
Issue 7 December 2010

Bad Habits that Crush Your Creativity and Stifle Your Success

On Creativity.

2

Cover Photo: Randy Kepple (http://randykepple.com)

Contents

Curator
Lim Cheng Soon

Proofreader
Ricky de Laveaga

Illustrator
Jaime G. Wong

Printer
MagCloud

E-book Conversion
Fifobooks.com

Contributors
ARTICLES
Jake Seliger
Randy Kepple
Dean Rieck
Nathan Marz
Steve Blank
Oliver Reichenstein
Kent Healy
Bradley Wright
Salvatore Sanfilippo
Marijn Haverbeke
Phil Cryer
Paul Querna
Luke Palmer
Fredrik Johansson

COMMENTARIES
Ed Weissman
Catherine Darrow
Sahil Lavingia
Mahmud Mohamed
Patrick McKenzie
Michael F Booth
Philip Hofstetter
Wes Felter
Juan Pablo
Elben Shira
Leon Paternoster

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com, a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.” Every month, we select from the
top voted articles on Hacker News and print them in magazine
format. For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

http://randykepple.com
http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

Illustration: Jaime G. Wong

Contents

STARTUP

16 How to Get a Job At a Kick-Ass Startup
By NATHAN MARZ

19 You Negotiate Commodities,
But You Seize Opportunities
By STEVE BLANK

SPECIAL

22 Web Design is 95% Typography
By OLIVER REICHENSTEIN

24 Why Most People Don’t Succeed
By KENT HEALY

43 HACKER JOBS

PROGRAMMING

26 How to Set Up Your Own Private Git
Server on Linux
By BRADLEY WRIGHT

28 What’s Wrong With 2006 Programming?
By SALVATORE SANFILIPPO

30 Bouncing Beholder
By MARIJN HAVERBEKE

34 Building an Open Source Dropbox Clone
By PHIL CRYER

38 Java Trap, 2010 Edition
By PAUL QUERNA

40 IDEWTF
By LUKE PALMER

42 The Duct Tape Architect
By FREDRIK JOHANSSON

FEATURES

04 How Universities Work
By JAKE SELIGER

11 Bad Habits that Crush Your Creativity and Stifle Your Success
By RANDY KEPPLE and DEAN RIECK

For links to the posts on Hacker News, visit http://hackermonthly.com/issue-7. All articles and comments are reprinted with permission of their original author.

http://hackermonthly.com/issue-7

4 FEATURES

FEATURES

How Universities Work
What I Wish I’d Known Freshman Year:

A Guide to American University Life for the Uninitiated

By JAKE SELIGER

 5

FELLOW GRADUATE STUDENTS
sometimes express shock
at how little many under-
graduates know about the

structure and purpose of universities. It’s
not astonishing to me: I didn’t under-
stand the basic facts of academic life or
the hierarchies and incentives universities
present to faculty and students when I
walked into Clark University at age 18.
I learned most of what’s expressed here
through osmosis, implication, inference,
discussion with professors, and random
reading over seven years. Although most
of it seems obvious now, as a freshman
I was like a medieval peasant who
conceived of the earth as the center of
the universe; Copernicus’ heliocentric
revolution hadn’t reached me, and the
much more accurate view of the universe
discovered by later thinkers wasn’t even
a glimmer to me. Consequently, I’m writ-
ing this document to explain, as clearly
and concisely as I can, how universities
work and how you, a freshman or
sophomore, can thrive in them.

The biggest difference between a
university and a high school is that
universities are designed to create new
knowledge, while high schools are
designed to disseminate existing knowl-
edge. That means universities give you far
greater autonomy and in turn expect far
more from you in terms of intellectual
curiosity, personal interest, and maturity.

Degrees
This section might make your eyes glaze
over, but it’s important for understand-
ing how universities work. If you’re a
freshman in college, you’ve probably
just received your high school diploma.
Congratulations: you’re now probably
working toward your B.A. (bachelor of
arts) or B.S. (bachelor of science), which
will probably take four years. If you earn
that, you’ll have received your under-
graduate degree.

From your B.A./B.S., if you wish to,
you’ll be able to go on to professional
degrees like law (J.D.), medicine (M.D.),

or business (M.B.A.), or to further
academic degrees, which usually come in
the form of an M.A., or Master’s Degree.
An M.A. usually takes one to two years
after a B.A. After or concurrently with an
M.A., one can pursue a Ph.D., or Doctor
of Philosophy degree, which usually takes
four to ten years after a B.A.

The M.A. and Ph.D. are known as
research degrees, meaning that they
are conferred for performing original
research on a specific topic (remember:
universities exist to create new knowl-
edge). Professional degrees are designed
to give their holder the knowledge
necessary to be a professional: a lawyer, a
doctor, or a business administrator.

Many if not most people who earn
Ph.D.s ultimately hope to become a pro-
fessor, as described in the next section.
The goal of someone earning a Ph.D.
is essentially to become the foremost
expert in a particular and narrow subject.

Professors, Adjuncts, and
Graduate Students
There are two to three main groups—
one could even call them species—you’ll
interact with in a university: professors,
adjunct professors, and graduate students.

Professors almost always have a Ph.D.
Many will have written important books
and articles in their field of expertise.
They can be divided into two important
classes: those with tenure—a word you’ll
increasingly hear as you move through
the university system—and those
without. “Tenure,” as defined by the New
Oxford American Dictionary that comes
with Mac OS X 10.6, is “guaranteed
permanent employment, esp. as a teacher
or professor, after a probationary period.”
It means that the university can’t fire the
professor, who in turn has proven him or
herself through the publication of those
aforementioned books and papers along
with a commitment to teaching. This
professor will probably spend her career
at the university she’s presently at.

Those without tenure but hoping
to achieve it are on the “tenure track,”

which means that, sometime between
three and six years after they’re hired, a
committee composed of their peers in
the department will, along with univer-
sity administrators and others, decide
whether to offer tenure. Many professors
on the tenure track are working fever-
ishly on books and articles meant for
publication. Without those publications,
they will be denied tenure and fired from
their position.

Adjuncts, sometimes called adjunct
professors, usually have at least an M.A.
and often have a Ph.D. They do not
have tenure and are not on the “tenure
track” that could lead to tenure. They
usually teach more classes than tenured
or tenure-track professors, and they also
have less job security. Usually, but not
always, adjuncts teach lower-level classes.
They are not expected to do research as
a condition of staying at the university.

Graduate Students (like me, as of
this writing) have earned a B.A. or
equivalent and are working towards
either an M.A. or a Ph.D. From the time
they begin, most graduate students will
spend another two to eight years in
school. They take a set number of small,
advanced classes followed by tests and/or
the writing of a dissertation, which is an
article or book-length project designed to
show mastery in their field.

Many—also like me—teach or help
teach classes as part of their contract
with the university. In my case, I teach
two classes most semesters, usually
consisting of English 101, 102, or 109
for the University of Arizona. As such,
I take and teach classes. In return, the
university doesn’t charge me tuition and
pays me a small stipend. Most graduate
students who teach you ultimately want
to become professors. To get a job as a
professor, they need to show excellence
in research—usually by writing articles
and/or books—as well as in teaching.

For all three groups, much of their
professional lives revolve around tenure,
which brings additional job security,
income, and prestige.

Illustration: Jaime G. Wong

6 FEATURES

Two Masters
Most graduate students and non-tenured
professors serve two masters: teaching
and research. As an undergraduate, you
primarily see their teaching side, and
your instructors might seem like another
version of high school teachers. For some
instructors, however, teaching is not
their primary duty and interest; rather,
they primarily want to conduct original
research, which usually takes the form
of writing articles (also sometimes called
“papers”) and books. The papers you are
assigned for many classes in part help
you prepare for more advanced writing
and research.

Graduate students and professors
feel constant tension between their
teaching and their research/writing
responsibilities. Good ones try to balance
the two. For most graduate students and
professors, however, published research
leads to career advancement, better jobs,
and, ultimately, tenure. Many of your
instructors will have stronger incentives
to work on research than teaching. This
doesn’t mean they will shirk teaching,
and most teach creatively and diligently,
as they should. But it’s nonetheless wise
to understand the two masters most of
your instructors face.

Interacting with Professors,
Adjuncts, and Graduate Students
To earn tenure (or work towards earning
tenure), many professors and grad
students spend long periods of time
intensely studying a subject, most often
through reading. They expect you to
read the assigned material and have some
background in reading more generally;
if you don’t, expect a difficult time in
universities.

Professors and your other instructors
have devoted or are devoting much
of their lives to their subjects. As you
might imagine, having someone say that
they find a subject boring, worthless,
or irrelevant often irritates professors,
adjuncts, and graduate students, since if
those people found their subject boring,
worthless, or irrelevant, they wouldn’t
have spent or be planning to spend their
lives studying it. Most make their subject
their lives and vice-versa. They could
earn more money in other professions
but choose not to pursue those profes-
sions, but they are often excited by
knowledge itself and want to find others
who share that excitement. If you say or
imply their classes are worthless, you’ve
said or implied that their entire lives are
worthless. Most people do not like to
think that their lives are worthless.

Professors can sometimes seem aloof
or demanding. This is partially due to
the demands placed on them (see “Two
Masters,” above). Being aloof or demand-
ing doesn’t mean a professor doesn’t like
you. Most professors are interested in
their students to the extent that students
are interested in the subject being taught.
In this sense, professors often try to
stir students’ interest in a subject, but
actively hostile/uninterested students
will often find their instructors uninter-
ested in them. Motivated and interested
students often inspire the same in their
professors.

To be sure, there are exceptions: some
professors will be hostile or uninterested
regardless of how much effort a student
shows, and some will be martyrs who try
to reach even the most distant, disgrun-
tled student. But most professors are in
the middle, looking for students who are

engaged and focusing on those students.
Nearly all your instructors have passed

through the trials and tests they’re giving
you: if they hadn’t done so, and excelled,
they wouldn’t be teaching you. Thus, few
are impressed when you allocate time
poorly, try to cram before tests, appear
hungover in class, and show up late to or
miss class repeatedly. On the other hand,
many will cut slack for diligent students
who show promise.

One reason professors don’t think
much of student excuses is because
many students have different priorities
than professors. As undergraduates, most
professors were part of the “academic
culture” on campus, to use Murray Sper-
ber’s term; in contrast, many undergradu-
ates are part of the collegiate (interested
in the Greek system, parties, and football
games) or vocational (interested in job
training) cultures. The academic culture,
according to Sperber, “[has a] minimal
understanding of, and sympathy for, the
majority of their undergraduate students”
at big public schools. I think he’s too
harsh, but the principle is accurate: if
you aren’t in school to learn and develop
your intellect—and most students in
most schools aren’t, as Sperber shows—
you probably won’t understand your
professors and their motivations. But
they will understand yours. Academics
are a disproportionately small percentage
of the student population at most schools
but an extraordinary large proportion of
grad students and professors.

“Most professors are interested in their
students to the extent that students are
interested in the subject being taught. ”

 7

Requirements for Undergraduates
You can only graduate from a university
if you pick a major and fulfill its require-
ments. Clark called its undergraduate
requirements “Perspectives,” while the
University of Arizona calls them “Gen
Eds” or “General Education Require-
ments.” There is no way to avoid filling
requirements, and most requirements
demand that you spend a certain amount
of time with your rear end in a seat at a
certain number of classes. Fulfill as many
requirements as possible as soon as you
realize those requirements exist, assum-
ing you want to graduate on time.

You’ll often be assigned an “academic
advisor,” whose job it is to help keep you
on track to graduate and to help you pick
courses. Don’t be afraid of this person: he
or she will often help you or point you
to people who can help you. At bigger
schools, your advisor will often seem
harried or uninterested, but even if that
person is, you should remember that he
or she is still a valuable resource. And if
you can’t get help from your counselor,
find the requirements of potential majors
or all majors and work toward checking
them off, because you won’t be able to
get out of them.

I tried and found that there is virtually
no negotiating with requirements, even
if some are or seem silly. For example,
Clark required that students take “sci-
ence perspective.” In studying my sched-
ule and options, I figured that astronomy
was the easiest way out. Considering
how useless astronomy looked, I decided
to petition the Dean of Students to be
excused from it so I could take better
classes, arguing that I’d taken real science
classes in high school and that I could be

more productively engaged elsewhere.
The answer came quickly: “no.”

Astronomy consisted of tasks like
memorizing the lengths of planets
from the sun, what the Kuiper Belt is,
and the like. Tests asked things like the
size of each planet—in other words, to
regurgitate facts that one can find in two
seconds on Google, which is how I found
out what the Kuiper Belt is again. The
professor teaching it no longer appeared
to have a firm grasp of his mental facul-
ties. At least it was relatively easy: the
only worse thing would’ve been having to
take, say, chemistry, or a real science class.

That astronomy class was probably
the most useless I took, and Clark’s
tuition at that time was something like
$22,000. I received a scholarship toward
tuition, room, and board, so my tuition
was probably closer to $16,000, or
$8,000 per semester. Undergrads took
four classes, so the useless astronomy
class cost around $2,000. Would I have
rather taken another English class, or
Computer Science, or a myriad of other
subjects? You bet. But I couldn’t, and if
I didn’t take some kind of science class, I
wouldn’t have been able to graduate, no
matter the uselessness of the class.

