
Today You,
Tomorrow Me

Issue 9 February 2011

2

Cover Photo: Nicholas_T [www.flickr.com/photos/nicholas_t/]

Contents

Curator
Lim Cheng Soon

Proofreaders
Lane Rapp
Molly O’Donnell

Printer
MagCloud

Contributors
ARTICLES
Carlos Bueno
Rhoner
Patrick McKenzie
Rhett Creighton
Kristof KOVACS
Peter Norvig
Dan Mayer
Chad Fowler
Mark Feldman
Jason Shen

COMMENTARIES
SandB0x
Jake Voytko
Sukotto
Allen Freeman
Drew Haven

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com, a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.” Every month, we select from the
top voted articles on Hacker News and print them in magazine
format. For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

www.flickr.com/photos/nicholas_t/
http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

Contents

PROGRAMMING

10 Staging Servers, Source Control &
Deploy Workflows
By PATRICK MCKENZIE

16 Code Fearlessly
By RHETT CREIGHTON

18 Redis vs HBase vs Cassandra vs CouchDB
vs MongoDB vs Riak
By KRISTOF KOVACS

20 How to Write a Spelling Corrector
By PETER NORVIG

DESIGN

26 Five Principles for Choosing and
Using Typefaces
By DAN MAYER

SPECIAL

32 Dead-End Jobs: Are You Suffering From
Stockholm Syndrome?
By CHAD FOWLER

34 The Day MAME Saved My Ass
By MARK FELDMAN

38 Winning Isn’t Normal
By JASON SHEN

39 HACKER JOBS

FEATURES

04 The Full Stack, Part I
By CARLOS BUENO

08 Today You, Tomorrow Me
By RHONER

For links to the posts on Hacker News, visit hackermonthly.com/issue-9. All articles and comments are reprinted with permission of their original author.
Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/issue-9

4 FEATURES

ONE OF MY most vivid
memories from school
was the day our chemistry

teacher let us in on the Big Secret: every
chemical reaction is a joining or separat-
ing of links between atoms. Which links
form or break is completely governed by
the energy involved and the number of
electrons each atom has. The principle
stuck with me long after I’d forgotten
the details. There existed a simple reason
for all of the strange rules of chemistry,
and that reason lived at a lower level of
reality. Maybe other things in the world
were like that too.

 A “full-stack programmer” is a gener-
alist, someone who can create a non-triv-
ial application by themselves. People who
develop broad skills also tend to develop
a good mental model of how different
layers of a system behave. This turns out
to be especially valuable for performance
& optimization work. No one can know
everything about everything, but you
should be able to visualize what happens
up and down the stack as an application
does its thing. An application is shaped
by the requirements of its data, and
performance is shaped by how quickly
hardware can throw data around.

Consider this harmless-looking SQL
query:

DELETE FROM some_table WHERE id =
1234;

If the id column is not indexed, this
code will usually result in a table scan:
all of the records in some_table will be
examined one-by-one to see if id equals

1234. Let’s assume id is the indexed pri-
mary key. That’s a good as it gets, right?
Well, if the table is in InnoDB format it
will result in one disk-seek, because the
data is stored next to the primary key
and can be deleted in one operation. If
the table is MyISAM it will result in at
least two seeks, because indexes and data
are stored in different files. A hard drive
can only do one seek at a time, so this
detail can make the difference between
1X or 2X transactions per second.
Digging deeper into how these storage
engines work, you can find ways to trade
safety for even more speed.

The shape of the data
One way to visualize a system is how its
data is shaped and how it flows. Here are
a some useful factors to think about:

Working data size: This is the amount
of data a system has to deal with
during normal operation. Often it is
identical to the total data size minus
things like old logs, backups, inactive
accounts, etc. In time-based applica-
tions such as email or a news feed the
working set can be much smaller than
the total set. People rarely access mes-
sages more than a few weeks old.

Average request size: How much data
does one user transaction have to send
over the network? How much data
does the system have to touch in order
to serve that request? A site with 1 mil-
lion small pictures will behave differ-
ently from a site with 1,000 huge files,
even if they have the same data size
and number of users. Downloading a

photo and running a web search involve
similar-sized answers, but the amounts
of data touched are very different.

Request rate: How many transactions
are expected per user per minute?
How many concurrent users are there
at peak (your busiest period)? In a
search engine you may have 5 to 10
queries per user session. An online
ebook reader might see constant but
low volumes of traffic. A game may
require multiple transactions per
second per user.

Mutation rate: This is a measure of
how often data is added, deleted, and
edited. A webmail system has a high
add rate, a lower deletion rate, and
an almost-zero edit rate. An auction
system has ridiculously high rates for
all three.

Consistency: How quickly does a
mutation have to spread through the
system? For a keyword advertising bid,
a few minutes might be acceptable.
Trading systems have to reconcile in
milliseconds. A comments system is
generally expected to show new com-
ments within a second or two.

Locality: This has to do with the
probability that a user will read item
B if they read item A. Or to put it
another way, what portion of the
working set does one user session need
access to? On one extreme you have
search engines. A user might want to
query bits from anywhere in the data
set. In an email application, the user is
guaranteed to only access their inbox.

The Full Stack, Part I
By CARLOS BUENO

FEATURES

 5

Knowing that a user session is restricted
to a well-defined subset of the data
allows you to shard it: users from India
can be directed to servers in India.

Computation: what kinds of math do
you need to run on the data before it
goes out? Can it be precomputed and
cached? Are you doing intersections of
large arrays? The classic flight search
problem requires lots of computation
over lots of data. A blog does not.

Latency: How quickly are transactions
supposed to return success or failure?
Users seem to be ok with a flight
search or a credit card transaction
taking their time. A web search has to
return within a few hundred mil-
liseconds. A widget or API that outside
systems depend on should return in
100 milliseconds or less. More impor-
tant is to maintain application latency
within a narrow band. It is worse to
answer 90% of queries in 0.1 seconds
and the rest in 2 seconds, rather than
all requests in 0.2 seconds.

Contention: What are the funda-
mental bottlenecks? A pizza shop’s
fundamental bottleneck is the size of
its oven. An application that serves
random numbers will be limited by
how many random-number generators
it can employ. An application with
strict consistency requirements and a
high mutation rate might be limited
by lock contention. Needless to say,
the more parallelizability and the less
contention, the better.

 This model can be applied to a system
as a whole or to a particular feature like
a search page or home page. It’s rare that
all of the factors stand out for a particular
application; usually it’s 2 or 3. A good
example is ReCAPTCHA. It generates
a random pair of images, presents them
to the user, and verifies whether the user
spelled the words in the images correctly.
The working set of data is small enough to
fit in RAM, there is minimal computation,
a low mutation rate, low per-user request
rate, great locality, but very strict latency
requirements. I’m told that ReCAPT-
CHA’s request latency (minus network
latency) is less than a millisecond.

A horribly oversimplified model
of computation
 How an application is implemented
depends on how real computers handle
data. A computer really does only two
things: read data and write data. Now
that CPU cycles are so fast and cheap,
performance is a function of how fast it
can read or write, and how much data
it must move around to accomplish a
given task. For historical reasons we draw
a line at operations over data on the
CPU or in memory and call that “CPU
time”. Operations that deal with storage
or network are lumped under “I/O
wait”. This is terrible because it doesn’t
distinguish between a CPU that’s doing
a lot of work, and a CPU that’s waiting
for data to be fetched into its cache. A
modern server works with five kinds of
input/output, each one slower but with
more capacity than the next:

Registers & CPU cache (1 nano-
second): These are small, expensive
and very fast memory slots. Memory
controllers try mightily to keep this
space populated with the data the
CPU needs. A cache miss means a
100X speed penalty. Even with a 95%
hit rate, CPU cache misses waste half
the time.

Main memory (10^2 nanoseconds):
If your computer was an office, RAM
would be the desk scattered with man-
uals and scraps of paper. The kernel is
there, reserving Papal land-grant-sized
chunks of memory for its own mys-
terious purposes. So are the programs
that are either running or waiting to
run, network packets you are receiv-
ing, data the kernel thinks it’s going to
need, and (if you want your program
to run fast) your working set. RAM
is hundreds of times slower than a
register but still orders of magnitude
faster than anything else. That’s why
server people go to such lengths to
jam more and more RAM in.

Solid-state drive (10^5 nanosec-
onds): SSDs can greatly improve the
performance of systems with working
sets too large to fit into main memory.
Being “only” one thousand times

slower than RAM, solid-state devices
can be used as ersatz memory. It will
take a few more years for SSDs to
replace magnetic disks. And then we’ll
have to rewrite software tuned for the
RAM / magnetic gap and not for the
new reality.

Magnetic disk (10^7 nanoseconds):
Magnetic storage can handle large,
contiguous streams of data very well.
Random disk access is what kills
performance. The latency gap between
RAM and magnetic disks is so great
that it’s hard to overstate its impor-
tance. It’s like the difference between
having a dollar in your wallet and
having your mom send you a dollar
in the mail. The other important fact
is that access time varies wildly. You
can get at any part of RAM or SSD in
about the same time, but a hard disk
has a physical metal arm that swings
around to reach the right part of the
magnetic platter.

Network (10^6 to 10^9 nanoseconds):
Other computers. Unless you control
that computer too, and it’s less than
a hundred feet away, network calls
should be a last resort.

Trust, but verify
The software stack your application
runs on is well aware of the memory/
disk speed gap, and does its best to juggle
things around such that the most-used
data stays in RAM. Unfortunately, differ-
ent layers of the stack can disagree about
how best to do that, and often fight each
other pointlessly. My advice is to trust
the kernel and keep things simple. If
you must trust something else, trust the
database and tell the kernel to get out of
the way.

Thumbs and envelopes
I’m using approximate powers-of-ten
here to make the mental arithmetic
easier. The actual numbers are less neat.
When dealing with very large or very
small numbers it’s important to get the
number of zeros right quickly, and only
then sweat the details. Precise, unwieldy
numbers usually don’t help in the early
stages of analysis.

6 FEATURES

Suppose you have ten million (10^7)
users, each with 10MB (10^7) bytes
of data, and your network uplink can
handle 100 megabits (10^7 bytes) per
second. How long will it take to copy
that data to another location over the
internet? Hmm, that would be 10^7
seconds, or about 4 months: not great,
but close to reasonable. You could use
compression and multiple uplinks to
bring the transfer time down to, say, a
week. If the approximate answer had
been not 4 but 400 months, you’d
quickly drop the copy-over-the-internet
idea and look for another answer.

movies.example.com
So can we use this model to identify the
performance gotchas of an application?
Let’s say we want to build a movies-on-
demand service like Netflix or Hulu.
Videos are professionally produced and
20 and 200 minutes long. You want to
support a library of 100,000 (10^5) films
and 10^5 concurrent users. For simplic-
ity’s sake we’ll consider only the actual
watching of movies and disregard brows-
ing the website, video encoding, user
comments & ratings, logs analysis, etc.

Working data size: The average video
is 40 minutes long, and the bitrate
is 300kbps. 40 * 60 * 300,000 / 8 is
about 10^8 bytes. Times 10^5 videos
means that your total working set is
10^13 bytes, or 10TB.

Average request size: A video stream
session will transfer somewhere
between 10^7 and 10^9 bytes. In Part
One we won’t be discussing network-
ing issues, but if we were this would
be cause for alarm.

Request rate: Fairly low, though the
concurrent requests will be high. Users
should have short bursts of browsing
and long periods of streaming.

Mutation rate: Nearly nil.

Consistency: Unimportant except for
user data. It would be nice to keep
track of what place they were in a
movie and zip back to that, but that
can be handled lazily (eg in a client-
side cookie).

Locality: Any user can view any movie.
You will have the opposite problem of
many users accessing the same movie.

Computation: If you do it right,
computation should be minimal. DRM
or on-the-fly encoding might eat up
cycles.

Latency: This is an interesting one.
The worst case is channel surfing. In
real-world movie services you may
have noticed that switching streams or
skipping around within one video takes
a second or two in the average case.
That’s at the edge of user acceptability.

