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Important Information about this Manual 
 
This manual has been prepared to educate operators in the general education of pumping, pumps, motors, 
and hydraulic principles including basic water training and different pump applications.  For most students, the 
study of pumping and hydraulics is quite large, requiring a major effort to bring it under control.   
 
This manual should not be used as a guidance document for employees who are involved with cross-
connection control.  It is not designed to meet the requirements of the United States Environmental Protection 
Agency (EPA), the Department of Labor-Occupational Safety and Health Administration (OSHA), or your state 
environmental or health agency.  Technical Learning College or Technical Learning Consultants, Inc. makes 
no warranty, guarantee or representation as to the absolute correctness or appropriateness of the information 
in this manual and assumes no responsibility in connection with the implementation of this information.   
 
It cannot be assumed that this manual contains all measures and concepts required for specific conditions or 
circumstances.  This document should be used for educational purposes and is not considered a legal 
document.  Individuals who are responsible for hydraulic equipment, cross-connection control, backflow 
prevention or water distribution should obtain and comply with the most recent federal, state, and local 
regulations relevant to these sites and are urged to consult with OSHA, the EPA and other appropriate federal, 
state and local agencies. 
 

Library of Congress Card Number 6584962 
ISBN 978-0-9799559-6-9 

 
Copyright Notice
©2005 Technical Learning College (TLC) No part of this work may be reproduced or distributed 
in any form or by any means without TLC’s prior written approval.  Permission has been sought 
for all images and text where we believe copyright exists and where the copyright holder is 
traceable and contactable. All material that is not credited or acknowledged is the copyright of 
Technical Learning College. This information is intended for educational purposes only. Most 
unaccredited photographs have been taken by TLC instructors or TLC students. We will be 
pleased to hear from any copyright holder and will make good on your work if any unintentional 
copyright infringements were made as soon as these issues are brought to the editor's 
attention. 
 
Every possible effort is made to ensure that all information provided in this course is 
accurate. All written, graphic, photographic or other material is provided for information only. 
Therefore, Technical Learning College accepts no responsibility or liability whatsoever for 
the application or misuse of any information included herein. Requests for permission to 
make copies should be made to the following address: 
TLC 
PO Box 420 
Payson, AZ 85547-0420 
Information in this document is subject to change without notice. TLC is not liable for errors 
or omissions appearing in this document. 
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Barometric Loop  

 

The barometric loop consists of a continuous section 
of supply piping that abruptly rises to a height of 
approximately 35 feet and then returns back down to 
the originating level. It is a loop in the piping system 
that effectively protects against backsiphonage. It may 
not be used to protect against back-pressure.  
Its operation, in the protection against backsiphonage, 
is based upon the principle that a water column, at 
sea level pressure, will not rise above 33.9 feet.  

In general, barometric loops are locally fabricated, and 
are 35 feet high.  
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Chemist in 2006 having worked in the field of chemical, environmental, and industrial hygiene 
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conference at the Biosphere in Arizona and a presenter at an AWWA conference in Mesa, 
Arizona.  He also taught safety classes at the Honeywell and City of Phoenix, and is a 
motivational/inspirational speaker nationally and internationally. 
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Technical Learning College’s Scope and Function 
 
Technical Learning College (TLC) offers affordable continuing education for today’s working 
professionals who need to maintain licenses or certifications.  TLC holds approximately eighty 
different governmental approvals for granting of continuing education credit.  
  
TLC’s delivery method of continuing education can include traditional types of classroom 
lectures and distance-based courses or independent study. Most of TLC’s distance based or 
independent study courses are offered in a print based format and you are welcome to examine 
this material on your computer with no obligation. Our courses are designed to be flexible and 
for you do finish the material on your leisure. Students can also receive course materials 
through the mail. The CEU course or e-manual will contain all your lessons, activities and 
assignments. Most CEU courses allow students to submit lessons using e-mail or fax, however 
some courses require students to submit lessons by postal mail. (See the course description for 
more information.) Students have direct contact with their instructor—primarily by e-mail. TLC’s 
CEU courses may use such technologies as the World Wide Web, e-mail, CD-ROMs, 
videotapes and hard copies. (See the course description.) Make sure you have access to the 
necessary equipment before enrolling, i.e., printer, Microsoft Word and/or Adobe Acrobat 
Reader. Some courses may require proctored exams depending upon your state requirements. 
  
Flexible Learning 
At TLC, there are no scheduled online sessions you need contend with, nor are you required to 
participate in learning teams or groups designed for the "typical" younger campus based 
student. You will work at your own pace, completing assignments in time frames that work best 
for you. TLC's method of flexible individualized instruction is designed to provide each student 
the guidance and support needed for successful course completion.  
 
We will beat any other training competitor’s price for the same CEU material or classroom 
training.  Student satisfaction is guaranteed.  
 
Course Structure 
TLC's online courses combine the best of online delivery and traditional university textbooks. 
Online you will find the course syllabus, course content, assignments, and online open book 
exams. This student friendly course design allows you the most flexibility in choosing when and 
where you will study.  
 
Classroom of One
TLC Online offers you the best of both worlds. You learn on your own terms, on your own time, 
but you are never on your own. Once enrolled, you will be assigned a personal Student Service 
Representative who works with you on an individualized basis throughout your program of 
study. Course specific faculty members are assigned at the beginning of each course providing 
the academic support you need to successfully complete each course.  
 
Satisfaction Guaranteed 
Our Iron-Clad, Risk-Free Guarantee ensures you will be another satisfied TLC student. We 
have many years of experience, dealing with thousands of students. We assure you, our 
customer satisfaction is second to none.   
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This is one reason we have taught more than 10,000 students.  
 
Our administrative staff is trained to provide outstanding customer service. Part of that training is 
knowing how to solve most problems on the spot. 
 
TLC Continuing Education Course Material Development 
Technical Learning College’s (TLC’s) continuing education course material development was based 
upon several factors; extensive academic research, advice from subject matter experts, data 
analysis, task analysis and training needs assessment process information gathered from other 
states.  
 

 
 

Lantern ring: A metal ring located between rings of packing that distributes gland sealing fluid. 
You can see that one side of the shaft is missing packing for the lantern ring.



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

7

Course Description 
 
Pumping Principles CEU Training Course  
 
Review of pump operation, starting with hydraulic fundamentals and advancing to the electrical power and 
other related components of pumping water. The student will develop an understanding of the engineering 
science pertaining to liquid pressure, flow and pumping dynamics’. This course will cover the basics of 
hydraulic fundamentals commonly related to the study of the mechanical properties of water. This course will 
also examine hydrostatics or fluid mechanics as well as the history and development of pumps, hydraulics  
and the science of fluids.   This training course will present several familiar topics in pumping along with 
hydraulics and hydrostatics that often appear in most educational expositions of introductory science, and 
which are also of historical interest and can enliven a student’s educational experience. You will not need 
any other materials for this course.  
 
Water Distribution, Well Drillers, Pump Installers, Water Treatment Operators, Wastewater Treatment 
Operators, Wastewater Collection Operators, Industrial Wastewater Operators and General Backflow 
Assembly Testers.  The target audience for this course is the person interested in working in a water or 
wastewater treatment or distribution/collection facility and/or wishing to maintain CEUs for certification license 
or to learn how to do the job safely and effectively, and/or to meet education needs for promotion. 
 
What is Hydraulics? 
The term hydraulics is applied commonly to the study 
of the mechanical properties of water, other liquids, and 
even gases when the effects of compressibility are 
small. Hydraulics can be divided into two areas, 
hydrostatics and hydrokinetics. Hydrostatics, the 
consideration of liquids at rest, involves problems of 
buoyancy and flotation, pressure on dams and 
submerged devices, and hydraulic presses. The 
relative incompressibility of liquids is one of its basic 
principles. Hydrodynamics, the study of liquids in 
motion, is concerned with such matters as friction and 
turbulence generated in pipes by flowing liquids, the 
flow of water over weirs and through nozzles, and the 
use of hydraulic pressure in machinery.  
 
Final Examination for Credit 
Opportunity to pass the final comprehensive examination 
is limited to three attempts per course enrollment. 

 
Course Procedures for Registration and Support 
All of Technical Learning College’s correspondence 
courses have complete registration and support services offered.  Delivery of services will include, e-mail, web 
site, telephone, fax and mail support.  TLC will attempt immediate and prompt service. 

 
When a student registers for a distance or correspondence course, he/she is assigned a start date and an end 
date.  It is the student's responsibility to note dates for assignments and keep up with the course work.  If a 
student falls behind, he/she must contact TLC and request an end date extension in order to complete the 
course.  It is the prerogative of TLC to decide whether to grant the request. All students will be tracked by their 
social security number or a unique number will be assigned to the student. 
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Instructions for Assignment 
The Pumping Principles CEU training course uses a multiple choice type answer key. You can find a copy 
of the answer key in the back of this course manual or in Word format on TLC’s website under the 
Assignment Page.  You can also find complete course support under the Assignment Page. 
 
You can write your answers in this manual or type out your own answer key.  TLC would prefer that you 
type out and fax or e-mail the final exam to TLC, but it is not required. 
 
Feedback Mechanism (examination procedures) 
Each student will receive a feedback form as part of their study packet.  You will be able to find this form in 
the rear of the course or lesson. 
 
Security and Integrity 
All students are required to do their own work.  All lesson sheets and final exams are not returned to the 
student to discourage sharing of answers.  Any fraud or deceit and the student will forfeit all fees and the 
appropriate agency will be notified. 
 
Grading Criteria 
TLC will offer the student either pass/fail or a standard letter grading assignment. If TLC is not notified, you 
will only receive a pass/fail notice.  
 
Required Texts 
The Pumping Principles CEU training course will not require 
any other materials.  This course comes complete. No other 
materials are needed.  
 
Recordkeeping and Reporting Practices 
TLC will keep all student records for a minimum of seven 
years.  It is your responsibility to give the completion 
certificate to the appropriate agencies. 
 
ADA Compliance 
TLC will make reasonable accommodations for persons with 
documented disabilities.  Students should notify TLC and 
their instructors of any special needs. Course content may 
vary from this outline to meet the needs of this particular 
group.  Please check with your State for special instructions. 
 
You will have 90 days from receipt of this manual to complete 
it in order to receive your Continuing Education Units (CEUs) 
or Professional Development Hours (PDHs).  A score of 70% 
or better is necessary to pass this course.  If you should need 
any assistance, please email all concerns and the final test 
to:  info@tlch2o.com.  
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

9
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Common Hydraulic Terms 
 
Head  
The height of a column or body of fluid above a given point expressed in linear units. Head is often 
used to indicate gauge pressure. Pressure is equal to the height times the density of the liquid. 
 
Head, Friction 
The head required to overcome the friction at the interior surface of a conductor and between fluid 
particles in motion. It varies with flow, size, type, and conditions of conductors and fittings, and the 
fluid characteristics. 
 
Head, static 
The height of a column or body of fluid above a given point. 
 
Hydraulics 
Engineering science pertaining to liquid pressure and flow. 
 
Hydrokinetics 
Engineering science pertaining to the energy of liquid flow and pressure. 
 
Pascal's Law 
A pressure applied to a confined fluid at rest is transmitted with equal intensity throughout the fluid. 
 
Pressure 
The application of continuous force by one body upon another that it is touching; compression. 
Force per unit area, usually expressed in pounds per square inch (Pascal or bar). 
 
Pressure, Absolute 
The pressure above zone absolute, i.e. the sum of atmospheric and gauge pressure. In vacuum 
related work it is usually expressed in millimeters of mercury. (mmHg). 
 
Pressure, Atmospheric 
Pressure exported by the atmosphere at any specific location. (Sea level pressure is approximately 
14.7 pounds per square inch absolute, 1 bar = 14.5psi.) 
 
Pressure, Gauge 
Pressure differential above or below ambient atmospheric pressure. 
 
Pressure, Static 
The pressure in a fluid at rest. 
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Archimedes  
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Archimedes  
 

Born About 287 BC in Syracuse, Sicily. At the time, Syracuse was an independent 
Greek city-state with a 500-year history.  

Died 212 or 211 BC in Syracuse when it was being sacked by a Roman army. He was 
killed by a Roman soldier who did not know who he was.  

Education Probably studied in Alexandria, Egypt, under the followers of Euclid.  

Family His father was an astronomer named Phidias and he was probably related to 
Hieron II, the king of Syracuse. It is not known whether he was married or had any 
children.  

Inventions Many war machines used in the defense of Syracuse, compound pulley systems, 
planetarium, water screw (possibly), water organ (possibly), burning mirrors (very 
unlikely).  

Fields of 
Science 
Initiated 

Hydrostatics, static mechanics, pycnometry (the measurement of the volume or 
density of an object). He is called the "father of integral calculus" and also the 
"father of mathematical physics".  

Major 
Writings 

On plane equilibriums, Quadrature of the parabola, On the sphere and cylinder, On 
spirals, On conoids and spheroids, On floating bodies, Measurement of a circle, 
The Sandreckoner, On the method of mechanical problems.  

Place in 
History 

Generally regarded as the greatest mathematician and scientist of antiquity and 
one of the three greatest mathematicians of all time (together with Isaac Newton 
(English 1643-1727) and Carl Friedrich Gauss (German 1777-1855)).  

 
Archimedes was a great mathematician of ancient times. His greatest contributions were in 
geometry. He also spent some time in Egypt, where he invented the machine now called 
Archimedes' screw, which was a mechanical water pump. Among his most famous works is 
Measurement of the Circle, where he determined the exact value of pi between the two fractions, 3 
10/71 and 3 1/7. He got this information by inscribing and circumscribing a circle with a 96-sided 
regular polygon. 
 
Archimedes made many contributions to geometry in his work in the areas of plane figures and in 
the areas of area and volumes of curved surfaces. His methods started the idea for calculus which 
was "invented" 2,000 years later by Sir Isaac Newton and Gottfried Wilhelm von Leibniz. 
Archimedes proved that the volume of an inscribed sphere is two-thirds the volume of a 
circumscribed cylinder. He requested that this formula/diagram be inscribed on his tomb. 
His works (that survived) include:  

• Measurement of a Circle  

• On the Sphere and Cylinder  
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• On Spirals  

• The Sand Reckoner  
The Roman’s highest numeral was a myriad (10,000). Archimedes was not content to use that as 
the biggest number, so he decided to conduct an experiment using large numbers. The question: 
How many grains of sand there are in the universe? He made up a system to measure the sand. 
While solving this problem, Archimedes discovered something called powers. The answer to 
Archimedes' question was one with 62 zeros after it (1 x 1062). 
When numbers are multiplied by themselves, they are called powers. 

Some powers of two are: 

1 = 0 power=20 

2 = 1st power=21 

2 x 2 = 2nd power (squared)=22 

2 x 2 x 2= 3rd power (cubed)=23 

2 x 2 x 2 x 2= 4th power=24 

There are short ways to write exponents. For example, a short way to 
write 81 is 34.This is read as three to the fourth power.  

• On Plane Equilibriums  

• On Floating Bodies  

This problem was after Archimedes had solved the problem of King Hiero’s gold crown. He 
experimented with liquids. He discovered density and specific gravity.  

 
 

This pump is at least 2,000 years old. 
The Archimedes Screw (also called an Archimedes Snail) was used for irrigation and powered 
by horses, people, mules, etc. This pump is even used today, although rarely! The helix 
revolves inside a tube (only the bottom of the tube is shown) and the water rises accordingly. 
Whether or not it was actually invented by Archimedes is certainly debatable, though his overall 
brilliance is not.  
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Hydraulic Principles Section 
 
Definition:   Hydraulics is a branch of engineering concerned mainly with moving liquids. The term 
is applied commonly to the study of the mechanical properties of water, other liquids, and even 
gases when the effects of compressibility are small. Hydraulics can be divided into two areas, 
hydrostatics and hydrokinetics.  
 
Hydraulics:  The Engineering science pertaining to liquid pressure and flow. 
The word hydraulics is based on the Greek word for water, and originally covered the study of 
the physical behavior of water at rest and in motion. Use has broadened its meaning to include 
the behavior of all liquids, although it is primarily concerned with the motion of liquids. 
Hydraulics includes the manner in which liquids act 
in tanks and pipes, deals with their properties, and 
explores ways to take advantage of these properties. 
 
Hydrostatics, the consideration of liquids at rest, 
involves problems of buoyancy and flotation, pressure 
on dams and submerged devices, and hydraulic 
presses. The relative incompressibility of liquids is one 
of its basic principles. Hydrodynamics, the study of 
liquids in motion, is concerned with such matters as 
friction and turbulence generated in pipes by flowing 
liquids, the flow of water over weirs and through 
nozzles, and the use of hydraulic pressure in 
machinery.  
 
Hydrostatics  
Hydrostatics is about the pressures exerted by a fluid 
at rest. Any fluid is meant, not just water. Research 
and careful study on water yields many useful results 
of its own, however, such as forces on dams, 
buoyancy and hydraulic actuation, and is well worth 
studying for such practical reasons. Hydrostatics is an 
excellent example of deductive mathematical physics, 
one that can be understood easily and completely from a very few fundamentals, and in which the 
predictions agree closely with experiment.  
 
There are few better illustrations of the use of the integral calculus, as well as the principles of 
ordinary statics, available to the student. A great deal can be done with only elementary 
mathematics. Properly adapted, the material can be used from the earliest introduction of school 
science, giving an excellent example of a quantitative science with many possibilities for hands-on 
experiences. 
 
The definition of a fluid deserves careful consideration. Although time is not a factor in hydrostatics, 
it enters in the approach to hydrostatic equilibrium. It is usually stated that a fluid is a substance that 
cannot resist a shearing stress, so that pressures are normal to confining surfaces. Geology has 
now shown us clearly that there are substances which can resist shearing forces over short time 
intervals, and appear to be typical solids, but which flow like liquids over long time intervals. Such 
materials include wax and pitch, ice, and even rock.  
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A ball of pitch, which can be shattered by a hammer, will spread out and flow in months. Ice, a 
typical solid, will flow in a period of years, as shown in glaciers, and rock will flow over hundreds of 
years, as in convection in the mantle of the earth.  
 
Shear earthquake waves, with periods of seconds, propagate deep in the earth, though the rock 
there can flow like a liquid when considered over centuries. The rate of shearing may not be strictly 
proportional to the stress, but exists even with low stress.  
 
Viscosity may be the physical property that varies over the largest numerical range, competing with 
electrical resistivity. There are several familiar topics in hydrostatics which often appears in 
expositions of introductory science, and which are also of historical interest and can enliven their 
presentation. Let’s start our study with the principles of our atmosphere. 
 
Atmospheric Pressure 
 
The atmosphere is the entire mass of air that surrounds the earth. While it extends upward for 
about 500 miles, the section of primary interest is the portion that rests on the earth’s surface and 
extends upward for about 7 1/2 miles. This layer is called the troposphere. 
 
If a column of air 1-inch square extending all the way to the "top" of the atmosphere could be 
weighed, this column of air would weigh approximately 14.7 pounds at sea level. Thus, atmospheric 
pressure at sea level is approximately 14.7 psi. 
 
As one ascends, the atmospheric pressure decreases by approximately 1.0 psi for every 2,343 feet. 
However, below sea level, in excavations and depressions, atmospheric pressure increases. 
Pressures under water differ from those under air only because the weight of the water must be 
added to the pressure of the air. 
 
Atmospheric pressure can be measured by any of several methods. The common laboratory 
method uses the mercury column barometer. The height of the mercury column serves as an 
indicator of atmospheric pressure. At sea level and at a temperature of 0° Celsius (C), the height of 
the mercury column is approximately 30 inches, or 76 centimeters. This represents a pressure of 
approximately 14.7 psi. The 30-inch column is used as a reference standard. 
 
Another device used to measure atmospheric pressure is the aneroid barometer. The aneroid 
barometer uses the change in shape of an evacuated metal cell to measure variations in 
atmospheric pressure. The thin metal of the aneroid cell moves in or out with the variation of 
pressure on its external surface. This movement is transmitted through a system of levers to a 
pointer, which indicates the pressure. 
 
The atmospheric pressure does not vary uniformly with altitude. It changes very rapidly. 
Atmospheric pressure is defined as the force per unit area exerted against a surface by the weight 
of the air above that surface. In the diagram on the following page, the pressure at point "X" 
increases as the weight of the air above it increases. The same can be said about decreasing 
pressure, where the pressure at point "X" decreases if the weight of the air above it also decreases.  
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Barometric Loop  
The barometric loop consists of a continuous section of supply 
piping that abruptly rises to a height of approximately 35 feet 
and then returns back down to the originating level. It is a loop in 
the piping system that effectively protects against 
backsiphonage. It may not be used to protect against back-
pressure.  
 
Its operation, in the protection against backsiphonage, is based 
upon the principle that a water column, at sea level pressure, will 
not rise above 33.9 feet. In general, barometric loops are locally 
fabricated, and are 35 feet high. 
 
Pressure may be referred to using an absolute scale, pounds 
per square inch absolute (psia), or gauge scale, (psiag).  
Absolute pressure and gauge pressure are related.  Absolute 
pressure is equal to gauge pressure plus the atmospheric 
pressure.  At sea level, the atmospheric pressure is 14.7 psai.   
 
Absolute pressure is the total pressure.  Gauge pressure is 
simply the pressure read on the gauge. If there is no pressure 
on the gauge other than atmospheric, the gauge will read zero.  
Then the absolute pressure would be equal to 14.7 psi, which is 
the atmospheric pressure. 
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Pressure 
 
By a fluid, we have a material in mind like water or air, two very common and important fluids. 
Water is incompressible, while air is very compressible, but both are fluids. Water has a definite 
volume; air does not. Water and air have low viscosity; that is, layers of them slide very easily on 
one another, and they quickly assume their permanent shapes when disturbed by rapid flows. Other 
fluids, such as molasses, may have high viscosity and take a long time to come to equilibrium, but 
they are no less fluids. The coefficient of viscosity is the ratio of the shearing force to the velocity 
gradient. Hydrostatics deals with permanent, time-independent states of fluids, so viscosity does 
not appear, except as discussed in the Introduction. 
 

 
 
A fluid, therefore, is a substance that cannot exert any permanent forces tangential to a boundary. 
Any force that it exerts on a boundary must be normal to the boundary. Such a force is proportional 
to the area on which it is exerted, and is called a pressure. We can imagine any surface in a fluid as 
dividing the fluid into parts pressing on each other, as if it were a thin material membrane, and so 
think of the pressure at any point in the fluid, not just at the boundaries. In order for any small 
element of the fluid to be in equilibrium, the pressure must be the same in all directions (or the 
element would move in the direction of least pressure), and if no other forces are acting on the body 
of the fluid, the pressure must be the same at all neighboring points.  
 
Therefore, in this case the pressure will be the same throughout the fluid, and the same in any 
direction at a point (Pascal's Principle). Pressure is expressed in units of force per unit area such as 
dyne/cm2, N/cm2 (pascal), pounds/in2 (psi) or pounds/ft2 (psf). The axiom that if a certain volume of 
fluid were somehow made solid, the equilibrium of forces would not be disturbed, is useful in 
reasoning about forces in fluids. 
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On earth, fluids are also subject to the force of gravity, which acts vertically downward, and has a 
magnitude γ = ρg per unit volume, where g is the acceleration of gravity, approximately 981 cm/s2 
or 32.15 ft/s2, ρ is the density, the mass per unit volume, expressed in g/cm3, kg/m3, or slug/ft3, and 
γ is the specific weight, measured in lb/in3, or lb/ft3 (pcf). Gravitation is an example of a body force 
that disturbs the equality of pressure in a fluid. The presence of the gravitational body force causes 
the pressure to increase with depth, according to the equation dp = ρg dh, in order to support the 
water above.  We call this relation the barometric equation, for when this equation is integrated, we 
find the variation of pressure with height or depth. If the fluid is incompressible, the equation can be 
integrated at once, and the pressure as a function of depth h is p = ρgh + p0.  
 
The density of water is about 1 g/cm3, or its specific weight is 
62.4 pcf. We may ask what depth of water gives the normal 
sea-level atmospheric pressure of 14.7 psi, or 2117 psf.  
 
This is simply 2117 / 62.4 = 33.9 ft of water. This is the 
maximum height to which water can be raised by a suction 
pump, or, more correctly, can be supported by atmospheric 
pressure. Professor James Thomson (brother of William 
Thomson, Lord Kelvin) illustrated the equality of pressure by 
a "curtain-ring" analogy shown in the diagram. A section of 
the toroid was identified, imagined to be solidified, and its 
equilibrium was analyzed.  
 
The forces exerted on the curved surfaces have no 
component along the normal to a plane section, so the 
pressures at any two points of a plane must be equal, since 
the fluid represented by the curtain ring was in equilibrium. 
The right-hand part of the diagram illustrates the equality of 
pressures in orthogonal directions. This can be extended to 
any direction whatever, so Pascal's Principle is established. 
This demonstration is similar to the usual one using a triangular prism and considering the forces on 
the end and lateral faces separately. 
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Free Surface Perpendicular to Gravity 
 
When gravity acts, the liquid assumes a free surface perpendicular to gravity, which can be proved 
by Thomson's method. A straight cylinder of unit cross-sectional area (assumed only for ease in the 
arithmetic) can be used to find the increase of pressure with depth. Indeed, we see that p2 = p1 + 
ρgh. The upper surface of the cylinder can be placed at the free surface if desired. The pressure is 
now the same in any direction at a point, but is greater at points that lie deeper. From this same 
figure, it is easy to prove Archimedes's Principle that the buoyant force is equal to the weight of the 
displaced fluid, and passes through the center of mass of this displaced fluid. 
 
Geometric Arguments  
 
Ingenious geometric arguments can be used to 
substitute for easier, but less transparent arguments 
using calculus. For example, the force acting on one 
side of an inclined plane surface whose projection is AB 
can be found as in the diagram on the previous page. O 
is the point at which the prolonged projection intersects 
the free surface. The line AC' perpendicular to the 
plane is made equal to the depth AC of point A, and line 
BD' is similarly drawn equal to BD. The line OD' also 
passes through C', by proportionality of triangles OAC' 
and OAD'. Therefore, the thrust F on the plane is the 
weight of a prism of fluid of cross-section AC'D'B, 
passing through its centroid normal to plane AB. Note 
that the thrust is equal to the density times the area 
times the depth of the center of the area; its line of 
action does not pass through the center, but below it, at 
the center of thrust. The same result can be obtained 
with calculus by summing the pressures and the 
moments. 
 
Atmospheric Pressure and its Effects 
 
Suppose a vertical pipe is stood in a pool of water, and 
a vacuum pump applied to the upper end. Before we 
start the pump, the water levels outside and inside the pipe are equal, and the pressures on the 
surfaces are also equal and are equal to the atmospheric pressure.  
 
Now start the pump. When it has sucked all the air out above the water, the pressure on the surface 
of the water inside the pipe is zero, and the pressure at the level of the water on the outside of the 
pipe is still the atmospheric pressure. Of course, there is the vapor pressure of the water to worry 
about if you want to be precise, but we neglect this complication in making our point. We require a 
column of water 33.9 ft high inside the pipe, with a vacuum above it, to balance the atmospheric 
pressure. Now do the same thing with liquid mercury, whose density at 0 °C is 13.5951 times that of 
water. The height of the column is 2.494 ft, 29.92 in, or 760.0 mm.  
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Standard Atmospheric Pressure 
 
This definition of the standard atmospheric pressure was established by Regnault in the mid-19th 
century. In Britain, 30 in. Hg (inches of mercury) had been used previously. As a practical matter, it 
is convenient to measure pressure differences by measuring the height of liquid columns, a practice 
known as manometry. The barometer is a familiar example of this, and atmospheric pressures are 
traditionally given in terms of the length of a mercury column. To make a barometer, the barometric 
tube, closed at one end, is filled with mercury and then inverted and placed in a mercury reservoir. 
Corrections must be made for temperature, because the density of mercury depends on the 
temperature, and the brass scale expands for capillarity if the tube is less than about 1 cm in 
diameter, and even slightly for altitude, since the value of g changes with altitude.  
 
The vapor pressure of mercury is only 0.001201 mmHg at 20°C, so a correction from this source is 
negligible. For the usual case of a mercury column (α = 0.000181792 per °C) and a brass scale 
(&alpha = 0.0000184 per °C) the temperature correction is -2.74 mm at 760 mm and 20°C. Before 
reading the barometer scale, the mercury reservoir is raised or lowered until the surface of the 
mercury just touches a reference point, which is mirrored in the surface so it is easy to determine 
the proper position. 
 
An aneroid barometer uses a partially evacuated chamber of 
thin metal that expands and contracts according to the 
external pressure. This movement is communicated to a 
needle that revolves in a dial. The materials and construction 
are arranged to give a low temperature coefficient. The 
instrument must be calibrated before use, and is usually 
arranged to read directly in elevations. An aneroid barometer 
is much easier to use in field observations, such as in 
reconnaissance surveys. In a particular case, it would be 
read at the start of the day at the base camp, at various 
points in the vicinity, and then finally at the starting point, to 
determine the change in pressure with time. The height differences can be calculated from h = 
60,360 log(P/p) [1 + (T + t - 64)/986) feet, where P and p are in the same units, and T, t are in °F. 
 
An absolute pressure is referring to a vacuum, while a gauge pressure is referring to the 
atmospheric pressure at the moment. A negative gauge pressure is a (partial) vacuum. When a 
vacuum is stated to be so many inches, this means the pressure below the atmospheric pressure of 
about 30 in. A vacuum of 25 inches is the same thing as an absolute pressure of 5 inches (of 
mercury).  
 
Vacuum  
 
The term vacuum indicates that the absolute pressure is less than the atmospheric pressure and 
that the gauge pressure is negative.  A complete or total vacuum would mean a pressure of 0 psia 
or –14.7 psig.  Since it is impossible to produce a total vacuum, the term vacuum, as used in this 
document, will mean all degrees of partial vacuum. In a partial vacuum, the pressure would range 
from slightly less than 14.7 psia (0 psig) to slightly greater than 0 psia (-14.7 psig).  Backsiphonage 
results from atmospheric pressure exerted on a liquid, forcing it toward a supply system that is 
under a vacuum. 
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Water Pressure 
 
The weight of a cubic foot of water is 62.4 pounds per square foot.  The base can be subdivided 
into 144-square inches with each subdivision being subjected to a pressure of 0.433 psig. Suppose 
you placed another cubic foot of water on top of the first cubic foot.  The pressure on the top 
surface of the first cube which was originally atmospheric, or 0 psig, would now be 0.4333 psig as a 
result of the additional cubic foot of water.  The pressure of the base of the first cubic foot would be 
increased by the same amount of 0.866 psig or two times the original pressure. 
 
Pressures are very frequently stated in terms of the height of a fluid. If it is the same fluid whose 
pressure is being given, it is usually called "head," and the factor connecting the head and the 
pressure is the weight density ρg. In the English engineer's system, weight density is in pounds per 
cubic inch or cubic foot. A head of 10 ft is equivalent to a pressure of 624 psf, or 4.33 psi. It can 
also be considered an energy availability of ft-lb per lb. Water with a pressure head of 10 ft can 
furnish the same energy as an equal amount of water raised by 10 ft. Water flowing in a pipe is 
subject to head loss because of friction. 
 
Take a jar and a basin of water. Fill the jar with water and invert it under the water in the basin. Now 
raise the jar as far as you can without allowing its mouth to come above the water surface. It is 
always a little surprising to see that the jar does not empty itself, but the water remains with no 
visible means of support. By blowing through a straw, one can put air into the jar, and as much 
water leaves as air enters. In fact, this is a famous method of collecting insoluble gases in the 
chemical laboratory, or for supplying hummingbird 
feeders. It is good to remind oneself of exactly the 
balance of forces involved. 

 
Another application of pressure is the siphon. The name 
is Greek for the tube that was used for drawing wine 
from a cask. This is a tube filled with fluid connecting 
two containers of fluid, normally rising higher than the 
water levels in the two containers, at least to pass over 
their rims. In the diagram, the two water levels are the 
same, so there will be no flow. When a siphon goes 
below the free water levels, it is called an inverted 
siphon. If the levels in the two basins are not equal, fluid 
flows from the basin with the higher level into the one 
with the lower level, until the levels are equal.  
 
A siphon can be made by filling the tube, closing the 
ends, and then putting the ends under the surface on 
both sides.  Alternatively, the tube can be placed in one 
fluid and filled by sucking on it. When it is full, the other end is put in place. The analysis of the 
siphon is easy, and should be obvious. The pressure rises or falls as described by the barometric 
equation through the siphon tube. There is obviously a maximum height for the siphon which is the 
same as the limit of the suction pump, about 34 feet. Inverted siphons are sometimes used in 
pipelines to cross valleys. Differences in elevation are usually too great to use regular siphons to 
cross hills, so the fluids must be pressurized by pumps so the pressure does not fall to zero at the 
crests. 
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Liquids at Rest 
 
In studying fluids at rest, we are concerned with the transmission of force and the factors which 
affect the forces in liquids. Additionally, pressure in and on liquids and factors affecting pressure are 
of great importance. 
 
Pressure and Force 
 
Pressure is the force that pushes water through pipes. Water pressure determines the flow of water 
from the tap. If pressure is not sufficient then the flow can reduce to a trickle and it will take a long 
time to fill a kettle or a cistern.  
 
The terms force and pressure are used extensively in the study of fluid power. It is essential that 
we distinguish between the terms.  
 
Force means a total push or pull. It is the push or pull exerted against the total area of a particular 
surface and is expressed in pounds or grams. Pressure means the amount of push or pull (force) 
applied to each unit area of the surface and is expressed in pounds per square inch (lb/in2) or 
grams per square centimeter (gm/cm2). Pressure maybe exerted in one direction, in several 
directions, or in all directions. 
 
Computing Force, Pressure, and Area 
 
A formula is used in computing force, pressure, and area in fluid power systems. In this formula, P 
refers to pressure, F indicates force, and A represents area. Force equals pressure times area. 
Thus, the formula is written: 
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Development of Hydraulics 
 
Although the modern development of hydraulics is comparatively recent, the ancients were familiar 
with many hydraulic principles and their applications. The Egyptians and the ancient people of 
Persia, India, and China conveyed water along channels for irrigation and domestic purposes, using 
dams and sluice gates to control the flow. The ancient Cretans had an elaborate plumbing system. 
Archimedes studied the laws of floating and submerged bodies. The Romans constructed 
aqueducts to carry water to their cities. 
 
After the breakup of the ancient world, there were few new developments for many centuries. Then, 
over a comparatively short period, beginning near the end of the seventeenth century, Italian 
physicist, Evangelista Torricelle, French physicist, Edme Mariotte, and later, Daniel Bernoulli 
conducted experiments to study the elements of force in the discharge of water through small 
openings in the sides of tanks and through short pipes. During the same period, Blaise Pascal, a 
French scientist, discovered the fundamental law for the science of hydraulics. Pascal’s law states 
that increase in pressure on the surface of a confined fluid is transmitted undiminished throughout 
the confining vessel or system.  
 
For Pascal’s law to be made effective for practical applications, it was necessary to have a piston 
that "fit exactly." It was not until the latter part of the eighteenth century that methods were found to 
make these snugly fitted parts required in hydraulic systems.  
 
This was accomplished by the invention of machines that were used to cut and shape the 
necessary closely fitted parts and, particularly, by the development of gaskets and packings. Since 
that time, components such as valves, pumps, actuating cylinders, and motors have been 
developed and refined to make hydraulics one of the leading methods of transmitting power. 
 
Liquids are almost incompressible. For example, if a pressure of 100 pounds per square inch (psi) 
is applied to a given volume of water that is at atmospheric pressure, the volume will decrease by 
only 0.03 percent. It would take a force of approximately 32 tons to reduce its volume by 10 percent; 
however, when this force is removed, the water immediately returns to its original volume. Other 
liquids behave in about the same manner as water. 
 
Another characteristic of a liquid is the tendency to keep its free surface level. If the surface is not 
level, liquids will flow in the direction which will tend to make the surface level. 
 
Evangelista Torricelli 
Evangelista Torricelli (1608-1647), Galileo's student and secretary and a member of the Florentine 
Academy of Experiments, invented the mercury barometer in 1643, and brought the weight of the 
atmosphere to light. The mercury column was held up by the pressure of the atmosphere, not by 
horror vacui as Aristotle had supposed. Torricelli's early death was a blow to science, but his ideas 
were furthered by Blaise Pascal (1623-1662).  
 
Pascal had a barometer carried up the 1465 m high Puy de Dôme, an extinct volcano in the 
Auvergne just west of his home of Clermont-Ferrand in 1648 by Périer, his brother-in-law. Pascal's 
experimentum crucis is one of the triumphs of early modern science. The Puy de Dôme is not the 
highest peak in the Massif Central--the Puy de Sancy, at 1866 m is, but it was the closest. Clermont 
is now the centre of the French pneumatics industry. 
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Burgomeister of Magdeburg  
The remarkable Otto von Guericke (1602-1686), Burgomeister of Magdeburg, Saxony, took up the 
cause, making the first vacuum pump, which he used in vivid 
demonstrations of the pressure of the atmosphere to the Imperial 
Diet at Regensburg in 1654. Famously, he evacuated a sphere 
consisting of two well-fitting hemispheres about a foot in diameter, 
and showed that 16 horses, 8 on each side, could not pull them 
apart. An original vacuum pump and hemispheres from 1663 are 
shown at the right (photo edited from the Deutsches Museum; 
see on right). He also showed that air had weight, and how much 
force it did require to separate evacuated hemispheres. Then, in 
England, Robert Hooke (1635-1703) made a vacuum pump for 
Robert Boyle (1627-1691). Christian Huygens (1629-1695) 
became interested in a visit to London in 1661 and had a vacuum 
pump built for him. By this time, Torricelli's doctrine had 
triumphed over the Church's support for horror vacui. This was one of the first victories for rational 
physics over the illusions of experience, and is well worth consideration. 
 
Pascal demonstrated that the siphon worked by atmospheric pressure, not by horror vacui. The two 
beakers of mercury are connected by a three-way tube as shown, with the upper branch open to the 
atmosphere. As the large container is filled with water, pressure on the free surfaces of the mercury 
in the beakers pushes mercury into the tubes. When the state shown is reached, the beakers are 
connected by a mercury column, and the siphon starts, emptying the upper beaker and filling the 
lower. The mercury has been open to the atmosphere all this time, so if there were any horror vacui, 
it could have flowed in at will to soothe itself. 
 
Torr 
The mm of mercury is sometimes called a torr after Torricelli, and Pascal also has been honored by 
a unit of pressure, a newton per square meter or 10 dyne/cm2. A cubic centimeter of air weighs 
1.293 mg under standard conditions, and a cubic meter 1.293 kg, so air is by no means even 
approximately weightless, though it seems so.  
 
The weight of a sphere of air as small as 10 cm in diameter is 0.68 g, easily measurable with a 
chemical balance. The pressure of the atmosphere is also considerable, like being 34 ft under 
water, but we do not notice it. A bar is 106 dyne/cm2, very close to a standard atmosphere, which is 
1.01325 bar. In meteorology, the millibar, mb, is used. 1 mb = 1.333 mmHg = 100 Pa = 1000 
dyne/cm2.  
 
A kilogram-force per square centimeter is 981,000 dyne/cm2, also close to one atmosphere. In 
Europe, it has been considered approximately 1 atm, as in tire pressures and other engineering 
applications. As we have seen, in English units the atmosphere is about 14.7 psi, and this figure 
can be used to find other approximate equivalents.  
 
For example, 1 psi = 51.7 mmHg. In Britain, tons per square inch has been used for large 
pressures. The ton in this case is 2240 lb, not the American short ton. 1 tsi = 2240 psi, 1 tsf = 15.5 
psi (about an atmosphere!).The fluid in question here is air, which is by no means incompressible. 
As we rise in the atmosphere and the pressure decreases, the air also expands.  
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To see what happens in this case, we can make use of the ideal gas equation of state, p = ρRT/M, 
and assume that the temperature T is constant. Then the change of pressure in a change of altitude 
dh is dp = -ρg dh = -(pM/RT)gdh, or dp/p = -(Mg/RT)dh.  
 
This is a little harder to integrate than before, but the result is ln p = -Mgh/RT + C, or ln(p/p0) = -
Mgh/RT, or finally p = p0exp(-Mgh/RT).  
 
In an isothermal atmosphere, the pressure decreases exponentially. The quantity H = RT/Mg is 
called the "height of the homogeneous atmosphere" or the scale height, and is about 8 km at T = 
273K.  
 
This quantity gives the rough scale of the decrease of pressure with height. Of course, the real 
atmosphere is by no means isothermal close to the ground, but cools with height nearly linearly at 
about 6.5°C/km up to an altitude of about 11 km at middle latitudes, called the tropopause.  
 
Above this is a region of nearly constant temperature, the stratosphere, and then at some higher 
level the atmosphere warms again to near its value at the surface. Of course, there are variations 
from the average values. When the temperature profile with height is known, we can find the 
pressure by numerical integration quite easily. 
 
Meteorology  
The atmospheric pressure is of great importance in meteorology, since it determines the winds, 
which generally move at right angles to the direction of the most rapid change of pressure, that is, 
along the isobars, which are contours of constant pressure. Certain typical weather patterns are 
associated with relatively high and relatively low pressures, and how they vary with time. The 
barometric pressure may be given in popular weather forecasts, though few people know what to do 
with it. If you live at a high altitude, your local weather reporter may report the pressure to be, say, 
29.2 inches, but if you have a real barometer, you may well find that it is closer to 25 inches. At an 
elevation of 1500 m (near Denver, or the top of the Puy de Dôme), the atmospheric pressure is 
about 635 mm, and water boils at 95 °C.  
 
In fact, altitude is quite a problem in 
meteorology, since pressures must be 
measured at a common level to be 
meaningful. The barometric pressures 
quoted in the news are reduced to sea 
level by standard formulas that amount to 
assuming that there is a column of air 
from your feet to sea level with a certain 
temperature distribution, and adding the 
weight of this column to the actual 
barometric pressure. This is only an 
arbitrary 'fix' and leads to some strange 
conclusions, such as the permanent 
winter highs above high plateaus that are 
really imaginary. 
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The Hydraulic Lever 
 
A cylinder and piston is a chamber of variable volume, a mechanism for transforming pressure to 
force.  
 
If A is the area of the cylinder, and p the pressure of the 
fluid in it, then F = pA is the force on the piston. If the 
piston moves outwards a distance dx, then the change in 
volume is dV = A dx.  
 
The work done by the fluid in this displacement is dW = 
F dx = pA dx = p dV. If the movement is slow enough that inertia and viscosity forces are negligible, 
then hydrostatics will still be valid.  
 
A process for which this is true is called quasi-static. Now consider two cylinders, possibly of 
different areas A and A', connected with each other and filled with fluid. For simplicity, suppose that 
there are no gravitational forces.  
 
Then the pressure is the same, p, in both cylinders. If the fluid is incompressible, then dV + dV' = 0, 
so that dW = p dV + p dV' = F dx + F' dx' = 0. This says the work done on one piston is equal to the 
work done by the other piston: the conservation of energy. The ratio of the forces on the pistons is 
F' / F = A' / A, the same as the ratio of the areas, and the ratios of the displacements dx' / dx = F / F' 
= A / A' is in the inverse ratio of the areas. This mechanism is the hydrostatic analogue of the lever, 
and is the basis of hydraulic activation. 
 
Bramah Hydraulic Press 
The most famous application of this principle is the Bramah hydraulic press, invented by Joseph 
Bramah (1748-1814), who also invented many other useful machines, including a lock and a toilet. 
Now, it was not very remarkable to see the possibility of a hydraulic press; what was remarkable 
was to find a way to seal the large cylinder properly.  
 
This was the crucial problem that Bramah solved by his leather seal that was held against the 
cylinder and the piston by the hydraulic pressure itself. In the presence of gravity, p' = p + ρgh, 
where h is the difference in elevation of the two cylinders. Now, p' dV' = -dV (p + ρgh) =-p dV - (ρ 
dV)gh, or the net work done in the process is p' dV' + p dV = -dM gh, where dM is the mass of fluid 
displaced from the lower cylinder to the upper cylinder. Again, energy is conserved if we take into 
account the potential energy of the fluid. Pumps are seen to fall within the province of hydrostatics if 
their operation is quasi-static, which means that dynamic or inertia forces are negligible. 
 
Pumps 
Pumps are used to move or raise fluids. They are not only very useful, but are excellent examples 
of hydrostatics. Pumps are of two general types, hydrostatic or positive displacement pumps, and 
pumps depending on dynamic forces, such as centrifugal pumps. Here we will only consider 
positive displacement pumps, which can be understood purely by hydrostatic considerations. They 
have a piston (or equivalent) moving in a closely-fitting cylinder, and forces are exerted on the fluid 
by motion of the piston. We have already seen an important example of this in the hydraulic lever or 
hydraulic press, which we have called quasi-static.  
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The simplest pump is the syringe, filled by withdrawing the piston and emptied by pressing it back 
in, as its port is immersed in the fluid or removed from it. More complicated pumps have valves 
allowing them to work repetitively. These are usually check valves that open to allow passage in 
one direction, and close automatically to prevent reverse flow. There are many kinds of valves, and 
they are usually the most trouble-prone and complicated part of a pump. The force pump has two 
check valves in the cylinder, one for supply and the other for delivery. The supply valve opens when 
the cylinder volume increases, the delivery valve when the cylinder volume decreases.  
 
The lift pump has a supply valve, and a valve in the piston that allows the liquid to pass around it 
when the volume of the cylinder is reduced. The delivery in this case is from the upper part of the 
cylinder which the piston does not enter. Diaphragm pumps are force pumps in which the oscillating 
diaphragm takes the place of the piston. The diaphragm may be moved mechanically, or by the 
pressure of the fluid on one side of the diaphragm. 
 
Some positive displacement pumps are shown below. The force and lift pumps are typically used 
for water. The force pump has two valves in the cylinder, while the lift pump has a one valve in the 
cylinder and one in the piston. The maximum lift, or "suction," is determined by the atmospheric 
pressure, and either cylinder must be within this height of the free surface. The force pump, 
however, can give an arbitrarily large pressure to the discharged fluid, as in the case of a diesel 
engine injector. A nozzle can be used to convert the pressure to velocity, to produce a jet, as for fire 
fighting. Fire fighting force pumps usually have two cylinders feeding one receiver alternately. The 
air space in the receiver helps to make the water pressure uniform. 
 
