
Issue 16  
September  2011

50 Lego Designs with 50 Pieces



2  

Frustrated with
customer support?

Imagine how your customers feel. Our simple engagement tools 
help you understand your customers, prioritize feedback,
and give great customer support faster.

Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
happymonkeys at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=happymonkeys


 3

http://inDinero.com/hackermonthly


Curator
Lim Cheng Soon

Contributors 
Tyler Neylon 
Mark Suster 
Jason Freedman 
Gabriel Weinberg 
Alex Feinberg 
Joe Armstrong 
Dan Benjamin 
Kalid Azad

Proofreader
Emily Griffin

Printer
MagCloud

HACKEr MoNTHLy is the print magazine version 
of Hacker News — news.ycombinator.com, a social news 
website wildly popular among programmers and startup 
founders. The submission guidelines state that content 
can be “anything that gratifies one’s intellectual curiosity.” 
Every month, we select from the top voted articles on 
Hacker News and print them in magazine format.  
For more, visit hackermonthly.com. 

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Images: Tyler Neylon

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com


For links to the posts on Hacker News, visit hackermonthly.com/issue-16. All articles are reprinted with permission of their original author.

Contents
FEATURES

06 50 Lego Designs with 50 Pieces
By TyLEr NEyLoN

STARTUPS

12 What Should You Do with Your Crappy Little Services Business?
By MArK SuSTEr

18 Please Stop Asking How to Find a Technical Co-founder
By JASoN FrEEDMAN

PROGRAMMING

22 Nginx JSON Hacks
By GABriEL WEiNBErG

24 Replication, Atomicity and Order in Distributed Systems
By ALEx FEiNBErG

28 Ways to Get Started in Erlang and Programming
By JoE ArMSTroNG

30 Top Programming Fonts
By DAN BENJAMiN

SPECIAL

34 A Visual, Intuitive Guide to Imaginary Numbers
By KALiD AzAD

http://hackermonthly.com/issue-16.html


FEATURES

50 Lego Designs 
with 50 Pieces
By TyLEr NEyLoN

Last Christmas, a 
friend gave me 
a small Lego set 
just for fun. it’s 

part of a Creator series, where 
each set comes with instructions 
for three different models. i 
love the versatility and expres-
siveness of Lego, and i think 3 
is far too small a number for 
what can be done with these, so 
i challenged myself to create 50 
original designs with this one set 
of about 50 pieces. These images 
are the result.

A dog. Specifically, our dog 
Kepler. Here he is wagging his 
tail because he’s about to get 
a treat. Good dog!

A dragon. i just finished 
watching Game of Thrones.

An origami crane. i was playing 
Heavy rain when i made this one.

An elephant. i really like this design because it 
demonstrates symbolic expression, which is a 
key idea behind the challenge.

A cat.

A horse.



An old biplane. The pieces were begging 
me to make this one.

A steam engine.

Sail boat.

Helicopter.

A bulldozer.

A speedboat in action. Two racers.

Modeled after a formula-one racer.

Spaceship. A rocketship.

Pythagorean spaceship. 

A hovercrafty thing.

Music notation. The G-clef symbol 
was tricky; i couldn’t make it all one 
color and still have a note.ABC-123.

A heart. i made this for my wife for 
Valentine’s day. 



rock, paper, scissors! i couldn’t make 
a good rock, but i was happy with the 
scissors.

Gun. Somehow this felt wrong to 
make out of Lego. i feel like Lego is a 
mostly non-violent toy, despite some 
mini-figs having swords or whatnot.

A person’s head. it was either a white 
guy with orange hair or an orange guy 
with white hair, and i don’t know any 
orange people.

A tree.

A person. They’re wearing orange 
shorts and an orange t-shirt. it’s a 
good look.

A city. i wanted to make a city to get 
a variety of scales in the designs.

The Statue of Liberty. i think this 
model is a bit tricky to recognize at 
first, but then hard to unrecognize 
once you get it.

A bird.

A telescope.

Grand piano.

Chess pieces. i tried to get the order 
of heights pretty close to a real set.

A wind turbine.



A toaster — with toast!

A bug. i have no idea what 
kind of bug this is.

A toilet. No medium should 
be taken too seriously, 
especially toys :)

A clock.

A house and car.

Guitar. one of my favorites.

A fish.
An office setup, complete with 
monitor, bookshelf, and books.



Why not finish with the kitchen sink? 
it was fun to try getting the faucet 
positioned well, and have a decent spout.

An x-wing. That little gray nib behind 
the cockpit is r2-D2.

Millenium Falcon.

AT-ST.

Snowspeeder. This was the first non-
instructed model i built with these pieces. 

An imperial Star Destroyer. This must 
be the largest scale of all the models; 
the smallest was probably the bug.

AT-AT.

B-wing.

A TiE interceptor. 

Tyler Neylon is a programmer who loves math. He is the CTO of Zillabyte, a newly-formed 
startup doing big data analysis. He used to code for Google, and has a PhD in applied 
math (machine learning). Tyler posts weekly puzzles at fridaypuzzl.es and occasionally 
post math ideas at thetangentspace.com

Reprinted with permission of the original author. First appeared in hn.my/lego

http://fridaypuzzl.es
http://thetangentspace.com
http://hn.my/lego


Reprinted with permission of the original author. First appeared in hn.my/codelearn.
Reprinted with permission of the original author. First appeared in hn.my/lego

http://cloudkick.com
http://hn.my/lego


12 STARTUPS

STARTUPS

What Should You Do 
with Your Crappy Little 

Services Business?

There’s a line of thinking in Silicon 
Valley that you should build prod-
uct businesses rather than services 

businesses. This thinking is largely driven by 
the venture capital industry (and subsequently 
Wall Street) who are in search of high margin, 
highly scalable businesses.

it’s nearly impossible to get a services com-
pany financed by VCs. you’re a small fish.

So pervasive has this thinking become that 
on several occasions startup companies with 
profitable and fast-growing tech services 
businesses have come to me wanting to change 
their companies to product businesses or to 
create “spin outs.”

A great recent example of this was a success-
ful group of entrepreneurs who had created 
a company that will do $10–12 million in 
revenue at their system integration business 

in 2011 ($5 million in 2010, $2-3 million in 
2009). They feel very confident they can hit 
$18–20 million in 2012.

They have created two internal technology 
“products” and wanted to figure out how they 
could turn their services business into a prod-
uct business that could be financed. This team 
is talented. They wanted advice. And probably 
some money.

i gave them advice i don’t think they were 
expecting from a VC,

“Don’t raise venture capital for this business. 
Ever. And stop f***ing around trying to create 
a product company.”

it is advice i give entrepreneurs often as i 
have written here on why most businesses 
should never raise VC [hn.my/novc].

By MArK SuSTEr

http://hn.my/novc


 13

Why Shouldn’t Most Services Businesses 
Raise VC?
Well, let’s look at this exact situation:

•	 i don’t have access to their actual financial 
statements, but let me make some reason-
able assumptions. it would not be a big 
stretch to image a well-run service business 
like this making 15–25% net profit margins. 
Early in a services business there are usually 
no profits as the company reinvests in hiring 
people to grow, but by $20 million in sales 
the company should at least be pulling in 
10% profits (if not more) depending on how 
much is reinvested.

•	 So assume that in 2012 the company would 
do $20 million in sales and $2 million in prof-
its (10%) and 2013 they would do sales of 
$25 million and $4 million in profit (16% net 
margin) and then slow growth in 2014 to $30 
million and $6 million in profit (20% profit). 
That is $12 million in profits over 3 years.

•	 The founders could reinvest this in growth 
(0% tax, focus on future equity growth) or 
take the profits of $12 million and divide 
amongst the founding partners. Assuming 
there are 3 founders and they own an equal 
amount (33%) then they’ve just taken $4 
million each in profits and note that this is 
at a qualified dividend tax rate (currently 
15%) versus an income tax rate (35%). True, 
the 15% rates will likely go up in the future, 
but i doubt they will approach the income 
tax percentage level.