Contention: How many CPU threads
do you need to serve 100,000 video
streams? How much data can one
server push out? Why do real-world
services seem to have this large skip-
ping delay? When multiple highly suc-
cessful implementations seem to have
the same limitation, that’s a strong
sign of a fundamental bottleneck.

 It’s possible to build a single server
that holds 10TB of data, but what
about throughput? A hundred thousand
streams at 300kbps (10^5 * 3 * 10^5)
is 30 gigabits per second (3 * 10^10).
Let’s say that one server can push out
500mbps in the happy case. You’ll need
at least 60 servers to support 30gbps.
That implies about 2,000 concurrent
streams per server, which sounds almost
reasonable. These guesses may be off by a
factor or 2 or 4 but we’re in the ballpark.

 You could store a copy of the entire
10TB library on each server, but that’s
kind of expensive. You probably want
either:

A set of origin servers and a set of
streaming servers. The origins are
loaded with disks. The streamers are
loaded with RAM. When a request
comes in for a video, the streamer first
checks to see if it has a local cache. If
not, it contacts the origins and reads it
from there.

A system where each video is copied
to only a few servers and requests
are routed to them. This might have
problems with unbalanced traffic.

 An important detail is the distribu-
tion of popularity of your video data. If
everyone watches the same 2GB video,
you could just load the whole file into
the RAM of each video server. On the
other extreme, if 100,000 users each
view 100,000 different videos, you’d
need a lot of independent spindles
or SSDs to keep up with the concur-
rent reads. In practice, your traffic will
probably follow some kind of power-law
distribution in which the most popular
video has X users, the second-most has
0.5X users, the third-most 0.33X users,
and so on. On one hand that’s good; the
bulk of your throughput will be served
hot from RAM. On the other hand that’s
bad, because the rest of the requests will
be served from cold storage.

 Whatever architecture you use, it
looks as though the performance of
movies.example.com will depend almost
completely on the random seek time of
your storage devices. If I were building
this today I would give both SSDs and
non-standard data prefetching strategies
a serious look.

It’s been fun
This subject is way too large for a short
writeup to do it justice. But absurd sim-
plifications can be useful as long as you
have an understanding of the big picture:
an application’s requirements are shaped
by the data, and implementations are
shaped by the hardware’s ability to move
data. Underneath every simple abstrac-
tion is a world of details and cleverness.
The purpose of the big fuzzy picture is
to point you where to start digging.

Carlos Bueno is an engineer at Facebook. He
writes occasionally about general programming
topics, performance, security, and international-
ization. His long-term project is to “save the web”:
to build a network of independent, redundant,
internet archives.

Reprinted with permission of the original author.
First appeared in hn.my/fullstack.

http://hn.my/fullstack

 7

Reprinted with permission of the original author.
First appeared in hn.my/fullstack.

http://wufoo.com
http://hn.my/fullstack

8 FEATURES

By RHONER

Today You,
Tomorrow Me

JUST ABOUT EVERY time I see someone I stop.
I kind of got out of the habit in the last
couple of years, moved to a big city and
all that, my girlfriend wasn’t too stoked

on the practice. Then some shit happened to me that
changed me and I am back to offering rides habitu-
ally. If you would indulge me, it is long story and has
almost nothing to do with hitch hiking other than
happening on a road.

Photo: Empty Road, www.flickr.com/photos/nicholas_t/361161401/

http://www.flickr.com/photos/nicholas_t/361161401/

 9

THIS PAST YEAR I have had 3 instances
of car trouble. A blow out on a

freeway, a bunch of blown fuses and an
out of gas situation. All of them were
while driving other people’s cars which,
for some reason, makes it worse on an
emotional level. It makes it worse on a
practical level as well, what with the fact
that I carry things like a jack and extra
fuses in my car, and know enough not to
park, facing downhill, on a steep incline
with less than a gallon of fuel.

Anyway, each of these times this shit
happened I was disgusted with how
people would not bother to help me. I
spent hours on the side of the freeway
waiting, watching roadside assistance
vehicles blow past me, for AAA to show.
The 4 gas stations I asked for a gas can at
told me that they couldn’t loan them out
“for my safety” but I could buy a really
shitty 1-gallon one with no cap for $15.
It was enough, each time, to make you
say shit like “this country is going to hell
in a handbasket.”

But you know who came to my rescue
all three times? Immigrants. Mexican
immigrants. None of them spoke a lick of
the language. But one of those dudes had
a profound affect on me.

He was the guy that stopped to help
me with a blow out with his whole
family of 6 in tow. I was on the side of
the road for close to 4 hours. Big jeep,
blown rear tire, had a spare but no jack.
I had signs in the windows of the car, big
signs that said “need a jack” and offered
money. No dice. Right as I am about to
give up and just hitch out there a van
pulls over and dude bounds out. He sizes
the situation up and calls for his young-
est daughter who speaks english. He
conveys through her that he has a jack
but it is too small for the Jeep so we will
need to brace it. He produces a saw from
the van and cuts a log out of a downed
tree on the side of the road. We rolled
it over, put his jack on top, and bam, in
business. I start taking the wheel off and,
if you can believe it, I broke his tire iron.
It was one of those collapsible ones and

I wasn’t careful and I snapped the head I
needed clean off. Fuck.

No worries, he runs to the van, gives
it to his wife and she is gone in a flash,
down the road to buy a tire iron. She
is back in 15 minutes, we finish the job
with a little sweat and cussing (stupid
log was starting to give), and I am a
very happy man. We are both filthy and
sweaty. The wife produces a large water
jug for us to wash our hands in. I tried
to put a 20 in the man’s hand but he
wouldn’t take it so I instead gave it to
his wife as quietly as I could. I thanked
them up one side and down the other.
I asked the little girl where they lived,
thinking maybe I could send them a gift
for being so awesome. She says they live
in Mexico. They are here so mommy and
daddy can pick peaches for the next few
weeks. After that they are going to pick
cherries then go back home. She asks if
I have had lunch and when I told her no
she gave me a tamale from their cooler,
the best fucking tamale I have ever had.

So, to clarify, a family that is undoubt-
edly poorer than you, me, and just about
everyone else on that stretch of road,
working on a seasonal basis where time
is money, took an hour or two out of
their day to help some strange dude on
the side of the road when people in tow
trucks were just passing me by. Wow...

But we aren’t done yet. I thank them
again and walk back to my car and open
the foil on the tamale cause I am starving
at this point and what do I find inside?
My fucking $20 bill! I whirl around and
run up to the van and the guy rolls his
window down. He sees the $20 in my
hand and just shaking his head no like
he won’t take it. All I can think to say is
“Por Favor, Por Favor, Por Favor” with my
hands out. Dude just smiles, shakes his
head and, with what looked like great
concentration, tried his hardest to speak
to me in English:

“Today you.... tomorrow me.”

Rolled up his window, drove away, his
daughter waving to me in the rear view.
I sat in my car eating the best fucking
tamale of all time and I just cried. Like
a little girl. It has been a rough year and
nothing has broke my way. This was so
out of left field I just couldn’t deal.

In the 5 months since I have changed
a couple of tires, given a few rides to gas
stations and, once, went 50 miles out of
my way to get a girl to an airport. I won’t
accept money. Every time I tell them the
same thing when we are through:

“Today you.... tomorrow me.”

Rhoner is a 20-something designer from Port-
land, Oregon. He likes spicy foods, walking in the
rain, and now an ardent proponent for the rights
of migrant workers in this country. They are the
heroes we never even think about.

Reprinted with permission of the original author.
First appeared in hn.my/today.

http://hn.my/today

10 PROGRAMMING

I WORKED FOR ALMOST three years
as a cog in a Japanese megacor-
poration, and one of the best
parts about that experience

(perhaps even worth the 70 hour weeks)
was that they taught me how to be a
professional engineer. Prior to doing
so, my workflow generally involved a
whole lot of bubble gum, duct tape, and
praying. I spent a lot of time firefighting
broken software as a result, to the detri-
ment of both my customers and myself.
Talking to other software developers has
made me realize that I’m not the only
person who was never taught that there
are options superior to bubblegum. If
you aren’t lucky enough to work at a
company that has good engineering in
its very DNA, you’re likely to not know
much about them.

This strikes me as the industry’s
attitude to source control a few years
ago, prior to a concerted evangelization
movement by people like Joel Spolsky. It
is virtually impossible to overstate how
much using source control improves
software development. Our industry
has changed in major ways since 2000,
but our best practices (and knowledge

of those best practices) are lagging a
few years behind. We could really use
a Joel Test 2010 edition, for a world
where “you should have build scripts for
desktop software which can complete
the build in one step” is largely an
anachronism and where the front page
to the website is no longer hand-coded
in Notepad but, rather, is a shipping
piece of software which can break in two
hundred ways.

You’re not going to get the Joel Test
2010 here, mostly because I’m not Joel
and there is no particular reason any
company should judge its development
practices relative to mine. What I would
like to give is some practical pointers
for implementing three practices which,
if you’re not already doing, will greatly
improve the experience of writing
software for the web:

1. Staging servers
2. Version control workflows
3. Tested, repeatable deployments

Staging Servers
What is a staging server? The basic idea
is that it is staging = production - users.
(If you’re Facebook, Google, or IMVU,
you are lightyears ahead of this article
and have some system where there are
multiple levels of staging/production and
where you can dynamically change them.
You already have geniuses working on
your infrastructure. Listen to them. This
article is for people who don’t have any
option between “code runs on developer’s
laptop” and “code runs in production.”)

Why do we have staging servers? So
that anything that is going to break on
production breaks on the staging server
first. For this reason, you want your
staging server to be as similar to the
production environment as you can pos-
sibly make it. If the production environ-
ment processes credit cards, the staging
environment processes credit cards. This
means that if, e.g., your configuration for
the payment gateway is borked, you’ll
find out about that on the staging server
prior to pushing it live to production and,
whoopsie, not actually being able to get
money from people. If your production
server uses Ruby 1.9, your staging server

Staging Servers, Source
Control & Deploy Workflows

By PATRICK MCKENZIE

And Other Stuff Nobody Teaches You

PROGRAMMING

 11

uses 1.9. If the production server uses
memcached on port 12345, the staging
server uses memcached on port 12345.

(Many folks have systems which exist
on more than one physical machine. I
don’t — I’m a small business where 2 GB
of RAM is enough for anything I want
to do. If you have multiple machines,
strike “staging server” and read as “stag-
ing system” below: all the benefits for
having a separate staging server are still
beneficial when your staging environ-
ment actually has fifteen physical servers
running 47 VMs.)

Setting up a staging server should be
easy. If it is not easy, you already have
a problem in your infrastructure, you
just don’t know it yet: you’ve cobbled
together your production server over
time, usually by manually SSHing into it
and tweaking things without keeping a
log of what you have done. (Been there,
done that, got the “I Created A Monster”
T-shirt.) There isn’t a written procedure
or automated script for creating it from
the bare metal. If you had that procedure
written, you should be able to execute
it and create a staging server that works
inside of an hour.

Most people won’t be able to do this
if they haven’t given thought to the
matter before. That is fixable, and should
be fixed. It has substantial benefits: if
you have a repeatable procedure for
provisioning a production system, then
when disaster strikes you will be able to
confidently execute that procedure and
end up with a production system. (Confi-
dence is important since you’ll probably
be terrified and rushed when you need to
do this, and rushed terrified people make
unnecessary mistakes.)

If you’re working on Rails, I highly rec-
ommend using Deprec/Capistrano with
all new projects. In addition to making it
very easy to get a full Rails stack working
on your deployment environment
of choice , it helps automate routine
deployment and server maintenance,
and has mostly sensible defaults. (I have
only one quibble with deprec: it installs
software from source rather than using
your system’s package manager. That
means that upgrading e.g. Nginx two
years down the road is needlessly hard
and error prone, when instead you could
just have used apt-get in the first place
and then updating is a piece of cake.)

