 
 

1. Initialize the current interval as [0,1), 
i.e. the set of real numbers from 0 to 1, 
including 0 and excluding 1. 

2. Divide the current interval into smaller 
intervals according to the probability 
distribution of permissible characters. 

3. From these new intervals, choose the 
one corresponding to the next character 
in the source message as the new 
current interval. 

4. Repeat steps b) and c) until the entire 
message is coded. 

5. Represent the last current interval's 
value using a binary fraction. 

 
FIG. 5 shows an example. The message to be 
coded is “CAB”. Probabilities of permissible 
characters are shown in all three tables. Part 
(a) shows the intervals before the coding of 
the first character ‘C’. Part (b) shows the 
intervals before the coding of the second 
character ‘A’. Part (c) shows the intervals 
before the coding of the third character ‘B’. 
The number 0.36864 is the final result of the 
arithmetic coding. An arithmetic coding could 
be static or adaptive. In a static arithmetic 
coding, the probabilities of characters stay the 
same in the entire coding process. In an 
adaptive arithmetic coding, probabilities of 
characters are updated according to the data 
processed. 
 

 

3.1 The algorithm 
The basic approach to concealing information 
within the process of an arithmetic coding 
entails the use of an encryption key to shuffle 
the probability table before the coding begins. 
Without the encryption key, the probability 
table cannot be shuffled in the same manner. 
Thus, the division of an interval into smaller 
intervals will not be the same. Because of 
these incongruous divisions, decompression 
cannot be done properly. Consequently, the 
original information cannot be retrieved. 
 
FIG. 6 illustrates the steps of combining a 
random shuffle with the arithmetic coding. In 
step 610, the encryption key is used to 
initialize a pseudo random number generator. 
In step 620, the pseudo random number 
generator is used to shuffle the probability 
table. In step 630, the arithmetic coding 
process is performed on the input message in 
its usual fashion. 
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FIG. 7 shows the effect of a pseudo random 
shuffle. As in FIG. 5, Parts (a), (b), and (c) 
show the intervals before the coding of 
characters ‘C’, ‘A’, and ‘B’ respectively. The 
number 0.0477 is the final result of the 
arithmetic coding. 

 
 

3.2 Guarding against chosen plaintext 
attacks 

Similar to Jones’ algorithm [6], this algorithm 
is vulnerable to chosen plaintext attacks [1]. 
To guard against chosen plaintext attacks, two 
different randomly shuffled probability tables 
are created from the same probability 
distribution of permissible characters. Then 
bits of the encryption key are used to 
determine which table should be used to 
divide the current interval into smaller 
intervals. When the 1st source character is 

encoded, the 1st bit of the encryption key is 
checked. A value of 0 indicates that the 1st 
table is to be used to divide the current 
interval. A value of 1 indicates the other table 
is to be used. Similarly, when the 2nd source 
character is encoded, the 2nd bit of the 
encryption key will be used, etc. When bits of 
the encryption are exhausted, the 1st bit will 
be used again. 

 

 

4 Adding a Pseudo Random 
Shuffle to a Huffman 
Coding 

 
Huffman coding is a compression algorithm 
introduced by David Huffman in 1952. The 
basic idea behind Huffman coding is to 
construct a tree, called a Huffman tree, in 
which each character has it's own branch 
determining its code. 
 
There are two types of Huffman coding: static 
and adaptive. In a static Huffman coding, the 
Huffman tree stays the same in the entire 
coding process. In an adaptive Huffman 
coding, the Huffman tree changes according 
to the data processed. For further discussion 
about static and adaptive Huffman coding, 
refer to [2, 3, 4, 5, 7, 9]. 
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Once the Huffman tree is built, regardless of 
its type, the encoding process is identical. The 
codeword for each source character is the 
sequence of labels along the path from the 
root to the leave node representing that 
character. For example, in FIG. 8, the 
codeword for ‘a’ is ‘01’, ‘b’ is ‘1101’, etc. 

4.1 The algorithm 
The essential idea of concealing information in 
the process of a Huffman coding is to use an 
encryption key to shuffle the Huffman tree 
before the encoding process. Without the 
encryption key, the Huffman tree cannot be 
shuffled in the same way and thus the 
decompression cannot be done properly. 
Consequently, the original information cannot 
be revealed. 
 
To shuffle a Huffman tree, the interior nodes 
i.e. nodes with 2 children, are first numbered. 
There are many ways of numbering these 
interior nodes. For example, by performing a 
queue traversal on the Huffman tree, the 
interior nodes can be numbered in the top-
down, left-right fashion. In FIG. 8, the labeling 
of the interior nodes shows the top-down, left-
right numbering of the interior nodes. 
 

 
 

Afterward bits of the encryption key are 
associated with the interior nodes according to 
the numbering; interior node 1 is associated 
with the first bit of the encryption key, interior 
node 2 is associated with the second bit of the 
encryption key, etc. Finally, of each interior 
node that has a corresponding encryption bit 
of 1, the left child is swapped with the right 
child. In FIG. 9, the encryption key used is 
“101101”. Thus, the two children of interior 
nodes 1, 3, 4, and 6 are swapped. After the 
shuffling, the codeword of permissible 
characters are changed dramatically and 
cannot be decoded without an identically 
shuffled Huffman tree. 

4.2 Guarding against chosen plaintext 
attacks 

In order to guard against chosen plaintext 
attacks, two extra steps are added to the 
algorithm. 
 
First, the pseudo random number generator is 
used to generate a sequence of m random 
bits, where m is an integer bigger than the 
height of the Huffman tree, i.e. the length of 
the longest codeword. Then, the mathematical 
bit-wise exclusive or operation will be 
performed on the random sequence and the 
first m output bits of the Huffman coding.  
 