What should I major in?
I have a theory that virtually everything
you learn in universities and in life is the
substance or application of two (or three,
depending on how you wish to count)
abilities: math and reading/writing.
Regardless of what you major in, work
on building those two skills.

In the liberal arts, that most often
means philosophy, English, and history;
other majors vary by university, but those

requiring a lot of reading and writing
are almost always better than those that
don’t. In the hard sciences and econom-
ics you’ll be left to develop your reading
and writing skills on your own. And this
does apply to you, whether you realize it
or not. As software company founder and
rich guy Joel Spolsky wrote:

Even on the small scale, when you look
at any programming organization, the
programmers with the most power and
influence are the ones who can write
and speak in English clearly, convinc-
ingly, and comfortably. Also it helps to
be tall, but you can’t do anything about
that.

The difference between a tolerable
programmer and a great programmer is
not how many programming languages
they know, and it’s not whether they
prefer Python or Java. It’s whether they
can communicate their ideas. By per-
suading other people, they get leverage.

So if you want leverage, learn how
to write. And if liberal arts majors don’t
want to be bamboozled by statistics, they
better learn some math.

In short, I have no idea what you
should major in. But you probably
shouldn’t major in business, communica-
tion, sociology, or criminal justice, all of
which are worthy subjects that, for most
undergraduates, are sufficiently watered
down that you’re unlikely to challenge
yourself much. Odds are that you’ll even
make more money as a philosophy major
than a business management major.

“Virtually everything you learn in universities
and in life is the substance or application of
two abilities: math and reading/writing. ”

8 FEATURES

Paul Graham wrote:

Thomas Huxley said “Try to learn some-
thing about everything and everything
about something.” Most universities aim
at this ideal.
But what’s everything? To me it means,
all that people learn in the course of
working honestly on hard problems. All
such work tends to be related, in that
ideas and techniques from one field
can often be transplanted successfully
to others. Even others that seem quite
distant. For example, I write essays the
same way I write software: I sit down
and blow out a lame version 1 as fast
as I can type, then spend several weeks
rewriting it.

The reality is that your specific major
probably doesn’t matter nearly as much
as your tenacity, ability to learn, and
the consistent application of that ability
to learn to specific problems. One way
people—friends, employers, graduate
schools, colleagues, etc.—measure this
is by measuring the way you speak and
write, which together are a proxy for
how much and how deeply you’ve read.

A great deal of college is about teach-
ing you how to learn, and reading is prob-
ably the fastest way to learn. Once you’ve
mastered the art of reading, you’ll be set
for life, provided you keep exercising the
skills you develop at a university. Keep
that in mind as you search for majors:
those that assign more reading, more
writing, and more math are probably
more worthwhile than those that don’t.

Many people have many opinions
about what you should major in, and
most of them are probably wrong, this
one included. As I said previously, it
probably doesn’t matter in the long run,
so don’t worry much about what to
major in—worry about finding something
you’re passionate about and something
you love. In Prelude to Mathematics,
W.W. Sawyer wrote: “An activity engaged
in purely for its consequences, without
any pleasure for the activity itself, is
likely to be poorly executed” (16 – 17).
If possible, find something to major in
which you enjoy for itself, or which you
can learn to enjoy for itself.

How do I get an A?
One thing you shouldn’t do is say that
all you want to do is get an A: as stated
above, most professors are completely
and utterly invested in their subject.
When you ask how you get an “A,”
they’re likely to be annoyed because
you’re indicating you don’t care about
learning, which is the best way to earn
an A. Instead, you care about the badge.
It’s like asking how you become poet
laureate, as Ebenezer Cooke does in The
Sot-Weed Factor: the question itself is
wrong, because the right question is how
you become a poet, and the laureateship
will follow (Barth 73). If you ask profes-
sors how to get an A, they’ll also tell you
what you already know: work hard at
the class, show up, read the book(s) and
related materials, form study groups, and
the like.

Another grad student in English said
that she’s almost relieved when students
say they just want to get an A, because it
means she doesn’t have to worry about
them or their grade. Paradoxically, when
you say that you just want an A/B/C, you
lower the probability that you’ll actually
get it.

To get that A/B/C, demonstrate that
you’re interested in the material, do all
the reading, and show up to class every
day. Go to the professor’s office hours to
ask intelligent questions—like whether
you’re on the right track regarding a
paper—or what you could’ve done better
on a quiz. By doing so, you’re showing
that you’re interested in doing better,
rather than saying you are. Novelists have
a saying: “show, don’t tell,” which means
that you should show what a character
is thinking and why they are acting in
a certain way rather than telling the
reader. Readers are smart and will figure
it out for themselves. Your professors will
be able to figure out in a million ways
whether you’re interested in a subject,
and when you ask how you get an A,
they’ll know you aren’t.

Oh, and don’t fear the library—it’s the
big place with the books. If you conduct
research with books, your professors will
be impressed. And learn to use the online
journals. If you don’t know what this
means, ask a librarian, who will assist
you. They very seldom bite and are there
to help, and most schools also conduct
library help sessions at the beginning of
each year. Indeed, almost everyone at

“
”

Try to learn something about everything
and everything about something.
 — Thomas Huxley

 9

a university is there to help you learn;
you just need to a) want to learn and b)
ask. Many students never get to point a,
and of those who do, more should get to
point b.

Reflection
I wrote this now because I’m old enough
to, I think, have some perspective on
universities while still being young
enough to remember the shock and
bewilderment of the first semester of my
freshmen year. This document reflects
my academic training and preoccupation:
it contains allusions and references to
other work and is structured in such a
way that you can skip easily from section
to section. As a trade-off for its detail,
however, weaker or uninterested students
might lose interest in it before they come
to the end, which is unfortunate because
it describes the world they will largely be
inhabiting for somewhere between one
week and six if not more years.

Anecdotes from my own academic
experience are included because
discovering facts about the incentives
in university life didn’t occur all at once
for me. No one gave me a document like
this: I was expected to either already
know or understand most of what you
just read, and as a result, I spent years
drawing a mental map of universities.
The professors and graduate students
had spent long enough in the university
atmosphere that they knew how univer-
sities were structured with the thorough-
ness you know your native language. I’ve

written this in the hope that it will better
explain to you (in the plural sense) what
I’ve explained to many individuals.

My natural impetus is to remember
when I have to repeat the same things
over and over again, consider how I
might convey all the things I’ve said to a
large number of people, and then write
those things down so that they might
be read, which is a vastly more efficient
information transfer mechanism than
speech. Nonetheless, I realize that this
document and my explanations are prob-
ably not perfect, so if you’ve read this
to the best of your ability and still have
questions, don’t be afraid to ask them.
One thing universities should inculcate
is inquisitiveness, and I hope I do so as a
teacher and as a person.

When you ask questions, you’re not
only helping yourself discover something:
you’re helping the person you’re asking
better understand the subject at hand
and the nature of what they’re trying to
say. By asking me questions about this
document, you might help me ultimately
improve it, and ultimately help those
who read it in the future. If there is one
cultural advantage universities should
impart more than any other, it is the
ability to ask questions about even the
most fundamental things; confusion and
uncertainty are often the sources of new
knowledge.

As Paul Krugman, who won the 2008
Nobel Prize for Economics, said of his
own research (which led him to the
prize):

The models I wrote down that winter
and spring were incomplete, if one
demanded of them that they specify
exactly who produced what. And yet
they told meaningful stories. It took me a
long time to express clearly what I was
doing, but eventually I realized that one
way to deal with a difficult problem is
to change the question — in particular
by shifting levels.

He also has a section called “question
the question,” in which he recursively
asks himself whether the question he
has asked is the right one. For him, as for
many people, questions are at the center
of the learning universe, and if you learn
to ask them promiscuously and then
seek the answers, whether from me, your
other professors, or from books, you’ll be
better equipped to find the answers, do
well in college, and do well in life. One
challenge is often learning enough to be
able to formulate the right questions, and
with this in mind, I hope you know how
to ask important questions about the
institution you’re attending.

Jake Seliger writes at http://jseliger.com and
http://blog.seliger.com. He’s a graduate student
in English Literature at the University of Arizona
and works as a consultant at Seliger + Associates
Grant Writing [www.seliger.com].

“
”

It took me a long time to express clearly what
I was doing, but eventually I realized that
one way to deal with a difficult problem is to
change the question. — Paul Krugman

Reprinted with permission of the original author.
First appeared in http://hn.my/university/.

http://jseliger.com
http://blog.seliger.com
http://www.seliger.com
http://hn.my/university

http://duckduckgo.com/?t=hackermonthly

 11

Bad Habits that Crush
Your Creativity and
Stifle Your Success

By RANDY KEPPLE and DEAN RIECK

STANDING IN FRONT of this
massive banyan tree on
Maui, I was inspired to
try something new. I had

a vision in my mind’s eye of this tree.
And Maui will definitely vibrate the
imagination of a creative artist. But such
vibrational creativity can be elusive more
often than not.

Artistry and creativity are two words
that work hand in hand. Artistry is
defined as an expression of creative skill.
Creativity is defined as the creation of
artistic work using the imagination or
original ideas.

As a artist, the hardest block to over-
come is the beginning. Finding inspira-
tion. The imagination can get paralyzed
by fear. Trying to create something
original. Something that is authentic,
yet unique enough to be recognized as
original.

I was fortunate to attend a fantastic
workshop on Maui this year as a teacher
and a participant: The Tropical Island
Boot Camp hosted by Randy Jay Braun
on Maui. As someone who primarily
specializes in photographing people, it
was inspiring to push myself to see in
new ways and try my hand at expressing
my vision in a different way.

At the end of the workshop exploring
creative techniques and sharing a life
changing experience with my new family,
it made me think about the process of
creativity, something I actually think
about quite a bit. Why is it so hard to
break through the barriers of creative
block? Could I be doing this to myself?
In my ongoing series on the artistic
process, I’d like to share with you an
article about breaking through developed
habits that crush creativity.

“
”

There are no days in life so memorable as those
which vibrated to some stroke of the imagination.
 — Ralph Waldo Emerson

12 FEATURES

IT’S A MYTH that only highly intelligent people are creative. In
fact, research shows that once you get beyond an I.Q. of about

120, which is just a little above average, intelligence and creativity
are not at all related.

That means that even if you’re no smarter than most people,
you still have the potential to wield amazing creative powers.

So why are so few people highly creative?
Because there are bad habits people learn as they grow up which

crush the creative pathways in the brain. And like all bad habits,
they can be broken if you are willing to work at it.

Here are eight of the very worst bad habits that could be holding
you back every day:

Creating and evaluating at the same time
You can’t drive a car in first gear and reverse at the

same time. Likewise, you shouldn’t try to use different types of
thinking simultaneously. You’ll strip your mental gears.

Creating means generating new ideas, visualizing, looking ahead,
considering the possibilities. Evaluating means analyzing and
judging, picking apart ideas and sorting them into piles of good
and bad, useful and useless.

Most people evaluate too soon and too often, and therefore
create less. In order to create more and better ideas, you must
separate creation from evaluation, coming up with lots of ideas
first, then judging their worth later.

The Expert Syndrome
This a big problem in any field where there are lots of

gurus who tell you their secrets of success. It’s wise to listen, but
unwise to follow without question.

Some of the most successful people in the world did what others
told them would never work. They knew something about their
own idea that even the gurus didn’t know.

Every path to success is different.

 Fear of failure
Most people remember baseball legend Babe Ruth as one

of the great hitters of all time, with a career record of 714 home
runs. However, he was also a master of the strike out. That’s
because he always swung for home runs, not singles or doubles.
Ruth either succeeded big or failed spectacularly.

No one wants to make mistakes or fail. But if you try too hard
to avoid failure, you’ll also avoid success.

It has been said that to increase your success rate, you should
aim to make more mistakes. In other words, take more chances and
you’ll succeed more often. Those few really great ideas you come
up with will more than compensate for all the dumb mistakes
you make.

Photo: Randy Kepple, http://randykepple.com.

http://randykepple.com

 13

 Fear of ambiguity
Most people like things to make sense.

Unfortunately, life is not neat and tidy. There are some things
you’ll never understand and some problems you’ll never solve.

I once had a client who sold a product by direct mail. His order
form broke every rule in the book. But it worked better than any
other order form he had ever tried.

Why? I don’t know.
What I do know is that most great creative ideas emerge from a

swirl of chaos. You must develop a part of yourself that is comfort-
able with mess and confusion. You should become comfortable
with things that work even when you don’t understand why.

 Lack of confidence
A certain level of uncertainty accompanies every creative

act. A small measure of self-doubt is healthy.
However, you must have confidence in your abilities in order

to create and carry out effective solutions to problems.
Much of this comes from experience, but confidence also comes

from familiarity with how creativity works.
When you understand that ideas often seem crazy at first,

that failure is just a learning experience, and that nothing is
impossible, you are on your way to becoming more confident
and more creative.

Instead of dividing the world into the possible and impossible,
divide it into what you’ve tried and what you haven’t tried. There
are a million pathways to success.