You can also use Fabric, Chef, Fog,
or a similar system to script up build-
ing new environments. Pick whichever
strikes your fancy. Try to recreate your
production environment, down to a T,
on another host at your VPS/cloud/etc
provider, or on another physical machine
if you actually still own machines. Keep
tweaking the script until it produces
something which actually matches your
production environment. You now have
a procedure for creating a staging server,
and as an added bonus it also works for
documenting your production environ-
ment in a reproducible fashion.

One nice thing about keeping your
server configuration in scripts rather
than just splayed across fifteen different
places on the server (/etc/environment, /
etc/crontab, /usr/local/nginx/conf/apps/
AppName.conf, etc) is that it lives in
source control. Your cron jobs? If they’re
in source control, you’ll have a written
record of what they are, what they’re
supposed to do, and why they just
blew up when you bork the underlying
assumptions eight months down the
line. Your Nginx config? If it is in source
control, you’ll understand why you

“Setting up a staging server should be easy.
If it is not easy, you already have a problem in
your infrastructure, you just don’t know it yet.”

12 PROGRAMMING

added that new location setting for static
images only. The voodoo in your postfix
config? A suitably descriptive commit
note means you’ll never have to think
about reproducing the voodoo again.

After you have the script which will
produce your staging environment, you
probably want to make a minimum
number of alterations from production.
Many companies will want their staging
environment to be non-public — that
way, customers don’t see code before it
is ready, and critical issues never affect
the outside world. There are many ways
to do this: ideally, you’d just tweak a
setting on your firewall and bam, nobody
from the public Internet can get to your
staging environment. However, this is
a wee bit difficult to pull off for some
of us. For one, I don’t actually have a
hardware firewall (I use iptables on each
VPS individually).

My staging environment simply
includes a snippet in Nginx which denies
access to everyone except a particular
host (which I can proxy through). This
breaks integration with a few outside
services (e.g. Twilio and Spreedly, which
needs callbacks), so I make exceptions for
the URLs those two need to access. The
more complicated your staging server
configuration gets relative to production,
the more likely you are to compromise
its utility. Try to avoid exceptions.

That said, there are a couple that are
too valuable to not make. For example,
my staging server has a whitelist of email
addresses and phone numbers owned by
me. Through the magic of monkeypatch-
ing, attempting to contact anyone else
raises an exception. That sounded a little
paranoid until that day when I acciden-
tally created an infinite loop and rang
every number in the database a hundred
times. (My cell phone company loves me,
but folks who accidentally collided with
test data sure would not have.)

How do you get data to populate the
staging server? I use seed scripts and
add more data by hand. (I also have DB
dumps available, but they tend to go stale
against the current schema distressingly
quickly: I recommend seed scripts.) You

can also dump the production DB and
load it into the staging DB. Think long
and hard before you do this. For one,
it is likely to be way, way the heck out
of bounds for regulated industries. For
another, your staging server is probably
going to periodically be insecure — inse-
curity is failure and failure is what the
staging server is for. Slurping all of the
data out of a staging environment has
caused many companies smarter than
you to have to go into disaster manage-
ment mode. Please be careful.

So you’ve got a staging server?
Now what?
At the simplest, you access your staging
server with a browser and try to break
things. When you break things, you fix
things, then you redeploy the staging
server and try to break them again. This
is what you are probably doing right
now with production, except that your
customers don’t have to see broken
things when you break things.

Eventually, you can script up attempts
to break things, using e.g. Selenium.
Then when you break things, you add
them to the list of things that Selenium
tries to break. If you run that against the
staging server after every code check in
(a process known as continuous integra-
tion), you’ll quickly catch regressions
before they disrupt paying customers.
This is a wee bit harder than just having
a staging server — OK, a lot harder — but
you’ll get clear, obvious advantage out of
every increment of work you do on this
path, so don’t let present inability to be
Google prevent you from getting started.

Version Control & Deployment
Workflows
Everyone should use version control, but
people tend to use version control dif-
ferently. Git is very popular in the Rails
community, but there are probably no
two companies using Git the same way.
The key thing is that you agree with your
team on how you use version control
— document your assumptions, docu-
ment your processes, then apply them
religiously. This will reduce conflicts on
the team, reduce mistakes, and help you
get more out of your tools.

There are a million ways to use version
control and most of them are perfectly
OK. I’m going to mention mine, but it
isn’t the canonical Right Way, it is just one
way which works for a (very) small com-
pany. Yours will likely be different, but
you can see some of the things which go
into design of a version control workflow.

Assumptions I Make About Life,
the Universe, and Everything
1. I use Git. Git has notion of branches,

tags, and remotes (physically distinct
repositories) — if you don’t know
what these are, Google for “getting
started with Git”.

2. I generally work alone or with a
very small team. (This assumption
underpins very important parts of my
workflow. It won’t expand very well
to a 200 man distributed team, but it
might well work for 2 ~ 5 people.)

3. There is exactly one canonical reposi-
tory, origin. Developers maintain other
repositories on their workstation.
Automated processes like deployment
happen only with reference to the
origin. Code existing outside of the
origin does not officially exist yet, for
any purpose. The history preserved in
the origin is, in principle, sacred.

4. There is a branch called deploy. The
HEAD of deploy (the most recent
code on it) is presumptively ready to
be put into production.

 13

5. Tags are used to take snapshots of the
code base and preserve them in amber
with a human readable name. Right
before we deploy to either production
or staging, the HEAD gets tagged, so
that we can easily find it later, with
a simple naming convention (I use
production_release_X and stag-
ing_release_X, where X just incre-
ments upwards — some people might
prefer timestamps). Production release
tags are never deleted. Staging tags get
periodically culled when convenient
to do so.

6. Development of any feature expected
to take longer than a few hours
happens on a feature branch. (I do
occasional work right on deploy
locally, for issues of the “Minor copy
edit on dashboard.” variety. This would
be one of the first things to go if I
were working on a larger team.)

So how does this actually work in
practice? Let’s say I’m implementing
a new feature. I create a new branch
to work on. I code a bit, creating local
commits with wild abandon any time
I have accomplished something which
I don’t want to lose. When I believe
code to be functional, I fire a capistrano
task which tags the current head of my
branch, pushes that tag to origin, and
deploys it to the staging server. I then
continue testing on the staging server, for
example verifying that Twilio integration
actually works with Twilio (which cannot
conveniently access localhost:3000 on
my laptop). I continue writing code,
committing, tagging, and pushing to the
staging server until the feature is ready.

Then, I switch back to the deploy
branch and merge in my feature branch
(with – no-ff, which creates a commit
message just for the merge — this handily
groups the twenty or thirty commits I
just made into one easily readable story
for myself later). I then tag a production
release (manually — this is entirely to
force me to think through whether I’m
ready for a production release), verify that
there is no diff between it and the most
recent staging release, and then push the

new tag to origin. I then fire the Cap-
istrano task which checks out the new
deployment tag and restarts the server.

What does this get me versus my
previous SVN workflow for Bingo Card
Creator, which was “Work only on one
branch, commit stuff when I think it is
ready, and deploy the trunk manually on
occasion”?

1. I cause much less downtime for the
production server due to reasons like
svn commit -m ‘Whoops, forgot a setting
in production.rb’ and svn commit -m
‘r1234 introduced dependency on foobar
gem without putting it in environment file,
causing rake gems:install to not load it.
Mongrels then failed to restart.’

2. My deploy branch has a relatively
clean history, so when things start to
break next year in production, finding
the change sets which eventually
caused the breakage will be less of a
needle in the haystack search than
finding them in SVN is. SVN’s history
is 1800 unedited commits, recording
my stream of consciousness as they
happened. My stream of consciousness
is frequently stupid, particularly when
I’m panicking because the server is
down.

3. This decouples the staging server from
production in a clean fashion (so that I
can advance the staging server a feature
or three at a time if I want to), but
guarantees that when I’m actually ready
to deploy, I’m deploying exactly what
did not break on the staging server.

4. Tagging releases gives you an Oh
Crikey button, as in Oh Crikey,
that last release broke stuff. You
can quickly rollback the deploy to a
known good tag, isolate the changes
which broke production, and fix them.

5. Deploy scripts manage releases with
multiple moving parts a lot better than
I do, even when I’m working from a
checklist.

By the way, Git gives you many
options for recovering from prob-
lems — even severe problems — without
requiring either gymnastics or a full-
blown CSI investigation to discover
what happened later. For example, let’s
pretend I just deployed tag production_
deploy_82, and have discovered some
issue serious enough to require an imme-
diate rollback to production_deploy_81,
which is known to be good:

#Assuming we are on our local worksta-
tion on the deploy branch.
git branch something-in-here-is-broken
git reset --hard production_deploy_81
#All changes made between deploy 81
and 82 just vanished from the deploy
branch locally.
#Clean up the deploy, using any option
discussed below.
git checkout something-in-here-is-broken
#Those changes which you just disap-
peared are now living on this branch,

-
ing server (and, ahem,that you have
addressed the issue that allowed this
to get OKed for release last time), you
merge this branch back into deploy,
and do a tag-and-release cycle.

How you clean up the mess on the
server is up to you: good options include
“deploy 81 again”, “tag a release 83
equivalent to 81, then deploy it”, and
“rollback to the copy of 81 which still
exists on the server.” (Capistrano includes
deploy:rollback, which will do exactly
this.) Any of these will work, just always
do it the same way to avoid stepping on
each others’ toes. I prefer tagging a new
release so that I can add a descriptive
message explaining why 82 just created
an emergency.

14 PROGRAMMING

This is important because it leaves a
paper trail — if you’re pulling a release
from production, something just went
seriously wrong with your processes.
Emergencies are not supposed to happen
— anything that lets an issue get that far
isn’t just a one-off failure of whatever
broke, it is a series of failures of the
systems/processes designed to prevent
failures from getting that far. After
you’ve put out the fire, investigate what
went wrong and tweak your processes
such that a similar failure in the future
gets caught prior to bringing down
production. The sleep you save may be
your own.

Scaling this to more programmers: Do
whatever works for you! I would proba-
bly create a staging branch and have folks
integrate stuff into the staging branch
when it was ready to go to the official
staging environment. I also might make
per-developer staging environments:
since creating one from the bare metal is
supposed to be essentially free, let them
all have their own where they can be
reckless without spoiling the experience
of other developers. We can worry about
code interaction on the “real” staging
server. Then, have folks communicate
when they consider everything they have
on staging ready for release, and release
when everybody says it is ready.

The important thing is that, whatever
process you use, you document it, teach
it, and enforce it.

Stuff Your Deployment Script
Might Not Do Today But Probably
Should
1. Depending on your scale and how you

use e.g. memcached, it might be safe
to purge the cache on every re-deploy,
which will prevent some hard to
diagnose bugs. At a certain scale, this
is virtually a recipe for taking your
site down in a cache stampede, but
I’m not Facebook and having capacity
problems means that I am probably
already vacationing at my hollowed-
out volcano lair.

2. Tell everybody on the team that you
just deployed. I know some teams who
have an IRC channel with a bot who
announces redeploys. A quick email
CCed to five developers also probably
suffices.

3. Restart worker processes. This is easy
to forget but, if you do it by hand,
you’ll eventually forget and then
have two versions of the application
in production at once. If you’re not
prepared for that, it will bite you
on the hindquarters when, e.g., the
application servers ask the workers to
execute methods that the workers do
not know now exist in the code base.

4. Do sanity checks. You can go arbi-
trarily deep with complexity here.
For a first cut, mine for Appointment
Reminder restarts the application
server, counts ten seconds, then tries to
access an internal URL. If the applica-
tion server isn’t up, or if the action
at that URL blows up for any reason,
the deployment script fails the deploy,
rolls back to a known-good version,
and sends me a very crossly worded
email. (You can do this for the staging
server, too.)