•	 The thing is, even if your services business is 
a smaller scale than this, you have complete 
control over the decisions about where 
to take the business. There is no shame in 
making a few million dollars in profit and 
paying yourself dividends while still owning 
a large percentage (if not all) of your busi-
ness. it’s how things are done across the 
country outside of Silicon Valley.

•	 The minute you raise VC you have one 
option: grow and try to become big. No 
VC is interested in dividends — they want 
growth. That’s the right answer for VCs. 
it may be the right answer for you. But it 
might not.

•	 Trying to turn a successful services business 
into a product business is getting the cart 
before the horse. if you really want to do a 
product business, then hire a professional 
manager for your services company, quit 
that job, and focus 100% on your product 
company.

Why Build a Services Business in the First 
Place?
There are at least two types of tech services 
businesses in my mind:

➊ Service as a bridge to a product business
one of the best ways for young startups to 
finance their business without any dilution 
is what i call “customer financing,” which is 
mostly only possible in businesses that target 
businesses rather than consumers. Customer 
financing often comes in the form of your 
company agreeing to build a product with a 
“sponsor” customer or two and helping them 
with the rollout/implementation. often in this 
strategy you end up giving them the product 
for free and bill them only services fees. you 
own the iP you create.

The benefits for the customer are: a mostly 
custom-built product addressing one of their 
internal needs, the focus of a very talented 
young startup focusing on their business need 
and free product — potentially for life.

The benefits for you are even more clear: 
you get to build a product raising significantly 
less external money (if any at all) and therefore 
no dilution, you get a customer who will help 
you figure out the real requirements for your 
business and you have your first real reference 
client lined up, which should help with future 
funding and with future sales.



14 STARTUPS

if you set out to build this kind of business 
you just need to be sure you don’t become a 
permanent consulting business by default. The 
“customer-financed” type of tech service busi-
ness is never frowned upon by VCs — unless 
you’ve been doing it for 2-3 years with no 
product business to show for it, by which point 
they assume you’re the second type of services 
business.

➋ Services for services sake
The type of business that is generally shunned 
in Silicon Valley is the “pure services” business 
like consulting, system integration, value-added 
resellers (VArs), customer support businesses, 
outsourcing companies, etc. i have already out-
lined some of the economic reasons these can 
be good businesses, one of the most important 
being retaining full control in you business.

But the broader reason that i often suggest 
to entrepreneurs is that they’re much easier 
to build than product businesses even though 
they’ll never become Google, Twitter, or 
Facebook. Trust me — it is far easier to per-
suade a business to pay you for your services 
(a concept they readily understand) than it is 
to persuade them to buy a totally new product 
concept and pay for that product.

“How much is that software really worth? 
Who else is using it? How much did they 
pay? Wait, I’m only paying “X” for my 
Salesforce.com licenses — and you want me 
to pay “Y” for your product? Who are your 
competitors — how much do they charge?”

i could go on-and-on with all of the sales-
blocking messages you will hear when you try 
to charge for a product. i’ll repeat: everybody 
understands paying for services. it’s pure irony. 
At my first company we would have a product 
sale of $80,000 where the customer would 
grind us to get the fee down to $70,000 but 
would readily pay $25,000 extra for “imple-
mentation & post-sales support.”

We were building a VC-backed software 
business, so i had to focus on the product busi-
ness. But this lesson in business was never lost 
on me. And some of my former teammates are 
now building really awesome services busi-
nesses in the exact same field and they own 
100% of their companies.

Even tech blogs know this. you struggle to 
get advertisers to pay your CPM rates and get 
your page clicks up in a business where you 
become a near commodity to every other web-
site out there. yet you can run a conference 
and mint money. if it’s well run, people readily 
pay for conferences and sponsors readily pay to 
become platinum, gold, or silver sponsors. Tech 
blogs can theoretically scale; tech conferences 
are pure service businesses.

“It is far easier to persuade a business 
to pay you for your services than buy a 
totally new product concept.”



 15

But How Do Service Businesses Grow?
i’m not saying that scaling a services business 
is easy — it’s not. one big challenge is how to 
grow the company. you end up needing to add 
staff and take on more risk without knowing 
what your future demand will be. There are a 
couple of ways to think about this growth.

➊ Start with a network of independent 
contractors (1099’s). When you’re a young 
company with 3–4 people and you land 
work that requires 7–8, it can be daunting. 
you don’t necessarily want to take on the 
extra employees and risks. i recommend 
that you establish a network of contractors 
who want to do work similar to yours but 
don’t know how to sell projects or to build a 
company. They’ll be glad for the occasional 
extra work.

➋ Vendor financing. When you start to win 
business — let’s say as an implementation 
arm for tech/business products or as an ad 
sales team for large tech/media businesses — 
you can often get financed in a small way by 
your vendors who are all to happy to have a 
bigger ecosystem of implementation houses. 
They won’t do this before you prove your-
self, but once you hit a minimum scale, this 
is always an option.

➌ Angel financing. just because VCs won’t 
back this kind of business doesn’t mean 
angels won’t. if you can show a few million 
in sales and the ability to return dividends in 
the near-term, there are always smart busi-
ness professionals who will consider financ-
ing this. What are their other choices these 
days — money in a bank at 0.5% interest?

➍ Bank financing. oK, so this isn’t imme-
diately likely to come from Wells Fargo, 
but there are tech banks like Silicon Valley 
Bank or Square1 Bank that are in the busi-
ness of financing startups. if you can show 
regular cashflow and are willing to put your 
profits into their bank you can often fund 
expansion this way.

Final message on financing: just be careful 
not to let your fixed costs get too high as a 
young services business. in a booming tech 
market like 2011, it’s easy to think your busi-
ness will always expand. The problem with 
service businesses is that when the economy 
turns, revenue and profits take a really big and 
quick hit. Those companies that have a largely 
variable cost base and make the tough deci-
sions survive for the next boom.

“Just because VCs won’t back the service 
business doesn’t mean angels won’t.”



16 STARTUPS

Why Shouldn’t Service Businesses Become 
Product Businesses?
if you build a true “technology services for 
services sake” business, at some point you’ll 
likely build technology products as part of your 
projects where you either own the iP or you 
own it jointly with your customer or business 
partner.

This is where many service businesses make 
mistakes and go pear shaped. They get “prod-
uct business envy” because they read too much 
TechCrunch about their product brethren rais-
ing money at crazy valuations and getting sold 
at even crazier ones. So they set out to build a 
product business within a services company.

A few problems arise. Firstly, they don’t 
realize how hard product businesses are. They 
mistake their successes in selling services as a 
competency in selling products. This is a huge 
mistake. Secondly, they often ramp up their 
cost base to accommodate these costs, which, 
when a down market hits, are more f***ed than 
those that stay focused. Finally, the focus on 
the product (envy) means that they take their 
eye off of their core business, which is services. 
So the core business suffers.

i saw this first hand. My first career was 
at Andersen Consulting (one of the largest 
services businesses in the world). We built 
a hugely successful global services business, 
yet we never got over our product envy 
from watching our tech clients. So we cre-
ated internal software projects and all of the 
internal consultants on those projects became 
blowhards who thought they knew how to 
create software product businesses.

We stunk at every product we ever created. 
We had no sense for gathering real customer 
requirements. We over-spec’d products. We 
built for our over-intellectual selves. i can’t 
think of any great software tools ever created 
internally by Andersen Consulting. We were a 
great services business. Period.

“Many service businesses mistake 
their successes in selling services as a 
competency in selling products. ”



 17

What Should Services Businesses do with 
Their Product Businesses?
So back to my advice to the company i 
recently spoke to about spinning out their 
tech business or raising VC. My advice wasn’t 
to shut down all product/iP initiatives but 
rather to be clear on their purpose and how to 
monetize them.

➊ Products as a service sales machine
My dear friend Franck Meudec in Paris knows 
this best. He has built some internal technol-
ogy products to support his services business. 
They are “loss leaders” for his core business. 
instead of going in and trying to hold the line 
on how much to charge for these products, he 
can tell customers, “Sure, we’ll give you our 
planning software at cost if you decide to work 
with us.”