 Discouragement from other people
Even if you have a wide-open mind and the ability to see

what’s possible, most people around you will not. They will tell
you in various and often subtle ways to conform, be sensible, and
not rock the boat.

Ignore them. The path to every victory is paved with predictions
of failure. And once you have a big win under your belt, all the
naysayers will silence their noise and see you for what you are — a
creative force to be reckoned with.

 Being overwhelmed by information
It’s called “analysis paralysis,” the condition of spending so

much time thinking about a problem and cramming your brain
with so much information that you lose the ability to act.

It’s been said that information is to the brain what food is to
the body. True enough. But just as you can overeat, you can also
overthink.

Every successful person I’ve ever met has the ability to know
when to stop collecting information and start taking action. Many
subscribe to the “ready – fire – aim” philosophy of business success,
knowing that acting on a good plan today is better than waiting
for a perfect plan tomorrow.

 Being trapped by false limits
Ask a writer for a great idea, and you’ll get a solution that

involves words. Ask a designer for a great idea, and you’ll get a
solution that involves visuals. Ask a blogger for a great idea, and
you’ll get a solution that involves a blog.

We’re all a product of our experience. But the limitations we
have are self-imposed. They are false limits. Only when you force
yourself to look past what you know and feel comfortable with
can you come up with the breakthrough ideas you’re looking for.

Be open to anything. Step outside your comfort zone. Consider
how those in unrelated areas do what they do. What seems impos-
sible today may seem surprisingly doable tomorrow.

If you recognize some of these problems in yourself, don’t fret.
In fact, rejoice! Knowing what’s holding you back is the first step
toward breaking down the barriers of creativity.

“
”

The brain is a wonderful organ. It starts
the moment you get up and doesn’t stop
until you get into the office. — Robert Frost

Reprinted with permission of original author. First appeared in http://www.directcreative.com/bad-habits-that-kill-creativity.html.

http://www.directcreative.com/bad-habits-that-kill-creativity.html

14 FEATURES

I CAN TELL YOU from personal experience that this
article is spot on. It’s important to let go of old

habits of thinking and doing and place yourself in
a situation where you can fail. A moment of seeing
something and deciding that you are going to chal-
lenge yourself to do something different this time.

Creative inspiration came to me standing in front
of this massive banyan tree. The lighting was bright
and dark all at the same time. Randy Jay Braun is
a master at creating HDR (High Dynamic Range)
landscape panoramics of Hawaii. Something that was
foreign to me. I was inspired to try the HDR tech-
nique with this tree. A regular exposure would not be
able to capture the incredible dynamic range in this
scene. This image is the result of 9 separate exposures
combined with HDR Pro in Photoshop CS5.

There is much more to share from the Maui
workshop. I was even inspired to really go crazy and
create an HDR portrait of Randy Jay Braun. So tell
me, which habit do you relate to most from this
article? What techniques have you developed to
break past self-inflicted barriers to creativity?

Randy Kepple is a professional photographer and armchair
philosopher based out of the Pacific Northwest. Randy spe-
cializes in the art of photographing people. Visit the Randy
Kepple Photographs website [http://randykepple.com] for
more information on the art and business of image making
from Randy Kepple.

Dean Rieck is one of America’s top direct marketing copy-
writers [http://www.directcreative.com/] and author of
Dazzle Your Clients and Double Your Income
[http://www.procopytips.com/dazzle-your-clients] a free
report for writers.

Commentary
By ED WEISSMAN (edw519)

Fatigue
Self-help guru Tony Robbins starts every one of his

programs covering diet and exercise because he has figured
out that if you don’t feel well, you probably won’t do well.

Of course, I think football coach Vince Lombardi said it
best, “Fatigue makes cowards of us all.”

By CATHERINE DARROW (Dove)

I CLICKED THROUGH AND wound up disappointed. There’s
merit to the suggestions, no doubt, but I was hoping for

something more like this:

1. Consuming stupid entertainment
2. Staying up too late
3. Eating crappy food
4. Not ever getting fresh air
5. Starving your muse
. . .

The self-confidence and intellectual exploration stuff I
already know. If I didn’t, I wouldn’t be creative in the first
place.

(Expanding on 5. Starving your muse...)

I first heard the expression in an article about resolving
writer’s block. While that particular article is specific to role-
playing games, the idea has more general application and I’ve
heard other writers refer to it.

The basic idea is that you can’t always be creating. You’re
never as original as you think you are; your output depends
on your input. If you are a storywriter, you need to remem-
ber to read for pleasure. Seek new experiences, consume the
things that are innovative or interesting or just plain cool
in your field of choice. If you keep your muse well-fed on
interesting ideas, she’ll be ready to provide you with new
ideas when you need them.

It applies even in a technical context. Even if you are
forced to work in Java or Ada or on a horrific enterprise
application, you should be playing in Haskell during your
free time, reading papers on interesting algorithms, doing
recreational mathematics, that sort of thing. The ideas that
will come to you when facing your work are much improved
by play.

My own creativity-killing bad habit is to starve my muse.
Either to drown myself so completely in the act of creation
that I run out of ideas, or to intellectually consume crap
rather than good stuff.

Reprinted with permission of the original author.
First appeared in http://hn.my/creativity/.

http://www.directcreative.com/index.html
http://www.procopytips.com/dazzle-your-clients
http://hn.my/creativity/

http://cloudkick.com

16 STARTUP

How to Get a Job At a
Kick-Ass Startup

WHEN I FINISHED college,
I was incredibly naive
when it came to finding

a great job. I knew that I wanted to work
at a small startup but didn’t know how
to find that great opportunity. I didn’t
know what questions to ask to evaluate
a company, and I didn’t know how I
should present myself during the recruit-
ment process.

Now I’m a few years out of college
and I have that kick-ass job I was looking
for. My dual experiences of looking for a
job and being on the other side recruiting
programmers have taught me quite a bit
about what it takes to get a great job at a
kick-ass startup.

Here are my tips, from preparing for
the job search process to finding great
startups to applying and getting the job.

Preparing for the job search
 Make a list of the qualities you’re

looking for in a job. Be explicit and
specific.
What are you looking for? Coworkers
that are really smart that you can learn
from? Coworkers that you can socialize
with? Flexibility in how/when you work?
Write these qualities down.

 Prepare questions that will measure a
company against each item in your list.
Stay away from bullshit questions like
“What do you dislike about working
here?” Bullshit questions will get bullshit
answers. Your questions should be specific
and help you gauge the company against
the qualities you wrote on your list.

For example, if I was curious about
how much flexibility employees have to
work at home, I would ask:

How often do you work at home?
What’s the company’s policy on working
from home?
What would happen if you worked from
home for a week?

When I’m interviewing someone, I
like it a lot when the candidate comes
prepared with a list of questions. It shows
the candidate is on top of things.

 Maximize your personal brand.
Evaluating a programmer’s skill is hard.
You need to make it easy for the startup
to see that you’re a superstar. So make
a website and list your side projects
there. Link to your Twitter and GitHub
accounts. Write some blog posts that
showcase your technical ability. You need
to develop a personal brand, and you
need to do so long before you ever send
in a resume. If you don’t already have a
personal website or blog, make one now.

Frankly, developing your personal brand
is something you should be doing on a
regular basis anyway.

Finding interesting startups
 Look at the portfolio companies of

respected investors.
Let investors filter for you! Go to the
website of investors to see their portfolio
companies. Looking at the portfolio of
seed stage investors like Y Combinator is a
great way to find early-stage opportunities.

 Look at the Hacker News threads that
list who’s hiring.
This is better than looking at a job
board. The companies advertising on the
Hacker News threads at least pay atten-
tion to the hacker community.

 Let companies find you. Make a
public presence. Interact on Hacker
News and Twitter. Make or contribute to
open source projects. Blog. Make it easy
to contact you.
Hiring is one of the biggest problems
at startups. Startups use every channel
they can find to source good candidates,
including reaching out directly to inter-
esting people they come across. Most of
the inbound messages you’ll get will be
from uninteresting companies, but every
now and then an interesting opportunity
will come your way.

By NATHAN MARZ

STARTUP

 17

 Forget recruiters.
Recruiters tend to be annoying. Plus, a
ton of high quality startups refuse to deal
with them.

 Invest in your network.
Your network will lead to interesting and
unexpected opportunities. Interact with
people on Twitter. Send cold emails to
founders of companies and ask if they
want to grab coffee. If you’ve made even
a minimal investment into your personal
brand, founders will be ecstatic to meet
you and build a relationship with you.

Evaluating a startup
 The people are much more important

than what the company is working on
currently.
An early-stage startup is likely to change
the direction of the company at some
point. That’s the nature of startups. You
should find what they’re working on inter-
esting, but I find that candidates obsess
way too much with the product and
market of a startup when asking questions.

It’s much more important to focus
on the people in the startup. Are they a
strong team that executes well? Are they
creative? How do they interact with each
other? How are decisions made? Would
you like to work with these people?

 Observe the working conditions.
They reveal a lot about the company’s
philosophies towards its employees.
You’re looking for top notch monitors,
chairs, desks, and computers. Look at
how much space each programmer has
and if the environment is quiet or not.

A top notch work environment is a
good investment for maximizing the
productivity of programmers and keep-
ing them happy and healthy. Anything
less than a top notch work environment
is an indication that the company is
overly focused on keeping costs low and
is cheap with its employees.

 Is the company founded by hackers or
business guys?
Hackers are much more likely to
understand what it takes to make a great
environment for programmers. Not to
say that business guys can’t make a great
work environment, it’s just less likely.

 Are they using pressure tactics on you?
If a company uses pressure tactics on you
to get you to accept an offer, it’s a huge
red flag. Just imagine how the company
will treat you as an employee if they’re
willing to manipulate you into accepting
their offer.

 Do they move the process forward
quickly?
By “moving the process forward quickly,”
I mean answering emails within a few
hours. Moving the process forward
quickly is a sign that the startup is on top
of things.

 Is there hierarchy? Do people give
themselves titles?
This is a big red flag. It’s a sign that the
company is filled with big egos or people
who think startups are smaller versions
of big companies. Startups should be
very flat and anyone in the organization
should be able to talk to the CEO.

 Do your research on the company.
Read the company’s blog. Read the blogs
of the employees.
Startups are a collection of personalities.
Do your research and try to figure out if
you’d like to work with the people there.

Getting the job
 Don’t describe yourself. Instead,

describe amazing things you’ve done.
The biggest mistake you can make in
a cover letter is using an empty phrase
like “motivated self-starter.” Believe it or
not, everyone describes themselves as an
amazing person. Even if you’re amazing,
describing yourself as such is meaningless.

“
”

Don’t describe yourself.
Instead, describe amazing
things you’ve done.

Commentary
By SAHIL LAVINGIA (sahillavingia)

CAUTION: ONLY WORKS if you’re a kick-
ass programmer.

Strive to be that and getting a job
becomes magnitudes easier. Sweet, success-
ful side projects are the staple of a kick-ass
guy. Glad I got some under my belt.

By MAHMUD MOHAMED (mahmud)

NOT JUST KICK-ASS programmers. I
have consulted with a lady who

ran a small, posh web-shop; she met me
at the door and hushed me to tip-toe
past a bunch of interns fiddling with
photoshop and drupal. Those kids got
more respect working for school credit,
doing nothing but theming, than most
of us get in higher positions with other
companies. She also made it a point to
“take them to the ATM” on Fridays as
well.

OTOH, if you have never seen
competent interns with a modicum of
responsibility, well, they’re a sight to
behold. They subcontract for bigger
shops and get no credit for their work,
but their stuff looks like shrink-wrapped
orgasms dipped in pixel-perfect honey.
Really awesome crew.

18 STARTUP

Instead, you need to describe amazing things you’ve done.
Focus on problems you’ve solved as opposed to solutions you’ve
built. You have to be concise and to the point as people have short
attention spans when reading cover letters.

 Links, links, links, links, links.
You’ll only get the job if the company is convinced that you’ll
build amazing things for them. The best way to persuade them of
this is to show them amazing things you’ve built in the past! Links
are gold. Link to your open source and side projects.

Remember, it’s hard for a startup to evaluate the skill of a
programmer. Technical questions can be very inaccurate and incor-
rectly filter good programmers. So you need to make it easy for the
startup to see that you’re a superstar, and the best way to do this is
to link them to amazing things you’ve built.

If you don’t have any links to show off, you need to remedy
that.

 Be yourself.
Stay away from formal, cookie-cutter cover letters. Do not start off
a cover letter with something like “Dear Hiring Manager.” Formal
cover letters make you sound like a drone, and startups don’t hire
drones. They hire creative people who get things done.

 Examples are your friends in tech questions.
When you’re stuck on a tech question, work through a few
examples. More often than not this will guide you much closer
to the solution. I’m shocked at how many people don’t use this
technique.

 For tech questions, get a correct answer first. Then figure out
how to make it faster or simpler.
A mistake I see a lot of people make is try to get a perfect answer
on the first try. A lot of times they’re searching for an O(1) solu-
tion where none exists. It’s better to just get something working
first, and then figure out how to optimize or refactor it.