5. Integrate with other systems which
manage the state of your code/busi-
ness. For example, I use Hoptoad.
Hoptoad keeps track of exceptions
and mails you when they happen, in
such a fashion that your inbox doesn’t
get buried by e.g. Googlebot decid-
ing to do an impromptu fuzz test on
your website. I mark all exceptions as
resolved every time I deploy to the
environment they happened in. You
could also e.g. update an internal wiki
by adding a new page specific to the
deployment, automatically update
your bug tracker to change the status
of the bugs that you (presumably) just
squashed, or start a new cohort for
your stats tracking.

Patrick McKenzie runs a small software business.
His current focus is on Appointment Reminder,
which solves small businesses’ problems with
missed appointments. He also made Bingo Card
Creator and consults from time to time, mostly
on software marketing.

Reprinted with permission of the original author.
First appeared in hn.my/deploy.

http://hn.my/deploy

http://www.SendGrid.com/hacker
http://hn.my/deploy

16 PROGRAMMING

WHEN DANE JENSEN first
started to work on Cam.
ly, he dove right into
things and wanted to

learn how everything worked. It was no small feat,
considering that our system already used (in addition
to others) Ruby on Rails, Haml / Sass, JavaScript, Java,
shell, C, and C++.

After a few days, he was ready for a task, and I gave
him some tough problems that we had to solve. We
had some great brainstorming sessions, and decided
that there were a few potential ways that we could
approach solving some of our major problems, which
he would work on. A few days later, I came back to see
how he was doing, and noticed that he had apparently
lost a lot of his initial energy. I asked him how his work
was going on the big problems and he explained that
he was intimidated and didn’t want to break anything.
Then I said two words to Dane that changed him
forever:

“Code Fearlessly”

All of the code he was working on was versioned in
Git. He was working entirely on development machines
(not production). There was absolutely no way for him
to break anything.

I decided that “Coding Fearlessly” was critical to being
an extremely productive programmer by watching Nat
Friedman. Nat is one of the best programmers I know,
and he truly loves working on software.

One day I watched Nat deleting and changing a lot
of code that people had obviously spent a lot of time
writing. Some people might feel scared to even save the
file after deleting so much code. Nat didn’t hesitate at
all. He said, “Ok, well this is all in Git,” and just started
deleting. He was right. There was nothing he could do
that would set back anyone else’s work, and even if he
pushed to a development server (not likely unless he
was sure it was a good commit), it would probably only
take someone a few minutes to roll things back to the
way things were.

Code Fearlessly
By RHETT CREIGHTON

Photo: The Golden Hall, www.flickr.com/photos/maxfwilliams/3308461831/

http://www.flickr.com/photos/maxfwilliams/3308461831/

 17

There has been a lot of excitement, hype, and poten-
tially disappointment when software development
processes such as, XP (eXtreme Programming), TDD
(Test Driven Development), or BDD (Behavior Driven
Development), work really well for some teams, but
not others. A huge benefit of TDD is that in some
teams, on some projects, it creates a safety net where
people are able to code fearlessly, and as long as all
of the tests pass, they can push code. The benefits
from having developers who work fearlessly without
disrupting each other are enormous on any project.

Thinking about it further, I realized that this also
reminded me of a story that the inventor, roboticist, and
entrepreneur, Thomas Massie, once told me. When he
was a child, he was fortunate enough that his parents
bought a computer, and he desperately wanted to
start making robots with it. However, he was smart
enough to know that it was a bad idea to start sticking
wires into the family computer that cost thousands of
dollars. So, Thomas hatched a plan. He figured out that
he could scotch-tape photo sensors to the computer
screen and write programs that turned portions of
the screen either on full brightness or full darkness.
That way, he could write programs that controlled
motors, without electrically connecting anything to
the computer itself.

Many years later, at MIT, Thomas realized that as
young child, he had re-invented the Opto-isolator, a
device that gave him the freedom to work fearlessly
with a computer.

While the benefits of “Coding Fearlessly” are clear
to me, I think it’s important to make the distinction
from “Coding Recklessly.” To truly code fearlessly, an
environment must be created where there is truly noth-
ing for the coder to fear. We developers are fortunate
to finally have, as of the past few years, tools that can
allow this for all developers cost effectively. Distrib-
uted version control (Git, Mercurial), virtual machines
locally or in the cloud, laptops powerful enough to
run databases, smartphone emulators, and many other
pieces of technology (hardware or software), can all
be used to put together development environments
for software engineers that are very much unlike the
days of the past.

Whoever is setting up the development environ-
ment for any project, whether your team is 1 person
or 100 people, it doesn’t matter if you choose “agile” or
“waterfall.” Your primary concern should be to create an
environment where you developers can code fearlessly.

Rhett Creighton studied physics and nuclear engineering at
MIT. He has worked on internet services for the past 10 years,
including “Suse Studio” [susestudio.com], a service that allows
you to create your own linux appliance through the web, and
most recently Cam.ly [cam.ly], which makes it easy for people
to install wireless security cameras anywhere.

“To truly code fearlessly, an
environment must be created
where there is truly nothing
for the coder to fear. ”

Reprinted with permission of the original author.
First appeared in hn.my/fearless.

http://cam.ly
http://hn.my/fearless

18 PROGRAMMING

WHILE SQL DATABASES are
insanely useful tools,
their tyranny of ~15

years is coming to an end. And it was just
time: I can't even count the things that
were forced into relational databases, but
never really fitted them.

But the differences between “NoSQL”
databases are much bigger than it ever
was between one SQL database and
another. This means that it is a bigger
responsibility on software architects to
choose the appropriate one for a project
right at the beginning.

In this light, here is a comparison
of Redis, HBase, Cassandra, CouchDB,
MongoDB and Riak:

Redis vs HBase vs Cassandra vs CouchDB vs MongoDB vs Riak
By KRISTOF KOVACS

Redis
Written in: C/C++
Main point: Blazing fast
License: BSD
Protocol: Telnet-like
Disk-backed in-memory database,
but since 2.0, it can swap to disk.
Master-slave replication
Simple keys and values,
but complex operations like
ZREVRANGEBYSCORE
INCR & co (good for rate limiting or
statistics)
Has sets (also union/diff/inter)
Has lists (also a queue; blocking pop)
Has hashes (objects of multiple fields)
Of all these databases, only Redis does
transactions (!)
Values can be set to expire (as in a cache)
Sorted sets (high score table, good for
range queries)
Pub/Sub and WATCH on data changes (!)

Best used: For rapidly changing data with
a foreseeable database size (should fit
mostly in memory).

For example: Stock prices. Analytics.
Real-time data collection. Real-time
communication.

Cassandra
Written in: Java
Main point: Best of BigTable and
Dynamo
License: Apache
Protocol: Custom, binary (Thrift)
Tunable trade-offs for distribution and
replication (N, R, W)
Querying by column, range of keys
BigTable-like features: columns,
column families
Writes are much faster than reads (!)
Map/reduce possible with Apache
Hadoop
I admit being a bit biased against it,
because of the bloat and complexity it
has partly because of Java (configura-
tion, seeing exceptions, etc)

Best used: When you write more than
you read (logging). If every component
of the system must be in Java. (“No one
gets fired for choosing Apache’s stuff.”)

For example: Banking, financial industry
(though not necessarily for financial
transactions, but these industries are
much bigger than that.) Writes are faster
than reads, so one natural niche is real
time data analysis.

HBase
Written in: Java
Main point: Billions of rows X millions
of columns
License: Apache
Protocol: HTTP/REST (also Thrift)
Modeled after BigTable
Map/reduce with Hadoop
Query predicate push down via server
side scan and get filters
Optimizations for real time queries
A high performance Thrift gateway
HTTP supports XML, Protobuf, and
binary
Cascading, hive, and pig source and
sink modules
JRuby-based (JIRB) shell
No single point of failure
Rolling restart for configuration
changes and minor upgrades
Random access performance is like
MySQL

Best used: If you’re in love with BigTable.
And when you need random, realtime
read/write access to your Big Data.

For example: Facebook Messaging
Database.

 19

Redis vs HBase vs Cassandra vs CouchDB vs MongoDB vs Riak

CouchDB
Written in: Erlang
Main point: DB consistency, ease of
use
License: Apache
Protocol: HTTP/REST
Bi-directional (!) replication,
continuous or ad-hoc,
with conflict detection,
thus, master-master replication. (!)
MVCC — write operations do not
block reads
Previous versions of documents are
available
Crash-only (reliable) design
Needs compacting from time to time
Views: embedded map/reduce
Formatting views: lists & shows
Server-side document validation
possible
Authentication possible
Real-time updates via _changes (!)
Attachment handling
thus, CouchApps (standalone js apps)
jQuery library included

Best used: For accumulating, occasionally
changing data, on which pre-defined
queries are to be run. Places where
versioning is important.

For example: CRM, CMS systems.
Master-master replication is an especially
interesting feature, allowing easy multi-
site deployments.

MongoDB
Written in: C++
Main point: Retains some friendly
properties of SQL. (Query, index)
License: AGPL (Drivers: Apache)
Protocol: Custom, binary (BSON)
Master/slave replication
Queries are JavaScript expressions
Run arbitrary JavaScript functions
server-side
Better update-in-place than CouchDB
Sharding built-in
Uses memory mapped files for data
storage
Performance over features
After crash, it needs to repair tables
Better durablity coming in V1.8

Best used: If you need dynamic queries.
If you prefer to define indexes, not map/
reduce functions. If you need good
performance on a big DB. If you wanted
CouchDB, but your data changes too
much, filling up disks.

For example: For all things that you
would do with MySQL or PostgreSQL,
but having predefined columns really
holds you back.

Riak
Written in: Erlang & C, some
JavaScript
Main point: Fault tolerance
License: Apache
Protocol: HTTP/REST
Tunable trade-offs for distribution and
replication (N, R, W)
Pre- and post-commit hooks,
for validation and security.
Built-in full-text search
Map/reduce in JavaScript or Erlang
Comes in “open source” and “enter-
prise” editions

Best used: If you want something
Cassandra-like (Dynamo-like), but no
way you’re gonna deal with the bloat
and complexity. If you need very good
single-site scalability, availability and
fault-tolerance, but you’re ready to pay
for multi-site replication.

For example: Point-of-sales data col-
lection. Factory control systems. Places
where even seconds of downtime hurt.

Kristof is a software architect and consultant
from Europe. He works on high-availability, high-
security systems in real-time stock exchanges
and in the energy industry. You can learn more
about him at kkovacs.eu.

Reprinted with permission of the original author.
First appeared in hn.my/nosql.

http://hn.my/nosql

20 PROGRAMMING

IN THE PAST week, two friends (Dean and Bill) indepen-
dently told me they were amazed at how Google does
spelling correction so well and quickly. Type in a search
like [speling] and Google comes back in 0.1 seconds or so

with “Did you mean: spelling” (Yahoo and Microsoft are similar).
What surprised me is that I thought Dean and Bill, being highly
accomplished engineers and mathematicians, would have good
intuitions about statistical language processing problems such
as spelling correction. But they didn’t, and come to think of it,
there’s no reason they should: it was my expectations that were
faulty, not their knowledge.

I figured they and many others could benefit from an explana-
tion. The full details of an industrial-strength spell corrector like
Google’s would be more confusing than enlightening, but I figured
that on the plane flight home, in less than a page of code, I could
write a toy spelling corrector that achieves 80 or 90% accuracy
at a processing speed of at least 10 words per second.

So here, in 21 lines of Python 2.5 code, is the complete spelling
corrector:

import re, collections

 return model

 return set(e2 for e1 in edits1(word) for e2 in
edits1(e1) if e2 in NWORDS)

The code defines the function correct, which takes a word as
input and returns a likely correction of that word. For example:

The version of edits1 shown here is a variation on one proposed
by Darius Bacon; I think this is clearer than the version I originally
had. Darius also fixed a bug in the function correct.

