
Issue 22 March 2012

The Rules of a

Zen Programmer

www.hotgloo.com web-based wireframing

http://www.hotgloo.com/?pk_campaign=gloo_hackers

www.hotgloo.com web-based wireframing

http://www.hotgloo.com/?pk_campaign=gloo_hackers
http://www.getharvest.com/hackers

4  ﻿

Curator
Lim Cheng Soon

Contributors
Christian Grobmeier
Jason Shen
Jacques Mattheij
Paul Graham
Francis Irving
James Hague
Ilya Grigorik
John Carmack
Peter Schuller
Rob Landley
Igor Teper
Reginald Braithwaite

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Issue 22 March 2012

The Rules of a

Zen Programmer

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-22

STARTUPS

12  How to Be Relentlessly Resourceful
By Jason Shen

15  It Takes 3 Years to Build a Business
By Jacques Mattheij

16  Schlep Blindness
By Paul Graham

PROGRAMMING

18  Astonishments in the History of Version Control
By Francis Irving

21  A Programming Idiom You’ve Never Heard Of
By James Hague

22  Building a Modern Web Stack for the Real-Time Web
By Ilya Grigorik

24  Static Code Analysis
By John Carmack

28  Practical Garbage Collection
By Peter schuller

33  Understanding the bin, sbin, usr/bin, usr/sbin Split
By Rob landley

Contents
FEATURES

06  The Rules of a Zen Programmer
By Christian Grobmeier

SPECIAL

34  The Secret Number
By Igor Teper

38  Autodidacticism
By reginald braithwaite

http://hackermonthly.com/issue-22

6  FEATURES

FEATURES

By Christian Grobmeier

  ne rainy morning, I found
myself sitting at my desk
thinking about efficient
working. Before I started as

a freelancer I had some days when I worked a lot
but could only look back on a worse outcome.

I started with Zen practice back in 2006. What
clearly came to my mind before long was this: the
old Zen masters already knew hundreds of years
ago how programmers today should work. Even
though I don’t like these “be a better programmer”
articles, I want to outline some of my thoughts
from that morning.

The Rules of a

Zen Programmer

  7

➊ Focus
If you have decided to work

on a task, do it as well as you can.
Don’t start multiple things at the
same time. Do only one thing at a
time. You won’t become quicker,
just scattered. If you work multi-
threaded, you’ll become exhausted,
make more errors, and waste time
jumping from one task to another.
This is not only about program-
ming; this is a general tip.

Kodo Sawaki says: if you need
to sleep, sleep. Don’t plan your
software when you need to sleep.
Just sleep. If you code, code. Don’t
daydream — code. If you are so
tired that you cannot program,
sleep. Even known multitaskers like
Stephan Uhrenbacher have decided
to work single threaded. I had a
similar experience to Stephan, and
finally I wrote Time & Bill, a time
tracking tool. My goal was to track
my time so easily that I would do
it even for small tasks like a phone
call. Now I can create a few stop-
watches at the beginning of the day
and track my time with only one
click. The outcome was a disaster:
sometimes I just worked a few
minutes on a task until I moved on
to the next one. Now I am better.
Similar to the Pomodoro technique
I plan a few time slots and con-
centrate on them. No chatting, no
sleeping, no checking out of a new
great game at the App store.

➋ Keep Your Mind Clean
Before you work on your

software, you need to clean up your
memory. Throw away everything
in your mind for the time being. If
you have trouble with something,
don’t let it influence you. It is
mostly the case that trouble will go
away. If the trouble is so heavy that
you can’t let it go, don’t work. Try
to clear things up. But when you
start working, let the outer world
fade away.

Something exciting on the
mailing list? Leave it there. You
can follow the exciting stuff later.
Shutdown what fills your mind
with clutter: close Twitter, Face-
book, and your email. You should
even mute your mobile and leave
it in your pocket. You can say it
is similar to item #1, focus. But
there is one more restriction: don’t
use your mobile before work or at
lunch. They connect you with the
outer world and probably bring up
some new trouble or things which
require your attention.

Think like this: usually your mind
is pretty clean when you wake up
at the morning. If it is not, some
exercise helps (I do long distance
running). If you feel clean and
refreshed, go to work and work as
well as you can. When you leave
your work then you can fill up your
mind with clutter. You’ll see it is
not so much fun if you have a full
working day behind you. Twitter
and Co are consuming too much of
your energy. Do not think it is just
for a minute. It’s not.

➌ Beginner’s Mind
Remember the days when

you were a beginner., when you feel
like you have never learned enough.
Think of yourself as you were a
beginner every day. Always try to
see technology from a beginner’s
perspective. You can accept correc-
tions to your software better and
leave the standard path if you need
to. There are some good ideas even
from people who don’t have your
experience.

Was there ever a software build
twice the same way? Even if
you copy software it is different
somehow.

➍ No Ego
Some programmers have a

huge ego problem. But there is no
time for that.

Who judges your quality as pro-
grammer? You? No. Others? Prob-
ably. But can you really compare an
Apple with a Banana? No. You are
an individual. You cannot compare
yourself as a whole with another
human being. You can only com-
pare a few facets.

A facet is nothing that you can
be proud of. You are good at Java?
Cool. The other guy is not as good
as you, but better with bowling. Is
Java more important than bowl-
ing? It depends on the situation.
Probably you earn more money
with Java, but the other guy might
have more fun in life because of his
bowling friends.

Can you really be proud because
you are a geek? Programmers with
ego don’t learn. Learn from every-
body, from the experienced and
from the noobs at the same time.

Kodo Sawaki once said: you are
not important.

Think about it.

8  FEATURES

➎ There is No Career Goal
If you want to gain some-

thing and don’t care about your
life now, you have already lost the
game. Just act as well as you can,
without looking at the goal you
might reach down the road.

Working for twenty years to
become a partner? Why aren’t you
working as hard as possible just
because it is fun? Hard working can
be fun. “A day without work is a
day without food” is a Zen saying.

There is no need to accept hap-
piness after twenty years. You can
be happy right now, even when you
are not a partner or don’t drive a
Porsche. Things change too easily.
You could get sick. You could get
fired. You could burn out (if you
follow all these items, I guess that
likelihood is low).

Until these bad things happen,
just work as well as you can and
have fun with doing it. No reason
to envy the gains of your colleagues.
No reason to think about the cool
new position you didn’t get.

After all, you will acheive some-
thing. You’ll end up with nice mem-
ories, maybe a good position — and
twenty excellent years. Every day is
a good day.

If you ever come to the point
were you think that working at
your company is no fun at all, you
must leave immediately. Never
stay at a company which takes
away the happiness in your life. Of
course, this is only possible in the
rich countries, where people have
the choice to leave. But if you are
living in such an environment, do
it. Leave without regret. You have
no time to waste, you are probably
dead tomorrow.

When you have no career goal,
leaving is easy.

➏ Shut Up
If you don’t have anything

to say, don’t waste your colleagues’
time. This doesn’t make you look
wimpy. Every day you work you
need to try to not get on someone
else’s nerves. Imagine if everybody
tried this — what a great workplace
would that be? Sometimes it is not
possible. Try hard, you will like it.

If you don’t develop an ego, it
is pretty easy to shut up and care
about the areas you have something
to talk about. Don’t confuse your
ego with your “experience,” and
always remember: you are a begin-
ner. If somebody has a good idea,
support the idea.

➐ Mindfulness. Caring.
Awareness.

Yes, you are working. But at the
same time you are living and
breathing. Even when you have
some hard times at work, you
need to listen to the signs of your
body. You need to learn about the
things which are good for you. This
includes everything, including basic
things like food. You need to care
for yourself and for everything in
your environment, because after
all, the water you drink is the water
which runs in the river. Because
you are living only for yourself.
Remember that you live alone and
you’ll die alone. The world goes on
without you.

Avoid work situations you don’t
like. Avoid working for free if it
means you will have no fun and
keeps you away from your bed. Let
go of anything that doesn’t make
you happy. Think working for free
sounds fun in theory? Consider the
people doing Open Source in their
spare time. If you have subscribed
to some project’s mailing list, you
probably know what heat there is. If
you don’t have fun with that, stop
doing it. I know a bunch of people
who work in an Open Source
environment they don’t like. Again,

“If you want to gain something and
don’t care about your life now, you
have already lost the game. ”

  9

with Time & Bill, I have tracked the
time I spend in Open Source proj-
ects and was surprised how much
time I lose there — especially on
projects I didn’t like very much.

Keeping this in mind, some
people think they are only happy
when they have free time and can
spend the evening with an Xbox and
some beer. While this is a good idea
from time to time, it is not neces-
sary that the only time that your
life is fun. If you can avoid situa-
tions you don’t like, avoid them (as
I said earlier). But sometimes shit
is unavoidable. Like for example
manually copying and pasting stuff
from your manager’s Excel sheet
into phpmyadmin. This can take you
days, and it is really boring. It is no
fun, but sometimes you need to do
such things. You cannot always quit
your job when you got a boring task.
Zen monks are not shy about their
work either. They get up at 4 AM
(sometimes earlier, sometimes later,
depending on the convent) and start
meditation and work (they even
consider work meditation practice).
They have stuff to do like cleaning
the toilets. Or working in the garden.
Or as a Tenzo, they cook. They do it
with all the care they can get. What-
ever they do, they do it without

suffering and they are (or should be)
happy, because every second, even
the second they are cleaning toilets,
is a second of their life.

That being said: stop crying if
you need to copy/paste in Excel.
Just do it. Don’t waste your energy
with such things, they will pass.
Become the best Excel copy/paster
out there instead.

If you suffer a heart attack,
people will probably say: “uh yes,
he really worked too much, he even
worked for me for free at night.”
Nobody can guide you to the other
world. This last step is taken by
you alone. You cannot take back
anything in this world. So it is up to
you to take care, in every second. If
you die, you die. But when you live,
you live. There is no time to waste.

“Care” is a huge word in Zen
Buddhism, and I think in every
form of Buddhism. I cannot express
everything which needs to be said.
It is difficult to understand the dif-
ferent meanings of “care.” Probably
you better understand the word
“awareness.” You must be aware of
what you do, in every second of
your life. You must be mindful in
your life. Otherwise you waste it.
But, of course, it is up to you to do
so, if you like.

➑ There is No Boss
Yes, there is somebody who

pays you. There is somebody who
tells you what needs to be done.
And he can fire you. But this is no
reason to give up your own life or
to become sick of your work. Your
Boss has no control over you. It
can even be doubted that you have
control about you — but let’s not
go down this path.

Back to your Boss: he can make
your life worse if you allow him to
do so. But there is a way out. Say
“No” if you need to do something
which makes you sick or is against
your ethics. What will happen? In
the worst case scenario, he will fire
you. So what? If you live in west-
ern nations and if you are a coder
(which is very likely when you read
this) you’ll get another job.

I don’t mean to say “No” to tasks
like copying CSV data to HTML. I
am talking about eighty-hour weeks
when you feel your body breaking.
Or if you feel that your kids need
some attention. Or if you are forced
to fire people just because your
Boss doesn’t like them. Or if you
are a consultant and get a job devel-
oping software for nuclear plants or
for tanks. You can say “No.”