His business is booming. These products 
help him win his core sales. He is not confused 
about which is the horse and which is the cart. 
He is building a services business. instead of 
owning 1% in options to join a startup tech 
company, he created his own tech services 
business. He is the majority owner. Higher 
risk, higher reward than joining as a junior 
employee somewhere else.

➋ Products as a key differentiator
Another important reason for having internal 
iP in your services business is as a key dif-
ferentiator against other services businesses. 
if a customer is faced with two equal choices 
for companies who can implement Salesforce.
com, how do they choose one other than from 
references and price? imagine if you had built 
a few modules on top of Salesforce.com that 
made that product more effective? Even if you 
didn’t charge for these, it would sure increase 
your sales hit rate.

Tech services business in booming markets 
are mostly about how fast you can sell, imple-
ment, manage quality, hire, and sell some 
more. in a down market iP can become a huge 
differentiator.

➌ Products as a gross margin bump
Finally, it should be said that in a services busi-
ness, often your implementation rate becomes 
a commodity relative to others in the market. 
if you can make an extra 10% on each sale by 
selling your “add on” products that are at 90% 
gross margins, not only will you increase your 
win rates but you’ll also add valuable profits to 
your bottom line.

In summary: i’m not advocating that compa-
nies are crazy to try and be product companies. 
in fact, that’s all that i fund as a VC. But i 
don’t want the narrow world of venture-
backed companies and the trade rags that 
report on them to dissuade the overwhelming 
masses of potential entrepreneurs from build-
ing meaningful businesses that are both fun 
and economically rewarding. n

Mark Suster is a 2x entrepreneur who has gone to the 
Dark Side of VC. He joined GRP Partners in 2007 as a 
General Partner after selling his company to Salesforce. 
He focuses on early-stage technology companies.

Reprinted with permission of the original author.  
First appeared in hn.my/service

http://hn.my/service


18 STARTUPS

By JASoN FrEEDMAN

Please Stop Asking How to 
Find a Technical Co-founder

Listen guys, i’m sorry. But, i just can’t 
do it anymore. i can’t keep having 
this conversation with every non-tech 

founder. it’s just too painful. on you, on me, 
and on everyone else that you’ve approached. i 
was once on the search for a technical co-
founder, so i can empathize. 

But, seriously, please stop. 
Back in the day, i remember going to my 

favorite startup mentor, Gregg Fairbrothers, 
and asking him for help finding a technical 
co-founder. Here’s what he said:

I can’t help you with that, but all the good 
entrepreneurs seem to figure it out. Hopefully 
you will, too.

Man, i still love that answer. That’s being a 
founder. if you have a problem, go figure out 
a way to solve it. As a professor, Gregg was 
always teaching me larger lessons instead of 
just answering my question directly. The cynic 
might say that he was punting because he 
didn’t have advice to give. However, he helped 

me on hundreds of other startup questions. 
i believe he was communicating to me that 
putting together my team was solely on me. 
No additional instruction required...or possible. 
That’s why i love going back to him for life 
advice.

But i digress — back to you. you have a very 
specific problem which you need solved. you 
need to find a technical co-founder. This post is 
my very best effort to help you think through 
your problem (and by selfish extension, hope-
fully to never have to answer this question 
again).

So, here’s the really big mental leap that 
everyone seems to forget:

You don’t find a technical co-founder, 
you earn one.

And that right there is why i get so bored of 
this question. it’s not like i can really help you 
“find” a technical co-founder. you have to earn 
a technical co-founder. And until you realize 
that, no one will want to work with you. 



 19

So now i ask you, what have you done to earn 
a technical co-founder?

And don’t say that you’re the idea guy. 
Having an idea is one piece, but it’s a very, 
very small piece. in fact, it’s so small that it’s 
actually better to earn a technical co-founder 
without the idea in place so that you guys 
come up with it together. When neither person 
has an idea prepackaged with some degree of 
emotional attachment, it becomes far easier to 
engage in honest customer development, rapid 
iteration, and all the other lean processes that 
will eventually help you find product-market 
fit. And more importantly, earning a technical 
co-founder without resting on the merits of 
your idea forces you to prove yourself in other 
ways. And that’s good for everyone involved.

So, here’s the deal. Go out and do all of 
those things that people always do to find 
talent. Talk to friends, talk to friends of friends, 
go to conferences and meetups, etc. Check out 
the websites [hn.my/co-founder-sites] that are 
always popping up (though they don’t gener-
ally attract quality).

When you meet people through all these 
various ways, realize that every technical 
person has one of three options:

A) Partner with you.

B) recommend you to a friend.

C) Forget about you.

your goal is to not continually hit outcome 
C. And the way to do that is to earn their 
respect. The following is not a recipe you can 
follow that magically produces a technical 
co-founder in the end. However, do a bunch of 
this stuff and the odds that someone recom-
mends you to a friend become much higher. 
And each of these steps will both make you 
a better entrepreneur and move your startup 
along.

How to Earn a Co-Founder

Learn to Code
Stop everything else that you’re doing right 
now for your startup and learn to code. if you 
take the time to learn enough to build some 
small project, you’ll learn the language of 
talking to hackers, and you’ll earn some respect. 
Ninety-nine percent of non-technical guys 
looking for a technical co-founder won’t put in 
the effort. This is your single best way of stand-
ing out. you’ll learn to naturally see the value of 
Hacker News and Stack overflow. you’ll learn 
to appreciate how things work. And hopefully 
you’ll enjoy it, which will allow you to have 
real conversations with hackers about what 
they do. Will Miceli wrote the best blog post 
[hn.my/overrated] i’ve ever read on exactly 
this strategy, including awesome links for 
getting started. Don’t know where to start? zed 
Shaw will get you started [hn.my/hardway].

Build the Front-End
What’s to stop you from building the front 
end of your site right now? you could get 
design done with 99 Designs, send it off to 
PSD2HTML, throw it up on Wordpress, and 
SHABoW! you’ve got a website. of course, 
there’s no backend, no data, none of the special 
sauce that’ll make your concept work...BuT, 
you’ll have proved that you know how to 
market your idea and build a beautiful prod-
uct. Hopefully, you’ll learn a ton about your 
product, but at the very least, you can show an 
interested hacker more than a napkin business 
plan.

http://hn.my/co-founder-sites
http://hn.my/overrated
http://hn.my/hardway


20 STARTUPS

Throw Up a Trial Balloon
i’m sure if you think really hard about it, you 
can come up with some real things that you 
can do to test your concept hypothesis. And 
i’m not talking about more MBA-type research. 
Hopefully, you already know the importance of 
customer development [hn.my/custdev]. Find 
a way to fake your concept so that users don’t 
know it’s not actually built yet. Take that front-
end you built and funnel interested users into a 
beta waiting list. Having real users on a waiting 
list will help you earn a high quality technical 
co-founder because you’ll be pre-empting his 
biggest fear: that his work will be a waste of his 
time.

Build a Following
Let’s say you’re building, for example, an 
automotive parts marketplace. Go start a blog 
serving the automotive community. They are 
your future users anyway, and you’re going to 
have to figure out a way to market to them. 
What better way than earning them now as 
readers and later converting them to users? 
And use Twitter to your advantage. Building 
up a following north of a 1000 people is hard 
because that’s more than just your friends. 
Which means you have to say interesting 
things and share helpful links. it’s marketing 
yourself. it’ll prove your intelligence and your 
marketing abilities to your future co-founder.