The three pumps on the right are typically used for air, but would be equally applicable to 
liquids. The Roots blower has no valves, their place taken by the sliding contact between the 
rotors and the housing. The Roots blower can either exhaust a receiver or provide air under 
moderate pressure, in large volumes. The bellows is a very old device, requiring no accurate 
machining. The single valve is in one or both sides of the expandable chamber. Another valve 
can be placed at the nozzle if required. The 
valve can be a piece of soft leather held close 
to holes in the chamber. The bicycle pump 
uses the valve on the valve stem of the tire or 
inner tube to hold pressure in the tire. The 
piston, which is attached to the discharge 
tube, has a flexible seal that seals when the 
cylinder is moved to compress the air, but 
allows air to pass when the movement is 
reversed.  Diaphragm and vane pumps are 
not shown, but they act the same way by 
varying the volume of a chamber, and 
directing the flow with check valves. Pumps 
were applied to the dewatering of mines, a 
very necessary process as mines became 
deeper. Newcomen's atmospheric engine was 
invented to supply the power for pumping.  
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Dudley Castle Engine 
 
The first engine may have been erected in Cornwall in 1710, but the Dudley Castle engine of 1712 
is much better known and thoroughly documented. The first pumps used in Cornwall were called 
bucket pumps, which we recognize as lift pumps, with the pistons somewhat miscalled buckets. 
They pumped on the up-stroke, when a clack in the bottom of the pipe opened and allowed water to 
enter beneath the piston. At the same time, the piston lifted the column of water above it, which 
could be of any length. The piston could only "suck" water 33 ft, or 28 ft more practically, of course, 
but this occurred at the bottom of the shaft, so this was only a limit on the piston stroke. On the 
down stroke, a clack in the bucket opened, allowing it to sink through the water to the bottom, 
where it would be ready to make another lift. More satisfactory were the plunger pumps, also placed 
at the bottom of the shaft. A plunger displaced volume in a chamber, forcing the water in it through 
a check valve up the shaft, when it descended. When it rose, water entered the pump chamber 
through a clack, as in the bucket pump.  
 
Only the top of the plunger had 
to be packed; it was not 
necessary that it fit the cylinder 
accurately. In this case, the 
engine at the surface lifted the 
heavy pump rods on the up-
stroke. When the atmospheric 
engine piston returned, the 
heavy timber pump rods did 
the actual pumping, borne 
down by their weight. A special 
application for pumps is to 
produce a vacuum by 
exhausting a container, called 
the receiver.  
 
Hawksbee's Dual 
Cylinder Pump  
Hawksbee's dual cylinder 
pump, designed in the 18th century, is the final form of the air pump invented by Guericke by 1654. 
A good pump could probably reach about 5-10 mmHg, the limit set by the valves. The cooperation 
of the cylinders made the pump much easier to work when the pressure was low. In the diagram, 
piston A is descending, helped by the partial vacuum remaining below it, while piston B is rising, 
filling with the low-pressure air from the receiver.  
 
Bell-jar Receiver 
The bell-jar receiver, invented by Huygens, is shown; previously, a cumbersome globe was the 
usual receiver. Tate's air pump is a 19th century pump that would be used for simple vacuum 
demonstrations and for utility purposes in the lab. It has no valves on the low-pressure side, just 
exhaust valves V, V', so it could probably reach about 1 mmHg. It is operated by pushing and 
pulling the handle H. At the present day, motor-driven rotary-seal pumps sealed by running in oil are 
used for the same purpose. At the right is Sprengel's pump, with the valves replaced by drops of 
mercury. Small amounts of gas are trapped at the top of the fall tube as the mercury drops, and 
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moves slowly down the fall tube as mercury is steadily added, coming out at the bottom carrying the 
air with it. The length of the fall tube must be greater than the barometric height, of course.  
 
Theoretically, a vacuum of about 1 μm can be obtained with a Sprengel pump, but it is very slow 
and can only evacuate small volumes. Later, Langmuir's mercury diffusion pump, which was much 
faster, replaced Sprengel pumps, and led to oil diffusion pumps that can reach very high vacua. The 
column of water or hydrostatic engine is the inverse of the force pump, used to turn a large head 
(pressure) of water into rotary motion. It looks like a steam engine, with valves operated by valve 
gear, but of course is not a heat engine and can be of high efficiency.  
 
However, it is not of as high efficiency as a turbine, and is much more 
complicated, but has the advantage that it can be operated at variable 
speeds, as for lifting.  A few very impressive column of water engines 
were made in the 19th century, but they were never popular and 
remained rare. Richard Trevithick, famous for high pressure steam 
engines, also built hydrostatic engines in Cornwall. The photograph at 
the right shows a column-of-water engine built by Georg von 
Reichenbach, and placed in service in 1917. This engine was exhibited 
in the Deutsches Museum in München as late as 1977.  
 
It was used to pump brine for the Bavarian state salt industry. A search 
of the museum website did not reveal any evidence of it, but a good 
drawing of another brine pump with four cylinders and driven by a water 
wheel, also built by von Reichenbach, was found.  
 
Solehebemaschine  
This machine, a Solehebemaschine ("brine-lifting machine"), entered service in 1821. It had two 
pressure-operated poppet valves for each cylinder. These engines are brass to resist corrosion by 
the salt water. Water pressure engines must be designed taking into account the incompressibility 
of water, so both valves must not close at the same time, and abrupt changes of rate of flow must 
not be made. Air chambers can be used to eliminate shocks. Georg von Reichenbach (1771-1826) 
is much better known as an optical designer than as a mechanical engineer. He was associated 
with Joseph Fraunhofer, and they died within days of each other in 1826. He was of an aristocratic 
family, and was Salinenrat, or manager of the state salt works, in southeastern Bavaria, which was 
centered on the town of Reichenhall, now Bad Reichenhall, near Salzburg.  
 
The name derives from "rich in salt." This famous salt region had salt springs flowing nearly 
saturated brine, at 24% to 26% (saturated is 27%) salt, that from ancient times had been 
evaporated over wood fires. A brine pipeline to Traunstein was constructed in 1617-1619, since 
wood fuel for evaporating the brine was exhausted in Reichenhall. The pipeline was further 
extended to Rosenheim, where there was turf as well as wood, in 1818-10.  
 
Von Reichenbach is said to have built this pipeline, for which he designed a water-wheel-driven, 
four-barrel pump. Maximilian I, King of Bavaria, commissioned von Reichenbach to bring brine from 
Berchtesgaden, elevation 530 m, to Reichenhall, elevation 470 m, over a summit 943 m high. Fresh 
water was also allowed to flow down to the salt beds, and the brine was then pumped to the 
surface. This was a much easier way to mine salt than underground mining. The salt industry of 
Bad Reichenhall still operates, but it is now Japanese-owned. 
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Forces on Submerged Surfaces 
 
Suppose we want to know the force exerted on a vertical surface of any shape with water on one 
side, assuming gravity to act, and the pressure on the surface of the water zero. We have already 
solved this problem by a geometrical argument, but now we 
apply calculus, which is easier but not as illuminating.  
 
The force on a small area dA a distance x below the surface 
of the water is dF = p dA = ρgx dA, and the moment of this 
force about a point on the surface is dM = px dA = ρgx2 dA.  
 
By integration, we can find the total force F, and the depth at 
which it acts, c = M / F. If the surface is not symmetrical, the 
position of the total force in the transverse direction can be 
obtained from the integral of dM' = ρgxy dA, the moment about some vertical line in the plane of 
the surface. If there happens to be a pressure on the free surface of the water, then the forces 
due to this pressure can be evaluated separately and added to this result. We must add a force 
equal to the area of the surface times the additional pressure, and a moment equal to the 
product of this force and the distance to the centroid of the surface. 
 
The simplest case is a rectangular gate of width w, and height h, whose top is a distance H below 
the surface of the water.  
 
In this case, the integrations are very easy, and F = ρgw[(h + H)2 - h2]/2 = ρgH(H + 2h)/2 = ρg(h + 
H/2)Hw.  
 
The total force on the gate is equal to its area times the pressure at its centre. M = ρgw[(h + H)3 - 
h3]/3 = ρg(H2/3 + Hh + h2)Hw, so that c = (H2/3 + Hh + h2)/(h + H/2).  
 
In the simple case of h = 0, c = 2H/3, or two-thirds of the way from the top to the bottom of the gate. 
If we take the atmospheric pressure to act not only on the surface of the water, but also the dry side 
of the gate, there is no change to this result. This is the reason atmospheric pressure often seems 
to have been neglected in solving sub h problems. 
 
Consider a curious rectangular tank, with one side vertical but the opposite side inclined inwards or 
outwards. The horizontal forces exerted by the water on the two sides must be equal and opposite, 
or the tank would scoot off. If the side is inclined outward, then there must be a downward vertical 
force equal to the weight of the water above it, and passing through the centroid of this water. If the 
side is inclined inward, there must be an upward vertical force equal to the weight of the 'missing' 
water above it. In both cases, the result is demanded by ordinary statics.  
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Hydrostatic Paradox 
 
What we have here has been called the 'hydrostatic paradox.' It was conceived by the celebrated 
Flemish engineer Simon Stevin (1548-1620) of Brugge, the first modern scientist to investigate the 
statics of fluids and solids. Consider three tanks with bottoms of equal sizes and equal heights, 
filled with water. The pressures at the bottoms are equal, so the vertical force on the bottom of each 
tank is the same. But suppose that one tank has vertical sides, one has sides inclined inward, and 
third sides inclined outwards. The tanks do not contain the same weight of water, yet the forces on 
their bottoms are equal! I am sure that you can spot the resolution of this paradox. 
 
Sometimes the forces are required on curved 
surfaces. The vertical and horizontal components 
can be found by considering the equilibrium of 
volumes with a plane surface equal to the 
projected area of the curved surface in that 
direction. The general result is usually a force 
plus a couple, since the horizontal and vertical 
forces are not necessarily in the same plane. 
Simple surfaces, such as cylinders, spheres and 
cones, may often be easy to solve. In general, 
however, it is necessary to sum the forces and 
moments numerically on each element of area, and only in simple cases can this be done 
analytically. 
 
If a volume of fluid is accelerated uniformly, the acceleration can be added to the acceleration of 
gravity. A free surface now becomes perpendicular to the total acceleration, and the pressure is 
proportional to the distance from this surface. The same can be done for a rotating fluid, where the 
centrifugal acceleration is the important quantity. The earth's atmosphere is an example. When air 
moves relative to the rotating system, the Coriolis force must also be taken into account. However, 
these are dynamic effects and are not strictly a part of hydrostatics. 
 
Buoyancy 
Archimedes, so the legend runs, was asked to determine if the goldsmith who made a golden crown 
for Hieron, Tyrant of Syracuse, had substituted cheaper metals for gold. The story is told by 
Vitruvius. A substitution could not be detected by simply weighing the crown, since it was craftily 
made to the same weight as the gold supplied for its construction. Archimedes realized that finding 
the density of the crown, that is, the weight per unit volume, would give the answer.  
 
The weight was known, of course, and Archimedes cunningly measured its volume by the amount 
of water that ran off when it was immersed in a vessel filled to the brim. By comparing the results for 
the crown, and for pure gold, it was found that the crown displaced more water than an equal 
weight of gold, and had, therefore, been adulterated.  This story, typical of the charming way 
science was made more interesting in classical times, may or may not actually have taken place, 
but whether it did or not, Archimedes taught that a body immersed in a fluid lost apparent weight 
equal to the weight of the fluid displaced, called Archimedes' Principle. Specific gravity, the ratio of 
the density of a substance to the density of water, can be determined by weighing the body in air, 
and then in water. The specific gravity is the weight in air divided by the loss in weight when 
immersed. This avoids the difficult determination of the exact volume of the sample. 
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How Buoyancy Works 
 
To see how buoyancy works, consider a submerged brick, of height h, width w and length l. The 
difference in pressure on top and bottom of the brick is ρgh, so the difference in total force on top 
and bottom of the brick is simply (ρgh)(wl) = ρgV, where V is the volume of the brick.  
 
The forces on the sides have no vertical 
components, so they do not matter. The net 
upward force is the weight of a volume V of the 
fluid of density ρ. Any body can be considered 
made up of brick shapes, as small as desired, 
so the result applies in general. This is just the 
integral calculus in action, or the application of 
Professor Thomson's analogy.  
 
Consider a man in a rowboat on a lake, with a 
large rock in the boat. He throws the rock into 
the water. What is the effect on the water level 
of the lake?  
 
Suppose you make a drink of ice water with ice cubes floating in it. What happens to the water level 
in the glass when the ice has melted? 
 
The force exerted by the water on the bottom of a boat acts through the centre of gravity B of the 
displaced volume, while the force exerted by gravity on the boat acts through its own centre of 
gravity A. This looks bad for the boat, since the boat's c.g. will naturally be higher than the c.g. of 
the displaced water, so the boat will tend to capsize.  Well, a board floats, and can tell us why. 
Should the board start to rotate to one side, the displaced volume immediately moves to that side, 
and the buoyant force tends to correct the rotation.  A floating body will be stable provided the line 
of action of the buoyant force passes through a point M above the c.g. of the body, called the 
metacentre, so that there is a restoring couple when the boat heels. A ship with an improperly 
designed hull will not float. It is not as easy to make boats as it might appear. 
 
Montgolfier Brothers' Hot Air Balloon  
Archimedes's Principle can also be applied to balloons. The Montgolfier brothers' hot air balloon 
with a paper envelope ascended first in 1783 (the brothers got Pilâtre de Rozier and Chevalier 
d'Arlandes to go up in it). Such "fire balloons" were then replaced with hydrogen-filled balloons, and 
then with balloons filled with coal gas, which was easier to obtain and did not diffuse through the 
envelope quite as rapidly. Methane would be a good filler, with a density 0.55 that of air. Slack 
balloons, like most large ones, can be contrasted with taut balloons with an elastic envelope, such 
as weather balloons. Slack balloons will not be filled full on the ground, and will plump up at altitude. 
Balloons are naturally stable, since the center of buoyancy is above the center of gravity in all 
practical balloons. Submarines are yet another application of buoyancy, with their own 
characteristic problems.  Small neoprene or natural rubber balloons have been used for 
meteorological observations, with hydrogen filling. A 10g ceiling balloon was about 17" in diameter 
when inflated to have a free lift of 40g. It ascended 480ft the first minute, 670ft in a minute and a 
half, and 360ft per minute afterwards, to find cloud ceilings by timing, up to 2500ft, when it 
subtended about 2' of arc, easily seen in binoculars.  
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Large sounding balloons were used to lift a radiosonde and a parachute for its recovery. An 
AN/AMT-2 radiosonde of the 1950's weighed 1500g, the paper parachute 100g, and the balloon 
350g. The balloon was inflated to give 800g free lift, so it would rise 700-800 ft/min to an altitude of 
about 50,000 ft (15 km) before it burst. This balloon was about 6 ft in diameter when inflated at the 
surface, 3 ft in diameter before inflation. The information was returned by radio telemetry, so the 
balloon did not have to be followed optically. Of intermediate size was the pilot balloon, which was 
followed with a theodolite to determine wind directions and speeds. At night, a pilot balloon could 
carry a light for ceiling determinations. 
 
Weather Balloons  
The greatest problem with using hydrogen for lift is that it diffuses rapidly through many substances. 
Weather balloons had to be launched promptly after filling, or the desired free lift would not be 
obtained. Helium is a little better in this respect, but it also diffuses rapidly. The lift obtained with 
helium is almost the same as with hydrogen (density 4 compared to 2, where air is 28.97). 
However, helium is exceedingly rare, and only its unusual occurrence in natural gas from Kansas 
makes it available. Great care must be taken when filling balloons with hydrogen to avoid sparks 
and the accumulation of hydrogen in air, since hydrogen is exceedingly flammable and explosive 
over a wide range of concentrations. Helium has the great advantage that it is not inflammable. 
 
The hydrogen for filling weather balloons came from compressed gas in cylinders, from the reaction 
of granulated aluminum with sodium hydroxide and water, or from the reaction of calcium hydroxide 
with water. The chemical reactions are 2Al + 2NaOH + 2H2O → 2NaAlO2 + 3H2, or CaH2 + 2H2O 
→ Ca(OH) 2 + 2H2. In the first, silicon or zinc could be used instead of aluminum, and in the 
second, any similar metal hydride. Both are rather expensive sources of hydrogen, but very 
convenient when only small amounts are required. Most hydrogen is made from the catalytic 
decomposition of hydrocarbons, or the reaction of hot coke with steam.  
 
Electrolysis of water is an expensive source, since more energy is used than is recovered with the 
hydrogen. Any enthusiasm for a "hydrogen economy" should be tempered by the fact that there are 
no hydrogen wells, and all the hydrogen must be made with an input of energy usually greater than 
that available from the hydrogen, and often with the appearance of carbon.  
 
Although about 60,000 Btu/lb is available from hydrogen, compared to 20,000 Btu/lb from gasoline, 
hydrogen compressed to 1000 psi requires 140 times as much volume for the same weight as 
gasoline. For the energy content of a 13-gallon gasoline tank, a 600-gallon hydrogen tank would be 
required. The critical temperature of hydrogen is 32K, so liquid storage is out of the question for 
general use. 
 
Measurement of Specific Gravity 
The specific gravity of a material is the ratio of the mass (or weight) of a certain sample of it to the 
mass (or weight) of an equal volume of water, the conventional reference material. In the metric 
system, the density of water is 1 g/cc, which makes the specific gravity numerically equal to the 
density. Strictly speaking, density has the dimensions g/cc, while specific gravity is a dimensionless 
ratio. However, in casual speech the two are often confounded.  
 
In English units, however, density, perhaps in lb/cuft or pcf, is numerically different from the specific 
gravity, since the weight of water is 62.5 lb/cuft. 
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Variations  
Things are complicated by the variation of the density of water with temperature, and also by the 
confusion that gave us the distinction between cc and ml. The milliliter is the volume of 1.0 g of 
water at 4°C, by definition. The actual volume of 1.0 g of water at 4°C is 0.999973 cm3 by 
measurement. Since most densities are not known, or needed, to more than three significant 
figures, it is clear that this difference is of no practical importance, and the ml can be taken equal to 
the cc. The density of water at 0°C is 0.99987 g/ml, at 20° 0.99823, and at 100°C 0.95838. The 
temperature dependence of the density may have to be taken into consideration in accurate work. 
Mercury, while we are at it, has a density 13.5955 at 0°C, and 13.5461 at 20°C. 
 
The basic idea in finding specific gravity is to weigh a sample in air, and then immersed in water. 
Then the specific gravity is W/(W - W'), if W is the weight in air, and W' the weight immersed. The 
denominator is just the buoyant force, the weight of a volume of water equal to the volume of the 
sample. This can be carried out with an ordinary balance, but special balances, such as the Jolly 
balance, have been created specifically for this application. Adding an extra weight to the sample 
allows measurement of specific gravities less than 1. 
 
Pycnometer  
A pycnometer is a flask with a close-fitting ground glass stopper with a fine hole through it, so a 
given volume can be accurately obtained. The name comes from the Greek word meaning 
"density." If the flask is weighed empty, full of water, and full of a liquid whose specific gravity is 
desired, the specific gravity of the liquid can easily be calculated. A sample in the form of a powder, 
to which the usual method of weighing cannot be used, can be put into the pycnometer. The weight 
of the powder and the weight of the displaced water can be determined, and from them the specific 
gravity of the powder. 
 
The specific gravity of a liquid can be found with a collection of small weighted, hollow spheres that 
will just float in certain specific gravities. The closest spheres that will just float and just sink put 
limits on the specific gravity of the liquid. This method was once used in Scotland to determine the 
amount of alcohol in distilled liquors. Since the density of a liquid decreases as the temperature 
increases, the spheres that float are an indication of the temperature of the liquid. Galileo's 
thermometer worked this way. 
 
Hydrometer  
A better instrument is the hydrometer, which consists of a weighted float and a calibrated stem that 
protrudes from the liquid when the float is entirely immersed. A higher specific gravity will result in a 
greater length of the stem above the surface, while a lower specific gravity will cause the 
hydrometer to float lower.  
 
The small cross-sectional area of the stem makes the instrument very sensitive. Of course, it must 
be calibrated against standards. In most cases, the graduations ("degrees") are arbitrary and 
reference is made to a table to determine the specific gravities. Hydrometers are used to determine 
the specific gravity of lead-acid battery electrolyte, and the concentration of antifreeze compounds 
in engine coolants, as well as the alcohol content of whiskey. 
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Backflow Introduction 
 
Backflow Prevention, also referred to as Cross-Connection Control, addresses a serious health 
issue. This issue was addressed on the federal level by passage of the "Federal Safe Drinking 
Water Act" as developed by the Environmental Protection Agency (E.P.A.) and passed into law on 
December 16, 1974.  
 
This Act tasked each state with primary enforcement responsibility for a program to assure access 
to safe drinking water by all citizens. Such state program regulations as adopted are required to be 
at least as stringent as the federal regulations as developed and enforced by the E.P.A. 
 
The official definition of a cross-connection is "the link or channel connecting a source of 
pollution with a potable water supply." There are two distinct levels of concern with this issue. 
The first is protection of the general public and the second is protection of persons subject to such 
risks involving service to a single customer, be that customer an individual residence or business. 
 
Sources of pollution which may result in a danger to health are not always obvious and such cross-
connections are certainly not usually intentional. They are usually the result of oversight or a non-
professional installation.  
 
As source examples, within a business environment the pollutant source may involve the 
unintentional cross-connection of internal or external piping with chemical processes or a heating 
boiler.  
 
In a residential environment, the pollutant source may be improper cross-connection with a 
landscape sprinkler system or reserve tank fire protection system. Or, a situation as simple as 
leaving a garden hose nozzle submerged in a bucket of liquid or attached to a chemical sprayer.  
 
Another potential hazard source within any environment may be a cross-connection of piping 
involving a water well located on the property. This is a special concern with older residences or 
businesses, which may have been served by well water prior to connection to the developed 
water system. There are many 
other potential sources of pollutant 
hazards. 
 
Control of cross-connections is 
possible but only through 
knowledge and vigilance.  Public 
education is essential, for many that 
are educated in piping and 
plumbing installations fail to 
recognize cross-connection 
dangers.  
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

40

 
Actual Backflow Events 
 
Paraquat 
In June 1983, "yellow gushy stuff" poured from some faucets in the Town of Woodsboro, 
Maryland. Town personnel notified the County Health Department and the State Water 
Supply Division. The State dispatched personnel to take water samples for analysis and 
placed a ban on drinking the Town's water.  
 
Firefighters warned residents not to use the water for drinking, cooking, bathing, or any 
other purpose except flushing toilets. The Town began flushing its water system. An 
investigation revealed that the powerful agricultural herbicide Paraquat had backflowed into 
the Town's water system. 
 
Someone left open a gate valve between an agricultural herbicide holding tank and the 
Town's water system and, thus, created a cross-connection. Coincidentally, water pressure 
in the Town temporarily decreased due to failure of a pump in the Town's water system. 
The herbicide Paraquat was backsiphoned into the Town's water system. Upon restoration 
of pressure in the Town's water system, Paraquat flowed throughout much of the Town's 
water system. Fortunately, this incident did not cause any serious illness or death. The 
incident did, however, create an expensive burden on the Town. Tanker trucks were used 
temporarily to provide potable water, and the Town flushed and sampled its water system 
extensively. 
 
Mortuary 
The chief plumbing inspector in a large southern city received a telephone call advising that 
blood was coming from drinking fountains at a mortuary (i.e., a funeral home). Plumbing 
and health inspectors went to the scene and found evidence that blood had been circulating 
in the potable water system within the funeral home. They immediately ordered the funeral 
home cut off from the public water system at the meter.  
 
City water and plumbing officials did not think that the water contamination problem had 
spread beyond the funeral home, but they sent inspectors into the neighborhood to check 
for possible contamination. Investigation revealed that blood had backflowed through a 
hydraulic aspirator into the potable water system at the funeral home. 
 
The funeral home had been using a hydraulic aspirator to drain fluids from bodies as part of 
the embalming process. The aspirator was directly connected to a faucet at a sink in the 
embalming room. Water flow through the aspirator created suction used to draw body fluids 
through a needle and hose attached to the aspirator. When funeral home personnel used 
the aspirator during a period of low water pressure, the potable water system at the funeral 
home became contaminated. Instead of body fluids flowing into the wastewater system, 
they were drawn in the opposite direction--into the potable water system. 
 
U.S. Environmental Protection Agency, Cross-Connection Control Manual, 1989 
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Recent Backflow Situations  
 
Oregon 1993 
Water from a drainage pond, used for lawn irrigation, is pumped into the potable water 
supply of a housing development.  
 
California 1994  
A defective backflow device in the water system of the County Courthouse apparently 
caused sodium nitrate contamination that sent 19 people to the hospital.  
 
New York 1994  
An 8-inch reduced pressure principle backflow assembly in the basement of a hospital 
discharged under backpressure conditions, dumping 100,000 gallons of water into the 
basement.  
 
Nebraska 1994 
While working on a chiller unit of an air conditioning system at a nursing home, a hole in 
the coil apparently allowed Freon to enter the circulating water, and from there into the 
city water system.  
 
California 1994 
The blue tinted water in a pond at an amusement park backflowed into the city water 
system and caused colored water to flow from homeowner’s faucets.  
 
California 1994  
A film company shooting a commercial for television accidentally introduced a chemical 
into the potable water system.  
 
Iowa 1994 
A backflow of water from the Capitol Building chilled water system contaminates potable 
water with Freon.  
 
Indiana 1994  
Water main break caused a drop in water pressure, allowing anti-freeze from an air 
conditioning unit to backsiphon into the potable water supply.  
 
Washington 1994  
An Ethylene Glycol cooling system was illegally connected to the domestic water supply 
at a veterinarian hospital.  
 
Ohio 1994 
An ice machine connected to a sewer sickened dozens of people attending a 
convention.  
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Cross-Connection Terms 
 
Cross-connection  
A cross-connection is any temporary or permanent connection between a public water 
system or consumer’s potable (i.e., drinking) water system and any source or system 
containing nonpotable water or other substances. An example is the piping between a 
public water system or consumer’s potable water system and an auxiliary water system, 
cooling system, or irrigation system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Several cross-connection have been made to soda machines, the one to worry 
about is when you have a copper water line hooked to CO2 without a backflow 
preventer.  The reason is that the CO2 will mix in the water and create copper 
carbonic acid, which can be deadly.  This is one reason that you will see clear 
plastic lines at most soda machines and no copper lines.  Most codes require a 
stainless steel RP backflow assembly at soda machines.   
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Common Cross-Connections 
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 Pump Operation Section 
Pump Objectives.  In this section we will examine… 
 

 What is a pump? 
 

 Identify different types of pumps and related 
parts. 

 
 Identify the main purpose of a motor starter. 

 
 Describe the main use of AC and DC motors.  

 
 Describe the operations of level sensor controls. 

 
 Identify and describe the most commonly used 

pumps. 
 

 Identify the suction and discharge valving. 
 

 Distinguish between discharge head, total head, 
suction head, and suction lift. 

 
 Describe information to be obtained from pump performance graphs. 

 
 Identify types of couplings, 

bearings, seals and other pump 
components.  

 
 Describe the importance of the 

alignment of couplings. 
 

 Indicate when packing seals need 
to be replaced. 

 
 Describe cavitation. 

 
 Describe water hammer. 

 
 State the basic principles of 

positive displacement pumps. 
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Pump and Motor Section 
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A centrifugal pump has two main components: 
I. A rotating component comprised of an impeller and a shaft 
II. A stationary component comprised of a casing, casing cover, and bearings. 
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General Pumping Fundamentals 

 
Here are the important points to consider about suction piping when the liquid being pumped is 
below the level of the pump: 
 

• First, suction lift is when the level of water to be pumped is below the centerline of the 
pump. Sometimes suction lift is also referred to as ‘negative suction head’. 

• The ability of the pump to lift water is the result of a partial vacuum created at the center of 
the pump. 

• This works similar to sucking soda from a straw. As you gently suck on a straw, you are 
creating a vacuum or a pressure differential. Less pressure is exerted on the liquid inside 
the straw, so that the greater pressure is exerted on the liquid around the outside of the 
straw, causing the liquid in the straw to move up. By sucking on the straw, this allows 
atmospheric pressure to move the liquid. 

• Look at the diagram illustrated as “1”. The foot valve is located at the end of the suction pipe 
of a pump. It opens to allow water to enter the suction side, but closes to prevent water from 
passing back out of the bottom end. 

• The suction side of pipe should be one diameter larger than the pump inlet. The required 
eccentric reducer should be turned so that the top is flat and the bottom tapered. 

 
Notice in illustration “2” that the liquid is above the level of the pump. Sometimes this is referred to 
as ‘flooded suction’ or ‘suction head’ situations.  
 
Points to Note are: 
If an elbow and bell are used, they should be at least one pipe diameter from the tank bottom 
and side. This type of suction piping must have a gate valve which can be used to prevent the 
reverse flow when the pump has to be removed. In the illustrations you can see in both cases 
the discharge head is from the centerline of the pump to the level of the discharge water. The 
total head is the difference between the two liquid levels. 
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Vertical Turbine well with a mineral oil cooled seal.  Mechanical seal bottom.  
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Pump Definitions (Larger Glossary in the rear of this manual) 
 
Fluid: Any substance that can be pumped such as oil, water, refrigerant, or even air. 
 
Gasket: Flat material that is compressed between two flanges to form a seal. 
 
Gland follower: A bushing used to compress the packing in the stuffing box and to control leakoff. 
 
Gland sealing line: A line that directs sealing fluid to the stuffing box. 
 
Horizontal pumps: Pumps in which the center line of the shaft is horizontal. 
 
Impeller: The part of the pump that increases the speed of the fluid being handled. 
 
Inboard: The end of the pump closest to the motor. 
 
Inter-stage diaphragm: A barrier that separates stages of a multi-stage pump. 
 
Key: A rectangular piece of metal that prevents the impeller from rotating on the shaft. 
 
Keyway: The area on the shaft that accepts the key. 
 
Kinetic energy: Energy associated with motion. 
 
Lantern ring: A metal ring located between rings of packing that distributes gland sealing fluid. 
 
Leak-off: Fluid that leaks from the stuffing box. 
 
Mechanical seal: A mechanical device that seals the pump stuffing box. 
 
Mixed flow pump: A pump that uses both axial-flow and radial-flow components in one 
impeller. 
 
Multi-stage pumps: Pumps with more than one impeller. 
 
Outboard: The end of the pump farthest from the motor. 
 
Packing: Soft, pliable material that seals the stuffing box. 
 
Positive displacement pumps: Pumps that move fluids by physically displacing the fluid inside 
the pump. 
 
Radial bearings: Bearings that prevent shaft movement in any direction outward from the cen-
ter line of the pump. 
 
Radial flow: Flow at 90° to the center line of the shaft. 
 
Retaining nut: A nut that keeps the parts in place. 
 
Rotor: The rotating parts, usually including the impeller, shaft, bearing housings, and all other 
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parts included between the bearing housing and the impeller. 
 
Score: To cause lines, grooves, or scratches. 
 
Shaft: A cylindrical bar that transmits power from the driver to the pump impeller. 
 
Shaft sleeve: A replaceable tubular covering on the shaft. 
 
Shroud: The metal covering over the vanes of an impeller. 
 
Slop drain: The drain from the area that collects leak-off from the stuffing box. 
 
Slurry: A thick, viscous fluid, usually containing small particles.  
 
Stages: Impellers in a multi-stage pump. 
 
Stethoscope: A metal device that can amplify and pinpoint pump sounds. 
 
Strainer: A device that retains solid pieces while letting liquids through. 
 
Stuffing box: The area of the pump where the shaft penetrates the casing. 
 
Suction: The place where fluid enters the pump. 
 
Suction eye: The place where fluid enters the pump impeller. 
 
Throat bushing: A bushing at the bottom of the stuffing box that prevents packing from being 
pushed out of the stuffing box into the suction eye of the impeller. 
 
Thrust: Force, usually along the center line of the pump. 
 
Thrust bearings: Bearings that prevent shaft movement back and forth in the same direction as 
the center line of the shaft. 
 
Troubleshooting: Locating a problem. 
 
Vanes: The parts of the impeller that push and increase the speed of the fluid in the pump. 
 
Vertical pumps: Pumps in which the center line of the shaft runs vertically. 
 
Volute: The part of the pump that changes the speed of the fluid into pressure. 
 
Wearing rings: Replaceable rings on the impeller or the casing that wear as the pump oper-
ates. 
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Pumps 
 
Pumps are used to move or raise fluids. They are not only very useful, but are excellent examples 
of hydrostatics. Pumps are of two general types, hydrostatic or positive displacement pumps, and 
pumps depending on dynamic forces, such as centrifugal pumps. Here we will only consider 
positive displacement pumps, which can be understood purely by hydrostatic considerations. They 
have a piston (or equivalent) moving in a closely-fitting cylinder and forces are exerted on the fluid 
by motion of the piston.  

 
We have already seen an important example of this in the hydraulic lever or hydraulic press, which 
we have called quasi-static. The simplest pump is the syringe, filled by withdrawing the piston and 
emptied by pressing it back in, as its port is immersed in the fluid or removed from it. 
 
More complicated pumps have valves allowing them to work repetitively. These are usually check 
valves that open to allow passage in one direction, and close automatically to prevent reverse flow. 
There are many kinds of valves, and they are usually the most trouble-prone and complicated part 
of a pump. The force pump has two check valves in the cylinder, one for supply and the other for 
delivery. The supply valve opens when the cylinder volume increases, the delivery valve when the 
cylinder volume decreases.  
 
The lift pump has a supply valve and a valve in the piston that allows the liquid to pass around it 
when the volume of the cylinder is reduced. The delivery in this case is from the upper part of the 
cylinder, which the piston does not enter.  
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Diaphragm pumps are force pumps in which the oscillating diaphragm takes the place of the piston. 
The diaphragm may be moved mechanically, or by the pressure of the fluid on one side of the 
diaphragm. 
 
Some positive displacement pumps are shown below. The force and lift pumps are typically used 
for water. The force pump has two valves in the cylinder, while the lift pump has one valve in the 
cylinder and one in the piston. The maximum lift, or "suction," is determined by the atmospheric 
pressure, and either cylinder must be within this height of the free surface. The force pump, 
however, can give an arbitrarily large pressure to the discharged fluid, as in the case of a diesel 
engine injector. A nozzle can be used to convert the pressure to velocity, to produce a jet, as for fire 
fighting. Fire fighting force pumps usually have two cylinders feeding one receiver alternately. The 
air space in the receiver helps to make the water pressure uniform. 
 
The three pumps below are typically used for air, but would be equally applicable to liquids. The 
Roots blower has no valves, their place taken by the sliding contact between the rotors and the 
housing. The Roots blower can either exhaust a receiver or provide air under moderate pressure, in 
large volumes. The Bellows is a very old device, requiring no accurate machining. The single valve 
is in one or both sides of the expandable chamber. Another valve can be placed at the nozzle if 
required. The valve can be a piece of soft leather held close to holes in the chamber. The Bicycle 
pump uses the valve on the valve stem of the tire or inner tube to hold pressure in the tire. The 
piston, which is attached to the discharge tube, has a flexible seal that seals when the cylinder is 
moved to compress the air, but allows air to pass when the movement is reversed.  
 
Diaphragm and vane pumps are not shown, but they act the same way by varying the volume of a 
chamber, and directing the flow with check valves. 
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Types of Pumps 
 
The family of pumps comprises a large number of types based on application and capabilities. 
The two major groups of pumps are dynamic and positive displacement. 
 
Dynamic Pumps (Centrifugal Pump) 
 
Centrifugal pumps are classified into three general categories:  
Radial flow—a centrifugal pump in which the pressure is developed wholly by centrifugal force. 
Mixed flow—a centrifugal pump in which the pressure is developed partly by centrifugal force 
and partly by the lift of the vanes of the impeller on the liquid. 
Axial flow—a centrifugal pump in which the pressure is developed by the propelling or lifting 
action of the vanes of the impeller on the liquid. 
 
Positive Displacement Pumps 
 
A Positive Displacement Pump has an expanding cavity on the suction side of the pump and a 
decreasing cavity on the discharge side. Liquid is allowed to flow into the pump as the cavity on 
the suction side expands and the liquid is forced out of the discharge as the cavity collapses. 
This principle applies to all types of Positive Displacement Pumps whether the pump is a rotary 
lobe, gear within a gear, piston, diaphragm, screw, progressing cavity, etc. 
 
A Positive Displacement Pump, unlike a Centrifugal Pump, will produce the same flow at a 
given RPM no matter what the discharge pressure is. A Positive Displacement Pump cannot be 
operated against a closed valve on the discharge side of the pump, i.e. it does not have a shut-
off head like a Centrifugal Pump does. If a Positive Displacement Pump is allowed to operate 
against a closed discharge valve it will continue to produce flow which will increase the pressure 
in the discharge line until either the line bursts or the pump is severely damaged or both. 
 
Types of Positive Displacement Pumps 

Single Rotor Multiple Rotor 

Vane Gear 

Piston Lobe 

Flexible Member Circumferential Piston 

Single Screw Multiple Screw 

 
There are many types of positive 
displacement pumps. We will look at: 

 Plunger pumps 
 Diaphragm pumps 
 Progressing cavity pumps, and 
 Screw pumps 
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Single Rotator 
Component Description 

Vane The vane(s) may be blades, buckets, rollers, or slippers that cooperate with 
a dam to draw fluid into and out of the pump chamber. 

Piston Fluid is drawn in and out of the pump chamber by a piston(s) reciprocating 
within a cylinder(s) and operating port valves. 

Flexible Member Pumping and sealing depends on the elasticity of a flexible member(s) that 
may be a tube, vane, or a liner. 

Single Screw Fluid is carried between rotor screw threads as they mesh with internal 
threads on the stator. 

Multiple Rotator 
Component Description 

Gear Fluid is carried between gear teeth and is expelled by the meshing of the 
gears that cooperate to provide continuous sealing between the pump inlet 
and outlet. 

Lobe Fluid is carried between rotor lobes that cooperate to provide continuous 
sealing between the pump inlet and outlet. 

Circumferential piston Fluid is carried in spaces between piston surfaces not requiring contacts 
between rotor surfaces. 

Multiple Screw Fluid is carried between rotor screw threads as they mesh. 

 
What kind of mechanical device do you think is used to provide this positive displacement 
in the: 

 
Plunger pump? 
 
 
Diaphragm pump? 
 
 
In the same way, the progressing cavity and the screw are two other types of mechanical action that 
can be used to provide movement of the liquid through the pump. 
 
Plunger Pump 
The plunger pump is a positive displacement pump that uses a plunger or piston to force liquid from 
the suction side to the discharge side of the pump. It is used for heavy sludge. The movement of 
the plunger or piston inside the pump creates pressure inside the pump, so you have to be careful 
that this kind of pump is never operated against any closed discharge valve.  
 
All discharge valves must be open before the pump is started, to prevent any fast build-up of 
pressure that could damage the pump. 
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Diaphragm Pumps 
In this type of pump, a diaphragm provides the mechanical action used to force liquid from the 
suction to the discharge side of the pump. The advantage the diaphragm has over the plunger is 
that the diaphragm pump does not come in contact with moving metal. This can be important when 
pumping abrasive or corrosive materials. 
 
There are three main types of diaphragm pumps available: 

1. Diaphragm sludge pump 
2. Chemical metering or proportional pump 
3. Air-powered double-diaphragm pump 

 
Pump Categories 
 
Let's cover the essentials first. The key to the whole operation is, of course, the pump. And 
regardless of what type it is (reciprocating piston, centrifugal, turbine or jet-ejector, for either shallow 
or deep well applications), its purpose is to move water and generate the delivery force we call 
pressure. Sometimes — with centrifugal pumps in particular — pressure is not referred to in pounds 
per square inch but rather as the equivalent in elevation, called head. No matter; head in feet 
divided by 2.31 equals pressure, so it's simple enough to establish a common figure. 
 
Pumps may be classified on the basis of the application they serve. All pumps may be divided into 
two major categories: (1) dynamic, in which energy is continuously added to increase the fluid 
velocities within the machine, and (2) displacement, in which the energy is periodically added by 
application of force. 
 

Pumps 

Dynamic 
Centrifugal

Displacement 

Axial flow Mixed Flow Peripheral Reciprocating Rotary 
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Split-Case centrifugal pump. 
 

 
 

BFP – 12 inch diameter multi-bowl vertical turbine well pump. 
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Basic Water Pump 
 
The water pump commonly found in our systems is centrifugal pumps. These pumps work by 
spinning water around in a circle inside a cylindrical pump housing. The pump makes the water spin 
by pushing it with an impeller. The blades of this impeller project outward from an axle like the arms 
of a turnstile and, as the impeller spins, the water spins with it. As the water spins, the pressure 
near the outer edge of the pump housing becomes much higher than near the center of the 
impeller.  
 
There are many ways to understand this rise in pressure, and here are two: 

 

 
 
First, you can view the water between the impeller blades as an object traveling in a circle. Objects 
do not naturally travel in a circle--they need an inward force to cause them to accelerate inward as 
they spin.  
 
Without such an inward force, an object will travel in a straight line and will not complete the circle. 
In a centrifugal pump, that inward force is provided by high-pressure water near the outer edge of 
the pump housing. The water at the edge of the pump pushes inward on the water between the 
impeller blades and makes it possible for that water to travel in a circle. The water pressure at the 
edge of the turning impeller rises until it is able to keep water circling with the impeller blades. 

 
You can also view the water as an incompressible fluid, one that obeys Bernoulli's equation in the 
appropriate contexts. As water drifts outward between the impeller blades of the pump, it must 
move faster and faster because its circular path is getting larger and larger. The impeller blades 
cause the water to move faster and faster. By the time the water has reached the outer edge of the 
impeller, it is moving quite fast. However, when the water leaves the impeller and arrives at the 
outer edge of the cylindrical pump housing, it slows down.  
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Her
e is where Bernoulli's equation figures in. As the water slows down and its kinetic energy 
decreases, that water's pressure potential energy increases (to conserve energy). Thus, the 
slowing is accompanied by a pressure rise. That is why the water pressure at the outer edge of the 
pump housing is higher than the water pressure near the center of the impeller. When water is 
actively flowing through the pump, arriving through a 
hole near the center of the impeller and leaving 
through a hole near the outer edge of the pump 
housing, the pressure rise between center and edge 
of the pump is not as large. 
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Vertical Turbine 
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Self-priming pump: A pump that does not require priming or initial filling with liquid. The pump 
casing carries a reserve of water that helps create a vacuum that will lift the fluid from a low 
source. 
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Stuffing box: The joint that seals the fluid in the pump stopping it from coming out between the 
casing and the pump shaft. The following image (source: the Pump Handbook by McGraw-Hill) 
shows a typical stuffing box with gland packing. The function of packing is to control leakage 
and not to eliminate it completely. The packing must be lubricated, and a flow from 40 to 60 
drops per minute out of the stuffing box must be maintained for proper lubrication. This makes 
this type of seal unfit for situations where leakage is unacceptable but they are very common in 
large primary sector industries such a mining and pulp and paper.  
 
 
 
 
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

63

Venturi (Bernoulli's law): A venturi is a pipe that has a gradual restriction that opens up into a 
gradual enlargement. The area of the restriction will have a lower pressure than the enlarged 
area ahead of it. If the difference in diameters is large you can even produce a very high 
vacuum (-28 feet of water). I use a cheap plastic venturi made by Fisher or Cole Palmer for an 
experiment that I do to demonstrate vapor pressure during my training seminars and it is very 
easy to create very high absolute vacuum.  

 
It is not easy to understand why low pressure occurs in the small diameter area of the 
venturi. I have come up with this explanation that seems to help. 
 
It is clear that all the flow must pass from the larger section to the smaller section. Or in 
other words, the flow rate will remain the same in the large and small portions of the 
tube. The flow rate is the same, but the velocity changes. The velocity is greater in the 
small portion of the tube. There is a relationship between the pressure energy and the 
velocity energy; if velocity increases the pressure energy must decrease. This is the 
principle of conservation of energy at work which is also Bernoulli's law. In the large part 
of the pipe the pressure is high and velocity is low, in the small part, pressure is low and 
velocity high. 
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Viscous drag pump: A pump whose impeller has no vanes but relies on fluid contact with a flat 
rotating plate turning at high speed to move the liquid. 
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Types of Water Pumps 
 
The most common type of water pumps used for municipal and domestic water suppliesare 
variable displacement pumps.  A variable displacement pump will produce at different rates 
relative to the amount of pressure or lift the pump is working against.  Centrifugal pumps are 
variable displacement pumps that are by far used the most.  The water production well industry 
almost exclusively uses Turbine pumps, which are a type of centrifugal pump.   
 
The turbine pump utilizes impellers enclosed in single or multiple bowls or stages to lift water by 
centrifugal force.  The impellers may be of either a semi-open or closed type.   Impellers are 
rotated by the pump motor, which provides the horsepower needed to overcome the pumping 
head.   A more thorough discussion of how these and other pumps work is presented later in this 
section. The size and number of stages, horsepower of the motor and pumping head are the key 
components relating to the pump’s lifting capacity.   
 
Vertical turbine pumps are commonly used in groundwater wells.   These pumps are driven by a 
shaft rotated by a motor on the surface.  The shaft turns the impellers within the pump housing 
while the water moves up the column.   
 
This type of pumping system is also called a line-shaft turbine.   The rotating shaft in a line shaft 
turbine is actually housed within the column pipe that delivers the water to the surface.   The size of 
the column, impeller, and bowls are selected based on the desired pumping rate and lift 
requirements.   
 
Column pipe sections can be threaded or coupled together while the drive shaft is coupled and 
suspended within the column by spider bearings.  The spider bearings provide both a seal at the 
column pipe joints and keep the shaft aligned within the column.  The water passing through the 
column pipe serves as the lubricant for the bearings.  Some vertical turbines are lubricated by oil 
rather than water.  These pumps are essentially the same as water lubricated units; only the drive 
shaft is enclosed within an oil tube.    
 
Food grade oil is supplied to the tube through a gravity feed system during operation.  The oil tube 
is suspended within the column by spider flanges, while the line shaft is supported within the oil 
tube by brass or redwood bearings.   A continuous supply of oil lubricates the drive shaft as it 
proceeds downward through the oil tube.   
 