“You must be mindful in your life.
Otherwise you waste it. ”

10  FEATURES

➒ Do Something Else
A programmer is more than

a programmer. You should do some-
thing which has nothing to do with
computers. In your free time, go
sailing, fishing, or diving. Do medi-
tation, martial arts, or play Shaku-
hachi. Whatever you do, do it with
all the power you have left. Like
you do at work. Do it seriously. A
hobby is not just a hobby, it’s an
expression of who you are. Don’t
let anybody fool you when they say
hobbies are not important. Nowa-
days it takes effort having hobbies.
I have recorded several CDs and
wrote fantasy books (the latter one
unpublished, I must practice more).
These things have made me into
the person I am now, and finally
they have led me to Zen and this
article. These days I practice Zen
Shakuhachi. It is a very important
aspect to my daily life.

➓ There is Nothing Special
A flower is beauty. But it’s

just a beautifu flower — noth-
ing more. There is nothing special
about it. You are a human who
can program. Maybe you are good.
There is nothing special about you.
You are like me or all other people
on this planet.

You need to go in the loo and
you need to eat. Of course you
need to sleep. After (hopefully) a
long time you will die, and every-
thing you have created will be lost.
Even pyramids get lost, after a long
time. Do you know the names of
the people who built the pyramids?
And if you do, is it important that
you know? It’s not. Pyramids are
there, or they’re not. Nothing spe-
cial about that.

Same goes for your software. The
bank is earning money with your
software. After you leave, nobody
remembers you. There is nothing
wrong around it. It is the flow of
time. Nothing you should be worry-
ing about. If you are living accord-
ing to the first nine rules, you’ll see
that this last project was a good
and funny project. Now it’s simply
time to go on and concentrate on
something else.

If your company closes because
of financial problems, no problem.
Life will go on. There is no real
need for an Xbox, a car, or other
belongings. Most people on this
planet live in poverty. They don’t
care about having an Xbox, because
they would be glad to get some
food or even water.

So why exactly are you special?
Because you had the luck to be
born in the western world? Because
you can code? No, there is noth-
ing special about it. You can let go
of your ego and live freely. Enjoy
the colors and the smell of flow-
ers around. Don’t be too sad when
the winter comes, and don’t be too
happy when spring comes back. It
is just a flow. Keep in mind when
somebody denies your application.
Because the company is not so
special that you need to be worried
about the job. n

Disclaimer
I am not a Zen monk. I am just
practicing and learning. Please ask
your local Zen monk if you feel there
is something you need to understand
further.

Christian is a developer since 1998. In 2006
he worked 75 hours a week. This made him
start with Zen practice. Today he runs Time
& Bill [timeandbill.de], studies psychology
and tries to apply Zen to his daily life and
work.

Reprinted with permission of the original author.
First appeared in hn.my/zen (grobmeier.de)

Background image by Dioma.
Zen circle image by DragonArtz.

http://timeandbill.de
http://hn.my/zen

http://duckduckgo.com

12  STARTUPS

STARTUPS

By Jason Shen

How to Be Relentlessly
Resourceful

Relentlessly resourceful.
This is the essential quality
of a good startup founder,

according to Paul Graham, co-
founder of Y Combinator. When
asked by Forbes what he looks for
in founders, four out of the five
elements related to resourcefulness.
He has even written two essays
dedicated to the concept.

And yet people don’t seem
to really understand what being
resourceful means. The top com-
ment on HN from his most recent
post posed this question:

Yes, there are certain skills that
make it easier to find information
on your own. But this is also a
function of the problem domain
and how well you know it. If
you give me a credit card and a
problem statement, chances are
that I can come up with a working
webapp that solves the problem.

But if you give me the name of a
VC and tell me to go raise money
— where do I start? How do I
approach him? What will burn
bridges and what won’t?

Some great HNers jumped in to
answer that question, but I thought
I’d take a crack at laying out, in
full, what I believe being resource-
ful looks like and how someone
can act with more relentless
resourcefulness.

Let’s start by talking about the
two types of resourcefulness: inter-
nal and external.

■■ Internal resourcefulness is really
just creativity. It’s figuring out
how to fit a cube into a cylin-
der on Apollo 13 or resolving
that nasty bug in your code. You
might benefit from the advice
or perspective of others, but the
resources you need to solve the
problem are generally within
your grasp (or inside your brain).

■■ External resourcefulness is
when you need resources that
are outside your control. Things
like seed capital for your startup,
a liquor license for your bar, a
distribution channel for your new
product. You will likely need to
interact with other people/enti-
ties to get the resources you need
to address your problem.

This article focuses more on that
external resourcefulness because I
think in some ways it’s more open-
ended and confusing, and academi-
cally/technically intelligent people
often struggle to be externally
resourceful.

Prerequisites
Before we begin, I think there are
fundamental underlying conditions
needed before someone can really
be relentlessly resourceful.

Willingness to Endure Discomfort
I originally wanted to call this
“guts” or “courage,” but it’s much
more than this. It’s being willing to
approach people you feel you have
no business talking to, asking for
more than you feel wise asking for
and doing work you might not like
or feel competent in. If you can’t or
are unwilling to endure rejection,
embarrassment, uncertainty, fear or
failure, just close the window now
because it’s not happening.

Communication Skills
You don’t need to be a world-
class public speaker or best-selling
author to be resourceful, but you
need to have some threshold ability

  13

to communicate ideas clearly and
persuasively to relevant audiences.
This is definitely a skill you can
develop — start a blog, join toast-
masters, study copywriting, learn
how to sell. If people struggle to
understand you or are never con-
vinced to do something you sug-
gest, it’s going to be really rough.

Grit/Not Quitting
Researchers at UPenn have found
that grit (perseverance and passion
for long-term goals) is a better pre-
dictor for success over IQ or consci-
entiousness. What you should draw
from this is that you should have
long-term goals you are really, really
determined to achieve. Since you
will face a lot of setbacks during the
journey, don’t start unless you have
the bullheaded tenacity to finish.

The Formula
Alright, now that we’ve gotten that
out of the way, here are the 3 things
you need to do to be relentlessly
resourceful:

➊ Learn enough to get clue

➋ Actually take action

➌ Repeat until you succeed

➊ Learn Enough To Get A
Clue

Ok, so you have a challenge in
front of you. Whether it is getting
published as an author, starting a
restaurant or destroying all the hor-
cruxes hidden by He-Who-Shall-
Not-Be-Named, you start by getting
a lay of the land.

Lucky for us, there is an incred-
ible treasure trove of information
on the Internet (barring the passage
of SOPA and PIPA) that we can
dive through.

Google is your friend. Quora
is your friend. Wikipedia, Twitter,

Facebook, HN, the blogosphere. I
assure that you can find the answer
for many of the questions you have
using one of these resources.

■■ Need to get startup capital
from a venture capitalist? Mark
Suster, a 2x entrepreneur turned
VC will tell you how, for free!
[hn.my/fund]

■■ Want to skip the line by bribing
the Matire’d? Jonas Luster, a cook
and cooking author will tell you
how, for free! [hn.my/skip]

■■ Want to grow your blog audi-
ence? Tyler Terooven, a life-
style blogger who came “out of
nowhere” will tell you how, not
for free, but I bought the guide
and it’s worth every penny.
[hn.my/tyler]

Now, this is just the starting
point. This online research is often
enough to get you on the right
path, but sometimes you’ve got
problems that are more thorny,
nuanced and specific. That’s when
you have to learn from people.

Unless you live under a rock,
there is probably someone in your
extended network who has done
whatever it is you are trying to
do (or something similar). Get in
touch and ask for 10 minutes of
his/her time.

Don’t believe me? I dare you to
post on Facebook, Twitter and in an
email to 10 good friends:

Hey everyone!

I really need your help with
something! I’m looking to get in
touch with someone who knows
a lot about XX (or has done XX
or something similar) for a really
important project/goal/thing I’m
working on.

If you know someone who fits that
profile (or know someone who
might know) I would really appre-
ciate if you could connect us. All
help will be rewarded with cookies
made by yours truly.

Thanks so much!

Do that, wait a few days and
write back if you don’t at least get
something. I will send you cookies
made by me if you draw a total
blank.

Ok, fine, so you grew up in
Siberia and literally only know 10
people. I bet you are still aware of
someone “famous” who has done
what you want to do — but they
aren’t in your network.

No problem. Let’s go ask them
for advice.

From these meetings you will
start to get the nuanced, insider
knowledge you need to get at what-
ever resource you want. It might
take some time and work to learn
what you need to know, but infor-
mation is almost never the limiting
factor in being resourceful.

But what do I mean by “enough
to get a clue”? The idea here is that
you need to get some perspective.
If you truly know nothing about a
topic, you need to dive in enough
until you understand at least a little
bit about what’s going on. Once
you “have a clue,”, you want to
move to Step 2, where you start to
really make progress.

It’s important not to get stuck in
the learning phase. You can “study”
forever and never accomplish any-
thing. In fact, many people do just
that — they “study” fitness, dating
techniques or personal finance for-
ever and don’t actually do anything.
That, my friend, is death. Don’t get
stuck.

http://hn.my/fund
http://hn.my/skip
http://hn.my/tyler

14  STARTUPS

➋ Actually Take Action
Alright, this is the most

important step.
You gotta do a bunch of stuff. No

way around it.

■■ If your goal is to raise funds
for your startup, you could put
together a deck, find a meetup
with real investors attending and
actually go talk to one of them
about your business.

■■ If your goal is to throw a smash-
ing dinner party but you can’t
cook, you could find a basic
recipe online, buy the ingredi-
ents from the store and actually
follow the instructions to make
a dish.

■■ If your goal is to get a girlfriend,
you could throw on some nice
clothes, walk over to a bar or
lounge and actually have a con-
versation with a girl.

■■ If your goal is to get published as
a novelist, you could map out an
outline of the story and actually
write the first chapter.

A rule of thumb: if you aren’t
feeling uncomfortable, then you
haven’t gone far enough yet.

Resourceful people take action.
It’s not that they don’t think, plan,
study, strategize or prepare. They do
all those things too. What separates
people who really “make things
happen” and analysts is action.

Think about your favorite hero.
Ender Wiggin. Harry Potter. Lisbeth
Salandar. Bruce Wayne. The reason
why we love these characters is
because they face up to enormous
odds and they win through their
resourcefulness and courage. They
don’t cower in the face of a chal-
lenge, they take action and make
things happen.

Because I know what you’re
thinking, I’ve prepared a handy
FAQ:

Q: How do I know what to do?
A: You did step one right? So you
have a clue! What makes sense?
What action seems like a reasonable
way to get closer to your final step?
Chances are you know exactly what
the next step is, so the real issue is
“Why aren’t you doing what you
know you should?”

Q: Taking action is scary! Wouldn’t
it be better to learn more until this
problem gets less scary?
A: It’s always going to be scary.
Courage is not the absence of fear.
Courage is feeling the fear and
doing it anyway. Learning indefi-
nitely will not solve your problems.

Q: But what if I get rejected/make
a mistake/fail? That’ll ruin every-
thing and then my life will be over!
A: Unless you are learning how to
pack your own parachute before
sky diving, I promise you will
almost certainly not die if you
mess up. You will be mildly embar-
rassed, maybe set back a few bucks
or some period of time, and that’s
pretty much it. Most people will
forget about your mishap almost
immediately after it happens.
People just don’t care that much
about you.

Q: I’m doing lots of stuff but still
not making progress. I’m making
spreadsheets, organizing data into a
wiki, mapping out the competitors,
having conversations over beers
with my friends…
A: You’re doing fake work. This is
why I said you should feel uncom-
fortable with the actions you’re
taking. Making charts is easy and
safe. You’ve got to be out on the
line of fire. If you can’t fail then it
doesn’t count as action.