Spend Some Money
When a hacker joins an unproven, non-techni-
cal entrepreneur, he’s risking his most impor-
tant asset: his time. yes, you’re also risking 
your time, but you have different risk profiles. 
While he already knows he can code, neither 
of you knows whether you’ll be able to deliver 
as the business co-founder. you need to prove 
that you’ve got your proverbial skin in the 
game, too. Go spend some money on offshore 
coders and get a prototype built. or offer to 
pay a salary to your technical partner. My first 
technical co-founders started as employees. i 
paid them cash from day one using credit card 
debt. over time, i earned their trust, and we 
became equal co-founders.

if you’re a hacker in need of some startup 
advice, ping me anytime — we’ll grab a beer 
and chat startups. And if you’re a business guy 
that earned a technical co-founder by learning 
to code, please tell me about it! i’ll buy you a 
beer...you’ve earned it. n

Jason is the co-founder of the recently-acquired Flight-
Caster. Previously, Jason co-founded and worked 
on several other startups that crashed and burned. 
Jason continues to stubbornly insist that everything 
he learned in life came from summer camp. You can 
find his non-apologetic, self-righteous blog posts at 
humbledMBA.com and on Twitter at @jasonfreedman

Reprinted with permission of the original author.  
First appeared in hn.my/cofounder

http://hn.my/custdev
http://humbledMBA.com
http://twitter.com/jasonfreedman
http://hn.my/cofounder


Days go by quick. Then an entire week. What did you 
miss on Hacker News?

Before you see another sunrise subscribe to Hacker 
Newsletter, a weekly email of the best articles from 
Hacker News curated by hand. Afterwards you won’t 
miss another great article.

Visit http://hackernewsletter.com/hm to subscribe!

hackernewsletter

Reprinted with permission of the original author.  
First appeared in hn.my/cofounder

http://hackernewsletter.com/hm
http://hn.my/cofounder


22 PROGRAMMING

PROGRAMMING

By GABriEL WEiNBErG

Nginx JSON Hacks

At DuCkDuCkgo we use a lot of 
nginx (an awesome Web server) 
and a lot of JSoN, both for our 

own APi [api.duckduckgo.com] and for 
processing external APis [ye.gg/apis]. Here are 
some hacks we’ve been using.

Proxy external JSON calls
you can take an external APi and run it 
through your server instead of letting the client 
call it directly. 

location ^~ /ext_api2/ {

   proxy_pass http://api.server.com/;

 }

That means a request for

http://your.server.com/ext_api2/test

will turn into

http://api.server.com/test

Setting up a proxy can yield a number of 
benefits:

Proxy caching
proxy_cache_path  /tmp/nginx_cache 

levels=1:2 keys_zone=STATIC:64m 

inactive=60m max_size=128m;

proxy_cache STATIC;

proxy_cache_valid 200 204 302 1d;

Now it won’t hit the external APi if the 
same request is called by multiple clients. if it 
is a pay APi, this could save you money, and it 
could also just speed up the responsiveness of 
your site.

Proxy timeouts
proxy_connect_timeout 5;

proxy_read_timeout 5;

proxy_send_timeout 5;

you can set the timeouts per proxy (or 
globally), thus controlling how long the client 
will wait for each request. With timeouts in 
place you can ensure the page doesn’t hang 
on something, eventually loads, and gracefully 
degrades the way you want it to — even for 
components you don’t control.

Strip headers
proxy_hide_header Set-Cookie;

Some external APis like to do things to 
clients (like set cookies). you can protect your 
users from that by stripping them (or other 
headers). 

Reset headers
proxy_set_header Referer http://duck-

duckgo.com/;

Similarly, you can reset your headers. This 
can protect privacy by zeroing out search 
terms (in the case of the referrer), but you can 
also set custom headers.

http://api.duckduckgo.com
http://ye.gg/apis


 23

Hide private API keys
Many APis require use of a key, which you 
generally don’t want to expose client-side. you 
can still allow for client-side calls by proxying 
them and then having nginx add the key.

location ^~ /ext_api5/ {

  rewrite ^/ext_api5/(.*) /api/check/$1/key/

e95fad09aa5091b7734d1a268b53cef5  break;

  proxy_pass http://api.server.com/;

}

Now a request for

http://your.server.com/ext_api5/test

will turn into

http://api.server.com/api/check/test/key/

e95fad09aa5091b7734d1a268b53cef5

Turn JSON into JSONP
JSoNP is a slight modification of JSoN where 
the object is wrapped in a callback function 
usually specified by you. For example, say you 
grab a JSoN object from somewhere that 
looks like this:

{"Name": "Cheeso", "Id" : 1823, "Rank": 7}

With JSoNP you specify a callback function 
like “parseresponse” and then it looks like this:

parseResponse({"Name": "Cheeso", "Id" : 

1823, "Rank": 7})

This is useful for two reasons. First, the 
function will be called automatically when it 
is done loading. Second, it allows you to get 
around cross-domain errors.

if the above APi was yours it’s easy to call 
within a client-side script. But if it isn’t yours, 
i.e. on another domain, and you try to call it, 
you’ll often get lots of cross-domain errors. The 
way around this is to use JSoNP. Then you can 
do something like this:

<script type="text/javascript" 

src="http://other.server.com/api/?q=param

&callback=parseResponse"></script>

you could also do that via JS, e.g.

function add_script(url) {

    var script,scripts;

    script = document.

createElement('script');

    script.type='text/javascript';

    script.async = true;

    script.src = url;

    scripts = document.

getElementsByTagName('script')[0];

    scripts.parentNode.

insertBefore(script, scripts);

}

add_script('http://other.server.com/api/?

q=param&callback=parseResponse');

Now here’s the problem. Most external APis 
don’t have JSoNP capability. 

No bother, with nginx you can turn JSoN 
into JSoNP.

location ^~ /ext_api3/ {

  echo_before_body 'parseResponse(;

  proxy_pass http://api.external.com/;

  echo_after_body ');';

}

This uses the HTTPEchoModule to wrap 
the JSoN response in the callback for the 
external APi.

Custom logs
The HTTPLogModule allows you to specify 
log formats within location blocks, which 
means you can write your APi logs to a 
separate file. it also means if you proxy via a 
location block as in the examples above, you 
could give each proxy their own access and 
error logs with different parameters, e.g. error 
log level. n

Gabriel Weinberg is the founder of DuckDuckGo, a 
search engine. He is also an active angel investor, based 
out of Valley Forge, PA.

Reprinted with permission of the original author.  
First appeared in hn.my/nginx

http://hn.my/nginx


24 PROGRAMMING

By ALEx FEiNBErG

Replication, Atomicity and 
Order in Distributed Systems

DistributeD systems are an increas-
ingly important topic in Com-
puter Science. The difficulty and 

immediate applicability of this topic is what 
makes distributed systems rewarding to study 
and build.

The goal of this article is to help the reader 
develop a basic toolkit they could use to reason 
about distributed systems. The toolkit should 
help the reader see the well-known patterns in 
the specific problems they’re solving, to iden-
tify the cases where others have already solved 
the problems they’re facing, and to understand 
the cases where solving 100% of the problem 
may not be worth the effort.

Leaving a Newtonian Universe
For the most part, a single machine is a New-
tonian universe: that is, we have a single frame 
of reference. As a result, we can impose a total 
Happened-Before order on events, i.e., we can 
always tell that one event happened before 
another event. Communication can happen over 
shared memory, access to which can be synchro-
nized through locks and memory barriers.1

When we move to a client and server 
architecture, message passing architecture is 
required. in the case of a single server (with 
one or more clients), we can still maintain an 
illusion of a Newtonian universe: TCP (the 
transport layer used by popular application 
protocols) gives a guarantee that packets will 
be delivered to the server in the order sent by 
the client. As we’ll later see, this guarantee can 
be used as a powerful primitive upon which 
more complex guarantees can be built.

However, there are reasons why we no 
longer want to run an application on a single 
server: in recent times it has become consensus 
that reliability, availability, and scalability are 
best obtained using multiple machines. Mission 
critical applications must at least maintain reli-
ability and availability; in the case of consumer 
(and even many enterprise) web applications, 
with success often come scalability challenges. 
Thus, it’s inevitable that we leave Newton’s 
universe and enter Einstein’s.2



 25

1 This is not to belittle the fascinating chal-
lenges of building parallel shared memory 
systems: the topic is very well covered outside 
of this post. i highly recommend “The Art of 
Multiprocessor Programming” (by Maurice 
Herlihy) and “Java Concurrency in Practice” 
(Goetz, Lea, et al) to those interested in shared 
memory concurrency.