How to Write a
Spelling Corrector

By PETER NORVIG

 21

How It Works: Some Probability Theory
How does it work? First, a little theory. Given a word, we are trying
to choose the most likely spelling correction for that word (the
“correction” may be the original word itself). There is no way to
know for sure (for example, should “lates” be corrected to “late” or
“latest”?), which suggests we use probabilities. We will say that we
are trying to find the correction c, out of all possible corrections,
that maximizes the probability of c given the original word w:

argmaxc P(c|w)

By Bayes’ Theorem this is equivalent to:

argmaxc P(w|c) P(c) / P(w)

Since P(w) is the same for every possible c, we can ignore it, giving:

argmaxc P(w|c) P(c)

There are three parts of this expression. From right to left, we have:

1. P(c), the probability that a proposed correction c stands on its
own. This is called the language model: think of it as answer-
ing the question “how likely is c to appear in an English text?”
So P("the") would have a relatively high probability, while
P("zxzxzxzyyy") would be near zero.

2. P(w|c), the probability that w would be typed in a text when
the author meant c. This is the error model: think of it as
answering “how likely is it that the author would type w by
mistake when c was intended?”

3. argmaxc, the control mechanism, which says to enumerate all
feasible values of c, and then choose the one that gives the best
combined probability score.

One obvious question is: why take a simple expression like
P(c|w) and replace it with a more complex expression involving
two models rather than one? The answer is that P(c|w) is already
conflating two factors, and it is easier to separate the two out and
deal with them explicitly. Consider the misspelled word w=“thew”
and the two candidate corrections c=“the” and c=“thaw”. Which has
a higher P(c|w)? Well, “thaw” seems good because the only change
is “a” to “e”, which is a small change. On the other hand, “the”
seems good because “the” is a very common word, and perhaps
the typist’s finger slipped off the “e” onto the “w”. The point is
that to estimate P(c|w) we have to consider both the probability
of c and the probability of the change from c to w anyway, so it
is cleaner to formally separate the two factors.

Now we are ready to show how the program works. First P(c).
We will read a big text file, big.txt [norvig.com/big.txt], which
consists of about a million words. The file is a concatenation of
several public domain books from Project Gutenberg and lists of
most frequent words from Wiktionary and the British National
Corpus. (On the plane all I had was a collection of Sherlock
Holmes stories that happened to be on my laptop; I added the
other sources later and stopped adding texts when they stopped
helping, as we shall see in the Evaluation section.)

We then extract the individual words from the file (using the
function words, which converts everything to lowercase, so that
“the” and “The” will be the same and then defines a word as a
sequence of alphabetic characters, so “don’t” will be seen as the
two words “don” and “t”). Next we train a probability model,
which is a fancy way of saying we count how many times each
word occurs, using the function train. It looks like this:

 return model

At this point, holds a count of how many times the
word w has been seen. There is one complication: novel words.
What happens with a perfectly good word of English that wasn’t
seen in our training data? It would be bad form to say the prob-
ability of a word is zero just because we haven’t seen it yet.
There are several standard approaches to this problem; we take
the easiest one, which is to treat novel words as if we had seen
them once. This general process is called smoothing, because we
are smoothing over the parts of the probability distribution that
would have been zero, bumping them up to the smallest possible
count. This is achieved through the class collections.defaultdict,
which is like a regular Python dict (what other languages call
hash tables) except that we can specify the default value of any
key; here we use 1.

Now let’s look at the problem of enumerating the possible
corrections c of a given word w. It is common to talk of the edit
distance between two words: the number of edits it would take
to turn one into the other. An edit can be a deletion (remove
one letter), a transposition (swap adjacent letters), an alteration
(change one letter to another) or an insertion (add a letter).
Here’s a function that returns a set of all words c that are one
edit away from w:

22 PROGRAMMING

This can be a big set. For a word of length n, there will be n dele-
tions, n-1 transpositions, 26n alterations, and 26(n+1) insertions,
for a total of 54n+25 (of which a few are typically duplicates).
For example, len(edits1('something')) — that is, the number of
elements in the result of edits1('something') — is 494.

The literature on spelling correction claims that 80 to 95% of
spelling errors are an edit distance of 1 from the target. As we
shall see shortly, I put together a development corpus of 270
spelling errors, and found that only 76% of them have edit distance
1. Perhaps the examples I found are harder than typical errors.
Anyway, I thought this was not good enough, so we’ll need to
consider edit distance 2. That’s easy: just apply edits1 to all the
results of edits1:

 return set(e2 for e1 in edits1(word) for e2 in edits1(e1))

This is easy to write, but we’re starting to get into some serious
computation: len(edits2('something')) is 114,324. However, we
do get good coverage: of the 270 test cases, only 3 have an edit
distance greater than 2. That is, edits2 will cover 98.9% of the
cases; that’s good enough for me. Since we aren’t going beyond
edit distance 2, we can do a small optimization: only keep the
candidates that are actually known words. We still have to consider
all the possibilities, but we don’t have to build up a big set of
them. The function known_edits2 does this:

 return set(e2 for e1 in edits1(word) for e2 in
edits1(e1) if e2 in NWORDS)

Now, for example, known_edits2('something') is a set of just
4 words: {'smoothing', 'seething', 'something', 'soothing'}, rather
than the set of 114,324 words generated by edits2. That speeds
things up by about 10%.

Now the only part left is the error model, P(w|c). Here’s where I
ran into difficulty. Sitting on the plane, with no internet connection,
I was stymied: I had no training data to build a model of spelling
errors. I had some intuitions: mistaking one vowel for another is
more probable than mistaking two consonants; making an error
on the first letter of a word is less probable, etc. But I had no
numbers to back that up. So I took a shortcut: I defined a trivial
model that says all known words of edit distance 1 are infinitely
more probable than known words of edit distance 2, and infinitely
less probable than a known word of edit distance 0. By “known
word” I mean a word that we have seen in the language model
training data — a word in the dictionary. We can implement this
strategy as follows:

The function correct chooses as the set of candidate words the
set with the shortest edit distance to the original word, as long as
the set has some known words. Once it identifies the candidate
set to consider, it chooses the element with the highest P(c) value,
as estimated by the NWORDS model.

Evaluation
Now it is time to evaluate how well this program does. On
the plane I tried a few examples, and it seemed okay. After my
plane landed, I downloaded Roger Mitton’s Birkbeck spelling
error corpus [www.ota.ox.ac.uk/headers/0643.xml] from the
Oxford Text Archive. From that I extracted two test sets of cor-
rections. The first is for development, meaning I get to look at it
while I’m developing the program. The second is a final test set,
meaning I’m not allowed to look at it, nor change my program
after evaluating on it. This practice of having two sets is good
hygiene; it keeps me from fooling myself into thinking I’m
doing better than I am by tuning the program to one specific
set of tests. Here I show an excerpt of the two tests and the
function to run them; to see the complete set of tests (along
with the rest of the program), see the file spell.py [norvig.com/
spell.py].

 import time

 w = correct(wrong)

 secs=int(time.clock()-start))

print spelltest(tests1)
print spelltest(tests2) ## only do this after everything is
debugged

http://www.ota.ox.ac.uk/headers/0643.xml
http://norvig.com/spell.py
http://norvig.com/spell.py

 23

This gives the following output:

So on the development set of 270 cases, we get 74% correct
in 13 seconds (a rate of 17 Hz), and on the final test set we get
67% correct (at 15 Hz).

In conclusion, I met my goals for brevity, development time,
and runtime speed, but not for accuracy.

Future Work
Let’s think about how we could do better. We’ll again look at
all three factors of the probability model: (1) P(c); (2) P(w|c);
and (3) argmaxc. We’ll look at examples of what we got wrong.
Then we’ll look at some factors beyond the three...

1. P(c), the language model. We can distinguish two sources of
error in the language model. The more serious is unknown words.
In the development set, there are 15 unknown words, or 5%, and
in the final test set, 43 unknown words or 11%. Here are some
examples of the output of spelltest with verbose=True:

-

(1)

-

-

-

In this output we show the call to correct and the result (with
the NWORDS count for the result in parentheses), and then the word
expected by the test set (again with the count in parentheses).
What this shows is that if you don’t know that “econometric” is a
word, you’re not going to be able to correct “economtric”. We could
mitigate by adding more text to the training corpus, but then we
also add words that might turn out to be the wrong answer. Note
the last four lines above are inflections of words that do appear
in the dictionary in other forms. So we might want a model that
says it is okay to add “-ed” to a verb or “-s” to a noun.

The second potential source of error in the language model
is bad probabilities: two words appear in the dictionary, but the
wrong one appears more frequently. I must say that I couldn’t
find cases where this is the only fault; other problems seem much
more serious.

We can simulate how much better we might do with a better
language model by cheating on the tests: pretending that we have
seen the correctly spelled word 1, 10, or more times. This simulates
having more text (and just the right text) in the language model.
The function spelltest has a parameter, bias, that does this. Here’s
what happens on the development and final test sets when we
add more bias to the correctly-spelled words:

Bias Dev Test
0 74% 67%
1 74% 70%
10 76% 73%
100 82% 77%
1000 89% 80%

On both test sets we get significant gains, approaching 80-90%.
This suggests that it is possible that if we had a good enough
language model we might get to our accuracy goal. On the other
hand, this is probably optimistic, because as we build a bigger
language model we would also introduce words that are the wrong
answer, which this method does not do.

Another way to deal with unknown words is to allow the result
of correct to be a word we have not seen. For example, if the
input is “electroencephalographicallz”, a good correction would
be to change the final “z” to an “y”, even though “electroencepha-
lographically” is not in our dictionary. We could achieve this with
a language model based on components of words: perhaps on
syllables or suffixes (such as “-ally”), but it is far easier to base it
on sequences of characters: 2-, 3- and 4-letter sequences.

2. P(w|c), the error model. So far, the error model has been trivial:
the smaller the edit distance, the smaller the error. This causes
some problems, as the examples below show. First, some cases
where correct returns a word at edit distance 1 when it should
return one at edit distance 2:

Here, for example, the alteration of “d” to “c” to get from “adres”
to “acres” should count more than the sum of the two changes
“d” to “dd” and “s” to “ss”.

Also, some cases where we choose the wrong word at the same
edit distance:

24 PROGRAMMING

The same type of lesson holds: In “thay”, changing an “a” to an
“e” should count as a smaller change than changing a “y” to a “t”.
How much smaller? It must be a least a factor of 2.5 to overcome
the prior probability advantage of “that” over “they”.

Clearly we could use a better model of the cost of edits. We
could use our intuition to assign lower costs for doubling letters and
changing a vowel to another vowel (as compared to an arbitrary
letter change), but it seems better to gather data: to get a corpus
of spelling errors, and count how likely it is to make each insertion,
deletion, or alteration, given the surrounding characters. We need
a lot of data to do this well. If we want to look at the change of
one character for another, given a window of two characters on
each side, that’s 266, which is over 300 million characters. You’d
want several examples of each, on average, so we need at least a
billion characters of correction data; probably safer with at least
10 billion.

Note there is a connection between the language model and the
error model. The current program has such a simple error model
(all edit distance 1 words before any edit distance 2 words) that it
handicaps the language model: we are afraid to add obscure words
to the model, because if one of those obscure words happens to be
edit distance 1 from an input word, then it will be chosen, even
if there is a very common word at edit distance 2. With a better
error model we can be more aggressive about adding obscure words
to the dictionary. Here are some examples where the presence of
obscure words in the dictionary hurts us:

3. The enumeration of possible corrections, argmaxc. Our
program enumerates all corrections within edit distance 2. In
the development set, only 3 words out of 270 are beyond edit
distance 2, but in the final test set, there were 23 out of 400.
Here they are:

purple perpul
curtains courtens
minutes muinets

successful sucssuful
hierarchy heiarky
profession preffeson
weighted wagted

availability avaiblity
thermawear thermawhere
nature natior
dissension desention
unnecessarily unessasarily
disappointing dissapoiting

thoughts thorts
criticism citisum
immediately imidatly
necessary necasery
necessary nessasary
necessary nessisary
unnecessary unessessay
night nite
minutes muiuets
assessing accesing
necessitates nessisitates

We could consider extending the model by allowing a limited
set of edits at edit distance 3. For example, allowing only the
insertion of a vowel next to another vowel, or the replacement
of a vowel for another vowel, or replacing close consonants like
“c” to “s” would handle almost all these cases.