When you get an offer
You have all the leverage when you get an offer. If a kick-ass
startup gives you an offer, they consider you to be a rare indi-
vidual. Negotiate with that in mind.

The best company will give you time to make the best decision
for yourself, because they are confident they are a great place to
work. They will be aggressive in selling you on the opportunity,
but they won’t pressure you.

When you accept an offer from that kick-ass startup, congratu-
lations. Get ready for a fun ride.

Nathan Marz is a programmer and blogger living in San Francisco. Nathan is the
Lead Engineer at BackType and the author of Cascalog, an open-source project
for processing data on Hadoop using the Clojure programming language.

Reprinted with permission of the original author.
First appeared in http://hn.my/startupjob/.

http://hn.my/startupjob/

 19

You Negotiate Commodities,
But You Seize Opportunities

By STEVE BLANK

IT TOOK LOSING something impor-
tant to understand the difference
between a commodity and an

opportunity. Along the way I also learned
yet another way entrepreneurs see the
world differently from their investors.

Advisory Board
In the early days of Rocket Science I
realized that we needed high-level advice
on multiple fronts; technology, game
development, video game distribution,
etc. At one of our initial board meetings
we had agreed on the general principle
of an advisory board and put together
an overall stock budget to compensate
advisors.

One of the first potential advisors I
reached out to was someone who 10
years earlier tried to hire me as the VP
of Marketing of his new division at Sun
Microsystems. For lots of reasons that
never worked out, but I liked him so
much that the following year I tried to
hire him as the VP of Engineering of
Ardent. (He was having too much fun at
Sun and turned me down.)

Now a decade later, we caught up
over lunch and I found that he was in
the middle of taking a new job inside

his company and had some time on his
hands. Chatting with him just reinforced
my earlier opinion that he was an
extraordinary combination of sheer tech-
nical talent, great business and common
sense and a level-headed decision maker.
I knew he would bring immense value to
me and the company.

Over the next week we exchanged
emails over advisory board stock. I made
him an offer and he countered with
one I thought was still reasonable (but
I didn’t tell him that). The timing was
perfect, my board meeting was in two
days. I could get him the stock he asked
for approved at my board meeting and
then reply.

Death by Spreadsheet
I was so excited to break the news to the
board that I put this new advisor on as
the first agenda item. Even back then the
advisor was a well-known name in Sili-
con Valley. The conversation went great
and everyone agreed he’d teach us a lot
– until one of the board members asked,
“How much stock do we have to give
him?” I threw out the number of shares
I had offered and he had requested,
naively thinking everyone would see

what a no-brainer this was. Instead what
I got was, “Wait a minute. He’s asking
for one-third of our advisory board stock
budget. We had agreed we were going to
get 5 to 6 advisors with that amount of
stock.” At first I wasn’t sure I was hearing
this correctly. The advisor was a world-
class guy, in my judgment he was worth
more than all the other advisors I was
going to get.

Then the other VC’s piled on. “You
need to live on the budget we gave you.
Go back to him and offer him less stock.”

As a first-time CEO getting beaten up
my board I thought this wasn’t a fight
worth having. (I couldn’t have been more
wrong.) So I agreed to go back to my
potential advisor and tell him the best I
could do was my first offer.

I was about to get a few lessons that
have lasted for a long time.

Thanks But No Thanks
Putting my best marketing spin on it, I
sent our potential advisor a message that
essentially said, “I’m not sure I can meet
your request, but here’s another offer.” I
dressed it up as best as I could, making
some of the other terms more palatable,
but it still wasn’t what he asked for.

20 STARTUP

I guess I shouldn’t have been surprised
when he sent me a very polite note back
that said, “Thanks but no thanks. I’m
now getting more involved in my new
job as CTO and I’m too busy to go back
and forth negotiating this.” But I was
crushed. I knew my company had just
lost something important. Something
that I couldn’t just go out and replace.
And I realized I screwed up in at least
two major ways.

You Negotiate Commodities, But
You Seize Opportunities
I hadn’t just lost a potential advisor, I
had lost an irreplaceable opportunity. We
didn’t lose him just over a stock offer.
We lost him because we had treated him
as a commodity – something that was
readily available from multiple sources,
something for which you could negotiate
a price.

In reality what I had in front of
me was an opportunity - a favorable
combination of circumstances that rarely
occurs and if seized upon would have
given me an advantage.

You treat commodities and opportuni-
ties radically differently.

Founding CEO’s are supposed to
search for a repeatable business model,
not just blindly execute their original
plan. That requires you to identify
opportunities and seize the day. Oppor-
tunities are not just about sales, market-
ing or product. In this case it was about a
resource I had in my hands and let go of.

I had acted like an employee, not as a
founder and certainly not as the CEO of
a startup. I had let my board tell me that
the opportunity I saw was a commodity
that could be managed by a spreadsheet.
And I didn’t stand up for what I had
believed in.

It would never happen again.

Lessons Learned
Great entrepreneurs see opportunities
before others do.
Ask, “Is it a commodity or an
opportunity?”
If it’s one-of-a-kind that give you an
advantage, it’s an opportunity.
Grab opportunities with both hands
and don’t let go.
It’s better to beg for forgiveness than
ask for permission.
Carpe Diem

Steve Blank is a retired serial entrepreneur
and the author of Four Steps to the Epiphany
[http://www.amazon.com/Four-Steps-Epiphany-
Steven-Blank/dp/0976470705]. Today he teaches
entrepreneurship to both undergraduate and
graduate students at U.C. Berkeley, Stanford
University and the Columbia University/Berke-
ley Joint Executive MBA program. He also blogs
about entrepreneurship at www.steveblank.com.

OVER AND OVER in business you’ll see people avoid decisions
they don’t deeply understand (e.g. the average VC knows

nothing about gaming, the average PHB knows nothing about
databases, the average techie knows nothing about your market),
and to paper over their ignorance and demonstrate they are in
control and providing value they’ll suggest a change to something
they think they understand (advisor shares, the design of the front
page, your pricing relative to a bowl of ramen).

This rarely works well, particularly when the two decisions
are in fact related. One coping mechanism is being able to ignore
advice (if you haven’t taken their money, you can probably ignore
their advice). Another is having a list of knobs people can twirl
which are off the critical path (salaryman survival skill #1: distract
the boss with rearranging a Gantt chart which can’t kill anyone).

Commentary
By PATRICK MCKENZIE (patio11)

“If it’s one-of-a-kind that give you
an advantage, it’s an opportunity.”

Reprinted with permission of the original author.
First appeared in http://hn.my/opportunities/.

http://www.amazon.com/Four-Steps-Epiphany-Steven-Blank/dp/0976470705
http://www.amazon.com/Four-Steps-Epiphany-Steven-Blank/dp/0976470705
http://hn.my/opportunities/

http://www.catn.com

22 SPECIAL

SPECIAL

Web Design is
95% Typography

By OLIVER REICHENSTEIN

95% OF THE information on the web is
written language. It is only logical to
say that a web designer should get

good training in the main discipline of shaping written
information, in other words: Typography.

Information design is typography
Back in 1969, Emil Ruder, a famous Swiss typographer,
wrote on behalf of his contemporary print materials
what we could easily say about our contemporary
websites:

Today we are inundated with such an immense
flood of printed matter that the value of the
individual work has depreciated, for our harassed
contemporaries simply cannot take everything that
is printed today. It is the typographer’s task to divide
up and organize and interpret this mass of printed
matter in such a way that the reader will have a
good chance of finding what is of interest to him.

With some imagination (replace print with online)
this sounds like the job description of an information
designer. It is the information designer’s task “to divide
up and organize and interpret this mass of printed
matter in such a way that the reader will have a good
chance of finding what is of interest to him.”

Macro-typography (overall text-structure) in con-
trast to micro typography (detailed aspects of type and
spacing) covers many aspects of what we nowadays
call “information design.” So to speak, information
designers nowadays do the job that typographers did
30 years ago:

Typography has one plain duty before it and that
is to convey information in writing. No argument
or consideration can absolve typography from this
duty. A printed work which cannot be read becomes
a product without purpose.

Optimizing typography is optimizing readability,
accessibility, usability(!), overall graphic balance.
Organizing blocks of text and combining them with
pictures, isn’t that what graphic designers, usability
specialists, information architects do? So why is it such
a neglected topic?

Too few fonts? Resolution too low?
The main—usually whiny—argument against typo-
graphical discipline online is that there are so few
fonts available. The second argument is that the screen
resolution is too low, which makes it hard to read
pixelated or anti-aliased fonts in the first place.

The argument that we do not have enough fonts
at our disposition is as good as irrelevant: During the
Italian renaissance the typographer had one font to
work with, and yet this period produced some of the
most beautiful typographical work:

The typographer shouldn’t care too much what kind
of fonts he has at his disposal. Actually the choice of
fonts shouldn’t be his major concern. He should use
what is available at the time and use it the best he can.

Choosing a typeface is not typography
The second argument is not much better. In the begin-
ning of printing the quality of printed letters was way
worse than what we see on the screen nowadays. More
importantly, if handled professionally, screen fonts are
pretty readable.

Commentary
By ELBEN SHIRA (elbenshira)

WHAT'S UP WITH these typophiles?
They walk around thinking they're

the most important member of the club.
The truth is, design is complicated

because it is not (yet) a science. Typography
is important, but it is not king. What we
really need to do is get inside the user's
head and model their thought process. This
is probably impossible, so we should do the
next best thing: learn empathy. Be the user.
Not some one-trick pony.

By LEON PATERNOSTER (leonpaternoster)

THE CONTEXT OF this statement is
important, I think. Back in 2006 web

sites were all about Flash, widgets, fancy
graphics etc. All Oliver was saying is that
these things are unimportant if your text is
unreadable.

And by typography he means a lot more
than whether it’s Georgia or Helvetica.

 23

Information design is not about the use of good type-
faces, it is about the use of good typography. Which is
a huge difference. Anyone can use typefaces, some can
choose good typefaces, but only few master typography.

Treat text as a user interface
Yes, it is annoying how different browsers and platforms
render fonts, and yes, the resolution issue makes it hard
to stay focused for more than five minutes. But, well, it
is part of a web designer’s job to make sure that texts
are easy and nice to read on all major browsers and
platforms. Correct leading, word and letter spacing,
active white space, and dosed use of color help read-
ability. But that’s not quite it. A great web designer
knows how to work with text not just as content, he
treats “text as a user interface.” Have a look at Khoi
Vinh’s website, and you’ll probably understand what
that means:

Slightly more famous examples of unornamental
websites that treat text as interface are: Google, eBay,
craigslist, YouTube, Flickr, Digg, reddit, Delicious. Being
a hard to dispute necessity, treating text as a user
interface is the only parameter for success. Successful
websites manage to create a simple interface AND a
strong identity at the same time. But that’s another
subject.

Oliver Reichenstein (@iA on Twitter) is an interface designer
and founder of Information Architects Inc. He has lived in
Japan since 2003.

Reprinted with permission of the original author.
First appeared in http://hn.my/95typography/.

http://twitter.com/iA
http://hn.my/95typography/

24 SPECIAL

Why Most People Don’t Succeed
— How You Can Be the Exception

By KENT HEALY

THE BURN: PSYCHOLOGICAL burn-
out due to overlooking the
immeasurable sources of drive.

The diagnosis: If you ignored the fact
that your car required an oil change,
what would happen? (No, this is not a
trick question.)

The vehicle’s functions would be
utterly undermined leading to complete
engine failure. However, it’s not just
cars that require tune-ups. Ultimately,
just about everything requires some
extra attention. We wouldn’t wash
a car once and expect it to be clean
forever. We wouldn’t go to the gym for
one workout and expect to be fit for
life. And we certainly wouldn’t ingest
vitamins once and expect our bodies to
be eternally nourished.

This is all common sense.
But why then, are so many people

unpleasantly surprised when they feel
unsatisfied or don’t perform at their full
potential? Not surprisingly, like a car, our
dirty laundry, or our computer, we too,
need tune-ups. But sadly, it seems to be
human nature to wait until something
is not working in our lives before we
change our priorities.

Although this concept does not only
apply to our physical health, I thought I
would share part of a conversation I had
recently with a doctor who confirmed
this idea. “The big problem I see,” he
said, “is the number of people who do
not consistently maintain their health and

ignore the many amber alerts indicating
that their behavior needs to change.”

The doctor continued, “Most patients
look at professional help purely as
a last resort; meaning once the pain
gets unbearable, they finally come in.
Sometimes I can help, but other times,
it’s God’s business at that point. People
are not very proactive when it comes to
their personal lives. I don’t understand
it. What wait? Why risk it?”

On some level, most of us expect our
personal life to de-frag itself, to watch
the wrinkles and flaws simply iron
themselves out. We can easily see how
this strategy has worked out. It certainly
explains the alarming rate of depression,
overload, and chronic health problems in
society today.

Panic is a strategy for fire
stations:
Why then, do we operate our lives like
fire stations; passively waiting for disaster
to strike before taking reactive measures?
Why experience heartache before taking
a step back to consider adapting our
approach? Here is my three-word-
theory: Maintenance is boring. We don’t
even enjoy taking our car in for a tune-
up let alone consistently confronting our
own personal baggage.