A small hole located at the top of the pump bow unit allows excess oil to enter the well.  This results 
in the formation of an oil film on the water surface within oil-lubricated wells.  Careful operation of oil 
lubricated turbines is needed to ensure that the pumping levels do not drop enough to allow oil to 
enter the pump. Both water and oil lubricated turbine pump units can be driven by electric or fuel 
powered motors.  Most installations use an electric motor that is connected to the drive shaft by a 
keyway and nut.  However, where electricity is not readily available, fuel powered engines may be 
connected to the drive shaft by a right angle drive gear.  Also, both oil and water lubricated systems 
will have a strainer attached to the intake to prevent sediment from entering the pump.   
 
When the line shaft turbine is turned off, water will flow back down the column, turning the impellers 
in a reverse direction.  A pump and shaft can easily be broken if the motor were to turn on during 
this process.  This is why a time delay or ratchet assembly is often installed on these motors to 
either prevent the motor from turning on before reverse rotation stops or simply not allow it to 
reverse at all.  
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There are three main types of diaphragm pumps: 
In the first type, the diaphragm is sealed with one side in the fluid to be pumped, and the other in air 
or hydraulic fluid. The diaphragm is flexed, causing the volume of the pump chamber to increase 
and decrease. A pair of non-return check valves prevents reverse flow of the fluid.  
 
As described above, the second type of diaphragm pump works with volumetric positive 
displacement, but differs in that the prime mover of the diaphragm is neither oil nor air; but is 
electro-mechanical, working through a crank or geared motor drive. This method flexes the 
diaphragm through simple mechanical action, and one side of the diaphragm is open to air. The 
third type of diaphragm pump has one or more unsealed diaphragms with the fluid to be pumped on 
both sides. The diaphragm(s) again are flexed, causing the volume to change.  
 
When the volume of a chamber of either type of pump is increased (the diaphragm moving up), the 
pressure decreases, and fluid is drawn into the chamber. When the chamber pressure later 
increases from decreased volume (the diaphragm moving down), the fluid previously drawn in is 
forced out. Finally, the diaphragm moving up once again draws fluid into the chamber, completing 
the cycle. This action is similar to that of the cylinder in an internal combustion engine. 
 
Cavitation  
Cavitation is defined as the phenomenon of formation of vapor bubbles of a flowing liquid in a 
region where the pressure of the liquid falls below its vapor pressure. Cavitation is usually divided 
into two classes of behavior: inertial (or transient) cavitation and non-inertial cavitation. Inertial 
cavitation is the process where a void or bubble in a liquid rapidly collapses, producing a shock 
wave. Such cavitation often occurs in pumps, propellers, impellers, and in the vascular tissues of 
plants. Non-inertial cavitation is the process in which a bubble in a fluid is forced to oscillate in size 
or shape due to some form of energy input, such as an acoustic field. Such cavitation is often 
employed in ultrasonic cleaning baths and can also be observed in pumps, propellers etc. 
 
Cavitation is, in many cases, an undesirable occurrence. In devices such as propellers and pumps, 
cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency. 
When the cavitation bubbles collapse, they force liquid energy into very small volumes, thereby 
creating spots of high temperature and emitting shock waves, the latter of which are a source of 
noise. The noise created by cavitation is a particular problem for military submarines, as it 
increases the chances of being detected by passive sonar. Although the collapse of a cavity is a 
relatively low-energy event, highly localized collapses can erode metals, such as steel, over time. 
The pitting caused by the collapse of cavities produces great wear on components and can 
dramatically shorten a propeller's or pump's lifetime. After a surface is initially affected by cavitation, 
it tends to erode at an accelerating pace. The cavitation pits increase the turbulence of the fluid flow 
and create crevasses that act as nucleation sites for additional cavitation bubbles. The pits also 
increase the component's surface area and leave behind residual stresses. This makes the surface 
more prone to stress corrosion. 
 
Impeller 
An impeller is a rotating component of a centrifugal pump, usually made of iron, steel, aluminum or 
plastic, which transfers energy from the motor that drives the pump to the fluid being pumped by 
accelerating the fluid outwards from the center of rotation. The velocity achieved by the impeller 
transfers into pressure when the outward movement of the fluid is confined by the pump casing. 
Impellers are usually short cylinders with an open inlet (called an eye) to accept incoming fluid, 
vanes to push the fluid radically, and a splined center to accept a driveshaft. 
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Progressing Cavity Pump 

 
In this type of pump, components referred to as a rotor and an elastic stator provide the mechanical 
action used to force liquid from the suction side to the discharge side of the pump. As the rotor turns 
within the stator, cavities are formed which progress from the suction to the discharge end of the 
pump, conveying the pumped material. The continuous seal between the rotor and the stator 
helices keeps the fluid moving steadily at a fixed flow rate proportional to the pump's rotational 
speed. Progressing cavity pumps are used to pump material very high in solids content. The 
progressive cavity pump must never be run dry, because the friction between the rotor and stator 
will quickly damage the pump. 
 
More on the Progressive Cavity Pump 
A progressive cavity pump is also known as a progressing cavity pump, eccentric screw pump, or 
even just cavity pump, and as is common in engineering generally, these pumps can often be 
referred to by using a generalized trademark. Hence, names can vary from industry to industry and 
even regionally; examples include: Mono pump, Moyno pump, Mohno pump, and Nemo pump. 
 
This type of pump transfers fluid by means of the progress, through the pump, of a sequence of 
small, fixed shape, discrete cavities, as its rotor is turned. This leads to the volumetric flow rate 
being proportional to the rotation rate (bi-directionally) and to low levels of shearing being applied to 
the pumped fluid. Hence, these pumps have application in fluid metering and pumping of viscous or 
shear sensitive materials. It should be noted that the cavities taper down toward their ends and 
overlap with their neighbors, so that, in general, no flow pulsing is caused by the arrival of cavities 
at the outlet, other than that caused by compression of the fluid or pump components. 
 
The principle of this pumping technique is frequently misunderstood; often it is believed to occur 
due to a dynamic effect caused by drag, or friction against the moving teeth of the screw rotor. 
However, in reality it is due to sealed cavities, like a piston pump, and so has similar operational 
characteristics, such as being able to pump at extremely low rates, even to high pressure, revealing 
the effect to be purely positive displacement.  
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The mechanical layout that causes the cavities to, uniquely, be of fixed dimensions as they move 
through the pump, is hard to visualize (its essentially 3D nature renders diagrams quite ineffective 
for explanation), but it is accomplished by the preservation in shape of the gap formed between a 
helical shaft and a two start, twice the wavelength and double the diameter, helical hole, as the 
shaft is "rolled" around the inside surface of the hole. The motion of the rotor being the same as the 
smaller gears of a planetary gears system. This form of motion gives rise to the curves called 
Hypocycloids. 
 
In order to produce a seal between cavities, the rotor requires a circular cross-section and the stator 
an oval one. The rotor so takes a form similar to a corkscrew, and this, combined with the off-center 
rotary motion, leads to the name; Eccentric screw pump. 
 
Different rotor shapes and rotor/stator pitch ratios exist, but are specialized in that they don't 
generally allow complete sealing, so reducing low speed pressure and flow rate linearity, but 
improving actual flow rates, for a given pump size, and/or the pump’s solids handling ability. 

 
 

At a high enough pressure the sliding seals between cavities will leak some fluid rather than 
pumping it, so when pumping against high pressures a longer pump with more cavities is more 
effective, since each seal has only to deal with the pressure difference between adjacent cavities. 
Pumps with between two and a dozen or so cavities exist. 
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

69

In operation, progressive cavity pumps are fundamentally fixed flow rate pumps, like piston pumps 
and peristaltic pumps.  This type of pump needs a fundamentally different understanding to the 
types of pumps to which people are more commonly first introduced, namely ones that can be 
thought of as generating a pressure. This can lead to the mistaken assumption that all pumps can 
have their flow rates adjusted by using a valve attached to their outlet, but with this type of pump 
this assumption is a problem, since such a valve will have practically no effect on the flow rate and 
completely closing it will involve very high, probably damaging, pressures being generated. In order 
to prevent this, pumps are often fitted with cut-off pressure switches, burst disks (deliberately weak 
and easily replaced points), or a bypass pipe that allows a variable amount of a fluid to return to the 
inlet. With a bypass fitted, a fixed flow rate pump is effectively converted to a fixed pressure one. 
 
At the points where the rotor touches the stator, the surfaces are generally traveling transversely, 
so small areas of sliding contact occur, these areas need to be lubricated by the fluid being pumped 
(Hydrodynamic lubrication), this can mean that more torque is required for starting, and if allowed to 
operate without fluid, called 'run dry', rapid deterioration of the stator can result. 
 
While progressive cavity pumps offer long life and reliable service transporting thick or lumpy fluids, 
abrasive fluids will significantly shorten the life of the stator. However, slurries (particulates in a 
medium) can be pumped reliably, as long as the medium is viscous enough to maintain a 
lubrication layer around the particles and so provide protection to the stator. 
 
Specific designs involve the rotor of the pump being made of a steel, coated in a smooth hard 
surface, normally chromium, with the body (the stator) made of a molded elastomer inside a metal 
tube body. The Elastomer core of the stator forms the required complex cavities. The rotor is held 
against the inside surface of the stator by angled link arms, bearings (which have to be within the 
fluid) allowing it to roll around the inner surface (un-driven). Elastomer is used for the stator to 
simplify the creation of the complex internal shape, created by means of casting, and also improves 
the quality and longevity of the seals by progressively swelling due to absorption of water and/or 
other common constituents of pumped fluids. Elastomer/pumped fluid compatibility will thus need to 
be taken into account. 
 
Two common designs of stator are the "Equal-walled" and the "Unequal walled". The latter, 
having greater elastomer wall thickness at the peaks, allows larger-sized solids to pass through 
because of its increased ability to distort under pressure. 
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Key Pump Words 
 
NPSH:  Net positive suction head - related to how much suction lift a pump can achieve by 
creating a partial vacuum. Atmospheric pressure then pushes liquid into the pump. A method of 
calculating if the pump will work or not.  
 
S.G. : Specific gravity.  The weight of liquid in comparison to water at approx 20 deg c (SG = 1). 
 
Specific Speed:  A number which is the function of pump flow, head, efficiency etc. Not used in 
day to day pump selection, but very useful, as pumps with similar specific speed will have 
similar shaped curves, similar efficiency / NPSH / solids handling characteristics. 
 
Vapor Pressure: If the vapor pressure of a liquid is greater than the surrounding air pressure, 
the liquid will boil. 
 
Viscosity: A measure of a liquid's resistance to flow. i.e.: how thick it is. The viscosity 
determines the type of pump used, the speed it can run at, and with gear pumps, the internal 
clearances required. 
 
Friction Loss: The amount of pressure / head required to 'force' liquid through pipe and 
fittings. 
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Screw or Auger Pump 
 
The Archimedes' screw, Archimedean screw, or screwpump is a machine historically used for 
transferring water from a low-lying body of water into irrigation ditches. It was one of several 
inventions and discoveries traditionally attributed to Archimedes in the 3rd century BC. 
 

 
The machine consists of a screw inside a hollow pipe. Some attribute its invention to Archimedes in 
the 3rd century BC, while others attribute it to Nebuchadnezzar II in the 7th century BC. A screw 
can be thought of as an inclined plane (another simple machine) wrapped around a cylinder. 
 
The screw is turned (usually by a windmill or by manual labor). As the bottom end of the tube turns, 
it scoops up a volume of water. This amount of water will slide up in the spiral tube as the shaft is 
turned, until it finally pours out from the top of the tube and feeds the irrigation system. 
 
The contact surface between the screw and the pipe does not need to be perfectly water-tight 
because of the relatively large amount of water being scooped at each turn with respect to the 
angular speed of the screw. Also, water leaking from the top section of the screw leaks into the 
previous one and so on.  So a sort of equilibrium is achieved while using the machine, thus 
preventing a decrease in efficiency. 
 
The "screw" does not necessarily need to turn inside the casing, but can be allowed to turn with it 
in one piece. A screw could be sealed with pitch or some other adhesive to its casing, or, cast as a 
single piece in bronze, as some researchers have postulated as being the devices used to irrigate 
Nebuchadnezzar II's Hanging Gardens of Babylon. Depictions of Greek and Roman water screws 
show the screws being powered by a human treading on the outer casing to turn the entire 
apparatus as one piece, which would require that the casing be rigidly attached to the screw. 
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In this type of pump, a large screw provides the mechanical action to move the liquid from the 
suction side to the discharge side of the pump. Here are some typical characteristics of screw 
pumps: 
 

 Most screw pumps rotate in the 30 to 60 rpm range, although some screw pumps are faster. 
 The slope of the screw is normally either 30° or 38°. 

 
The maximum lift for the larger diameter pumps is about 30 feet. The smaller diameter pumps 
have lower lift capabilities. 
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Submersible Pumps                                                                         
 
Submersible pumps are in essence very similar to turbine pumps.  They both use impellers rotated 
by a shaft within the bowls to pump water.  However, the pump portion is directly connected to the 
motor.    
 
The pump shaft has a keyway in which the splined motor end shaft inserts.  The motor is bolted to 
the pump housing.  The pump’s intake is located between the motor and the pump and is normally 
screened to prevent sediment from entering the pump and damaging the impellers.   
 
The efficient cooling of submersible motors is very important, so these types of pumps are often 
installed such that flow through the well screen can occur upwards past the motor and into the 
intake.  If the motor end is inserted below the screened interval or below all productive portions of 
the aquifer, it will not be cooled, resulting in premature motor failure.   
 
Some pumps may have pump shrouds installed on them to force all the water to move past the 
motor to prevent overheating.   
 
The shroud is a piece of pipe that attaches to the pump housing with an open end below the motor. 
  As with turbine pumps, the size of the bowls and impellers, number of stages, and horsepower of 
the motor are adjusted to achieve the desired production rate within the limitations of the pumping 
head.   
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Insertion of motor spline into the pump keyway. 
 
Cut away of a small submersible pump. 
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Understanding the Operation of a Vertical Turbine Pump 
 
Vertical turbine pumps are available in deep well, shallow well, or canned 
configurations. VHS or VSS motors will be provided to fulfill environmental 
requirements. Submersible motors are also available.  These pumps are also 
suitable industrial, municipal, commercial and agricultural applications.  
 
Deep well turbine pumps are adapted for use in cased wells or where the water 
surface is below the practical limits of a centrifugal pump. Turbine pumps are 
also used with surface water systems. Since the intake for the turbine pump is 
continuously under water, priming is not a concern. Turbine pump efficiencies 
are comparable to or greater than most centrifugal pumps. They are usually 
more expensive than centrifugal pumps and more difficult to inspect and repair.  
The turbine pump has three main parts: (1) the head assembly, (2) the shaft 
and column assembly and (3) the pump bowl assembly. The head is normally cast iron and 
designed to be installed on a foundation. It supports the column, shaft, and bowl assemblies, 
and provides a discharge for the water. It also will support either an electric motor, a right angle 
gear drive or a belt drive.  
 
Bowl Assembly 
The bowl assembly is the heart of the vertical turbine pump. The impeller and diffuser type casing is 
designed to deliver the head and capacity that the system requires in the most efficient way. 
Vertical turbine pumps can be multi-staged, allowing maximum flexibility both in the initial pump 
selection and in the event that future system modifications require a change in the pump rating. The 
submerged impellers allow the pump to be started without priming. The discharge head changes 
the direction of flow from vertical to horizontal, and couples the pump to the system piping, in 
addition to supporting and aligning the driver. 
 
Drivers 
A variety of drivers may be used; however, electric motors are most common. For the purposes of 
this manual, all types of drivers can be grouped into two categories: 
1. Hollow shaft drivers where the pump shaft extends through a tube in the center of the rotor and is 
connected to the driver by a clutch assembly at the top of the driver. 
2. Solid shaft drivers where the rotor shaft is solid and projects below the driver mounting base. 
This type of driver requires an adjustable flanged coupling for connecting to the pump. 
 
Discharge Head Assembly 
The discharge head supports the driver and bowl assembly as well as supplying a discharge 
connection (the “NUF” type discharge connection which will be located on one of the column pipe 
sections below the discharge head). A shaft sealing arrangement is located in the discharge head 
to seal the shaft where it leaves the liquid chamber. The shaft seal will usually be either a 
mechanical seal assembly or stuffing box. 
 
Column Assembly 
The shaft and column assembly provides a connection between the head and pump bowls. The line 
shaft transfers the power from the motor to the impellers and the column carries the water to the 
surface. The line shaft on a turbine pump may be either water lubricated or oil lubricated. The oil-
lubricated pump has an enclosed shaft into which oil drips, lubricating the bearings. The water-
lubricated pump has an open shaft. The bearings are lubricated by the pumped water.  
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If there is a possibility of fine sand being pumped, select the oil lubricated pump because it will keep 
the sand out of the bearings. If the water is for domestic or livestock use, it must be free of oil and a 
water-lubricated pump must be used.  
 
Line shaft bearings are commonly placed on 10-foot centers for water-lubricated pumps operating 
at speeds under 2,200 RPM and at 5-foot centers for pumps operating at higher speeds. Oil-
lubricated bearings are commonly placed on 5-foot centers.  
 
A pump bowl encloses the impeller. Due to its limited diameter, each impeller develops a relatively 
low head. In most deep well turbine installations, several bowls are stacked in series one above the 
other. This is called staging. A four-stage bowl assembly contains four impellers, all attached to a 
common shaft and will operate at four times the discharge head of a single-stage pump.  
 
Impellers used in turbine pumps may be either semi-open or enclosed. The vanes on semi-open 
impellers are open on the bottom and they rotate with a close tolerance to the bottom of the pump 
bowl. The tolerance is critical and must be adjusted when the pump is new. During the initial break-
in period the line shaft couplings will tighten, therefore, after about 100 hours of operation, the 
impeller adjustments should be checked. After break-in, the tolerance must be checked and 
adjusted every three to five years or more often if pumping sand.  
 
Column assembly is of two basic types, either of which may be used: 
1. Open lineshaft construction utilizes the fluid being pumped to lubricate the lineshaft bearings. 
2. Enclosed lineshaft construction has an enclosing tube around the lineshaft and utilizes oil, 
grease, or injected liquid (usually clean water) to lubricate the lineshaft bearings. 
 
Column assembly will consist of:  
1) column pipe, which connects the bowl assembly to the discharge head, 
2) shaft, connecting the bowl shaft to the driver and,  
3) may contain bearings, if required, for the particular unit. Column pipe may be either threaded or 
flanged. 
Note: Some units will not require column assembly, having the bowl assembly connected 
directly to the discharge head instead. 
 
Bowl Assemblies 
The bowl consists of:  
1) impellers rigidly mounted on the bowl shaft, which rotate and impart energy to the fluid, 
2) bowls to contain the increased pressure and direct the fluid,  
3) suction bell or case which directs the fluid into the first impeller, and  
4) bearings located in the suction bell (or case) and in each bowl. 
 
Both types of impellers may cause inefficient pump operation if they are not properly adjusted. 
Mechanical damage will result if the semi-open impellers are set too low and the vanes rub against 
the bottom of the bowls. The adjustment of enclosed impellers is not as critical; however, they must 
still be checked and adjusted.  
 
Impeller adjustments are made by tightening or loosening a nut on the top of the head assembly. 
Impeller adjustments are normally made by lowering the impellers to the bottom of the bowls and 
adjusting them upward. The amount of upward adjustment is determined by how much the line shaft 
will stretch during pumping. The adjustment must be made based on the lowest possible pumping 
level in the well. The proper adjustment procedure if often provided by the pump manufacturer.  
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Basic Operation of a Vertical Turbine 
 
Pre-start 
Before starting the pump, the following checks should be made: 
1. Rotate the pump shaft by hand to make sure the pump is free and the impellers are correctly 
positioned. 
2. Is the head shaft adjusting nut properly locked into position? 
3. Has the driver been properly lubricated in accordance with the instructions furnished with the 
driver? 
4. Has the driver been checked for proper rotation? If not, the pump must be disconnected from the 
driver before checking. The driver must rotate COUNTER CLOCKWISE when looking down at the 
top of the driver. 
5. Check all connections to the driver and control equipment. 
6. Check that all piping connections are tight. 
7. Check all anchor bolts for tightness. 
8. Check all bolting and tubing connections for tightness (driver mounting bolts, flanged coupling 
bolts, glad plate bolts, seal piping, etc.). 
9. On pumps equipped with stuffing box, make sure the gland nuts are only finger tight — DO NOT 
TIGHTEN packing gland before starting. 
10. On pumps equipped with mechanical seals, clean fluid should be put into the seal chamber. 
With pumps under suction pressure this can be accomplished by bleeding all air and vapor out of 
the seal chamber and allowing the fluid to enter. With pumps not under suction pressure, the seal 
chamber should be flushed liberally with clean fluid to provide initial lubrication. Make sure the 
mechanical seal is properly adjusted and locked 
into place. 
NOTE: After initial start-up, pre-lubrication of the mechanical seal will usually not be 
required, as enough liquid will remain in the seal chamber for subsequent start-up 
lubrication. 
11. On pumps equipped with enclosed lineshaft, lubricating liquid must be available and should be 
allowed to run into the enclosing tube in sufficient quantity to thoroughly lubricate all lineshaft 
bearings. 
 
Initial Start-Up 
1. If the discharge line has a valve in it, it should be partially open for initial starting — Min. 10%. 
2. Start lubrication liquid flow on enclosed lineshaft units. 
3. Start the pump and observe the operation. If there is any difficulty, excess noise or vibration, stop 
the pump immediately. 
4. Open the discharge valve as desired. 
5. Check complete pump and driver for leaks, loose connections, or improper operation. 
6. If possible, the pump should be left running for approximately ½ hour on the initial start-up. This 
will allow the bearings, packing or seals, and other parts to “run-in” and reduce the possibility of 
trouble on future starts. 
 
NOTE: If abrasives or debris are present upon startup, the pump should be allowed to run 
until the pumpage is clean. Stopping the pump when handling large amounts of abrasives 
(as sometimes present on initial starting) may lock the pump and cause more damage  than 
if the pump is allowed to continue operation. 
 
CAUTION: Every effort should be made to keep abrasives out of lines, sumps, etc. so that 
abrasives will not enter the pump. 
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Stuffing Box Adjustment 
On the initial starting it is very important that the packing gland not be tightened too much. New 
packing must be “run in” properly to prevent damage to the shaft and shortening of the packing life. 
The stuffing box must be allowed to leak for proper operation. The proper amount of leakage can be 
determined by checking the temperature of the leakage; this should be cool or just lukewarm — 
NOT HOT. When adjusting the packing gland, bring both nuts down evenly and in small steps until 
the leakage is reduced as required. The nuts should only be tightened about ½ turn at a time at 20 
to 30 minute intervals to allow the packing to “run in”. Under proper operation, a set of packing will 
last a long time. Occasionally a new ring of packing will need to be added to keep the box full. After 
adding two or three rings of packing, or when proper adjustment cannot be achieved, the stuffing 
box should be cleaned completely of all old packing and re-packed. 
 
Lineshaft Lubrication 
Open lineshaft bearings are lubricated by the pumped fluid and on close coupled units (less than 
30’ long), will usually not require pre or post lubrication. Enclosed lineshaft bearings are lubricated 
by extraneous liquid (usually oil or clean water), which is fed to the tension nut by either a gravity 
flow system or pressure injection system. The gravity flow system utilizing oil is the most common 
arrangement. The oil reservoir must be kept filled with a good quality light turbine oil (about 150 
SSU at operating temperature) and adjusted to feed 10 to 12 drops per minute plus one (1) drop 
per 100’ of setting. Injection systems are designed for each installation — injection pressure and 
quantity of lubricating liquid will vary. Refer to packing slip or separate instruction sheet for 
requirements when unit is designed for injection lubrication. 
 
General Maintenance Section 
A periodic inspection is recommended as the best means of preventing breakdown and keeping 
maintenance costs to a minimum. Maintenance personnel should look over the whole installation 
with a critical eye each time the pump is inspected — a change in noise level, amplitude or 
vibration, or performance can be an indication of impending trouble. Any deviation in performance 
or operation from what is expected can be traced to some specific cause. Determination of the 
cause of any misperformance or improper operation is essential to the correction of the trouble — 
whether the correction is done by the user, the dealer or reported back to the factory. Variances 
from initial performance will indicate changing system conditions or wear or impending breakdown 
of unit. 
 
Deep well turbine pumps must have correct alignment between the pump and the power unit. 
Correct alignment is made easy by using a head assembly that matches the motor and 
column/pump assembly. It is very important that the well is straight and plumb. The pump column 
assembly must be vertically aligned so that no part touches the well casing. Spacers are usually 
attached to the pump column to prevent the pump assembly from touching the well casing. If the 
pump column does touch the well casing, vibration will wear holes in the casing. A pump column 
out of vertical alignment may also cause excessive bearing wear.  
 
The head assembly must be mounted on a good foundation at least 12 inches above the ground 
surface. A foundation of concrete (Figure 7) provides a permanent and trouble-free installation. The 
foundation must be large enough to allow the head assembly to be securely fastened. The 
foundation should have at least 12 inches of bearing surface on all sides of the well. In the case of a 
gravel-packed well, the 12-inch clearance is measured from the outside edge of the gravel packing.  
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Vertical Turbine Pump 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
Large Diameter Submersible 
Pump, Motor, and Column Pipe 

 
Larger check valve installed on 
submersible pump to prevent 
water hammer (notice motor shaft 
splines.) 
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Common Elements of Vertical Turbines 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Above, Vertical Turbine  
Pump Being Removed 
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Closed Pump Impeller 
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Centrifugal Pump 
 
By definition, a centrifugal pump is a machine. More specifically, it is a machine that imparts energy 
to a fluid. This energy infusion can cause a liquid to flow, rise to a higher level, or both.  
 
The centrifugal pump is an extremely simple machine. It is a member of a family known as rotary 
machines and consists of two basic parts: 1) the rotary element or impeller and 2) the stationary 
element or casing (volute). The figure at the bottom of the page is a cross section of a centrifugal 
pump and shows the two basic parts. 
 
In operation, a centrifugal pump “slings” liquid out of the impeller via centrifugal force. One fact that 
must always be remembered: A pump does not create pressure, it only provides flow. Pressure is  
just an indication of the amount of resistance to flow. Centrifugal pumps may be classified in several 
ways. For example, they may be either SINGLE STAGE or MULTI-STAGE. A single-stage pump 
has only one impeller. A multi-stage pump has two or more impellers housed together in one 
casing. 

 
 

As a rule, each impeller acts separately, discharging to the suction of the next stage impeller. This 
arrangement is called series staging. Centrifugal pumps are also classified as HORIZONTAL or 
VERTICAL, depending upon the position of the pump shaft. The impellers used on centrifugal 
pumps may be classified as SINGLE SUCTION or DOUBLE SUCTION. The single-suction impeller 
allows liquid to enter the eye from one side only. The double-suction impeller allows liquid to enter 
the eye from two directions. 
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Impellers are also classified as CLOSED or OPEN. Closed impellers have side walls that extend 
from the eye to the outer edge of the vane tips. Open impellers do not have these side walls. Some 
small pumps with single-suction impellers have only a casing wearing ring and no impeller ring. In 
this type of pump, the casing wearing ring is fitted into the end plate. 
 
Recirculation lines are installed on some centrifugal pumps to prevent the pumps from overheating 
and becoming vapor bound, in case the discharge is entirely shut off or the flow of fluid is stopped 
for extended periods.  
 
Seal piping is installed to cool the shaft and the packing, to lubricate the packing, and to seal the 
rotating joint between the shaft and the packing against air leakage. A lantern ring spacer is 
inserted between the rings of the packing in the stuffing box.  
 
Seal piping leads the liquid from the discharge side of the pump to the annular space formed by the 
lantern ring. The web of the ring is perforated so that the water can flow in either direction along the 
shaft (between the shaft and the packing).  
 
Water flinger rings are fitted on the shaft between the packing gland and the pump bearing housing. 
These flingers prevent water in the stuffing box from flowing along the shaft and entering the 
bearing housing. 
 
Let’s look at the components of the centrifugal pump. 

 
Centrifugal Pump 

 
As the impeller rotates, it sucks the liquid into the center of the pump and throws it out under 
pressure through the outlet. The casing that houses the impeller is referred to as the volute, the 
impeller fits on the shaft inside. The volute has an inlet and outlet that carries the water as shown 
above. 
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These pictures illustrate the components that are common to most pump assemblies. 
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NPSH - Net Positive Suction Head 
 
If you accept that a pump creates a partial vacuum and atmospheric pressure forces water into the 
suction of the pump, then you will find NPSH a simple concept. 
 
NPSH (a) is the Net Positive Suction Head Available, which is calculated as follows: 
 
NPSH (a) = p + s - v - f 
 
Where: 
'p'= atmospheric pressure, 
's'= static suction (If liquid is below pump, it is shown as a negative value) 
'v'= liquid vapor pressure 
'f'= friction loss 
 
NPSH (a) must exceed NPSH(r) to allow pump operation without cavitation. (It is advisable to allow 
approximately 1 meter difference for most installations.) The other important fact to remember is 
that water will boil at much less than 100 deg CO if the pressure acting on it is less than its vapor 
pressure, i.e. water at 95 deg C is just hot water at sea level, but at 1500m above sea level it is 
boiling water and vapor. 
 
The vapor pressure of water at 95 deg C is 84.53 kPa, there was enough atmospheric pressure at 
sea level to contain the vapor, but once the atmospheric pressure dropped at the higher elevation, 
the vapor was able to escape. This is why vapor pressure is always considered in NPSH 
calculations when temperatures exceed 30 to 40 deg C. 
 
NPSH(r) is the Net Positive Suction Head Required by the pump, which is read from the pump 
performance curve. (Think of NPSH(r) as friction loss caused by the entry to the pump suction.) 
 
Affinity Laws  
 
The Centrifugal Pump is a very capable and flexible machine. Because of this it is unnecessary to 
design a separate pump for each job. The performance of a centrifugal pump can be varied by 
changing the impeller diameter or its rotational speed. Either change produces approximately the 
same results. Reducing impeller diameter is probably the most common change and is usually the 
most economical. The speed can be altered by changing pulley diameters or by changing the speed 
of the driver. In some cases both speed and impeller diameter are changed to obtain the desired 
results.  
 
When the driven speed or impeller diameter of a centrifugal pump changes, operation of the 
pump changes in accordance with three fundamental laws. These laws are known as the "Laws 
of Affinity". They state that:  
1) Capacity varies directly as the change in speed  
2) Head varies as the square of the change in speed  
3) Brake horsepower varies as the cube of the change in speed  
If, for example, the pump speed were doubled:  
1) Capacity will double  
2) Head will increase by a factor of 4 (2 to the second power)  
3) Brake horsepower will increase by a factor of 8 (2 to the third power)  
These principles apply regardless of the direction (up or down) of the speed or change in 
diameter.  
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Consider the following example. A pump operating at 1750 RPM, delivers 210 GPM at 75' TDH, 
and requires 5.2 brake horsepower. What will happen if the speed is increased to 2000 RPM? 
First we find the speed ratio.  
 
Speed Ratio = 2000/1750 = 1.14  
From the laws of Affinity:  
1) Capacity varies directly or:  
1.14 X 210 GPM = 240 GPM  
2) Head varies as the square or:  
 
1.14 X 1.14 X 75 = 97.5' TDH  
3) BHP varies as the cube or:  
 
1.14 X 1.14 X 1.14 X 5.2 = 7.72 BHP  
Theoretically the efficiency is the same for both conditions. By calculating several points a new 
curve can be drawn.  
 
Whether it be a speed change or change in impeller diameter, the Laws of Affinity give results 
that are approximate. The discrepancy between the calculated values and the actual values 
obtained in test are due to hydraulic efficiency changes that result from the modification. The 
Laws of Affinity give reasonably close results when the changes are not more than 50% of the 
original speed or 15% of the original diameter.  
 
Suction conditions are some of the most important factors affecting centrifugal pump operation. 
If they are ignored during the design or installation stages of an application, they will probably 
come back to haunt you.  
 
Suction Lift  
 
A pump cannot pull or "suck" a liquid up its suction pipe because liquids do not exhibit tensile 
strength. Therefore, they cannot transmit tension or be pulled. When a pump creates a suction, it is 
simply reducing local pressure by creating a partial vacuum. Atmospheric or some other external 
pressure acting on the surface of the liquid pushes the liquid up the suction pipe into the pump.  
 
Atmospheric pressure at sea level is called absolute pressure (PSIA) because it is a measurement 
using absolute zero (a perfect vacuum) as a base. If pressure is measured using atmospheric 
pressure as a base it is called gauge pressure (PSIG or simply PSI).  
 
Atmospheric pressure, as measured at sea level, is 14.7 PSIA. In feet of head it is:  
Head = PSI X 2.31 / Specific Gravity  
 
For Water it is:  
Head = 14.7 X 2.31 / 1.0 = 34 Ft  
 
Thus, 34 feet is the theoretical maximum suction lift for a pump pumping cold water at sea level. No 
pump can attain a suction lift of 34 ft; however, well designed ones can reach 25 ft quite easily. You 
will note, from the equation above, that specific gravity can have a major effect on suction lift. For 
example, the theoretical maximum lift for brine (Specific Gravity = 1.2) at sea level is 28 ft.. The 
realistic maximum is around 20ft. Remember to always factor in specific gravity if the liquid being 
pumped is anything but clear, cold (68 degrees F) water.  
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In addition to pump design and suction piping, there are two physical properties of the liquid being 
pumped that affect suction lift.  
 
1) Maximum suction lift is dependent upon the pressure applied to the surface of the liquid at the 
suction source. Maximum suction lift decreases as pressure decreases.  
 
2) 2) Maximum suction lift is dependent upon the vapor pressure of the liquid being pumped. The 
vapor pressure of a liquid is the pressure necessary to keep the liquid from vaporizing (boiling) at a 
given temperature. Vapor pressure increases as liquid temperature increases. Maximum suction lift 
decreases as vapor pressure rises.  
 
It follows then, that the maximum suction lift of a centrifugal pump varies inversely with altitude. 
Conversely, maximum suction lift will increase as the external pressure on its source increases (for 
example: a closed pressure vessel).  
 
Cavitation - Two Main Causes: 
 
A. NPSH (r) EXCEEDS NPSH (a) 
Due to low pressure the water vaporizes (boils) and higher pressure implodes into the vapor 
bubbles as they pass through the pump, causing reduced performance and potentially major 
damage. 
B. Suction or discharge recirculation. The pump is designed for a certain flow range, if there is not 
enough or too much flow going through the pump, the resulting turbulence and vortexes can reduce 
performance and damage the pump. 
 
Affinity Laws - Centrifugal Pumps 
 
If the speed or impeller diameter of a pump changes, we can calculate the resulting 
performance change using: 
Affinity laws 
a. The flow changes proportionally to speed 
i.e.: double the speed / double the flow 
b. The pressure changes by the square of the difference 
i.e.: double the speed / multiply the pressure by 4 
c. The power changes by the cube of the difference 
i.e.: double the speed / multiply the power by 8 
 
Notes: 
1. These laws apply to operating points at the same efficiency. 
2. Variations in impeller diameter greater than 10% are hard to predict due to the change in 
relationship between the impeller and the casing. For rough calculations you can adjust a duty point 
or performance curve to suit a different speed. NPSH (r) is affected by speed / impeller diameter 
change = DANGER ! 
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Pump Casing 
 
There are many variations of centrifugal pumps. The most common type is an end suction pump.  
Another type of pump used is the split case. There are many variations of split case, such as; two-
stage, single suction, and double suction. Most of these pumps are horizontal.  
 
There are variations of vertical centrifugal pumps. The line shaft turbine is really a multistage 
centrifugal pump. 
 
Impeller 
In most centrifugal pumps, the impeller looks like a number of cupped vanes on blades mounted 
on a disc or shaft. Notice in the picture below how the vanes of the impeller force the water into 
the outlet of the pipe.  
 
The shape of the vanes of the impeller is important. As the water is 
being thrown out of the pump, this means you can run centrifugal 
pumps with the discharged valve closed for a SHORT period of time. 
Remember the motor sends energy along the shaft, and if the water is 
in the volute too long it will heat up and create steam. Not good! 
 
Impellers are designed in various ways. We will look at: 

• Closed impellers 
• Semi-open impellers 
• Opened impellers, and 
• Recessed impellers 

 
 
The impellers all cause a flow from the eye of the impeller to the 
outside of the impeller. These impellers cause what is called radial  
flow, and they can be referred to as radial flow impellers. 
 
The critical distance of the impeller and how it is installed in 
the casing will determine if it is high volume / low pressure or 
the type of liquid that could be pumped. 
 
Axial flow impellers look like a propeller and create a flow that 
is parallel to the shaft. 
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Pump Performance and Curves 
 
Lets looks at the big picture. Before you make that purchase of the pump and motor you need to 
know the basics such as: 
 

• Total dynamic head, the travel distance 
• Capacity, how much water you need to provide 
• Efficiency, help determine the impeller size 
• HP, how many squirrels you need 
• RPM, how fast the squirrels run 

 
 
 

 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

90
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Motor and Pump Calculations 
 
The centrifugal pump pumps the difference between the suction and the discharge heads. There 
are three kinds of discharge head: 

• Static head. The height we are pumping to, or the height to the discharge piping outlet that 
is filling the tank from the top. Note: that if you are filling the tank from the bottom, the static 
head will be constantly changing.  

• Pressure head. If we are pumping to a pressurized vessel (like a boiler) we must convert 
the pressure units (psi. or Kg.) to head units (feet or meters).  

• System or dynamic head. Caused by friction in the pipes, fittings, and system 
components. We get this number by making the calculations from published charts. 

 
Suction head is measured the same way. 

• If the liquid level is above the pump center line, that level is a positive suction head. If the 
pump is lifting a liquid level from below its center line, it is a negative suction head.  

• If the pump is pumping liquid from a pressurized vessel, you must convert this pressure to a 
positive suction head. A vacuum in the tank would be converted to a negative suction head.  

• Friction in the pipes, fittings, and associated hardware is a negative suction head.  
• Negative suction heads are added to the pump discharge head, positive suctions heads are 

subtracted from the pump discharge head.  
 
Total Dynamic Head (TDH) is the total height that a fluid is to be pumped, taking into account 
friction losses in the pipe. 
 
TDH = Static Lift + Static Height + Friction Loss 
 
where: 
Static Lift is the height the water will rise before arriving at the pump (also known as the 'suction 
head'). 
 
Static Height is the maximum height reached by the pipe after the pump (also known as the 
'discharge head'). 
 
Friction Loss is the head equivalent to the energy losses due to viscose drag of fluid flowing in 
the pipe (both on the suction and discharge sides of the pump). It is calculated via a formula or 
a chart, taking into account the pipe diameter and roughness and the fluid flow rate, density, 
and viscosity. 

 
 

 
 
 Motor hp Brake hp Water hp 
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Horsepower 
 
Work involves the operation of force over a specific distance. The rate of doing work is called 
power. The rate in which a horse could work was determined to be about 550 ft-lbs/sec or 
33,000 ft-lbs/min. 
 
1 hp = 33,000 ft-lbs/min 
 
Motor Horsepower (mhp) 
 
1 hp = 746 watts or  .746 Kilowatts 
 
MHP refers to the horsepower supplied in the form of electrical current. The efficiency of most 
motors range from 80-95%. (Manufactures will list efficiency %) 
 
Brake Horsepower (bhp) 
 
       Water hp 
Brake hp = --------------- 
    Pump Efficiency 
 
BHP refers to the horsepower supplied to the pump from the motor. As the power moves 
through the pump, additional horsepower is lost, resulting from slippage and friction of the shaft 
and other factors. 
 
Water Horsepower 
 
       (flow gpm)(total hd)  
Water hp = --------------------------- 
         3960 
Water horsepower refers to the actual horse power available to pump the water. 
 
Horsepower and Specific Gravity 
 
The specific gravity of a liquid is an indication of its density or weight compared to water. The 
difference in specific gravity, include it when calculating ft-lbs/min pumping requirements. 
 
(ft)(lbs/min)(sp.gr.)   
------------------------- =  whp 
33,000 ft-lbs/min/hp 
 
 
MHP and Kilowatt requirements 
 
1 hp = 0.746 kW  or   (hp) (746 watts/hp) 
   ------------------------ 
   1000 watts/kW 
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

93

Well Calculations 
 
1. Well drawdown 
 
Drawdown ft = Pumping water level, ft - Static water level, ft 
 
2. Well yield 

      Flow, gallons 
Well yield, gpm = ----------------------- 
  Duration of test, min 
 
3. Specific yield 
 

           Well yield, gpm 
Specific yield, gpm/ft = --------------------- 
             Drawdown, ft 
 
4. Deep well turbine pump calculations. 
 
Discharge head, ft = (pressure measured) ( 2.31 ft/psi) 
 
Field head, ft = pumping water + discharge head, ft 
 
Bowl head, ft = field head + column friction 
 
1 psi = 2.31 feet of head  
1 foot of head = .433 psi 
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Example 1 
 
A centrifugal pump is located at an elevation of 722 ft. This pump is used to move water from 
reservoir A to reservoir B. The water level in reservoir A is 742 ft and the water level in reservoir B 
is 927 ft. Based on these conditions answer the following questions: 
 

1. If the pump is not running and pressure gauges are installed on the suction and 
discharge lines, what pressures would the gauges read? 

 
Suction side: 
 
 
 
Discharge side: 
 

 
 

2. How can you tell if this is a suction head condition? 
 
 

3. Calculate the following head measurements: 
 
 

SSH:  
 
SDH: 
 
TSH: 
 
 
4. Convert the pressure gauge readings to feet: 
 
 
6 psi: 
 
48 psi: 
 
110 psi: 
 
5. Calculate the following head in feet to psi: 
 
 
20 ft: 
 
205 ft: 
 
185 ft: 
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Motor, Coupling and Bearing Section  
 
We will now refer to the motor, coupling, and bearings. The power source of the pump is usually an 
electric motor. The motor is connected by a coupling to the pump shaft. The purpose of the 
bearings is to hold the shaft firmly in place, yet allow it to rotate. The bearing house supports the 
bearings and provides a reservoir for the lubricant. An impeller is connected to the shaft. The pump 
assembly can be a vertical or horizontal set-up; the components for both are basically the same.  
 
Motors 
The purpose of this discussion on pump motors is to identify and describe the main types of motors, 
starters, enclosures and motor controls, as well as to provide you with some basic maintenance and 
troubleshooting information. Although pumps could be driven by diesel or gasoline engines, pumps 
driven by electric motors are commonly used in our industry. 
 
There are two general categories of electric motors: 

 D-C motors, or direct current 
 A-C motors, or alternating current 

You can expect most motors at facilities 
to be A-C type. 
 
D-C Motors 
The important characteristic of the D-C 
motor is that its speed will vary with the 
amount of current used. There are many 
different kinds of D-C motors, depending 
on how they are wound and their 
speed/torque characteristics. 
 
A-C Motors 
There are a number of different types of 
alternating current motors, such as 
Synchronous, Induction, wound rotor, and squirrel cage. The synchronous type of A-C motor 
requires complex control equipment, since they use a combination of A-C and D-C. This also 
means that the synchronous type of A-C motor is used in large horsepower sizes, usually above 
250 HP. The induction type motor uses only alternating current. The squirrel cage motor provides a 
relatively constant speed.  The wound rotor type could be used as a variable speed motor. 
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Define the Following Terms: 
 
Voltage: 
 
 
EMF: 
 
 
Power: 
 
 
Current: 
 
 
Resistance: 
 
 
Conductor:  
 
 
Phase: 
 
 
Single Phase: 
 
 
Three Phase: 
 
 
Hertz: 
 
 
Motor Starters 
All electric motors, except very small ones such as chemical feed pumps, are equipped with 
starters, either full voltage or reduced voltage. This is because motors draw a much higher current 
when they are starting and gaining speed. The purpose of the reduced voltage starter is to prevent 
the load from coming on until the amperage is low enough. 
 
How do you think keeping the discharge valve closed on a 
centrifugal pump could reduce the start up load? 
  
Motor Enclosures 
Depending on the application, motors may need special 
protection. Some motors are referred to as open motors. 
They allow air to pass through to remove heat generated 
when current passes through the windings. Other motors use 
specific enclosures for special environments or safety 
protection. 
 
Can you think of any locations within your facility that requires special enclosures? 
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Two Types of Totally Enclosed Motors Commonly Used are: 
 

 TENV, or totally enclosed non-ventilated motor 
 TEFC, or totally enclosed fan cooled motor 

 
Totally enclosed motors include dust-proof, water-proof and explosion-proof motors. An explosion 
proof enclosure must be provided on any motor where dangerous gases might accumulate. 
 
Motor Controls 
All pump motors are provided with some method of control, typically a combination of manual and 
automatic. Manual pump controls can be located at the central control panel at the pump or at the 
suction or discharge points of the liquid being pumped. 
 
There are a number of ways in which automatic control of a pump motor can be regulated: 

 Pressure and vacuum sensors   
 Preset time intervals 
 Flow sensors 
 Level sensors 

 
Two typical level sensors are the float 
sensor and the bubble regulator. The 
float sensor is pear-shaped and hangs 
in the wet well. As the height 
increases, the float tilts, and the 
mercury in the glass tube flows toward 
the end of the tube that has two wires 
attached to it. When the mercury 
covers the wires, it closes the circuit.  
  
A low pressure air supply is allowed to 
escape from a bubbler pipe in the wet well. The back-pressure on the air supply will vary with the 
liquid level over the pipe. Sensitive air pressure switches will detect this change and use this 
information to control pump operation. 
 
Motor Maintenance  
Motors should be kept clean, free of 
moisture, and lubricated properly. Dirt, 
dust, and grime will plug the ventilating 
spaces and can actually form an 
insulating layer over the metal surface 
of the motor.  
 
What condition would occur if the 
ventilation becomes blocked? 
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Moisture 
 
Moisture harms the insulation on the windings to the point where they may no longer provide the 
required insulation for the voltage applied to the motor. In addition, moisture on windings tend to 
absorb acid and alkali fumes, causing damage to both insulation and metals. To reduce problems 
caused by moisture, the most suitable motor enclosure for the existing environment will normally be 
used. It is recommended to run stand by motors to dry up any condensation which accumulates in 
the motor. 
 
Motor Lubrication 
 
Friction will cause wear in all moving parts, and lubrication is needed to reduce this friction. It is very 
important that all your manufacturer's recommended lubrication procedures are strictly followed. 
You have to be careful not to add too much grease or oil, as this could cause more friction and 
generate heat.  
 
To grease the motor bearings, this is the usual approach: 
 

1. Remove the protective plugs and caps from the grease inlet and relief holes. 
2. Pump grease in until fresh starts coming from the relief hole. 