➌ Repeat Until You Succeed
So you did some real stuff.

Some of it worked, much of it
didn’t. Now what?

Time to learn again. What lessons
can you draw from your experience
to inform your next try? What can
you do differently or do better?

Ok, now go do that. How did it
go? Any surprises? What new angle
can you try? What worked that you
can double down on? How can you
avoid making that mistake next
time? Ok, now try again.

The magic of the doing-learning
loop is that momentum builds
upon itself. The first time you ski
you fall a ton, but as you start to
figure out what’s going on, you
fall less and less until you’re flying
down the mountain. It’s only
through doing that you figure out
what not to do next time.

So, if the first five investors turn
you down, tweak your pitch and
try again. If that doesn’t work,
maybe you need to get more trac-
tion. Maybe you need to get a
warm intro. Maybe you need to use
AngelList. Maybe you need to go
through YC. May you need to get
on Techcrunch. Maybe you need to
do some consulting and bootstrap.
Maybe you need to do a Kickstarter.

Keep trying stuff, tweaking,
asking questions, getting advice/
ideas, experimenting and pushing
forward until you find something
that works. Then build on that and
add fuel to the fire. Don’t take “no”
for an answer, ever.

Jason Shen is cofounder of Ridejoy, a Y
Combinator-funded community market-
place for ridesharing. His blog, The Art of
Ass-Kicking [jasonshen.com], has been
covered in Lifehacker, ReadWriteWeb, and
of course, Hacker Monthly.

Reprinted with permission of the original author.
First appeared in hn.my/resourceful (jasonshen.com)

http://jasonshen.com
http://hn.my/resourceful

  15

By Jacques Mattheij

It Takes 3 Years to Build a Business

It takes time. Three years to be
precise.
I have absolutely no idea why it

has to take 3 years, but it seems to
be about right, based on countless
observations of people that start a
business and how long it takes them
to be successful. One man consul-
tancy shops, airlines, and everything
in between: 3 years. Sometimes a
bit less, sometimes a bit more.

Typically it goes like this:

■■ In the first year you lose money.
Earlier on more so than later in
the year.

■■ Somewhere during the second
year you break even.

■■ In the third year you finally make
back all your initial capital.

The reason why it works this way
is simple enough: customer acquisi-
tion is a time-consuming process,
and a new business lacks several
things that help in gaining new
customers: a reputation, a network,
and existing customers.

It’s like being the guy or girl
without a partner. If you don’t have
a partner, it is hard to find one,
but once you have one, everybody
seems to flirt with you.

A new business is like that.
People might even consider doing
business with you, but nobody
wants to be “first” for fear of being
burned. So they will play it safe and
choose someone that already has a
reputation and existing customers,
and they’ll find them through their
extensive network of contacts built
up over the years.

You initially don’t stand a chance.
So it is hardly surprising that the
author of that piece found it dif-
ficult to get enough work at a high
enough rate for his consultancy
business to get off the ground. In
another 6 months, he’d be further
in the hole, but he would have had
a bit more traction.

Once you get that first customer,
you are on your way to an eventual
success. One customer will lead to
another, which is the basis of your
network. Happy customers are refer-
ences which you can use to cement
your reputation. And once that
wheel starts turning, it will speed
up. And before the third year is out
you’ll be in demand to the point
where you will probably have to raise
your rates to control the influx of
new customers. But it takes time to
get there and the first year is terrible.

The bad news here is: if you
plan on quitting your job to start
a consultancy business and you
have less than 18 months worth of
expenses in your savings account,
then you shouldn’t do it, unless you
have a very large amount of work
lined up. And even then you’ll need
to be more frugal than Ebenezer
Scrooge, in case any of it dries up or
a customer doesn’t pay on time (or
at all!).

Another option is to start your
company on the side, while you
have a regular job that pays for
your basic needs. Enjoy that you
essentially have infinite runway,
even if the take-off will be slower
because a lot of your good time is
already spoken for. Some jobs are
more flexible than others in this
respect and therefore more suitable
for the purpose.

Once you have enough money
salted away to deal with unforeseen
circumstances, economic dips, and
the like, you can always fire your
boss. But don’t do it too soon, or
you will fail. n

Jacques Mattheij is the inventor of the
live streaming webcam, founder of
camarades.com/ww.com and a small time
investor. He also collects insightful com-
ments from Hacker News.

Reprinted with permission of the original author. First appeared in hn.my/3years (jacquesmattheij.com)

http://camarades.com
http://ww.com
http://hn.my/3years

16  STARTUPS

S

ch

l e P

 B l i n d n e s s

By Paul Graham

  17

There are great
startup ideas lying
around unexploited
right under our

noses. One reason we don’t see
them is a phenomenon I call schlep
blindness. Schlep was originally a
Yiddish word but has passed into
general use in the US. It means a
tedious, unpleasant task.

No one likes schleps, but hack-
ers especially dislike them. Most
hackers who launch startups wish
they could do it by just writing
some clever software, putting it on
a server somewhere, and watching
the money roll in — without ever
having to talk to users, negotiate
with other companies, or deal with
other people’s broken code. Maybe
that’s possible, but I haven’t seen it.

One of the many things we do
at Y Combinator is teach hackers
about the inevitability of schleps.
No, you can’t start a startup by just
writing code. I remember going
through this realization myself
some time in 1995. I soon learned
from experience that schleps are
not merely inevitable, but pretty
much what business consists of. A
company is defined by the schleps it
will undertake. And schleps should
be dealt with the same way you’d
deal with a cold swimming pool:
just jump in. This is not to say you
should seek out unpleasant work
per se, but that you should never
shrink from it if it’s on the path to
something great.

The most dangerous thing about
our dislike of schleps is that much
of it is unconscious. Your uncon-
scious won’t even let you see ideas
that involve painful schleps. That’s
schlep blindness.

The phenomenon isn’t limited to
startups. Most people don’t con-
sciously decide not to be in as good
physical shape as Olympic athletes,

for example. Their unconscious
mind decides for them, shrinking
from the work involved.

The most striking example I
know of schlep blindness is Stripe
[stripe.com] or rather Stripe’s idea.
For over a decade, every hacker
who’d ever had to process pay-
ments online knew how painful
the experience was. Thousands of
people must have known about this
problem. And yet when they started
startups, they decided to build
recipe sites or aggregators for local
events. Why? Why work on prob-
lems few care much about and no
one will pay for when you could fix
one of the most important compo-
nents of the world’s infrastructure?
Because schlep blindness prevented
people from even considering the
idea of fixing payments.

Probably no one who applied to
Y Combinator to work on a recipe
site began by asking “should we fix
payments or build a recipe site?”
and chose the recipe site. Though
the idea of fixing payments was
right there in plain sight, they never
saw it because their unconscious
mind shrank from the complica-
tions involved. You’d have to make
deals with banks. How do you do
that? Plus, you’re moving money,
so you’re going to have to deal with
fraud and people trying to break
into your servers. Additionally, there
are probably all sorts of regulations
to comply with. It’s a lot more
intimidating to start a startup like
this than a recipe site.

That scariness makes ambitious
ideas doubly valuable. In addition
to their intrinsic value, they’re like
undervalued stocks in the sense
that there’s less demand for them
among founders. If you pick an
ambitious idea, you’ll have less
competition because everyone else
will have been frightened off by the

challenges involved. This is also true
of starting a startup in general.

How do you overcome schlep
blindness? Frankly, the most valu-
able antidote to schlep blindness is
probably ignorance. Most successful
founders would probably say that
if they’d known about the obstacles
they’d have to overcome when they
were starting their company, they
might never have started it. Maybe
that’s one reason the most success-
ful startups so often have young
founders.

In practice, the founders grow
with the problems. But no one
seems able to foresee this, not even
older, more experienced founders.
So the reason younger founders have
an advantage is that they make two
mistakes that cancel each other out.
They don’t know how much they
can grow, but they also don’t know
how much they’ll need to. Older
founders only make the first mistake.

Ignorance can’t solve everything
though. Some ideas so obviously
entail alarming schleps that anyone
can see them. How do you see ideas
like that? The trick I recommend is
to take yourself out of the picture.
Instead of asking “what problem
should I solve?” ask “what problem
do I wish someone else would solve
for me?” If someone who had to
process payments before Stripe had
tried asking that, Stripe would have
been one of the first things they
wished for.

It’s too late now to be Stripe, but
there’s plenty still broken in the
world, if you know how to see it. n

Paul Graham is an essayist, programmer,
and programming language designer.
He’s currently working on a new program-
ming language called Arc, a new book on
startups, and is one of the partners in Y
Combinator.

Reprinted with permission of the original author.
First appeared in hn.my/schlep (paulgraham.com)

http://stripe.com
http://hn.my/schlep

PROGRAMMING

By Francis Irving

“

18  PROGRAMMING

Astonishments in the
History of Version Control

In a world where biographies of cod are not
just accepted, but rightly popular, it wouldn’t
seem entirely crazy to write a history book on
how computer programmers store the vital

product of their labors: source code.
Since neither you nor I have time to read or write

such a thing, we’re going to have to settle on this one
article.

It’s an important subject. The final product (GitHub)
seems incredibly obvious. And popular. Yet it took
decades of iterative innovation, from some of the clev-
erest minds in the field, to make something so appar-
ently simple yet powerful.

And every step was astonishing.

➊ Source code is text in a file! (1960s)
With hindsight, it’s obvious that source code is

best stored as just writing in simple documents. A brief
read of the history of ASCII [hn.my/ascii] gives a flavor
for the complexity of agreeing even that.

➋ Humans can manually keep track of
versions of code! (1960s)

As with everything, in the beginning there was no
software.

“At my first job, we had a Source Control department.
When you had your code ready to go, you took your
floppy disks to the nice ladies in Source Control, they
would take your disks, duly update the library, and
build the customer-ready product from the officially
reposed source.” (Miles Duke)

If you really want…truly ancient
history, you have to go back to

delta decks on punch cards.
— Jim Rootham

”

http://hn.my/ascii

  19

➌ You can keep lots of versions in one file!
(1972, 1982)

Using a fancy interleaved weave file format, SCCS
ruled the roost of version control for a decade.

It took some years to develop a good method for
recording the changes from one version of a file to the
next. “An Algorithm for Differential File Comparison”
[hn.my/diff] is a relatively late paper to read on the
subject (1976).

In 1982, SCCS’s successor RCS used these diffs in
reverse to beat SCCS, and astonished this commenter:

“Along came RCS with its reverse-deltas, and I thought
it was the bee’s knees.” (Anonymous)

➍ You can each have your own copy checked
out! (1982)

At the time, people tended to log into a central main-
frame and work together via that. With RCS, using
symbolic links, it could be arranged so that each person
was working with the same version control, but with
their own working copy.

“There will be a file called RCS that is a symbolic link
to the master RCS repository that you share with the
rest of your group members.” (Information on Using
RCS at Yale)

➎ Wow! You can version multiple files at
once! (1986)

Amazingly, up until CVS, each version control system
was for separate individual files. Yes, you can use RCS
with wildcards to commit multiple files, or mark par-
ticular branches. But it isn’t really part of the system.

In CVS it was the default to modify all the files
recursively. Software was suddenly a recursive tree of
text files, rather than just a directory or an individual
file.

It was badly implemented, as it wasn’t “atomic” (suc-
cessor Subversion fixed this in 2000), but really that
doesn’t matter for the purpose of astonishment.