It is far more pleasurable to pander to
our immediate desires. There is also a thrill
in creating/doing something new. But the
same cannot be said about maintenance.

Maintenance requires discipline, rou-
tine, and brutal self-honesty – not words
we commonly associate to pleasure. I
will be the first to admit the challenge
of exercising regularly, adhering to core
values, eating healthy, honoring commit-
ments, and engaging in personal reflec-
tion and evaluations. It’s difficult – as are
most things worth doing.

The inordinate reward:
But in every challenge there lies an
antithetical reward, an often unintended
opportunity. Why? One reason is
because the majority opts to avoid
confrontation. Thus the obvious
consequence is fewer people who follow
through with acts of maintenance – the
behavior needed to perform at their
peak. The not so obvious consequence is
the disproportionate reward for the few
who do master maintenance.

The reason is simple: Most people
simply don’t stay in the game long
enough to win it. Instead, they run out
of steam or choose to settle. Therefore,
the abundance that exists is distributed
generously to those who do what the
majority is simply unwilling to do. I am
reminded of a quote from my days in
self-help: “Successful people are success-
ful because they are willing to do what
unsuccessful people are unwilling to do.”
So simple. So true.

Reprinted with permission of the original author.
First appeared in http://hn.my/succeed/.

http://hn.my/succeed/

 25

Life is not a zero sum game. But
stagnation and lazy habits certainly
create vivid impressions of lack and
deprivation that people mistaken for
absolute universal laws. But fortunately,
there is enough [enter your definition of
success] to go around. (I can hear the
pessimist reader cringing: “Enough of
‘what-exactly’ to go around? Happiness?
How do you measure that anyway?” And
there in lies a costly misconception…)

The modern metrics dilemma:
While some outcomes of personal
maintenance are clearly visible (savings
account balance, weight, appearance,
sales figures, etc.), many are not. Some-
times to a fault, we place an exorbitant
amount of attention on measurable
metrics assuming what is most important
can be measured.

In our dogged pursuit of what is
quantifiable we often neglect what is
not. Maintenance loses much of its
glory due the numerous immeasurable,
overlooked, and undervalued rewards.

Perhaps, Einstein said it best, “Not
everything that matters can be measured
and not everything that can be measured
matters.” Without concocting a rigor-
ous study (which most of us will never
organize for ourselves), it is difficult to
measure personal satisfaction, peace of
mind, elation, engagement, etc.

“Big deal. Gimme results!” the pes-
simist exclaims.

Blinded by outcome, we are quick
to overlook the root causes of such
outcomes. It’s often the immeasurable

factors that fuel the behavior required
to produce the measurable results. An
absence of satisfaction and passion begets
results only in the interim. If success is a
combination of process, experience, and
outcome then sustenance is imperative.
But caught up in the modern allure of
immediate, quantifiable results, we burn
out frequently, quit regularly, and rarely
experience notable success.

Long-distance goals cannot be
achieved without maintenance (ask any
marathon runner). Daily disciplines
enable long-term performance and
uncommon results. In fact, the very
nature of the word “maintenance”
embodies a consistent commitment to
the long-term… otherwise each action is
merely anomalous – and like I’ve always
said, the only difference between “luck”
and “skill” is consistency.

Insightful Questions & Actions:
Actions:

Get honest about your current situa-
tion. Rate the following areas of your
life on a scale of 1-10: Physical Health,
grades, job performance, personal
happiness, relationships, financial
situation, etc.
 Then follow up with the question:
What would it take to make this area
a 10?
Set reminders in your calendar/on
your phone to increase consistent
follow through.
Form an accountability partnership
with a friend or small group to review
and critique progress and process.

Identify the times you performed at
your best and deconstruct the routine
that enabled the result. What form
of daily maintenance aided your
performance?
Schedule time with yourself away
from distractions. (If you can set an
appointment with the auto mechanic
or your hairdresser, you can schedule
an appointment with yourself.)
During this time you may wish to
address the questions below or create
your own. Record your thoughts for
future reference.

Questions:
What top performer/s (athlete,
business magnate, etc.) do I admire
most? What routines might they use
to maintain their edge?
What are the consequences of neglect-
ing maintenance?
What unforeseen rewards might stem
from a commitment to consistent
follow through in the area of ___
[your desired activity]?
How have I formed new habits in the
past? What process works best for
me?
What new routines could I instigate
that may ease the process of maintain-
ing constructive behavior?
At what time should I schedule my
next personal tune-up?

Kent Healy is an author, speaker, columnist, real
estate investor, entrepreneur, a student of life,
graphic designer, and an advocate of applied
sciences in the realm of personal lifestyle. He
blogs at http://dontgetburnedblog.com/.

Just a few things I don’t think are boring:
sinking my teeth into some fresh
sweet melon
a late afternoon jog in the woods
hanging out with friends and family
an ice cold beer at the football game
an all-you-can-eat salad bar
curling up with SO (even if it is a
chick flick)

 a hot shower, freshly brushed teeth,
and a warm bathrobe
a happy dance after a new program
runs the first time
If you think of the things you need

to do to live well as “maintenance,” they
would seem boring, and you won’t want
to do them.

But if you think of them as “living,”
you’ll embrace them and never give the
concept of “maintenance” a second thought.

Commentary
By ED WEISSMAN (edw519)

“MAINTENANCE IS BORING.”

http://dontgetburnedblog.com/

26 PROGRAMMING

PROGRAMMING

How to Set Up Your Own
Private Git Server on Linux

ONE OF THE things I’m attempting to achieve this
year is simplifying my life somewhat. Given how
much of my life revolves around technology,

a large part of this will be consolidating the various services
I consume (and often pay for). The mention of payment is
important, as up until now I’ve been paying the awesome
GitHub for their basic plan.

I don’t have many private repositories with them, and all
of them are strictly private code (this blog: Amanda’s blog
templates and styles; and some other bits) which don’t require
collaborators. For this reason, paying money to GitHub (awe-
some though they may be) seemed wasteful.

So I decided to move all my private repositories to my own
server. This is how I did it.

Set up the server
These instructions were performed on a Debian 5 “Lenny”
box, so assume them to be the same on Ubuntu. Substitute
the package installation commands as required if you’re on an
alternative distribution.

First, if you haven’t done so already, add your public key to
the server:

ssh myuser@server.com mkdir .ssh

scp ~/.ssh/id_rsa.pub myuser@server.com:.ssh/

authorized_keys

Now we can SSH into our server and install Git:

ssh myserver.com

sudo apt-get update

sudo apt-get install git-core

…and that’s it.

Adding a user
If you intend to share these repositories with any collaborators,
at this point you’ll either:

Want to install something like Gitosis (outside the scope of
this article); or
Add a “shared” Git user.

We’ll be following the latter option. So, add a Git user:

sudo adduser git

Now you’ll need to add your public key to the Git user’s
authorized_keys:

sudo mkdir /home/git/.ssh

sudo cp ~/.ssh/authorized_keys /home/git/.ssh/

sudo chown -R git:git /home/git/.ssh

sudo chmod 700 !$

sudo chmod 600 /home/git/.ssh/*

Now you’ll be able to authenticate as the Git user via SSH.
Test it out:

ssh git@myserver.com

Add your repositories
If you’re to not share the repositories, and just want to access
them for yourself (like I did, since I have no collaborators),
you’d do the following as yourself. Otherwise, do it as the Git
user we added above.

If using the Git user, log in as them:

login git

By BRADLEY WRIGHT

Commentary
By MICHAEL F BOOTH (mechanical_fish)

“I DECIDED TO move all my private reposito-
ries to my own server.”

When you do this, make sure that the
server has continuous backups. Also, make
sure you still have an offsite backup.

Once you figure out what these things
are worth, you may realize that you should
probably just keep paying GitHub.

By PHILIP HOFSTETTER (pilif)

THE BACKUPS AREN’T as important as
each git repo is a full blown clone.

If your local repo is destroyed, you still
have the server copy. If your server blows
up, you still have the local copy.

There are many other good reasons for
a service like GitHub, like the excellent
collaboration features, the really good
repository and history browser or the
good bugtracker.

If you don’t need those (small team,
working alone) but are concerned about
uploading your intellectual property to a
third party server in a potentially foreign
country (depending on your location),
then quickly setting up Gitosis / Gitweb
/ Redmine might be enough for you.

In my personal case, I would really
love to use GitHub even for my small
team, but I’m too concerned about
the legal issues to go ahead with that
(and the local installation is plain too
expensive).

 27

Now we can create our repositories:

mkdir myrepo.git

cd !$

git --bare init

The last steps creates an empty repository. We’re assuming you
already have a local repository that you just want to push to a remote
server.

Repeat that last step for each remote Git repository you want.
Log out of the server as the remaining operations will be completed

on your local machine.

Configure your development machine
First, we add the remotes to your local machine. If you’ve already
defined a remote named origin (for example, if you followed GitHub’s
instructions), you’ll want to delete the remote first:

git remote rm origin

Now we can add our new remote:

git remote add origin git@server.com:myrepo.git

git push origin master

And that’s it. You’ll probably also want to make sure you add a
default merge and remote:

merge refs/heads/master

And that’s all. Now you can push/pull from origin as much as you
like, and it’ll be stored remotely on your own myserver.com remote
repository.

Bonus points: Make SSH more secure
This has been extensively covered by the excellent Slicehost tutorial,
but just to recap:
Edit the SSH config:

And change the following values:

Port 2207

...

PermitRootLogin no

...

AllowUsers myuser git

...

PasswordAuthentication no

Where 2207 is a port of your choosing. Make sure to add this to
your Git remote:

git remote add origin ssh://git@myserver.com:2207/~/myrepo.git

Based in London, Brad is a front end developer and Python hacker at social betting
startup Smarkets.

Reprinted with permission of the original author. First appeared in http://hn.my/privategit/.

http://hn.my/privategit/

28 PROGRAMMING

What’s Wrong With 2006
Programming?

REDIS 2.0 INTRODUCED a new
feature called Virtual Memory.
The idea is that some applica-

tions using Redis may not access the
whole dataset with the same frequency.
In extreme cases only a little percentage
of hot spot data is used often, while
the rest is mostly idle and touched very
rarely. For instance imagine a Redis
instance holding User objects: the most
active users will hit this subset of records
continuously, while a large percentage
of users will access the site a few times a
month, and another large subset of users
completely forgot about this web service
at all.

Since Redis is memory backed the
idea was to transfer rarely accessed data
on disk, to reload swapped data when
needed (that is when a client will try to
access it). The actual implementation of
Redis Virtual Memory is completely done
in user space: we try to approximate an
LRU algorithm, encode data that should
be swapped, write it on disk, and reload
if needed, decode, managing pages in the
swap file, and so forth. It’s a non trivial
piece of code but it is working well.

Still almost every week I receive a
mail, a blog message, a tweet, or I happen
to read an article pointing me to this

article written by the Varnish guy (edit:
that is, the well known developer Poul-
Henning Kamp). The article will tell you
how silly is to implement your caching
layer on top of the one already provided
by the operating system. The idea is
that you should just write things into an
mmap()ed file or alike, and let the OS
swap/load things for you.

If you know Redis you already know
that we actually try hard to use the oper-
ating system smartness to do complex
things in a simpler ways. For instance our
persistence engine is completely based
on fork() copy-on-write semantics of
modern kernels, but for Redis Virtual
Memory using the OS is not a good solu-
tion, and it’s time to explain in details
why it is not.

OS paging is blocking as hell
The first huge problem with this
approach is how badly blocking it is.
What happens is that when you try
accessing a memory page that is swap
on disk the CPU will raise an exception,
asking the kernel to retrieve the page
from the swap file and transfer it in a
physical memory page. In the meantime
the process is completely blocked.

What this means? That if we have two
clients, C1 and C2, and...

C1 is trying to access a key that
was stored into a page that the OS
transferred on disk.
C2 is trying to access a key that is fully
in memory. A recently used one.
C1 sends the query one millisecond
before C2.
Because C1 will touch a page that
is swapped on disk, the process will
be halted, and will wait the disk I/O
needed to bring the page back into
memory.
In the meanwhile everything is
stopped. Even if C2 was going to read
something in memory it gets serialized
and will be served after C1.
One very important goal in Redis VM

(and I guess this should be a primary
goal of every system with a low latency
semantics) is to be able to serve keys that
are in memory as fast as usually. Clients
performing a query against a rarely used
page will instead pay the latency penalty,
without effects for other clients.

This is already a show stopper and just
because of this it should not be worth
continuing with the rest of the article,
but well, while I’m at it it’s a good
exercise I guess.

By SALVATORE SANFILIPPO

 29

The granularity is 4k pages
The kernel is able to swap/load 4k pages.
For a page to be idle from the point of
view of the kernel and its LRU algo-
rithm, what is needed is that there are no
memory accesses in the whole page for
some time.

Redis is an in-memory data struc-
tures server, this means that our values
are often things like lists, hash tables,
balanced trees, and so forth. This data
structures are created incrementally with
commands, often in a long time. For
instance a Redis list may be composed
of 10k elements storing the timeline of a
twitter user, accumulated in the course
of six months. So every element of the
list is a Redis object. Redis objects get
shared, cached, and so forth: there is no
good locality in such a data structure
obviously.