 
If fresh grease does not come out of the relief hole, this could mean that the grease has been 
pumped into the motor windings. The motor must then be taken apart and cleaned by a qualified 
service representative. 
 
To change the oil in an oil lubricated motor, this is the usual approach: 
 

1. Remove all plugs and let the oil drain. 
2. Check for metal shearing. 
3. Replace the oil drain. 
4. Add new oil until it is up to the oil level plug. 
5. Replace the oil level and filter plug. 

 
Never mix oils, since the additives of different oils when combined can cause breakdown of the 
oil. 
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Finger is shown pointing to a Lantern Ring.  This old school method of sealing a pump is 
still out there.  Notice the packing on both sides of the ring.  The packing joints need to be 
staggered and the purpose of this device is to allow air to the Stuffing Box. 
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More Detailed Information on Motors 
 

 
The classic division of electric motors has been that of Direct Current (DC) types vs. Alternating 
Current (AC) types. This is more a de facto convention, rather than a rigid distinction. For example, 
many classic DC motors run happily on AC power. 
 
The ongoing trend toward electronic control further muddles the distinction, as modern drivers have 
moved the commutator out of the motor shell. For this new breed of motor, driver circuits are relied 
upon to generate sinusoidal AC drive currents, or some approximation of. The two best examples 
are: the brushless DC motor and the stepping motor, both being polyphase AC motors requiring 
external electronic control. 
 
There is a clearer distinction between a synchronous motor and asynchronous types. In the 
synchronous types, the rotor rotates in synchrony with the oscillating field or current (e.g. 
permanent magnet motors). In contrast, an asynchronous motor is designed to slip; the most 
ubiquitous example being the common AC induction motor which must slip in order to generate 
torque. 
 
A DC motor is designed to run on DC electric power. Two examples of pure DC designs are 
Michael Faraday's homopolar motor (which is uncommon), and the ball bearing motor, which is (so 
far) a novelty. By far the most common DC motor types are the brushed and brushless types, which 
use internal and external commutation respectively to create an oscillating AC current from the DC 
source -- so they are not purely DC machines in a strict sense. 
 
Brushed DC motors 
The classic DC motor design generates an oscillating current in a wound rotor with a split ring 
commutator, and either a wound or permanent magnet stator. A rotor consists of a coil wound 
around a rotor which is then powered by any type of battery. Many of the limitations of the classic 
commutator DC motor are due to the need for brushes to press against the commutator. This 
creates friction. At higher speeds, brushes have increasing difficulty in maintaining contact. Brushes 
may bounce off the irregularities in the commutator surface, creating sparks. This limits the 
maximum speed of the machine.  
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The current density per unit area of the brushes limits the output of the motor. The imperfect electric 
contact also causes electrical noise. Brushes eventually wear out and require replacement, and the 
commutator itself is subject to wear and maintenance. The commutator assembly on a large 
machine is a costly element, requiring precision assembly of many parts. 

 
 
Brushless DC Motors 
Some of the problems of the brushed DC motor are eliminated in the brushless design. In this 
motor, the mechanical "rotating switch" or commutator/brush gear assembly is replaced by an 
external electronic switch synchronized to the rotor's position. Brushless motors are typically 85-
90% efficient, whereas DC motors with brush gear are typically 75-80% efficient. 
 
Midway between ordinary DC motors and stepper motors lies the realm of the brushless DC motor. 
Built in a fashion very similar to stepper motors, these often use a permanent magnet external rotor, 
three phases of driving coils, one or more Hall effect sensors to sense the position of the rotor, and 
the associated drive electronics.  
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The coils are activated one phase after the other by the drive electronics, as cued by the signals 
from the Hall effect sensors. In effect, they act as three-phase synchronous motors containing their 
own variable-frequency drive electronics. A specialized class of brushless DC motor controllers 
utilize EMF feedback through the main phase connections instead of Hall effect sensors to 
determine position and velocity. These motors are used extensively in electric radio-controlled 
vehicles. When configured with the magnets on the outside, these are referred to by modelists as 
outrunner motors. 
 
Brushless DC motors are commonly used where precise speed control is necessary, as in computer 
disk drives or in video cassette recorders, the spindles within CD, CD-ROM (etc.) drives, and 
mechanisms within office products such as fans, laser printers, and photocopiers.  
 
They have several advantages over conventional motors: 
* Compared to AC fans using shaded-pole motors, they are very efficient, running much cooler than 
the equivalent AC motors. This cool operation leads to much-improved life of the fan's bearings.  
* Without a commutator to wear out, the life of a DC brushless motor can be significantly longer 
compared to a DC motor using brushes and a commutator. Commutation also tends to cause a 
great deal of electrical and RF noise; without a commutator or brushes, a brushless motor may be 
used in electrically sensitive devices like audio equipment or computers.  
* The same Hall effect sensors that provide the commutation can also provide a convenient 
tachometer signal for closed-loop control (servo-controlled) applications. In fans, the tachometer 
signal can be used to derive a "fan OK" signal.  
* The motor can be easily synchronized to an internal or external clock, leading to precise speed 
control.  
* Brushless motors have no chance of sparking, unlike brushed motors, making them better suited 
to environments with volatile chemicals and fuels.  
* Brushless motors are usually used in small equipment such as computers, and are generally used 
to get rid of unwanted heat.  
* They are also very quiet motors, which is an advantage if being used in equipment that is affected 
by vibrations.  
 
Modern DC brushless motors range in power from a fraction of a watt to many kilowatts. Larger 
brushless motors up to about 100 kW rating are used in electric vehicles. They also find significant 
use in high-performance electric model aircraft. 
 
Coreless DC Motors 
Nothing in the design of any of the motors described above requires that the iron (steel) portions of 
the rotor actually rotate; torque is exerted only on the windings of the electromagnets. Taking 
advantage of this fact is the coreless DC motor, a specialized form of a brush or brushless DC 
motor. Optimized for rapid acceleration, these motors have a rotor that is constructed without any 
iron core. The rotor can take the form of a winding-filled cylinder inside the stator magnets, a basket 
surrounding the stator magnets, or a flat pancake (possibly formed on a printed wiring board) 
running between upper and lower stator magnets. The windings are typically stabilized by being 
impregnated with electrical epoxy potting systems. Filled epoxies that have moderate mixed 
viscosity and a long gel time. These systems are highlighted by low shrinkage and low exotherm.  
 
Because the rotor is much lighter in weight (mass) than a conventional rotor formed from copper 
windings on steel laminations, the rotor can accelerate much more rapidly, often achieving a 
mechanical time constant under 1 ms. This is especially true if the windings use aluminum rather 
than the heavier copper. But because there is no metal mass in the rotor to act as a heat sink, even 
small coreless motors must often be cooled by forced air. 
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These motors were commonly used to drive the capstan(s) of magnetic tape drives and are still 
widely used in high-performance servo-controlled systems, like radio-controlled vehicles/aircraft, 
humanoid robotic systems, industrial automation, medical devices, etc. 
 

 
Universal Motors 
A variant of the wound field DC motor is the universal motor. The name derives from the fact that it 
may use AC or DC supply current, although in practice they are nearly always used with AC 
supplies. The principle is that in a wound field DC motor the current in both the field and the 
armature (and hence the resultant magnetic fields) will alternate (reverse polarity) at the same time, 
and hence the mechanical force generated is always in the same direction. In practice, the motor 
must be specially designed to cope with the AC current (impedance must be taken into account, as 
must the pulsating force), and the resultant motor is generally less efficient than an equivalent pure 
DC motor. Operating at normal power line frequencies, the maximum output of universal motors is 
limited and motors exceeding one kilowatt are rare. But universal motors also form the basis of the 
traditional railway traction motor in electric railways. In this application, to keep their electrical 
efficiency high, they were operated from very low frequency AC supplies, with 25 Hz and 16 2/3 
hertz operation being common. Because they are universal motors, locomotives using this design 
were also commonly capable of operating from a third rail powered by DC. 
 
The advantage of the universal motor is that AC supplies may be used on motors which have the 
typical characteristics of DC motors, specifically high starting torque and very compact design if 
high running speeds are used. The negative aspect is the maintenance and short life problems 
caused by the commutator. As a result, such motors are usually used in AC devices such as food 
mixers and power tools which are used only intermittently. Continuous speed control of a universal 
motor running on AC is very easily accomplished using a thyristor circuit, while stepped speed 
control can be accomplished using multiple taps on the field coil. Household blenders that advertise 
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many speeds frequently combine a field coil with several taps and a diode that can be inserted in 
series with the motor (causing the motor to run on half-wave rectified AC). 
 
Universal motors can rotate at relatively high revolutions per minute (rpm). This makes them useful 
for appliances such as blenders, vacuum cleaners, and hair dryers where high-speed operation is 
desired. Many vacuum cleaner and weed trimmer motors exceed 10,000 rpm; Dremel and other 
similar miniature grinders will often exceed 30,000 rpm. Motor damage may occur due to overspeed 
(rpm in excess of design specifications) if the unit is operated with no significant load. On larger 
motors, sudden loss of load is to be avoided, and the possibility of such an occurrence is 
incorporated into the motor's protection and control schemes. Often, a small fan blade attached to 
the armature acts as an artificial load to limit the motor speed to a safe value, as well as provide 
cooling airflow to the armature and field windings. With the very low cost of semiconductor rectifiers, 
some applications that would have previously used a universal motor now use a pure DC motor, 
sometimes with a permanent magnet field. 
 
AC Motors 
In 1882, Nicola Tesla identified the rotating magnetic field principle, and pioneered the use of a 
rotary field of force to operate machines. He exploited the principle to design a unique two-phase 
induction motor in 1883. In 1885, Galileo Ferraris independently researched the concept. In 1888, 
Ferraris published his research in a paper to the Royal Academy of Sciences in Turin. 
 
Introduction of Tesla's motor from 1888 onwards initiated what is sometimes referred to as the 
Second Industrial Revolution, making possible the efficient generation and long distance distribution 
of electrical energy using the alternating current transmission system, also of Tesla's invention 
(1888). Before the invention of the rotating magnetic field, motors operated by continually passing a 
conductor through a stationary magnetic field (as in homopolar motors). Tesla had suggested that 
the commutators from a machine could be removed and the device could operate on a rotary field 
of force. Professor Poeschel, his teacher, stated that would be akin to building a perpetual motion 
machine.  
 
Components 
A typical AC motor consists of two parts: 
1. An outside stationary stator having coils supplied with AC current to produce a rotating magnetic 
field, and;  
2. An inside rotor attached to the output shaft that is given a torque by the rotating field.  
 
Torque motors 
A torque motor is a specialized form of induction motor which is capable of operating indefinitely at 
stall (with the rotor blocked from turning) without damage. In this mode, the motor will apply a 
steady stall torque to the load (hence the name). A common application of a torque motor would be 
the supply- and take-up reel motors in a tape drive. In this application, driven from a low voltage, 
the characteristics of these motors allow a relatively-constant light tension to be applied to the tape 
whether or not the capstan is feeding tape past the tape heads. Driven from a higher voltage, (and 
so delivering a higher torque), the torque motors can also achieve fast-forward and rewind 
operation without requiring any additional mechanics such as gears or clutches. In the computer 
world, torque motors are used with force feedback steering wheels. 
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Slip Ring 
 
The slip ring or wound rotor motor is an induction machine where the rotor comprises a set of coils 
that are terminated in slip rings to which external impedances can be connected. The stator is the 
same as is used with a standard squirrel cage motor. By changing the impedance connected to the 
rotor circuit, the speed/current and speed/torque curves can be altered. 
 
The slip ring motor is used primarily to start a high inertia load or a load that requires a very high 
starting torque across the full speed range. By correctly selecting the resistors used in the 
secondary resistance or slip ring starter, the motor is able to produce maximum torque at a 
relatively low current from zero speed to full speed. A secondary use of the slip ring motor is to 
provide a means of speed control.  
 
Because the torque curve of the motor is effectively modified by the resistance connected to the 
rotor circuit, the speed of the motor can be altered. Increasing the value of resistance on the rotor 
circuit will move the speed of maximum torque down. If the resistance connected to the rotor is 
increased beyond the point where the maximum torque occurs at zero speed, the torque will be 
further reduced. When used with a load that has a torque curve that increases with speed, the 
motor will operate at the speed where the torque developed by the motor is equal to the load 
torque. Reducing the load will cause the motor to speed up, and increasing the load will cause the 
motor to slow down until the load and motor torque are equal. Operated in this manner, the slip 
losses are dissipated in the secondary resistors and can be very significant. The speed regulation is 
also very poor. 
 
Stepper Motors 
Closely related in design to three-phase AC synchronous motors are stepper motors, where an 
internal rotor containing permanent magnets or a large iron core with salient poles is controlled by a 
set of external magnets that are switched electronically. A stepper motor may also be thought of as 
a cross between a DC electric motor and a solenoid. As each coil is energized in turn, the rotor 
aligns itself with the magnetic field produced by the energized field winding. Unlike a synchronous 
motor, in its application, the motor may not rotate continuously; instead, it "steps" from one position 
to the next as field windings are energized and de-energized in sequence. Depending on the 
sequence, the rotor may turn forwards or backwards. 
 
Simple stepper motor drivers entirely energize or entirely de-energize the field windings, leading the 
rotor to "cog" to a limited number of positions; more sophisticated drivers can proportionally control 
the power to the field windings, allowing the rotors to position between the cog points and thereby 
rotate extremely smoothly. Computer controlled stepper motors are one of the most versatile forms 
of positioning systems, particularly when part of a digital servo-controlled system. 
 
Stepper motors can be rotated to a specific angle with ease, and hence stepper motors are used in 
pre-gigabyte era computer disk drives, where the precision they offered was adequate for the 
correct positioning of the read/write head of a hard disk drive. As drive density increased, the 
precision limitations of stepper motors made them obsolete for hard drives, thus newer hard disk 
drives use read/write head control systems based on voice coils.  Stepper motors were upscaled to 
be used in electric vehicles under the term SRM (switched reluctance machine). 
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Coupling Section 
 
The pump coupling serves two main purposes: 
 

• It couples or joins the two shafts together to transfer the rotation from motor to impeller. 
 

• It compensates for small amounts of misalignment between the pump and the motor. 
 
Remember that any coupling is a device in motion. If you have a 4-inch diameter coupling rotating 
at 1800 rpm, its outer surface is traveling about 20 mph. With that in mind, can you think of safety 
considerations? 
 
There are three commonly used types of couplings: Rigid, Flexible and V-belts. 
 
Rigid Coupling  
Rigid couplings are most commonly used on vertically mounted pumps. The rigid coupling is usually 
specially keyed or constructed for joining the coupling to the motor shaft and the pump shaft. There 
are two types of rigid couplings: the flanged coupling, and the split coupling. 
 
Flexible Coupling. The flexible coupling provides the ability to compensate for small shaft 
misalignments. Shafts should be aligned as close as possible, regardless. The greater the 
misalignment, the shorter the life of the coupling. Bearing wear and life are also affected by 
misalignment. 
 
1. Oil Seals 
2. Large Oil Sump 
3. Bulls Eye Sight Glass 
4. Rigid Frame Foot 
5. C-Face Mounting Flange 
6. Lubrication Flexibility 
7. Condition Monitoring Sites 
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Alignment of Flexible and Rigid Couplings 
 
Both flexible and rigid couplings must be carefully aligned before they are connected. 
Misalignment will cause excessive heat and vibration, as well as bearing wear. Usually, the 
noise from the coupling will warn you of shaft misalignment problems. 
 
Three types of shaft alignment problems are shown in the pictures below: 
 

 
ANGULAR MISALIGNMENT     ANGULAR AND PARALLEL     PARALLEL MISALIGNMENT 
 
 
Different couplings will require different alignment procedures. We will look at the general 
procedures for aligning shafts. 
 

1. Place the coupling on each shaft. 
2. Arrange the units so they appear to be aligned. (Place shims under the legs of one of the 

units to raise it.) 
3. Check the run-out, or difference between the driver and driven unit, by rotating the shafts 

by hand. 
4. Turn both units so that the maximum run-out is on top. 

 
Now you can check the units for both parallel and angular alignment. Many techniques are used, 
such as: straight edge, needle deflection (dial indicators), calipers, tapered wedges, and laser 
alignment. 
 
V-Belt Drive Couplings 
 
V-belt drives connect the pump to the motor. A pulley is mounted on the pump and motor shaft. One 
or more belts are used to connect the two pulleys. Sometimes a separately mounted third pulley is 
used. This idler pulley is located off centerline between the two pulleys, just enough to allow 
tensioning of the belts by moving the idler pulley. An advantage of driving a pump with belts is that 
various speed ratios can be achieved between the motor and the pump. 
 
Shaft Bearings 
 
There are three types of bearings commonly used: ball bearings, roller bearings, and sleeve 
bearings. Regardless of the particular type of bearings used within a system--whether it is ball 
bearings, a sleeve bearing, or a roller bearing--the bearings are designed to carry the loads 
imposed on the shaft. 
 
Bearings must be lubricated. Without proper lubrication, bearings will overheat and seize. 
Proper lubrication means using the correct type and the correct amount of lubrication. Similar to 
motor bearings, shaft bearings can be lubricated either by oil or by grease. 
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How can we prevent the water from leaking along the shaft? 
A special seal is used to prevent liquid leaking out along the shaft. There are two types of seals 
commonly used: 
 

• Packing seal 
• Mechanical seal 

 
Packing Seals 
 
Should packing have leakage? 
 
 
Leakage  
During pump operation, a certain amount of 
leakage around the shafts and casings normally 
takes place.  
 
This leakage must be controlled for two reasons: 
(1) to prevent excessive fluid loss from the pump, and (2) to prevent air from entering the area 
where the pump suction pressure is below atmospheric pressure.  
 
The amount of leakage that can occur without limiting pump efficiency determines the type of shaft 
sealing selected. Shaft sealing systems are found in every pump. They can vary from simple 
packing to complicated sealing systems. 
 
Packing is the most common and oldest method of sealing. Leakage is checked by the 
compression of packing rings that causes the rings to deform and seal around the pump shaft and 
casing. The packing is lubricated by liquid moving through a lantern ring in the center of the 
packing. The sealing slows down the rate of leakage. It does not stop it completely, since a certain 
amount of leakage is necessary during operation. Mechanical seals are rapidly replacing 
conventional packing on centrifugal pumps.  
 
Some of the reasons for the use of mechanical seals are as follows: 
1. Leaking causes bearing failure by contaminating the oil with water. This is a major problem in 
engine-mounted water pumps. 
 
2. Properly installed mechanical seals eliminate leakoff on idle (vertical) pumps. This design 
prevents the leak (water) from bypassing the water flinger and entering the lower bearings. Leakoff 
causes two types of seal leakage: 

a. Water contamination of the engine lubrication oil. 
b. Loss of treated fresh water that causes scale buildup in the cooling system. 

 
Centrifugal pumps are versatile and have many uses. This type of pump is commonly used to 
pump all types of water and wastewater flows, including thin sludge.  
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Lantern Rings  
Lantern rings are used to supply clean water along the shaft. This helps to prevent grit and air from 
reaching the area. Another component is the slinger ring. The slinger ring is an important part of the 
pump because it is used to protect the bearings. Other materials can be used to prevent this burier.  
 
Mechanical Seals 
Mechanical seals are commonly used to reduce leakage 
around the pump shaft. There are many types of mechanical 
seals. The photograph below illustrates the basic components 
of a mechanical seal. Similar to the packing seal, clean water 
is fed at a pressure greater than that of the liquid being 
pumped. There is little or no leakage through the mechanical 
seal. The wearing surface must be kept extremely clean. Even 
fingerprints on the wearing surface can introduce enough dirt 
to cause problems.   
 
What care should be taken when storing mechanical seals? 
 
 

 
 

Mechanical Seals 
 
Wear Rings 
Not all pumps have wear rings. However, when they are included, they are usually replaceable. 
Wear rings can be located on the suctions side and head side of the volute. Wear rings could be 
made of the same metal but of different alloys. The wear ring on the head side is usually a harder 
alloy.  
 
It’s called a “WEAR RING” and what would be the purpose? 
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Mechanical Seals 
 
Mechanical seals are rapidly replacing conventional packing as the means of controlling leakage on 
rotary and positive-displacement pumps. Mechanical seals eliminate the problem of excessive 
stuffing box leakage, which causes failure of pump and motor bearings and motor windings.  
 
Mechanical seals are ideal for pumps that operate in closed systems (such as fuel service and air-
conditioning, chilled-water, and various cooling systems). They not only conserve the fluid being 
pumped, but also improve system operation.  
 
The type of material used for the seal faces will depend upon the service of the pump. Most water 
service pumps use a carbon material for one of the seal faces and ceramic (tungsten carbide) for 
the other. When the seals wear out, they are simply replaced. 
 
You should replace a mechanical seal whenever the seal is removed from the shaft for any reason, 
or whenever leakage causes undesirable effects on equipment or surrounding spaces. Do not touch 
a new seal on the sealing face because body acid and grease or dirt will cause the seal to pit 
prematurely and leak. 
 
Mechanical shaft seals are positioned on the shaft by stub or step sleeves. Mechanical shaft seals 
must not be positioned by setscrews. Shaft sleeves are chamfered (beveled) on the outboard ends 
for easy mechanical seal mounting. Mechanical shaft seals serve to ensure that position liquid 
pressure is supplied to the seal faces under all conditions of operation. They also ensure adequate 
circulation of the liquid at the seal faces to minimize the deposit of foreign matter on the seal parts. 
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Pump Troubleshooting Section 
 
Some of the operating problems you may encounter with centrifugal pumps as an Operator, 
together with the probable causes, are discussed in the following paragraphs. 
 
If a centrifugal pump DOES NOT DELIVER ANY LIQUID, the trouble may be caused by (1) 
insufficient priming; (2) insufficient speed of the pump; (3) excessive discharge pressure, such as 
might be caused by a partially closed valve or some other obstruction in the discharge line; (4) 
excessive suction lift; (5) clogged impeller passages; (6) the wrong direction of rotation (this may 
occur after motor overhaul); (7) clogged suction screen (if used); (8) ruptured suction line; or (9) 
loss of suction pressure. 
 
If a centrifugal pump delivers some liquid but operates at INSUFFICIENT CAPACITY, the trouble 
may be caused by (1) air leakage into the suction line; (2) air leakage into the stuffing boxes in 
pumps operating at less than atmospheric pressure; (3) insufficient pump speed; (4) excessive 
suction lift; (5) insufficient liquid on the suction side; (6) clogged impeller passages; (7) excessive 
discharge pressure; or (8) mechanical defects, such as worn wearing rings, impellers, stuffing box 
packing, or sleeves. 
 
If a pump DOES NOT DEVELOP DESIGN DISCHARGE PRESSURE, the trouble may be caused 
by (1) insufficient pump speed; (2) air or gas in the liquid being pumped; (3) mechanical defects, 
such as worn wearing rings, impellers, stuffing box packing, or sleeves; or (4) reversed rotation of 
the impeller (3-phase electric motor-driven pumps). If a pump WORKS FOR A WHILE AND THEN 
FAILS TO DELIVER LIQUID, the trouble may be caused by (1) air leakage into the suction line; (2) 
air leakage in the stuffing boxes; (3) clogged water seal passages; (4) insufficient liquid on the 
suction side; or (5) excessive heat in the liquid being pumped. 
 
If a motor-driven centrifugal pump DRAWS TOO MUCH POWER, the trouble will probably be 
indicated by overheating of the motor. The basic causes may be (1) operation of the pump to 
excess capacity and insufficient discharge pressure; (2) too high viscosity or specific gravity of the 
liquid being pumped; or (3) misalignment, a bent shaft, excessively tight stuffing box packing, worn 
wearing rings, or other mechanical defects. 
 
VIBRATION of a centrifugal pump is often caused by (1) misalignment; (2) a bent shaft; (3) a 
clogged, eroded, or otherwise unbalanced impeller; or (4) lack of rigidity in the foundation. 
Insufficient suction pressure may also cause vibration, as well as noisy operation and fluctuating 
discharge pressure, particularly in pumps that handle hot or volatile liquids. If the pump fails to build 
up pressure when the discharge valve is opened and the pump comes up to normal operating 
speed, proceed as follows: 
1. Shut the pump discharge valve. 
2. Secure the pump. 
3. Open all valves in the pump suction line. 
4. Prime the pump (fill casing with the liquid being pumped) and be sure that all air is expelled 
through the air cocks on the pump casing. 
5. Restart the pump. If the pump is electrically driven, be sure the pump is rotating in the correct 
direction. 
6. Open the discharge valve to “load” the pump. If the discharge pressure is not normal when the 
pump is up to its proper speed, the suction line may be clogged, or an impeller may be broken. It is 
also possible that air is being drawn into the suction line or into the casing. If any of these 
conditions exist, stop the pump and continue troubleshooting according to the technical manual for 
that unit. 
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Maintenance of Centrifugal Pumps 
 
When properly installed, maintained and operated, centrifugal pumps are usually trouble-free. 
Some of the most common corrective maintenance actions that you may be required to perform are 
discussed in the following sections. 
 
Repacking - Lubrication of the pump packing is extremely important. The 
quickest way to wear out the packing is to forget to open the water piping 
to the seals or stuffing boxes. If the packing is allowed to dry out, it will 
score the shaft. When operating a centrifugal pump, be sure there is 
always a slight trickle of water coming out of the stuffing box or seal. How 
often the packing in a centrifugal pump should be renewed depends on 
several factors, such as the type of pump, condition of the shaft sleeve, 
and hours in use. 
 
To ensure the longest possible service from pump packing, make certain 
the shaft or sleeve is smooth when the packing is removed from a gland. 
Rapid wear of the packing will be caused by roughness of the shaft sleeve 
(or shaft where no sleeve is installed). If the shaft is rough, it should be 
sent to the machine shop for a finishing cut to smooth the surface. If it is 
very rough, or has deep ridges in it, it will have to be renewed. It is 
absolutely necessary to use the correct packing. When replacing packing, be sure the packing fits 
uniformly around the stuffing box. If you have to flatten the packing with a hammer to make it fit, 
YOU ARE NOT USING THE RIGHT SIZE. Pack the box loosely, and set up the packing gland 
lightly. Allow a liberal leak-off for stuffing boxes that operate above atmospheric pressure.  
 
Next, start the pump. Let it operate for about 30 minutes before you adjust the packing gland for the 
desired amount of leak-off. This gives the packing time to run-in and swell. You may then begin to 
adjust the packing gland. Tighten the adjusting nuts one flat at a time. Wait about 30 minutes 
between adjustments. Be sure to tighten the same amount on both adjusting nuts. If you pull up the 
packing gland unevenly (or cocked), it will cause the packing to overheat and score the shaft 
sleeves. Once you have the desired leak-off, check it regularly to make certain that sufficient flow is 
maintained. 
 
Mechanical Seals  
Mechanical seals are rapidly replacing conventional packing as the means 
of controlling leakage on rotary and positive-displacement pumps. 
Mechanical seals eliminate the problem of excessive stuffing box leakage, 
which causes failure of pump and motor bearings and motor windings.  
Mechanical seals are ideal for pumps that operate in closed systems (such 
as fuel service and air-conditioning, chilled-water, and various cooling 
systems). They not only conserve the fluid being pumped, but also improve 
system operation. The type of material used for the seal faces will depend 
upon the service of the pump. Most water service pumps use a carbon 
material for one of the seal faces and ceramic (tungsten carbide) for the 
other. When the seals wear out, they are simply replaced. 
 
You should replace a mechanical seal whenever the seal is removed from the shaft for any reason, 
or whenever leakage causes undesirable effects on equipment or surrounding spaces. Do not touch 
a new seal on the sealing face because body acid and grease or dirt will cause the seal to pit 
prematurely and leak.  
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Mechanical shaft seals are positioned on the shaft by stub or step sleeves. Mechanical shaft seals 
must not be positioned by setscrews. Shaft sleeves are chamfered (beveled) on outboard ends for 
easy mechanical seal mounting. 
 
Mechanical shaft seals serve to ensure that liquid pressure is supplied to the seal faces under all 
conditions of operation. They also ensure adequate circulation of the liquid at the seal faces to 
minimize the deposit of foreign matter on the seal parts. 
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Troubleshooting Table for Well/Pump Problems  
 
1. Well pump will not start. 
2. Well pump will not shut off. 
3. Well pump starts and stops too frequently (excessive cycle rate). 
4. Sand sediment is present in the water. 
5. Well pump operates with reduced flow. 
6. Well house flooded without recent precipitation. 
7. Red or black water complaints. 
8. Raw water appears turbid or a light tan color following rainfall. 
9. Coliform tests are positive. 
 
Possible Causes 
1A. Circuit breaker or overload relay tripped. 
1B. Fuse(s) burned out. 
1C. No power to switch box. 
1D. Short, broken or loose wire.  
1E. Low voltage. 
1F. Defective motor. 
1G. Defective pressure switch. 
2A. Defective pressure switch. 
2B. Cut-off pressure setting too high. 
2C. Float switch or pressure transducer not 
functioning. 
3A. Pressure switch settings too close. 
3B. Pump foot valve leaking. 
3C. Water-logged hydropneumatic tank. 
4A. Problems with well screen or gravel envelope. 
5A. Valve on discharge partially closed or line clogged. 
5B. Well is over-pumped. 
5C. Well screen clogged. 
6A. Check valve not operating properly. 
6B. Leakage occurring in discharge piping or valves. 
7A. Water contains excessive iron (red brown) and/or manganese (black water). 
7B. Complainant’s hot water needs maintenance. 
8A. Surface water entering or influencing well. 
9A. Sample is invalid. 
9B. Sanitary protection of well has been breached. 
 
Possible Solutions 
1A. Reset breaker or manual overload relay. 
1B. Check for cause and correct, replace fuse(s). 
1C. Check incoming power supply. Contact power company. 
1D. Check for shorts and correct, tighten terminals, replace broken wires. 
1E. Check incoming line voltage. Contact power company if low. 
1F. Contact electrical contractor. 
1G. Check voltage of incoming electric supply with pressure switch closed. Contact power 
company if voltage low. Perform maintenance on switch if voltage normal. 
2A. Check switch for proper operation. Replace switch. 
2B. Adjust setting. 
2C. Check and replace components or cable as needed. 
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3A. Adjust settings. 
3B. Check for backflow. Contact well contractor. 
3C. Check air volume. Add air if needed. If persistent, check air compressor, relief valve, air 
lines and connections, and repair if needed. 
4A. Contact well contractor. 
5A. Open valve, unclog discharge line. 
5B. Check static water level and compare to past readings. If significantly lower, notify well 
contractor. 
5C. Contact well contractor. 
6A. Repair or replace check valve. 
6B. Inspect and repair/replace as necessary. 
7A. Test for iron and manganese at well. If levels exceed 0.3 mg/L iron or 0.005mg/L 
manganese, contact regulatory agency, TA provider or water treatment contractor. 
7B. Check hot water heater and flush if needed. 
8A. Check well for openings that allow surface water to enter. Check area for sinkholes, 
fractures, or other physical evidence of surface water intrusion.  Check water turbidity. Notify 
regulatory agency if >0.5 NTU. Check raw water for coliform bacteria. Notify regulatory agency 
immediately if positive. 
9A. Check sampling technique, sampling container, and sampling location and tap. 
9B. Notify regulatory agency immediately and re-sample for re-testing. 
 

 
 

This brush is used to dislodge debris inside well casing.  Just a big toilet cleaning brush.
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SCADA 
 
What is SCADA? 
 
SCADA stands for Supervisory Control and Data Acquisition. As the name indicates, it is not a full 
control system, but rather focuses on the supervisory level. As such, it is a purely software package 
that is positioned on top of hardware to which it is interfaced, in general via Programmable Logic 
Controllers (PLCs), or other commercial hardware modules. Contemporary SCADA systems exhibit 
predominantly open-loop control characteristics and utilize predominantly long distance 
communications, although some elements of closed-loop control and/or short distance 
communications may also be present. Systems similar to SCADA systems are routinely seen in 
treatment plants and distribution systems. These are often referred to as Distributed Control 
Systems (DCS). They have similar functions to SCADA systems, but the field data gathering or 
control units are usually located within a more confined area. Communications may be via a local 
area network (LAN), and will normally be reliable and high speed. A DCS system usually employs 
significant amounts of closed loop control. 
 
What is Data Acquisition? 
Data acquisition refers to the method used to access and control information or data from the 
equipment being controlled and monitored. The data accessed are then forwarded onto a telemetry 
system ready for transfer to the different sites. They can be analog and digital information gathered 
by sensors, such as flowmeter, ammeter, etc. It can also be data to control equipment such as 
actuators, relays, valves, motors, etc.  
 
So Why or Where Would You Use SCADA?  
SCADA can be used to monitor and control plant or equipment. The control may be automatic, or 
initiated by operator commands. The data acquisition is accomplished firstly by the RTU's (remote 
Terminal Units) scanning the field inputs connected to the RTU (RTU may also be called a PLC - 
programmable logic controller). This is usually at a fast rate. The central host will scan the RTU's 
(usually at a slower rate.)  
 
The data is processed to detect alarm conditions, and if an alarm is present, it will be displayed 
on special alarm lists. Data can be of three main types. Analogue data (i.e. real numbers) will be 
trended (i.e. placed in graphs). Digital data (on/off) may 
have alarms attached to one state or the other. Pulse 
data (e.g. counting revolutions of a meter) is normally 
accumulated or counted. 
 
The primary interface to the operator is a graphical 
display (mimic) usually via a PC Screen which shows a 
representation of the plant or equipment in graphical 
form. Live data is shown as graphical shapes 
(foreground) over a static background. As the data 
changes in the field, the foreground is updated. A valve 
may be shown as open or closed. Analog data can be 
shown either as a number, or graphically. The system may have many such displays, and the 
operator can select from the relevant ones at any time. 
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Electrical Glossary 
 
ALTERNATING CURRENT (AC) - A current which reverses in regularly recurring 
intervals of time and which has alternative positive and negative values, and occurring a 
specified number of times per second. The number is expressed in cycles per second or 
Hertz (Hz). 
ALARM LIGHT - A light which is used to attract attention when a problem occurs in the 
system. 
ALTERNATOR - A relay device designed for alternating the run cycle or duplexing 
action of two or more motors automatically. There are two basic types; one 
mechanically changes its contacts each time the operating coil is de-energized, and the 
second is a solid state unit with an output relay. The alternator is used in the automatic 
control circuit to the motor starters to rotate the duty cycle of each motor. 
AMBIENT TEMPERATURE - Temperature of the surroundings in which the equipment 
is used or operated. 
AMMETER - Meter for measuring the current in an electrical circuit, measured in 
amperes. 
AMPERE - The unit of electric current flow. One ampere will flow when one volt is 
applied across a resistance of one ohm. 
AUDIBLE ALARM - Horn, siren, bell, or buzzer which is used to attract the attention of 
the operator when a problem occurs in the system. 
AUXILIARY CONTACTS - Contacts of a switching device in addition to the main current 
contacts that operate with the movement of the latter. They can be normally open (NO) 
or normally closed (NC) and change state when operated. 
CAPACITOR - A device which introduces capacitance into an electrical circuit. The 
capacitor, when connected in an alternating current circuit, causes the current to lead 
the voltage in time phase. The peak of the current wave is reached ahead of the peak of 
the voltage wave. This is the result of the successive storage and discharge of electric 
energy. 
CIRCUIT BREAKER - A mechanical switching device capable of making, carrying, and 
breaking currents under normal conditions. Also making, carrying for a specific time, 
and automatically breaking currents under specified abnormal circuit conditions, such as 
those of short circuit. Circuit breakers have an ampere trip rating for normal overload 
protection and a maximum magnetic ampere interrupting capacity (AIC) for short circuit 
protection. 
COMMERCIAL POWER - The power furnished by an electric power utility. 
CONDENSATION HEATER - A device that warms the air within an enclosure and 
prevents condensation of moisture during shut-down periods. Also known as a space 
heater. 
CONDUCTOR - A wire, cable or bus bar designed for the passage of electrical current.  
CONTACTOR - An electro-mechanical device that is operated by an electric coil and 
allows automatic or remote operation to repeatedly establish or interrupt an electrical 
power circuit. A contactor provides no overload protection as required for motor loads. 
Sometimes called a power relay. 
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CONTACTS - Devices for making and breaking electrical circuits, which are a part of all 
electrical switching devices. 
CURRENT - The amount of electricity measured in amperes which is flowing in a circuit.  
CYCLE - A given length of time (See Alternating Current). In the U.S., most electric 
current is 60 cycle (60 Hz). 
CYCLE TIMER - A timer that repeatedly opens and closes contacts according to pre-set 
time cycles. 
DELTA CONNECTION - A common three phase connection shaped schematically like 
the Greek Delta. The end of one phase is connected to the beginning of the next phase, 
or vice versa. 
DESIGN LETTER - A letter that is shown on the motor nameplate indicating NEMA's 
classification of that motor. Classification encompasses characteristics such as full-
voltage starting, locked rotor torque, breakdown torque, and others that determine 
electrical type. 
DISCONNECTING MEANS (DISCONNECT) - A device or group of devices, or other 
means whereby all the ungrounded conductors of a circuit can be disconnected 
simultaneously from their source of supply. 
ELAPSED TIME METER - An instrument used to record the amount of time each pump 
runs. One elapsed time meter is used per pump. 
ELECTRIC UTILITIES - All enterprises engaged in the production and/or distribution of 
electricity for use by the public. 
EMERGENCY POWER (ALTERNATE SOURCE OF POWER) - An independent 
reserve source of electric power which, upon failure or outage of the normal power 
source, provides stand-by electric power. 
ENCLOSURE - The cabinet or specially designed box in which electrical controls and 
apparatus are housed. It is required by the National Electrical Code (NEC) to protect 
persons from live electrical parts and limit access to authorized personnel. It also 
provides mechanical and environmental protection. An enclosure should be designed to 
provide the required protection and sized to provide good, safe wire access and 
replacement of components. It can be manufactured of steel, galvanized or stainless 
steel, aluminum, or suitable non-metallic materials including fiberglass. 
EXPLOSION-PROOF MOTOR - A motor in a special enclosure. The purpose of the 
enclosure is twofold: 

1) If an explosive vapor (gas) should explode inside the motor, the frame of the 
motor will not be affected.  
2) The enclosure is so constructed that no such explosion will ignite vapors 
outside the motor. 

FACTORY MUTUAL (FM) - Independent U.S. agency associated with the insurance 
industry which tests for safety. 
FREQUENCY - The number of complete cycles of an alternating voltage or current per 
unit of time and usually expressed in cycles per second or Hertz (Hz). 
FULL LOAD CURRENT - The greatest current that a motor or other device is designed 
to carry under specific conditions; any additional is an overload. 
FULL LOAD AMPS (FULL LOAD CURRENT) - The current flowing through a line 
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terminal of a winding when rated voltage is applied at rated frequency with rated 
horsepower. 
FUSE - An over-current protective device which consists of a conductor that melts and 
breaks when current exceeds rated value beyond a predetermined time.  
GENERAL PURPOSE RELAY - A relay that is adaptable to a wide variety of 
applications as opposed to a relay designed for a specific purpose or specific 
application.  
GENERATOR - A machine for converting mechanical energy into electrical energy or 
power. 
GENERATOR RECEPTACLE - A contact device installed for the connection of a plug 
and flexible cord to supply emergency power from a portable generator or other 
alternate source of power. Receptacles are rated in voltage, amps, number of wires, 
and by enclosure type. 
GROUND - A connection, either intentional or accidental, between an electric circuit and 
the earth or some conducting body serving in place of the earth. 
GROUND FAULT INTERRUPTION (GFI) - A unit or combination of units which 
provides protection against ground fault currents below the trip levels of the breakers of 
a circuit. The system must be carefully designed and installed to sense low magnitude 
insulation breakdowns and other faults that cause a fault ground current path. The GFI 
system must be capable of sensing the ground fault current and disconnecting the 
faulted circuit from the source voltage. 
GROUNDED NEUTRAL - The common neutral conductor of an electrical system which 
is intentionally connected to ground to provide a current carrying path for the line to 
neutral load devices. 
GROUNDING CONDUCTOR - The conductor that is used to establish a ground and 
that connects equipment, a device, a wiring system, or another conductor (usually the 
neutral conductor) with the grounding electrode. 
HAND-OFF-AUTOMATIC (HOA) - Selector switch determining the mode of system 
operation. H is the hand mode only. 0 is system Off. A is automatic operation, normally 
with pump alternation. 
HAZARDOUS LOCATIONS - Those areas as defined in the NEC where a potential for 
explosion and fire exist because of flammable gasses, vapors, or finely pulverized dusts 
in the atmosphere, or because of the presence of easily ignitable fibers or flyings. 
HERTZ (Hz) - A unit of frequency equal to one cycle per second. 
HIGH POTENTIAL TEST - A test which consists of the application of a voltage higher 
than the rated voltage between windings and frame, or between two or more windings, 
for the purpose of determining the adequacy of insulating materials and spacing against 
breakdown under normal conditions. It is not the test of the conductor insulation of any 
one winding. 
HORSEPOWER - A method of rating motors whereby values are determined by factors 
including rotational speed and torque producing capability as well as other factors. 
IN-RUSH CURRENT - See Locked Rotor Current. 
INTERLOCK - Interrelates with other controllers. An auxiliary contact. A device 
connected in such a way that the motion of one part is held back by another part. 
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INTRINSICALLY SAFE - A term used to define a level of safety associated with the 
electrical controls used in some lift stations. Intrinsically safe equipment and wiring is 
incapable of releasing sufficient electrical or thermal energy under normal or abnormal 
conditions to cause ignition of a hazardous atmospheric mixture - without the need for 
explosion-proof enclosures in the hazardous area. Any associated devices must be 
outside the hazardous area with an approved seal-off fitting used as an isolating barrier. 
KILOWATT (KW) - A unit of measure of electrical power. One kilowatt equals 1000 
watts. Used where larger units of electrical power are measured. 
LOCKED ROTOR CURRENT - (See Starting Amps). 
LOCKOUT - A mechanical device which may be set to prevent the operation of a push-
button or other device. 
MANUAL TRANSFER SWITCH - A switch designed so that it will disconnect the load 
from one power source and reconnect it to another source while at no time allowing 
both sources to be connected to the load simultaneously. 
MEGGER OR MEGOHMETER - A high resistance range ohmmeter utilizing a power 
source for measuring insulation resistance. 
MEGOHM - A unit of resistance equal to one million ohms. 
MOTOR CIRCUIT PROTECTOR - A molded case disconnect switch specifically 
designed for motor circuits. It has a trip unit that operates on the magnetic principle 
only, sensing current in each of the three poles with an adjustable trip point. It provides 
short circuit protection, required by the National Electrical Code (NEC). It differs from a 
standard breaker in that it does not have a thermal overload unit. 
MOTOR EFFICIENCY - A measure of how effectively a motor converts electrical energy 
into mechanical energy. Motor efficiency is never 100 percent. It is a variable that 
depends on a given motor's performance. Tabulated at 100, 75 and 50 percent load, it 
is the ratio of power output to power input. 
MOTOR, ELECTRIC - A rotating device which converts electrical power into mechanical 
power. 
MOTOR HORSEPOWER RATING - The motor horsepower nameplate rating fully-
loaded at the ambient temperature. 
NEC - The National Electrical Code (NEC) is the standard of the National Board of Fire 
Underwriters for electric wiring and apparatus, as recommended by the National Fire 
Protection Association. 
NEC CODE LETTER - Motors with 60 and 50 Hertz ratings shall be marked with a code 
letter designating the locked-rotor KVA per horsepower on 60 Hertz. 
NEMA - National Electrical Manufacturers Association, a non-profit trade association 
supported by the manufacturers of electrical apparatus and supplies. NEMA 
promulgates standards to facilitate understanding between the manufacturers and users 
of electrical products. 
NFPA - National Fire Protection Association. Sponsors and publishes the National 
Electrical Code (NEC). 
NEUTRAL - The point common to all phases of a polyphase circuit, a conductor to that 
point, or the return conductor in a single phase circuit. The neutral in most systems is 
grounded at or near the point of service entrance only and becomes the grounded 
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neutral. 
NORMALLY OPEN and NORMALLY CLOSED - The terms "Normally Open" and 
"Normally Closed" when applied to a magnetically operated switching device - such as a 
contactor or relay, or to the contacts thereof - signify the position taken when the 
operating magnet is de-energized. These terms pertain to all switches. 
OHM - Unit of electrical resistance. One volt will cause a current of one ampere to flow 
through a resistance of one ohm. 
OHMMETER - A device for measuring electrical resistance expressed in ohms.  
OVERLOAD PROTECTION - The effect of a device operative on excessive current, but 
not necessarily on short circuit, to cause and maintain the interruption of current flow to 
the device being governed. Re-set may be manual or automatic. 
OVERLOAD RELAY - A relay that responds to electric load and operates at a pre-set 
value of overload. The unit senses the current in each line to the motor and is either 
bimetallic, melting alloy or solid state actuated. It may be of the non-compensated or 
ambient-compensated type, and of a standard or fast-trip design. 
PHASE (THREE PHASE CIRCUIT) - A combination of circuits energized by alternating 
electromotive forces which differ in phase by one-third of a cycle (120 degrees). In 
practice, the phases may vary several degrees from the specified angle. 
PHASE MONITOR - A device in the control circuit of motors which monitors the three 
phase voltage and protects against a phase loss (single phasing), under voltage (brown 
outs) and phase reversal (improper phase sequence). Most are adjustable to set the 
nominal voltage and some have a LED indicator to indicate acceptable voltage and 
phase conditions. The output contacts are used to control the motor starters and 
provide signaling for telemetering. 
PILOT LIGHT - A lamp available with various colored lenses designed to operate on a 
control voltage. They are each turned On and Off to provide the required indication for 
specific functions or alarm conditions. They are available in various sizes and voltage 
ratings. They are each designed for a specific bulb style and base configuration and 
some have an integral transformer to allow the use of low voltage bulbs. Full voltage 
incandescent bulbs are most common, but neon bulbs are also used. 
POWER FACTOR - The ratio of the true power to the volt-amperes in an alternating 
current circuit. Power factor is expressed in a percent of unity either lagging for 
inductive loads or leading for capacitive loads. Resistive loads produce a unity power 
factor. 
PUSHBUTTON - Part of an electrical device, consisting of a button that must be 
pressed to effect an operation. 
RATED VOLTAGE - The voltage of electrical apparatus at which it is designed to 
operate. 
REDUCED VOLTAGE AUTO-TRANSFORMER STARTER - A starter that includes an 
auto-transformer to furnish reduced voltage for starting an alternating current motor. It 
includes the necessary switching mechanism. This is the most widely used reduced 
voltage starter because of its efficiency and flexibility. 
RELAY - An electric device that is designed to interpret input conditions in a prescribed 
manner and, after specified conditions are met, to respond and cause contact operation 
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or similar abrupt changes in associated electric control circuits. 
RELAY, ELECTROMAGNETIC - A relay controlled by electromagnetic means, to open 
and close electric contacts. 
RELAY, SOLID STATE - A completely electronic switching device with no moving parts 
or contacts. 
RPM - Revolutions per minute of the motor/pump rotating assembly. 
REMOTE CONTROL - Control function initiation or change of electrical device from a 
remote point. 
RESISTANCE - The non-reactive opposition which a device or material offers to the 
flow of direct or alternating current. Usually measured in ohms. 
SAFETY SWITCH - An enclosed, manually-operated disconnecting switch, which is 
horsepower and current rated. Disconnects all power lines simultaneously.  
SEAL FAILURE ALARM - The sensing and indication of the intrusion of water into the 
oil-filled seal chamber between the inner and outer shaft seal of a submersible pump.  
SELECTOR SWITCH - A multi-position switch which can be set to the desired mode of 
operation. 
SERVICE FACTOR - A safety factor designed and built into some motors which allows 
the motor, when necessary, to deliver greater than its rated horsepower. 
SINGLE PHASE - A circuit that differs in phase by 180 degrees. Single phase circuits 
have two conductors, one of which may be a neutral, or three conductors, one of which 
is neutral. 
STANDBY POWER SUPPLY - The power supply that is available to furnish electric 
power when the normal power supply is not available. 
STAR CONNECTION - Same as a "Y" or "Wye" connection. This three-phase 
connection is so called because, schematically, the joint of the "Y" points looks like a 
star.  
STARTER - A device used to control the electrical power to motors and provide 
overload protection as required by the NEC. The starter can be operated manually, 
electrically, or by automatic pilot devices. A starter has two basic parts - a contactor for 
power switching and an overload relay for protection. 
STARTING AMPS (LOCKED ROTOR) - The maximum current drawn by the motor 
during the starting period. 
STARTING RELAY - A relay - actuated by current, voltage or the combined effect of 
current and voltage - which is used to perform a circuit-changing function in the primary 
winding of single phase induction motor within a pre-determined range of speed as the 
motor accelerates; and to perform the reverse circuit-changing operation when the 
motor is disconnected from the supply line. One of the circuit changes that is usually 
performed is to open or disconnect the auxiliary winding (starting) circuit. 
SUBMERSIBLE MOTOR - A motor whose housing and terminal box is so designed that 
the motor can run underwater - completely submerged at an allowable temperature. 
SURGE ARRESTER - A protective device for limiting surge voltages on equipment by 
discharging or bypassing surge current; it prevents continued flow of follow current to 
ground, and is capable of repeating these functions as specified.  
SWITCH - A device for making, breaking, or changing connections in a circuit.  