➏ Two people can edit the same file at the same
time, and it merges what they both did! (1986)

In the late 1990s I worked at Creature Labs. We were
changing from Visual SourceSafe (commercial, made
by Microsoft) to CVS (open source, made by a bunch
of hippies).

There was frankly disbelief that it could do its main
magical promise: let multiple people edit the same file
at the same time, and be able to flawlessly merge their
changes together without breaking anything.

The exclusive locking of SourceSafe was a real prob-
lem when we were making Creatures 3. I remember
a particular occasion when we were adding garbage
collection, which meant editing most code files, and
the lead programmer had to check out every file exclu-
sively over the weekend while he implemented it.

This paper [hn.my/grune] from 1986 is an excellent
historical record of this magic, wherein Dick Grune
suffers the same problem while his team codes a com-
piler in Holland, and so he invents CVS.

➐ The shared repository can be on a remote
machine! (1994)

Most of this time people were mainly using version
control on one computer. Some versions of RCS, and
hence CVS, had a remote file sharing mechanism to let
you have a remote code repository in 1986.

“If a version of RCS is used that can access files on a
remote machine, the repository and the users can all be
on different machines.” (Dick Grune)

But it looks like it was only in 1994, when a TCP/IP
protocol added, that the idea really took off.

“[CVS] did not become really ubiquitous until after
Jim Blandy and Karl Fogel (later two principals of
the Subversion project) arranged the release of some
patches developed at Cygnus Software by Jim Kingdon
and others to make the CVS client software usable on
the far end of a TCP/IP connection from the repository.”
(Eric Raymond)

http://hn.my/diff
http://hn.my/grune

20  PROGRAMMING

➑ Free open source version control hosting!
(1999)

This isn’t an advance in source control technology, but
it was astonishing, and on the Internet, social advances
can be as important as technical ones.

The tendency was for older OSS versions to be hard to
find. John T. Hall had the insight that if projects were
developed on the site, the old versions would be there by
default. A development platform service was audacious,
but no one else was doing it, and we thought “why
not?” (Brian Biles)

Partying like there was no tomorrow (for their
stock), VA Linux introduced SourceForge to the world.
This was great for new projects (like my TortoiseCVS).

It was hard and expensive to get a server on the
Internet back then, and it wasn’t easy or cheap to set
up source control and a bug tracker. This new service,
despite its lack of business model, fledged numerous
projects that bit earlier.

➒ You can distribute it all so there’s no central
repository! (2005)

There was a wave of version control systems in the
early nineties, making version control completely
distributed.

That is, your local machine has an entire copy of the
history of the code, and can easily branch and merge on
a peer-to-peer basis with any other copy of it. By the
way, the same feature makes it much easier to branch
and merge in general.

Given that, it seems unfair that I’ve dated this
astonishment in 2005. That’s because I’m not record-
ing the first time anyone made the astonishing thing,
but rather the first time it was productized and made
popular. April 2005 was when both Mercurial and Git
were released.

The post “The Risks of Distributed Version Control”
(late 2005) [hn.my/risk] shows how radical this new-
fangled stuff was seen to be.

➓ When you checkout that’s a fork, too, and
you can do that in public! (2008)

GitHub is successful for several reasons.
In the context of this article, the astonishment was

that you might want to make even your tiny hacks to
other people’s code public. Before GitHub, we tended
to keep those on our own computer.

Nowadays, it is so easy to make a fork, or even edit
code directly in your browser, that potentially anyone
can find immediately, even your least polished bug
fixes.

Coda
Have a quick look back up at those decades of prog-
ress. Yes, some of the advances were also enabled by
increasing computer power. But mainly, they were
simply made by people thinking of cleverer ways of
collaborating.

It makes me wonder, what is next? What new aston-
ishing thing will happen in version control?

More broadly, can the same thing happen in other
fields?

Are core parts of our information infrastructure that
ultimately block innovation in government or health-
care or journalism or data as capable of such dramatic
improvement?

I have this feeling we’re going to find out. n

Francis Irving, CEO of ScraperWiki, lives in Liverpool, UK. He was
the founding developer of mySociety, which over the last 8 years
has made the world’s most innovative democracy websites. He
created TortoiseCVS.

Reprinted with permission of the original author.
First appeared in hn.my/cvs (flourish.org)

http://hn.my/risk
http://hn.my/cvs

  21

By James Hague

Here are some sequences
of events:

1.	Take the rake out of the shed,
use it to pile up the leaves in the
backyard, and then put the rake
back in the shed.

2.	Fly to Seattle, see the sights, and
then fly home.

3.	Put the key in the door, open it,
and then take the key out of the
door.

4.	Wake-up your phone, check the
time, and then put it back to
sleep.

See the pattern? You do some-
thing, do something else, and then
you undo the first thing. Or more
accurately, the last step is the
inverse of the first. Once you’re
aware of this pattern, you’ll see it
everywhere. Pick up the cup, take a
sip of coffee, and put the cup down.
And it’s all over the place in code,
too:

1.	Open a file, read the contents,
and then close the file.

2.	Allocate a block of memory, use
it for something, and then free it.

3.	Load the contents of a memory
address into a register, modify it,
and then store it back in memory.

While this is easy to explain
and give examples of, it’s not
simple to implement. All we want
is an operation that looks like
idiom(Function1, Function2),
so we could write the “open
a file...” example above as
idiom(Open, Read). The catch is
that there needs to be a program-
matic way to determine that the
inverse of “open” is “close.” Is there a
programming language where func-
tions have inverses?

Surprisingly, yes: J [jsoftware.com].
And this idiom I keep talking about
is even a built-in function in J,
called under. In English, and not J’s
terse syntax, the open file example
is stated as “read under open.”

One non-obvious use of under
in J is to compute the magnitude
of a vector. Magnitude is an easy
algorithm: square each component,
sum them up, and then take the
square root of the result. Hmmm...
the third step is the inverse of the
first. “Sum under square,” or as it is
written in actual J code:

mag =: +/ &.: *:

In the above example, +/ is “sum,”
&.: is “under,” and *: is “square.” n

■■ Read the followup here:
prog21.dadgum.com/122.html

James Hague is a recovering program-
mer who now works full time as a game
designer, most recently acting as Design
Director for Red Faction: Guerrilla. He’s run
his own indie game studio and is a pub-
lished photographer.

A Programming Idiom
You’ve Never Heard Of

Reprinted with permission of the original author.
First appeared in hn.my/under (dadgum.com)

http://jsoftware.com
http://prog21.dadgum.com/122.html
http://hn.my/under

22  PROGRAMMING

By Ilya Grigorik

The web is evolving. After
a few years of iteration
the WebSockets spec is

finally here (RFC 6455), and as of
late 2011 both Chrome and Firefox
are SPDY capable. These additions
are much more than just “enhanc-
ing AJAX,” as we now have true
real-time communication in the
browser: stream multiplexing, flow
control, framing, and significant
latency and performance improve-
ments. Now, we just need to drag
our “back office” — web frontends,
app servers, and everything in
between — into this century to take
advantage of these new capabilities.

We’re optimized for “Yesterday’s
Web”
Modern backend architecture
should allow you to terminate the
user connection as close to the user
as possible to minimize latency —
this is your load balancer or web
server occupying ports 80 and 443
(SSL). From there, the request is
routed on the internal network
from the frontend to the backend
service, which will generate the
response. Unfortunately, the current
state of our “back office” routing is
not only outdated, but often it is
also the limiting factor in our adop-
tion of these real-time protocols.

WebSockets and SPDY are both
multiplexed protocols, which
are optimized to carry multiple,
interleaved streams of data over
the same TCP pipe. Unfortunately,
popular choices, such as Apache
and Nginx, have no understanding
of this and at best degrade to dumb
“TCP proxies.” Even worse, since
they do not understand multiplex-
ing, stream flow-control and prior-
ity handling goes out the door as
well. Finally, both WebSockets and
SPDY communicate in framed mes-
sages, not in TCP streams, which
need to be re-parsed at each stage.

Put all of this together and you
quickly realize why your own back
office web stack, and even the pop-
ular platforms such as Heroku and
Google’s App Engine are unable
to provide WebSockets or SPDY
support: our services are fronted
by servers and software which was
designed for yesterday’s web.

Architecture for the “Real-Time
Web”
HTTP is not going away anytime
soon, and we will have to support
both the old and new protocols for
some time to come. One attempt
at this has been the SPDY > HTTP
proxy, which converts a multi-
plexed stream into a series of
old-fashioned HTTP requests. This
works, and it allows us to reuse our
old infrastructure, but this is exactly
backwards from what we need to
be doing!

Instead of converting an opti-
mized, multiplexed stream into
a series of internal HTTP dis-
patches, we should be asking for
HTTP > SPDY infrastructure, which
would allow us to move beyond our
outmoded architectures. In 2012,
we should demand our internal
infrastructure to offer the following:

■■ Request and Response streaming
should be the default

■■ Connections to backend servers
should be persistent

■■ Communication with back-
end servers should be
message-oriented

■■ Communication between
clients and backends should be
bi-directional

Building a Modern Web
Stack for the Real-Time Web

  23

Make SPDY the default, embrace
dynamic topologies
The first step towards these goals is
to recognize that translating SPDY
to HTTP is a convenient path in
the short term, but exactly the
wrong path in the long term. SPDY
offers multiplexing, flow control,
optimized compression, and fram-
ing. We should embrace it and
make it the default on the back-
end. Once we have a multiplexed,
message-oriented protocol on the
backend, we can also finally stop
reparsing the same TCP stream on
every server. Writing HTTP pars-
ers in 2012 is neither fun nor an
interesting problem.

Finally, this architecture should
not require a dedicated OPS team
or a custom software platform to
maintain. Modern web applications
are rarely powered by a single host
and require dynamic (re)configu-
ration and management. Services
such as Heroku, CloudFoundry, and
GAE have built their own “routing
fabrics” to handle these problems.
Instead, we need to design architec-
tures where the frontends and the
backends are decoupled by default
and require minimal intervention
and maintenance.

Adopt a modern Session Layer
Building dynamic network typolo-
gies is not for the faint of heart,
especially once we add the addi-
tional requirements for message-ori-
ented communication, multiplexed
streams, and a grab bag of per-
formance constraints. Thankfully,
libraries such as ØMQ offer all of
the above and more, all wrapped
behind a simple and an intuitive
API. Let the frontend parse and
emit SPDY frames, and then route
them internally as ØMQ messages
to any number of subscribers.

Mongrel2 was one of the first
web servers to explore this type
of architecture with ØMQ, which
allowed it to sidestep the entire
problem of backend configuration,
as well as enable a number of inter-
esting worker topology patterns.
There is still room for improve-
ment, but it is a much needed step
in the right direction. As a concrete
example, let’s consider a sample
workflow with SPDY and ØMQ:

1.	An HTTP (or SPDY) request
arrives to the frontend

2.	Frontend parses the request and
generates SYN_STREAM, HEADERS,
and DATA SPDY frames

3.	The messages are delivered
into a PUSH ØMQ socket (ala
Mongrel2)

4.	Backend subscribers use a PULL
socket to process the SPDY
stream

5.	Backend subscribers stream a
response back to the frontend

The communication is done over
a persistent channel with message-
oriented semantics, the frontend
and the backends are completely
decoupled, and we can finally stop
punching “TCP holes” in our net-
works to support the modern web.

