
What is a Domain?
Mark R. Horton

ABSTRACT

In the past, electronic mail has used many different kinds of syntax, naming a
computer and a login name on that computer. A new system, called ‘‘domains’’, is
becoming widely used, based on a heirarchical naming scheme. This paper is
intended as a quick introduction to domains. For more details, you should read
some of the documents referenced at the end.

1. Introduction

What exactly are domains? Basically, they are a way of looking at the world as a heirarchy (tree structure).
You’re already used to using two tree world models that work pretty well: the telephone system and the
post ofce. Domains form a similar heirarchy for the electronic mail community.

The post ofce divides the world up geographically, rst into countries, then each country divides itself up,
those units subdivide, and so on. One such country, the USA, divides into states, which divide into coun-
ties (except for certain states, like Louisiana, which divide into things like parishes), the counties subdivide
into cities, towns, and townships, which typically divide into streets, the streets divide into lots with
addresses, possibly containing room and apartment numbers, the then individual people at that address. So
you have an address like

Mark Horton
Room 2C-249
6200 E. Broad St.
Columbus, Ohio, USA

(I’m ignoring the name ‘‘AT&T Bell Laboratories’’ and the zip code, which are redundant information.)
Other countries may subdivide differently, for example many small countries do not have states.

The telephone system is similar. Your full phone number might look like 1-614-860-1234 x234 This con-
tains, from left to right, your country code (Surprise! The USA has country code ‘‘1’’!), area code 614
(Central Ohio), 860 (a prex in the Reynoldsburg C.O.), 1234 (individual phone number), and extension
234. Some phone numbers do not have extensions, but the phone system in the USA has standardized on a
3 digit area code, 3 digit prex, and 4 digit phone number. Other countries don’t use this standard, for
example, in the Netherlands a number might be +46 8 7821234 (country code 46, city code 8, number
7821234), in Germany +49 231 7551234, in Sweden +31 80 551234, in Britain +44 227 61234 or +44 506
411234. Note that the country and city codes and telephone numbers are not all the same length, and the
punctuation is different from our North American notation. Within a country, the length of the telephone
number might depend on the city code. Even within the USA, the length of extensions is not standardized:
some places use the last 4 digits of the telephone number for the extension, some use 2 or 3 or 4 digit exten-
sions you must ask an operator for. Each country has established local conventions. But the numbers are
unambigous when dialed from left-to-right, so as long as there is a way to indicate when you are done dial-
ing, there is no problem.

A key difference in philosophy between the two systems is evident from the way addresses and telephone
numbers are written. With an address, the most specic information comes rst, the least specic last.
(The ‘‘root of the tree’’ is at the right.) With telephones, the least specic information (root) is at the left.
The telephone system was designed for machinery that looks at the rst few digits, does something with it,
and passes the remainder through to the next level. Thus, in effect, you are routing your call through the
telephone network. Of course, the exact sequence you dial depends on where you are dialing from - some-
times you must dial 9 or 8 rst, to get an international dialtone you must dial 011, if you are calling locally

you can (and sometimes must) leave off the 1 and the area code. (This makes life very interesting for peo-
ple who must design a box to call their home ofce from any phone in the world.) This type of address is
called a ‘‘relative address’’, since the actual address used depends on the location of the sender.

The postal system, on the other hand, allows you to write the same address no matter where the sender is.
The address above will get to me from anywhere in the world, even private company mail systems. Yet,
some optional abbreviations are possible - I can leave off the USA if I’m mailing within the USA; if I’m in
the same city as the address, I can usually just say ‘‘city’’ in place of the last line. This type of address is
called an ‘‘absolute address’’, since the unabbreviated form does not depend on the location of the sender.

The ARPANET has evolved with a system of absolute addresses: ‘‘user@host’’ works from any machine.
The UUCP network has evolved with a system of relative addresses: ‘‘host!user ’’ works from any machine
with a direct link to ‘‘host’’, and you have to route your mail through the network to nd such a machine.
In fact, the ‘‘user@host’’ syntax has become so popular that many sites run mail software that accepts this
syntax, looks up ‘‘host’’ in a table, and sends it to the appropriate network for ‘‘host’’. This is a very nice
user interface, but it only works well in a small network. Once the set of allowed hosts grows past about
1000 hosts, you run into all sorts of administrative problems.