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

125

TELEMETERING - The transmitting of alarm and control signals to and from remote lift 
station controls and a central monitoring location.  
TERMINAL BLOCK - An insulating base equipped with terminals for connecting wires.  
THERMAL OVERLOAD PROTECTOR - Device, either a bimetal element or electric 
circuit, which protects motor windings from excessive temperature by opening a set of 
contacts. This device may reach its’ pre-set trip point as a result of ambient 
temperature, current, or both. May be automatic or manually set. 
THREE PHASE CIRCUIT - A combination of circuits energized by alternating 
electromotive sources which differ in phase by one third of a cycle - that is, 120 
degrees. A three phase circuit may be three wires or four wires with the fourth wire 
being connected to the neutral point of the circuit which may be grounded. 
TIME CLOCK - A device used to schedule electrical On/Off cycling operations. The 
device may be solid state or mechanical designed using a synchronous motor. The 
cycling operation must be programmed manually. The time clocks may operate in any 
increments of days, weeks, minutes, or hours. 
TIME DELAY RELAY (TDR) - A device with either mechanical or solid state output 
contacts that performs a timing function upon energization or control signal. 
TRANSDUCER - A device to condition and transform an analog signal to a specific 
variable output electrical signal proportional to the input signal. Typical inputs include 
variable pressure, level, voltage or current. Some common outputs are O to 1ma, 4 to 
20 ma, and various MVDC signals. A transducer must be specifically designed to be 
compatible with the input/output requirements of the total system. 
TRANSFORMER - A static electric device consisting of a single winding, or two or more 
coupled windings, used to transfer power by electromagnetic induction between circuits 
at the same frequency, usually with changed values of voltage and current.  
UNDERWRITERS LABORATORIES, INC. (UL) - An independent, non-profit U.S. 
organization that tests products for safety. 
VFD - Variable frequency drive. 
VOLTAGE (NOMINAL A) - A nominal value assigned to a circuit or system for the 
purpose of conveniently designating its voltage class (as 120/240, 480/240, 600, etc.). 
The actual voltage at which a circuit operates can vary from the nominal within a range 
that permits satisfactory operation of equipment. 
VOLTMETER - An instrument for measuring voltage. 
WATT - A unit of measure of electrical power. 
WYE CONNECTION - See Star Connection. 
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Well Selection 
 

 
 

A drill rig in the snow. 
Basically, a well is a hole drilled into an aquifer. A pipe and a pump are used to pull water out of 
the ground, and a screen filters out unwanted particles that could clog the pipe. Wells come in 
different shapes and sizes, depending on the type of material the well is drilled into and how 
much water is being pumped out.  
 
Three Basic Types of Wells  

• Bored or shallow wells are usually bored into an unconfined water source, 
generally found at depths of 100 feet or less.  

• Consolidated or rock wells are drilled into a formation consisting entirely of a 
natural rock formation that contains no soil and does not collapse. Their average 
depth is about 250 feet.  

• Unconsolidated or sand wells are drilled into a formation consisting of soil, 
sand, gravel or clay material that collapses upon itself.  
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Selecting an Optimum Pumping Rate 
 
Before a well can be completed with the necessary pumping equipment, it should be tested for 
capacity and proper operation.  When the well was drilled, the driller and geologist kept close watch 
of the amount of water production that had been obtained.  The development techniques used can 
also be useful in estimating a wells production rate.  However, the driller will normally know what to 
expect based on his experience, and the geologist or hydrologist will also obtain information on 
other nearby wells to bracket the expected production rate. If the well was drilled with air rotary, the 
airlift at the time of drilling also can serve as a baseline to estimate the well’s production rate.  
Either way, the well is normally pump tested following well development. 
 
A pumping test is normally conducted for at least eight hours in order to estimate a well’s 
maximum production rate.  Ideally, a twenty-four hour step test is conducted.  A step test is a 
variable rate pumping test, typically conducted for 24 hours at up to six different pumping rates.  
Typically, the well will be pumped at the lower estimated maximum pumping rate for the first four 
hours.   
 
The pumping rate is then adjusted upwards in equal amounts every four hours until 24 hours of 
pumping have been completed.  The personnel conducting the test keep track of the water levels in 
the well to ensure that the steps are not too large and not too small.   
 
In the end, the optimum pumping rate is selected following a careful review and comparison of the 
water level data for each rate.  The well’s specific capacity (Sc) is then determined. Specific 
capacity is the gallons per minute the well can produce per foot of drawdown.  Specific capacities 
for each of the pumping steps are compared.  The highest Sc observed is normally associated with 
the optimum pumping rate.  That rate should also have resulted in stabilized pumping levels or 
drawdown. 
 
Well pumping test being conducted in photograph below. (Notice the portable electric generator 
for powering the pump. The Hydrogeologist is using a depth probe to measure the drop in the 
static water level.) 
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Selection of Pumping Equipment 
 
The proper selection of pumping equipment for a well is of great importance.  The primary factors 
that must be considered before selecting the well pump are: flow rate, line pressure, pumping lift 
(total dynamic head), power requirements (and limitations), and size of piping.   Each of these 
components must be considered together when selecting well pumps.  
 
Pumping Lift and Total Dynamic or Discharge Head  
The most important components in selecting the correct pump for your application are: total 
pumping lift and total dynamic or discharge head.  Total dynamic head refers to the total 
equivalent feet of lift that the pump must overcome in order to deliver water to its destination, 
including frictional losses in the delivery system.    
 
Basic Pump Operating Characteristics 
"Head" is a term commonly used with pumps. Head refers to the height of a vertical column of 
water. Pressure and head are interchangeable concepts in irrigation, because a column of water 
2.31 feet high is equivalent to 1 pound per square inch (PSI) of pressure. The total head of a pump 
is composed of several types of head that help define the pump's operating characteristics.  
 
Total Dynamic Head  
The total dynamic head of a pump is the sum of the total static head, the pressure head, the 
friction head, and the velocity head.  
 
The Total Dynamic Head (TDH) is the sum of the total static head, the total friction head 
and the pressure head.  
 
Total Static Head  
The total static head is the total vertical distance the pump must lift the water. When pumping 
from a well, it would be the distance from the pumping water level in the well to the ground 
surface plus the vertical distance the water is lifted from the ground surface to the discharge 
point. When pumping from an open water surface, it would be the total vertical distance from the 
water surface to the discharge point.  
 
Pressure Head  
The pressure head at any point where a pressure gauge is located can be converted from 
pounds per square inch (PSI) to feet of head by multiplying by 2.31. For example, 20 PSI is 
equal to 20 times 2.31 or 46.2 feet of head. Most city water systems operate at 50 to 60 PSI, 
which, as illustrated in Table 1, explains why the centers of most city water towers are about 
130 feet above the ground.  
 
Table 1. Pounds per square inch (PSI) and equivalent head in feet of water. 
  
 PSI       Head (feet) 
   0       0   
   5     11.5 
  10     23.1 
   15     34.6 
  20     46.2 
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  25     57.7 
  30     69.3 
  35     80.8 
  40     92.4 
  45   104   
  50   115   
  55   127   
  60   138   
  65   150   
  70   162   
  75   173   
  80   185   
  85   196   
  90   208   
  95   219   
 100   231   
 
Friction Head  
Friction head is the energy loss or pressure decrease due to friction when water flows through 
pipe networks. The velocity of the water has a significant effect on friction loss. Loss of head 
due to friction occurs when water flows through straight pipe sections, fittings, valves, around 
corners, and where pipes increase or decrease in size. Values for these losses can be 
calculated or obtained from friction loss tables. The friction head for a piping system is the sum 
of all the friction losses.  
 
Velocity Head  
Velocity head is the energy of the water due to its velocity. This is a very small amount of 
energy and is usually negligible when computing losses in an irrigation system.  
 
Suction Head  
A pump operating above a water surface is working with a suction head. The suction head includes 
not only the vertical suction lift, but also the friction losses through the pipe, elbows, foot valves,  
and other fittings on the suction side of the pump. There is an allowable limit to the suction head on 
a pump and the net positive suction head (NPSH) of a pump sets that limit.  
 
The theoretical maximum height that water can be lifted using suction is 33 feet. Through controlled 
laboratory tests, manufacturers determine the NPSH curve for their pumps. The NPSH curve will 
increase with increasing flow rate through the pump. At a certain flow rate, the NPSH is subtracted 
from 33 feet to determine the maximum suction head at which that pump will operate. For example, 
if a pump requires a minimum NPSH of 20 feet the pump would have a maximum suction head of 
13 feet. Due to suction pipeline friction losses, a pump rated for a maximum suction head of 13 feet 
may effectively lift water only 10 feet. To minimize the suction pipeline friction losses, the suction 
pipe should have a larger diameter than the discharge pipe.  
 
Operating a pump with suction lift greater than it was designed for, or under conditions with 
excessive vacuum at some point in the impeller, may cause cavitation. Cavitation is the implosion of 
bubbles of air and water vapor and makes a very distinct noise like gravel in the pump. The 
implosion of numerous bubbles will eat away at an impeller and it eventually will be filled with holes.  
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Pump Power Requirements 
The power added to water as it moves through a pump can be calculated with the following 
formula:  
 Q x TDH 
WHP = -----------    (1) 
  3960 
 
where: 
 
  WHP = Water Horse Power 
  Q   = Flow rate in gallons per minute (GPM) 
  TDH = Total Dynamic Head (feet) 
 
However, the actual power required to run a pump will be higher than this because pumps and 
drives are not 100 percent efficient. The horsepower required at the pump shaft to pump a 
specified flow rate against a specified TDH is the Brake Horsepower (BHP) which is calculated 
with the following formula:  
        WHP 
BHP = ----------------------  (2) 
      Pump Eff. x Drive Eff. 
 
BHP -- Brake Horsepower (continuous horsepower rating of the power unit).  
 
Pump Eff. -- Efficiency of the pump usually read from a pump curve and having a value 
between 0 and 1.  
 
Drive Eff. -- Efficiency of the drive unit between the power source and the pump. For direct 
connection this value is 1, for right angle drives the value is 0.95 and for belt drives it can vary 
from 0.7 to 0.85.  
 
Effect of Speed Change on Pump Performance  
The performance of a pump varies with the speed at which the impeller rotates. Theoretically, 
varying the pump speed will result in changes in flow rate, TDH and BHP according to the 
following formulas:  
  RPM2 
(-----) x GPM1 = GPM2     (3) 
  RPM1 
 
  RPM2 
(-----)2 X TDH1 = TDH2     (4) 
  RPM1 
 
  RPM2 
(-----)3 x BPH1 = BPH2     (5) 
  RPM1 
 
where: 
  RPM1 = Initial revolutions per minute setting 
  RPM2 = New revolutions per minute setting 
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  GPM  = Gallons per Minute  
  (subscripts same as for RPM) 
  TDH  = Total Dynamic Head  
  (subscripts same as for RPM) 
  BHP  = Brake Horsepower  
  (subscripts same as for RPM) 
 
As an example, if the RPM are increased by 50 percent, the flow rate will increase by 50 
percent, the TDH will increase 2.25 times, and the required BHP will increase  3.38 times that 
required at the lower speed. It is easy to see that with a speed increase the BHP requirements 
of a pump will increase at a faster rate than the head and flow rate changes.  
 
Pump Efficiency  
Manufacturers determine by tests the operating characteristics of their pumps and publish the 
results in pump performance charts commonly called "pump curves."  
 
A typical pump curve for a horizontal centrifugal pump. NPSH is the Net Positive Suction 
Head required by the pump and TDSL is the Total Dynamic Suction Lift available (both at 
sea level). 
 
All pump curves are plotted with the flow rate on the horizontal axis and the TDH on the vertical 
axis. The curves are often shown for a centrifugal pump tested at different RPM. Each curve 
indicates the GPM versus TDH relationship at the tested RPM. In addition, pump efficiency lines 
have been added and wherever the efficiency line crosses the pump curve lines that number is 
what the efficiency is at that point. Brake horsepower (BHP) curves have also been added; they 
slant down from left to right. The BHP curves are calculated using the values from the efficiency 
lines. At the top of the chart is an NPSH curve with its scale on the right side of the chart.  
 
Reading a Pump Curve  
When the desired flow rate and TDH are known, these curves are used to select a pump. The pump 
curve shows that a pump will operate over a wide range of conditions. However, it will operate at 
peak efficiency only in a narrow range of flow rate and TDH. As an example of how a pump 
characteristic curve is used, let's use the pump curve to determine the horsepower and efficiency of 
this pump at a discharge of 900 gallons per minute (GPM) and 120 feet of TDH.  
 
Solution: Follow the dashed vertical line from 900 GPM until it crosses the dashed horizontal line 
from the 120 feet of TDH. At this point the pump is running at a peak efficiency just below 72 
percent, at a speed of 1600 RPM. If you look at the BHP curves, this pump requires just less than 
40 BHP on the input shaft. A more accurate estimate of BHP can be calculated with equations 1 
and 2. Using equation 1, the WHP would be [900 x 120] / 3960 or 27.3, and from equation 2 the 
BHP would be 27.3 / 0.72 or 37.9, assuming the drive efficiency is 100 percent. The NPSH curve 
was used to calculate the Total Dynamic Suction Lift (TDSL) markers at the bottom of the chart. 
Notice that the TDSL at 1400 GPM is 10 feet, but at 900 GPM the TDSL is over 25 feet.  
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Changing Pump Speed  
In addition, suppose this pump is connected to a diesel engine. By varying the RPM of the engine 
we can vary the flow rate, the TDH and the BHP requirements of this pump. As an example, let's 
change the speed of the engine from 1600 RPM to 1700 RPM. What effect does this have on the 
GPM, TDH and BHP of the pump?  
 
Solution: We will use equations 3, 4 and 5 to calculate the change. Using equation 3, the change 
in GPM would be (1700/1600) x 900, which equals 956 GPM. Using equation 4, the change in TDH 
would be (1700/1600)2 x 120, which equals 135.5 feet of TDH. Using equation 5, the change in 
BHP would be (1700/1600)3 x 37.9, which equals 45.5 BHP. This point is plotted on Figure 2 as the 
circle with the dot in the middle. Note that the new operating point is up and to the right of the old 
point and that the efficiency of the pump has remained the same. When a pump has been selected 
for installation, a copy of the pump curve should be provided by the installer. In addition, if the 
impeller(s) was trimmed, this information should also be provided. This information will be valuable 
in the future, especially if repairs have to be made.  
 
Determining Friction Losses  
A well system installer and/or engineer can help in determining the friction losses in the distribution 
system.  There are numerous friction loss tables with values of equivalent feet of head for given 
flow rates and types and diameters of pipe available. However, unless great distances or small 
diameter pipes are used, friction loss is almost negligible.  The lift requirements for the pump 
primarily include the height to which the pump must deliver the water from the wellhead, plus the 
distance from the pumping level to the land surface.  
 
For example: A municipal supply well has been tested and determined to yield 500gpm.   The well 
was constructed with 10 inch casing that has been perforated from 200 to 500 feet below the 
ground surface within an unconfined aquifer.  The static water level has been measured at 100 feet 
while the drawdown at 500gpm has been estimated at 80 feet.  The full level of the storage tank for 
the well exerts about 87psi at the wellhead and is connected to the well via a 12-inch distribution 
main.  Three-phase power is available and 4-inch column pipe is to be used down the hole.  The 
pump intake is to be set at 180 feet.  
 
Before we can select an appropriate pump, we first need to determine what the total dynamic head 
is.   After referring to a friction loss table for flow in 4 inch and 12-inch pipe; we determine that the 
friction losses in the 4 inch pipe will be about 24 feet per 100 foot, while losses in the 12 inch main 
are negligible.    
 
This leads us to determine that there will be about 43 feet of friction loss through the 4-inch pipe. 
We also know that the total lift is equal to the drawdown, plus the distance to the land surface from 
the static water level, plus the vertical distance to the full level of the storage tank.  We know from 
physics that for every foot of water there is .433psi of pressure or 2.31ft of head for every 1 psi.  
The line pressure at the well head is equal to the height of the column of water above the well head, 
which gives us a line pressure at the well head of 87psi or 200 feet of water.   The total lift from the 
pump to the wellhead 180 feet and equivalent to 78psi.  So the total dynamic head is equivalent to a 
lift of 380 feet or an equivalent pressure of about 165psi at the pump, plus about 43 feet of friction 
loss.   Therefore, in order to pump 500gpm under these circumstances, the pump that is selected 
should have its most efficient operating range in the neighborhood of 423 feet total lift.  We then 
look at performance curves from the various pump manufacturers to determine the best pump and 
power combination for the application.   
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Because this is a municipal supply well that is pumping directly into the distribution system, we will 
choose a submersible turbine for the job rather than a line shaft turbine, which must be lubricated.  
Upon looking at the curves for this application, one will find that a 75HP, 8in, 5 stage, submersible 
pump will do the job most efficiently without risking the over-pumping of the well.   
 

 
 
Elements of Total Dynamic Head for the proper selection of pumping equipment. 
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A new 8 inch submersible pump and motor with 6 inch column pipe 

about to be installed in a high capacity municipal supply well.  
 
The Well Head Assembly 
 
An approved well cap or seal is to be installed at the wellhead to prevent any contamination from 
entering the well through the top once construction is complete.  When the well is completed with 
pumping equipment a well vent is also required.  
 
The well vent pipe should be at least ½ inch in diameter, 8 inches above the finished grade, and be 
turned down, with the opening screened with a minimum 24-mesh durable screen to prevent entry 
of insects. Only approved well casing material meeting the requirements of the Code may be 
utilized.  
 
In addition, frost protection should be provided by use of insulation or pump house.  Turbine and 
submersible pumps are normally used.  Any pressure, vent, and electric lines to and from the pump 
should enter the casing only through a watertight seal.   
 
Pumps and pressure tanks may be located in basements and enclosures.  However, wells should 
not be located within vaults or pits, except with a variance permit.   If the pump discharge line 
passes through the well casing underground, an approved pitless adapter should be installed.  
The well manifold should include an air relief valve, flow meter, sample port, isolation valve, and a 
check valve.  If the well should need rehabilitation, additional construction, or repair, it must be done 
in compliance with the State or Local Water Well Construction Codes. 
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Pump Surging/Raw-hiding or Backwashing 
 
Pump surging (sometimes called Rawhiding) involves the repeated pumping and resting of the 
well for well development purposes.  A column of water that is withdrawn through a pump is allowed 
to surge back into the well by turning the pump on and off repeatedly.  However, sufficient time for 
the pump motor to stop reverse rotation must be allowed, such that pump damage can be avoided.  
Occasionally, water is pumped to waste until it is clear of sediment before again shutting the pump 
off.  This is done to permanently remove the sediments that are being developed by the 
backwashing action.   The process continues until sufficient quantities of water produced are 
consistently clean.   
 
Surge-blocks, swabs, or plungers are disc shaped devices made to fit tightly within the well.  
Their edges are usually fitted with rubber or leather rings to make a tight seal against the well 
casing.  Pipe sections are then attached to the surge-block to lower it into the well, above the well 
screen, and about 15 feet below the water level.  The assembly is then repeatedly lifted up and 
down.  The up and down action of the surge-block creates suction and compression strokes that 
force water in and out of the well through the screened interval, gravel pack, and aquifer.  It works 
like a plunger in the way that it removes small obstructions and sediments from the well.  The 
surge-block is slowly lowered each time resistance begins to decrease.    
 
Once the top of the screen is reached, the assembly may be removed and accumulated sediment 
either bailed or airlifted out of the well.  Surging within known problem areas of the screened 
interval may be conducted also.  The cycle of swabbing and removing sediment should be 
continued until resistance to the action of the swab or block is significantly lower than at the start of 
development.  The development is complete when the amount of sediment removed is both 
significantly and consistently less than when surging began.   

 
Airlifting (or Air surging) involves the introduction of large short blasts of air within the well that 
lifts the column of water to the surface and then drop it back down again.  Continuous airlifting or air 
pumping from the bottom of the well is then used occasionally to lift sediments out of the well.  
Airlift development is most often used following initial pump surging, and is employed to confirm that 
the well is productive, since the injection of air into a plugged well may result in casing or screen 
failure.   
 
Air lifting development is most often done with a rotary drilling rig through the drill string.  
Sometimes special air diffusers or jets are used to direct the bursts of air into preferred directions 
(see jetting).  Piping is inserted into the well and intermittent blasts of air are introduced as the 
piping is slowly lowered into the well.  Sometimes surfactant or drill foam is added to aid in the 
efficiency of sediment removal and cleaning of the well. Air surging development is much the same 
as drilling the well with air rotary; only the well has already been constructed.   
 
Specialized air development units are available independent of a drilling rig, which may be used as 
well.  The great thing about air rotary drilled wells is that they are essentially developed while 
drilling, particularly in hard rock formations, when greater than 100 gallons per minute is being lifted 
to the surface.   The development of a filter pack (if used) in such wells is still recommended.  
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Jetting is a type of well development technique in which water and/or air is jetted or sprayed 
horizontally into the well screen.  This method is specially suited for application in stratified and 
unconsolidated formations.  The water or air is forced through nozzles in a specially designed 
jetting tool (or simply drilled pipe and fittings) at high velocities.  Normally, air lifting or pumping is 
used in conjunction with jetting methods in order to minimize potential damage to the well bore.  
Jetting with water alone can be so powerful that the sediment, which is supposed to be removed, 
can be forced into the formation causing clogging problems. This is why pumping or airlifting while 
jetting with water is so important.  Jetting is normally conducted from the bottom of the well screen 
upwards.   
 
Rotary Rig  
A rotary rig is often used to provide the fluid or air with sustained pressure while the tool is slowly 
raised up through the screen.   As jetting proceeds, sediment is occasionally removed from the 
bottom of the well bore thru the use of a bailer or airlifting.   Several passes should be made over 
the length of screen until sediment generation drops off.   Air is normally used for jetting in shallow 
aquifers (less than 300 feet of submergence) due to limited supply pressures. Jetting in PVC 
constructed wells is not recommended since the high velocities of fluid and sediment can erode and 
possibly cut through the plastic well screen.  In addition, wells constructed with louvered or slotted 
screen limit the effectiveness of jetting.  In these types of wells, surging may be more effective.     
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In the best of situations a combination of methods can be used to ensure the efficient 
development and operation of a well.    
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Preparing an explosive charge to ‘hydrofract” or loosen or dislodge any debris or corrosion 
inside an existing well casing.  This explosive material is made in 25 or 50 foot lengths and 
has a blasting cap to start the explosion.  Believe it or not, you cannot hear the explosion, 
since it is deep underwater.  The bottom photo is the remains of the explosive charge.  This 
procedure will usually increase well production. 
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Blasting cap on the explosive cord. Below, some of the debris from inside the well casing 
following the explosion.  After talking to this man, I found out that after 9-11, he had to 
increase his fees because of the ATF and new rules concerning explosives.  Be prepared to 
pay through the nose for this treatment process. Consider this expense the price of 
admission to having adequate water to supply your customer’s demands.   
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Glossary 
 
A 
Absolute Pressure: The pressure above zone absolute, i.e. the sum of atmospheric and gauge 
pressure. In vacuum related work it is usually expressed in millimeters of mercury. (mmHg). 
 
Aerodynamics: The study of the flow of gases. The Ideal Gas Law - For a perfect or ideal gas 
the change in density is directly related to the change in temperature and pressure as 
expressed in the Ideal Gas Law.  
 
Aeronautics: The mathematics and mechanics of flying objects, in particular airplanes.  
 
Air Break:  A physical separation which may be a low inlet into the indirect waste receptor from the 
fixture, or device that is indirectly connected.  You will most likely find an air break on waste fixtures 
or on non-potable lines.  You should never allow an air break on an ice machine. 
 
Air Gap Separation: A physical separation space that is present between the discharge vessel 
and the receiving vessel, for an example, a kitchen faucet. 
 
Altitude-Control Valve: If an overflow occurs on a storage tank, the operator should first check the 
altitude-control valve. Altitude-Control Valve is designed to, 1.  Prevent overflows from the storage 
tank or reservoir, or 2.  Maintain a constant water level as long as water pressure in the distribution 
system is adequate. 
 
Angular Motion Formulas: Angular velocity can be expressed as (angular velocity = constant): 

 
ω = θ / t (2a) 
 
where 
ω= angular velocity (rad/s) 
θ = angular displacement (rad) 
t = time (s) 

 
Angular velocity can be expressed as (angular acceleration = constant): 

ω = ωo + α t (2b) 
 

where 
ωo = angular velocity at time zero (rad/s) 
α = angular acceleration (rad/s2) 

 
Angular displacement can be expressed as (angular acceleration = constant): 

θ = ωo t + 1/2 α t2 (2c) 
 

Combining 2a and 2c: 
ω = (ωo

2 + 2 α θ)1/2 
 
Angular acceleration can be expressed as: 

α = dω / dt = d2θ / dt2 (2d) 
 

where 
dθ = change of angular displacement (rad) 
dt = change in time (s) 
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Atmospheric Pressure: Pressure exerted by the atmosphere at any specific location. (Sea level 
pressure is approximately 14.7 pounds per square inch absolute, 1 bar = 14.5psi.) 
 
B 
Backflow Prevention: To stop or prevent the occurrence of, the unnatural act of reversing the 
normal direction of the flow of liquid, gases, or solid substances back in to the public potable 
(drinking) water supply.  See Cross-connection control. 
 
Backflow: To reverse the natural and normal directional flow of a liquid, gases, or solid 
substances back in to the public potable (drinking) water supply.  This is normally an 
undesirable effect. 
 
Backsiphonage: A liquid substance that is carried over a higher point. It is the method by which 
the liquid substance may be forced by excess pressure over or into a higher point.  Is a condition in 
which the pressure in the distribution system is less than atmospheric pressure.  In other words, 
something is “sucked” into the system because the main is under a vacuum.  
 
Bernoulli's Equation: Describes the behavior of moving fluids along a streamline. The Bernoulli 
Equation can be considered to be a statement of the conservation of energy principle appropriate 
for flowing fluids. The qualitative behavior that is usually labeled with the term "Bernoulli effect" is 
the lowering of fluid pressure in regions where the flow velocity is increased. This lowering of 
pressure in a constriction of a flow path may seem counterintuitive, but seems less so when you 
consider pressure to be energy density. In the high velocity flow through the constriction, kinetic 
energy must increase at the expense of pressure energy.  

 
 
 
 
A special form of the Euler’s equation derived along a fluid flow streamline is often called the 
Bernoulli Equation. 
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For steady state incompressible flow the Euler equation becomes (1). If we integrate (1) along 
the streamline it becomes (2). (2) can further be modified to (3) by dividing by gravity. 
 
Head of Flow: Equation (3) is often referred to as the head because all elements have the unit 
of length. 
 
Bernoulli's Equation Continued: 
Dynamic Pressure 
(2) and (3) are two forms of the Bernoulli Equation for steady state incompressible flow. If we 
assume that the gravitational body force is negligible, (3) can be written as (4). Both elements in the 
equation have the unit of pressure and it's common to refer the flow velocity component as the 
dynamic pressure of the fluid flow (5). 
 
Since energy is conserved along the streamline, (4) can be expressed as (6). Using the equation 
we see that increasing the velocity of the flow will reduce the pressure, decreasing the velocity will 
increase the pressure. 
 
This phenomena can be observed in a venturi meter where the pressure is reduced in the 
constriction area and regained after. It can also be observed in a pitot tube where the stagnation 
pressure is measured. The stagnation pressure is where the velocity component is zero. 
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Bernoulli's Equation Continued: 
Pressurized Tank 
If the tanks are pressurized so that product of gravity and height (g h) is much less than the 
pressure difference divided by the density, (e4) can be transformed to (e6). 
The velocity out from the tanks depends mostly on the pressure difference. 
 
Example - outlet velocity from a pressurized tank 
The outlet velocity of a pressurized tank where  
 

p1 = 0.2 MN/m2, p2 = 0.1 MN/m2 A2/A1 = 0.01, h = 10 m 
 
can be calculated as 
V2 = [(2/(1-(0.01)2) ( (0.2 - 0.1)x106 /1x103 + 9.81 x 10)]1/2 = 19.9 m/s 

 
Coefficient of Discharge - Friction Coefficient 
Due to friction the real velocity will be somewhat lower than this theoretical example. If we introduce 
a friction coefficient c (coefficient of discharge), (e5) can be expressed as (e5b). The coefficient of 
discharge can be determined experimentally. For a sharp edged opening it may be as low as 0.6. 
For smooth orifices it may be between 0.95 and 1. 
 
Bingham Plastic Fluids: Bingham Plastic Fluids have a yield value which must be exceeded 
before it will start to flow like a fluid. From that point the viscosity will decrease with increase of 
agitation. Toothpaste, mayonnaise and tomato catsup are examples of such products. 
 
Boundary Layer: The layer of fluid in the immediate vicinity of a bounding surface.  
 
Bulk Modulus and Fluid Elasticity: An introduction to and a definition of the Bulk Modulus 
Elasticity commonly used to characterize the compressibility of fluids. 
 
The Bulk Modulus Elasticity can be expressed as 

E = - dp / (dV / V) (1) 
 

where 
E = bulk modulus elasticity 
dp = differential change in pressure on the object 
dV = differential change in volume of the object 
V = initial volume of the object 

 
The Bulk Modulus Elasticity can be alternatively expressed as 

E = - dp / (dρ / ρ) (2) 
 
where 
dρ = differential change in density of the object 
ρ = initial density of the object 

 
An increase in the pressure will decrease the volume (1). A decrease in the volume will 
increase the density (2). 
• The SI unit of the bulk modulus elasticity is N/m2 (Pa)  
• The imperial (BG) unit is lbf/in2 (psi)  
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• 1 lbf/in2 (psi) = 6.894 103 N/m2 (Pa)  
 
A large Bulk Modulus indicates a relatively incompressible fluid. 
 
Bulk Modulus for some common fluids can be found in the table below: 

Bulk Modulus - E
Imperial Units - 

BG 
(psi, lbf/in2) x 105 

SI Units 
(Pa, N/m2) x 109 

Carbon 
Tetrachloride 1.91 1.31 

Ethyl Alcohol 1.54 1.06 
Gasoline 1.9 1.3 
Glycerin 6.56 4.52 
Mercury 4.14 2.85 

SAE 30 Oil 2.2 1.5 
Seawater 3.39 2.35 

Water 3.12 2.15 
 
 
C 
Capillarity: (or capillary action) The ability of a narrow tube to draw a liquid upwards against the 
force of gravity.  

 
The height of liquid in a tube due to capillarity can be expressed as 

h = 2 σ cosθ / (ρ g r) (1) 
 
where 
h = height of liquid (ft, m) 
σ = surface tension (lb/ft, N/m) 
θ = contact angle 
ρ = density of liquid (lb/ft3, kg/m3) 
g = acceleration due to gravity (32.174 ft/s2, 9.81 m/s2) 
r = radius of tube (ft, m) 

 
Cauchy Number: A dimensionless value useful for analyzing fluid flow dynamics problems 
where compressibility is a significant factor.  
The Cauchy Number is the ratio between inertial and the compressibility force in a flow and can 
be expressed as 

C = ρ v2 / E  (1) 
 

where  
ρ = density (kg/m3) 
v = flow velocity (m/s) 
E = bulk modulus elasticity (N/m2) 

The bulk modulus elasticity has the dimension pressure and is commonly used to characterize 
the compressibility of a fluid. 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

146

 
The Cauchy Number is the square root of the Mach Number 

M2 = Ca  (3) 
 

where  
C = Mach Number 

 
Cavitation: Under the wrong condition, cavitation will reduce the components life time dramatically. 
Cavitation may occur when the local static pressure in a fluid reach a level below the vapor 
pressure of the liquid at the actual temperature. According to the Bernoulli Equation this may 
happen when the fluid accelerates in a control valve or around a pump impeller. The vaporization 
itself does not cause the damage - the damage happens when the vapor almost immediately 
collapses after evaporation when the velocity is decreased and pressure increased. Cavitation 
means that cavities are forming in the liquid that we are pumping. When these cavities form at the 
suction of the pump several things happen all at once: We experience a loss in capacity. We can no 
longer build the same head (pressure). The efficiency drops. The cavities or bubbles will collapse 
when they pass into the higher regions of pressure causing noise, vibration, and damage to many 
of the components. The cavities form for five basic reasons and it is common practice to lump all of 
them into the general classification of cavitation.  
 
This is an error because we will learn that to correct each of these conditions we must understand 
why they occur and how to fix them. Here they are in no particular order: Vaporization, Air ingestion, 
Internal recirculation, Flow turbulence and finally the Vane Passing Syndrome.  
 
Avoiding Cavitation 
Cavitation can in general be avoided by: 
• increasing the distance between the actual local static pressure in the fluid - and the 

vapor pressure of the fluid at the actual temperature  
This can be done by: 
• reengineering components initiating high speed velocities and low static pressures  
• increasing the total or local static pressure in the system  
• reducing the temperature of the fluid  
 
Reengineering of Components Initiating High Speed Velocity and Low Static Pressure 
Cavitation and damage can be avoided by using special components designed for the actual 
rough conditions. 
• Conditions such as huge pressure drops can - with limitations - be handled by Multi 

Stage Control Valves  
• Difficult pumping conditions - with fluid temperatures close to the vaporization 

temperature - can be handled with a special pump - working after another principle than the 
centrifugal pump.  
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Cavitation Continued: Increasing the Total or Local Pressure in the System 
By increasing the total or local pressure in the system, the distance between the static pressure 
and the vaporization pressure is increased and vaporization and cavitation may be avoided. 
 
The ratio between static pressure and the vaporization pressure, an indication of the possibility of 
vaporization, is often expressed by the Cavitation Number. Unfortunately it may not always be 
possible to increase the total static pressure due to system classifications or other limitations. Local 
static pressure in the component may then be increased by lowering the component in the system. 
Control valves and pumps should in general be positioned in the lowest part of the system to 
maximize the static head. This is common for boiler feeding pumps receiving hot condensate (water 
close to 100 oC) from a condensate receiver. 
 
Cavitation Continued: Reducing the Temperature of the Fluid 
The vaporization pressure is highly dependent on the fluid temperature. Water, our most 
common fluid, is an example: 

Temperature 
(oC) 

Vapor Pressure 
(kN/m2) 

0 0.6 
5 0.9 

10 1.2 
15 1.7 
20 2.3 
25 3.2 
30 4.3 
35 5.6 
40 7.7 
45 9.6 
50 12.5 
55 15.7 
60 20 
65 25 
70 32.1 
75 38.6 
80 47.5 
85 57.8 
90 70 
95 84.5 

100 101.33 
 
As we can see - the possibility of evaporation and cavitation increases dramatically with the 
water temperature. 
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Cavitation can be avoided by locating the components in the coldest part of the system. For 
example, it is common to locate the pumps in heating systems at the "cold" return lines. The 
situation is the same for control valves. Where it is possible they should be located on the cold 
side of heat exchangers. 
 
Cavitations Number: A "special edition" of the dimensionless Euler Number. 
 
The Cavitations Number is useful for analyzing fluid flow dynamics problems where cavitations 
may occur. The Cavitations Number can be expressed as 

 
Ca = ( pr - pv ) / 1/2 ρ v2 (1) 
 
where  
Ca = Cavitations number 
pr = reference pressure 

(Pa) 
pv = vapor pressure of the 

fluid (Pa) 
ρ = density of the fluid 

(kg/m3) 
v = velocity of fluid (m/s) 

 
Centrifugal Pump: A pump 
consisting of an impeller fixed on a 
rotating shaft and enclosed in a 
casing, having an inlet and a 
discharge connection. The rotating 
impeller creates pressure in the 
liquid by the velocity derived from 
centrifugal force. 
 
Chezy Formula: Conduits flow 
and mean velocity. The Chezy 
formula can be used to calculate mean flow velocity in conduits and is expressed as 

 
v = c (R S)1/2 (1) 
 
where 
v = mean velocity (m/s, ft/s) 
c = the Chezy roughness and conduit coefficient 
R = hydraulic radius of the conduit (m, ft) 
S = slope of the conduit (m/m, ft/ft) 

 
In general the Chezy coefficient - c - is a function of the flow Reynolds Number - Re - and the 
relative roughness - ε/R - of the channel. 
ε is the characteristic height of the roughness elements on the channel boundary. 
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Coanda Effect: The tendency of a stream of fluid to stay attached to a convex surface, rather 
than follow a straight line in its original direction.  
 
Colebrook Equation: The friction coefficients used to calculate pressure loss (or major loss) in 
ducts, tubes and pipes can be calculated with the Colebrook equation. 

 
1 / λ1/2 = -2 log ( (2.51 / (Re λ1/2) ) + ( (k / dh) / 3.72) ) (1) 

 
where 
λ = D'Arcy-Weisbach  friction coefficient 
Re = Reynolds Number 
k = roughness of duct, pipe or tube surface (m, ft) 
dh = hydraulic diameter (m, ft) 

 
The Colebrook equation is only valid at turbulent flow conditions. 
Note that the friction coefficient is involved on both sides of the equation and that the equation 
must be solved by iteration. 
 
The Colebrook equation is generic and can be used to calculate the friction coefficients in 
different kinds of fluid flows - air ventilation ducts, pipes and tubes with water or oil, compressed 
air and much more.  
 
Common Pressure Measuring Devices: The Strain Gauge is a common measuring device used for 
a variety of changes such as head.  As the pressure in the system changes, the diaphragm expands 
which changes the length of the wire attached.  This change of length of the wire changes the 
Resistance of the wire, which is then converted to head.  Float mechanisms, diaphragm elements, 
bubbler tubes, and direct electronic sensors are common types of level sensors. 
 
Compressible Flow: We know that fluids are classified as Incompressible and Compressible 
fluids. Incompressible fluids do not undergo significant changes in density as they flow. In 
general, liquids are incompressible; water being an excellent example. In contrast compressible 
fluids do undergo density changes.  
 
Gases are generally compressible; air being the most common compressible fluid we can find. 
Compressibility of gases leads to many interesting features such as shocks, which are absent for 
incompressible fluids. Gas dynamics is the discipline that studies the flow of compressible fluids 
and forms an important branch of Fluid Mechanics. In this book we give a broad introduction to the 
basics of compressible fluid flow.  
 
In a compressible flow the compressibility of the fluid must be taken into account. The Ideal Gas 
Law - For a perfect or ideal gas the change in density is directly related to the change in 
temperature and pressure as expressed in the Ideal Gas Law. Properties of Gas Mixtures - Special 
care must be taken for gas mixtures when using the ideal gas law, calculating the mass, the 
individual gas constant or the density. The Individual and Universal Gas Constant - The Individual 
and Universal Gas Constant is common in fluid mechanics and thermodynamics. 
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Compression and Expansion of Gases: If the compression or expansion takes place under 
constant temperature conditions - the process is called isothermal. The isothermal process can 
on the basis of the Ideal Gas Law be expressed as: 

 
p / ρ = constant (1) 
 
where 
p = absolute pressure 
ρ = density 

 
Confined Space Entry: Entry into a confined space requires that all entrants wear a harness and 
safety line. If an operator is working inside a storage tank and suddenly faints or has a serious 
problem, there should be two people outside standing by to remove the injured operator.  
 
Conservation Laws: The conservation laws states that particular measurable properties of an 
isolated physical system does not change as the system evolves: Conservation of energy (including 
mass). Fluid Mechanics and Conservation of Mass - The law of conservation of mass states that 
mass can neither be created or destroyed.  
 
Contaminant: Any natural or man-made physical, chemical, biological, or radiological 
substance or matter in water, which is at a level that may have an adverse effect on public 
health, and which is known or anticipated to occur in public water systems. 
 
Contamination: To make something bad; to pollute or infect something. To reduce the quality 
of the potable (drinking) water and create an actual hazard to the water supply by poisoning or 
through spread of diseases. 
 
Corrosion: The removal of metal from copper, other metal surfaces and concrete surfaces in a 
destructive manner. Corrosion is caused by improperly balanced water or excessive water 
velocity through piping or heat exchangers.  
 
Cross-Contamination: The mixing of two unlike qualities of water. For example, the mixing of 
good water with a polluting substance like a chemical. 
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D 
Darcy-Weisbach Equation: The pressure loss (or major loss) in a pipe, tube or duct can be 
expressed with the D'Arcy-Weisbach equation:  

 
Δp = λ (l / dh) (ρ v2 / 2) (1) 
 
where 
Δp = pressure loss (Pa, N/m2, lbf/ft2) 
λ = D'Arcy-Weisbach friction coefficient 
l = length of duct or pipe (m, ft) 
dh = hydraulic diameter (m, ft) 
ρ = density (kg/m3, lb/ft3) 

 
Note! Be aware that there are two alternative friction coefficients present in the literature. One is 
1/4 of the other and (1) must be multiplied with four to achieve the correct result. This is 
important to verify when selecting friction coefficients from Moody diagrams. 
 
Density: Is a physical property of matter, as each element and compound has a unique density 
associated with it.  
 
Density defined in a qualitative manner as the measure of the relative "heaviness" of objects 
with a constant volume. For example: A rock is obviously more dense than a crumpled piece of 
paper of the same size. A Styrofoam cup is less dense than a ceramic cup. Density may also 
refer to how closely "packed" or "crowded" the material appears to be - again refer to the 
Styrofoam vs. ceramic cup. Take a look at the two boxes below.  

 
 

Each box has the same volume. If each ball has the same mass, which box would weigh 
more? Why?  
 
The box that has more balls has more mass per unit of volume. This property of matter is called 
density. The density of a material helps to distinguish it from other materials. Since mass is 
usually expressed in grams and volume in cubic centimeters, density is expressed in 
grams/cubic centimeter. We can calculate density using the formula:  
 

Density= Mass/Volume 
 

The density can be expressed as 
 
ρ = m / V = 1 / vg (1) 
 
where 
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ρ = density (kg/m3) 
m = mass (kg) 
V = volume (m3) 
vg = specific volume (m3/kg) 

 
The SI units for density are kg/m3. The imperial (BG) units are lb/ft3 (slugs/ft3). While people 
often use pounds per cubic foot as a measure of density in the U.S., pounds are really a 
measure of force, not mass. Slugs are the correct measure of mass. You can multiply slugs by 
32.2 for a rough value in pounds. 
 
The higher the density, the tighter the particles are packed inside the substance. Density is a 
physical property constant at a given temperature and density can help to identify a substance. 
 
Example - Use the Density to Identify the Material: 
An unknown liquid substance has a mass of 18.5 g and occupies a volume of 23.4 ml. 
(milliliter). 
 
The density can be calculated as 
 
ρ = [18.5 (g) / 1000 (g/kg)] / [23.4 (ml) / 1000 (ml/l) 1000 (l/m3) ] 
    = 18.5 10-3 (kg) / 23.4 10-6 (m3) 
    = 790 kg/m3 
 
If we look up densities of some common substances, we can find that ethyl alcohol, or ethanol, 
has a density of 790 kg/m3. Our unknown liquid may likely be ethyl alcohol! 
 
Example - Use Density to Calculate the Mass of a Volume 
The density of titanium is 4507 kg/m3 . Calculate the mass of 0.17 m3 titanium! 

 
m = 0.17 (m3) 4507 (kg/m3)  

     = 766.2 kg 
 
Dilatant Fluids: Shear Thickening Fluids or Dilatant Fluids increase their viscosity with 
agitation. Some of these liquids can become almost solid within a pump or pipe line. With 
agitation, cream becomes butter and Candy compounds, clay slurries and similar heavily filled 
liquids do the same thing. 
 
Disinfect: To kill and inhibit growth of harmful bacterial and viruses in drinking water.  
 