Supporting HTTP 2.0 in the back
office
The new protocols are here, but the
supporting “back office” architec-
ture requires a serious update: SSL
is becoming the default, streaming
is no longer an option, and long-
lived persistent connections are in.
SPDY is gaining momentum, and
I have no doubts that in the not so
distant future it will be an IETF-
approved protocol. Similarly, ØMQ
is not the only alternative for inter-
nal routing, but it is definitely one
that has been gaining momentum.

Fast HTTP parsing and routing is
simply not enough to support the
modern web use cases. Likewise,
punching “TCP holes” in our infra-
structure is not a viable long-term
solution — in 2012 we should be
asking for more. Yes, I’m looking at
you Varnish, Nginx, Apache, and
friends. n

Ilya Grigorik is a web engineer, an open-
source and Ruby evangelist, a data geek,
and a proverbial early adopter of all things
digital. He is currently helping lead the
social analytics efforts at Google. Earlier,
Ilya was the founder and CTO of PostRank,
a social analytics company, which was
acquired by Google.

Reprinted with permission of the original author.
First appeared in hn.my/modern (igvita.com)

http://hn.my/modern

24  PROGRAMMING

By John Carmack

The most important thing I have
done as a programmer in recent
years is aggressively pursue static

code analysis. Even more valuable than the
hundreds of serious bugs I have prevented
with it is the change in mindset about the
way I view software reliability and code
quality.

It is important to say right up front that
quality isn’t everything, and acknowledging it
isn’t some sort of moral failing. Value is what
you are trying to produce, and quality is only
one aspect of it, intermixed with cost, features,
and other factors. There have been plenty of
hugely successful and highly regarded titles
that were filled with bugs and crashed a lot;
pursuing a Space Shuttle style code develop-
ment process for game development would be
idiotic. Still, quality does matter.

I have always cared about writing good
code; one of my important internal motiva-
tions is that of the craftsman, and I always
want to improve. I have read piles of books
with dry chapter titles like “Policies , Stan-
dards, and Quality Plans,” and my work with
Armadillo Aerospace has put me in touch
with the very different world of safety-critical
software development.

Over a decade ago, during the develop-
ment of Quake 3, I bought a license for
PC-Lint and tried using it — the idea of
automatically pointing out flaws in my code
sounded great. However, running it as a com-
mand line tool and sifting through the reams
of commentary that it produced didn’t wind
up winning me over, and I abandoned it fairly
quickly.

Static Code Analysis

Both programmer count and codebase size have grown by an
order of magnitude since then, and the implementation language
has moved from C to C++, all of which contribute to a much
more fertile ground for software errors. A few years ago, after
reading a number of research papers about modern static code
analysis, I decided to see how things had changed in the decade
since I had tried PC-Lint.

At this point, we had been compiling at warning level 4 with
only a very few specific warnings disabled, and warnings-as-errors
forced programmers to abide by it. While there were some dusty
reaches of the code that had years of accumulated cruft, most of
the code was fairly modern. We thought we had a pretty good
codebase.

Coverity

Initially, I contacted Coverity [coverity.com] and signed up for
a demo run. This is serious software, with the licensing cost
based on total lines of code, and we wound up with a quote well
into five figures. When they presented their analysis, they com-
mented that our codebase was one of the cleanest of its size they
had seen (maybe they tell all customers that to make them feel
good), but they presented a set of about a hundred issues that

http://coverity.com

  25

were identified. This was very different than
the old PC-Lint run. It was very high signal-
to-noise ratio — most of the issues high-
lighted were clearly incorrect code that could
have serious consequences.

This was eye-opening, but the cost was
high enough that it gave us pause. Maybe we
wouldn’t introduce that many new errors for
it to catch before we ship.

Microsoft /analyze
I probably would have talked myself into
paying Coverity eventually, but while I
was still debating it, Microsoft preempted
the debate by incorporating their /analyze
[hn.my/analyze] functionality into the 360
SDK. /analyze was previously available as
part of the top-end, ridiculously expensive
version of Visual Studio, but it was now
available to every 360 developer at no extra
charge. I read into this that Microsoft feels
that game quality on the 360 impacts them
more than application quality on Windows
does.

Technically, the Microsoft tool only per-
forms local analysis, so it should be inferior
to Coverity’s global analysis, but enabling
it poured out mountains of errors, far more
than Coverity reported. True, there were lots
of false positives, but there was also a lot of
scary, scary stuff.

I started slowly working my way through
the code, fixing up first my personal code,
then the rest of the system code, then
the game code. I would work on it during
odd bits of free time, so the entire process
stretched over a couple months. One of
the side benefits of having it stretch out
was that it conclusively showed that it was
pointing out some very important things
— during that time there was an epic multi-
programmer, multi-day bug hunt that wound
up being traced to something /analyze had
flagged, but I hadn’t fixed yet. There were
several other, less dramatic cases where
debugging led directly to something already
flagged by /analyze. These were real issues.

Eventually, I had all the code used to build the 360 executable
compiling without warnings with /analyze enabled, so I checked
it in as the default behavior for 360 builds. Every programmer
working on the 360 was then getting the code analyzed every
time they built, so they would notice the errors themselves as
they were making them, rather than having me silently fix them
at a later time. This did slow down compiles somewhat, but /
analyze is by far the fastest analysis tool I have worked with, and
it is oh so worth it.

We had a period where one of the projects accidentally got the
static analysis option turned off for a few months, and when I
noticed and re-enabled it, there were piles of new errors that had
been introduced in the interim. Similarly, programmers working
just on the PC or PS3 would check in faulty code and not realize
it until they got a “broken 360 build” email report. These were
demonstrations that the normal development operations were
continuously producing these classes of errors, and /analyze was
effectively shielding us from a lot of them.

PVS-Studio

Because we were only using /analyze on the 360 code, we still
had a lot of code not covered by analysis — the PC and PS3 spe-
cific platform code and all the utilities that only ran on the PC.

The next tool I looked at was PVS-Studio [hn.my/pvs]. It
has good integration with Visual Studio and a convenient demo
mode (try it!). Compared to /analyze, PVS-Studio is painfully
slow, but it pointed out a number of additional important errors,
even on code that was already completely clean to /analyze. In
addition to pointing out things that are logically errors, PVS-Stu-
dio also points out a number of things that are common patterns
of programmer error, even if it is still completely sensible code.
This is almost guaranteed to produce some false positives, but
damned if we didn’t have instances of those common error pat-
terns that needed fixing.

http://hn.my/analyze
http://hn.my/pvs

26  PROGRAMMING

PC-Lint

Finally, I went back to PC-Lint [hn.my/pcl], coupled with Visual
Lint [hn.my/vl] for IDE integration. In the grand UNIX tradi-
tion, it can be configured to do just about anything, but it isn’t
very friendly and generally doesn’t “just work.” I bought a five-
pack of licenses, but it has been problematic enough that I think
all the other developers that tried it gave up on it. The flexibility
does have benefits — I was able to configure it to analyze all
of our PS3 platform specific code, but that was a tedious bit of
work.

Once again, even in code that had been cleaned by both /
analyze and PVS-Studio, new errors of significance were found.
I made a real effort to get our codebase lint clean, but I didn’t
succeed. I made it through all the system code, but I ran out of
steam when faced with all the reports in the game code. I triaged
it by hitting the classes of reports that I worried most about and
ignored the bulk of the reports that were more stylistic or poten-
tial concerns.

Trying to retrofit a substantial codebase to be clean at maxi-
mum levels in PC-Lint is probably futile. I did some “green field”
programming where I slavishly made every picky lint comment
go away, but it is more of an adjustment than most experienced
C/C++ programmers are going to want to make. I still need to
spend some time trying to determine the right set of warnings to
let us get the most benefit from PC-Lint.

Discussion
I learned a lot going through this process.
I fear that some of it may not be easily
transferable, that without personally going
through hundreds of reports in a short
amount of time and getting that sinking feel-
ing in the pit of your stomach over and over
again, “we’re doing OK” or “it’s not so bad”
will be the default responses.

The first step is fully admitting that the
code you write is riddled with errors. That is
a bitter pill to swallow for a lot of people, but
without it, most suggestions for change will
be viewed with irritation or outright hostility.
You have to want criticism of your code.

Automation is necessary. It is common to
take a sort of smug satisfaction in reports of
colossal failures of automatic systems, but
for every failure of automation, the failures
of humans are legion. Exhortations to “write
better code” plans for more code reviews,
pair programming, and so on just don’t cut
it, especially in an environment with dozens
of programmers under a lot of time pressure.
The value in catching even the small subset
of errors that are tractable to static analysis
every single time is huge.

I noticed that each time PVS-Studio was
updated, it found something in our codebase
with the new rules. This seems to imply that
if you have a large enough codebase, any class
of error that is syntactically legal probably
exists there. In a large project, code quality
is every bit as statistical as physical material
properties — flaws exist all over the place,
you can only hope to minimize the impact
they have on your users.

The analysis tools are working with one
hand tied behind their back, being forced to
infer information from languages that don’t
necessarily provide what they want, and gen-
erally making very conservative assumptions.
You should cooperate as much as possible
— favor indexing over pointer arithmetic, try
to keep your call graph inside a single source
file, use explicit annotations, etc. Anything
that isn’t crystal clear to a static analysis tool
probably isn’t clear to your fellow program-
mers, either. The classic hacker disdain for

http://hn.my/pcl
http://hn.my/vl

  27

“bondage and discipline languages”
is short-sighted — the needs of
large, long-lived, multi-programmer
projects are just different than the
quick work you do for yourself.

NULL pointers are the biggest
problem in C/C++, at least in our
code. The dual use of a single value
as both a flag and an address causes
an incredible number of fatal issues.
C++ references should be favored
over pointers whenever possible;
while a reference is “really” just a
pointer, it has the implicit contract
of being not-NULL. Perform NULL
checks when pointers are turned
into references, then you can ignore
the issue thereafter. There are a lot
of deeply ingrained game program-
ming patterns that are just danger-
ous, but I’m not sure how to gently
migrate away from all the NULL
checking.

printf format string errors were
the second biggest issue in our
codebase, heightened by the fact
that passing an idStr instead of
idStr::c_str() almost always
results in a crash. However, anno-
tating all our variadic functions
with /analyze annotations so they
are properly type checked kills this
problem dead. There were dozens
of these hiding in informative warn-
ing messages that would turn into
crashes when some odd condition
triggered the code path, which is
also a comment about how the
code coverage of our general testing
was lacking.

A lot of the serious reported
errors are due to modifications of
code long after it was written. An
incredibly common error pattern
is to have some perfectly good
code that checks for NULL before
doing an operation, but a later code
modification changes it so that
the pointer is used again without
checking. Examined in isolation,
this is a comment on code path
complexity, but when you look
back at the history, it is clear that it
was more a failure to communicate
preconditions clearly to the pro-
grammer modifying the code.

By definition, you can’t focus on
everything, so focus on the code
that is going to ship to customers,
rather than the code that will be
used internally. Aggressively migrate
code from shipping to isolated
development projects. There was a
paper recently that noted that all
of the various code quality metrics
correlated at least as strongly with
code size as error rate, making code
size alone give essentially the same
error-predicting ability. Shrink your
important code.

If you aren’t deeply frightened
about all the additional issues raised
by concurrency, you aren’t thinking
about it hard enough.