Multiply this for all the keys you have
in memory and try visualizing it in your
mind: These are a lot of small objects.
What happens is simple to explain, every
single page of 4k will have a mix of many
different values. For a page to be swapped
on disk by the OS it requires that all
contained objects should belong to rarely
used keys. In practical terms the OS will
not be able to swap a single page at all
even if just 10% of the dataset is used.

Oh but this is since you are lame!
Store related objects nearby...
The whole Redis semantics of being
single threaded, fast, and very versatile in
the data structures provided, is up to the
fact that we use the good and old data
structures implemented with something
that is able to provide good performance
even with bad locality (compared to a
disk) that is: memory.

Handling these data structures with
very good locality is as hard as imple-
menting these data structures well on
disk. If we could do this, it would be a
much better strategy to use the inverse
design: store everything on disk and use
the kernel disk cache to take the hot spot
in memory. Persistence and VM solved in
a single pass, a no brainer.

Actually in Redis 2.2 we try to
“compact” our data in memory, and in
this way we obtained huge space savings.
Many datasets in Redis 2.2 takes just
20% of the space that was required in
2.0. This is five times more space effi-
cient than before. But where is the trick?
That we can do this only for small lists,
sets, and hashes, where O(N) algorithms
are as fast as O(1) algorithms because of
cache locality.

I think I already showed my point,
but there are more good reasons to
implement paging at application level,
especially in the case of Redis.

Optimal representation on disk
and on memory are very different
Many data structures are designed to be
able to provide specific time complex-
ity performances. For instance an hash
table provides an element lookup time
of O(1) in the average case. In a similar
way a balanced tree is designed so that
it’s possible to update a Redis sorted set
score in O(log(N)).

For this to be possible, there is a need
to waste memory because you have meta
data of many kinds: pointers, allocations
overheads, informations per every node
for augmented data structures (like our
skip list implementation), and so forth.
The representation of data is optimized
for interacting with this data.

On the other side when values
are swapped they are idle. For stor-
age the best representation can be
completely different. For instance a
hash table holding name of fruits in
memory can be represented on disk as a
trivial comma separated string of values:
“orange,apple,....”

The OS has zero knowledge of what’s
written in a page. Instead with applica-
tion level paging we know what we are
doing, and can serialize the data in the
VM in the smarter way. This means from
5 to 10 times less disk I/O compared to
the work performed by the kernel in the
same conditions!

Aging algorithm can’t be
changed
And finally... what value to swap on disk?
What value to take in memory?

Again, the kernel will use a simple
LRU algorithm, where the granularity
is the page. Redis can do much better,
for instance LRU is not always the best
algorithm when accessing data in a
“circular” way, one record after the other
and then again. Also the current Redis
algorithm takes into account the size of
a given value. If it’s small it’s not worth
transferring if the age is exactly like
another value that is bigger, and things
like this. In Redis 2.2 we plan to provide
different swapping algorithms so that
people can pick what works better for a
given dataset.

I think the Varnish article is not bad at
all, the real problem is that an article is
not enough to provide a deep understand-
ing of the specific implementation of a dif-
ferent system. I hope this article provided
a counter-case for the Varnish approach
that can be used when it is sensible to use
it. And the other way around.

Salvatore Sanfilippo aka antirez is an Italian
computer programmer. He is currently the lead
developer of Redis and works for VMware. In the
past he focused on security and programming
languages.

Commentary
By WES FELTER (wmf)

JUST TO AMPLIFY his point, if you
want your program to take page

faults as PHK suggests, it has to be
multithreaded. If you choose event-
driven concurrency you can’t afford
to take page faults in mmap() or
read(). When you make the threads
vs. events decision you’re implicitly
making a bunch of related decisions
about I/O and scheduling as well; a
hybrid approach (like using events
and mmap) won’t work well.

Reprinted with permission of the original author. First appeared in http://hn.my/2006programming/.

http://hn.my/2006programming/

30 PROGRAMMING

Bouncing Beholder

My winning JS1K entry — [http://marijnhaverbeke.nl/js1k/]
a JavaScript platform game that fits in 1024 bytes.

This is the code:

c=document.body.children[0];h=t=150;L=w=c.

width=800;u=D=50;H=[];R=Math.random;for($ in C=c.

getContext('2d'))C[$[J=X=Y=0]+($[6]||'')]=C[$];setInte

rval("if(D)for(x=405,i=y=I=0;i<1e4;)L=\H[i++]=i<9|L<w

A(6,u,y-9,11);A(5,M=u+X*.7,Q=y-9+Y/5,8);A(8,M,Q,5);f

Why?
I’ve heard people wax poetic about programming old, limited-
memory machines. I wouldn’t know anything about those — at
the time they were current, I was writing rudimentary number-
guessing games in BASIC. But doing this competition entry
gave me a taste of what they might be talking about.

In typical 21st-century programming, the machine limits one
has to deal with are wide and fuzzy. Program size is rarely an
issue, so like painters working on an infinite canvas, we often
don’t know when to stop. When a program has to fit in a tightly
limited space, the experience is different. You program by

carefully refining every single expression, chipping away at your
code until it reflects your vision as well as it can.

In terms of productivity, this is an awful way of coding. But
it certainly is fun. Not to mention that it gives me an excuse to
use every kind of weird hack I can think of.

How?
For a start, of course, there are the tiny local tricks that save a
few bytes here and there, which adds up to at least a hundred
bytes on the whole program. |0 truncates, or can replace
if (sometimes), can replace (sometimes), you can reuse
initializers (J=X=Y=0), a with statement can shorten object
access, etc.

Compression algorithms, such as Google’s Closure Compiler
and UglifyJS, and various eval/replace hacks suggested for
the JS1K contest, don’t really do much on properly hand-
compressed code. In fact, they all ended up making the code
bigger...

The tiny size required me to design the program in a
“holistic,” highly un-modular way, meaning every single aspect
of the program could influence every other one. There was an
issue causing the clouds to be drawn incorrectly for negative X
coordinates. To work around this would have required quite a
few extra characters (I was using x|0 where I actually needed

). Instead, I made the playing field start at 400 and
put empty space at the start to prevent the player from seeing
any negative X coordinates. Problem solved.

Mechanized Abbreviation
The coolest hack in this program is probably the mechanized
abbreviation of the canvas context methods. Method names like

, are nice and explicit,
but those two taken together already eat 3.5% of the bytes
available — when only referenced once! I needed to use them,
but I wanted to avoid spelling them.

By MARIJN HAVERBEKE

 31

Turns out I can get away with that. At the start of the
program there is a for/in loop that goes over the properties
of the canvas context, and adds a new property, with a shorter
name, for each of them. It took some experimenting to find
an abbreviation algorithm that doesn’t have clashes on any of
the methods we use — I ended up using the first letter of the
name plus the the 7th letter, if any. So lineTo becomes l, and

 becomes . I can then use these short names
to actually access the methods — without ever having written
out the full name.

This does, of course, not work for properties like .
You can copy those, but the copies won’t do anything.

Functions As a Scarce Resource
Functions are hugely useful for factoring out pieces of shared
functionality, and thus shortening code. Unfortunately, the
word “function” is 8 characters, and the minimal overhead for a
function definition something like 14 bytes, 20 if you actually
want to return something.

Thus, a function has to be really, really useful before it pays
off to define it.

The program started off with five functions, which has since
been reduced to two. In one of these places, I have little choice
— window.onkeydown only takes function values. I’m using the
same function for onkeydown and onkeyup, which turned out to
be more efficient anyway. The checks for which key is pressed
or released are also repeated in both. To check whether an
event is a keydown or a keyup, I used e.type[5], where e is the
event object. If this is a keyup event, the type of the event does
not have a 6th character, so that this evaluates to a falsy value.

The other function used is the one called A. This rolls three
pieces of functionality into one (saving me two function key-
words). It takes a as its first argument, and an optional
x, y, and radius after that. If the optional arguments are pro-
vided, it starts by drawing a circle. Then it sets the of
the canvas context to the provided style, or — if the style is not
a gradient — it uses it as an index into a string of colors. After
this, it calls (the abbreviated versions of) and beginPath()
on the canvas context. Note that, because a canvas context is
specified to start with an empty path, it is safe to start drawing
before the first call to beginPath, and thus beginPath, though it
is usually done before one starts drawing, can be made part of
our “after-drawing routine.”

This function is used in three different ways. Obviously, it is
used to draw colored circles (the game contains a lot of circles).
But code that has drawn a path in some other way (the ground
blocks) can also call it to just assign a and fill the
path. Finally, code that just wants to set the can use it
for that — as long as no path is in the process of being drawn.
Now that’s reusability. The program uses this function in ten
different places.

The World
The game world is divided (along the x axis) into 50-pixel-wide
units. When starting a game (or at game-over time), an array is
initialized containing a randomized height-map. The gaps work
mostly the same as the other positions, their height is just off
the bottom of the canvas. The generating algorithm takes some
care to not introduce gaps of more than one unit, since those
would be unjumpable. This heightmap array (plus the player’s
position, speed, and a time counter for animation) represents
pretty much the whole game state.

So how does the game know where the coins are, if it is not
explicitly keeping state for them? Every block whose random
height is divisible by 6 gets a coin, and when the player collects
the coin, .1 is subtracted from the height, and the coin no
longer shows up.

Apart from block height, block’s x-coordinates can also
be used to add distinctive features. Every third block gets a
decorative tree, if it is visible. If it is invisible, it gets a (styl-
ized) Piranha Plant. Every seventh block is purple/sinky. This
produces a relatively nice random world, without requiring
involved data structures or lots of code.

Physics
The “physics” in this game are coded in an entirely ad-hoc and
special-cased way. Player movement needs to be restricted in
two ways — you can’t walk through the sides of blocks, and
you shouldn’t fall through the top. The first is handled by
simply cancelling horizontal movement whenever it would take
the player more than nine (the higher 1-byte number...) pixels
below the ground, and the second is simply a direct check
against the height array. If the player is below or on the ground,
his y position is set to ground level, and his vertical speed is set
to zero, unless the up arrow is pressed, in which case it is set to
minus ten (minus is up). In the other case, where the player is
above the ground, one is added to the vertical speed, creating a
gravity effect.

Collision detection is also handled case-by-case. The most
involved case is collision with the plants, which takes some
20 characters. The “is the player near the middle of this block”
part of the test is reused to determine whether a coin is being
picked up.

32 PROGRAMMING

Code
Below follows a somewhat expanded, formatted, lightly
commented version of the code. The interval code was made a
function (it is a string the compressed version) to conveniently
allow newlines inside of it.

canvas=document.body.children[0];

screen_height=time=150;

last_height=screen_width=canvas.width=800;

unit=dead=50;

heights=[];

// The abbreviation loop, initializing the variable needed

by the key-handlers on the side.

for(prop in context=canvas.getContext('2d'))

xt[prop];

setInterval(function(){

 if(dead)

 // initialize the player position, score, and heightmap

 for(x=405,i=y=score=0;i<1e4;)

 // (screen_width is reused as the off-the-screen

 // height of gap blocks)

 // a block can be a gap if its index is <9, or if the

 // last block was no gap. after this test, a random

 // actual gap is generated, or regular random height.

 last_height=heights[i++]=

 // silly formula to create parabolic movement based on

 // the time

 pos/8+20;

 y+=speed_y;

 // only move horizontally if that doesn't take us deep

 // underground (x/unit|0 fetches the index of the block

 // below an x coordinate)

 // under it

 ground=heights[player_index=x/unit|0];

 // ground or not

// we'll need the context a lot

 with(context){

 A=function(color,x,y,radius){

 // a is the abbreviated form of arc

 // a set of colors

 f(); ba();

 };

 // now loop over visible, or close to visible, blocks,

 // and draw them and their clouds

 for(dead=i=0;i<21;i++){

 // this loop is reused for drawing the background/

 // rainbow, which consists of seven concentric

 // circles. there's no good reason why interleaving

 // clearing the screen with drawing the screen's

 // contents should work, but in this case it does

 // we start drawing 5 units in front of the player

 // clouds)

 height_index=player_index-5+i;

 scroll_pos=x-height_index*unit;

 // scroll position for collision detection.

 // this variable indicates whether the player is in

 // the 'middle' of the current block

 // ta for translate. move to start of block to make

 // other drawing commands shorter

 ta(unit-scroll_pos,0);

 // gradient

 gradient=cL(0,height=heights[height_index],0,height+9);

 // if height is divisible by 6, there's a coin here.