Disinfection: The treatment of water to inactivate, destroy, and/or remove pathogenic bacteria, 
viruses, protozoa, and other parasites.  
 
Distribution System Water Quality:  Can be adversely affected by improperly constructed or 
poorly located blowoffs of vacuum/air relief valves.  Air relief valves in the distribution system lines 
must be placed in locations that cannot be flooded.  This is to prevent water contamination.  The 
common customer complaint of Milky Water or Entrained Air is sometimes solved by the installation 
of air relief valves.  The venting of air is not a major concern when checking water levels in a 
storage tank.  If the vent line on a ground level storage tank is closed or clogged up, a vacuum will 
develop in the tank may happen to the tank when the water level begins to lower.   
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Drag Coefficient: Used to express the drag of an object in moving fluid. Any object moving 
through a fluid will experience a drag - the net force in direction of flow due to the pressure and 
shear stress forces on the surface of the object. 
 
The drag force can be expressed as: 

 
Fd = cd 1/2 ρ v2 A (1) 
 
where 
Fd = drag force (N) 
cd = drag coefficient 
ρ = density of fluid 
v = flow velocity 
A = characteristic frontal area of the body 

 
The drag coefficient is a function of several parameters as shape of the body, Reynolds Number 
for the flow, Froude number, Mach Number and Roughness of the Surface. 
The characteristic frontal area - A - depends on the body. 
 
Dynamic or Absolute Viscosity: The viscosity of a fluid is an important property in the analysis 
of liquid behavior and fluid motion near solid boundaries. The viscosity of a fluid is its resistance 
to shear or flow and is a measure of the adhesive/cohesive or frictional properties of a fluid. The 
resistance is caused by intermolecular friction exerted when layers of fluids attempts to slide by 
another. 
 
Dynamic Pressure: Dynamic pressure is the component of fluid pressure that represents a 
fluids kinetic energy. The dynamic pressure is a defined property of a moving flow of gas or 
liquid and can be expressed as  

 
pd = 1/2 ρ v2 (1) 
 
where  
pd = dynamic pressure (Pa) 
ρ = density of fluid (kg/m3) 
v = velocity (m/s)  

 
Dynamic, Absolute and Kinematic Viscosity: The viscosity of a fluid is an important property in 
the analysis of liquid behavior and fluid motion near solid boundaries. The viscosity is the fluid 
resistance to shear or flow and is a measure of the adhesive/cohesive or frictional fluid property. 
The resistance is caused by intermolecular friction exerted when layers of fluids attempts to slide by 
another. 
 
Viscosity is a measure of a fluid's resistance to flow.  
 
The knowledge of viscosity is needed for proper design of required temperatures for storage, 
pumping or injection of fluids. 
 
Common used units for viscosity are 
• CentiPoises (cp) = CentiStokes (cSt) × Density  
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• SSU1 = Centistokes (cSt) × 4.55  
• Degree Engler1 × 7.45 = Centistokes (cSt)  
• Seconds Redwood1  × 0.2469 = Centistokes (cSt)  
1centistokes greater than 50 
 
There are two related measures of fluid viscosity - known as dynamic (or absolute) and 
kinematic viscosity. 
 
Dynamic (absolute) Viscosity: The tangential force per unit area required to move one horizontal 
plane with respect to the other at unit velocity when maintained a unit distance apart by the fluid. 
The shearing stress between the layers of non turbulent fluid moving in straight parallel lines can be 
defined for a Newtonian fluid as: 

 
The dynamic or absolute viscosity can be expressed like 

 
τ = μ dc/dy     (1) 
 
where 
τ = shearing stress 
μ = dynamic viscosity 

 
Equation (1) is known as the Newton’s Law of Friction. 
 
In the SI system the dynamic viscosity units are N s/m2, Pa s or kg/m s where 
• 1 Pa s = 1 N s/m2 = 1 kg/m s  
The dynamic viscosity is also often expressed in the metric CGS (centimeter-gram-second) 
system as g/cm.s, dyne.s/cm2 or poise (p) where 
• 1 poise = dyne s/cm2 = g/cm s = 1/10 Pa s  
 
For practical use the Poise is to large and it's usual divided by 100 into the smaller unit called 
the centiPoise (cP) where 
• 1 p = 100 cP  
 
Water at 68.4oF (20.2oC) has an absolute viscosity of one - 1 - centiPoise. 
 
E 
E. Coli, Escherichia coli: A bacterium commonly found in the human intestine. For water 
quality analyses purposes, it is considered an indicator organism. These are considered 
evidence of water contamination. Indicator organisms may be accompanied by pathogens, but 
do not necessarily cause disease themselves. 
 
Elevation Head: The energy possessed per unit weight of a fluid because of its elevation.  1 
foot of water will produce .433 pounds of pressure head. 
 
Energy: The ability to do work. Energy can exist in one of several forms, such as heat, light, 
mechanical, electrical, or chemical. Energy can be transferred to different forms. It also can 
exist in one of two states, either potential or kinetic. 
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Energy and Hydraulic Grade Line: The hydraulic grade and the energy line are graphical 
forms of the Bernoulli equation. For steady, in viscid, incompressible flow the total energy 
remains constant along a stream line as expressed through the Bernoulli  
 
Equation: 

p + 1/2 ρ v2 + γ h = constant along a streamline (1) 
 
where 
p = static pressure (relative to the moving fluid) 
ρ = density 
γ = specific weight 
v = flow velocity 
g = acceleration of gravity 
h = elevation height 

Each term of this equation has the dimension force per unit area - psi, lb/ft2 or N/m2. 
 

The Head 
By dividing each term with the specific weight - γ = ρ g - (1) can be transformed to express the 
"head": 

p / γ + v2 / 2 g + h = constant along a streamline = H (2) 
where 
H = the total head 

 
Each term of this equation has the dimension length - ft, m. 
 
The Total Head 
(2) states that the sum of pressure head - p / γ -, velocity head - v2 / 2 g - and elevation head 
- h - is constant along the stream line. This constant can be called the total head - H -. 
 
The total head in a flow can be measured by the stagnation pressure using a pitot tube. 
 
Energy and Hydraulic Grade Line Continued: 
The Piezometric Head 
The sum of pressure head - p / γ - and elevation head - h - is called the piezometric head. The 
piezometric head in a flow can be measured through an flat opening parallel to the flow. 
 
Energy and Hydraulic Grade Line Continued: 
The Energy Line 
The Energy Line is a line that represents the total head available to the fluid and can be 
expressed as: 

 
EL = H = p / γ + v2 / 2 g + h = constant along a streamline (3) 
 
where 
EL = Energy Line 

 
For a fluid flow without any losses due to friction (major losses) or components (minor losses) 
the energy line would be at a constant level. In the practical world the energy line decreases 
along the flow due to the losses. 
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A turbine in the flow will reduce the energy line and a pump or fan will increase the energy line. 
 
The Hydraulic Grade Line 
The Hydraulic Grade Line is a line that represent the total head available to the fluid minus the 
velocity head and can be expressed as: 

 
HGL = p / γ + h (4) 
 
where 
HGL = Hydraulic Grade Line 

 
The hydraulic grade line lies one velocity head below the energy line. 
 
Entrance Length and Developed Flow: Fluids need some length to develop the velocity profile 
after entering the pipe or after passing through components such as bends, valves, pumps, 
turbines or similar. 
 
The Entrance Length: The entrance length can be expressed with the dimensionless Entrance 
Length Number: 

 
El = le / d (1) 
 
where 
El = Entrance Length Number 
le = length to fully developed velocity profile 
d = tube or duct diameter 

 
The Entrance Length Number for Laminar Flow 
The Entrance length number correlation with the Reynolds Number for laminar flow can be 
expressed as: 

 
Ellaminar = 0.06 Re (2) 
 
where 
Re = Reynolds Number 

 
The Entrance Length Number for Turbulent Flow 
The Entrance length number correlation with the Reynolds Number for turbulent flow can be 
expressed as: 

 
Elturbulent = 4.4 Re1/6 (3) 

 
Entropy in Compressible Gas Flow: Calculating entropy in compressible gas flow 
Entropy change in compressible gas flow can be expressed as 
 

ds = cv ln(T2 / T1) + R ln(ρ1 / ρ2) (1) 
or 
ds = cp ln(T2 / T1) - R ln(p2 / p1) (2) 
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where 
ds = entropy change 
cv = specific heat capacity at a constant volume process 
cp = specific heat capacity at a constant pressure process 
T = absolute temperature 
R = individual gas constant 
ρ = density of gas 
p = absolute pressure 

 
Equation of Continuity: The Law of Conservation of Mass states that mass can be neither 
created nor destroyed. Using the Mass Conservation Law on a steady flow process - flow 
where the flow rate doesn't change over time - through a control volume where the stored mass 
in the control volume doesn't change - implements that inflow equals outflow. This statement is 
called the Equation of Continuity. Common application where the Equation of Continuity 
can be used are pipes, tubes and ducts with flowing fluids and gases, rivers, overall processes 
as power plants, diaries, logistics in general, roads, computer networks and semiconductor 
technology and more. 
 
The Equation of Continuity and can be expressed as: 

m = ρi1 vi1 Ai1 + ρi2 vi2 Ai2 +..+ ρin vin Aim  
    = ρo1 vo1 Ao1 + ρo2 vo2 Ao2 +..+ ρom vom Aom (1) 

 
where 
m = mass flow rate (kg/s) 
ρ = density (kg/m3) 
v = speed (m/s) 
A = area (m2) 
With uniform density equation (1) can be modified to 
q = vi1 Ai1 + vi2 Ai2 +..+ vin Aim  
    = vo1 Ao1 + vo2 Ao2 +..+ vom Aom (2) 

 
where 
q = flow rate (m3/s) 
ρi1 = ρi2 = . . = ρin = ρo1 = ρo2 = . .= ρom 

 
Example - Equation of Continuity 
10 m3/h of water flows through a pipe of 100 mm inside diameter. The pipe is reduced to an 
inside dimension of 80 mm. Using equation (2) the velocity in the 100 mm pipe can be 
calculated as 

(10 m3/h)(1 / 3600 h/s) = v100 (3.14 x 0.1 (m) x 0.1 (m) / 4) 
or  
v100 = (10 m3/h)(1 / 3600 h/s) / (3.14 x 0.1 (m) x 0.1 (m) / 4)  
    = 0.35 m/s 
Using equation (2) the velocity in the 80 mm pipe can be calculated 
(10 m3/h)(1 / 3600 h/s) = v80 (3.14 x 0.08 (m) x 0.08 (m) / 4) 
or  
v100 = (10 m3/h)(1 / 3600 h/s) / (3.14 x 0.08 (m) x 0.08 (m) / 4)  
= 0.55 m/s 
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Equation of Mechanical Energy: The Energy Equation is a statement of the first law of 
thermodynamics. The energy equation involves energy, heat transfer and work. With certain 
limitations the mechanical energy equation can be compared to the Bernoulli Equation and 
transferred to the Mechanical Energy Equation in Terms of Energy per Unit Mass. 
 
The mechanical energy equation for a pump or a fan can be written in terms of energy per 
unit mass: 

 
pin / ρ + vin

2 / 2 + g hin + wshaft = pout / ρ + vout
2 / 2 + g hout + wloss (1) 

 
where 
p = static pressure 
ρ = density 
v = flow velocity 
g = acceleration of gravity 
h = elevation height 
wshaft = net shaft energy inn per unit mass for a pump, fan or similar 
wloss = loss due to friction 

The energy equation is often used for incompressible flow problems and is called the 
Mechanical Energy Equation or the Extended Bernoulli Equation. 
 
The mechanical energy equation for a turbine can be written as: 

 
pin / ρ + vin

2 / 2 + g hin = pout / ρ + vout
2 / 2 + g hout + wshaft + wloss (2) 

 
where 
wshaft = net shaft energy out per unit mass for a turbine or similar 

 
Equation (1) and (2) dimensions are  

energy per unit mass (ft2/s2 = ft lb/slug or m2/s2 = N m/kg)  
 
Efficiency 
According to (1) a larger amount of loss - wloss - result in more shaft work required for the same 
rise of output energy. The efficiency of a pump or fan process can be expressed as: 

 
η = (wshaft - wloss) / wshaft (3) 

 
The efficiency of a turbine process can be expressed as: 

η = wshaft/ (wshaft + wloss) (4) 
 
The Mechanical Energy Equation in Terms of Energy per Unit Volume 
The mechanical energy equation for a pump or a fan (1) can also be written in terms of energy 
per unit volume by multiplying (1) with fluid density - ρ: 

 
pin + ρ vin

2 / 2 + γ hin + ρ wshaft = pout + ρ vout
2 / 2 + γ hout + wloss (5) 

 
where 
γ = ρ g = specific weight 
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The dimensions of equation (5) are  

energy per unit volume (ft.lb/ft3 = lb/ft2 or N.m/m3 = N/m2)  
 
The Mechanical Energy Equation in Terms of Energy per Unit Weight involves Heads 
The mechanical energy equation for a pump or a fan (1) can also be written in terms of energy 
per unit weight by dividing with gravity - g: 

 
pin / γ + vin

2 / 2 g + hin + hshaft = pout / γ + vout
2 / 2 g + hout + hloss (6) 

 
where 
γ = ρ g = specific weight 
hshaft = wshaft / g = net shaft energy head inn per unit mass for a pump, fan or similar 
hloss = wloss / g = loss head due to friction 

 
The dimensions of equation (6) are  

 
energy per unit weight (ft.lb/lb = ft or N.m/N = m)  

 
Head is the energy per unit weight. 

 
hshaft can also be expressed as: 
hshaft = wshaft / g = Wshaft / m g = Wshaft / γ Q (7) 

 
where 
Wshaft = shaft power 
m = mass flow rate 
Q = volume flow rate 

 
Example - Pumping Water 
Water is pumped from an open tank at level zero to an open tank at level 10 ft. The pump adds 
four horsepowers to the water when pumping 2 ft3/s. 
Since vin = vout = 0, pin = pout = 0 and hin = 0 - equation (6) can be modified to: 

 
hshaft = hout + hloss 
or 
hloss = hshaft - hout (8) 

 
Equation (7) gives: 

 
hshaft = Wshaft / γ Q = (4 hp)(550 ft.lb/s/hp) / (62.4 lb/ft3)(2 ft3/s) = 17.6 ft 

• specific weight of water 62.4 lb/ft3  
• 1 hp (English horse power) = 550 ft. lb/s  
 
Combined with (8): 

hloss = (17.6 ft ) - (10 ft) = 7.6 ft 
 
The pump efficiency can be calculated from (3) modified for head: 

η = ((17.6 ft) - (7.6 ft)) / (17.6 ft)= 0.58 
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Equations in Fluid Mechanics: Common fluid mechanics equations - Bernoulli, conservation 
of energy, conservation of mass, pressure, Navier-Stokes, ideal gas law, Euler equations, 
Laplace equations, Darcy-Weisbach Equation and the following: 
The Bernoulli Equation 
• The Bernoulli Equation - A statement of the conservation of energy in a form useful for 

solving problems involving fluids. For a non-viscous, incompressible fluid in steady flow, the 
sum of pressure, potential and kinetic energies per unit volume is constant at any point.  

Conservation laws 
• The conservation laws states that particular measurable properties of an isolated 

physical system does not change as the system evolves.  
• Conservation of energy (including mass)  
• Fluid Mechanics and Conservation of Mass - The law of conservation of mass states that 

mass can neither be created nor destroyed.  
• The Continuity Equation - The Continuity Equation is a statement that mass is 

conserved.  
Darcy-Weisbach Equation 
• Pressure Loss and Head Loss due to Friction in Ducts and Tubes - Major loss - head 

loss or pressure loss - due to friction in pipes and ducts.  
Euler Equations 
• In fluid dynamics, the Euler equations govern the motion of a compressible, inviscid fluid. 

They correspond to the Navier-Stokes equations with zero viscosity, although they are 
usually written in the form shown here because this emphasizes the fact that they directly 
represent conservation of mass, momentum, and energy.  

Laplace's Equation 
• The Laplace Equation describes the behavior of gravitational, electric, and fluid 

potentials.  
Ideal Gas Law 
• The Ideal Gas Law - For a perfect or ideal gas, the change in density is directly related 

to the change in temperature and pressure as expressed in the Ideal Gas Law.  
• Properties of Gas Mixtures - Special care must be taken for gas mixtures when using the 

ideal gas law, calculating the mass, the individual gas constant or the density.  
• The Individual and Universal Gas Constant - The Individual and Universal Gas Constant 

is common in fluid mechanics and thermodynamics.  
Navier-Stokes Equations 
• The motion of a non-turbulent, Newtonian fluid is governed by the Navier-Stokes 

equations. The equation can be used to model turbulent flow, where the fluid parameters 
are interpreted as time-averaged values.  

Mechanical Energy Equation 
• The Mechanical Energy Equation - The mechanical energy equation in Terms of Energy 

per Unit Mass, in Terms of Energy per Unit Volume and in Terms of Energy per Unit Weight 
involves Heads.  

Pressure 
• Static Pressure and Pressure Head in a Fluid - Pressure and pressure head in a static 

fluid.  
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Euler Equations: In fluid dynamics, the Euler equations govern the motion of a compressible, 
inviscid fluid. They correspond to the Navier-Stokes equations with zero viscosity, although they 
are usually written in the form shown here because this emphasizes the fact that they directly 
represent conservation of mass, momentum, and energy.  
 
Euler Number: The Euler numbers, also called the secant numbers or zig numbers, are defined 
for by  

 

 
where is the hyperbolic secant and sec is the secant. Euler numbers give the number of 
odd alternating permutations and are related to Genocchi numbers. The base e of the natural 
logarithm is sometimes known as Euler's number. A different sort of Euler number, the Euler 
number of a finite complex , is defined by  
 

 
 
This Euler number is a topological invariant. To confuse matters further, the Euler characteristic 
is sometimes also called the "Euler number," and numbers produced by the prime-generating 
polynomial are sometimes called "Euler numbers" (Flannery and Flannery 2000, p. 
47).  
 
F 
Fecal Coliform:  A group of bacteria that may indicate the presence of human or animal fecal 
matter in water. 
 
Filtration: A series of processes that physically remove particles from water. 
 
Flood Rim: The point of an object where the water would run over the edge of something and 
begin to cause a flood.  See Air Break. 
 
Fluids:  A fluid is defined as a substance that continually deforms (flows) under an applied shear 
stress regardless of the magnitude of the applied stress. It is a subset of the phases of matter and 
includes liquids, gases, plasmas and, to some extent, plastic solids. Fluids are also divided into 
liquids and gases. Liquids form a free surface (that is, a surface not created by their container) 
while gases do not.  
 
The distinction between solids and fluids is not so obvious. The distinction is made by evaluating 
the viscosity of the matter: for example silly putty can be considered either a solid or a fluid, 
depending on the time period over which it is observed. Fluids share the properties of not resisting 
deformation and the ability to flow (also described as their ability to take on the shape of their 
containers).  
 
These properties are typically a function of their inability to support a shear stress in static 
equilibrium. While in a solid, stress is a function of strain, in a fluid, stress is a function of rate of 
strain. A consequence of this behavior is Pascal's law which entails the important role of pressure in 
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characterizing a fluid's state. Based on how the stress depends on the rate of strain and its 
derivatives, fluids can be characterized as:  Newtonian fluids: where stress is directly proportional to 
rate of strain, and  Non-Newtonian fluids : where stress is proportional to rate of strain, its higher 
powers and derivatives (basically everything other than Newtonian fluid).  
 
The behavior of fluids can be described by a set of partial differential equations, which are based on 
the conservation of mass, linear and angular momentum (Navier-Stokes equations) and energy. 
The study of fluids is fluid mechanics, which is subdivided into fluid dynamics and fluid statics 
depending on whether the fluid is in motion or not. Fluid Related Information: The Bernoulli 
Equation - A statement of the conservation of energy in a form useful for solving problems involving 
fluids. For a non-viscous, incompressible fluid in steady flow, the sum of pressure, potential and 
kinetic energies per unit volume is constant at any point. Equations in Fluid Mechanics - Continuity, 
Euler, Bernoulli, Dynamic and Total Pressure. Laminar, Transitional or Turbulent Flow? - It is 
important to know if the fluid flow is laminar, transitional or turbulent when calculating heat transfer 
or pressure and head loss.  
 
Friction Head: The head required to overcome the friction at the interior surface of a conductor and 
between fluid particles in motion. It varies with flow, size, type and conditions of conductors and 
fittings, and the fluid characteristics. 
 
G 
Gas:  A gas is one of the four major phases of matter (after solid and liquid, and followed by 
plasma) that subsequently appear as solid material when they are subjected to increasingly 
higher temperatures. Thus, as energy in the form of heat is added, a solid (e.g., ice) will first 
melt to become a liquid (e.g., water), which will then boil or evaporate to become a gas (e.g., 
water vapor). In some circumstances, a solid (e.g., "dry ice") can directly turn into a gas: this is 
called sublimation. If the gas is further heated, its atoms or molecules can become (wholly or 
partially) ionized, turning the gas into a plasma. Relater Gas Information: The Ideal Gas Law - 
For a perfect or ideal gas the change in density is directly related to the change in temperature 
and pressure as expressed in the Ideal Gas Law. Properties of Gas Mixtures - Special care 
must be taken for gas mixtures when using the ideal gas law, calculating the mass, the 
individual gas constant or the density. The Individual and Universal Gas Constant - The 
Individual and Universal Gas Constant is common in fluid mechanics and thermodynamics.  
 
Gauge Pressure: Pressure differential above or below ambient atmospheric pressure. 
 
H 
Hazardous Atmosphere: An atmosphere which by reason of being explosive, flammable, 
poisonous, corrosive, oxidizing, irritating, oxygen deficient, toxic, or otherwise harmful, may 
cause death, illness, or injury. 
 
Hazen-Williams Factor: Hazen-Williams factor for some common piping materials. Hazen-
Williams coefficients are used in the Hazen-Williams equation for friction loss calculation in 
ducts and pipes. 
 
Hazen-Williams Equation - Calculating Friction Head Loss in Water Pipes 
Friction head loss (ft H2O per 100 ft pipe) in water pipes can be obtained by using the empirical 
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Hazen-Williams equation. The Darcy-Weisbach equation with the Moody diagram are 
considered to be the most accurate model for estimating frictional head loss in steady pipe flow. 
Since the approach requires a not so efficient trial and error solution, an alternative empirical 
head loss calculation that does not require the trial and error solutions, as the Hazen-Williams 
equation, may be preferred: 
 

f = 0.2083 (100/c)1.852 q1.852 / dh
4.8655 (1) 

 
where 
f = friction head loss in feet of water per 100 feet of pipe (fth20/100 ft pipe) 
c = Hazen-Williams roughness constant 
q = volume flow (gal/min) 
dh = inside hydraulic diameter (inches) 

 
Note that the Hazen-Williams formula is empirical and lacks physical basis. Be aware that the 
roughness constants are based on "normal" condition with approximately 1 m/s (3 ft/sec). 
 
The Hazen-Williams formula is not the only empirical formula available. Manning's formula is 
common for gravity driven flows in open channels. 
 
The flow velocity may be calculated as: 

 
v = 0.4087 q / dh

2 
 
where 
v = flow velocity (ft/s) 

 
The Hazen-Williams formula can be assumed to be relatively accurate for piping systems where 
the Reynolds Number is above 105 (turbulent flow). 
• 1 ft (foot) = 0.3048 m  
• 1 in (inch) = 25.4 mm  
• 1 gal (US)/min =6.30888x10-5 m3/s = 0.0227 m3/h = 0.0631 dm3(liter)/s = 2.228x10-3 ft3/s 

= 0.1337 ft3/min = 0.8327 Imperial gal (UK)/min  
 
Note! The Hazen-Williams formula gives accurate head loss due to friction for fluids with 
kinematic viscosity of approximately 1.1 cSt. More about fluids and kinematic viscosity. 
 
The results for the formula are acceptable for cold water at 60 oF (15.6 oC) with kinematic 
viscosity 1.13 cSt. For hot water with a lower kinematic viscosity (0.55 cSt at 130 oF (54.4 oC)) 
the error will be significant. Since the Hazen Williams method is only valid for water flowing at 
ordinary temperatures between 40 to 75 oF, the Darcy Weisbach method should be used for 
other liquids or gases. 
 
Head: The height of a column or body of fluid above a given point expressed in linear units. Head if 
often used to indicate gauge pressure. Pressure is equal to the height times the density of the liquid. 
The measure of the pressure of water expressed in feet of height of water. 1 psi = 2.31 feet of water. 
There are various types of heads of water depending upon what is being measured. Static (water at 
rest) and Residual (water at flow conditions).  
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Hydraulics: Hydraulics is a branch of science and engineering concerned with the use of 
liquids to perform mechanical tasks.  
 
Hydrodynamics: Hydrodynamics is the fluid dynamics applied to liquids, such as water, 
alcohol, and oil.  
 
I 
Ideal Gas: The Ideal Gas Law - For a perfect or ideal gas the change in density is directly 
related to the change in temperature and pressure as expressed in the Ideal Gas Law. 
Properties of Gas Mixtures - Special care must be taken for gas mixtures when using the ideal 
gas law, calculating the mass, the individual gas constant or the density. The Individual and 
Universal Gas Constant - The Individual and Universal Gas Constant is common in fluid 
mechanics and thermodynamics.  
 
Isentropic Compression/Expansion Process: If the compression or expansion takes place 
under constant volume conditions - the process is called isentropic. The isentropic process on 
the basis of the Ideal Gas Law can be expressed as: 

 
p / ρk = constant (2) 
 
where 
k = cp / cv - the ratio of specific heats - the ratio of specific heat at constant pressure - cp 
- to the specific heat at constant volume - cv 

 
Irrigation: Water that is especially furnished to help provide and sustain the life of growing plants. It 
comes from ditches. It is sometimes treated with herbicides and pesticides to prevent the growth of 
weeds and the development of bugs in a lawn and a garden. 
 
J 
 
K 
Kinematic Viscosity: The ratio of absolute or dynamic viscosity to density - a quantity in which 
no force is involved. Kinematic viscosity can be obtained by dividing the absolute viscosity of a 
fluid with its mass density as 

 
ν = μ / ρ    (2) 
 
where 
ν = kinematic viscosity 
μ = absolute or dynamic viscosity 
ρ = density 

 
In the SI-system the theoretical unit is m2/s or commonly used Stoke (St) where 
• 1 St = 10-4 m2/s  
 
Since the Stoke is an unpractical large unit, it is usual divided by 100 to give the unit called 
Centistokes (cSt) where 

1 St = 100 cSt  
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1 cSt = 10-6 m2/s  
 
Since the specific gravity of water at 68.4oF (20.2oC) is almost one - 1, the kinematic viscosity of 
water at 68.4oF is for all practical purposes 1.0 cSt. 
 
Kinetic Energy: The ability of an object to do work by virtue of its motion. The energy terms that 
are used to describe the operation of a pump are pressure and head. 
 
Knudsen Number: Used by modelers who wish to express a non-dimensionless speed.  
 
L 
Laminar Flow: The resistance to flow in a liquid can be characterized in terms of the viscosity 
of the fluid if the flow is smooth. In the case of a moving plate in a liquid, it is found that there is 
a layer or lamina which moves with the plate, and a layer which is essentially stationary if it is 
next to a stationary plate.  

 
There is a gradient of velocity as you move from the stationary to the moving plate, and the 
liquid tends to move in layers with successively higher speed. This is called laminar flow, or 
sometimes "streamlined" flow. Viscous resistance to flow can be modeled for laminar flow, but if 
the lamina break up into turbulence, it is very difficult to characterize the fluid flow.  
 
The common application of laminar flow would be in the smooth flow of a viscous liquid through 
a tube or pipe. In that case, the velocity of flow varies from zero at 
the walls to a maximum along the centerline of the vessel. The 
flow profile of laminar flow in a tube can be calculated by dividing 
the flow into thin cylindrical elements and applying the viscous 
force to them. Laminar, Transitional or Turbulent Flow? - It is 
important to know if the fluid flow is laminar, transitional or turbulent when calculating heat 
transfer or pressure and head loss.  
 
Laplace's Equation: Describes the behavior of gravitational, electric, and fluid potentials.  
 
The scalar form of Laplace's equation is the partial differential equation  

 (1) 
where is the Laplacian.  
Note that the operator is commonly written as by mathematicians (Krantz 1999, p. 16). 
Laplace's equation is a special case of the Helmholtz differential equation  

 (2) 
 
with , or Poisson's equation  

 (3) 
with .  
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The vector Laplace's equation is given by  
 (4) 

 
A function which satisfies Laplace's equation is said to be harmonic. A solution to Laplace's 
equation has the property that the average value over a spherical surface is equal to the value 
at the center of the sphere (Gauss's harmonic function theorem). Solutions have no local 
maxima or minima. Because Laplace's equation is linear, the superposition of any two solutions 
is also a solution.  
 
Lift (Force): Lift consists of the sum of all the aerodynamic forces normal to the direction of the 
external airflow.  
 
Liquids: An in-between state of matter. They can be found in between the solid and gas states. 
They don't have to be made up of the same compounds. If you have a variety of materials in a 
liquid, it is called a solution.  
 
One characteristic of a liquid is that it will fill up the shape of 
a container. If you pour some water in a cup, it will fill up the 
bottom of the cup first and then fill the rest. The water will 
also take the shape of the cup. It fills the bottom first 
because of gravity. The top part of a liquid will usually have 
a flat surface. That flat surface is because of gravity too. 
Putting an ice cube (solid) into a cup will leave you with a 
cube in the middle of the cup; the shape won't change until 
the ice becomes a liquid.  
 
Another trait of liquids is that they are difficult to compress. 
When you compress something, you take a certain amount 
and force it into a smaller space. Solids are very difficult to compress and gases are very easy. 
Liquids are in the middle but tend to be difficult. When you compress something, you force the 
atoms closer together. When pressure go up, substances are compressed. Liquids already 
have their atoms close together, so they are hard to compress. Many shock absorbers in cars 
compress liquids in tubes.  
 
A special force keeps liquids together. Solids are stuck together and you have to force them 
apart. Gases bounce everywhere and they try to spread themselves out. Liquids actually want 
to stick together. There will always be the occasional evaporation where extra energy gets a 
molecule excited and the molecule leaves the system. Overall, liquids have cohesive (sticky) 
forces at work that hold the molecules together. Related Liquid Information: Equations in Fluid 
Mechanics - Continuity, Euler, Bernoulli, Dynamic and Total Pressure  
 
M 
Mach Number: When an object travels through a medium, then its Mach number is the ratio of 
the object's speed to the speed of sound in that medium.  
 
Magnetic Flow Meter: Inspection of magnetic flow meter instrumentation should include checking 
for corrosion or insulation deterioration. 
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Manning Formula for Gravity Flow: Manning's equation can be used to calculate cross-
sectional average velocity flow in open channels 

 
v = kn/n R2/3 S1/2 (1) 
 
where 
v = cross-sectional average velocity (ft/s, m/s) 
kn = 1.486 for English units and kn = 1.0 for SI units 
A = cross sectional area of flow (ft2, m2) 
n = Manning coefficient of roughness 
R = hydraulic radius (ft, m) 
S = slope of pipe (ft/ft, m/m) 
 
The volume flow in the channel can be calculated as 
q = A v = A kn/n R2/3 S1/2 (2) 
 
where 
q = volume flow (ft3/s, m3/s) 
A = cross-sectional area of flow (ft2, m2) 

 
Maximum Contamination Levels or (MCLs): The maximum allowable level of a contaminant 
that federal or state regulations allow in a public water system. If the MCL is exceeded, the 
water system must treat the water so that it meets the MCL. Or provide adequate backflow 
protection. 
 
Mechanical Seal: A mechanical device used to control leakage from the stuffing box of a pump. 
Usually made of two flat surfaces, one of which rotates on the shaft. The two flat surfaces are of 
such tolerances as to prevent the passage of water between them. 
 
Mg/L: milligrams per liter 
 
Microbe, Microbial: Any minute, simple, single-celled form of life, especially one that causes 
disease. 
 
Microbial Contaminants: Microscopic organisms present in untreated water that can cause 
waterborne diseases.  
 
ML: milliliter 
 
N 
Navier-Stokes Equations: The motion of a non-turbulent, Newtonian fluid is governed by the 
Navier-Stokes equation. The equation can be used to model turbulent flow, where the fluid 
parameters are interpreted as time-averaged values.  
 
Newtonian Fluid: Newtonian fluid (named for Isaac Newton) is a fluid that flows like water—its 
shear stress is linearly proportional to the velocity gradient in the direction perpendicular to the 
plane of shear. The constant of proportionality is known as the viscosity. Water is Newtonian, 
because it continues to exemplify fluid properties no matter how fast it is stirred or mixed.  
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Contrast this with a non-Newtonian fluid, in which stirring can leave a "hole" behind (that 
gradually fills up over time - this behavior is seen in materials such as pudding, or to a less 
rigorous extent, sand), or cause the fluid to become thinner, the drop in viscosity causing it to 
flow more (this is seen in non-drip paints). For a Newtonian fluid, the viscosity, by definition, 
depends only on temperature and pressure (and also the chemical composition of the fluid if the 
fluid is not a pure substance), not on the forces acting upon it. If the fluid is incompressible and 
viscosity is constant across the fluid, the equation governing the shear stress. Related 
Newtonian Information: A Fluid is Newtonian if viscosity is constant applied to shear force. 
Dynamic, Absolute and Kinematic Viscosity - An introduction to dynamic, absolute and 
kinematic viscosity and how to convert between CentiStokes (cSt), CentiPoises (cP), Saybolt 
Universal Seconds (SSU) and degree Engler.  
 
Newton's Third Law:  Newton's third law describes the forces acting on objects interacting with 
each other. Newton's third law can be expressed as 
 
• "If one object exerts a force F on another  object, then the second object exerts an equal 

but opposite force F on the first object"  
 
Force is a convenient abstraction to represent mentally the pushing and pulling interaction 
between objects. 
 
It is common to express forces as vectors with magnitude, direction and point of application. 
The net effect of two or more forces acting on the same point is the vector sum of the forces. 
 
Non-Newtonian Fluid: Non-Newtonian fluid viscosity changes with the applied shear force.  
 
O 
Oxidizing: The process of breaking down organic wastes into simpler elemental forms or by 
products. Also used to separate combined chlorine and convert it into free chlorine.  
 
P 
Pascal’s Law: A pressure applied to a confined fluid at rest is transmitted with equal intensity 
throughout the fluid. 
 
Pathogens: Disease-causing pathogens; waterborne pathogens. A pathogen is a bacterium, 
virus or parasite that causes or is capable of causing disease. Pathogens may contaminate 
water and cause waterborne disease. 
 
pCi/L- picocuries per liter:  A curie is the amount of radiation released by a set amount of a 
certain compound. A picocurie is one quadrillionth of a curie. 
 
pH: A measure of the acidity of water. The pH scale runs from 0 to 14 with 7 being the mid point 
or neutral. A pH of less than 7 is on the acid side of the scale with 0 as the point of greatest acid 
activity. A pH of more than 7 is on the basic (alkaline) side of the scale with 14 as the point of 
greatest basic activity. pH (Power of Hydroxyl Ion Activity). 
 
Pipeline Appurtenances: Pressure reducers, bends, valves, regulators (which are a type of 
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valve), etc. 
 
Peak Demand:  The maximum momentary load placed on a water treatment plant, pumping station 
or distribution system is the Peak Demand.  
 
Pipe Velocities: For calculating fluid pipe velocity. 
 
Imperial units 
A fluids flow velocity in pipes can be calculated with Imperial or American units as 

v = 0.4085 q / d2 (1) 
 
where  
v = velocity (ft/s) 
q = volume flow (US gal. /min) 
d = pipe inside diameter (inches) 

 
SI units 
A fluids flow velocity in pipes can be calculated with SI units as 

v = 1.274 q / d2 (2) 
 
where  
v = velocity (m/s) 
q = volume flow (m3/s) 
d = pipe inside diameter (m) 

 
Pollution: To make something unclean or impure. Some states will have a definition of pollution 
that relates to non-health related water problems, like taste and odors. See Contaminated. 
 
Positive Flow Report-back Signal:  When a pump receives a signal to start, a light will typically be 
illuminated on the control panel indicating that the pump is running.  In order to be sure that the 
pump is actually pumping water, a Positive flow report-back signal should be installed on the control 
panel.  
 
Potable: Good water which is safe for drinking or cooking purposes. Non-Potable: A liquid or 
water that is not approved for drinking. 
 
Potential Energy: The energy that a body has by virtue of its position or state enabling it to do 
work. 
 
PPM: Abbreviation for parts per million.  
 
Prandtl Number: The Prandtl Number is a dimensionless number approximating the ratio of 
momentum diffusivity and thermal diffusivity and can be expressed as 

 
Pr = v / α (1) 
where 
Pr = Prandtl's number  
v = kinematic viscosity (Pa s) 
α = thermal diffusivity (W/m K) 
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The Prandtl number can alternatively be expressed as 

 
Pr = μ cp / k (2) 
 
where  
μ = absolute or dynamic viscosity (kg/m s, cP) 
cp = specific heat capacity (J/kg K, Btu/(lb oF)) 
k = thermal conductivity (W/m K, Btu/(h ft2 oF/ft)) 

The Prandtl Number is often used in heat transfer and free and forced convection calculations. 
 
Pressure: An introduction to pressure - the definition and presentation of common units as psi 
and Pa and the relationship between them.  
 
The pressure in a fluid is defined as 
"the normal force per unit area exerted on a imaginary or real plane surface in a fluid or a gas" 
 
The equation for pressure can expressed as: 

p = F / A (1) 
 
where 
p = pressure [lb/in2 (psi) or lb/ft2 (psf), N/m2 or kg/ms2 (Pa)] 
F = force [1), N] 
A = area [in2 or ft2, m2] 

1) In the English Engineering System special care must be taken for the force unit. The basic 
unit for mass is the pound mass (lbm) and the unit for the force is the pound (lb) or pound force 
(lbf). 
 
Absolute Pressure 
The absolute pressure - pa - is measured relative to the absolute zero pressure - the pressure 
that would occur at absolute vacuum. 
 
Gauge Pressure 
A gauge is often used to measure the pressure difference between a system and the 
surrounding atmosphere. This pressure is often called the gauge pressure and can be 
expressed as 

pg = pa - po (2) 
 
where 
pg = gauge pressure 
po = atmospheric pressure 

 
Atmospheric Pressure 
The atmospheric pressure is the pressure in the surrounding air. It varies with temperature and 
altitude above sea level. 
 
Standard Atmospheric Pressure 
The Standard Atmospheric Pressure (atm) is used as a reference for gas densities and 
volumes. The Standard Atmospheric Pressure is defined at sea-level at 273oK (0oC) and is 
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1.01325 bar or 101325 Pa (absolute). The temperature of 293oK (20oC) is also used. 
 
In imperial units the Standard Atmospheric Pressure is 14.696 psi. 
• 1 atm = 1.01325 bar = 101.3 kPa = 14.696 psi (lbf/in2)= 760 mmHg =10.33 mH2O = 760 

torr = 29.92 inHg = 1013 mbar = 1.0332 kgf/cm2 = 33.90 ftH2O  
 
Pressure Head: The height to which liquid can be raised by a given pressure. 
 
Pressure Regulation Valves: Control water pressure and operate by restricting flows.  They are 
used to deliver water from a high pressure to a low-pressure system.  The pressure downstream 
from the valve regulates the amount of flow.  Usually, these valves are of the globe design and have 
a spring-loaded diaphragm that sets the size of the opening.  
 
Pressure Units: Since 1 Pa is a small pressure unit, the unit hectopascal (hPa) is widely used, 
especially in meteorology. The unit kilopascal (kPa) is commonly used designing technical 
applications like HVAC systems, piping systems and similar. 
• 1 hectopascal = 100 pascal = 1 millibar  
• 1 kilopascal = 1000 pascal  
Some Pressure Levels 
• 10 Pa - The pressure at a depth of 1 mm of water  
• 1 kPa - Approximately the pressure exerted by a 10 g mass on a 1 cm2 area  
• 10 kPa - The pressure at a depth of 1 m of water, or 

the drop in air pressure when going from sea level to 1000 m elevation  
• 10 MPa - A "high pressure" washer forces the water out of the nozzles at this pressure  
• 10 GPa - This pressure forms diamonds  
Some Alternative Units of Pressure 
• 1 bar - 100,000 Pa  
• 1 millibar - 100 Pa  
• 1 atmosphere - 101,325 Pa  
• 1 mm Hg - 133 Pa  
• 1 inch Hg - 3,386 Pa  
A torr (torr) is named after Torricelli and is the pressure produced by a column of mercury 1 mm 
high equals to 1/760th of an atmosphere. 1 atm = 760 torr = 14.696 psi 
Pounds per square inch (psi) was common in U.K. but has now been replaced in almost every 
country except in the U.S. by the SI units. The Normal atmospheric pressure is 14.696 psi, 
meaning that a column of air on one square inch in area rising from the Earth's atmosphere to 
space weights 14.696 pounds. 
 
The bar (bar) is common in the industry. One bar is 100,000 Pa, and for most practical 
purposes can be approximated to one atmosphere even if  

1 Bar = 0.9869 atm 
 
There are 1,000 millibar (mbar) in one bar, a unit common in meteorology.  

1 millibar = 0.001 bar = 0.750 torr = 100 Pa 
 
Q  
 
R 
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Residual Disinfection/Protection: A required level of disinfectant that remains in treated water to 
ensure disinfection protection and prevent recontamination throughout the distribution system (i.e., 
pipes).  
 
Reynolds Number: The Reynolds number is used to determine whether a flow is laminar or 
turbulent. The Reynolds Number is a nondimensional parameter defined by the ratio of dynamic 
pressure (ρ u2) and shearing stress (μ u / L) - and can be expressed as 

Re = (ρ u2) / (μ u / L) 
     = ρ u L / μ 
     = u L / ν    (1) 
 

where 
Re = Reynolds Number (non-dimensional) 
ρ = density (kg/m3, lbm/ft3  ) 
u = velocity (m/s, ft/s) 
μ = dynamic viscosity (Ns/m2, lbm/s ft) 
L = characteristic length (m, ft) 
ν = kinematic viscosity (m2/s, ft2/s) 

 
Richardson Number: A dimensionless number that expresses the ratio of potential to kinetic 
energy.  
 
S 
Sanitizer: A chemical which disinfects (kills bacteria), kills algae and oxidizes organic matter.  
 
Saybolt Universal Seconds (or SUS, SSU): Saybolt Universal Seconds (or SUS) is used to 
measure viscosity. The efflux time is Saybolt Universal Seconds (SUS) required for 60 milliliters 
of a petroleum product to flow through the calibrated orifice of a Saybolt Universal viscometer, 
under carefully controlled temperature and as prescribed by test method ASTM D 88. This 
method has largely been replaced by the kinematic viscosity method. Saybolt Universal 
Seconds is also called the SSU number (Seconds Saybolt Universal) or SSF number (Saybolt 
Seconds Furol). 
 
Kinematic viscosity versus dynamic or absolute viscosity can be expressed as 

 
ν = 4.63 μ / SG (3) 
where  
ν = kinematic viscosity (SSU) 
μ = dynamic or absolute viscosity (cP) 

 
Scale: Crust of calcium carbonate, the result of unbalanced pool water. Hard insoluble minerals 
deposited (usually calcium bicarbonate) which forms on pool and spa surfaces and clog filters, 
heaters and pumps. Scale is caused by high calcium hardness and/or high pH.  You will often find 
major scale deposits inside a backflow prevention assembly. 
 
Shock: Also known as superchlorination or break point chlorination. Ridding a pool of organic 
waste through oxidization by the addition of significant quantities of a halogen.  
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

173

Shock Wave: A shock wave is a strong pressure wave produced by explosions or other 
phenomena that create violent changes in pressure.  
 
Solder:  A fusible alloy used to join metallic parts.  Solder for potable water pipes shall be lead-
free. 
Sound Barrier: The sound barrier is the apparent physical boundary stopping large objects 
from becoming supersonic.  
 
Specific Gravity: The Specific Gravity - SG - is a dimensionless unit defined as the ratio of 
density of the material to the density of water at a specified temperature. Specific Gravity can be 
expressed as 

 
SG = = ρ / ρH2O (3) 
 
where 
SG = specific gravity 
ρ = density of fluid or substance (kg/m3) 
ρH2O = density of water (kg/m3) 

 
It is common to use the density of water at 4 oC (39oF) as a reference - at this point the density 
of water is at the highest.  Since Specific Weight is dimensionless it has the same value in the 
metric SI system as in the imperial English system (BG). At the reference point the Specific 
Gravity has same numerically value as density. 
 
Example - Specific Gravity 
If the density of iron is 7850 kg/m3, 7.85 grams per cubic millimeter, 7.85 kilograms per liter, or 
7.85 metric tons per cubic meter - the specific gravity of iron is: 

SG = 7850 kg/m3/ 1000 kg/m3  
     = 7.85 

(the density of water is 1000 kg/m3) 
 
Specific Weight: Specific Weight is defined as weight per unit volume. Weight is a force. 
• Mass and Weight - the difference! - What is weight and what is mass? An explanation of 

the difference between weight and mass.  
Specific Weight can be expressed as 

 
γ = ρ g (2) 
 
where 
γ = specific weight (kN/m3) 
g = acceleration of gravity (m/s2) 

The SI-units of specific weight are kN/m3. The imperial units are lb/ft3. The local acceleration g is 
under normal conditions 9.807 m/s2 in SI-units and 32.174 ft/s2 in imperial units. 
 
Example - Specific Weight Water 
Specific weight for water at 60 oF is 62.4 lb/ft3 in imperial units and 9.80 kN/m3 in SI-units. 
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Example - Specific Weight Some other Materials 
Specific Weight - γ 

Product Imperial Units 
(lb/ft3) 

SI Units 
(kN/m3) 

Ethyl Alcohol 49.3 7.74 
Gasoline 42.5 6.67 
Glycerin 78.6 12.4 
Mercury 847 133 

SAE 20 Oil 57 8.95 
Seawater 64 10.1 

Water 62.4 9.80 
 
Static Head: The height of a column or body of fluid above a given point 
 
Static Pressure: The pressure in a fluid at rest. 
 
Static Pressure and Pressure Head in Fluids: The pressure indicates the normal force per 
unit area at a given point acting on a given plane. Since there is no shearing stresses present in 
a fluid at rest - the pressure in a fluid is independent of direction. 
 