2 The comparison with theory of relativity is 
not original: Leslie Lamport and Pat Helland-
have used this comparison. Several concepts in 
distributed systems such as Vector Clocks and 
Lamport Timestamps are explicitly inspired by 
relativity.

Intuitive Formulation of the Problem
Suppose we have a group of (physical or logi-
cal) nodes: perhaps replicas of a partition (aka 
a shard) of a shared nothing database, a group 
of workstations collaborating on a document 
or a set of servers running a stateful business 
application for one specific customer. Another 
group of nodes (which may or may not overlap 
with the first group of nodes) is sending 
messages to the first group. in the case of a 
collaborative editor, a sample message could 
be “insert this line into paragraph three of the 
document”. Naturally, we would like these 
messages delivered to all available machines in 
the first group.

Question is, how do we ensure that, after 
the messages are delivered to all machines, the 
machines remain in the same state? in the case 
of our collaborative editor application, suppose 
Bob is watching Alice type over the shoulder 
and sees her type “The” and types “quick 
brown fox” after: we’d like all instances of the 
collaborative editor to say “The quick brown 
fox” and not “quick brown fox The”; nor do we 
want messages delivered multiple times, e.g., 
not “The The quick brown fox” and especially 
not “The quick brown fox The”!

We’d like (or, in many cases, require) that if 
one of the servers goes down, the accumulated 
state is not lost (reliability). We’d also like to 
be able to view the state in the case of server 
failures (read availability) as well as continue 
sending messages (write availability). When 
a node fails, we’d also like to be able to add a 
new node to take its place (restoring its state 
from other replicas). ideally, we’d like the later 
process to be as dynamic as possible.

All of this should have reasonable perfor-
mance guarantees. in the case of the collabora-
tive editor, we’d like characters to appear on 
the screen seemingly immediately after they 
are typed; in the case of the shared nothing 
database, we’d like to reason about perfor-
mance not too differently from how we reason 
about single node database performance, i.e., 
determined (in terms of both throughput and 
latency) primarily by the CPu, memory, disks 
and ethernet. in many cases we’d like our dis-
tributed systems to even perform better than 
analogous single node systems (by allowing 
operations to be spread across multiple nodes), 
especially under high load.

Problem is, however, that these goals are 
often contradictory.

State Machines, Atomic Multicast, and 
Consensus
An approach commonly used to implement 
this sort of behavior is state machine replica-
tion. This was first proposed by Leslie Lamport 
(also known as the author of LaTex), in the 
paper “Time, Clocks and the ordering of 
Events in a Distributed System”. The idea is 
that if we model each node in a distributed 
system as a state machine, and send the same 
input (messages) in the same order to each 
state machine, we will end up in the same final 
state.



26 PROGRAMMING

This leads to our next question: how do we 
ensure that the same messages are sent to each 
machine, in the same order? This problem is 
known as atomic broadcast or more generally 
atomic multicast. We should take special care 
to distinguish this from the iP multicast proto-
col, which makes no guarantees about order or 
reliability of messages: uDP, rather than TCP is 
layered on top of it.

A better way to view atomic multicast is as 
a special case of the publish subscribe pat-
tern (used by message queuing systems such 
as ActiveMQ, rabbitMQ, Kafka and Virtual 
Synchrony based systems such as JGroups and 
Spread3).

A generalization of this problem is the 
distributed transaction problem: how do we 
ensure that either all the nodes execute the 
exact same transaction (executing all opera-
tions in the same order), or none do?

Traditionally two phase commit (2PC) 
algorithm has been used for distributed trans-
actions. The problem with two phase commit 
is that it isn’t fault tolerant: if the coordinator 
node fails, the process is blocked until the 
coordinator is repaired (Consensus on Transac-
tion Commit).

Consensus algorithms solve the problem of 
how multiples nodes could arrive at a com-
monly accepted value in the process of failures. 
We can use consensus algorithm to build fault-
tolerant distributed commit protocols by (this 
is somewhat of an over-simplification) having 
nodes “decide” whether or not a transaction has 
been committed or aborted.

3 Virtual synchrony (making asynchronous 
systems appear as synchronous) is itself a 
research topic that is closely related to and at 
times complemented by consensus work. Ken 
Birman’s group at Cornell has done a great 
deal of work on it. unfortunately, it was dif-
ficult to work much of this fascinating research 
into a high level blog post.

Theoretic Impossibility, Practical 
Possibility
Problem is that it’s impossible to construct a 
fault-tolerant consensus algorithm that will 
terminate in a guaranteed time-bound asyn-
chronous system lacking a common clock: this 
is known (after the Fisher, Lynch, Patterson) as 
the FLP impossibility result. Eric Brewer’s CAP 
theorem (a well covered topic) can be argued 
to be an elegant and intuitive re-statement of 
the FLP.

in practice, however, consensus algorithms 
can be constructed with reasonable liveness 
properties. it does, however, imply that consen-
sus should be limited in its applications.

one thing to note is that consensus pro-
tocols can typically handle simple or clean 
failures (failures of minority of nodes), at the 
cost of greater latency: handling more complex 
(split brain scenarios), where a quorum can’t 
be reached is more difficult.



 27

Paxos and ZAB (Chubby and ZooKeeper)
The Paxos Consensus and Commit protocols 
are well known and are seeing greater pro-
duction use. A detailed discussion of these 
algorithms is outside the scope of this post, but 
it should be mentioned that practical Paxos 
implementations have somewhat modified the 
algorithms to allow for greater liveness and 
performance.

Google’s Chubby service is a practical 
example of a Paxos based system. Chubby 
provides a file system-like interface and is 
meant to be used for locks, leases, and leader 
elections. one example of use of Chubby (that 
will be discussed in further detail in the next 
post) is assigning mastership of partitions in a 
distributed database to individual nodes.

Apache zooKeeper is another practical 
example of a system built on a Paxos-like 
distributed commit protocol. in this case, the 
consensus problem is slightly modified: rather 
than assume a purely asynchronous network, 
the TCP ordering guarantee is taken advantage 
of. Like Chubby, zooKeeper exposes a file-sys-
tem like APi and is frequently used for leader 
election, cluster membership services, service 
discovery and assigning ownership to partitions 
in shared nothing stateful distributed systems.

Limitations of Total Transactional 
Replication
A question arises: why is transactional rep-
lication only used for applications such as 
cluster membership, leader elections, and 
lock managers? Why aren’t these algorithms 
used for building distributed applications, e.g., 
databases themselves? Wouldn’t we all like a 
fully transactional, fault-tolerant, multi-master 
distributed database? Wouldn’t we like mes-
sage queues that promise to deliver exactly the 
same messages, to exactly the same nodes, in 
exactly the same order, delivering each message 
exactly once at the exact same time?

The above mentioned FLP impossibility 
result provides one limitation of these systems: 
many practical systems require tight latency 
guarantees even in the light of machine and 
network failures. “The Dangers of replica-
tion and a Solution” also discusses scalability 
issues such as increases in network traffic, 
potential deadlocks in what the authors called 
“anywhere-anytime-anyway transactional 
replication.”

in the case of Chubby and zooKeeper, this is 
less of an issue: in a well-designed distributed 
system, cluster membership and partition own-
ership changes are less frequent than updates 
themselves (much lower throughput, less of a 
scalability challenge) and are less sensitive to 
latency. Finally, by limiting our interaction with 
consensus-based systems, we are able to limit 
the impact of scenarios of where consensus 
can’t be reached due to machine, software, or 
network failures. n

Alex Feinberg is a Senior Software at LinkedIn, working 
on Project Voldemort, a reliable, distributed key-value 
store. He’s interested in distributed systems, systems 
programming and functional programming languages.

Reprinted with permission of the original author.  
First appeared in hn.my/distributed

http://hn.my/distributed


28 PROGRAMMING

By JoE ArMSTroNG

Ways to Get Started in 
Erlang and Programming

i’m olD sChool: you don’t need any fancy 
tools. Just a text editor and an erlang shell. 

1. open your text editor:

2. Type in the following program.

-module(hello). 