 // draw it. if the player is standing on the ground,

 // in the middle of this unit, pick up the coin

 33

 // abbreviate, since we need this twice (and use it

 // again to test whether a value passed to A is a

 // gradient)

 // this implements sinky terrain---when the index is

 // divisible by 7, we use a different color,

 // and do the sinking if the player is standing here

 // brown earth color for the bottom of the gradient

 // this draws the clouds

 // draw deco trees or piranha plant (height==screen_

 // width for gap blocks), check for collision with

 // plant

 fc(24,plant_pos,2,screen_height),

 // undo block-local translation

 ta(scroll_pos-unit,0)

 }

 // position of the iris

 A(6,unit,y-9,11);

 A(5,iris_x=unit+speed_x*.7,iris_y=y-9+speed_y/5,8);

 A(8,iris_x,iris_y,5);

 // color is already dark from eye pupil, draw score

 // with this color

 fx(score+'¢',5,15)

 }

 // check whether the player has fallen off the screen

},unit);

onkeydown=onkeyup=function(e){

 // if this is a keydown event, new_val gets the value 4,

 // otherwise 0

 e=e.keyCode;

 // up was released

 // similar for speed_x, inverting new_val if left is

 // pressed

}

Marijn Haverbeke is a programming language enthusiast and polyglot.
He’s worked his way from trivial BASIC games on the Commodore, through
a C++ phase, to the present where he mostly hacks on database sys-
tems and web APIs in dynamic languages. He’s about to publish his first
book — Eloquent JavaScript: A Modern Introduction To Programming
[http://eloquentjavascript.net].

Reprinted with permission of the original author.
First appeared in http://hn.my/js1k/.

http://eloquentjavascript.net
http://hn.my/js1k/

34 PROGRAMMING

FIRST OFF, IF you haven’t tried Dropbox, you should
check it out; sync all of your computers via the
Dropbox servers, their basic free service gives
you 2Gigs of space and works cross-platform

(Windows, Mac and Linux). I use it daily at home and work,
just having a live backup of my main data for my work system,
my home netbook, and any other computer I need to login to is
a huge win. Plus, I have various ‘shared’ folders that distribute
certain data to specific users and co-workers to whom I’ve
granted access. This means work details can be updated and
automatically distributed to the folks I want to review or use
the data immediately. I recommend everyone try it out to see
how useful it is, as it’s turned into a game changer for me. So
when Dropbox made headlines that they were supporting
Linux, and releasing the client as open source, it got hopes up
that users would be able to run their own, private Dropbox

systems. In the end, it was only the client that was open source;
the server would remain proprietary. While slightly disappoint-
ing, this is fine because it’s a company trying to make money.
I don’t fault Dropbox for this, it’s just that a free, portable
service like that would be a killer app.

Meanwhile at work I’m working on a solution to sync large
data clusters online and the project manager described it as
the need for ‘Dropbox on steroids’. Before I had thought it
was more complicated, but after thinking about it, I realized
he was right. Look, Dropbox is a great idea, but it obviously is
just a melding of something similar to rsync, with something
watching for file changes to initiate the sync, along with an
easy- to-use front end. From there I just started looking at ways
this could work, and there are more than a few; here’s how I
made it work.

Build an Open Source
Dropbox Clone

By PHIL CRYER

 35

Linux now includes inotify, which is a kernel subsystem that
provides file system event notification. From there all it took
was to find an application that listens to inotify and then kicks
off a command when it hears of a change. I tried a few different
applications like inocron, inosync and iwatch, before going with
lsyncd. While all of them could work, lsyncd seemed to be the
most mature, simple to configure and fast. Lsyncd uses inotify
to watch a specified directory for any new, edited or removed
files or directories, and then calls rsync to take care of business.
So let’s get started in making our own open source Dropbox
clone with Debian GNU/Linux (Squeeze)

Ladies and gentlemen, start your engines servers!
First, you need two servers: one being the server and the other
the client. (You could do this on one host if you wanted to see
how it works for a proof of concept).

Install OpenSSH client and server
First you’ll need to install OpenSSH on both the Client and
Server. On the remote system:

apt-get install openssh-server

On the local box it’s more than likely that the client is
installed, but just in case:

apt-get install openssh-client

Configure SSH for Password-less Logins
You’ll need to configure SSH to use password-less logins
between the two hosts you want to use, as this is how rsync will
pass the files back and forth. I’ve previously written a HOWTO
on this topic, so we’ll crib from there.

First, generate an SSH public key:

ssh-keygen -N '' -f ~/.ssh/id_dsa

You shouldn’t have a key stored there yet, but if you do it
will prompt you and ask if you want to overwrite it; make sure
you overwrite it.

Enter passphrase (empty for no passphrase):

<Enter>

Enter same passphrase again:

<Enter>

We’re not using pass phrases so the logins between the
systems can be automated. This should only be done for scripts
or applications that need this functionality, it is not for logging
into servers lazily, and it should never be done as root!

Now, replace REMOTE_SERVER with the hostname or IP
that you’re going to call when you SSH to it, and copy the key
over to the server:

Note that if you have an older system you may not have
ssh-copy-id installed, so you can do it the old way by piping the
output of your key over SSH (which is good to know how to
do anyway):

authorized_keys2'

Lastly, we need to set the permissions on the key file to a
sane level:

Now, give it a go to see if it worked:

You should be dropped to a prompt on the remote server
without being prompted for a password. If not you may need
to redo your .ssh directory, so on both servers:

mv ~/.ssh ~/.ssh-old

and goto 10

Install rsync and lsyncd
Next up is to install rsync and lsyncd. rsync is a basic command
and should already be installed (you don’t need to run it on the
server, just the client on both systems), but to make sure you
have it, and install lsyncd at the same time:

apt-get install rsync lsyncd

Note that before Squeeze there was no official Debian pack-
age, but it’s simple to build from source and install if you need
to. First off, if you don’t have build essentials you’ll need them,
as well as libxml2-dev to build the lsyncd source. Installing
those is as simple as:

apt-get install libxml2-dev build-essential

Now we’ll download the lsyncd code, uncompress it and
build it:

make; make install

This install does not install the configuration file, so we’ll do
that manually now:

cp lsyncd.conf.xml /etc/

36 PROGRAMMING

Configure lsyncd
Next we need to edit the configuration file now located in /
etc The file is a simple, well- documented XML file, and mine
ended up like so – just be sure to change the source and target
hosts and paths to work with your systems:

 <settings>

 <callopts>

 <option text="--delete"/>

 <source />

 <destination />

 </callopts>

 </settings>

 <directory>

 <source path="/var/www/sync_test"/>

 <target path="desthost::module/"/> </directory>

</lsyncd>

Launch lsyncd in debug for testing
We’re ready to give it a go, may as well run it in debug for fun
and to learn how lsyncd does what it does:

lsyncd --conf /etc/lsyncd.conf.xml --debug

Watch for errors, if none are found, continue.

Add files and watch them sync
Now we just need to copy some files into this directory on the
source box:

/var/www/sync_test

And again, watch for any errors on the screen, if these come
back as a failed connection it’ll be an SSH/key issue;
common, and not too difficult to solve. From here
add some directories and watch how they’re queued
up, and then take a look at them on the remote box:
from this point out it “just works.” Now give it more to
do by adding files and directories, and then the logging for
errors while they sync. As it stands the system uses the source
system as the preferred environment, so any files that change,
or are added or removed, will be processed on the remote
system. This is analogous to how Dropbox works, you
can use multiple sources (your laptop, your desktop,
etc) and their server serves as the remote system,
keeping all the clients in line.

Conclusion
You should now have a basic, working Dropbox style setup for
your own personal use. I had this running and used it to sync
my netbook back to my home server, and then have my work
desktop sync to my home server, so both the netbook and the
desktop would stay in sync without me doing anything besides
putting files in the specified folder. For my week long test I ran
a directory alongside my Dropbox directory just to see how
they both acted, and I didn’t have any failures along the way.

Epilogue
This article is an updated version of one that originally
appeared on http://fak3r.com/ in September 2009 under the
title “HOWTO build your own Dropbox clone.” In the year
since it’s publication I’ve received a great deal of interest in my
idea, and have continuously thought of ways to improve upon
it. In the configuration file for lsyncd it has a line that reads,
“Specify the rsync (or other) binary to call,” and this is the kind
of flexibility I needed. Today I’m utilizing Unison to handle
the syncing for the project, and besides having many attractive
features, it’s the right solution to do true two-way syncing. This
fits the one-to-many Dropbox model better than rsync does.
The project has now been released as open source under the
name lipsync, and is available here: https://github.com/philcryer/
lipsync Take it, try it out and improve upon it. If you have
troubles ping me on my blog, contact me via GitHub or email;
I’m happy to help. Thanks.

Phil Cryer is a husband, father, artist, music lover, hacker, open source
technologist and civil liberties activist. He currently works as a senior sys-
tems engineer currently building a global, distributed, storage network.
He hold a bachelor’s degree in fine arts, and believes that imagination is
more important than knowledge. He can be reached at http://philcryer.com.

Reprinted with permission of the original author.
First appeared in http://hn.my/dbclone/.

http://fak3r.com/
https://github.com/philcryer/lipsync
https://github.com/philcryer/lipsync
http://hn.my/dbclone/

Mobile Notifications for Everything

https://api.notifo.com

notifo

https://api.notifo.com

38 PROGRAMMING

Java Trap, 2010 Edition

AS A MEMBER of the Apache
Software Foundation, my
views on open source tend

to gravitate towards more liberal licenses,
like the Apache License (v2.0), BSD,
or MIT licenses. I strongly believe in
enabling companies to take open source
software and do whatever they wish to
do with it, placing as little restrictions
as feasible under current laws. I believe
that better communities for software
development are enabled by these liberal
licensing situations. Rather than creating
a single power with significantly more
rights, as seen in the “open core” move-
ment, liberal open source development
encourages real, dedicated and sustain-
able contributions, made by companies
with business models other than selling
support and ‘enterprise features’.

I have to be honest — I am not a
huge fan of Java the language — I would
rather write code in Python, Javascript,
C, C++, or heck maybe even PHP, but I
find myself surrounded by Java every-
where. Java and the JVM today are core
to many components we are using to
build Cloudkick, and there are no viable
alternatives.

Today IBM announced they are shift-
ing their focus, and will be developing
on top of the OpenJDK. This comes in

addition to the Oracle lawsuit against
Google over Android. Oracle is good at
big company politics, and at extracting
value — I’m sure they will extract every
penny out of Sun’s husk.

While Sun, now Oracle, has licensed
the OpenJDK itself under the GPL, the
licensing of the TCK has been a problem
for more than 5 years. Other blog posts
go into far more detail about this, and
I encourage you to understand all the
details about the story of the TCK,
Apache, and Sun — but it isn’t what I
want to focus on.

I consider myself an open source advo-
cate, though in a far different manner
than someone like Richard Stallman,
creator of the GNU Project. Richard’s
views and my own don’t often align
around many topics, but the increasing
turmoil in the Java world has changed
some beliefs I have about software
platforms and licensing.

More than 6 years ago, “Free but
Shackled – The Java Trap” was published
by Richard. While I don’t agree with
the moral arguments about the freedom
of software, I now believe that the Java
platform is a trap.

Richard speaks about the Free World,
and many other GNU priorities in this
excerpt, but I believe the core point

is the most important. If your code
depends on a platform, you are at the
mercy of that platforms licensing and
development:

This problem can occur in any kind of
software, in any language. For instance,
a free program that only runs on
Microsoft Windows is clearly useless in
the Free World. But software that runs
on GNU/Linux can also be useless if
it depends on other nonfree software. In
the past, Motif (before we had LessTif)
and Qt (before its developers made it
free software) were major causes of this
problem. Most 3D video cards work
fully only with nonfree drivers, which
also cause this problem. But the major
source of this problem today is Java,
because people who write free software
often feel Java is sexy. Blinded by their
attraction to the language, they overlook
the issue of dependencies and fall into
the Java Trap.

When you build software in Java
and the JVM, you are being locked into
only running it on a platform controlled
by a single company — Oracle. Oracle
is working to maintain this platform
control by refusing to remove the field
of use clauses in the TCK, effectively
preventing Apache Harmony from ever

By PAUL QUERNA

 39

being able to ship a real release. The
lawsuit against Google also confirms the
fear of Oracle using their control of the
platform aggressively.

The problem is not so much about
Oracle controlling their code. As I
said above, I believe in the rights of a
company to do as these choose — but
at the same time, if they choose to be
bad stewards of this, I will choose not to
use their platform. Most importantly in
the Java world, is that stranglehold being
placed upon 3rd party implementations.
Oracle could close source the OpenJDK
for all I care, but what offends me most
is their desire to squash alternative
implementations.

Consider some alternatives to Java,
which all have multiple implementations
now:

Python: CPython, but also has PyPy,
IronPython, and Jython.
Ruby: MRI, but also JRuby, MacRuby,
Javascript: v8 (node.js), Spidermonkey,
whatever-safari-is-calling-their-JS-
engine-now.
C/C++: Clang and GCC
C#: CLI and Mono

These multiple implementations of
the languages are creating innovation on
their respective platforms. They are all

for the most part driven by diverse com-
munities, mostly under liberal licenses.
Communities built around common
goals and beliefs, rather than arcane
licensing policies trying to protect a com-
pany’s mobile market. In Java you will
only be given one choice, the choice that
Larry and Oracle give you. Any attempts
to build an alternative implementation
will be made exceedingly difficult.

When I am picking a platform to
build upon, I want to know it will be
around regardless of the whims of a
single company. I want to know there is
a diverse community behind it. I want
people to be experimenting with new
ways to build a VM to make the platform
even better.