4. There’s actually a fourth (and best) way to improve: change
the interface to correct to look at more context. So far,correct
only looks at one word at a time. It turns out that in many
cases it is difficult to make a decision based only on a single
word. This is most obvious when there is a word that appears
in the dictionary, but the test set says it should be corrected to
another word anyway:

We can’t possibly know that should be “were”
in at least one case, but should remain “where” in other cases. But
if the query had been then it seems
likely that “where” should be corrected to “were”.

The context of the surrounding words can help when there are
obvious errors, but two or more good candidate corrections. Consider:

Why should “thear” be corrected as “there” rather than “their”?
It is difficult to tell by the single word alone, but if the query were

 it would be clear.
To build a model that looks at multiple words at a time, we

will need a lot of data. Fortunately, Google has released adatabase
of word counts for all sequences up to five words long, gathered
from a corpus of a trillion words.

I believe that a spelling corrector that scores 90% accuracy
will need to use the context of the surrounding words to make a
choice. But we’ll leave that for another day...

 25

5. We could improve our accuracy scores by improving the
training data and the test data. We grabbed a million words of
text and assumed they were all spelled correctly; but it is very
likely that the training data contains several errors. We could
try to identify and fix those. Less daunting a task is to fix the
test sets. I noticed at least three cases where the test set says
our program got the wrong answer, but I believe the program’s
answer is better than the expected answer:

We could also decide what dialect we are trying to train for.
The following three errors are due to confusion about American
versus British spelling (our training data contains both):

6. Finally, we could improve the implementation by making
it much faster, without changing the results. We could re-
implement in a compiled language rather than an interpreted
one. We could have a lookup table that is specialized to strings
rather than Python’s general-purpose dict. We could cache the
results of computations so that we don’t have to repeat them
multiple times. One word of advice: before attempting any
speed optimizations, profile carefully to see where the time is
actually going.

Peter Norvig is Director of Research at Google Inc. He is a Fellow of the AAAI
and the ACM and co-author of Artificial Intelligence: A Modern Approach,
the leading textbook in the field. Previously he was head of Computational
Sciences at NASA and a faculty member at USC and Berkeley.

THANK YOU TO all who participated.
We’ve picked Phil Jepsen (randomly

among the correct entries) as the winner
of the Sled Driver Giveaway Challenge.
Here is his winning answer:

Congratulation, Phil!

Sled Driver Giveaway
Challenge Winner

Reprinted with permission of the original author.
First appeared in hn.my/spell.

http://hn.my/spell

26 DESIGN

Five Principles
for Choosing and
Using Typefaces

By DAN MAYER

FOR MANY BEGINNERS, the task of picking fonts is
a mystifying process. There seem to be endless
choices—from normal, conventional-looking fonts
to novelty candy cane fonts and bunny fonts—with

no way of understanding the options, only never-ending lists of
categories and recommendations. Selecting the right typeface
is a mixture of firm rules and loose intuition, and takes years of
experience to develop a feeling for. Here are five guidelines for
picking and using fonts that I’ve developed in the course of using
and teaching typography.

DESIGN

The most appropriate analogy for picking type.

 27

 Dress For The Occasion
Many of my beginning students go about picking a font as

though they were searching for new music to listen to: they assess
the personality of each face and look for something unique and
distinctive that expresses their particular aesthetic taste, perspec-
tive and personal history. This approach is problematic, because
it places too much importance on individuality.

For better or for worse, picking a typeface is more like getting
dressed in the morning. Just as with clothing, there’s a distinction
between typefaces that are expressive and stylish versus those that
are useful and appropriate to many situations, and our job is to
try to find the right balance for the occasion. While appropriate-
ness isn’t a sexy concept, it’s the acid test that should guide our
choice of font.

My “favorite” piece of clothing is probably an outlandish pair
of 70s flare bellbottoms that I bought at a thrift store, but the
reality is that these don’t make it out of my closet very often
outside of Halloween. Every designer has a few favorite fonts like
this — expressive personal favorites that we hold onto and wait
for the perfect festive occasion to use. More often, I find myself
putting on the same old pair of Levis morning after morning. It’s
not that I like these better than my cherished flares, exactly… I
just seem to wind up wearing them most of the time.

Every designer has a few workhorse typefaces that are like
comfortable jeans: they go with everything, they seem to adapt
to their surroundings and become more relaxed or more formal
as the occasion calls for, and they just seem to come out of the
closet day after day. Usually, these are faces that have a number of
weights (Light, Regular, Bold, etc) and/or cuts (Italic, Condensed,
etc). My particular safety blankets are: Myriad,Gotham, DIN,
Akzidenz Grotesk and Interstate among the sans; Mercury, Electra
and Perpetua among the serif faces.

 Know Your Families: Grouping Fonts
 The clothing analogy gives us a good idea of what kind of

closet we need to put together. The next challenge is to develop
some kind of structure by which we can mentally categorize the
different typefaces we run across.

Typefaces can be divided and subdivided into dozens of cat-
egories (Scotch Modern, anybody?), but we only really need to
keep track of five groups to establish a working understanding
of the majority of type being used in the present-day landscape.

The following list is not meant as a comprehensive classification
of each and every category of type but rather as a manageable
shorthand overview of key groups. Let’s look at two major groups
without serifs (serifs being the little feet at the ends of the let-
terforms), two with serifs, and one outlier (with big, boxey feet).

 Geometric Sans

I’m actually combining three different groups here (Geometric,
Realist and Grotesk), but there is enough in common between
these groups that we can think of them as one entity for now.
Geometric Sans-Serifs are those faces that are based on strict
geometric forms. The individual letter forms of a Geometric Sans
often have strokes that are all the same width and frequently
evidence a kind of “less is more” minimalism in their design.

A large type family like Helvetica Neue can be used to express a range
of voices and emotions. Versatile and comfortable to work with, these

faces are like a favorite pair of jeans for designers.

28 DESIGN

At their best, Geometric Sans are clear, objective, modern,
universal; at their worst, cold, impersonal, boring. A classic Geo-
metric Sans is like a beautifully designed airport: it’s impressive,
modern and useful, but we have to think twice about whether or
not we’d like to live there.

Examples of Geometric/Realist/Grotesk Sans: Helvetica, Univers,
Futura, Avant Garde, Akzidenz Grotesk, Franklin Gothic, Gotham.

 Humanist Sans

 These are Sans faces that are derived from handwriting — as clean
and modern as some of them may look, they still retain something
inescapably human at their root. Compare the ‘t’ in the image
above to the ‘t’ in ‘Geometric’ and note how much more detail
and idiosyncrasy the Humanist ‘t’ has.

This is the essence of the Humanist Sans: whereas Geomet-
ric Sans are typically designed to be as simple as possible, the
letter forms of a Humanist font generally have more detail, less
consistency, and frequently involve thinner and thicker stoke
weights — after all they come from our handwriting, which is
something individuated. At their best, Humanist Sans manage to
have it both ways: modern yet human, clear yet empathetic. At
their worst, they seem wishy-washy and fake, the hand servants
of corporate insincerity.

Examples of Humanist Sans: Gill Sans, Frutiger, Myriad, Optima,
Verdana.

 Old Style

 Also referred to as ‘Venetian’, these are our oldest typefaces, the
result of centuries of incremental development of our calligraphic
forms. Old Style faces are marked by little contrast between thick
and thin (as the technical restrictions of the time didn’t allow for
it), and the curved letter forms tend to tilt to the left (just as cal-
ligraphy tilts). Old Style faces at their best are classic, traditional,
readable and at their worst are… well, classic and traditional.

Examples of Old Style: Jenson, Bembo, Palatino, and — especially
— Garamond, which was considered so perfect at the time of
its creation that no one really tried much to improve on it for a
century and a half.

 Transitional and Modern

 An outgrowth of Enlightenment thinking, Transitional (mid 18th
Century) and Modern (late 18th century, not to be confused with
mid 20th century modernism) typefaces emerged as type design-
ers experimented with making their letterforms more geometric,
sharp and virtuosic than the unassuming faces of the Old Style
period. Transitional faces marked a modest advancement in this
direction — although Baskerville, a quintessential Transitional
typeface, appeared so sharp to onlookers that people believed it
could hurt one’s vision to look at it.

In carving Modernist punches, type designers indulged in a
kind of virtuosic demonstration of contrasting thick and thin
strokes — much of the development was spurred by a competi-
tion between two rival designers who cut similar faces, Bodoni
and Didot. At their best, transitional and modern faces seem
strong, stylish, dynamic. At their worst, they seem neither here
nor there — too conspicuous and baroque to be classic, too stodgy
to be truly modern.

Examples of transitional typefaces: Times New Roman, Baskerville.
Examples of Modern Serifs: Bodoni, Didot.

 Slab Serifs

 Also known as ‘Egyptian’ (don’t ask), the Slab Serif is a wild
card that has come strongly back into vogue in recent years. Slab
Serifs usually have strokes like those of sans faces (that is, simple
forms with relatively little contrast between thick and thin) but
with solid, rectangular shoes stuck on the end. Slab Serifs are
an outlier in the sense that they convey very specific — and yet
often quite contradictory — associations: sometimes the thinker,
sometimes the tough guy; sometimes the bully, sometimes the
nerd; sometimes the urban sophisticate, sometimes the cowboy.

 29

They can convey a sense of authority, in the case of heavy ver-
sions like Rockwell, but they can also be quite friendly, as in the
recent favorite Archer. Many slab serifs seem to express an urban
character (such as Rockwell, Courier and Lubalin), but when
applied in a different context (especially Clarendon) they strongly
recall the American Frontier and the kind of rural, vernacular
signage that appears in photos from this period. Slab Serifs are
hard to generalize about as a group, but their distinctive blocky
serifs function something like a pair of horn-rimmed glasses: they
add a distinctive wrinkle to anything, but can easily become overly
conspicuous in the wrong surroundings.

Examples of Slab Serifs: Clarendon, Rockwell, Courier, Lubalin
Graph, Archer.

 Don’t Be a Wimp: The Principle of Decisive
Contrast

So, now that we know our families and some classic examples
of each, we need to decide how to mix and match and — most
importantly — whether to mix and match at all. Most of the time,
one typeface will do, especially if it’s one of our workhorses with
many different weights that work together. If we reach a point
where we want to add a second face to the mix, it’s always good
to observe this simple rule: keep it exactly the same, or change it
a lot — avoid wimpy, incremental variations.

This is a general principle of design, and its official name is
correspondence and contrast. The best way to view this rule in
action is to take all the random coins you collected in your last trip
through Europe and dump them out on a table together. If you
put two identical coins next to each other, they look good together
because they match (correspondence). On the other hand, if we
put a dime next to one of those big copper coins we picked up
somewhere in Central Europe, this also looks interesting because
of the contrast between the two — they look sufficiently different.

What doesn’t work so well is when put our dime next to a
coin from another country that’s almost the same size and color
but slightly different. This creates an uneasy visual relationship
because it poses a question, even if we barely register it in on a
conscious level — our mind asks the question of whether these
two are the same or not, and that process of asking and wondering
distracts us from simply viewing.

When we combine multiple typefaces on a design, we want
them to coexist comfortably — we don’t want to distract the
viewer with the question, are these the same or not? We can
start by avoiding two different faces from within one of the five
categories that we listed above all together — two geometric sans,
say Franklin and Helvetica. While not exactly alike, these two are
also not sufficiently different and therefore put our layout in that
dreaded neither-here-nor-there place.

If we are going to throw another font into the pot along with
Helvetica, much better if we use something like Bembo, a classic
Old Style face. Centuries apart in age and light years apart in
terms of inspiration, Helvetica and Bembo have enough contrast
to comfortably share a page:

 Unfortunately, it’s not as simple as just picking fonts that are
very, very different — placing our candy cane font next to, say,
Garamond or Caslon does not guarantee us typographic harmony.
Often, as in the above example of Helvetica and Bembo, there’s
no real explanation for why two faces complement each other
— they just do.

