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Continuous Shading of Curved Surfaces

HENRI GOURAUD

Abstract—A procedure for computing shaded pictures of curved
surfaces is presented. The surface is approximated by small polygons
in order to solve easily the hidden-parts problem, but the shading of
each polygon is computed so that discontinuities of shade are elim-
inated across the surface and a smooth appearance is obtained. In
order to achieve speed efficiency, the technique developed by Watkins
is used which makes possible a hardware implementation of this
algorithm.

Index Terms—Coons patches, curved surfaces, halftone, hidden-
line removal, shading.

INTRODUCTION

INCE computers have been used to produce perspec-
Stives of three-dimensional objects, one of the main

problems has been the tradeoff between the speed at
which a picture could be produced and the realism of this
picture. On one hand, cathode-ray tubes are able to display
line drawings very efficiently; on the other hand, images
with hidden parts removed and with shading take a long
time to compute. In 1963 Roberts [1] developed the first
program capable of removing hidden lines. Since then
other algorithms performing the same task have been de-
veloped by Galimberty [2], Kubert [3], and Loutrel [4],
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among others. Their algorithms solve the hidden-line prob-
lem for structures composed of planar polygons. Two algo-
rithms developed by Comba [5] and Weiss [6] remove hid-
den lines for objects made of quadric surfaces. In 1967
shaded images were introduced by the University of Utah
(Romney [7], Warnock [8], Watkins [9]), General Electric
(Rougelot [10]), MAGI [11], and IBM (Appel [12]). More
recently, Bouknight and Kelley [17], [18] presented an
algorithm producing shaded pictures with shadows and
movable light sources. General Electric built for NASA the
first hardware capable of generating real-time shaded pic-
tures. Combining the work of both Warnock and Romney,
Watkins recently developed a fast algorithm which will
shortly be implemented in hardware at the University of
Utah.

Realism beyond the obvious hidden-surface removal is
obtained by shading each object in black and white or in
color. In the General Electric system a fixed color is as-
signed by hardware to each of the different polygons com-
posing the scene. The potential for changing this color from
frame to frame exists, but the author is not aware of its use.
This scheme gives a ‘“‘cartoon-like”” appearance to the gen-
erated images. Appel developed a system to produce shaded
images on a digital plotter. The shading of a particular
polygon is computed only as a function of the orientation
of this polygon. This could become confusing in the case of
parallel polygons, but is avoided in this particular case
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since the visible edges are drawn on top of the shading.
Warnock and Romney were the first to use a shading rule
in which both the orientation of the object and its distance
from the observer are taken into consideration. Warnock
uses the rule

cos @

S=R

Romney uses the rule

cos? 0

R4

S =

* (normalization factor)

where cos 0 is a measure of the orientation of the polygon
and R a measure of its distance from the observer. In both
cases, the light source was located at the observer’s position
to avoid any need to show shadows. In the case of color
pictures, Warnock also introduced the notion of specular
reflectance as a term of the form

cos™ 6
R

added to each of the three basic color components.

The essence of shaded pictures is to generate a different
shade of gray for each resolution point on the projection
screen, and each of the programs mentioned above has
tried to reduce the time spent in computing a new shading
for each point. The requirement that the objects be com-
posed of planar polygons was mainly made to facilitate the
hidden-parts computations, but it also permitted simplicity
in the computation of the shading for each polygon because

a part of this computation is done in common for all the
~ points of this polygon. In the General Electric system the
shading is the same on the entire projection of a given poly-
gon. Warnock, Romney, and Watkins compute the shading
at some particular points of the polygon and use linear inter-
polation to compute the shading at other points.

As an example, let us examine in more detail how the
computation of the shading is performed in Watkins’ algo-
rithm. During a quick preprocessing of the description of
the object, the orientation of each polygon is computed and
stored in the data structure. The final image is then com-
puted scan line by scan line. For each scan line the hidden
parts are first eliminated, and then each visible portion of
polygon is shaded according to its orientation and distance.
The distance has been introduced in the shading rule in
order to make a distinction in shade between two over-
lapping separated parallel planes. Our experience has shown
that the method used to compute this distance is not critical
as long as the relative ordering of the objects is preserved.