One problem is that it becomes nearly impossible to keep a table of host names up to date. New machines
are being added somewhere in the world every day, and nobody tells you about them. When you try to
send mail to a host that isn’t in your table (replying to mail you just got from a new host), your mailing
software might try to route it to a smarter machine, but without knowing which network to send it to, it
can’t guess which smarter machine to forward to. Another problem is name space collision - there is noth-
ing to prevent a host on one network from choosing the same name as a host on another network. For
example, DEC’s ENET has a ‘‘vortex’’ machine, there is also one on UUCP. Both had their names long
before the two networks could talk to each other, and neither had to ask the other network for permission to
use the name. The problem is compounded when you consider how many computer centers name their
machines ‘‘A’’, ‘‘B’’, ‘‘C’’, and so on.

In recognition of this problem, ARPA has established a new way to name computers based on domains.
The ARPANET is pioneering the domain convention, and many other computer networks are falling in
line, since it is the rst naming convention that looks like it really stands a chance of working. The MIL-
NET portion of ARPANET has a domain, CSNET has one, and it appears that Digital, AT&T, and UUCP
will be using domains as well. Domains look a lot like postal addresses, with a simple syntax that ts on
one line, is easy to type, and is easy for computers to handle. To illustrate, an old routed UUCP address
might read ‘‘sdcsvax!ucbvax!allegra!cbosgd!mark’’. The domain version of this might read
‘‘mark@d.osg.cb.att.uucp’’. The machine is named d.osg.cb.att.uucp (UUCP domain, AT&T company,
Columbus site, Operating System Group project, fourth machine.) Of course, this example is somewhat
verbose and contrived; it illustrates the heirarchy well, but most people would rather type something like
‘‘cbosgd.att.uucp’’ or even ‘‘cbosgd.uucp’’, and actual domains are usually set up so that you don’t have to
type very much.

You may wonder why the single @ sign is present, that is, why the above address does not read
‘‘mark.d.osg.cb.att.uucp’’. In fact, it was originally proposed in this form, and some of the examples in
RFC819 do not contain an @ sign. The @ sign is present because some ARPANET sites felt the strong
need for a divider between the domain, which names one or more computers, and the left hand side, which
is subject to whatever interpretation the domain chooses. For example, if the ATT domain chooses to
address people by full name rather than by their login, an address like ‘‘Mark.Horton@ATT.UUCP’’ makes
it clear that some machine in the ATT domain should interpret the string ‘‘Mark.Horton’’, but if the address
were ‘‘Mark.Horton.ATT.UUCP’’, routing software might try to nd a machine named ‘‘Horton’’ or
‘‘Mark.Horton’’. (By the way, case is ignored in domains, so that ‘‘ATT.UUCP’’ is the same as ‘‘att.uucp’’.
To the left of the @ sign, however, a domain can interpret the text any way it wants; case can be ignored or
it can be signicant.)

It is important to note that domains are not routes. Some people look at the number of !’s in the rst
example and the number of .’s in the second, and assume the latter is being routed from a machine called
‘‘uucp’’ to another called ‘‘att’’ to another called ‘‘cb’’ and so on. While it is possible to set up mail routing
software to do this, and indeed in the worst case, even without a reasonable set of tables, this method will

always work, the intent is that ‘‘d.osg.cb.att.uucp’’ is the name of a machine, not a path to get there. In par-
ticular, domains are absolute addresses, while routes depend on the location of the sender. Some subroutine
is charged with guring out, given a domain based machine name, what to do with it. In a high quality
environment like the ARPA Internet, it can query a table or a name server, come up with a 32 bit host num-
ber, and connect you directly to that machine. In the UUCP environment, we don’t have the concept of two
processes on arbitrary machines talking directly, so we forward mail one hop at a time until it gets to the
appropriate destination. In this case, the subroutine decides if the name represents the local machine, and if
not, decides which of its neighbors to forward the message to.