But if we want some principle to guide our selection, it should
be this: often, two typefaces work well together if they have one
thing in common but are otherwise greatly different. This shared
common aspect can be visual (similar x-height or stroke weight)
or it can be chronological. Typefaces from the same period of time
have a greater likelihood of working well together… and if they
are by the same designer, all the better.

30 DESIGN

 A Little Can Go a Long Way
‘Enough with all these conventional-looking fonts and

rules!’ you say. ‘I need something for my rave flyer! And my
Thai restaurant menu! And my Christmas cards!’ What you’re
pointing out here is that all the faces I’ve discussed so far are
‘body typefaces’, meaning you could conceivably set a whole
menu or newspaper with any of them; in the clothing analogy
presented in part one, these are our everyday Levis. What of our
Halloween flares?

Periodically, there’s a need for a font that oozes with personality,
whether that personality is warehouse party, Pad Thai or Santa
Claus. And this need brings us into the vast wilderness of Display
typefaces, which includes everything from Comic Sans to our
candy-cane and bunny fonts. ‘Display’ is just another way of
saying ‘do not exceed recommended dosage’: applied sparingly to
headlines, a display font can add a well-needed dash of flavor to a
design, but it can quickly wear out its welcome if used too widely.

Time for another clothing analogy:

 Betsey’s outfit works because the pink belts acts as an accent
and is offset by the down-to-earthiness of blue jeans. But if we
get carried away and slather Betsey entirely in pink, she might
wind up looking something like this:

 Let’s call this the Pink Belt Principle of Type: display faces with
lots of personality are best used in small doses. If we apply our
cool display type to every bit of text in our design, the aesthetic
appeal of the type is quickly spent and — worse yet — our design
becomes very hard to read.

 Rule Number Five Is ‘There Are No Rules’
Really. Look hard enough and you will find a dazzling-

looking menu set entirely in a hard-to-read display font. Or of
two different Geometric Sans faces living happily together on a
page (in fact, just this week I wound up trying this on a project
and was surprised to find that it hit the spot). There are only
conventions, no ironclad rules about how to use type, just as there
are no rules about how we should dress in the morning. It’s worth
trying everything just to see what happens — even wearing your
Halloween flares to your court date.

In Conclusion
Hopefully, these five principles will have given you some guidelines
for how to select, apply and mix type — and, indeed, whether to
mix it at all. In the end, picking typefaces requires a combination
of understanding and intuition, and — as with any skill — demands
practice. With all the different fonts we have access to nowadays,
it’s easy to forget that there’s nothing like a classic typeface used
well by somebody who knows how to use it.

Some of the best type advice I ever received came early on from
my first typography teacher: pick one typeface you like and use
it over and over for months to the exclusion of all others. While
this kind of exercise can feel constraining at times, it can also serve
as a useful reminder that the quantity of available choices in the
internet age is no substitute for quality.

Dan Mayer’s interest in graphic design began when he was five years old
and visited a printing press on a 1979 episode of Sesame Street, and has
been expanding ever since. A native of the US, he currently resides in
Prague, where he works freelance and teaches courses in design history
and theory at Prague College. His work and more examples of his writing
can be found at www.danmayer.com.

Reprinted with permission of the original author.
First appeared in Smashing Magazine — an online magazine for professional designers and
web developers [hn.my/typefaces].

Photo credit (in order of appearance): Samuuraijohnny [www.flickr.com/photos/samuraislice/], Betsssssy [www.flickr.com/photos/betsssssy/], Philip Leroyer [www.flickr.com/people/philippeleroyer/]

http://www.danmayer.com
http://hn.my/typefaces

Try it with your team: www.rypple.com/hacker

#badass

http://www.rypple.com/hacker

32 SPECIAL

HAVE YOU HEARD
of Stockholm
Syndrome? It’s
a name given to

the condition wherein hostages develop
positive feelings toward their captors
despite being held in negative, unfavor-
able and even life-threatening conditions.
Victims of Stockholm Syndrome will
even inexplicably stay with their captors
even when given the chance at freedom.

Hopefully nobody reading this is liter-
ally being held hostage right now. If you
are, good luck!

For the rest of you, why might I sug-
gest that you are suffering from Stock-
holm Syndrome? Because employment
relationships can manifest themselves in
this very way.

In the article, Love and Stockholm
Syndrome: The Mystery of Loving an
Abuser, Dr. Joseph Carver says that
the following four situations serve as
a foundation for the development of
Stockholm Syndrome:

The presence of a perceived threat to
one’s physical or psychological survival
and the belief that the abuser would
carry out the threat.

The presence of a perceived small kind-
ness from the abuser to the victim

Isolation from perspectives other than
those of the abuser

The perceived inability to escape the
situation

Looking back at my own career (and
those of other extremely intelligent
people I’ve met who are stagnating in
oppressive companies) I have recognized
that many (me, too, occasionally) have
felt “stuck” for no obvious reason. Some
people seem just plain crazy when you
look at their skill sets, ability, and the low
quality of work or environment they’re
willing to put up with.

So I contacted Joseph Carver to ask his
opinion. Could this be Stockholm Syn-
drome? He agreed. In e-mail, he said “SS is
most likely to develop when the employee
feels trapped, perhaps by a high salary, fear
of losing a career, or fear of humiliation.”
So let’s look at his four conditions:

Perceived threat
Getting fired, being humiliated, not being
a “top 20%” employee, not getting a
raise. Employers wield a lot of perceived
power over employees, especially for
those in very traditional corporate jobs.
The employer must be willing to carry
out the threat to meet this condition.

Small kindness
Got a Christmas bonus once when you
really needed it? Make a competitive
salary? Great benefits? Get to work on a
technology you don’t think you’d be able
to work on elsewhere? There ya go.

Isolation from other perspectives
Again, a big corporate environment is
ripe for this kind of isolation. If you work
for BigCo, you learn to do things The
BigCo way. The company’s organiza-
tional structure becomes a blueprint for
your career progression. You start to lose
sight of what industry pay and incentives
look like since you have a homogeneous
population to compare with. Unfor-
tunately, from what I’ve seen even the
best run companies create this kind of
isolation of perspective and group-think.

Dead-End Jobs:
Are You Suffering From
Stockholm Syndrome?

By CHAD FOWLER

SPECIAL

 33

Charismatic leaders are particularly
capable of creating a culture vacuum
around a cult of personality.

Perceived inability to escape
According to the Bureau of Labor statis-
tics, American adults spend by far more
time working than any other activity.
That’s a lot of your waking time being
trapped in a routine. In a Stockholm
Syndrome situation, the captor chips
away at the self-esteem of the captive. So
for most of our waking hours, those of us
trapped in dead end jobs like these are
exposed to environments which system-
atically destroy our self-confidence. Not
only that, a persistent fear and feeling
of failure makes it harder to actually
explore the options for leaving the bad
situation. The instinctive self-preserva-
tion reaction in this kind of situation is to
work harder to try to avoid the perceived
threat coming to fruition.

So, what if this describes your job?
You owe it to yourself to find a way out.
Hopefully recognizing the signs will
show you that the real situation is far less
grim than you might believe and that
you have control over how you choose to
spend the majority of your adult life.

I’m writing this for the many people
I’ve met (and the countless I haven’t) who
are senselessly stuck in bad job situations.
Please stop wasting your precious time.

Chad Fowler is an internationally known software
developer, trainer, manager, speaker, and musi-
cian. He loves to program computers and, as part
of his role as CTO of InfoEther, Inc., spends much
of his time solving hard problems for customers
in the Ruby language. He is co-organizer of Ruby-
Conf and RailsConf and author or co-author of
a number of popular software books, including
the recently released “The Passionate Program-
mer: Creating a Remarkable Career in Software
Development”.

Commentary
By SANDB0X (SandB0x)

DEAD END JOBS destroy transferable technical skills. I’ve
witnessed miserable scenes. Many people are stuck

maintaining large pieces of poorly written software. They forget
how to actually program because their work involves very little
development, and becomes all about knowing how the specific
piece of software works (and the company’s admin procedures)
so that they can fight fires and make minor changes.

Escape involves gathering the confidence and the determina-
tion for self study, so that applying for another job is even a
viable option. Skunk-works type projects at work are strongly
recommended.

By JAKE VOYTKO (jakevoytko)

I JUST LEFT A job that afflicts Stockholm Syndrome on employ-
ees. Thankfully as a systems programmer in a research firm, I

avoided the worst of it, but most people weren’t so lucky. Here
are some management behaviors that were effective:

Never thank people for finishing something on time, on
budget, and to the project specifications. Instead, heap atten-
tion on those who finish in an all-nighter that ends in the final
demo. Heroic measures are sometimes necessary and deserve
reward, but being part of the process is a big red flag.

Never set expectations or milestones, just expect the project
to be finished on the due date. This had an interesting effect
on the work pace. Due to Parkinson’s Law, individual workers
finish days before the deadline, but that’s not enough time
to test integration. Major problems are discovered late, and
everyone works ridiculous hours to fix it. Thank everyone for
making it work at the last minute, rinse and repeat!

Tell employees to work weekends and nights for projects
that could be unnecessary. Make these individual efforts to
maximize the time one person wastes. When burning the
candle on both ends, it’s satisfying when you’re done and the
work was needed. After all, you took on the impossible, and
here it is! But when days or weeks of your life are thrown away
with a laugh, you would find another job if you actually had
the time.

The Perceived Threats were the Bad Things that would
happen if our demos failed. Funding lines would dry up,
the company would be in trouble, etc. So everyone pitched
together to keep the system going. Everyone became so focused
that they stopped realizing that it could be done another way.

Reprinted with permission of the original author.
First appeared in hn.my/stockholm.

http://hn.my/stockholm

34 SPECIAL

ASK ANY GAME devel-
oper and they’ll tell
you that publishers
are the scum of

the earth. It’s never a question of “if”
the publisher screws you, it’s “when”.
During my 15 years as a developer, I
have seen publishers pull every dirty
trick imaginable, from telling the dev
team of a certain AAA title to remove all
the black kids from the game (“it hurts
sales in Germany”) to informing a small
studio that they were only going to pay
half what they owed for work already
completed, and then only if the studio
signs a legal waiver first (knowing full
well that because of late payments the
studio would be out of business long
before it reached court). This story is not

about publishers, but it is about the kinds
of situations that publishers create, and
the lengths that we developers are often
forced to go to in order to clean up the
messes they leave us with.

The project in question was a night-
mare from day one. There were multiple
studios involved, multiple contracts
had been broken, and several teams had
simply walked away and washed their
hands of the whole thing. We had signed
a contract to do some mobile ports of
some old Midway arcade titles for a
publisher who was subcontracting us on
behalf of a much larger publisher. The
contract with our publisher stated that
they would obtain the original source
code from Midway, hand it over to us at
the start of the project, and we would

deliver working alpha, beta, and release
versions on certain dates.

We signed the contract and imme-
diately got to work on our titles. As it
turned out, there were many problems
with this contract, but one of the more
serious ones was that the publisher was
missing the source code and assets for
one title in particular: SpyHunter.
In the weeks that followed, the publisher
assured us that they were around some-
where, and everything would be taken
care of in due course. One week before
alpha we heard back; they didn’t have
them and wouldn’t be able to get them
in time. SpyHunter had been included
in the contract, because the suits at the
top assumed they could deliver given
the fact that they had already released a

The Day MAME
Saved My Ass
By MARK FELDMAN

 35

port to one of the major consoles. When
we looked closer into this we discovered
that the “port” team had actually written
an emulator for that console (based on
MAME btw) and simply used it to run
a hacked version of the original ROM
image, which they’d downloaded from a
warez site.

Oh.
Running an emulator wasn’t an option

on a low-end mobile, but the publisher
insisted that we had signed a contract
and that with or without assets we were
expected to deliver the alpha version
on time, which at this point was a week
later. If we didn’t, not only would they
withhold all payments due for work
we’d already done, but they would also
cancel all other projects which would

have inevitably meant letting all our
staff go. I had one week to somehow
create a convincing version of SpyHunter
without any of the source code or game
assets. The way I saw it, there were four
problems that needed to be solved: the
AI, the graphics assets, the sound assets,
and the map data.