The perspective transformation has this property, and
the perspective coordinates which have already been used
to solve the hidden-parts problem can be used again to
compute the shading. If X Y Z are the coordinates of a point,
its projection has the coordinates

Xyt
Z ZZ

6<m<10
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if the observer is located at the origin of the coordinate sys-
tem looking in the Z direction. The coordinate 1/Z is a
good monotonic approximation of the distance, and we
can compute the shading as

1

S =cos?0x—-

cos® 0+~
Since the value of 1/Z is known only at the vertices of the
polygons, it is necessary to perform a linear interpolation
between two vertices to obtain the value of 1/Z along one
edge. Once this interpolation has been performed, it is possi-
ble to compute the shading along the scan line as (Fig. 5)

1 1

S=(1—a)Z—Ecosze+a2;cos20 1))

‘where a goes from 0 to 1 between E and F. It is remarkable

to notice that the exact computation should be

cos? 6

S=4 —0)Zg + aZyp

@

but the use of (1) does not show any noticeable degradation
in the shading produced.

THE MAcH BAND EFFECT

In attempting to represent a scene, the shading technique
is subject to all the psychological illusions present in the
visual process. Of interest to this discussion is a phe-
nomenon thoroughly investigated by Mach [13] which
explains how the retina performs some kind of two-dimen-
sional filtering on the shading function of a scene. Each
neuron, depending on the intensity of the light it receives,
interacts with its neighbors and modifies their performances.
The result of this interaction will be an attenuation of the
low spatial frequencies and an amplification of the high
spatial frequencies present in the shading. An example
which is best suited to the discussion of this paper is shown
in Fig. 1. Fig. 1(a) shows how the discontinuities in the value
of the shading give a “fluted” aspect to each of the steps.
Fig. 1(b) shows how a discontinuity in the first derivative
of the shading gives the illusion of a small bump along the
edge between two differently shaded surfaces.

CURVED SURFACES

In an effort to extend the class of objects that can be
modeled by the computer, some techniques allowing the
definition and the representations of curved surfaces have
been developed. Coons introduced the Coons patch in 1964
[14]. At that time such surfaces were displayed by showing
a grid of curves overlaid on the surface (Fig. 2). This method
presented all the disadvantages of wire frame perspectives,
and no hidden-line removal method existed for this class of
surfaces. At Cambridge, England, Armit [15] developed a
system based on Coons patches. One of the facilities of the
system was a modulation of the intensity of each segment of
the curves by the distance from the segment to the observer.
Without removing the hidden lines, this method produced
good looking pictures. At about the same time, Lee [16] de-
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Fig. 1. (a) Mach band distortion produced by discontinuities in the value of the shading. (b) Mach band distortion produced by discontinuity
in the first derivative of the shading.

(b)

Fig. 2. Curved surfaces presented with conventional line drawing method. (a) Paraboloid hyperbole. (b) Quarter torus.
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veloped an extension of the Coons patch called the rational
Coons patch. The author is presently working at the Uni-
versity of Utah on the problems arising in the interactive
design of rational Coons patches.

One of the properties of the rational Coons patch is the
ability to reparametrize the patch without modifying its
geometric shape. This can be viewed as a squashing of the
grid of curves overlaid on the surface in one direction or
another. In the two-dimensional perspective of such a
patch, the spacing of the curves on the surface can give a
cue of the depth properties of the surface. Since the re-
parametrization modifies the spacing, it modifies also the
depth cues; therefore one of the first problems the author
was faced with was finding an automatic way of discovering
the best parametrization for a given patch. It became
rapidly evident that one should get rid of the grid on the
surface by using a shading method in order to obtain the
best depth representation of the surface.

Warnock and Romney had produced pictures of curved
surfaces by approximating them with a large number of
small planar polygons. Because of the Mach band phe-
nomenon, this method produced pictures-in which each
small polygon was distinctly visible. Using Watkins’ algo-
rithm the author produced pictures of rational Coons
patches, treating each grid element as a polygon (Fig. 3).
The polygons thus obtained were not necessarily planar, but
the fact that Watkins’ algorithm accepts nonplanar poly-
gons was very helpful at that point. As in the case of War-
nock’s and Romney’s pictures, each polygon was very
clearly visible and the grid had not disappeared.

From the explanation of the Mach band distortion it
appears that in order to represent correctly the smooth
aspect of a curved surface, the shading rule on this surface
has to be continuous in value and, if possible, in derivative.
One way to achieve this would be to increase the number of
polygons approximating the surface, but this is impractical
for storage and time reasons. The approach described in
this paper is to keep the polygon approximation of the sur-
face, but to modify slightly the computation of the shading
on each polygon so that continuity exists across polygon
boundaries (Fig. 4).