2. What is a Domain?

So, after all this background, we still haven’t said what a domain is. The answer (I hope it’s been worth the
wait) is that a domain is a subtree of the world tree. For example, ‘‘uucp’’ is a top level domain (that is, a
subtree of the ‘‘root’’.) and represents all names and machines beneath it in the tree. ‘‘att.uucp’’ is a subdo-
main of ‘‘uucp’’, representing all names, machines, and subdomains beneath ‘‘att’’ in the tree. Similarly for
‘‘cb.att.uucp’’, ‘‘osg.cb.att.uucp’’, and even ‘‘d.osg.cb.att.uucp’’ (although ‘‘d.osg.cb.att.uucp’’ is a ‘‘leaf ’’
domain, representing only the one machine).

A domain has certain properties. The key property is that it has a ‘‘registry’’. That is, the domain has a list
of the names of all immediate subdomains, plus information about how to get to each one. There is also a
contact person for the domain. This person is responsible for the domain, keeping the registry up-to-date,
serving as a point of contact for outside queries, and setting policy requirements for subdomains. Each sub-
domain can decide who it will allow to have subdomains, and establish requirements that all subdomains
must meet to be included in the registry. For example, the ‘‘cb’’ domain might require all subdomains to be
physically located in the AT&T building in Columbus.

ARPA has established certain requirements for top level domains. These requirements specify that there
must be a list of all subdomains and contact persons for them, a responsible person who is an authority for
the domain (so that if some site does something bad, it can be made to stop), a minimum size (to prevent
small domains from being top level), and a pair of nameservers (for redundancy) to provide a directory-
assistance facility. Domains can be more lax about the requirements they place on their subdomains, mak-
ing it harder to be a top level domain than somewhere lower in the tree. Of course, if you are a subdomain,
your parent is responsible for you.

One requirement that is NOT present is for unique parents. That is, a machine (or an entire subdomain)
need not appear in only one place in the tree. Thus, ‘‘cb’’ might appear both in the ‘‘att’’ domain, and in
the ‘‘ohio’’ domain. This allows domains to be structured more exibly than just the simple geography
used by the postal service and the telephone company; organizations or topography can be used in parallel.
(Actually, there are a few instances where this is done in the postal service [overseas military mail] and the
telephone system [prexes can appear in more than one area code, e.g. near Washington D.C., and Silicon
Valley].) It also allows domains to split or join up, while remaining upward compatible with their old
addresses.

Do all domains represent specic machines? Not necessarily. It’s pretty obvious that a full path like
‘‘d.cbosg.att.uucp’’ refers to exactly one machine. The OSG domain might decide that ‘‘cbosg.att.uucp’’
represents a particular gateway machine. Or it might decide that it represents a set of machines, several of
which might be gateways. The ‘‘att.uucp’’ domain might decide that several machines, ‘‘ihnp4.uucp’’,
‘‘whgwj.uucp’’, and ‘‘hogtw.uucp’’ are all entry points into ‘‘att.uucp’’. Or it might decide that it just rep-
resents a spot in the name space, not a machine. For example, there is no machine corresponding to ‘‘arpa’’
or ‘‘uucp’’, or to the root. Each domain decides for itself. The naming space and the algorithm for getting
mail from one machine to another are not closely linked - routing is up to the mail system to gure out,
with or without help from the structure of the names.

The domain syntax does allow explicit routes, in case you want to exercise a particular route or some gate-
way is balking. The syntax is ‘‘@dom1,@dom2,...,@domn:user@domain’’, for example,
@ihnp4.UUCP,@ucbvax.UUCP,:joe@NIC.ARPA, forcing it to be routed through dom1, dom2, ..., domn,
and from domn sent to the nal address. This behaves exactly like the UUCP ! routing syntax, although it
is somewhat more verbose.

By the way, you’ve no doubt noticed that some forms of electronic addresses read from left-to-right
(cbosgd!mark), others read from right-to-left (mark@Berkeley). Which is better? The real answer here is
that it’s a religious issue, and it doesn’t make much difference. left-to-right is probably a bit easier for a
computer to deal with because it can understand something on the left and ignore the remainder of the
address. (While it’s almost as easy for the program to read from right-to-left, the ease of going from left-to-
right was probably in the backs of the minds of the designers who invented host:user and host!user.)