It is impossible to do a true con-
trol test in software development,
but I feel the success that we have
had with code analysis has been
clear enough that I will say plainly:
It is irresponsible to not use it.
There is objective data in automatic
console crash reports showing that
Rage, despite being bleeding edge
in many ways, is remarkably more
robust than most contemporary
titles. The PC launch of Rage was
unfortunately tragically flawed due
to driver problems — I’ll wager
AMD does not use static code
analysis on their graphics drivers.

The takeaway action should be:
If your version of Visual Studio has
/analyze available, turn it on and
give it a try. If I had to pick one
tool, I would choose the Microsoft
option. Everyone else working in
Visual Studio, at least give the
PVS-Studio demo a try. If you are
developing commercial software,
buying static analysis tools is money
well spent.

A final parting comment from
Twitter:

The more I push code through
static analysis, the more I’m
amazed that computers boot at all.

— Dave Revell (@dave_revell) n

John Carmack is a founder and techni-
cal director of Id Software and Armadillo
Aerospace.

Reprinted with permission of the original author.
First appeared in hn.my/static (altdevblogaday.com)

http://twitter.com/dave_revell
http://hn.my/static

28  PROGRAMMING

By Peter schuller

Practical Garbage
Collection

Why should anyone
have to care about
the garbage collector?

That is a good question. The per-
fect garbage collector would do its
job without a human ever noticing
that it exists. Unfortunately, there
exists no known perfect (whatever
perfection means) garbage collec-
tion algorithm. Further, the selec-
tion of garbage collectors practi-
cally available to most people is
additionally limited to a subset of
garbage collection algorithms that
are in fact implemented. (Similarly,
malloc is not perfect either and
has its issues, with multiple imple-
mentations available with different
characteristics. However, this article
is not trying to contrast automatic
and explicit memory management,
although that is an interesting
topic.)

The reality is that, as with many
technical problems, there are some
trade-offs involved. As a rule of
thumb, if you’re using the freely
available Hotspot based JVM:s
(Oracle/Sun, OpenJDK), you
mostly notice the garbage collec-
tor if you care about latency. If you
do not, chances are the garbage

collector will not be a bother —
other than possibly to select a
maximum heap size different from
the default.

By latency, in the context of
garbage collection, I mean pause
times. The garbage collector needs
to pause the application sometimes
in order to do some of its work;
this is often referred to as a stop-
the-world pause (the “world” being
the observable universe from the
perspective of the Java application,
or mutator in GC speak (because it
is mutating the heap while the gar-
bage collector is trying to collect it).
It is important to note that while all
practically available garbage collec-
tors impose stop-the-world pauses
on the application, the frequency
and duration of these pauses vary
greatly with the choice of garbage
collector, garbage collector settings,
and application behavior.

As we shall see, garbage collec-
tion algorithms exist that attempt
to avoid the need to ever collect
the entire heap in a stop-the-
world pause. The reason this is an
important property is that if at any
point (even if infrequently), you
stop the application for a complete

collection of the heap, the pause
times suffered by the application
scale proportionally to the heap
size. This is typically the main
thing you want to avoid when you
care about latency. There are other
concerns as well, but this is usually
the big one.

Tracing vs. reference counting
You may have heard of reference
counting being used (for example,
cPython uses a reference count-
ing scheme for most of its garbage
collection work). I am not going to
talk much about it because it is not
relevant to JVM:s, except to say
two things:

■■ One property that reference
counting garbage collection has is
that an object will be known to
be unreachable immediately at
the point where the last refer-
ence is removed.

■■ Reference counting will not
detect as unreachable cyclic data
structures, and has some other
problems that cause it to not be
the be-all end-all garbage collec-
tion choice.

  29

The JVM instead uses what is
known as a tracing garbage collector.
It is called tracing because, at least
at an abstract level, the process of
identifying garbage involves taking
the root set (things like your local
variables on your stack or global vari-
ables) and tracing a path from those
objects to all objects that are directly
or indirectly reachable from said
root set. Once all reachable (live)
objects have been identified, the
objects eligible for being freed by the
garbage collector have been identi-
fied by a process of elimination.

Basic stop-the-world, mark,
sweep, resume
A very simple tracing garbage col-
lector works using the following
process:

1.	Pause the application completely.

2.	Mark all objects that are reach-
able (from the root set, see
above) by tracing the object
graph (i.e., following references
recursively).

3.	Free all objects that were not
reachable.

4.	Resume the application.

In a single-threaded world, this is
pretty easy to imagine: the call that
is responsible for allocating a new
object will either return the new
object immediately, or, if the heap
is full, initiate the above process to
free up space, followed by complet-
ing the allocation and returning the
object.

None of the JVM garbage collec-
tors work like this. However, it is
good to understand this basic form
of a garbage collector, as the avail-
able garbage collectors are essen-
tially optimizations of the above
process.

The two main reasons why the
JVM does not implement garbage
collection like this are:

■■ Every single garbage collection
pause will be long enough to
collect the entire heap; in other
words, it has very poor latency.

■■ For almost all real-world appli-
cations, it is by far not the most
efficient way to perform garbage
collection (it has a high CPU
overhead).

Compacting vs. non-compacting
garbage collection
An important distinction between
garbage collectors is whether or not
they are compacting. Compacting
refers to moving objects around
(in memory) so as to collect them
in one dense region of memory,
instead of being spread out sparsely
over a larger region.

Real-world analogy: consider
a room full of things on the floor
in random places. Taking all these
things and stuffing them tightly
in a corner is essentially compact-
ing them, freeing up floor space.
Another way to remember what
compaction is, is to envision one of
those machines that take something
like a car and compact it together
into a block of metal, thus taking
less space than the original car by
eliminating all the space occupied
by air (but as someone has pointed
out, while the car is destroyed,
objects on the heap are not!).

By contrast a non-compacting
collector never moves objects
around. Once an object has been
allocated in a particular location in
memory, it remains there forever or
until it is freed.

There are some interesting prop-
erties of both:

■■ The cost of performing a com-
pacting collection is a function
of the amount of live data on the
heap. If only 1% of data is live,
only 1% of data needs to be com-
pacted (copied in memory).

■■ By contrast, in a non-compacting
collector objects that are no
longer reachable still imply
book keeping overhead as their
memory locations must be kept
track of as being freed, to be used
in future allocations.

■■ In a compacting collector,
allocation is usually done via a
bump-the-pointer approach. You
have some region of space, and
maintain your current allocation
pointer. If you allocate an object
of n bytes, you simply bump that
pointer by n (I am eliding com-
plications like multi-threading
and optimizations that implies).

■■ In a non-compacting collector,
allocation involves finding where
to allocate using some mecha-
nism that is dependent on the
exact mechanism used to track
the availability of free memory.
In order to satisfy an allocation of
n bytes, a contiguous region of n
bytes free space must be found.
If one cannot be found (because
the heap is fragmented, meaning
it consists of a mixed bag of free
and allocated space), the alloca-
tion will fail.

Real-world analogy: consider
your room again. Suppose you are a
compacting collector. You can move
things around on the floor freely
at your leisure. When you need
to make room for that big sofa in
the middle of the floor, you move
other things around to free up an
appropriately sized chunk of space
for the sofa. On the other hand, if

30  PROGRAMMING

you are a non-compacting collector,
everything on the floor is nailed to
it, and cannot be moved. A large
sofa might not fit, despite the fact
that you have plenty of floor space
available — there is just no single
space large enough to fit the sofa.

Generational garbage collection
Most real-world applications tend
to perform a lot of allocation of
short-lived objects (in other words,
objects that are allocated, used for
a brief period, and then no longer
referenced). A generational garbage
collector attempts to exploit this
observation in order to be more
CPU efficient (in other words,
have higher throughput). (More
formally, the hypothesis that most
applications have this behavior is
known as the weak generational
hypothesis.)

It is called “generational” because
objects are divided up into gen-
erations. The details will vary
between collectors, but a reasonable
approximation at this point is to say
that objects are divided into two
generations:

■■ The young generation is where
objects are initially allocated. In
other words, all objects start off
being in the young generation.

■■ The old generation is where
objects “graduate” to when they
have spent some time in the
young generation.

The reason why generational
collectors are typically more
efficient, is that they collect the
young generation separately from
the old generation. Typical behavior
of an application in steady state
doing allocation, is frequent short
pauses as the young generation
is being collected, punctuated by

infrequent but longer pauses as the
old generation fills up and triggers
a full collection of the entire heap
(old and new). If you look at a heap
usage graph of a typical application,
it will look similar to this:

 The ongoing saw tooth look is a
result of young generation garbage
collections. The large dip towards
the end is when the old genera-
tion became full and the JVM did
a complete collection of the entire
heap. The amount of heap usage at
the end of that dip is a reasonable
approximation of the actual live set
at that point in time. (Note: This
is a graph from running a stress
test against a Cassandra instance
configured to use the default JVM
throughput collector; it does not
reflect out-of-the-box behavior of
Cassandra.)

Note that simply picking the
“current heap usage” at an arbi-
trary point in time on that graph
will not give you an idea of the
memory usage of the application.
I cannot stress that point enough.
What is typically considered the
memory “usage” is the live set, not
the heap usage at any particular
time. The heap usage is much more

a function of the implementation
details of the garbage collector; the
only effect on heap usage from the
memory usage of the application is
that it provides a lower bound on
the heap usage.

Now, back to why generational
collectors are typically more
efficient.

Suppose our hypothetical
application is such that 90% of all
objects die young; in other words,
they never survive long enough to
be promoted to the old generation.
Further, suppose that our collec-
tion of the young generation is
compacting (see previous sections)
in nature. The cost of collecting the
young generation is now roughly
that of tracing and copying 10%
of the objects it contains. The cost
associated with the remaining 90%
was quite small. Collection of the
young generation happens when
it becomes full, and is a stop-the-
world pause.

Typical saw tooth behavior of heap usage with the throughput collector

  31

The 10% of objects that survived
may be promoted to the old gen-
eration immediately, or they may
survive for another round or two
in young generation (depending
on various factors). The important
overall behavior to understand,
however, is that objects start off
in the young generation, and are
promoted to the old generation as
a result of surviving in the young
generation.

(Astute readers may have noticed
that collecting the young genera-
tion completely separately is not
possible; what if an object in the
old generation has a reference to an
object in the new generation? This
is indeed something a garbage col-
lector must deal with.)

The optimization is quite depen-
dent on the size of the young
generation. If the size is too large,
it may be so large that the pause
times associated with collecting it
is a noticeable problem. If the size
is too small, it may be that even
objects that die young do not die
quite quickly enough to still be in
the young generation when they
die. Recall that the young genera-
tion is collected when it becomes
full; this means that the smaller it
is, the more often it will be col-
lected. Further recall that when
objects survive the young genera-
tion, they get promoted to the old
generation. If most objects, despite
dying young, never have a chance to
die in the young generation because
it is too small, then they will get
promoted to the old generation and
the optimization that the genera-
tional garbage collector is trying to
make will fail. Instead you will take
the full cost of collecting the object
later on in the old generation (plus
the up-front cost of having copied
it from the young generation).

Parallel collection
The point of having a generational
collector is to optimize for through-
put; in other words, the total
amount of work the application
gets to do in a particular amount of
time. As a side-effect, most of the
pauses incurred due to garbage col-
lection also become shorter. How-
ever, no attempt is made to elimi-
nate the periodic full collections
which will imply a pause time of
whatever is necessary to complete a
full collection.