This is why I must ask, how can
anyone pick Java and the JVM on which
to build their company’s future? I know
Oracle and IBM — they will pump
millions into the continued development
of the platform, but it’s not a platform I
want to be using. Big companies throw-
ing around development like this don’t
create the values I find essential in pick-
ing a platform. Oracle is going to control
the future of Java. I don’t know what will
happen to the Java Community Process,
but I lack any faith in it continuing.

Take a hard look at your development,
why are you using Java? Are you building
upon a platform where open experimen-
tation is encouraged, and not feared?
It is impossible for a business to pivot
and abandon Java in a day, but after the
events of the last few months, I will seek
to use alternatives wherever possible.

Is your platform free, or is it a trap?

Paul Querna is the Chief Architect at Cloudkick, a
Y-Combinator funded start-up. Cloudkick special-
izes in portability and openness between cloud
providers. 1,000s of companies use Cloudkick
to manage their infrastructure on Amazon EC2,
Rackspace Cloud, GoGrid, etc. Paul has partici-
pated in many open source projects and is a com-
mitter to the Apache HTTP Server and Apache
Libcloud, the open source library for developers
to build portable cloud applications. Paul also
previously served as VP of Infrastructure for the
Apache Software Foundation.

“When I am picking a platform to build upon,
I want to know it will be around regardless of
the whims of a single company.”

Reprinted with permission of the original author.
First appeared in http://hn.my/javatrap/.

http://hn.my/javatrap/

40 PROGRAMMING

IDEWTF

PHOTOSHOP, PREMIERE, MAYA, Auto-
CAD, ProTools, Finale, Reason,
InDesign. These are the state-of-

the art tools for creators. They are all rich,
powerful, versatile programs that strive to
work at the artist’s level of thought.

And the people who write this amaz-
ing software get to use… Visual Studio?
Eclipse? Emacs? At least I’ve heard Intel-
liJ IDEA is great, I’ve never used it. But
when contrasting these to the tools above
something seems missing. Like a library
full of features that bring programs to the
coder’s level of abstraction. Languages
are attempting this now, but languages
are written in text and IDEs are basically
text editors with a few extra features.
Photographers have clone (a tool that lets
them erase sections of images replacing
it with something that looks convinc-
ingly the background in that area), we
have refactor-rename that doesn’t even
respect alpha conversion (avoiding name
conflicts with your new name).

Why do we even have to worry about
alpha conversion? That’s like a composer
worrying about MIDI patch numbers!
We still denote identity with a string?
Premiere wouldn’t have that — it would
link directly to the clip in question. Who
cares if you have named something else
the same thing? My friends have no
trouble distinguishing me from another
Luke who walked in the room.

And files? We have libraries,
namespaces, modules, classes, and
functions to organize our code. Files are
almost entirely orthogonal and not-
almost entirely meaningless. Kudos to
CodeBubbles for noticing and removing

that tumor. But, that’s just a guy at a
university, so naturally we won’t get to
use that for real for quite some time.

What’s up with import statements?
That’s just some junk that comes with
representing programs as text. Eclipse
has surpassed those… sort of… but we’re
not all Java programmers. Why can’t I
just type the class name and then pick
the one I want from a list?

All the state-of-the-art creative
programs have multiple views: more than
one way to see your creation to get a
better handle on it. Maya has isometric,
wireframe, flat-shaded, full light…. We
have the class hierarchy view. Oh boy.
Why can’t I look at

 predict(p);

 if (p.star.is_terminal) { scan(p); }

 complete(p);

}

click a little [+] next to predict(p) and
see it right there inline, with its argu-
ment replaced by p? Oh, that’s how
that works, cool, [-]. Instead we go to its
definition, where we see it next to the
functions we happened to define near it,
about which we care nothing. Then we
substitute the arguments in our heads,
fathom loop invariants and fail to see
how they are violated, and spend the
next 5 minutes wondering if p is mutated
in this call chain.

How come I can still have syntax
errors? How come it is ever possible
to have a syntax error in a program?
Shouldn’t the IDE at least be helping

me to have a valid program all the time?
Finale doesn’t let you write a measure
with the wrong number of beats and
then complain when you push play. It
just fixes it for you — “oh look, you need
a rest there.”

“My indentation’s wrong. Oops,
rename missed that one. Oh right, need
to import Data.List. Ugh, namespace
pollution. Fine, looks like I need to copy
and paste again because abstracting will
be a pain. I hate how you can only have
one class per file and how it discour-
ages small classes. Shit, that mFoo/foo
accessor pattern again… weren’t get/set
supposed to do away with the need for
accessors? Fuck, looks like this virtual
method needs another parameter — give
me fifteen minutes.”

Do we not hear ourselves?! Software
developers, the masters that create the
masters’ tools, are touching up Avatar
with MS Paint. Shouldn’t we be sculpt-
ing effortlessly a masterpiece with a
beautiful dynamic interface while robots
bring us platters of Mountain Dew?
We’re wasting our time with spelling
errors while the 3D artist in the back is
putting finishing touches on his city.

W. T. F.

Luke Palmer is an indie game developer for
Hubris Arts by day, a Haskell fanatic by night.
He is best known for his research in functional
reactive programming — a way to write games
and other interactive applications in purely func-
tional style. He is currently researching ways to
automatically extract safely reusable code, in
order to build a search engine for code snippets.

By LUKE PALMER

Reprinted with permission of the original author.
First appeared in http://hn.my/idewtf/.

http://hn.my/idewtf/

Tutorial
Rails

railstutorial.org

“My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails, and then even
more loudly switch back to PHP… This book by Michael Hartl came so highly recommended that I had
to try it, and Ruby on Rails Tutorial is what I used to switch back to Rails again… Though I’ve worked my
way through many Rails books, this is the one that finally made me ‘get’ it.”

 —From the foreword by

“I got review access to all of the material a week ago and can confirm that, yes, these screencasts are
awesome… If you basically want to be able to look ‘over the shoulder’ of an experienced Rails devel-
oper and see how a Rails development environment is set up and how multiple apps are built, there’s
nothing that can beat this. This isn’t a set of ‘build a blog in 15 minutes’ videos—it’s a complete course
that could kick off a new career for you with Rails 3.0.”

 — , Ruby Inside

 by Michael Hartl, author of Rails Tutorial and RailsSpace

RECEIVE 10% OFF

ENTER COUPON CODE
“hackermonthly”

http://railstutorial.org

42 PROGRAMMING

The Architect

I HAVE BEEN DOING software architec-
tural work for a long time now, and
as it turns out, the ‘right way’ of

solving things may not always be the best
way. Below are two anecdotes from life
in the trenches.

The Case of the Database
Bottleneck
I was visiting a company where we
discussed their current system design and
what problems they were experiencing.
Their system had a respectful peak of
7,000 concurrent users and it turns out
that at those peak times they started to
hit the limit of their database which was
running as a single entity.

We discussed the regular slew of
database scaling solutions such as shard-
ing, dedicated reader nodes etc. and some
pros and cons with each solution.

As it turned out however, they solved
it in their own way. “Yeah, we solved
it,” they came back to me when I asked
them about it. “We bought an SSD
drive which replaced the old hard-
drive. It is much faster now.” they said
matter-of-factly.

Naturally I scoffed at this and thought
for myself that they have only bought
themselves a little bit of time and, in at
best, they could grow by 50-100% but
then it would be the same issues all over!
Rookies! Surely they did not understand
the beauty of unlimited, linear scaling
with sharding?

Within less than a year, they had
grown about 20% and were then bought
up by a bigger player in the industry. As
is custom, their system was erased from
the face of the earth in favor of the larger
one. They never hit the limit of the SSD.

Later on I also did some calculations,
if they had grown by 100%, they would
have become one of the top 5 actors
in the market and their profits would
have been through the roof. Their
development budget would have been
completely different by then.

So when looking back, in this case, it
actually seems like the SSD solution was
the right thing to do. They only needed
to buy some more time for the deal to
come through.

The Case of the Missing
Scheduler
Another case occurred when I was
reviewing a large gaming network that
was running cash games as well as
tournaments. There where many tourna-
ments running on a daily basis and most
of them were re-occurring events, such
as The Daily Lunch Tournament etc.
Almost every gaming network I know
has a scheduling option for tournaments.
An administrator would enter a tourna-
ment template and then say something
like ‘run every day at 12 AM’ for
instance. You would also be able to create
a future tournament and say ’start this
tournament on October 10 at 18 AM’.
Then the system would then create and
start the tournament as specified.

This network did not have that.
Instead, they had about 10 employees

in Indonesia who would work in shift
and manually create each tournament
and then manually click ’start’ to start
them. Nuts! This must surely be fixed!

So we started a discussion and I don’t
remember my exact word, but they were
something like: “This is insane! Surely we
should be able to implement a simple
scheduler in the system?”

To which they replied something like:
“Sure. But we have made an estimate on
the time it would take us, and the cost of
the developers on US salaries to imple-
ment this corresponds to about 7 years of
the Indonesian guys doing this manually.”

Yikes.
“Besides, do you want to be the guy

who calls them up and tell them and
their families that they are losing their
jobs? And for what? Saving a buck after
7 years? We have a choke-full backlog to
work on anyway.”

Hmmm. Maybe it would not be worth
cutting other features out in order to
prioritize a feature that would cause
10 people their jobs and not save any
money for a long time. Could this be?
What kind of socialist development
company was this?

As you might have guessed by now, by
being able to dedicate their developers to
other things rather than make the Indo-
nesians redundant they were able to dish
out new feature that actually attracted
new players. Which turned out to be very
successful for the owners in the end.

By FREDRIK JOHANSSON

Commentary
By JUAN PABLO (jpablo)

I WOULD CHOOSE THE SSD every time over a method
that requires doing a lot of consulting and engineer-

ing of the current system like sharding.
Why spend a lot of time and work when a simple

hardware upgrade will work ?
And you are deluding yourself if you think that

the sharding model you are going to implement is
not “only buying you time” and you will have to do
additional engineering over time if you keep growing.

 43

Summary
Am I advocating that you shouldn’t care
about scalability (just buy SSD’s!) or never
automate tasks because there’s cheap labour
to be found? Am I advocating quick hacks
and avoiding solid engineering principles?
Of course not.

But sometimes it is good to try and raise
the view a bit and try to see what *actually*
needs to be solved. As engineers we do
sometimes get stuck on implementing the
‘right thing’ and lose sight of reality as it
comes. I know I do.

Fredrik Johansson is the founder and CEO of Cubeia
Ltd, a premium software provider providing scalable
and robust solutions for the online gaming industry.
Fredrik has experience from working with architec-
tural challenges on multiple high volume multiplayer
installations. Additional information about Fredrik
and Cubeia can be found at www.cubeia.com.

Backend DB Hacker
Stealth Company
San Diego
Need a backend db rockstar who knows about affiliate
programs and loves capturing a ton of data/emails. This is
for an amazing company founded by an ex-Googler and
which the idea was crafted by Mark Zuckerberg.
To Apply: Email jason@tinycomb.com.

Senior Developer
youDevise, Ltd. (https://dev.youdevise.com)
London, England
60-person agile financial software company in London
committed to learning and quality (dojos, TDD, continu-
ous integration, exploratory testing). Under 10 revenue-
affecting production bugs last year. Release every 2 weeks.
Mainly Java, also Groovy, Scala; no prior knowledge of any
language needed.
To Apply: Send CV to jobs@youdevise.com.

Front-end and Back-end Engineers
Meetup (http://www.meetup.com)
New York
Meetup thinks the world is a better place when groups of
people meetup locally, in person, around a common inter-
est. We’re reinventing how this is done, but we can’t do it
alone! We value iterating/launching quickly, pragmatism,
and long walks on the beach.
To Apply: http://meetup.com/jobs

Staff Writer
Android Police (http://www.androidpolice.com)
Your Home
AndroidPolice.com, a popular Android blog, is looking for
quality contributors and regular staff writers. If you are
passionate about all things Android, and your passion is
matched by your writing and creative skills, we encourage
you to apply. Joining the team will give you access to blog-
ging tools, millions of readers and per-post compensation.
To Apply: Send your application to jobs@androidpolice.com.

HACKER JOBS

Reprinted with permission of the original author.
First appeared in http://hn.my/ducttape/.

www.cubeia.com
mailto:jason@tinycomb.com
http://www.meetup.com
http://meetup.com/jobs
http://www.androidpolice.com
mailto:jobs@androidpolice.com
http://hn.my/ducttape/

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Contents
	FEATURES
	How Universities Work
	Bad Habits that Crush Your Creativity and Stifle Your Success

	STARTUP
	How to Get a Job At a Kick-Ass Startup
	You Negotiate Commodities, But You Seize Opportunities

	SPECIAL
	Web Design is 95% Typography
	Why Most People Don't Succeed

	PROGRAMMING
	How to Set Up Your Own Private Git Server on Linux
	What's Wrong With 2006 Programming?
	Bouncing Beholder
	Build an Open Source Dropbox Clone
	Java Trap, 2010 Edition
	IDEWTF
	The Duct Tape Architect

	Hacker Jobs