-compile(export_all). 

start() -> "hello world".

3. Store it in a file called hello.erl

4. Start an erlang shell. it will say “>”

5. Type in two commands:

> c(hello). 

> hello:start().

The first command compiles the pro-
gram. The second evaluates the command 
hello:start()

That’s all it takes — typing three lines of 
code into a file with a text editor, then typing 
two lines into the shell.

That’s all it takes. Ninety-five percent of all 
the fun can be achieved with a simple text 
editor and the erlang shell. That’s how most of 
the erlang system was implemented.

The erlang shell can be installed in zillions of 
ways: compile the sources or apt-get install it 
(or whatever).

Forget about git/iDEs/rebar etc.
use this approach for all languages.
iDEs and build tools are the single biggest 

obstacle i know of to getting started.
Me, i use

•	  a shell
•	  makefiles
•	  emacs

for all known programming languages under 
the sun.

Ninety-eight percent of all the fun can be 
had with the compiler alone — all the rest is 
hype.



 29

Forget about the tools
Tools like rebar, etc., are under for automating 
something, but if you don’t know what it is 
that you are automating, and if the tool doesn’t 
work, you will just end up incredibly confused.

Then buy a decent book and type in the 
programs by hand.

one at a time, thinking as you go.
After 30 years you will get the hang of this 

and be a good programmer.
Tools are no substitute for typing in small 

programs and understanding exactly how 
they work. This is true for all programming 
language. Programming is an art form, there is 
no easy way.

Like playing the violin — is there an easier 
way to learn violin other than by practicing for 
thousands of hours? i think not.

Start with one-liners in the shell. Start the 
shell:

type

> A = 1

then

> A = 2

Ask what happens and why.
There is no quick way to learn programming 

— no tool will help.
your brain is a zillion times better than the 

best iDE. Programs form in your brain, not in 
an iDE.

But then, i’m old school.
Have fun — if it’s not fun it is pointless. 

Don’t fight the tools; all you need is a text 
editor and the erlang shell to start with. n

Joe Armstrong invented Erlang in 1986. He has a PhD 
in Computer Science. And still spends most of free time 
trying to write beautiful programs.

“Your brain is a zillion times 
better than the best IDE.  
Programs form in your brain, 
not in an IDE.”

Reprinted with permission of the original author.  
First appeared in hn.my/erlang

http://hn.my/erlang


30 PROGRAMMING

By DAN BENJAMiN

Top Programming Fonts

i’m a typefaCe geek, and when it comes 
to selecting a font i’ll stare at all day, i 
tend to be pretty picky. recently, when 

i discovered that a friend was using a sub 
par typeface (too horrible to name here) for 
his Terminal and coding windows, my jaw 
dropped, my heart sank a little, and i knew it 
was due time for me to compose this article.

What follows is a round-up of the top 10 
readily-available monospace fonts. Many of 
these fonts are bundled along with modern 
operating systems, but most are free for 
download on the web. A few, notably Consolas, 
are part of commercial software.

A Note About Anti-Aliasing
in the past, we’ve had to decide between tiny 
monospace fonts or jagged edges. But today, 
modern operating systems do a great job of anti-
aliasing, making monospace fonts look great at 
any size. it’s not 1990 anymore. Give your tired 
eyes a break and bump up that font size.

if you have any doubt that anti-aliased fonts 
are apropos for code, note that even the vener-
able BBEdit — which for years has shipped 
with un-aliased Monaco 9 set as the default 
— has made the jump. The app now ships with 
a specially licensed version of the Consolas 
font from Ascender, bumped up in size, and 
with anti-aliasing on by default. Panic includes 
a special anti-aliased font (Panic Sans, which is 
actually just a version of Deja Vu Sans Mono) 
with its popular Coda application.

unless otherwise noted, i’ve used a larger 
size font, 15-point in fact, for the examples 
here to illustrate their legibility at larger sizes 
and with anti-aliasing turned on.



 31

➓ Courier

All systems ship with a version of Courier 
(sometimes Courier New), and unfortunately, 
many have it set as the default font for termi-
nal and editor windows. it does the job, but it’s 
a bit dull and boring, lacking style and class. 
i don’t recommend this font if you have any 
other choice — and fortunately, you do. if you 
use this font, please bump the size and turn on 
anti-aliasing.

➒ Andale Mono

A bit better than the Courier family, Andale 
Mono is still relegated to the “default font” 
category as it ships with some systems, and 
you wouldn’t want to download or use it if it 
wasn’t already there. The character-spacing is 
a bit too clumsy and the letters are a bit too 
wide for my tastes.

➑ Monaco

Monaco is the default monospace font on the 
Mac and has been since its inclusion in System 
6. it’s a solid, workhorse font that really shines 
at smaller font sizes with anti-aliasing turned 
off. i loved this typeface back when my eyes 
could tolerate staring at a 9-point font for 
hours, but those days are behind me. This font 
looks great at 9 or 10-points, and doesn’t look 
too shabby anti-aliased at higher sizes.

As far as i know, you can only get Monaco as 
a part of Mac oS, but there are alternatives, so 
keep reading.

Courier New

Andale Mono

Monaco

Monaco 9-point, without anti-aliasing



32 PROGRAMMING

➐ Profont

Profont is a Monaco-like bitmap font avail-
able for Mac, Windows, and Linux (there’s 
also a modified version for Mac oS x called 
ProFontx by a different author). They’re best 
at smaller sizes, and make a great alternative to 
Monaco if you’re on a non-Mac platform and 
want really tiny fonts and the eyestrain that 
goes along with them.

Profont (and ProFontx) is intended for use 
at 9-points with anti-aliasing turned off.

➏ Monofur

Monofur is a unique monospace font that looks 
great anti-aliased at all sizes. it’s a fun font with 
a distinct look that is vaguely reminiscent of 
Sun’s oPEN LooK window manager, which 
ran Solaris (aka SunoS) systems back in the 
late 80’s. if you’re looking for something a bit 
different, try this font, but make sure you have 
anti-aliasing turned on, even at small sizes.

➎ Proggy

Proggy is a clean monospace font that seems 
to be favored by Windows users, although it 
works fine on a Mac. it’s a clean font intended 
to be used only at smaller points, and without 
anti-aliasing.

➍ Droid Sans Mono

The Droid font family is a nice font family 
designed for use on the small screens of mobile 
handsets, like Android, and licensed under the 
Apache license.

Droid Sans Mono makes for a great pro-
gramming font. it’s got a bit of flair, and stands 
out among the other monospace fonts i’ve 
listed, and its only real flaw is the lack of a 
slashed zero.

Profont 9-point, without anti-aliasing Proggy Clean at 15-point , without anti-aliasing

Monofur

Droid Sans Mono



 33

➌ Deja Vu Sans Mono

The Deja Vu family of fonts are one of my 
favorite free font families, based on the excel-
lent Vera Font family. The Deja Vu fonts have 
been updated with a wider range of characters 
while maintaining a similar look and feel to 
that of Vera.

This was my go-to font family for many 
years. it looks great at any size with anti-
aliasing turned on.

Panic ships a font with it’s Coda application 
called “Panic Sans” which is based on this font. 
Gruber says via email that when he compared 
Panic Sans against Vera, he noted that “Panic 
had noticeably crisper punctuation chars” and 
that it seemed like they had improved the 
hinting on some characters as well.

➋ Consolas

Consolas suddenly appeared on my Mac after i 
installed Microsoft office, along with a handful 
of other new fonts from Microsoft.

This font was designed by Luc(as) de Groot 
for Microsoft’s ClearType font family (there’s a 
nice write-up with samples of each of the new 
Microsoft fonts here). Consolas is a commer-
cial font, but is bundled with many Microsoft 
products, so there’s a good chance you might 
already have it on your system.

you’ll absolutely want to have anti-aliasing 
turned on if you’re using Consolas, because it’ll 
look terrible without it.

Too bad it’s not free … if it was, it would be 
#1 on this list.