The throughput collector does do
one thing which is worth mention-
ing in order to mitigate this: It is
parallel, meaning it uses multiple
CPU cores simultaneously to speed
up garbage collection. This does
lead to shorter pause times, but
there is a limit to how far you can
go. Even in an unrealistic perfect
situation of a linear speed-up
(meaning, double CPU count ->
half collection time) you are limited
by the number of CPU cores on
your system. If you are collecting
a 30 GB heap, that is going to take
some significant time even if you do
so with 16 parallel threads.

In garbage collection parlance,
the word parallel is used to refer to
a collector that does work on mul-
tiple CPU cores at the same time.

Incremental collection
Incremental in a garbage collec-
tion context refers to dividing up
the work that needs to be done
in smaller chunks, often with the
aim of pausing the applications for
multiple brief periods instead of a
single long pause. The behavior of
the generational collector described
above is partially incremental in the
sense that the young generation col-
lectors constitute incremental work.
However, as a whole, the collection
process is not incremental because
of the full heap collections incurred
when the old generation becomes
full.

Other forms of incremental col-
lections are possible. For example,
a collector can do a tiny bit of
garbage collection work for every
allocation performed by the appli-
cation. The concept is not tied to a
particular implementation strategy.

Concurrent collection
Concurrent in a garbage collec-
tion context refers to performing
garbage collection work concur-
rently with the application (muta-
tor). For example, on an 8 core
system, a garbage collector might
keep 2 background threads that do
garbage collection work while the
application is running. This allows
significant amounts of work to be
done without incurring an applica-
tion pause, usually at some cost of
throughput and implementation
complexity (for the garbage collec-
tion implementer).

32  PROGRAMMING

Available Hotspot garbage
collectors
The default choice of garbage collector
in Hotspot is the throughput collec-
tor, which is a generational, parallel,
compacting collector. It is entirely opti-
mized for throughput, the total amount
of work achieved by the application in
a given time period.

The traditional alternative for situ-
ations where latency/pause times are
a concern, is the CMS collector. CMS
stands for “Concurrent Mark & Sweep”
and refers to the mechanism used by
the collector. The purpose of the col-
lector is to minimize or even eliminate
long stop-the-world pauses, limiting
garbage collection work to shorter
stop-the-world (often parallel) pauses,
in combination with longer work per-
formed concurrently with the applica-
tion. An important property of the
CMS collector is that it is not compact-
ing, and thus suffers from fragmenta-
tion concerns.

As of later versions of JDK 1.6 and
JDK 1.7, there is a new garbage collec-
tor available which is called G1 (which
stands for “Garbage First”). Its aim, like
the CMS collector, is to try to mitigate
or eliminate the need for long stop-the-
world pauses and it does most of its
work in parallel in short stop-the-world
incremental pauses, with some work
also being done concurrently with the
application. Contrary to CMS, G1 is
a compacting collector and does not
suffer from fragmentation concerns —
but it has other trade-offs instead.

Observing garbage collector
behavior
I encourage readers to experiment with
the behavior of the garbage collector.
Use jconsole (comes with the JDK) or
VisualVM (which produced the graph
earlier on in this article) to visualize
behavior on a running JVM. But, in
particular, start getting familiar with
garbage collection log output by run-
ning your JVM with:

-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCDateStamps
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintPromotionFailure

Also useful but verbose:

-XX:+PrintHeapAtGC
-XX:+PrintTenuringDistribution
-XX:PrintFLSStatistics=1

The output is pretty easy to read
for the throughput collector. For CMS
and G1, the output is more opaque to
analysis without an introduction. I hope
to cover this in a later update.

In the mean time, the take-away is
that those options above are probably
the first things you want to use when-
ever you suspect that you have a GC
related problem. It is almost always the
first thing I tell people when they start
to hypothesize GC issues: have you
looked at GC logs? If you have not, you
are probably wasting your time specu-
lating about GC. n

Peter Schuller is a Software Engineer in the Core
Storage team at Twitter; before that, he was a
developer at Spotify.

Reprinted with permission of the original author.
First appeared in hn.my/gc (worldmodscode.wordpress.com)

http://hn.my/gc

  33

You know how
Ken Thompson
and Dennis Ritchie
created Unix on a

PDP-7 in 1969? Well, around 1971
they upgraded to a PDP-11 with a
pair of hard drives.

When their root filesystem grew
too big to fit on their tiny (half a
megabyte) system disk, they let
it leak into the larger but slower
RK05 disk pack, which is where all
the user and home directories lived
and why the mount was called /usr.
They replicated all the OS directo-
ries under the second disk (/bin, /
sbin, /lib, /tmp...) and wrote files
to those new directories because
their original disk was out of space.
When they got a second RK05 disk
pack, they mounted it on /home
and relocated all the user directo-
ries to this third disk so their OS
could consume all the space on the
first two disks and grow to three
whole megabytes.

Of course they made rules about
“when the system first boots, it has
to come up enough to be able to
mount the second disk on /usr, so
don’t put things like the mount
command in /usr/bin or we’ll have
a chicken and egg problem bringing
the system up.” The fact their tiny
system disk was much faster than
an RK05 disk pack worked in there
too: moving files from /bin to /usr/
bin had a significant performance
impact on this particular PDP-11.
Fairly straightforward, and also
fairly specific to the hardware v6
Unix was develped on 40 years ago.

The /bin vs. /usr/bin split (and
all the others) is an artifact of this,
a 1970s implementation detail that
got carried forward for decades by
bureaucrats who never question
why they’re doing things. It stopped
making any sense before Linux was
ever invented for multiple reasons:

1.	Early system bring-up is the
provice of initrd and initramfs,
which deal with the “this file is
needed before that file” issues. We
already have a temporary system
that boots the main system.

2.	Shared libraries (introduced by
the Berkeley guys) prevent you
from independently upgrading
the /lib and /usr/bin parts. Two
partitions have to match or they
won’t work. This wasn’t the case
in 1974; back then they had a
certain level of independence
because everything was statically
linked.

3.	Cheap retail hard drives passed
the 100 megabyte mark around
1990, and partition resizing
software showed up somewhere
around that time (partition magic
3.0 shipped in 1997).

Of course once the split existed,
some people made other rules to
justify it. Root was for the OS stuff
you got from upstream and /usr was
for your site-local files. Then / was
for the stuff you got from AT&T
and /usr was for the stuff that your
distro, like IBM AIX or Dec Ultrix or
SGI Irix, added to it, and /usr/local
was for your specific installation files.
Later, somebody decided /usr/local
wasn’t a good place to install new

packages, so let’s add /opt! I’m still
waiting for /opt/local to show up...

Of course, given 30 years to
fester, this split made some interest-
ing distro-specific rules show up
and go away again, such as “/tmp is
cleared between reboots, but /usr/
tmp isn’t.” On Ubuntu, /usr/tmp

doesn’t exist, and on Gentoo, /usr/
tmp is a symlink to /var/tmp, which
now has the “not cleared between
reboots” rule. Yes, all this predated
tmpfs. It has to do with read-only
root file systems. /usr is always
going to be read-only in that case,
and /var is where your writable
space is. Moreover, / is mostly read-
only except for bits of /etc, which
they tried to move to /var, but
symlinking /etc to /var/etc happens
more often than not.

Standards bureaucracies, like the
Linux Foundation (which consumed
the Free Standards Group in its
ever-growing accretion disk years
ago), happily document and add
to this sort of complexity without
ever trying to understand why it
was there in the first place. “Ken
and Dennis leaked their OS into the
equivalent of home because the root
disk on the PDP-11 was too small"
goes whoosh over their heads. n

Rob Landley has been a geek since child-
hood, a Linux geek since 1998, and an
embedded Linux geek since 2001.

Understanding the bin, sbin, usr/bin, usr/sbin Split
By Rob landley

Reprinted with permission of the original author.
First appeared in hn.my/bin (busybox.net)

References:
• http://cm.bell-labs.com/cm/cs/who/dmr/notes.html
• http://cm.bell-labs.com/cm/cs/who/dmr/hist.html

http://hn.my/bin
http://cm.bell-labs.com/cm/cs/who/dmr/notes.html
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html

34  SPECIAL

SPECIAL

By Igor Teper

The Secret Number

Dr. Simon Tomlin stud-
ied the man sitting across
the table from him.

Rocking back and forth in his chair,
with his shoulders slouching, his
eyes darting all around the room,
and his upper lip twitching every
few seconds, the man conveyed a
distinctly squirrel-like impression. It
was hard to believe that, before his
breakdown, this man had been one
of the foremost number theorists in
the world.

“How are you today, Professor
Ersheim?” asked Dr. Tomlin.

“Fine, fine, thank you, just fine,”
replied the man without looking at
him.

“Have you been sleeping all
right?”

“Oh, yes, I’ve been sleeping quite
well, sleeping like a baby,” replied
Ersheim, nodding vigorously in
sync with his rocking. Still no eye
contact.

“That’s good to hear.”
Ersheim suddenly stopped rock-

ing and looked straight at Tomlin,
eyes bulging. “Oh, cut the nice-
guy act, Doctor,” he said sharply.
“I know you think I’m crazy,
don’t you think I know you think
I’m crazy? That’s what everyone
thought about Laszlo Bleem, too;
that’s what they want you to think.”
He stared at Tomlin, not moving,
not blinking.

“Who are you talking about,
Professor? Who wants everyone to
think you’re crazy?”

“The numbers, Doctor, the num-
bers. They say that numbers don’t
lie, only they do, they lie all the
time, they’ve always lied. But not
to me — oh, no, I see through their
deceptions, I know what they’re
hiding,” said Ersheim. He started
rocking again.

“And what would that be,
Professor?”

“Bleem, that’s what. Bleem!”
shouted Ersheim, banging his fists
against the desk. He then leaned
close to Tomlin and whispered,
“The secret integer between three
and four.”

“We have been over this, Profes-
sor — there is no integer between
three and four.”

“Tell that to Laszlo Bleem,
Doctor,” said Ersheim. “Only you
can’t — he’s dead,” he added, gig-
gling. Then he whispered, “He died
for trying to expose bleem.”

“Laszlo Bleem died in a car acci-
dent, Professor.”

“Oh, grow up! The man pub-
lished a paper detailing his discov-
ery of an up-until-now unknown
integer somewhere between one
and twenty, stating that he was
working on a proof of its existence
and exact location, and a week after
the paper is published — poof!
Bleem dies in a car crash, and his

  35

house burns down, destroying all of
his written notes. The next day the
computer system at his university
crashes, erasing all of his electronic
notes. Bleem got too close, see, and
he was eliminated. Just as I’m going
to be, if you don’t listen to me.”

At this point, Tomlin decided
that it was time to play his trump
card.

“All right Professor, let’s say that
there is, as you say, a secret integer
between three and four. Positive
integers are counting numbers,
right?”

“That’s right, Doctor,” nodded
Ersheim, and then, as if to con-
firm that fact, he began counting,
moving his head from side to side:
“one, two, three, bleem, four...”

“That’s enough, Professor,” inter-
rupted Tomlin. “Now, if bleem is a
counting number, that means that
you can have bleem of something.”

“Of course,” said Ersheim. “I didn’t
know you were a mathematician,
Doctor.” He looked at Tomlin with
what was probably meant to be a
smile, but looked more like a scowl.

“Just bear with me, Professor,”
said Tomlin as he reached into his
pocket and drew out a little plastic
bag.

“What’s that, Doctor?” asked
Ersheim.