On the other hand, I claim that user@host is easier for humans to read, since people tend to start reading
from the left and quit as soon as they recognize the login name of the person. Also, a mail program that
prints a table of headers may have to truncate the sender’s address to make it t in a xed number of
columns, and it’s probably more useful to read ‘‘mark@d.osg.a’’ than ‘‘ucbvax!sdcsv’’.

These are pretty minor issues, after all, humans can adapt to skip to the end of an address, and programs
can truncate on the left. But the real problem is that if the world contains BOTH left-to-right and right-to-
left syntax, you have ambiguous addresses like x!y@z to consider. This single problem turns out to be a
killer, and is the best single reason to try to stamp out one in favor of the other.

3. So why are we doing this, anyway?

The current world is full of lots of interesting kinds of mail syntax. The old ARPA ‘‘user@host’’ is still
used on the ARPANET by many systems. Explicit routing can sometimes by done with an address like
‘‘user@host2@host1’’ which sends the mail to host1 and lets host1 interpret ‘‘user@host2’’. Addresses
with more than one @ were made illegal a few years ago, but many ARPANET hosts depended on them,
and the syntax is still being used. UUCP uses ‘‘h1!h2!h3!user ’’, requiring the user to route the mail.
Berknets use ‘‘host:user ’’ and do not allow explicit routing.

To get mail from one host to another, it had to be routed through gateways. Thus, the address
‘‘csvax:mark@Berkeley’’ from the ARPANET would send the mail to Berkeley, which would forward it to
the Berknet address csvax:mark. To send mail to the ARPANET from UUCP, an address such as
‘‘ihnp4!ucbvax!sam@foo-unix’’ would route it through ihnp4 to ucbvax, which would interpret
‘‘sam@foo-unix’’ as an ARPANET address and pass it along. When the Berknet-UUCP gateway and
Berknet-ARPANET gateway were on different machines, addresses such as
‘‘csvax:ihnp4!ihnss!warren@Berkeley’’ were common.

As you can see, the combination of left-to-right UUCP syntax and right-to-left ARPANET syntax makes
things pretty complex. Berknets are gone now, but there are lots of gateways between UUCP and the
ARPANET and ARPANET-like mail networks. Sending mail to an address for which you only know a
path from the ARPANET onto UUCP is even harder ! suppose the address you have is
ihnp4!ihnss!warren@Berkeley, and you are on host rlgvax which uses seismo as an ARPANET gateway.
You must send to seismo!ihnp4!ihnss!warren@Berkeley, which is not only pretty hard to read, but when
the recipient tries to reply, it will have no idea where the break in the address between the two UUCP
pieces occurs. An ARPANET site routing across the UUCP world to somebody’s Ethernet using domains
locally will have to send an address something like ‘‘xxx@Berkeley.ARPA’ ’ to get it to UUCP, then
‘‘ihnp4!decvax!island!yyy’’ to get it to the other ethernet, then ‘‘sam@csvax.ISLAND’’ to get it across
their ethernet. The single address would therefore be
ihnp4!decvax!island!sam@csvax.ISLAND@Berkeley.ARPA, which is too much to ask any person or
mailer to understand. It’s even worse: gateways have to deal with ambiguous names like
ihnp4!mark@Berkeley, which can be parsed either ‘‘(ihnp4!mark)@Berkeley’’ in accordance with the
ARPANET conventions, or ‘‘ihnp4!(mark@Berkeley)’’ as the old UUCP would.

Another very important reason for using domains is that your mailing address becomes absolute instead of
relative. It becomes possible to put your electronic address on your business card or in your signature le
without worrying about writing six different forms and fteen hosts that know how to get to yours. It dras-
tically simplies the job of the reply command in your mail program, and automatic reply code in the net-
news software.

4. Further Information

For further information, some of the basic ARPANET reference documents are in order. These can often
be found posted to Usenet, or available nearby. They are all available on the ARPANET on host NIC via
FTP with login ANONYMOUS, if you have an ARPANET login. They can also be ordered from the Net-
work Information Center, SRI International, Menlo Park, California, 94025.

RFC819 The Domain Naming Convention for Internet User Applications
RFC821 Simple Mail Transfer Protocol
RFC822 Standard for the Format of ARPANET Text Messages
RFC881 The Domain Names Plan and Schedule

#
@(#)domain.mm 2.1 smail 12/14/86
#