➊ Inconsolata

inconsolata is my favorite monospaced font, 
and it’s free. Shortly after discovering it, it 
quickly supplanted Deja Vu Sans Mono as my 
go-to programming font. i use it everywhere, 
from Terminal windows to code editors. it has 
a certain sublime style that’s unique without 
being over the top, and it looks fantastic at 
both large and small sizes. i use this font when 
i show code samples in a presentation, and 
it’s the font we use in Terminal and TextMate 
windows when filming PeepCode screencasts.

inconsolata is designed to be used with anti-
aliasing enabled, but it’s surprisingly legible even 
at very small sizes. A big thanks to raph Levien 
for creating this font, and for making it free. n

Dan is the founder of 5by5 Studios and author of  
Hivelogic. He also created the Email Address Enkoder, 
co-founded Cork’d and founded Playgrounder.

Deja Vu Sans Mono

Consolas

inconsolata

Reprinted with permission of the original author.  
First appeared in hn.my/fonts

http://hn.my/fonts


34 SPECIAL

SPECIAL

By KALiD AzAD

A Visual, Intuitive Guide to 
Imaginary Numbers

imaginary numbers always confused 
me. Like understanding e [hn.my/e], 
most explanations fell into one of two 

categories:

•	 it’s a mathematical abstraction, and the 
equations work out. Deal with it.

•	 it’s used in advanced physics, trust us. Just 
wait until college.

Gee, what a great way to encourage math 
in kids! Today we’ll assault this topic with our 
favorite tools:

•	 Focusing on relationships, not mechanical 
formulas.

•	 Seeing complex numbers as an upgrade to 
our number system, just like zero, decimals, 
and negatives were.

•	 using visual diagrams, not just text, to 
understand the idea.

And our secret weapon: learning by analogy. 
We’ll approach imaginary numbers by observ-
ing its ancestor, the negatives. Here’s your 
guidebook:

it doesn’t make sense yet, but hang in there. 
By the end we’ll hunt down i and put it in a 
headlock, instead of the reverse.

Really Understanding Negative Numbers
Negative numbers aren’t easy. imagine you’re 
a European mathematician in the 1700s. you 
have 3 and 4, and know you can write 4 – 3 = 
1. Simple.

Numbers 7/52, flickr.com/photos/ramsd/5445918407

http://hn.my/e
http://flickr.com/photos/ramsd/5445918407


 35

But what about 3-4? What, exactly, does that 
mean? How can you take 4 cows from 3? How 
could you have less than nothing?

Negatives were considered absurd, some-
thing that “darkened the very whole doctrines 
of the equations” (Francis Maseres, 1759). 
yet today, it’d be absurd to think negatives 
aren’t logical or useful. Try asking your teacher 
whether negatives corrupt the very founda-
tions of math.

What happened? We invented a theoretical 
number that had useful properties. Negatives 
aren’t something we can touch or hold, but 
they describe certain relationships well (like 
debt). it was a useful fiction.

rather than saying “i owe you 30” and 
reading words to see if i’m up or down, i can 
write “-30” and know it means i’m in the hole. 
if i earn money and pay my debts (-30 + 100 = 
70), i can record the transaction easily. i have 
+70 afterwards, which means i’m in the clear.

The positive and negative signs automati-
cally keep track of the direction — you don’t 
need a sentence to describe the impact of each 
transaction. Math became easier, more elegant. 
it didn’t matter if negatives were “tangible” — 
they had useful properties, and we used them 
until they became everyday items. Today you’d 
call someone obscene names if they didn’t “get” 
negatives.

But let’s not be smug about the struggle: 
negative numbers were a huge mental shift. 
Even Euler, the genius who discovered e and 
much more, didn’t understand negatives as we 
do today. They were considered “meaningless” 
results (he later made up for this in style).

it’s a testament to our mental potential 
that today’s children are expected to under-
stand ideas that once confounded ancient 
mathematicians.

Enter Imaginary Numbers
imaginary numbers have a similar story. We 
can solve equations like this all day long:

 The answers are 3 and -3. But suppose some 
wise guy puts in a teensy, tiny minus sign:

 uh oh. This question makes most people 
cringe the first time they see it. you want the 
square root of a number less than zero? That’s 
absurd!

it seems crazy, just like negatives, zero, and 
irrationals (non-repeating numbers) must have 
seemed crazy at first. There’s no “real” meaning 
to this question, right?

Wrong. So-called “imaginary numbers” are 
as normal as every other number (or just as 
fake): they’re a tool to describe the world. in 
the same spirit of assuming -1, .3, and 0 “exist”, 
let’s assume some number i exists where:

 That is, you multiply i by itself to get -1. 
What happens now?

Well, first we get a headache. But playing the 
“Let’s pretend i exists” game actually makes 
math easier and more elegant. New relation-
ships emerge that we can describe with ease.

you may not believe in i, just like those 
fuddy old mathematicians didn’t believe in 
-1. New, brain-twisting concepts are hard and 
they don’t make sense immediately, even for 
Euler. But as the negatives showed us, strange 
concepts can still be useful.

i dislike the term “imaginary number” — it 
was considered an insult, a slur, designed to 
hurt i’s feelings. The number i is just as normal 
as other numbers, but the name “imaginary” 
stuck, so we’ll use it.



36 SPECIAL

Visual Understanding of Negative and 
Complex Numbers
As we saw last time [hn.my/arithmetic], the 
equation x^2 = 9 really means:

What transformation x, when applied twice, 
turns 1 to 9?

The two answers are “x = 3” and “x = -3”: 
That is, you can “scale by” 3 or “scale by 3 and 
flip” (flipping or taking the opposite is one 
interpretation of multiplying by a negative).

Now let’s think about x^2 = -1, which is 
really

 What transformation x, when applied twice, 
turns 1 into -1? Hrm.

•	 We can’t multiply by a positive twice, 
because the result stays positive

•	 We can’t multiply by a negative twice, 
because the result will flip back to positive 
on the second multiplication

But what about…a rotation! it sounds crazy, 
but if we imagine x being a “rotation of 90 
degrees,” then applying x twice will be a 180 
degree rotation, or a flip from 1 to -1!

 yowza! And if we think about it more, 
we could rotate twice in the other direction 
(clockwise) to turn 1 into -1. This is “negative” 
rotation or a multiplication by -i:

 if we multiply by -i twice, we turn 1 into -i, 
and -i into -1. So there are really two square 
roots of -1: i and -i.

This is pretty cool. We have some sort of 
answer, but what does it mean?

•	 i is a “new imaginary dimension” to measure 
a number

•	 i (or -i) is what numbers “become” when 
rotated

•	 Multiplying i is a rotation by 90 degrees 
counter-clockwise

•	 Multiplying by -i is a rotation of 90 degrees 
clockwise

•	 Two rotations in either direction is -1: it 
brings us back into the “regular” dimensions 
of positive and negative numbers.

Numbers are 2-dimensional. yes, it’s mind 
bending, just like decimals or long division 
would be mind-bending to an ancient roman. 
(What do you mean there’s a number between 
1 and 2?). it’s a strange, new way to think 
about math.

http://hn.my/arithmetic


 37

We asked “How do we turn 1 into -1 in 
two steps?” and found an answer: rotate it 90 
degrees. it’s a strange, new way to think about 
math. But it’s useful. (By the way, this geomet-
ric interpretation of complex numbers didn’t 
arrive until decades after i was discovered).

Also, keep in mind that having counter-
clockwise be positive is a human convention 
— it easily could have been the other way.

Finding Patterns
Let’s dive into the details a bit. When multi-
plying negative numbers (like -1), you get a 
pattern:

•	 1, -1, 1, -1, 1, -1, 1, -1

Since -1 doesn’t change the size of a number, 
just the sign, you flip back and forth. For some 
number “x”, you’d get:

•	 x, -x, x, -x, x, -x…

This idea is useful. The number “x” can 
represent a good or bad hair week. Suppose 
weeks alternate between good and bad; this is a 
good week; what will it be like in 47 weeks?