For fluids - liquids or gases - at rest the pressure gradient in the vertical direction depends only 
on the specific weight of the fluid. 
How pressure changes with elevation can be expressed as 

dp = - γ dz (1) 
 
where 
dp = change in pressure 
dz = change in height 
γ = specific weight 

 
The pressure gradient in vertical direction is negative - the pressure decrease upwards. 
 
Static Pressure and Pressure Head in Fluids Continued: 
Specific Weight: Specific Weight can be expressed as: 

γ = ρ g (2) 
 

where 
γ = specific weight 
g = acceleration of gravity 

 
In general the specific weight - γ - is constant for fluids. For gases the specific weight - γ - varies 
with the elevation. 
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Static Pressure and Pressure Head in Fluids Continued: 
Static Pressure in a Fluid: For an incompressible fluid - as a liquid - the pressure difference 
between two elevations can be expressed as: 

 
p2 - p1 = - γ (z2 - z1) (3) 

 
where 
p2 = pressure at level 2 
p1 = pressure at level 1 
z2 = level 2 
z1 = level 1 

(3) can be transformed to: 
p1 - p2 = γ (z2 - z1) (4) 
or 
p1 - p2 = γ h (5) 

 
where 
h = z2 - z1 difference in elevation - the dept down from location z2. 
or 
p1 = γ h + p2 (6) 

 
Static Pressure and Pressure Head in Fluids Continued: 
The Pressure Head 
(6) can be transformed to: 

h = (p2 - p1) / γ (6) 
h express the pressure head - the height of a column of fluid of specific weight - γ - required to 
give a pressure difference of (p2 - p1). 
 
Example - Pressure Head 
A pressure difference of 5 psi (lbf/in2) is equivalent to 

5 (lbf/in2) 12 (in/ft) 12 (in/ft) / 62.4 (lb/ft3) = 11.6 ft of water 
5 (lbf/in2) 12 (in/ft) 12 (in/ft) / 847 (lb/ft3) = 0.85 ft of mercury 

when specific weight of water is 62.4 (lb/ft3) and specific weight of mercury is 847 (lb/ft3). 
 
Streamline - Stream Function: A streamline is the path that an imaginary particle would follow 
if it was embedded in the flow.  
 
Strouhal Number: A quantity describing oscillating flow mechanisms. The Strouhal Number is a 
dimensionless value useful for analyzing oscillating, unsteady fluid flow dynamics problems. 
 
The Strouhal Number can be expressed as 

St = ω l / v (1) 
 
where 
St = Strouhal Number 
ω = oscillation frequency 
l = characteristic length 
v = flow velocity 
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The Strouhal Number represents a measure of the ratio of inertial forces due to the unsteadiness of 
the flow or local acceleration to the inertial forces due to changes in velocity from one point to 
another in the flow field. 
 
The vortices observed behind a stone in a river, or measured behind the obstruction in a vortex flow 
meter, illustrate these principles. 
 
Stuffing Box: That portion of the pump which houses the packing or mechanical seal. 
 
Submerged: To cover with water or liquid substance. 
 
Supersonic Flow: Flow with speed above the speed of sound, 1,225 km/h at sea level, is said 
to be supersonic.  
 
Surface Tension: Surface tension is a force within the surface layer of a liquid that causes the 
layer to behave as an elastic sheet.  The cohesive forces between liquid molecules are responsible 
for the phenomenon known as surface tension. The molecules at the surface do not have other like 
molecules on all sides of them and consequently they cohere more strongly to those directly 
associated with them on the surface. This forms a surface "film" which makes it more difficult to 
move an object through the surface than to move it when it is completely submersed. Surface 
tension is typically measured in dynes/cm, the force in dynes required to break a film of length 1 
cm. Equivalently, it can be stated as surface energy in ergs per square centimeter. Water at 20°C 
has a surface tension of 72.8 dynes/cm compared to 22.3 for ethyl alcohol and 465 for mercury.  
 
Surface tension is typically measured in dynes/cm or N/m. 

Surface Tension Liquid 
N/m dynes/cm 

Ethyl Alcohol 0.0223 22.3 
Mercury 0.465 465 

Water 20oC 0.0728 72.75 
Water 100oC 0.0599 58.9 

 
Surface tension is the energy required to stretch a unit change of a surface area. Surface 
tension will form a drop of liquid to a sphere since the sphere offers the smallest area for a 
definite volume. 
 
Surface tension can be defined as  

 
σ = Fs / l  (1) 
 
where  
σ = surface tension (N/m) 
Fs =  stretching force (N) 
l = unit length (m) 
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Alternative Units 
Alternatively, surface tension is typically measured in dynes/cm, which is  
• the force in dynes required to break a film of length 1 cm  
or as surface energy J/m2 or alternatively ergs per square centimeter. 
• 1 dynes/cm = 0.001 N/m = 0.0000685 lbf/ft = 0.571 10-5 lbf/in = 0.0022 poundal/ft = 

0.00018 poundal/in = 1.0 mN/m = 0.001 J/m2 = 1.0 erg/cm2 = 0.00010197 kgf/m  
 
Common Imperial units used are lb/ft and lb/in.  
 
Water surface tension at different temperatures can be taken from the table below: 

Temperature 

(oC) 

Surface Tension
- σ -  

(N/m) 
0 0.0757 

10 0.0742 
20 0.0728 
30 0.0712 
40 0.0696 
50 0.0679 
60 0.0662 
70 0.0644 
80 0.0626 
90 0.0608 

100 0.0588 
 
Surface Tension of some common Fluids 
• benzene : 0.0289 (N/m)  
• diethyl ether : 0.0728 (N/m)  
• carbon tetrachloride : 0.027 (N/m)  
• chloroform : 0.0271 (N/m)  
• ethanol : 0.0221 (N/m)  
• ethylene glycol : 0.0477 (N/m)  
• glycerol : 0.064 (N/m)  
• mercury : 0.425 (N/m)  
• methanol : 0.0227 (N/m)  
• propanol : 0.0237 (N/m)  
• toluene : 0.0284 (N/m)  
• water at 20oC : 0.0729 (N/m)  
 
Surge Tanks:  Surge tanks can be used to control Water Hammer. A limitation of hydropneumatic 
tanks is that they do not provide much storage to meet peak demands during power outages and 
you have very limited time to do repairs on equipment. 
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T 
Telemetering Systems: The following are common pressure sensing devices: Helical Sensor, 
Bourdon Tube, and Bellows Sensor. The most frequent problem that affects a liquid pressure-
sensing device is air accumulation at the sensor. A diaphragm element being used as a level 
sensor would be used in conjunction with a pressure sensor. Devices must often transmit more than 
one signal. You can use several types of systems including: Polling, Scanning and Multiplexing. 
Transmitting equipment requires installation where temperature will not exceed 130 degrees F. 
 
Thixotropic Fluids: Shear Thinning Fluids or Thixotropic Fluids reduce their viscosity as 
agitation or pressure is increased at a constant temperature. Ketchup and mayonnaise are 
examples of thixotropic materials. They appear thick or viscous but are possible to pump quite 
easily. 
 
Transonic: Flow with speed at velocities just below and above the speed of sound is said to be 
transonic.  
 
Turbidity: A measure of the cloudiness of water caused by suspended particles. 
 
U 
U-Tube Manometer: Pressure measuring devices using liquid columns in vertical or inclined 
tubes are called manometers. One of the most common is the water filled u-tube manometer 
used to measure pressure difference in pitot or orifices located in the airflow in air handling or 
ventilation systems. 
 
V 
Valve: A device that opens and closes to regulate the flow of liquids. Faucets, hose bibs, and 
Ball are examples of valves. 
  
Vane: That portion of an impeller which throws the water toward the volute. 
 
Vapor Pressure: For a particular substance at any given temperature there is a pressure at 
which the vapor of that substance is in equilibrium with its liquid or solid forms.  
 
Velocity Head: The vertical distance a liquid must fall to acquire the velocity with which it flows 
through the piping system. For a given quantity of flow, the velocity head will vary indirectly as 
the pipe diameter varies. 

 
Venturi: A system for speeding the flow of the fluid, by constricting it in a cone-shaped 
tube. Venturi are used to measure the speed of a fluid, by measuring the pressure 
changes from one point to another along the venture. A venturi can also be used to 
inject a liquid or a gas into another liquid. A pump forces the liquid flow through a tube 
connected to: 

• A venturi to increase the speed of the fluid (restriction of the pipe diameter)  
• A short piece of tube connected to the gas source  
• A second venturi that decrease the speed of the fluid (the pipe diameter increase again)  
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After the first venturi 
the pressure in the 
pipe is lower, so the 
gas is sucked in the 
pipe. Then the 
mixture enters the 
second venturi and 
slow down. At the 
end of the system a 
mixture of gas and 
liquid appears and 
the pressure rise 
again to its normal 
level in the pipe. 
This technique is 
used for ozone 
injection in water. 
 
The newest injector design causes complete mixing of injected materials (air, ozone or 
chemicals), eliminating the need for other in-line mixers. Venturi injectors have no moving 
parts and are maintenance free. They operate effectively over a wide range of pressures 
(from 1 to 250 psi) and require only a minimum pressure difference to initiate the vacuum at 
the suction part. Venturis are often built in thermoplastics (PVC, PE, PVDF), stainless steel or 
other metals. 
 
The cavitation effect at the injection chamber provides an instantaneous mixing, creating 
thousand of very tiny bubbles of gas in the liquid. The small bubbles provide and increased 
gas exposure to the liquid surface area, increasing the effectiveness of the process (i.e. 
ozonation).  
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Vibration: A force that is present on construction sites and must be considered. The vibrations 
caused by backhoes, dump trucks, compactors and traffic on job sites can be substantial. 
 
Viscosity: Informally, viscosity is the quantity that describes a fluid's resistance to flow. Fluids 
resist the relative motion of immersed objects through them as well as to the motion of layers 
with differing velocities within them. Formally, viscosity (represented by the symbol η "eta") is 
the ratio of the shearing stress (F/A) to the velocity gradient (Δvx/Δz or dvx/dz) in a fluid. 

F Δvx F dvxη = (
  A ) ÷ ( Δz  ) or η = ( A ) ÷ ( dz

 
)

The more usual form of this relationship, called Newton's equation, states that the resulting shear of 
a fluid is directly proportional to the force applied and inversely proportional to its viscosity. The 
similarity to Newton's second law of motion (F = ma) should be apparent. 

F Δvx F
dv

x

A
 = η 

Δz
or 

A
 = η 

dz
           
  ⇕       ⇕  
           

Δv dvF = m Δt or F = m dt
The SI unit of viscosity is the pascal second [Pa·s], which has no special name. Despite its self-
proclaimed title as an international system, the International System of Units has had very little 
international impact on viscosity. The pascal second is rarely used in scientific and technical 
publications today. The most common unit of viscosity is the dyne second per square centimeter 
[dyne·s/cm2], which is given the name poise [P] after the French physiologist Jean Louis Poiseuille 
(1799-1869). Ten poise equal one pascal second [Pa·s] making the centipoise [cP] and 
millipascal second [mPa·s] identical. 
 

1 pascal second = 10 poise = 1,000 millipascal second 
1 centipoise = 1 millipascal second 

 
There are actually two quantities that are called viscosity. The quantity defined above is sometimes 
called dynamic viscosity, absolute viscosity, or simple viscosity to distinguish it from the other 
quantity, but is usually just called viscosity. The other quantity called kinematic viscosity 
(represented by the symbol ν "nu") is the ratio of the viscosity of a fluid to its density. 
 

 
Kinematic viscosity is a measure of the resistive flow of a fluid under the influence of gravity. It is 
frequently measured using a device called a capillary viscometer -- basically a graduated can with a 
narrow tube at the bottom. When two fluids of equal volume are placed in identical capillary 
viscometers and allowed to flow under the influence of gravity, a viscous fluid takes longer than a 
less viscous fluid to flow through the tube. Capillary viscometers are discussed in more detail later 
in this section.  The SI unit of kinematic viscosity is the square meter per second [m2/s], which has 
no special name. This unit is so large that it is rarely used. A more common unit of kinematic 
viscosity is the square centimeter per second [cm2/s], which is given the name stoke [St] after the 
English scientist George Stoke. This unit is also a bit too large and so the most common unit is 
probably the square millimeter per second [mm2/s] or centistoke [cSt]. 
 

ην =
  ρ
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Viscosity and Reference Temperatures: The viscosity of a fluid is highly temperature dependent 
and for either dynamic or kinematic viscosity to be meaningful, the reference temperature must be 
quoted. In ISO 8217 the reference temperature for a residual fluid is 100oC. For a distillate fluid the 
reference temperature is 40oC. 
• For a liquid - the kinematic viscosity will decrease with higher temperature.  
• For a gas - the kinematic viscosity will increase with higher temperature.  
 
Volute: The spiral-shaped casing surrounding a pump impeller that collects the liquid discharged  
by the impeller. 
 
Vorticity: Vorticity is defined as the circulation per unit area at a point in the flow field.  
 
Vortex:  A vortex is a whirlpool in the water. 
 
W 
Water Freezing: The effects of water freezing in storage tanks can be minimized by alternating 
water levels in the tank. 
 
Water Storage Facility Inspection: During an inspection of your water storage facility, you should 
inspect the Cathodic protection system including checking the anode’s condition and the connections. 
The concentration of polyphosphates that is used for corrosion control in storage tanks is typically 5 
mg/L or less.  External corrosion of steel water storage facilities can be reduced with Zinc or 
aluminum coatings. All storage facilities should be regularly sampled to determine the quality of water 
that enters and leaves the facility.  One tool or piece of measuring equipment is the Jackson 
turbidimeter, which is a method to measure cloudiness in water. 
 
Wave Drag: Wave drag refers to a sudden and very powerful drag that appears on aircrafts 
flying at high-subsonic speeds.  
 
Water Purveyor: The individuals or organization responsible to help provide, supply, and 
furnish quality water to a community. 
 
Water Works: All of the pipes, pumps, reservoirs, dams and buildings that make up a water 
system. 
 
Waterborne Diseases: A disease, caused by a virus, bacterium, protozoan, or other 
microorganism, capable of being transmitted by water (e.g., typhoid fever, cholera, amoebic 
dysentery, gastroenteritis). 
 
Weber Number: A dimensionless value useful for analyzing fluid flows where there is an 
interface between two different fluids. Since the Weber Number represents an index of the 
inertial force to the surface tension force acting on a fluid element, it can be useful analyzing 
thin films flows and the formation of droplets and bubbles. 
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Appendixes and Charts 
 
Density of Common Liquids  
The density of some common liquids can be found in the table below: 

Liquid 
Temperature

- t - 
(oC) 

Density 
- ρ - 

(kg/m3) 
Acetic Acid 25 1049 

Acetone 25 785 
Acetonitrile 20 782 

Alcohol, ethyl 25 785 
Alcohol, methyl 25 787 
Alcohol, propyl 25 780 

Ammonia (aqua) 25 823 
Aniline 25 1019 

Automobile oils 15 880 - 940 
Beer (varies) 10 1010 

Benzene 25 874 
Benzyl 15 1230 
Brine 15 1230 

Bromine 25 3120 
Butyric Acid 20 959 

Butane 25 599 
n-Butyl Acetate 20 880 
n-Butyl Alcohol 20 810 
n-Butylhloride 20 886 
Caproic acid 25 921 
Carbolic acid 15 956 

Carbon disulfide 25 1261 
Carbon tetrachloride 25 1584 

Carene 25 857 
Castor oil 25 956 
Chloride 25 1560 

Chlorobenzene 20 1106 
Chloroform 20 1489 
Chloroform 25 1465 
Citric acid 25 1660 

Coconut oil 15 924 
Cotton seed oil 15 926 

Cresol 25 1024 
Creosote 15 1067 

Crude oil, 48o API 60oF 790 
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Crude oil, 40o API 60oF 825 
Crude oil, 35.6o API 60oF 847 
Crude oil, 32.6o API 60oF 862 
Crude oil, California 60oF 915 
Crude oil, Mexican 60oF 973 
Crude oil, Texas 60oF 873 

Cumene 25 860 
Cyclohexane 20 779 
Cyclopentane 20 745 

Decane 25 726 
Diesel fuel oil 20 to 60 15 820 - 950 

Diethyl ether 20 714 
o-Dichlorobenzene 20 1306 
Dichloromethane 20 1326 
Diethylene glycol 15 1120 
Dichloromethane 20 1326 

Dimethyl Acetamide 20 942 
N,N-Dimethylformamide 20 949 

Dimethyl Sulfoxide 20 1100 
Dodecane 25 755 

Ethane -89 570 
Ether 25 73 

Ethylamine 16 681 
Ethyl Acetate 20 901 
Ethyl Alcohol 20 789 
Ethyl Ether 20 713 

Ethylene Dichloride 20 1253 
Ethylene glycol 25 1097 

Fluorine refrigerant R-12 25 1311 
Formaldehyde 45 812 

Formic acid 10%oncentration 20 1025 
Formic acid 80%oncentration 20 1221 

Freon - 11 21 1490 
Freon - 21 21 1370 

Fuel oil 60oF 890 
Furan 25 1416 

Furforol 25 1155 
Gasoline, natural 60oF 711 
Gasoline, Vehicle 60oF 737 

Gas oils 60oF 890 
Glucose 60oF 1350 - 1440 
Glycerin 25 1259 
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Glycerol 25 1126 
Heptane 25 676 
Hexane 25 655 
Hexanol 25 811 
Hexene 25 671 

Hydrazine 25 795 
Iodine 25 4927 
Ionene 25 932 

Isobutyl Alcohol 20 802 
Iso-Octane 20 692 

Isopropyl Alcohol 20 785 
Isopropyl Myristate 20 853 

Kerosene 60oF 817 
Linolenic Acid 25 897 

Linseed oil 25 929 
Methane -164 465 
Methanol 20 791 

Methyl Isoamyl Ketone 20 888 
Methyl Isobutyl Ketone 20 801 
Methyl n-Propyl Ketone 20 808 

Methyl t-Butyl Ether 20 741 
N-Methylpyrrolidone 20 1030 
Methyl Ethyl Ketone 20 805 

Milk 15 1020 - 1050 
Naphtha 15 665 

Naphtha, wood 25 960 
Napthalene 25 820 

Ocimene 25 798 
Octane 15 918 
Olive oil 20 800 - 920 

Oxygen (liquid) -183 1140 
Palmitic Acid 25 851 

Pentane 20 626 
Pentane 25 625 

Petroleum Ether 20 640 
Petrol, natural 60oF 711 
Petrol, Vehicle 60oF 737 

Phenol 25 1072 
Phosgene 0 1378 
Phytadiene 25 823 

Pinene 25 857 
Propane -40 583 
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Propane, R-290 25 494 
Propanol 25 804 

Propylenearbonate 20 1201 
Propylene 25 514 

Propylene glycol 25 965 
Pyridine 25 979 
Pyrrole 25 966 

Rape seed oil 20 920 
Resorcinol 25 1269 
Rosin oil 15 980 

Sea water 25 1025 
Silane 25 718 

Silicone oil  760 
Sodium Hydroxide (caustic 

soda) 15 1250 

Sorbaldehyde 25 895 
Soya bean oil 15 924 - 928 
Stearic Acid 25 891 

Sulphuric Acid 95%onc. 20 1839 
Sugar solution 68 brix 15 1338 

Sunflower oil 20 920 
Styrene 25 903 

Terpinene 25 847 
Tetrahydrofuran 20 888 

Toluene 20 867 
Toluene 25 862 

Triethylamine 20 728 
Trifluoroacetic Acid 20 1489 

Turpentine 25 868 
Water - pure 4 1000 
Water - sea 77oF 1022 
Whale oil 15 925 
o-Xylene 20 880 

1 kg/m3 = 0.001 g/cm3 = 0.0005780 oz/in3 = 0.16036 oz/gal (Imperial) = 0.1335 oz/gal (U.S.) = 0.0624 lb/ft3 = 
0.000036127 lb/in3 = 1.6856 lb/yd3 = 0.010022 lb/gal (Imperial) = 0.008345 lb/gal (U.S) = 0.0007525 ton/yd3  
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Dynamic or Absolute Viscosity Units Converting Table 
The table below can be used to convert between common dynamic or absolute viscosity units. 

Multiply by Convert to 

Convert from Poiseuille 
(Pa s) 

Poise 
(dyne s/ cm2

= 
g / cm s) 

centiPoise kg / m h kgf s / m2 

Poiseuille 
(Pa s) 1 10 103 3.63 103 0.102 

Poise 
(dyne s / cm2 

= 
g / cm s) 

0.1 1 100 360 0.0102 

centiPoise 0.001 0.01 1 3.6 0.00012 
kg / m h 2.78 10-4 0.00278 0.0278 1 2.83 10-5 
kgf s / m2 9.81 98.1 9.81 103 3.53 104 1 

lbf s / inch2 6.89 103 6.89 104 6.89 106 2.48 107 703 
lbf s / ft2 47.9 479 4.79 104 1.72 105 0.0488 
lbf h / ft2 1.72 105 1.72 106 1.72 108 6.21 108 1.76 104 
lb / ft s 1.49 14.9 1.49 103 5.36 103 0.152 
lb / ft h 4.13 10-4 0.00413 0.413 1.49 4.22 10-5 

Multiply by Convert to 
Convert from lbf s / inch2 lbf s / ft2 lbf h / ft2 lb / ft s lb / ft h 

Poiseuille 
(Pa s) 1.45 10-4 0.0209 5.8 10-6 0.672 2.42 103 

Poise 
(dyne s / cm2 

= 
g / cm s) 

1.45 10-5 0.00209 5.8 10-7 0.0672 242 

centiPoise 1.45 10-7 2.9 10-5 5.8 10-9 0.000672 2.42 
kg / m h 4.03 10-8 5.8 10-6 1.61 10-9 0.000187 0.672 
kgf s / m2 0.00142 20.5 5.69 10-5 6.59 2.37 104 

lbf s / inch2 1 144 0.04 4.63 103 1.67 107 
lbf s / ft2 0.00694 1 0.000278 32.2 1.16 105 
lbf h / ft2 25 3.6 103 1 1.16 105 4.17 108 
lb / ft s 0.000216 0.0311 8.63 10-6 1 3.6 103 
lb / ft h 6 10-8 1.16 105 2.4 10-9 0.000278 1 
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Friction Loss Chart 
 
The table below can be used to indicate the friction loss - feet of liquid per 100 feet of pipe - in 
standard schedule 40 steel pipes. 

Flow Rate  Kinematic Viscosity - SSU Pipe 
Size  

(inches) (gpm) (l/s) 31 
(Water)

100 
(~Cream)

200 
(~Vegetable 

oil) 

400 
(~SAE 
10 oil) 

800 
(~Tomato 

juice) 

1500 
(~SAE 
30 oil) 

1/2 3 0.19 10.0 25.7 54.4 108.0 218.0 411.0 
3 0.19 2.5 8.5 17.5 35.5 71.0 131.0 3/4 
5 0.32 6.3 14.1 29.3 59.0 117.0 219.0 
3 0.19 0.8 3.2 6.6 13.4 26.6 50.0 
5 0.32 1.9 5.3 11.0 22.4 44.0 83.0 

10 0.63 6.9 11.2 22.4 45.0 89.0 165.0 
15 0.95 14.6 26.0 34.0 67.0 137.0   

1 

20 1.26 25.1 46 46.0 90.0 180.0   
5 0.32 0.5 1.8 3.7 7.6 14.8 26.0 

10 0.63 1.8 3.6 7.5 14.9 30.0 55.0 1 1/4 

15 0.95 3.7 6.4 11.3 22.4 45.0 84.0 
10 0.63 0.8 1.9 4.2 8.1 16.5 31.0 
15 0.95 1.7 2.8 6.2 12.4 25.0 46.0 
20 1.26 2.9 5.3 8.1 16.2 33.0 61.0 
30 1.9 6.3 11.6 12.2 24.3 50.0 91.0 

1 1/2 

40 2.5 10.8 19.6 20.8 32.0 65.0 121.0 
20 1.26 0.9 1.5 3.0 6.0 11.9 22.4 
30 1.9 1.8 3.2 4.4 9.0 17.8 33.0 
40 2.5 3.1 5.8 5.8 11.8 24.0 44.0 
60 3.8 6.6 11.6 13.4 17.8 36.0 67.0 

2 

80 5.0 1.6 3.0 3.2 4.8 9.7 18.3 
30 1.9 0.8 1.4 2.2 4.4 8.8 16.6 
40 2.5 1.3 2.5 3.0 5.8 11.8 22.2 
60 3.8 2.7 5.1 5.5 8.8 17.8 34.0 
80 5.0 4.7 8.3 9.7 11.8 24.0 44.0 

2 1/2 

100 6.3 7.1 12.2 14.1 14.8 29.0 55.0 
60 3.8 0.9 1.8 1.8 3.7 7.3 13.8 

100 6.3 2.4 4.4 5.1 6.2 12.1 23.0 
125 7.9 3.6 6.5 7.8 8.1 15.3 29.0 
150 9.5 5.1 9.2 10.4 11.5 18.4 35.0 
175 11.0 6.9 11.7 13.8 15.8 21.4 40.0 

3 

200 12.6 8.9 15.0 17.8 20.3 25.0 46.0 
80 5.0 0.4 0.8 0.8 1.7 3.3 6.2 4 

100 6.3 0.6 1.2 1.3 2.1 4.1 7.8 
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125 7.9 0.9 1.8 2.1 2.6 5.2 9.8 
150 9.5 1.3 2.4 2.9 3.1 6.2 11.5 
175 11.0 1.8 3.2 4.0 4.0 7.4 13.7 
200 12.6 2.3 4.2 5.1 5.1 8.3 15.5 
250 15.8 3.5 6.0 7.4 8.0 10.2 19.4 
125 7.9 0.1 0.3 0.3 0.52 1.0 1.9 
150 9.5 0.2 0.3 0.4 0.6 1.2 2.3 
175 11.0 0.2 0.4 0.5 0.7 1.4 2.6 
200 12.6 0.3 0.6 0.7 0.8 1.6 3.0 
250 15.8 0.5 0.8 1.0 1.0 2.1 3.7 
300 18.9 1.1 8.5 10.0 11.6 12.4 23.0 

6 

400 25.2 1.1 1.9 2.3 2.8 3.2 6.0 
250 15.8 0.1 0.2 0.3 0.4 0.7 1.2 
300 18.9 0.3 1.2 1.4 1.5 2.5 4.6 8 

400 25.2 0.3 0.5 0.6 0.7 1.1 2.0 
300 18.9 0.1 0.3 0.4 0.4 0.8 1.5 10 
400 25.2 0.1 0.2 0.2 0.2 0.4 0.8 

 
 



 
 
 
Pumping Principles Course © 2/1/2009  (866) 557-1746   www.ABCTLC.com 

 

190

Hazen-Williams Coefficients 
Hazen-Williams factor for some common piping materials. Hazen-Williams coefficients are used in the Hazen-
Williams equation for friction loss calculation in ducts and pipes. Coefficients for some common materials used 
in ducts and pipes can be found in the table below: 
 

Material Hazen-Williams Coefficient 
- C - 

Asbestos Cement 140 
Brass 130 - 140 

Brick sewer 100 
Cast-Iron - new unlined (CIP) 130 

Cast-Iron 10 years old 107 - 113 
Cast-Iron 20 years old 89 - 100 
Cast-Iron 30 years old 75 - 90 
Cast-Iron 40 years old 64-83 

Cast-Iron, asphalt coated 100 
Cast-Iron, cement lined 140 

Cast-Iron, bituminous lined 140 
Cast-Iron, wrought plain 100 

Concrete 100 - 140 
Copper or Brass 130 - 140 

Ductile Iron Pipe (DIP) 140 
Fiber 140 

Galvanized iron 120 
Glass 130 
Lead 130 - 140 

Plastic 130 - 150 
Polyethylene, PE, PEH 150 

PVC, CPVC 150 
Smooth Pipes 140 

Steel new unlined 140 - 150 
Steel   

Steel, welded and seamless 100 
Steel, interior riveted, no 

projecting rivets 100 

Steel, projecting girth rivets 100 
Steel, vitrified, spiral-riveted 90 - 100 

Steel, corrugated 60 
Tin 130 

Vitrified Clays 110 
Wood Stave 110 - 120 
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Pressure Head 
A pressure difference of 5 psi (lbf/in2) is equivalent to 

5 (lbf/in2) 12 (in/ft) 12 (in/ft) / 62.4 (lb/ft3) = 11.6 ft of water 
5 (lbf/in2) 12 (in/ft) 12 (in/ft) / 847 (lb/ft3) = 0.85 ft of mercury 

When specific weight of water is 62.4 (lb/ft3) and specific weight of mercury is 847 (lb/ft3). 
Heads at different velocities can be taken from the table below: 

Velocity 
(ft/sec) 

Head Water 
(ft) 

0.5 0.004 
1.0 0.016 
1.5 0035 
2.0 0.062 
2.5 0.097 
3.0 0.140 
3.5 0.190 
4.0 0.248 
4.5 0.314 
5.0 0.389 
5.5 0.470 
6.0 0.560 
6.5 0.657 
7.0 0.762 
7.5 0.875 
8.0 0.995 
8.5 1.123 
9.0 1.259 
9.5 1.403 
10.0 1.555 
11.0 1.881 
12.0 2.239 
13.0 2.627 
14.0 3.047 
15.0 3.498 
16.0 3.980 
17.0 4.493 
18.0 5.037 
19.0 5.613 
20.0 6.219 
21.0 6.856 
22.0 7.525 

1 ft (foot) = 0.3048 m = 12 in = 0.3333 yd 
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Thermal Properties of Water 
 

Temperature  
- t - 
(oC) 

Absolute 
pressure 

- p - 
(kN/m2) 

Density 
- ρ -  

(kg/m3) 

Specific 
volume  

- v - 
(m3/kgx10-3) 

Specific Heat
- cp - 

(kJ/kgK) 

Specific 
entropy 

- e - 
(kJ/kgK) 

0 0.6 1000 100 4.217 0 
5 0.9 1000 100 4.204 0.075 

10 1.2 1000 100 4.193 0.150 
15 1.7 999 100 4.186 0.223 
20 2.3 998 100 4.182 0.296 
25 3.2 997 100 4.181 0.367 
30 4.3 996 100 4.179 0.438 
35 5.6 994 101 4.178 0.505 
40 7.7 991 101 4.179 0.581 
45 9.6 990 101 4.181 0.637 
50 12.5 988 101 4.182 0.707 
55 15.7 986 101 4.183 0.767 
60 20.0 980 102 4.185 0.832 
65 25.0 979 102 4.188 0.893 
70 31.3 978 102 4.190 0.966 
75 38.6 975 103 4.194 1.016 
80 47.5 971 103 4.197 1.076 
85 57.8 969 103 4.203 1.134 
90 70.0 962 104 4.205 1.192 
95 84.5 962 104 4.213 1.250 

100 101.33 962 104 4.216 1.307 
105 121 955 105 4.226 1.382 
110 143 951 105 4.233 1.418 
115 169 947 106 4.240 1.473 
120 199 943 106 4.240 1.527 
125 228 939 106 4.254 1.565 
130 270 935 107 4.270 1.635 
135 313 931 107 4.280 1.687 
140 361 926 108 4.290 1.739 
145 416 922 108 4.300 1.790 
150 477 918 109 4.310 1.842 
155 543 912 110 4.335 1.892 
160 618 907 110 4.350 1.942 
165 701 902 111 4.364 1.992 
170 792 897 111 4.380 2.041 
175 890 893 112 4.389 2.090 
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180 1000 887 113 4.420 2.138 
185 1120 882 113 4.444 2.187 
190 1260 876 114 4.460 2.236 
195 1400 870 115 4.404 2.282 
200 1550 863 116 4.497 2.329 
220      
225 2550 834 120 4.648 2.569 
240      
250 3990 800 125 4.867 2.797 
260      
275 5950 756 132 5.202 3.022 
300 8600 714 140 5.769 3.256 
325 12130 654 153 6.861 3.501 
350 16540 575 174 10.10 3.781 
360 18680 526 190 14.60 3.921 
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Viscosity Converting Chart 
The viscosity of a fluid is its resistance to shear or flow, and is a measure of the fluid’s adhesive/ 
cohesive or frictional properties. This arises because of the internal molecular friction within the 
fluid producing the frictional drag effect. There are two related measures of fluid viscosity which 
are known as dynamic and kinematic viscosity. 
 
Dynamic viscosity is also termed "absolute viscosity" and is the tangential force per unit area 
required to move one horizontal plane with respect to the other at unit velocity when maintained 
a unit distance apart by the fluid. 

Centipoise 
(CPS) 

Millipascal 
(mPas) 

Poise  
(P) 

Centistokes 
(cSt) 

Stokes  
(S) 

Saybolt 
Seconds 
Universal  

(SSU) 
1 0.01 1 0.01 31 
2 0.02 2 0.02 34 
4 0.04 4 0.04 38 
7 0.07 7 0.07 47 

10 0.1 10 0.1 60 
15 0.15 15 0.15 80 
20 0.2 20 0.2 100 
25 0.24 25 0.24 130 
30 0.3 30 0.3 160 
40 0.4 40 0.4 210 
50 0.5 50 0.5 260 
60 0.6 60 0.6 320 
70 0.7 70 0.7 370 
80 0.8 80 0.8 430 
90 0.9 90 0.9 480 

100 1 100 1 530 
120 1.2 120 1.2 580 
140 1.4 140 1.4 690 
160 1.6 160 1.6 790 
180 1.8 180 1.8 900 
200 2 200 2 1000 
220 2.2 220 2.2 1100 
240 2.4 240 2.4 1200 
260 2.6 260 2.6 1280 
280 2.8 280 2.8 1380 
300 3 300 3 1475 
320 3.2 320 3.2 1530 
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340 3.4 340 3.4 1630 
360 3.6 360 3.6 1730 
380 3.8 380 3.8 1850 
400 4 400 4 1950 
420 4.2 420 4.2 2050 
440 4.4 440 4.4 2160 
460 4.6 460 4.6 2270 
480 4.8 480 4.8 2380 
500 5 500 5 2480 
550 5.5 550 5.5 2660 
600 6 600 6 2900 
700 7 700 7 3380 
800 8 800 8 3880 
900 9 900 9 4300 

1000 10 1000 10 4600 
1100 11 1100 11 5200 
1200 12 1200 12 5620 
1300 13 1300 13 6100 
1400 14 1400 14 6480 
1500 15 1500 15 7000 
1600 16 1600 16 7500 
1700 17 1700 17 8000 
1800 18 1800 18 8500 
1900 19 1900 19 9000 
2000 20 2000 20 9400 
2100 21 2100 21 9850 
2200 22 2200 22 10300 
2300 23 2300 23 10750 
2400 24 2400 24 11200 
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Various Flow Section Channels and their Geometric Relationships: 
Area, wetted perimeter and hydraulic diameter for some common geometric sections like 
• rectangular channels  
• trapezoidal channels  
• triangular channels  
• circular channels. 
 
Rectangular Channel 
Flow Area 
Flow area of a rectangular channel can be expressed as 
A = b h (1) 
 
where 
A = flow area (m2, in2) 
b = width of channel (m, in) 
h = height of flow (m, in) 
 
Wetted Perimeter 
Wetted perimeter of a rectangular channel can be expressed as 
P = b + 2 h (1b) 
 
where 
P = wetted perimeter (m, in) 
 
Hydraulic Radius 
Hydraulic radius of a rectangular channel can be expressed as 
Rh = b h / (b + 2 y) (1c) 
 
where 
Rh = hydraulic radius (m, in) 
 
Trapezoidal Channel 
Flow Area 

Flow area of a trapezoidal channel can be expressed as 
A = (a + z h) h (2) 

 
where 
z = see figure above (m, in) 

 
Wetted Perimeter 

Wetted perimeter of a trapezoidal channel can be expressed as 
P = a + 2 h (1 + z2)1/2 (2b) 

 
Hydraulic Radius 

Hydraulic radius of a trapezoidal channel can be expressed as 
Rh = (a + z h) h / a + 2 h (1 + z2)1/2 (2c) 
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Triangular Channel 
Flow Area 
Flow area of a triangular channel can be expressed as 

A = z h2 (3) 
where 
z = see figure above (m, in) 

 
Wetted Perimeter 

Wetted perimeter of a triangular channel can be expressed as 
P = 2 h (1 + z2)1/2 (3b) 

 
Hydraulic Radius 

Hydraulic radius of a triangular channel can be expressed as 
Rh = z h / 2 (1 + z2)1/2 (3c) 

 
Circular Channel 
Flow Area 

Flow area of a circular channel can be expressed as 
A = D2/4 (α - sin(2 α)/2) (4) 

 
where 
D = diameter of channel 
α = cos-1(1 - h/r) 

 
Wetted Perimeter 

Wetted perimeter of a circular channel can be expressed as 
P = α D (4b) 

 
Hydraulic Radius 
Hydraulic radius of a circular channel can be expressed as 
Rh = D/8 [1 - sin(2 α) / (2 α)] (4c) 
 
Velocity Head: Velocity head can be expressed as 

h = v2/2g (1) 
 

where 
v = velocity (ft, m) 
g = acceleration of gravity (32.174 ft/s2, 9.81 m/s2) 
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Heads at different velocities can be taken from the table below: 
Velocity 

- v - 
(ft/sec) 

Velocity Head 
- v2/2g - 

(ft Water) 
0.5 0.004 
1.0 0.016 
1.5 0035 
2.0 0.062 
2.5 0.097 
3.0 0.140 
3.5 0.190 
4.0 0.248 
4.5 0.314 
5.0 0.389 
5.5 0.470 
6.0 0.560 
6.5 0.657 
7.0 0.762 
7.5 0.875 
8.0 0.995 
8.5 1.123 
9.0 1.259 
9.5 1.403 

10.0 1.555 
11.0 1.881 
12.0 2.239 
13.0 2.627 
14.0 3.047 
15.0 3.498 
16.0 3.980 
17.0 4.493 
18.0 5.037 
19.0 5.613 
20.0 6.219 
21.0 6.856 
22.0 7.525 
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Some Commonly used Thermal Properties for Water 
• Density at 4 oC - 1,000 kg/m3, 62.43 Lbs./Cu.Ft, 8.33 Lbs./Gal., 0.1337 Cu.Ft./Gal.  
• Freezing temperature - 0 oC  
• Boiling temperature - 100 oC  
• Latent heat of melting - 334 kJ/kg  
• Latent heat of evaporation - 2,270 kJ/kg  
• Critical temperature - 380 - 386 oC  
• Critical pressure - 23.520 kN/m2  
• Specific heat capacity water - 4.187 kJ/kgK  
• Specific heat capacity ice - 2.108 kJ/kgK  
• Specific heat capacity water vapor - 1.996 kJ/kgK  
• Thermal expansion from 4 oC to 100 oC - 4.2x10-2  
Bulk modulus elasticity - 2,068,500 kN/m2 
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Reynolds Number 
Turbulent or laminar flow is determined by the dimensionless Reynolds Number. 
 
The Reynolds number is important in analyzing any type of flow when there is substantial velocity 
gradient (i.e., shear.) It indicates the relative significance of the viscous effect compared to the 
inertia effect. The Reynolds number is proportional to inertial force divided by viscous force. 
 
A definition of the Reynolds’ Number: 
The flow is 
• laminar if Re < 2300  
• transient if 2300 < Re < 4000  
• turbulent if 4000 < Re  
 
The table below shows Reynolds Number for one liter of water flowing through pipes of different 
dimensions: 

Pipe Size 
(inches) 1 1 ? 2 3 4 6 8 10 12 18 

(mm) 25 40 50 75 100 150 200 250 300 450 
Reynolds 
number 

with  
one (1) 

liter/min 

835 550 420 280 210 140 105 85 70 46 

Reynolds 
number 

with  
one (1) 
gal/min 

3800 2500 1900 1270 950 630 475 380 320 210 
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Linear Motion Formulas 
 
Velocity can be expressed as (velocity = constant): 
 

v = s / t (1a) 
 
where 
v = velocity (m/s, ft/s) 
s = linear displacement (m, ft) 
t = time (s) 

 
Velocity can be expressed as (acceleration = constant): 

v = V0 + a t (1b) 
 

where 
V0 = linear velocity at time zero (m/s, ft/s) 

 
Linear displacement can be expressed as (acceleration = constant): 

s = V0 t + 1/2 a t2 (1c) 
 
Combining 1a and 1c to express velocity 

v = (V0
2 + 2 a s)1/2 (1d) 

 
Velocity can be expressed as (velocity variable) 

v = ds / dt (1f) 
 
where 
ds = change of displacement (m, ft) 
dt = change in time (s) 

 
Acceleration can be expressed as 

a = dv / dt (1g) 
 

where 
dv = change in velocity (m/s, ft/s) 
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Water - Dynamic and Kinematic Viscosity 
Dynamic and Kinematic Viscosity of Water in Imperial Units (BG units): 

Temperature  
- t - 
(oF) 

Dynamic 
Viscosity   

- µ -  
10-5 (lb.s/ft2) 

Kinematic 
Viscosity  

- ν - 
10-5 (ft2/s) 

32 3.732 1.924 
40 3.228 1.664 
50 2.730 1.407 
60 2.344 1.210 
70 2.034 1.052 
80 1.791 0.926 
90 1.500 0.823 

100 1.423 0.738 
120 1.164 0.607 
140 0.974 0.511 
160 0.832 0.439 
180 0.721 0.383 
200 0.634 0.339 
212 0.589 0.317 

 
Dynamic and Kinematic Viscosity of Water in SI Units: 

Temperature  
- t - 
(oC) 

Dynamic Viscosity 
- µ - 

10-3 (N.s/m2) 

Kinematic 
Viscosity  

- ν - 
10-6 (m2/s) 

0 1.787 1.787 
5 1.519 1.519 

10 1.307 1.307 
20 1.002 1.004 
30 0.798 0.801 
40 0.653 0.658 
50 0.547 0.553 
60 0.467 0.475 
70 0.404 0.413 
80 0.355 0.365 
90 0.315 0.326 

100 0.282 0.294 
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Water and Speed of Sound 
Speed of sound in water at temperatures between 32 - 212oF (0-100oC) - imperial and SI units 
Speed of Sound in Water - in imperial units (BG units) 

Temperature 
- t - 
(oF) 

Speed of Sound 
- c - 
(ft/s) 

32 4,603 
40 4,672 
50 4,748 
60 4,814 
70 4,871 
80 4,919 
90 4,960 

100 4,995 
120 5,049 
140 5,091 
160 5,101 
180 5,095 
200 5,089 
212 5,062 

 
Speed of Sound in Water - in SI units 

Temperature 
- t - 
(oC) 

Speed of Sound 
- c - 
(m/s) 

0 1,403 
5 1,427 

10 1,447 
20 1,481 
30 1,507 
40 1,526 
50 1,541 
60 1,552 
70 1,555 
80 1,555 
90 1,550 

100 1,543 
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Math Conversion Factors and Practical Exercise 
If you are poor at math, come to a TLC review class. 
1 PSI = 2.31 Feet of Water   LENGTH 
1 Foot of Water = .433 PSI   12 Inches = 1 Foot 
1.13 Feet of Water = 1 Inch of Mercury  3 Feet = 1 Yard 
454 Grams = 1 Pound    5,280 Feet = 1 Mile 
2.54 CM =Inch 
1 Gallon of Water = 8.34 Pounds  AREA 
1 mg/L = 1 PPM     144 Square Inches = 1 Square Foot 
17.1 mg/L  = 1 Grain/Gallon   43,560 Square Feet = 1 Acre 
1% = 10,000 mg/L    VOLUME 
 694 Gallons per Minute = MGD   1000 Milliliters = 1 Liter 
1.55 Cubic Feet per Second = 1 MGD  3.785 Liters = 1 Gallon 
60 Seconds = 1 Minute    231 Cubic Inches = 1 Gallon 
1440 Minutes = 1 Day    7.48 Gallons = 1 Cubic Foot of  Water 
.746 kW = 1 Horsepower   62.38 Pounds = 1 Cubic Foot of Water 
 
Dimensions 

 
SQUARE: Area (sq.ft) = Length X Width 

Volume (cu.ft.) = Length (ft) X Width (ft) X Height (ft) 
 
CIRCLE: Area (sq.ft) = 3.14   X   Radius (ft)  X  Radius (ft)   
                                          
CYLINDER:  Volume (Cu. ft) = 3.14   X   Radius (ft)  X  Radius (ft) X Depth (ft) 
 
PIPE VOLUME:  .785 X Diameter 2 X Length =  ?  To obtain gallons multiply by 7.48  
 
SPHERE:      (3.14)   (Diameter)3   Circumference  = 3.14 X Diameter 
           (6) 
 
General Conversions 
 

Multiply —> to get 
to get <— Divide  
cc/min 1 mL/min 

cfm (ft3/min) 28.31 L/min 
cfm (ft3/min) 1.699 m3/hr 
cfh (ft3/hr) 472 mL/min 
cfh (ft3/hr) 0.125 GPM 

GPH 63.1 mL/min 
GPH 0.134 cfh 
GPM 0.227 m3/hr 
GPM 3.785 L/min 

oz/min 29.57 mL/min 
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POUNDS PER DAY= Flow (MG) X Concentration (mg/L)  X  8.34   
AKA Solids Applied Formula = Flow X Dose X 8.34   
 
PERCENT EFFICIENCY =  In – Out   X  100 
                     In 
 
TEMPERATURE:    0F = (0C  X  9/5)  + 32             9/5 =1.8 
   0C = (0F   -   32)  X  5/9          5/9 = .555  
 
CONCENTRATION:  Conc.  (A)  X Volume (A) = Conc. (B) X Volume (B) 
 
FLOW RATE (Q):  Q = A X V (Quantity = Area X Velocity) 
 
FLOW RATE (gpm):  Flow Rate (gpm) = 2.83 (Diameter, in)2 (Distance, in) 

 Height, in 
% SLOPE  = Rise (feet)  X 100 
   Run (feet)  
 
ACTUAL LEAKAGE  =   Leak Rate (GPD) 
          Length (mi.) X Diameter (in) 
 
VELOCITY =  Distance (ft) 
              Time (Sec) 
 
N = Manning’s Coefficient of Roughness  
R = Hydraulic Radius (ft.) 
S = Slope of Sewer (ft/ft.) 
 