Let us now examine how this continuity can be achieved.
A typical data structure contains information about a cer-
tain number of lines and some more information connecting
these lines into closed polygons. At a particulat vertex com-
mon to several polygons, one might compute a normal for
each polygon as a vector perpendicular to the plane of that
polygon. To achieve continuity of the shading we have to
have only one possible normal at any particular vertex. This
normal could be computed as, for example, the average of
the normals to each polygon associated with this particular
vertex; but in the examples described. in this paper an
analytical description of the surface is available and it is
possible to compute an exact normal at each vertex of the
grid of polygons approximating the surface. Each polygon
has a different shading for each of its vertices, and the shad-
ing at any particular point inside the polygon has to be
computed as a continuous function of the shading at the
vertices of the polygon.
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If we now look at the projection of the polygon on the
viewing plane, we see that one way to achieve this con-
tinuity is to compute the shading inside the polygon as
two successive linear interpolations of the shading at the
projection of the vertices. Given the projection of two edges
AB and CD, and the scan line (Fig. 5), we assumed that the
normal to the surface would be known at points 4, B, C, and
D, which permits us to compute the shading at those four
points. If E and F are the intersection of the scan line with
AB and CD, respectively, and if P is any point on the scan
line between E and F, the shading at point E can be com-
puted as a linear interpolation of S, and Sg of the form

Se=(1—a)*S, +ax*S

where a is the coefficient (0 <a < 1) expressing the position
of E on the segment AB. If E is identical to A then «=0, and
if E is identical to B then a=1. In a very similar fashion we
can compute Sy as a linear interpolation of S and S;, and
Sp as a linear interpolation of S; and Sg.

Sp=0-pB)*Sp + B=Sc
Sp=(01—0)*Sg + axSp O<ax<).

It can be easily verified from the equations above that if

P=A, then Sp=3§,
P=B, then Sp,=Sg
P=C, then Sp,=S;
P =D, then S,=S,.

In order to reduce the computation of a new shade for
each point to a minimum, the very efficient technique de-
veloped by Watkins was extended to include this computa-
tion. The following is a very concise description of Watkins’
algorithm (for complete understanding of the mechanisms,
refer to Watkins’ Ph.D. thesis [9]). If the picture is scanned
from top of bottom, the following information is computed
for each polygon edge:

1) the number of the first scan line this edge will intersect ;
2) how many scan lines below this one it will intersect ;
3) the X and Z coordinates of the highest point of the
edge;
4) the slope in X and Z of this edge.
We can very easily add the following information:

5) the shading S of the surface at the highest point of
this edge;
6) a “‘slope” of this shading along this edge.

This “slope” is computed as

S, =S
n

AS =

where S, and S, are the shading at the two endpoints of the
edge and n is the number of scan lines intersecting this edge.

Given this information it is now very easy to compute the
shading on a given scan line. As the computation proceeds,
an edge will become ‘““active” when its first point is reached
by a scan line. At that stage, we know the XY Z coordinates
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(2) (®)

Fig. 3. Same curved surfaces presented with Watkins algorithm. (a) Computation time: 1 min 30 s. (b) Computation time: 1 min 20 s.

(a) (b)

Fig. 4. Same curved surfaces presented with author’s method. (a) Computation time: 1 min 45 s. (b) Computation time: 1 min 35 s.

Scan line

Fig. 5. Projection of one polygon intersected by the scan line.
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(@)

(b)

Fig. 6. Curved surface intersected by a plane presented with (a) Watkins’ method (computation time 2 min),
and (b) the author’s method (computation time 2 min 15 s).

of this point and the value of the shading at the point on the
surface. For the next scan line it is sufficient to add the
“slope” to the coordinate information of the point as well
as of the shading to find a new point and a new shading.
Given a scan line, and all the edges intersecting this scan
line, edges belonging to the same polygon are paired to
form segments (a segment could be viewed as the intersec-
tion of one of the polygons and the scan plane). A segment is
created when an edge becomes ‘“‘active.”’ The segment con-
tains the coordinates of its endpoints, the value of the shad-
ing at its endpoints, and the different slopes necessary to
update this information from scan line to scan line. When
an edge leaves the “‘active” list, it is necessary to rearrange
the segments by deleting or merging some blocks of in-
formation. The hidden-lines computation is performed at
that point and we are left with a number of segments totally
or partially visible. For each point of the scan line on the
visible part of a segment, we can compute a coefficient

Xp — Xg

o =

and the shading as
S=(1—o)%Sg + o*Sg.