 So -x means a bad hair week. Notice how 
negative numbers “keep track of the sign” — 
we can throw -1^47 into a calculator without 
having to count (“Week 1 is good, week 2 is 
bad… week 3 is good…“). Things that flip back 
and forth can be modeled well with negative 
numbers.

ok. Now what happens if we keep multiply-
ing by i?

 

Very funny. Let’s reduce this a bit:

•	      (No questions here)

•	      (Can’t do much)

•	            (That’s what i is all about)

•	     
(Ah, 3 rotations counter-clockwise = 1 rota-
tion clockwise. Neat.)

•	     
(4 rotations bring us “full circle”)

•	                                     (Here we go 
again…)

represented visually:

 
We cycle every 4th rotation. This makes 

sense, right? Any kid can tell you that 4 left 
turns is the same as no turns at all. Now rather 
than focusing on imaginary numbers (i, i^2), 
look at the general pattern:

•	 x, y, -x, -y, x, y, -x, -y…

Like negative numbers modeling flipping, 
imaginary numbers can model anything that 
rotates between two dimensions “x” and “y”. 
or anything with a cyclic, circular relationship 
— have anything in mind?



38 SPECIAL

Understanding Complex Numbers
There’s another detail to cover: can a number 
be both “real” and “imaginary”?

you bet. Who says we have to rotate the 
entire 90 degrees? if we keep 1 foot in the 
“real” dimension and another in the imaginary 
one, it looks like this:

 We’re at a 45 degree angle, with equal parts 
in the real and imaginary (1 + i). it’s like a 
hotdog with both mustard and ketchup — 
who says you need to choose?

in fact, we can pick any combination of real 
and imaginary numbers and make a triangle. 
The angle becomes the “angle of rotation.” 
A complex number is the fancy name for 
numbers with both real and imaginary parts. 
They’re written a + bi, where

•	 a is the real part

•	 b is the imaginary part
 

Not too bad. But there’s one last question: 
how “big” is a complex number? We can’t 
measure the real part or imaginary parts in 
isolation, because that would miss the big 
picture.

Let’s step back. The size of a negative 
number is not whether you can count it — it’s 
the distance from zero. in the case of negatives 
this is:

 

Which is another way to find the absolute 
value. But for complex numbers, how do we 
measure two components at 90 degree angles?

It’s a bird… it’s a plane… it’s Pythagoras!
Geez, his theorem shows up everywhere, 

even in numbers invented 2000 years after his 
time. yes, we are making a triangle of sorts, and 
the hypotenuse is the distance from zero:

 Neat. While measuring the size isn’t as 
easy as “dropping the negative sign,” complex 
numbers do have their uses. Let’s take a look.



 39

A Real Example: Rotations
We’re not going to wait until college physics 
to use imaginary numbers. Let’s try them out 
today. There’s much more to say about com-
plex multiplication, but keep this in mind:

•	 Multiplying by a complex number rotates by 
its angle

Let’s take a look. Suppose i’m on a boat, 
with a heading of 3 units East for every 4 
units North. i want to change my heading 45 
degrees counter-clockwise. What’s the new 
heading?

 Some hotshot will say “That’s simple! Just 
take the sine, cosine, gobbledegook by the 
tangent… fluxsom the foobar… and…” Crack. 
Sorry, did i break your calculator? Care to 
answer that question again?

Let’s try a simpler approach: we’re on a 
heading of 3 + 4i (whatever that angle is; we 
don’t really care), and want to rotate by 45 
degrees. Well, 45 degrees is 1 + i, so we can 
multiply by that amount!

 Here’s the idea:

•	 original heading: 3 units East, 4 units North 
= 3 + 4i

•	 rotate counter-clockwise by 45 degrees = 
multiply by 1 + i

if we multiply them together we get:

 So our new orientation is 1 unit West (-1 
East), and 7 units North, which you could 
draw out and follow.

But yowza! We found that out in 10 seconds, 
without touching sine or cosine. There were 
no vectors, matrices, or keeping track what 
quadrant we are in. it was just arithmetic with 
a touch of algebra to cross-multiply. imaginary 
numbers have the rotation rules baked in: it 
just works.

Even better, the result is useful. We have a 
heading (-1, 7) instead of an angle (atan(7/-1) 
= 98.13, keeping in mind we’re in quadrant 2). 
How, exactly, were you planning on drawing 
and following that angle? With the protractor 
you keep around?

No, you’d convert it into cosine and sine 
(-.14 and .99), find a reasonable ratio between 
them (about 1 to 7), and sketch out the 
triangle. Complex numbers beat you to it, 
instantly, accurately, and without a calculator.

if you’re like me, you’ll find this use mind-
blowing. And if you don’t, well, i’m afraid 
math doesn’t toot your horn. Sorry.

Trigonometry is great, but complex num-
bers can make ugly calculations simple (like 
calculating cosine(a+b)). This is just a preview; 
later articles will give you the full meal.



40 SPECIAL

Complex Numbers Aren’t
That was a whirlwind tour of my basic insights. 
Take a look at the first chart — it should make 
sense now.

There’s so much more to these beautiful, 
zany numbers, but my brain is tired. My goals 
were simple:

•	 Convince you that complex numbers were 
considered “crazy” but can be useful (just 
like negative numbers were)

•	 Show how complex numbers can make 
certain problems easier, like rotations

if i seem hot and bothered about this topic, 
there’s a reason. imaginary numbers have been 
a bee in my bonnet for years — the lack of an 
intuitive insight frustrated me.

Now that i’ve finally had insights, i’m burst-
ing to share them. But it frustrates me that 
you’re reading this on the blog of a wild-eyed 
lunatic, and not in a classroom. We suffocate 
our questions and “chug through” — because 
we don’t search for and share clean, intuitive 
insights. Egad.

But better to light a candle than curse the 
darkness: here are my thoughts, and one of you 
will shine a spotlight. Thinking we’ve “figured 
out” a topic like numbers is what keeps us in 
roman Numeral land.

There’s much more complex numbers: 
check out the details of complex arithmetic 
[hn.my/complex]. Happy math.

Epilogue: But they’re still strange!
i know, they’re still strange to me, too. i try to 
put myself in the mind of the first person to 
discover zero.

zero is such a weird idea, having “something” 
represent “nothing,” and it eluded the romans. 
Complex numbers are similar — it’s a new 
way of thinking. But both zero and complex 
numbers make math much easier. if we never 
adopted strange, new number systems, we’d 
still be counting on our fingers.

i repeat this analogy because it’s so easy to 
start thinking that complex numbers aren’t 
“normal.” Let’s keep our mind open: in the 
future they’ll chuckle that complex numbers 
were once distrusted, even until the 2000s. n

Kalid is a YC alum living in Seattle. He loves to simplify 
complex ideas, blog aha! moments at BetterExplained 
[betterexplained.com], and do math with instacalc.com

Reprinted with permission of the original author.  
First appeared in hn.my/numbers

http://hn.my/complex
http://betterexplained.com
http://instacalc.com
http://hn.my/numbers


Reprinted with permission of the original author.  
First appeared in hn.my/numbers

http://hacker.postmarkapp.com
http://hn.my/numbers


42 SPECIAL

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service 
by HP, is changing the way ideas, stories, and images find 
their way into peoples’ hands in a printed magazine format. 

HP MagCloud capitalizes on the digital revolution, creating a 
web-based marketplace where traditional media companies, 
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content 
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and 
HP MagCloud takes care of the rest—processing payments, 
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications 
are printed to order using HP Indigo technology, so they not 
only look fantastic but there’s no waste or overruns, reducing 
the impact on the environment. 

Become part of the future of magazine publishing today at 
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your 
magazine price during the publishing process.

Coupon code valid through February 28, 2011. 
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURE
	50 Lego Designs with 50 Pieces

	STARTUPS
	What Should You Do with Your Crappy Little Services Business?
	Please Stop Asking How to Find a Technical Co-founder

	PROGRAMMING
	Nginx JSON hacks
	Replication, Atomicity and Order in Distributed Systems
	Ways to Get Started in Erlang and Programming
	Top Programming Fonts

	SPECIAL
	A Visual, Intuitive Guide to Imaginary Numbers