AI wasn’t too much of a problem; by
simply looking at the game I was able to
hack together some code in a few hours
to roughly copy the behavior of the vari-
ous objects in the game. It wasn’t 100%
perfect, but the publisher was more
concerned with the visual look of the
game. I don’t think they ever played the
original version much, so we got away
with that one pretty easy.

Graphics were a bit more of a problem
as there was no way our artist could
have created replacement art assets in a
few days. This was where MAME first
came to the rescue. The version we had
downloaded to play the game had a
sprite page viewer that displayed all the
tiles used by the game. They changed
occasionally as the game progressed, but
with some trial and error (and judicious
use of the Prnt Scrn button) I managed
to get a complete set of graphics for the
port. They needed to be scaled down for
our target platform, and this required
some Photoshop magic to make sure that
the tiles didn’t bleed into each other, but
the end result was perfect.

01

0302

04

1. SpyHunter.
2. Background tiles.
3. Sprites images.
4. Gameplay screenshot.

Commentary
By SUKOTTO (Sukotto)

TIP FOR NEXT time: Make
deliverables relative to the

time you get the initial assets you
were promised.

BigCo promises you the origi-
nal source code + game assets.

Instead of promising Alpha/
Beta/Release from the signing
of the contract, promise X/Y/Z
business days from delivery of
those critical assets.

(Make sure you have a time-
out clause in there too. “Assets
will be delivered by BigCo
within 60 days of the signing
of this contract, or we will not
develop that title and BigCo will
pay a penalty of $X.”)

Be careful to define what
“assets” mean to you. Assume
what you write will be read by
a lowest-bidder consultant with
active disincentives against show-
ing initiative, and who can barely
read (not stupid though).

36 SPECIAL

Originally, I thought that sound was
going to be a real problem. Our target
platform couldn’t play music, but we
still needed a way of getting the effects.
MAME didn’t have a sound effect
exporter, so it looked like I might have
to resort to trial and error poking around
the ROM. Fortunately, it never came
to that; a quick web search returned
the page of a SpyHunter fan who had
extracted the sound effects himself and
put up WAV files on his web page. These
weren’t recordings, these were rips. Raw,
ADPCM uncompressed WAV files, per-
fect digital reconstructions of the original
assets. A quick check with our pub-
lisher’s legal department confirmed that
yes we were fully entitled to use these
in our port. Personally, I wanted to give
the guy a game credit, or at least send
him a download code for a free copy of
our game or something once it came out
in return for all the work he saved us.
The publisher refused. Their legal team
was already writing up a cease-and-desist
letter ordering him to remove the assets
from his fan page.

And that left the map data. The pub-
lisher insisted that the map be a perfect
replica of the original with all the right
tiles in all the right places. Given enough
time, I could have reverse engineered the
ROM and reconstructed it that way, but
with only a day or two left I had to come
up with something fast. The idea I came
up with was so utterly absurd that even
I was surprised it worked so well. The
first thing I did was write an application
that searched for the MAME window
and then sat in the background taking a
constant stream of screenshots which it
saved to disk. I then had the best game
player in the office play SpyHunter
for about 10 minutes using MAME’s
built-in cheats so that he never died.
A second utility then post-processed
these files and stitched them together
using a simple pixel-match algorithm to
create a continuous image. A third utility
then scanned over this image and again
applied a simple pixel-match against
the tiles in the sprite page that we had

exported earlier. What I was left with
was a partially reconstructed version of
the original SpyHunter map array. I say
partially because many of the tiles were
missing; if a car or explosion effect, etc
was present on screen then the pixel-
match algorithm would fail, and the
tiles in that part of the map would be
left blank. Most of the action happened
on the road where it was easy to fill in
missing tiles. For the rest, I had our guy
play the MAME version a few more
times, merging the data sets for each pass.
When all was said and done there were
only about 20 or so tiles missing from the
entire game. At which point it was trivial
to go through and add them manually
using the MAME screen-shots as refer-
ence. The end-result was an 18x1538
array of tile indices representing a perfect
reconstruction of the original map data.

Publishers would have people believe
that MAME and the emulation scene
is the root of all evil, that it promotes
piracy and ultimately hurts the poor,
starving developers slaving away on the
game. Not only is this claim patently
false, it ignores the fact that many
developers use things like MAME, mod
chips, and homebrew development utili-
ties to help us overcome the day-to-day
frustrations caused by the people behind
the real problems in our industry.

Mark Feldman is a game industry veteran who
has worked for studios both big and small all
over the world. He currently works for a medium-
sized developer that has successfully made the
switch to self-publishing, thus removing itself
from publisher dependence.

Reprinted with permission of the original author.
First appeared in hn.my/mame.

http://hn.my/mame

Reprinted with permission of the original author.
First appeared in hn.my/mame.

http://paymo.biz
http://hn.my/mame

38 SPECIAL

GROWING UP, I spent my summers holed up
in the gym, training gymnastics for up
to six hours a day. When I wasn’t in the

gym, I was doing math problems or practicing Chinese
characters. Or preparing for SAT’s (did 10 full tests
one summer). Or reading personal development books,
like 7 Habits for Highly Effective People, and writing
personal mission statements. That wasn’t normal.

In high school, there were days where I’d:

Wake up at 7 am
Go to school ‘til 3 pm
Stay after class to work with my high school gym-
nastics team till 4:30pm
Drive to my “real” gymnastics practice at 5pm
Do serious and intense training until 9-9:30pm
Get home at 10pm
Shower, eat dinner, and START doing my homework
at 11pm.

That wasn’t normal.
Sometimes I wish I had a more normal life growing

up. I wanted desperately to watch more TV shows, play
video games, and perhaps even get a girlfriend some-
how. I wanted to fit in, you know, like a normal kid.

But then I realized that there were other things about
my life that weren’t normal. Making the Jr National
Team, being named Boston Globe Gymnast of the Year
3 times in a row, getting a 1580 out of 1600 on my first
(and only) taking of the SATs, and being selected as the
graduation speaker for a 2000+ student high school.
None of that was normal either.

If you want to win or succeed in something — you’ve
got to be willing go against the grain. The truth is win-
ners do what losers won’t. World champion climber
Patxi Usobiaga goes months without a single off day.
What kinds of unreasonable, abnormal, and irrational
things are YOU doing to ensure that you get results
that blow people away?

Remember one thing: winning isn’t normal. That
doesn’t mean there is anything wrong with winning.
It just isn’t the norm. It is highly unusual, so it requires
unusual action. In order to win, you must do extraor-
dinary things.

(Excerpted from Winning Isn’t Normal by Dr. Keith Bell)

You look at people who are extremely successful and
I can almost guarantee there is at least something very
weird or different about them. They have attitudes,
habits, ideas and tendencies that are very abnormal. And
that makes total sense. Because winning isn’t normal.

Jason Shen is Customer Scout at isocket and a tech startup in
the SF Bay Area. He did his undergrad and masters at Stanford
where he was captain of the NCAA championship-winning
men’s gymnastics team. Jason loves new projects, sharing
insights, and going on adventures.

Winning Isn’t Normal
By JASON SHEN

Reprinted with permission of the original author.
First appeared in hn.my/winning.

http://hn.my/winning

 39

Commentary
By ALLEN FREEMAN (knieveltech)

REMINDS ME OF a singular experience I had several years
ago. I’d been driving pizza delivery and in general

coasting through life after dropping out of college. I had
wanted to be a programmer when I grew up, but a per-
sonality conflict between myself and the head of the CS
department at school convinced me to hit the bricks.

Anyway, I was doing a delivery to a local apartment
complex on a windy day and on my way back to the car
this little pink piece of paper blew across the parking
lot and fetched up next to my shoe. I picked it up and
inspected it. It was printed on both sides; one side had
some kind of spam advertisement for carpet cleaning or
real estate or something, but the other side caught my eye.
All it said was “If you want something you’ve never had,
you have to do something you’ve never done”.

While it would make a great narrative to say I went
back and quit my dead end job immediately and dedicated
myself to getting my shit together, it was another year
before I started putting my life in order. But ever since
that day, whenever I felt like I was in a rut or whatever, I’d
remember that little piece of paper.

Eventually, I got my shit together, educated myself on a
couple of programming languages, and joined the work-
force as a developer, married, and bought a house. While I
don’t think that piece of paper is solely responsible for my
successes, the idea “If you want something you’ve never
had, you have to do something you’ve never done” has
been kicking around in my head ever since. And I’m sure
it’s colored at least some of the choices I’ve made since
that day.

By DREW HAVEN (Periodic)

I LIKE THE POINT that “winning” requires abnormal behavior,
but I don’t like the phrasing as “winning”. Winning

implies a competition, when many worth-while things
in life aren’t a competition and often simply passing a
personal bar will suffice.

It is a good point that doing extraordinary things
requires extraordinary devotion, but the focus on over-
working and beating an opposition bothers me.

I’d like to think that accomplishing extraordinary things
requires an extraordinary goal and extraordinary passion.
You need to have a goal to direct your energy towards, and
you need the passion to pursue that goal even when it feels
like it might be out of reach.

I think the real message of this article is just that
accomplishing extraordinary things requires a lot of hard
work, persistence, and patience. I think it misses the love
and passion that is required to do that long-term.

Full Stack Rails Developer
Howcast Media (http://www.howcast.com)

San Francisco
Your first project will be a semantic content syndica-
tion product that we are scaling to serve millions of
page views per day. The project leverages bleeding-edge
technologies to deliver relevant content to partner sites.
Performance is king, so if you don’t know it already,
you’ll be learning optimization in JavaScript, Ruby, and
Tokyo Tyrant.
To Apply: All applications receive a response.
http://captainrecruiter.com/jobs/71/applications/new

Amazing Software Engineer Generalist
Rapleaf (http://www.rapleaf.com)
San Francisco
Rapleaf is seeking amazing engineers to help us reach
our ambitious vision of creating a more personalized
world. We’re a technology company at heart — we
solve complex, data-intensive problems with innovative
solutions.
Check out our API and play around with your own
application. We’d love to hear your feedback:
rapleaf.com/developers
To Apply: To learn more, please visit us at
rapleaf.com/careers

Senior Developer
youDevise, Ltd. (https://dev.youdevise.com)

London, England
60-person agile financial software company in London
committed to learning and quality (dojos, TDD,
continuous integration, exploratory testing). Under 10
revenue-affecting production bugs last year. Release
every 2 weeks. Mainly Java, also Groovy, Scala; no prior
knowledge of any language needed.
To Apply: Send CV to jobs@youdevise.com.

Front-end and Back-end Engineers
Meetup (http://www.meetup.com)

New York
Meetup thinks the world is a better place when groups
of people meetup locally, in person, around a common
interest. We’re reinventing how this is done, but we
can’t do it alone! We value iterating/launching quickly,
pragmatism, and long walks on the beach.
To Apply: http://meetup.com/jobs

HACKER JOBS

Reprinted with permission of the original author.
First appeared in hn.my/winning.

http://www.howcast.com
http://captainrecruiter.com/jobs/71/applications/new
http://www.rapleaf.com
http://rapleaf.com/developers
http://rapleaf.com/careers
http://www.meetup.com
http://meetup.com/jobs
http://hn.my/winning

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Contents
	FEATURES
	The Full Stack, Part I
	Today You, Tomorrow Me

	PROGRAMMING
	Staging Servers, Source Control & Deploy Workflows
	Code Fearlessly
	Redis vs HBase vs Cassandra vs CouchDB vs MongoDB vs Riak
	How to Write a Spelling Corrector

	DESIGN
	Five Principles for Choosing and Using Typefaces

	SPECIAL
	Dead-End Jobs: Are You Suffering From Stockholm Syndrome?
	The Day MAME Saved My Ass
	Winning Isn’t Normal

	HACKER JOBS