The linear interpolation which has been used here pro-
duces a shading which is continuous in value but not in
derivative across polygon boundaries. The resulting Mach
band effect can be observed mostly in the vicinity of the
silhouette curves and where the surface bends sharply.
Interpolation schemes more powerful than the linear in-
terpolation could probably be used but the improvement
obtained with such schemes would not compensate the loss
of efficiency of the present algorithm and would make a
hardware implementation unpracticable.

TiMING

At this point it is important to consider the time degrada-
tion we have imposed on Watkins’ algorithm. Our modifi-

cations can be split into two categories. The first category is
the extra information that is requested about each edge or
segment. The second is the point-by-point computation of
the shading of a scan line.

The first category adds hardware cost but should not
slow down the process since all segment information is
handled in parallel. Indeed, this is true only for a hardware
implementation and it puts some more burden on the mem-
ory requirements. In the software simulation, about 40
percent of the time is spent in the routine which creates and
updates segments from scan line to scan line. The amount
of information attached to each segment was previously the
X and Z coordinates of the endpoints of the segments, and
is now augmented by the shading value of those two points.
This multiplies the time spent in this routine by 1.5, or the
total time taken by the modified algorithm by less than 1.2.

As for the second category, the proposed modification
uses exactly the same hardware and does not take more
time than the old method since the computation to be per-
formed at that point is still a linear interpolation between
two values provided by the segment handling routine.

INTERSECTIONS

The shading rule which we have described gives the illu-
sion of a smooth curved surface when, in fact, this surface
is described by a set of small polygons. It was necessary to
keep this polygon approximation so that the computation
of intersections could be handled easily using existing
methods. As can be seen in Fig. 6, there is no difference be-
tween the intersection computed by Watkins and the one
computed with the modified algorithm. This does not seem
to be a serious drawback and the final appearance of the
picture remains good even when there are intersecting
surfaces.
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A Theory of Asynchronous Control Networks

JOHN BRUNO, MEMBER IEEE, AND STANLEY M. ALTMAN, MEMBER, IEEE

Abstract—A digital system can be viewed as an interaction of two
structures, a data flow structure and a control structure. In this paper
we adopt this point of view and concentrate on defining a structure
theory for asynchronous control networks, which is formed by inter-
connecting certain basic control modules. Each control module per-
forms a single primitive control function.

After defining the structural and behavioral properties of asyn-
chronous control modules, we extend this idea to include asyn-
chronous control networks. An asynchronous control network is
described by a directed graph G[N] called the control network graph.
Using this graph description, we show by example that networks of
control modules exist for which network operation eventually ‘*hangs
up.” The notion of a network “hanging up’’ is analogous to Haber-
man’s use of deadlock to describe the situation in which resources
have been allocated to various tasks in such a wav that none of the
tasks can continue. Thus the concept of we//-formed control networks
is introduced to describe the class of networks which do not exhibit
this behavior.

By extending the behavior diagram so that it can also be used to
model the behavioral aspects of control networks, we provide a
framework for deriving the main results of this paper, namely, a set
of necessary and sufficient conditions guaranteeing that certain
classes of asynchronous control networks be well formed. These
general results are given in stages, beginning with control networks
consisting of only JUNCTION and WYE modules. We add, successively,
SEQUENCE, ITERATE, and SELECT control modules, obtaining the neces-
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sary and sufficient conditions for the class of well-formed control
networks constructed from these five module types.

Index Terms—Asynchronous networks, control networks, logical
design.

I. INTRODUCTION

N asynchronous digital system can be viewed as the
A interaction of two structures, a data flow structure
and a control structure [1], [2], [4]-[6]. Operations
on data such as addition, shifting, and complementing,
the storage of data, and the transmission of data take place
in the data flow structure. The different operations taking
place concurrently in the data flow structure are coordi-
nated by the control structure. The use of asynchronous
signals to coordinate activities in both the data flow struc-
ture and in the control structure suggests the possibility of
partitioning the control structure into functional building
blocks. In this paper we adopt this point of view and con-
centrate on defining a structure theory for asynchronous
control networks which are formed by interconnecting
certain basic control modules; each module performs a
single primitive control function. The five basic control
modules considered are the WYE, JUNCTION, SEQUENCE,
ITERATION, and SELECT modules. A formal description of
the operation of each control module is presented in Sec-
tion II.
To illustrate how a network of control modules could be