“Jelly beans,” said Tomlin, smil-
ing, as he tore open the packet and
emptied its contents, about two
dozen multicolored jelly beans,
onto the desk.

“Now Professor Ersheim, I’d like
you to please separate bleem of
these jelly beans from the rest,” said
Tomlin, a self-satisfied grin on his
face.

“All right,” said Ersheim, and
reached over and moved three jelly
beans over to his side of the desk.
He looked at them with suspicion,

then looked back at the main pile,
then back at the three lying before
him, and quickly grabbed another
one and put it next to them. He
studied the four jelly beans for a
moment, then slid the fourth one
back toward Tomlin, but when it
was about halfway to the main pile,
he snatched it back and added it to
the three, visibly agitated. He then
picked up each of the four jelly
beans and held it up to his eyes,
turning it this way and that, looking
at it with deep mistrust. When he
had inspected all of the jelly beans,
he sat back in his chair, a look of
frustrated resignation on his face.

“I can’t do it, Doctor,” he said.
“So bleem is not an integer after

all,” said Tomlin triumphantly.
“No!” screamed Ersheim and

swept his hand over the desktop,
sending the jelly beans flying all
over the room. “Bleem exists!
Something prevented me from
separating bleem jelly beans! I
could have three or four, but not
bleem!”

“Calm down, Professor. I was
here, I watched what you were
doing, and there was nothing
restraining you, nothing prevent-
ing you from separating out bleem
jelly beans except for the fact that
bleem doesn’t exist.”

“But it does exist,” said Ersheim
timidly. He added, with growing
conviction, “It does exist. And I can
prove it!”

“How can you prove it, Professor,
if you insist that there is an omni-
present, invisible force keeping it
secret?”

“Remember, Doctor,” said
Ersheim, his tone conspiratorial,
“that I’m a mathematician, and a
damn good one. All of mathemat-
ics has been doctored in order to
conceal bleem’s existence, see, but

it wasn’t doctored perfectly, oh
no. There is an obscure branch of
number theory that I helped invent
about twenty years ago, and I think
I can apply some of its theorems to
prove that, in order for mathemat-
ics to be consistent, there must be
an integer between three and four.
That was the topic of my lecture
during which I was so rudely inter-
rupted by several of my colleagues
and lost my temper.”

Lost your temper indeed,
thought Tomlin. It had taken two
weeks to repair all the damage to
the lecture hall.

“Those colleagues didn’t seem
impressed by your proof, Professor,”
said Tomlin.

“That’s because I haven’t worked
out all the particulars of the proof
yet,” said Ersheim. “And even if I
had, none of those idiots knows
the first thing about my research,”
he added angrily. “But I’m close,
Doctor, I can feel it. Just let me
out of here, let me return to my
research, and I’ll have the proof in
just a few months. Or at least allow
me access to a pen and some paper
so that I can work in here.”

Ersheim was clearly agitated, so
Tomlin decided not to aggravate
him further.

“All right, Professor,” said Tomlin,
“I’ll think about what you’ve told
me. I just have one more question
for you.”

“What’s that, Doctor?”
“What possible reason could

anyone have to keep secret the
existence of a number?”

“I’m not sure,” said Ersheim,
shaking his head. “Perhaps bleem
has some mystical properties —
don’t give me that look, Doctor —
or is believed to have them. Numer-
ology has always had a fanatical
following.” After a moment’s pause,

36  SPECIAL

Ersheim’s face lit up with excite-
ment. “Or perhaps the knowledge
of bleem would allow us to attain
a much higher level of mathemati-
cal sophistication. It might allow
us to come up with a mathemati-
cally viable theory of time travel, or
faster-than-light communication, or
who knows what else.”

“I see,” said Tomlin, “and you
really think the discovery of bleem
might make these things possible?”

“I don’t know, but who’s to say it
won’t?” said Ersheim with a shrug.

“I see your point,” said Tomlin.
“Well, Professor, I’m very glad we
had this talk. You’ve given me a
lot to think about. I’ll see you in a
couple of days.”

They shook hands, and Ersheim
left the room. Tomlin sat there for
a while, looking at the jelly beans
strewn about on the floor.

How sad, thought Tomlin, that
a man who has devoted his entire
life to the study of numbers should
come to think that those very num-
bers are out to get him. It made
sense, of course, that the paranoia
manifested itself in relation to
something that Ersheim was already
obsessed with.

Tomlin was not entirely pleased
with that afternoon’s session. He
had hoped that the jelly bean exam-
ple would force Ersheim to see the
absurdity of his position, but all it
did was aggravate him. Still, such a
strong reaction indicated that per-
haps Tomlin had hit upon a sensi-
tive spot in Ersheim’s delusion.

Satisfied that some progress had
been made, Tomlin packed up his
things and went home. Before leav-
ing the hospital, he instructed the
attendants who watched Ersheim
that their patient should under no
circumstances be allowed access to
writing materials.

Tomlin had trouble getting to
sleep that night. Every time he
closed his eyes, he was confronted
by visions of an army of giant
numerals closing in on him, guided
by a shadowy shape that was bleem.
Frustrated, he pulled out a notepad
he kept by his bedside, and wrote
down the numbers between one
and ten. They look so harmless, he
thought, just squiggles on a sheet
of paper, and yet numbers lie at
the foundation of science, and thus
make modern civilization possible.
He looked at them again, with more
respect, and mentally read them off,
one by one. One, two, three, four,
five, six, seven, eight, nine, ten. They
were all there; there was neither
need nor room for bleem. His mind
finally at ease, Tomlin went to sleep.

He was awakened next morning
by the ringing of his telephone. It
was Gene, one of the attendants
from the hospital. Ersheim was
gone.

Tomlin rushed to the hospital.
Upon arrival, he was greeted by
Gene, who explained to him what
had happened, denying responsibil-
ity at every opportunity. Ersheim
had been fine at ten the previous
evening, when Gene last checked
on him, but when Gene made his
morning rounds at six, Ersheim was
not in his room. Ersheim’s door was
locked from the outside, and the
night watchman reported nothing
out of the ordinary. As far as anyone
could tell, Ersheim had vanished
into thin air.

“I think you should see his room,”
added Gene when he was finished.

Tomlin followed Gene to
Ersheim’s room. When he saw it,
his worst fears were confirmed.

The walls of the room were
covered with equations. Rows upon
rows of mathematical symbols,

most of which Tomlin did not rec-
ognize, written by an unsteady hand
in reddish purple ink. Ersheim had
to have worked nonstop all night by
the light of the moon.

Looking around the room, Tomlin
noticed in one of the corners a little
pool of what must have served as
Ersheim’s ink. He walked over to
it, and found a plastic cup that had
been knocked over. Dipping his
finger in the ink, he tasted it. Grape
juice. Floating in the puddle of juice
was a crude writing implement
fashioned out of a drinking straw.
Piled up in another corner of the
room were all of Ersheim’s clothes.
There was no sign of Ersheim
himself.

“Looks like he left us a little
snack,” said Gene from behind
Tomlin.

Tomlin turned around to see
Gene standing next to the night
table. Gene was reaching for one
of three small dark objects lying on
the table.

“Don’t touch those!” yelled
Tomlin.

“They’re just jelly beans, Doc,”
replied Gene, as he flicked one of
them into the air.

Tomlin watched in horror as the
jelly bean described a parabola in
the air, ending up in Gene’s mouth.

“Want one?” asked Gene, motion-
ing at the remaining jelly beans.

Tomlin looked down at the night
table. There were three jelly beans
on the tabletop. n

Igor Teper lives with his wife and son in
the San Francisco Bay Area and teaches
old atoms new tricks at temperatures near
absolute zero. He also writes stories, occa-
sionally. “The Secret Number” was recently
made into a short film of the same name.

Reprinted with permission of the original author.
First appeared in hn.my/secret (strangehorizons.com)

http://hn.my/secret

  37

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

38  SPECIAL

There is a saying: “The man
who is his own lawyer
has a fool for a client.”

I wonder: “Does the man who is
his own teacher have a fool for a
student?” Now obviously, this is not
always true. I can’t speak to law,
medicine, or architecture, but many
people have done extraordinarily
well as software developers after
teaching themselves to program.
In my own case, when I first saw a

computer in school I had already
been writing programs of one recre-
ational sort or another for years.

While Computer Science is an
excellent program in academia,
the actual nitty-gritty of software
engineering isn’t so well developed.
Many software development pro-
grams are actually preparation for a
life as a clerk or disguised tests for
conformity.

But no matter what you think
about formal education, it has one
thing going for it: the separation of
teacher and student. Ideally, while
the teacher has an interest in the
student’s success, the teacher does
not rely on the student’s influence.
The teacher can fail the student.
The teacher can force the student
to learn things that are not fun
or interesting. A student who just
wants to learn enough to get a job

can be forced to learn things that
“won’t be asked in the interview.” A
student who loves the recreational
aspects of computer science can be
dragged away from optimizing his
personal HashLife project and told
to get cracking on understanding
principles of large-scale software
architecture.

This arms-length relationship is
important. It is why the man who
is his own lawyer has a fool for a

client: a good client seeks out a
lawyer who can provide an objec-
tive perspective. You cannot be
objective about your own choices.
The same is true in real estate: my
mother, who was the top salesper-
son in her days as a broker, always
engaged another realtor to repre-
sent her when buying and sell-
ing her own property. She valued
having an objective viewpoint.

Being your own teacher means
forgoing this objective perspective.
It often means being unaware of
what you are missing. When people
claim they are good at teaching
themselves to program, I often
think what they really mean is that
they are extraordinarily good at
learning to program. But there is
more to being a good student than
being good at learning. One of the
responsibilities of a good student

is to seek out excellent teachers. In
the Wikipedia article on Autodidac-
ticism, I find this paragraph:

Autodidactism is only one facet of
learning, and is usually comple-
mented by learning in formal and
informal spaces: from classrooms
to other social settings. Many
autodidacts seek instruction and
guidance from experts, friends,
teachers, parents, siblings, and
community.

I think this is the correct
approach. Instead of thinking of
yourself an excellent — and there-
fore sole or primary — teacher,
think of yourself as an excellent
student with a voracious appetite
for knowledge from many sources,
carefully chosen to provide a bal-
ance between fun and drudgery,
between inspiration and perspira-
tion, between passionate support
and dispassionate feedback.

Returning to the proposition, I
will not say that the man who is his
own teacher has a fool for a stu-
dent. Instead, I will suggest that the
man who does not limit himself to
any one teacher — himself included
— is a very wise student. n

Autodidacticism
By reginald braithwaite

Reginald is a software developer and
development lead with Unspace Interac-
tive. He writes code and words about code
in homoiconic [hn.my/homoiconic]. Follow
him on Twitter @raganwaldReprinted with permission of the original author.

First appeared in hn.my/autodidact (raganwald.posterous.com)

http://hn.my/homoiconic
http://twitter.com/raganwald
http://hn.my/autodidact

http://hacker.postmarkapp.com/

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	The Rules of a Zen Programmer

	STARTUPS
	How to Be Relentlessly Resourceful
	It Takes 3 Years to Build a Business
	Schlep Blindness

	PROGRAMMING
	Astonishments in the History of Version Control
	A Programming Idiom You've Never Heard Of
	Building a Modern Web Stack for the Real-Time Web
	Static Code Analysis
	Practical Garbage Collection
	Understanding the bin, sbin, usr/bin, usr/sbin Split

	SPECIAL
	The Secret Number
	Autodidacticism