HYDRAULIC RADIUS (ft) = Cross Sectional Area of Flow (ft) 
    Wetted pipe Perimeter (ft) 
 
WATER HORSEPOWER = Flow (gpm)  X  Head (ft) 
                  3960 
   
BRAKE HORSEPOWER = Flow (gpm)  X  Head (ft) 

3960 X  Pump Efficiency 
 
MOTOR HORSEPOWER = Flow (gpm)  X  Head (ft) 

3960 X  Pump Eff.  X  Motor Eff. 
 
MEAN OR AVERAGE = Sum of the Values   
           Number of Values 
 
TOTAL HEAD (ft) = Suction Lift (ft)  X  Discharge Head (ft) 
 
SURFACE LOADING RATE =   Flow Rate (gpm)   
 (gal/min/sq.ft)        Surface Area (sq. ft) 
 
MIXTURE  =     (Volume 1, gal) (Strength 1, %) + (Volume 2, gal) (Strength 2,%)    
STRENGTH (%)                            (Volume 1, gal) + (Volume 2, gal)  
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DETENTION TIME (hrs)  =  Volume of Basin (gals) X 24 hrs  
      Flow (GPD) 
 
SLOPE = Rise (ft)   SLOPE (%) = Rise (ft)  X 100 
       Run (ft)        Run (ft)  
 
POPULATION EQUIVALENT (PE): 
 1 PE  = .17 Pounds of BOD per Day 
 1 PE = .20 Pounds of Solids per Day 
 1 PE = 100 Gallons per Day 
 
LEAKAGE (GPD/inch) =  Leakage of Water per Day (GPD) 
    Sewer Diameter (inch) 
 
CHLORINE DEMAND (mg/L) = Chlorine Dose (mg/L) – Chlorine Residual (mg/L) 
 
τQ =  Allowable time for decrease in pressure from 3.5 PSU to 2.5 PSI  
τq =   As below 
 
τQ = (0.022) (d1

2L1)/Q    τq = [ 0.085]  [(d1
2L1)/(d1L1)] 

      q 
 
Q =  2.0 cfm air loss 
θ = .0030 cfm air loss per square foot of internal pipe surface 
δ =  Pipe diameter (inches) 
L = Pipe Length (feet) 
 
 
V = 1.486 R 2/3 S 1/2 
 ν 
V = Velocity (ft./sec.) 
ν = Pipe Roughness 
R = Hydraulic Radius (ft) 
S= Slope (ft/ft) 
 
HYDRAULIC RADIUS (ft) =  Flow Area (ft. 2) 
   Wetted Perimeter (ft.) 
 
WIDTH OF TRENCH (ft) = Base (ft) + (2 Sides) X Depth (ft 2) 
           Slope 
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Formula/Conversion Table 
 
Acid Feed Rate =   (Waste Flow)  ( Waste Normality) 
       Acid Normality 
 
Alkalinity = (mL of Titrant) ( Acid Normality)  ( 50,000) 
           mL of Sample 
 
Amperage = Voltage ÷ Ohms 
 
Area of Circle = (0.785)(Diameter2) OR (π)(Radius2) 
 
Area of Rectangle = (Length)(Width) 
 
Area of Triangle = (Base)  (Height) 
       2 
 
C Factor Slope = Energy loss, ft. ÷ Distance, ft. 
 
C Factor Calculation = Flow, GPM ÷ [193.75 (Diameter, ft.)2.63(Slope)0.54] 
 
Chemical Feed Pump Setting, % Stroke = (Desired Flow) (100%) 
           Maximum Flow 
 
Chemical Feed Pump Setting, mL/min =  

(Flow, MGD) Dose, mg/L) (3.785L/gal) (1,000,000 gal/MG) 
            (Liquid, mg/mL) (24 hr / day) (60 min/hr) 

 
Chlorine Demand (mg/L) = Chlorine dose (mg/L) – Chlorine residual (mg/L) 
 
Circumference of Circle = (3.141)(Diameter) 
 
Composite Sample Single Portion = (Instantaneous Flow) (Total Sample Volume) 
            (Number of Portions) (Average Flow) 
 
Detention Time =     Volume 
   Flow 
 
Digested Sludge Remaining, % =           (Raw Dry Solids) (Ash Solids) (100%) 
         (Digested Dry Solids) (Digested Ash Solids) 
 
Discharge =   Volume 
  Time 
 
Dosage, lbs/day = (mg/L)(8.34)(MGD) 
 
Dry Polymer (lbs.) = (gal. of solution)(8.34 lbs/gal)(% polymer solution) 
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Efficiency, % = (In – Out) (100%) 
   In 
Feed rate, lbs/day = (Dosage, mg/L) (Capacity, MGD) (8.34 lbs/gals) 
           (Available fluoride ion) (Purity) 
 
Feed rate, gal/min (Saturator) = (Plant capacity, gal/min.) (Dosage, mg /L) 
     18,000 mg/L 
 
Filter Backwash Rate =    Flow 

Filter Area 
 
Filter Yield, lbs/hr/sq ft = (Solids Loading, lbs/day) (Recovery, % / 100%) 
    (Filter operation, hr/day) ( Area, ft2) 
 
Flow, cu. ft./sec. = (Area, Sq. Ft.)(Velocity, ft./sec.) 
 
Food/Microorganism Ratio =  BOD, lbs / day 
         MLVSS, lbs 
 
Gallons/Capita/Day = Gallons / day  
   Population 
 
Hardness = (mL of Titrant) (1,000) 
     mL of Sample 
 
Horsepower (brake) = (Flow, gpm) (Head, ft) 
      (3,960) (Efficiency) 
 
Horsepower (motor) =      (Flow, gpm) (Head, ft) 

 (3960) (Pump, Eff) (Motor, Eff) 
 
Horsepower (water) =  (Flow, gpm) (Head, ft) 

 (3960) 
 
Hydraulic Loading Rate =  Flow 
              Area 
 
Leakage (actual) = Leak rate (GPD) ÷ [Length (mi.) x Diameter (in.)] 
 
Mean = Sum of values ÷ total number of values 
 
Mean Cell Residence Time (MCRT) = Suspended Solids in Aeration System, lbs 
       SS Wasted, lbs / day + SS lost, lbs / day 
 
Organic Loading Rate = Organic Load, lbs BOD / day 
    Volume 
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Oxygen Uptake = Oxygen Usage 
   Time 
 
Percent efficiency = [(In – Out) ÷ In] x 100 
 
Pounds per day = (Flow, MGD) (Dose, mg/L) (8.34) 
 
Population Equivalent = (Flow MGD) (BOD, mg/L) (8.34 lbs / gal) 
    Lbs BOD / day / person 
 
RAS Suspended Solids, mg/l =      1,000,000 

    SVI 
 
RAS Flow, MGD =       (Infl. Flow, MGD) (MLSS, mg/l) 

 RAS Susp. Sol., mg/l – MLSS, mg/l 
 
RAS Flow %  =      (RAS Flow, MGD) (100 %) 

   Infl. Flow, MGD 
 
Reduction in Flow, % =  (Original Flow – Reduced Flow) (100%) 

Original Flow 
 
Slope =  Drop or Rise 
 Run or Distance 
 
Sludge Age =  Mixed Liquor Solids, lbs 

   Primary Effluent Solids, lbs / day 
 
Sludge Index = % Settleable Solids 
   % Suspended Solids 
 
Sludge Volume Index =  (Settleable Solids, %) (10,000) 
         MLSS, mg/L 
 
Solids, mg/L = (Dry Solids, grams) (1,000,000) 
   mL of Sample 
 
 
Solids Applied, lbs/day = (Flow, MGD)(Concentration, mg/L)(8.34 lbs/gal) 
 
Solids Concentration =        Weight 
    Volume 
 
Solids Loading, lbs/day/sq ft =    Solids Applied, lbs / day 
     Surface Area, sq ft 
 
Surface Loading Rate =       Flow 
    Rate 
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Total suspended solids (TSS), mg/L =  
                               (Dry weight, mg)(1,000 mL/L) ÷ (Sample vol., mL) 
 
Velocity = Flow        O R   Distance 
       Area                         Time   
 
Volatile Solids, % = (Dry Solids  -  Ash Solids)  (100%) 
    Dry Solids 
 
Volume of Cone = (1/3)(0.785)(Diameter2)(Height) 
 
Volume of Cylinder = (0.785)(Diameter2)(Height) OR (π)(r2)(h) 
 
Volume of Rectangle = (Length)(Width)(Height) 
 
Volume of Sphere = [(π)(diameter3)] ÷ 6 
 
Waste Milliequivalent = (mL)  (Normality) 
 
Waste Normality = (Titrant Volume)  (Titrant Normality) 
       Sample Volume 
 
Weir Overflow Rate =        Flow 
      Weir Length 
 
Conversion Factors 
1 acre = 43,560 square feet 
1 cubic foot = 7.48 gallons 
1 foot = 0.305 meters 
1 gallon = 3.79 liters 
1 gallon = 8.34 pounds 
1 grain per gallon = 17.1 mg/L 
1 horsepower = 0.746 kilowatts 
1 million gallons per day = 694.45 gallons per minute 
1 pound = 0.454 kilograms 
1 pound per square inch = 2.31 feet of water 
1% = 10,000 mg/L 
Degrees Celsius = (Degrees Fahrenheit - 32) (5/9) 
Degrees Fahrenheit = (Degrees Celsius * 9/5) + 32 
64.7 grains = 1 cubic foot 
1,000 meters = 1 kilometer 
1,000 grams = 1 kilogram 
1,000 milliliters = 1 liter 
144 square inches = 1 square foot 
1.55 cubic feet per second = 1 MGD 
1 meter = 3.28 feet 
π = 3.141 
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Math Review Section-Practice Exam 
Math Problems with Complete Solution can be found at the rear of this section.  
Please try to work the problems without looking at the solution. 
 
Cube Formula 
V= (L) (W) (D) 
Volume= Length X Width X Depth  
 
Cylinder Formula  
V= (.785) (D2) (d) 
 
 
Build it, Fill it and Dose it.   
 
1.  Convert 10 cubic feet to gallons of water. 
 
There is 7.48 gallons in one cubic foot. 
 
 
 
2.  The liquid in a tank weighs 800 pounds, how many gallons are in the tank? 
 
 
 
3.  Convert a flow rate of 953 gallons per minute to million gallons per day. 
There is 1440 minutes in a day. 
 
 
 
4.  Convert a flow rate of 610 gallons per minute to million of gallons per day.   
 
 
 
5.  Convert a flow of 550 gallons per minute to gallons per second? 
 
 
6.  Now, convert this number to liters per second. 
 
 
 
7. A tank is 6’ X 15’ x 7’ and can hold a maximum of ____________ gallons of water.  
V= (L) (W) (D) X 7.48 = 
 
 
 
 
8.  A tank is 25’ X 75’ X 10’ what is the volume of water in gallons? 
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V= (L) (W) (D) X 7.48 = 
 
9.  In Liters? 
V= (L) (W) (D) X 7.48 =_________ X 3.785 
10.  A tank holds 67,320 gallons of water.  The length is 60’ and the width is 15’.  How deep is 
the tank? 
 
Gallons______ ÷ 7.48 = _______        60 X 15 = 
 
 
 
 
11.  The diameter of a tank is 60’ and the depth is 25’.  How many gallons does it hold? 
 
Cylinder Formula  
V= (.785) (D2) (d) 
 
.785 X 60’ X 60’ X 25’ X 7.48 = 
 
 
Math Problems with Complete Solution can be found at the rear of this section.  
Please try to work the problems without looking at the solution. 
 
Cubic Feet Information 
There is no universally agreed symbol but the following are used: 
cubic feet, cubic foot, cubic ft  
cu ft, cu feet, cu foot  
ft3, feet3, foot3  
feet3, foot3, ft3  
feet/-3, foot/-3, ft/-3 
 
Water Treatment Production Math Numbering System 
In water treatment, we express our production numbers in Million Gallon numbers.  Example 
2,000,000 or 2 million gallons would be expressed as 2 MG or 2 MGD.   
Hints.  A million has six zeros, you can always divide your final number by 1,000,000 or move 
the decimal point to the left six places.  Example 528,462  would be expressed .56 MGD. 
 
12. The diameter of a tank is 15 Centimeters or cm and the depth is 25 cm, what is the 
volume in liters? 
 
2.54cm = 1 inch, 12 inches = 1 foot   
15 cm ÷ 2.54 cm ÷ 12 inches = .492 feet  
  
.785 X .492’ X .492’ X _____’ =______ X 7.48 = _______ X 3.785 L = 
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Percentage and Fractions 
Let's look again at the sequence of numbers 1000, 100, 10, 1, and continue the pattern to get 
new terms by dividing previous terms by 10:  

  .1 = 1/10 
 .01 = 1/100 
.001 = 1/1000  

 
So just as the digits to the left of the decimal represent 1's, 10's, 100's, and so forth, digits to the 
right of the decimal point represent 1/10's, 1/100's, 1/1000's, and so forth. 
 
Let’s express 5% as a decimal.  5 ÷ 100 = 0.05  or you can move the decimal point to the left 
two places. 
 
Changing a fraction to a decimal:  
     Divide the numerator by the denominator  

A. 5/10 (five tenths) = five divided by ten: 
      
           .5 
        ----- 
    10 ) 5.0 
         5 0 
        ---- 
    So 5/10 (five tenths) = .5 (five tenths).  
 
B. How about 1/2 (one half) or 1 divided by 2 ? 
          .5 
        ----- 
     2 ) 1.0 
          1 0 
          ---- 
    So 1/2 (one half) = .5 (five tenths)  
    Notice that equivalent fractions convert to the same decimal representation.  

 
8/12 is a good example.  8 ÷ 12 =.66666666 or rounded off to .667 
 
How about 6/12 or 6 inches?  .5 or half a foot 
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Flow and Velocity 
This depends on measuring the average velocity of flow and the cross-sectional area of the 
channel and calculating the flow from: 
Q(m3/s) = A(m2) X  V(m/s)  
 
Or 
 
Q = A X V 
 
Q CFM = Cubic Ft, Inches, Yards of time, Sec, Min, Hrs, Days 
A = Area, squared Length X Width 
V f/m = Inch, Ft, Yards, Per Time, Sec, Min, Ft or Speed  
13.  A channel is 3 feet wide and has water flowing to a depth of 2.5 feet.  If the velocity through 
the channel is 2 fps or feet per second, what is the cfs flow rate through the channel? 
Q = A X V 
 
Q = 7.5 sq. ft.  X 2 fps  What is Q?  
A= 3’ X 2.5’ = 7.5 
V= 2 fps 
 
14.  A channel is 40 inches wide and has water flowing to a depth of 1.5 ft.  If the velocity of the 
water is 2.3 fps, what is the cfs flow in the channel? Q = A X V 
First we must convert 40 inches to feet.   
40 ÷ 12” = 3.333 feet  
 
A = 3.333’ X 1.5’ = 4.999 or round up to 5 
V = 2.3 fps 
We can round this answer up. 
 
15. A channel is 3 feet wide and has a water flow at a velocity of 1.5 fps.  If the flow through the 
channel is 8.1 cfs, what is the depth of the water? 
 
Q = 8.1 cfs 
V = 1.5 fps 
A = ? 
 
8.1 ÷1.5 = _______ Total Area 
 
16.  The flow through a 6 inch diameter pipe is moving at a velocity of 3 ft/sec.  What is the cfs 
flow rate through the pipeline? 
 
Q =  
A = .785 X .5’ X .5’ = 
V = 3 fps 
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17.  An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps.  What is the gpm flow rate 
through the pipe? 
 
Q = ______ cfs X 60 sec/min X 7.48 = ___________ gpm 
A = .785 X .667’ X .667’ 
V = 3.4 fps 
 
18.  A 6 inch diameter pipe delivers 280 gpm.  What is the velocity of flow in the pipe in ft/sec?  
 
Take the water out of the pipe. 280 gpm ÷ 7.48 ÷ 60 sec/min = ________ cfs 
Q =  
A = .785 X .5’ X .5’ = 
V =  
 
19.  A new section of 12 inch diameter pipe is to be disinfected before it is placed in service.  If 
the length is 2000 feet, how many gallons of 5% NaOCl will be need for a dosage of  200 mg/L? 
  
 
Cylinder Formula  
V= (.785) (D2) (d) 
  
.785 X 1’ X 1’ X 2000’ = _______ cuft X 7.48 = ______ ÷ 1,000,000 = ___________MG 
 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal if 100% concentrate. 
If not, divide the lbs/day by the given % 
 
0.0117436 MG X 200 mg/L X 8.34 =_________ lbs/day ÷ .05 =   
 
 
20.  A section of 6 inch diameter pipe is to be filled with water.  The length of the pipe is 1320 
feet long.  How many kilograms of chlorine will be needed for a chlorine dose of 3 mg/L? 
 
.785 X .5’ X .5’ X 1320’ X 7.48 =_____________ Make it MGD  
 
Pounds per day formula = Flow X Dose X 8.34 X .454 Grams per pound 
 
 
21.  Determine the chlorinator setting in pounds per 24 hour period to treat a flow of 3.4 MGD 
with a chlorine dose of 3.35 mg/L? 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal 
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22.  To correct an odor problem, you use chlorine continuously at a dosage of 15 mg/L and a 
flow rate of 85 GPM.  Approximately how much will odor control cost annually if chlorine is $0.17 
per pound? 
 
85 gpm X 1440 min/day = _____________ gpd ÷ 1,000,000 = __________ MGD 
 
______ MGD X 15 mg/L X 8.34 lbs/gal X $0.17 per pound X 365 days/year =  
 
 
 
23.  A wet well measures 8 feet by 10 feet and 3 feet in depth between the high and low levels.  
A pump empties the wet well between the high and low levels 9 times per hour, 24 hours a day. 
 Neglecting inflow during the pumping cycle, calculate the flow into the pump station in million of 
gallons per day (MGD). 
 
Build it, fill it and do what it says, hint: X 9 X 24 
 
 
 
 
 
 
Math Problems with Complete Solution can be found at the rear of this section.  
Please try to work the problems without looking at the solution. 
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24.  A sewage treatment plant has a flow of 0.7 MGD and a BOD of 225 mg/L.  On the basis of 
a national average of 0.2 lbs BOD per capita per day, what is the approximate population 
equivalent of the plant? 
 
 
 
 
 
 
 
 
 
 
 
25.  What is the detention time of a clarifier with a 250,000 gallon capacity if it receives a flow of 
3.0 MGD? 
 
DT= Volume in Gallons X 24 Divided by MGD 
 
.25 MG X 24 hrs  ÷ 3.0 MGD =________ Hours of DT 
 
Always convert gallons to MG 
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Crazy Math Section 
The metric system is known for its simplicity. All units of measurement in the metric system are 
based on decimals—that is, units that increase or decrease by multiples of ten. A series of Greek 
decimal prefixes is used to express units of ten or greater; a similar series of Latin decimal prefixes 
is used to express fractions. For example, deca equals ten, hecto equals one hundred, kilo equals 
one thousand, mega equals one million, giga equals one billion, and tera equals one trillion. For 
units below one, deci equals one-tenth, centi equals one-hundredth, milli equals one-thousandth, 
micro equals one-millionth, nano equals one-billionth, and pico equals one-trillionth. 
 
26.  How many grams equal 4,500 mg? 
 
 
Just simply divide by 1,000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Math Problems with Complete Solution can be found at the rear of this section.  
Please try to work the problems without looking at the solution. 
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Temperature   
 
There are two main temperature scales. The Fahrenheit Scale (used in the US), and the 
Celsius Scale (part of the Metric System, used in most other Countries) 
They both measure the same thing (temperature!), just using different numbers.  

• If you freeze water, it measures 0° in Celsius, but 32° in Fahrenheit  
• If you boil water, it measures 100° in Celsius, but 212° in Fahrenheit  
• The difference between freezing and boiling is 100° in Celsius, but 180° in Fahrenheit.  

Freezing ... to ... Boiling 

 
Conversion Method 
Looking at the diagram, notice: 

• The scales start at a different number (32 vs 0), so we will need to add or subtract 32  
• The scales rise at a different rate (180 vs 100), so we will also need to multiply  

And this is how it works out: 
To convert from Celsius to Fahrenheit, first multiply by 180/100, then add 32 
To convert from Fahrenheit to Celsius, first subtract 32, then multiply by 100/180  

 
Note: 180/100 can be simplified to 9/5, and likewise 100/180=5/9. 
0F = (0C  X  9/5)  + 32             9/5 =1.8 
    
0C = (0F   - 32)  X  5/9          5/9 = .555  
 
27. Convert 20 degrees Celsius to degrees Fahrenheit.   
 
20 o X 1.8 + 32 = F 
 
 
 
 
28. Convert 4 degrees Celsius to degrees Fahrenheit.   
 
4o X 1.8 + 32 = F 
 
 
 
 



 
 
 
Pumping Principles Course © 9/15/2008  (866) 557-1746   www.ABCTLC.com 

 

222

Water Treatment Filters 
 
29. A 19 foot wide by 31 foot long rapid sand filter treats a flow of 2,050 gallons per minute. 
Calculate the filtration rate in gallons per minute per square foot of filter area. 
 
GPM ÷ Square Feet 
 
 
30. A 26 foot wide by 36 foot wide long rapid sand filter treats a flow of 2,500 gallons per minute.  
Calculate the filtration rate in gallons per minute per square foot of filter area. 
 
 
 
 
Chemical Dose 
31. A pond has a surface area of 51,500 square feet and the desired dose of a chemical is 6.5 lbs 
per acre.  How many pounds of the chemical will be needed? 
 
43,560 Square feet in an acre 
 
51,500 ÷ 43,560 = _______ X 6.5 = 
 
32. A pond having a volume of 6.85 acre feet equals how many millions of gallons? 
 
 
33. Alum is added in a treatment plant process at a concentration of 10.5 mg/L.  What should the 
setting on the feeder be in pounds per day if the plant is treating 3.5 MGD? 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal  
 
 
Q=AV Review 
34.  An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps.  What is the GPM flow rate 
through the pipe? 
Q = 1.18 CFS x 60 Seconds x 7.48 GAL/CU.FT = 532 GPM 
A = .785 X .667 X .667 X 1 = .349 Sq. Ft. 
V= 3.4 Feet per second 
 
 
35.  A 6 inch diameter pipe delivers 280 GPM.  What is the velocity of flow in the pipe in Ft/Sec? 
280 GPM  ÷  60 seconds in a minute ÷  7.48 gallons in a cu.ft. = .623 CFS  
 
Q = .623 
A = .785 X.5 X .5 =.196 Sq. Ft. 
V = 3.17 Ft/Second
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Collections 
36.  A 24-inch sewer carries an average daily flow of 5 MGD. If the average daily flow per 
person from the area served is 110 GPCD (gallons per capita per day), approximately how 
many people discharge into the wastewater collection system? 
 
5,000,000 divided by 110 = 
 
 
 
37.  Using a dose rate of 5 mg/L, how many pounds of chlorine per day should be used if the 
flow rate is 1.2 MGD? 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal  
 
 
 
 
38.  What capacity blower will be required to ventilate a manhole which is 3.5 feet in diameter 
and 17 feet deep? The air exchange rate is 16 air changes per hour. 
.785 X 3.5’ X 3.5’ X 17’ X 16 = ____________ CFH 
 
 
 
39.  Approximately how many feet of drop are in 455 feet of 8-inch sewer with a 0.0475 ft/ft. 
slope? 
 
SLOPE = Rise (ft)   SLOPE (%) = Rise (ft)  X 100 
      Run (ft)       Run (ft)  
 
455’ X 0.0475 =  
 
 
 
 
40.  How much brake horsepower is required to meet the following conditions: 250 gpm, total 
head = 110 feet? The submersible pump that is being specified is a combined 64% efficient? 
 
(250 X 110) ÷ (3960 X .64) 
 
 
 
 
41.   How wide is a trench at ground surface if a sewer trench is 2 feet wide at the bottom, 10 
feet deep and the sides have been sloped at a 4/5 horizontal to 1 vertical (3/4:1) ratio? 
 
(3/4:1) or 3 ÷ 4 = .75 X every foot of depth  
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42.  A float arrives in a manhole 550 feet down stream three minutes and thirty seconds from its 
release point. What is the velocity in ft/sec.? 
Velocity ft/sec = distance ÷ time 
 
550’ ÷ 3 min stop convert min to sec. 3 X 60 = 180 + 30 = 210 sec  
550’ ÷ 210 sec = ______ fps 
 
43.  A new sewer line plan calls out a 0.6% slope of the line. An elevation reading of 108.8 feet 
at the manhole discharge and an elevation of 106.2 feet at a distance of 200 feet from the 
manhole are recorded. What is the existing slope of the line that has been installed? 
 
 
 
SLOPE = Rise (ft)   SLOPE (%) = Rise (ft)  X 100 
    Run (ft)        Run (ft)  
 
 
 
 
44.  A triangular pile of spoil is 12 feet high and 12 feet wide at the base. The pile is 60' long. If 
the dump truck hauls 9 cubic yards of dirt, how many truck loads will it take to remove all of the 
spoil? 
 
Given the base and the height of a triangle, we can find the area. Given the area and either the base 
or the height of a triangle, we can find the other dimension. The formula for area of a triangle is: 
 

    Or     where  is the base,   is the height. 
 
12’ X 12’ ÷ 2 X 60’ = _________ cu.ft  (27cuft/cuyrd) 
 
 
 
 
45.  A red dye is poured into an upstream manhole connected to a 12 inch sewer. The dye first 
appears in a manhole 400 feet downstream 3 minutes later. After 3 minutes and 40 seconds the 
dye disappears. Estimate the flow velocity in feet per second? 
Velocity ft/sec = distance ÷ time 
Make sure and convert time and average it.  
 
 
 
 
 
 
Math Problems with Complete Solution can be found at the rear of this section.  
Please try to work the problems without looking at the solution. 
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46.  Calculate the total dosage in pounds of a chemical. Assume the sewer is completely filled 
with the concentration. Pipe diameter: 18 inches, Pipe length: 420 feet, Dose: 120 mg/L. 
 
Figure out the volume first.  
 
.785 X 1.5’ X 1.5’ X 420’ X 7.48 =___________ convert to MG 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Math Problems with Complete Solution can be found at the rear of this section.  
Please try to work the problems without looking at the solution. 
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Short Answers 
1. 7.48 X 10 = 74.8 
2. 800 ÷ 8.34 = 95.92 gallons 
3. 1372320 or 1.3 MGD 
4. 610 X 1441 = 878400 or 0.87 MGD 
5. 550 ÷ 60 = 9.167 gpm 
6. 9.167 X 3.785 = 34.697 Liters 
7. 630 Area  4712 gallons 
8. 18,750 cu. ft. X 7.48 = 140250 gallons 
9. 140250 X 3.785 = 530846 Liters 
10. 10 feet deep 
11. 528462 or .5 MG 
12. 1.166 Gallons X 3.785 = 4.412 Liters 
13. 15 cfs 
14. 11.49 cfs 
15.  1.8’ 
16.  .58875 cfs 
17.  533 gpm 
18. 3.2 ft/sec 
19. 46.9 gal 
20. .02 kg 
21. 94.9 lbs/day 
22. $950.12 
23. .388 or .39 MGD 
24. 6567.75 
25. 2 hrs 
26. 4.5 grams 
27. 68° F 
28. 39°F 
29. 3.48 gpm/sqft 
30. 2.67 gpm/sqft 
31. 7.68 lbs 
32. 2.231 MG 
33. 306.495 
34. 532 gpm 
35. 3.2 fps 
36. 45454.5 people 
37. 50.04 lbs 
38. 2615.6 cfh 
39. 21.61 ft 
40. 10.85 bhp 
41. 17 ft 
42. 2.62 fps 
43. .013 or 1.3% 
44. 17.7 or 18 trucks 
45. 2 fps 
46. 5.55 lbs 

 
Math Problems with Complete Solution can be found at the rear of this section.   
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Math Problems with Complete Solution 
 
Volume in Cubic Feet 
 
 
Cube Formula 
V= (L) (W) (D) 
Volume= Length X Width X Depth  
 
Cylinder Formula  
V= (.785) (D2) (d) 
 
 
Build it, Fill it and Dose it.   
 
1.  Convert 10 cubic feet to gallons of water. 
 
There is 7.48 gallons in one cubic foot. 
 

7.48  ÷    X     =  74.8 gallons 
  1   10 
 
Or simply 10 times 7.48 = 74.8 gallons 
 
2.  The liquid in a tank weighs 800 pounds, how many gallons are in the tank? 
 
800 lbs ÷  8.34 lbs/gal  = 95.92 gallons of water 
 
3.  Convert a flow rate of 953 gallons per minute to million gallons per day. 
There is 1440 minutes in a day. 
 
953 Gal/Min X 1440 Min/Day = 1,372,320 gal/day 
 
1,372,320 ÷ 1,000,000 = 1.37 MGD 
 
4.  Convert a flow rate of 610 gallons per minute to million of gallons per day.   
 
610 gal/min X 1440 min/day = 878,400 gal/day 
 
878,400 ÷ 1,000,000 = .878 MGD 
 
5.  Convert a flow of 550 gallons per minute to gallons per second? 
 
550 gal/min ÷ 60 sec/min = 9.17 gal/sec or 9.167 gal/sec. 
 
6.  Now, convert this number to liters per second. 
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9.17 gal/sec X 3.79 Liters/gal + 34.75 Liter/sec or 34.697 
7. A tank is 6’ X 15’ x 7’ and can hold a maximum of ____________ gallons of water.  
V= (L) (W) (D) X 7.48 = 
 
(6 X 15 X 7) X 7.48 = 4,712 gallons 
 
8.  A tank is 25’ X 75’ X 10’ what is the volume of water in gallons? 
V= (L) (W) (D) X 7.48 = 
 
(25 X 75 X 10) X 7.48 = 140,250 gallons 
 
9.  In Liters? 
V= (L) (W) (D) X 7.48 =_________ X 3.785 
 
(25 X 75 X 10) X 7.48 = 140,250 gallons X 3.785 = 530,846 Liters 
 
10.  A tank holds 67,320 gallons of water.  The length is 60’ and the width is 15’.  How deep is 
the tank? 
 
Gallons______ ÷ 7.48 = _______        60 X 15 = 
 
67,320 gal       =  9000 cu.ft   = (60 X 15) = 900     9000  = 10 
7.48 gal/cu.ft.              900 
 
11.  The diameter of a tank is 60’ and the depth is 25’.  How many gallons does it hold? 
 
Cylinder Formula  
V= (.785) (D2) (d) 
 
.785 X 60’ X 60’ X 25’ X 7.48 = 
 
Or  
 
.785 X (60 X 60) X 25 X 7.48 = 528,462 gallons 
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Math Problems with Complete Solution 
Water Treatment Production Math Numbering System 
In water treatment, we express our production numbers in Million Gallon numbers.  Example 
2,000,000 or 2 million gallons would be expressed as 2 MG or 2 MGD.   
Hints.  A million has six zeros, you can always divide your final number by 1,000,000 or move 
the decimal point to the left six places.  Example 528,462  would be expressed .56 MGD. 
 
12. The diameter of a tank is 15 Centimeters or cm and the depth is 25 cm, what is the 
volume in liters? 
 
2.54cm = 1 inch, 12 inches = 1 foot   
15 cm ÷ 2.54 cm ÷ 12 inches = .492 feet  
  
.785 X .492 X .492 X _____ =______ X 7.48 = _______ X 3.785 L = 
 
 
.785 X .492 X .492 X 0.82 =.1558165 X 7.48 = 1.1655074 X 3.785 L = 4.4114455 
 
 
13.  A channel is 3 feet wide and has water flowing to a depth of 2.5 feet.  If the velocity through 
the channel is 2 fps or feet per second, what is the cfs flow rate through the channel? 
Q = A X V 
 
Q = 15   
A= 3’ X 2.5’ = 7.5 
V= 2 fps 
Or  
Area is 7.5 cubic feet 
Velocity is 2 fps 
 
Area X Velocity = Quantity 
 
 
14.  A channel is 40 inches wide and has water flowing to a depth of 1.5 ft.  If the velocity of the 
water is 2.3 fps, what is the cfs flow in the channel? Q = A X V 
First we must convert 40 inches to feet.   
40 ÷ 12” = 3.333 feet  
 
A = 3.333’ X 1.5’ = 4.999 or round up to 5 
V = 2.3 fps 
We can round this answer up. 
 
Area X Velocity = Quantity 
5 X 2.3 = 11.5  or 11.49 
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15. A channel is 3 feet wide and has a water flow at a velocity of 1.5 fps.  If the flow through the 
channel is 8.1 cfs, what is the depth of the water? 
 
Q = 8.1 cfs 
V = 1.5 fps 
A = ? 
 
8.1 ÷1.5 = _______ Total Area 
Area ÷ Quantity = Velocity  
8.1 ÷ 1.5 = 5.4 cubic feet or Area 
 
16.  The flow through a 6 inch diameter pipe is moving at a velocity of 3 ft/sec.  What is the cfs 
flow rate through the pipeline? 
 
Q =  
A = .785 X .5’ X .5’ = 
V = 3 fps 
 
Area  X Velocity = Quantity 
0.19625 X 3 = 0.58875 cfs 
 
17.  An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps.  What is the gpm flow 
rate through the pipe? 
 
Q = ______ cfs X 60 sec/min X 7.48 = ___________ gpm 
A = .785 X .667’ X .667’ 
V = 3.4 fps 
 
Area ÷ Quantity = Velocity  
0.3492 ÷ 3.4 fps = 1.1874 cfs X 60 sec/min X 7.48 = 532.85126 or 533 gpm 
 
18.  A 6 inch diameter pipe delivers 280 gpm.  What is the velocity of flow in the pipe in ft/sec?  
 
Take the water out of the pipe. 280 gpm ÷ 7.48 ÷ 60 sec/min = ________ cfs 
Q =  
A = .785 X .5’ X .5’ = 
V =  
 
Quantity ÷ Area = Velocity 
Quantity = 533 = 1.1874 cfs X 60 sec/min X 7.48  
Area = 0.19625 
Velocity = 3.17 or 3.2 CFS 
 
19.  A new section of 12 inch diameter pipe is to be disinfected before it is placed in service.  If 
the length is 2000 feet, how many gallons of 5% NaOCl will be need for a dosage of 200 mg/L? 
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Cylinder Formula  
V= (.785) (D2) (d) 
  
.785 X 1’ X 1’ X 2000’ = _______ cuft X 7.48 = ______ ÷ 1,000,000 = ___________MG 
 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal if 100% concentrate. 
If not, divide the lbs/day by the given % 
 
0.0117436 MG X 200 mg/L X 8.34 =_________ lbs/day ÷ .05 =   
 
 
 
 
.785 X 1’ X 1’ X 2000’ = 1570  cu.ft X 7.48 = 11744 ÷ 1,000,000 = 0.0117436 MG 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal if 100% concentrate. 
If not, divide the lbs/day by the given % 
 
0.0117436 MG X 200 mg/L X 8.34 =19.588 lbs/day ÷ .05 or 5% =  391.76 lbs ÷ 8.34 lb/gal = 
46.9 gallons 
 
 
20.  A section of 6 inch diameter pipe is to be filled with water.  The length of the pipe is 1320 
feet long.  How many kilograms of chlorine will be needed for a chlorine dose of 3 mg/L? 
 
.785 X .5’ X .5’ X 1320’ X 7.48 =_____________ Make it MGD  
 
Pounds per day formula = Flow X Dose X 8.34 X .454 Grams per pound 
 
.785 X .5’ X .5’ X 1320’ X 7.48 =1937.69 Make it MGD   Divide by 1 million =  
0.00194 X .454 =  
 
 
21.  Determine the chlorinator setting in pounds per 24 hour period to treat a flow of 3.4 MGD 
with a chlorine dose of 3.35 mg/L? 
 
Pounds per day formula = Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal 
 
3.4 mgd X 3.35 mg/L X 8.34 Lbs/gal = 94.99 lbs 
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22.  To correct an odor problem, you use chlorine continuously at a dosage of 15 mg/L and a 
flow rate of 85 GPM.  Approximately how much will odor control cost annually if chlorine is $0.17 
per pound? 
 
85 gpm X 1440 min/day = _____________ gpd ÷ 1,000,000 = __________ MGD 
 
______ MGD X 15 mg/L X 8.34 lbs/gal X $0.17 per pound X 365 days/year =  
 
 
85 gpm X 1440 min/day = 122,400 gpd ÷ 1,000,000 = 0.1224 MGD 
 
.1224 MGD X 15 mg/L X 8.34 lbs/gal X $0.17 per pound X 365 days/year = $950.12 
 
23.  A wet well measures 8 feet by 10 feet and 3 feet in depth between the high and low levels.  
A pump empties the wet well between the high and low levels 9 times per hour, 24 hours a day. 
 Neglecting inflow during the pumping cycle, calculate the flow into the pump station in million of 
gallons per day (MGD). 
 
Build it, fill it and do what it says, hint: X 9 X 24 
 
L X W X H  
(8 X 10 X 3) = 240 CF X 7.48 gal/cf = 1795.2 X 9 X 24 =387763 gallons/day or rounds 
to .388 MGD 
 
24.  A sewage treatment plant has a flow of 0.7 MGD and a BOD of 225 mg/L.  On the basis of 
a national average of 0.2 lbs BOD per capita per day, what is the approximate population 
equivalent of the plant? 
 
 
Population equivalent 
 (0.7 MGD) (22.5 mg/L) (8.34 Lbs/gal)  = 6,567.75 people 
0.2 Lbs BOD/Day/Person 
 
25.  What is the detention time of a clarifier with a 250,000 gallon capacity if it receives a flow of 
3.0 MGD? 
 
DT= Volume in Gallons X 24 Divided by MGD 
 
.25 MG X 24 hrs  ÷ 3.0 MGD =________ Hours of DT 
 
Always convert gallons to MG 
 
.25 MG X 24 hrs  ÷ 3.0 MGD =2 Hours of DT 
 
26.  How many grams equal 4,500 mg? 
Just simply divide by 1,000. 
4,500 ÷ 1,000 = 4.5 grams
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27. Convert 20 degrees Celsius to degrees Fahrenheit.   
 
20 o  C X 1.8 + 32 = 68 F 
 
 
28. Convert 4 degrees Celsius to degrees Fahrenheit.   
 
4o  C X 1.8 + 32 = 39.2  or 39 degrees 
 
 
Math Problems with Complete Solution  
Water Treatment Filters 
 
29. A 19 foot wide by 31 foot long rapid sand filter treats a flow of 2,050 gallons per minute. 
Calculate the filtration rate in gallons per minute per square foot of filter area. 
 
GPM ÷ Square Feet 
(19 X 31) = 589 sq. ft 
 
2050 gal/min ÷ 589 sq. ft = 3.48 gpm/sq ft 
 
30. A 26 foot wide by 36 foot wide long rapid sand filter treats a flow of 2,500 gallons per minute.  
Calculate the filtration rate in gallons per minute per square foot of filter area. 
(26 X 36) = 936 Sq. Ft 
 
GPM ÷ Square Feet 
2.500 gal/min ÷ 936 sq. ft = 2.678 gpm/sq ft 
 
Chemical Dose 
31. A pond has a surface area of 51,500 square feet and the desired dose of a chemical is 6.5 lbs 
per acre.  How many pounds of the chemical will be needed? 
 
43,560 Square feet in an acre 
 
51,500 ÷ 43,560 = _______ X 6.5 = 
 
51,500 sq.ft.  ÷ 43,560 = 1.18 X 6.5 = 7.68 lbs 
 
32. A pond having a volume of 6.85 acre feet equals how many millions of gallons? 
 1 acre foot = 325851 X 6.85 =2.231MG 
 
33. Alum is added in a treatment plant process at a concentration of 10.5 mg/L.  What should the 
setting on the feeder be in pounds per day if the plant is treating 3.5 MGD? 
 
Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal = Pounds per day formula 
 
3.5 MGD X 10.5 Mg/L X 8.34 Lbs/gal = 306.495 pounds 
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Q=AV Review 
34.  An 8 inch diameter pipe has water flowing at a velocity of 3.4 fps.  What is the GPM flow rate 
through the pipe? 
Q = 1.18 CFS x 60 Seconds x 7.48 GAL/CU.FT = 532 GPM 
A = .785 X .667 X .667 X 1 = .349 Sq. Ft. 
V= 3.4 Feet per second 
V X A + Q 
Velocity 3.4 fps X .349 Sq.ft = 1.1866 CFS X 60 seconds X 7.48 gal/Cu.ft + 532.5  or 533 
 
35.  A 6 inch diameter pipe delivers 280 GPM.  What is the velocity of flow in the pipe in Ft/Sec? 
 
280 GPM  ÷  60 seconds in a minute ÷  7.48 gallons in a cu.ft. = .623 CFS  
 
Q = .623 
A = .785 X.5 X .5 =.196 Sq. Ft. 
V = 3.17 Ft/Second 
 
Quantity ÷ Area = Velocity   
0.623 CFS ÷ 0.196 SQ FT = 3.18 or 3.2 FPS 
 
Collections 
36.  A 24-inch sewer carries an average daily flow of 5 MGD. If the average daily flow per 
person from the area served is 110 GPCD (gallons per capita per day), approximately how 
many people discharge into the wastewater collection system? 
 
5,000,000 divided by 110 = 45,454 people 
 
37.  Using a dose rate of 5 mg/L, how many pounds of chlorine per day should be used if the 
flow rate is 1.2 MGD? 
 
Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal  = Pounds per day formula  
 
1.2 X 1.2 mg/l X 8.34 = 50.04 lbs  
 
38.  What capacity blower will be required to ventilate a manhole which is 3.5 feet in diameter 
and 17 feet deep? The air exchange rate is 16 air changes per hour. 
.785 X 3.5’ X 3.5’ X 17’ X 16 = ____________ CFH 
 
.785 X 3.5’ X 3.5’ X 17’ X 16 = 2615.6 CFH 
 Q = .785 (D2) X Depth 
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39.  Approximately how many feet of drop are in 455 feet of 8-inch sewer with a 0.0475 ft/ft. 
slope? 
 
SLOPE = Rise (ft)   SLOPE (%) = Rise (ft)  X 100 
      Run (ft)       Run (ft)  
 
455’ X 0.0475 = 21.6 feet 
 
 
40.  How much brake horsepower is required to meet the following conditions: 250 gpm, total 
head = 110 feet? The submersible pump that is being specified is a combined 64% efficient? 
 
(250 X 110) ÷ (3960 X .64) 
or 
(250 X 110)  = 10.85 
(3960 X .64) 
 
BRAKE HORSEPOWER = Flow (gpm)  X  Head (ft) 

3961 X  Pump Efficiency 
 
 
41.   How wide is a trench at ground surface if a sewer trench is 2 feet wide at the bottom, 10 
feet deep and the sides have been sloped at a 4/5 horizontal to 1 vertical (3/4:1) ratio? 
 
(3/4:1) or 3 ÷ 4 = .75 X every foot of depth  
 
0.75 X 10 ft = 7.5 feet X 2 sides + 2 feet on the bottom.   
or  
0.75 X 10 ft = 7.5 X 2 sides = 15 ft = 2 feet = 17 feet 
 
42.  A float arrives in a manhole 550 feet down stream three minutes and thirty seconds from its 
release point. What is the velocity in ft/sec.? 
Velocity ft/sec = distance ÷ time 
 
550’ ÷ 3 min stop convert min to sec. 3 X 60 = 180 + 30 = 210 sec  
550’ ÷ 210 sec = 2.62 fps 
 
Or  
550 ft 
210 sec 
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43.  A new sewer line plan calls out a 0.6% slope of the line. An elevation reading of 108.8 feet 
at the manhole discharge and an elevation of 106.2 feet at a distance of 200 feet from the 
manhole are recorded. What is the existing slope of the line that has been installed? 
 
SLOPE = Rise (ft)   SLOPE (%) = Rise (ft)  X 100 
    Run (ft)        Run (ft)  
 
108.8 – 106.2 = 2.6 feet of drop or rise 
 
2.6 rise ÷ 200 feet of run = 0.013 slope or 1.3 % slope 
 
44.  A triangular pile of spoil is 12 feet high and 12 feet wide at the base. The pile is 60' long. If 
the dump truck hauls 9 cubic yards of dirt, how many truck loads will it take to remove all of the 
spoil? 
 
Given the base and the height of a triangle, we can find the area. Given the area and either the base 
or the height of a triangle, we can find the other dimension. The formula for area of a triangle is: 
 

    Or     where  is the base,   is the height. 
 
12’ X 12’ X 60’÷ 2 = 4320 cu.ft  (27cuft/cuyrd) 
 
4320 ÷ 27 =160 cubic yards  
160 cubic yards ÷ 9 cubic yard dump trucks 
17.77777 dump trucks or 18 dump trucks 
 
45.  A red dye is poured into an upstream manhole connected to a 12 inch sewer. The dye first 
appears in a manhole 400 feet downstream 3 minutes later. After 3 minutes and 40 seconds the 
dye disappears. Estimate the flow velocity in feet per second? 
Velocity ft/sec = distance ÷ time 
Make sure and convert time and average it.  
 
 
   3 Minutes = 180 Seconds 
+ 3 Minutes = 40 Seconds = 220 Seconds 
   400 Seconds ÷ 2 = 200 Seconds Average 
 
distance ÷ time = Velocity ft/sec  
 400 ÷ 200 = 2 fps
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46.  Calculate the total dosage in pounds of a chemical. Assume the sewer is completely filled 
with the concentration. Pipe diameter: 18 inches, Pipe length: 420 feet, Dose: 120 mg/L. 
 
Figure out the volume first.  
 
.785 X 1.5’ X 1.5’ X 420’ X 7.48 =5549 convert to MG 
 
 
 
First .785 (1.5) (1.5) 420 X 7.48 =5549  convert to MGD .005549 
 
Second  
Flow (MGD) X Dose (mg/L) X 8.34 lbs/gal = Pounds per day formula = 
.005549 X 120 X 8.34 = 5.55 lbs 
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We welcome you to complete the assignment in Microsoft Word.  You 
can easily find the assignment at www.abctlc.com.  Once complete, just 
simply fax or e-mail the answer key along with the registration page to 
us and allow two weeks for grading.  Once we grade it, we will mail a 
certificate of completion to you.  Call us if you need any help.   If you 
need your certificate back within 48 hours, you may be asked to pay a 
rush service fee. 
 
You can download the assignment in Microsoft Word from TLC’s website 
under the Assignment Page.  www.abctlc.com  You will have 90 days in 
order to successfully complete this assignment with a score of 70% or 
better.  If you need any assistance, please contact TLC’s Student 
Services. Once you are finished, please mail, e-mail or fax your answer 
sheet along with your registration form.    
 