Second, a node swapping scheme is added to 
the algorithm. In this scheme, interior nodes 
are associated with bits of the encryption key 
according to the order of the interior nodes 
being visited during the encoding process. 
After the encoding of a character, the two 
children of a visited interior node with an 
associated bit of 1 are swapped. Assume that 
we want to use the Huffman tree of FIG. 9 to 
encode the message “ab”. When ‘a’ is 
encoded, interior nodes 1 and 2 are visited. 
Interior node 1 is associated with the 1st bit of 
the encryption key and interior node 2 is 
associated with the 2nd bit of the encryption 
key. Since the 1st bit of the encryption key is 1 
and the 2nd bit of the encryption key is 0, only 
the two children of interior node 1 are 
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swapped. FIG. 10 shows the resulting 
Huffman tree. 

 
 
When ‘b’ is encoded, interior nodes 1, 3, 5, 
and 6 are visited and thus are associated with 
bits 3, 4, 5, and 6 of the encryption key. Since 
bits 3, 4, and 6 are 1, children of interior 
nodes 1, 3, and 6 are swapped. FIG. 11 shows 
the final Huffman tree. 
 

 
 
 
 

5 An Immediate Application 
- Scrambling Multimedia 
Data 

 

These methods of simultaneous encryption 
and compression may serve to remedy the 
security and speed issues that currently 
concern the multimedia world. 
A multimedia encoder such as JPEG, MPEG, 
H.263, or H.264 usually consists of two parts: 
a lossy compression part and a lossless 
compression part. The lossy compression part 
eliminates redundant or unnecessary 
information. The lossless compression part 
uses a traditional compression algorithm such 
as Huffman coding or arithmetic coding to 
reduce the size of the data. 
A simple and efficient way of scrambling 
multimedia data is to use the methods 
described in this paper to convert the lossless 
compression part of a multimedia encoder into 
a simultaneous encryption and compression 
process. 
 
Since chosen plaintext attacks rarely happen 
in multimedia applications such as video 
conferencing, video on-demand, video 
broadcasting, and pay-TV, the extra steps 
mentioned for guarding against chosen 
plaintext attacks can be omitted in order to 
achieve better performance. 
 
 

6  Conclusions 
 
In this paper, three different methods for 
converting three different types of 
compression algorithms into encryption 
algorithms have been described. An 
immediate multimedia application of our 
methods is proposed. Extra steps for guarding 
against chosen plaintext attacks are also 
suggested. 
 
In reality, chosen plaintext attacks are mostly 
applicable to public key encryption algorithms. 
For secret key encryption algorithms, chosen 
plaintext attacks rarely happen.  Moreover, in 
most applications, a session key is used to do 
the encrypting rather than the secret key. 
Since the session key is changed constantly, 
plaintext attacks are essentially impossible. 
Thus, in reality, algorithms described in this 
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paper are the most simple and yet effective 
simultaneous encryption and compression 
algorithms. 

6.1 Compression efficacy 
The three methods presented in this paper 
maintain the effectiveness of their respective 
antecedents. The dictionary built in the first 
method is almost identical to the dictionary 
built in the original compression algorithm. 
The second method creates interval tables 
identical to those created in the original 
compression algorithm, with the exception of 
the order in which they occur. In the third 
method, the length of the codeword of a 
character is the same as that of the original 
compression algorithm. These imply that the 
efficacy of the compressions is not 
compromised by our methods. 

6.2 Encryption strength 
As stated in Section 1, our algorithms are 
much more than substitution ciphers or 
transposition ciphers. Our algorithms can be 
classified as stream ciphers. Without the 
identical initial shuffle, the decompression 
process, i.e. the decryption process, will be 
crippled and thus the cryptanalysis can’t even 
be completed. The following two paragraphs 
discuss the numerical measures of encryption 
strengths of our algorithms. 
 
In the first two methods, the encryption key is 
mainly used to initialize the pseudo random 
number generator. Thus, the strength of the 
resulting encryption doesn’t depend on the 
length of the encryption key. Instead, the 
strength depends on the size of an internal 
variable, called the seed of the pseudo 
random number generator. Since there are 
256! (factorial of 256) different permutations 
for 8-bit characters, the maximum size of the 
seed of the pseudo random number generator 
could be as big as log2256! This is equivalent 
to a 2048-bit encryption key. 
The encryption strength of the method of 
combining a random shuffle with a Huffman 
coding depends on the length of the 
encryption key. Since a Huffman tree can 

have at most 255 interior nodes, the 
maximum effective key length of the third 
method is 255. 

6.3 Time efficiency 
Excluding those extra steps for guarding 
against chosen plaintext attacks, the only 
overhead of methods described in this paper 
is the CPU time needed for shuffling a 
dictionary, a probability table, or a Huffman 
tree before a compression process. This 
overhead is a fixed cost, independent of the 
size of the data to be compressed and 
encrypted. 
 
The CPU time required by the extra steps for 
guarding against chosen plaintext attacks is 
also cheap comparing with traditional 
encryption algorithms such as DES and RCA. 
In arithmetic coding, the cost of the extra step 
is proportional to the size of the data to be 
compressed. In the Huffman coding, the cost 
of the extra step is proportional to the number 
of interior nodes processed, which is the same 
as the number of compressed output bits. 
 
Furthermore, the encryption algorithms 
resulted from methods of this paper are 
classified as stream ciphers. Therefore, in the 
case that the compression is adaptive, there is 
no need to re-shuffle the interval table or the 
Huffman tree after the re-computation of 
probabilities of characters. 
 
Thus, methods described in this paper provide 
prudent and time saving approaches to 
simultaneous data compression and 
encryption. 
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