
Issue 26 July 2012

Elon Musk
On Entrepreneurship

http://getharvest.com/hackers

 3

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://getharvest.com/hackers
http://duckduckhack.com

4

Curator
Lim Cheng Soon

Contributors
Nikos Michalakis
Andrew Chen
Chris Strom
David Valdman
Justin Kan
Alexandru Nedelcu
Harvey Green
Hynek Schlawack
James Hague
Andreas Zwinkau
Joe Peacock
Tommy MacWilliam
Lou Montulli

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

HACKEr MoNTHLy is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo: Brian Solis (briansolis.com)

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://briansolis.com

 5

PROGRAMMING

20 How to Build a Naive Bayes Classifier
By ALExANDru NEDELCu

24 Coding Tricks of Game Developers
By HArVEy GrEEN

30 Python Deployment Anti-Patterns
By HyNEK SCHLAWACK

32 This is Why You Spent All that Time
Learning to Program
By JAMES HAGuE

33 Faster than C
By ANDrEAS ZWiNKAu

For links to Hacker News dicussions, visit hackermonthly.com/issue-26

Contents
FEATURES

06 On Entrepreneurship
By ELoN MuSK

10 How To Train Your Robot
By NiKoS MiCHALAKiS

STARTUPS

14 Why You’ll Always Think Your Product Is Shit
By ANDrEW CHEN

16 How I Tricked Myself into Being Awesome
By CHriS STroM

17 The Psychology of Tackling Hard Problems
By DAViD VALDMAN

18 What Good is Experience?
By JuSTiN KAN

SPECIAL

34 “That’s Why You Don’t Have Any Friends.”
By JoE PEACoCK

37 What I’ve Learned about Smart People
By ToMMy MACWiLLiAM

38 The Origins of the <Blink> Tag
By Lou MoNTuLLi

http://hackermonthly.com/issue-26

6 FEATURES

FEATURES

By ELoN MuSK

On Entrepreneurship

i actually originally came to
California to study energy
physics at Stanford, but i
ended up putting it on hold

in 1995 to start Zip2. i’ll tell you a
little about the process and exactly
what happened there. in 1995, it
wasn’t at all clear that the internet
was going to be a big commercial
thing. in fact, most of the venture
capitalists that i talked to hadn’t
even heard of the internet, which
sounds bizarre on Sand Hill road.
However, i wanted to do some-
thing there, and i thought it would
be a pretty huge thing. it was one
of those things that came along
once in a very long while, so i got a
deferment at Stanford and thought
i’d give the idea a couple of quar-
ters. if it didn’t work out, which
i thought it probably wouldn’t,
then i’d go back to school. When i

told one of my professors this, he
said, “Well, i don’t think you’ll be
coming back.” And that was the last
conversation i had with him.

The only way i could think to
get involved in the internet in
1995 was by starting a company.
Apart from Netscape and one or
two others, there weren’t a lot of
companies specializing in this area.
Since i didn’t have any money, i
decided to create something that
would return money very, very
quickly. So, we thought the media
industry would need help con-
verting its content from print to
electronic media, and they clearly
had the money. We decided that
finding a way to help them root
their media to the internet would
be a sure way to generate revenue.
There was no advertising revenue
on the internet at the time.

That was really the basis of Zip2.
We ended up pulling quite a bit of
software for the media industry and
primarily, the print media industry.
We had plenty of investors and
customers, such as Hearst Corpora-
tion, Knight ridder, and most of the
major uS print publishers. We grew
the company and then had the
opportunity to sell it to Compaq in
early 1999. And basically, we sold it
for a little over $300 million dollars
in cash. That’s the currency i highly
recommend.

i started Zip2 by writing a
program that allowed you to keep
maps and directions on the internet
and a tool that allowed you to do
online manipulation of content;
kind of a really advanced blogging
system. once we started talking
to small newspapers and media
companies, we started gaining some

 7

interest and getting a little bit of
money from them. There were only
six of us at Zip2: three sales people
we hired on contingency by putting
an ad in a newspaper; myself; my
brother, who i convinced to come
down from Canada; and a friend of
my Mom’s.

Things were pretty tough in the
beginning because i didn’t have
any money. in fact, i had negative
money because of huge student
debts. At one point, i had to choose
between renting a place to live
or an office, so i rented the office
instead because it was cheaper than
renting a place to stay. For awhile, i
slept on the futon and shouted the
yMCA on Paige Mullen. it was the
best shape i’ve ever been in.

There was a small iSP on the
floor below us, so we drilled a hole
through the floor and connected

to the main cable, which gave us
our internet connectivity for like a
hundred bucks a month. So we had
just an absurdly tiny burn rate as
well as a really tiny revenue stream.
However, since we actually had
more revenue than expenses, we
were able to say we had positive
cash flow when we talked to VPs.
That helped, i think.

Founding of PayPal
i automatically wanted to do some-
thing more after Zip2. immediately
after the sale, i’d normally take
time off, but i wanted to find other
opportunities in the internet since
it was early 1999. i noticed there
hadn’t been a lot of innovation in
the financial services sector. And
when you think about it, money
is low bandwidth. you don’t need
some sort of big infrastructure

improvement to do things with
it. it’s really just an entry in the
database.

Since the paper form of money
is really only a small percentage
of all the money that’s out there,
why not innovate financial services
on the internet? So, we thought
of a couple of different things we
could do. one of the things was to
combine all consumers’ financial
services needs into one website,
such as banking, brokerage, and
insurance. And that was actually
quite a difficult problem to solve,
but we solved most of the issues
associated with that.

Then, we had a little feature that
took us about a day. it was about
emailing money from one customer
to another. Basically, you could type
in an email address or, actually, any
unique identifier, and transfer funds

8 FEATURES

or conceivably stocks or mutual
funds from one account holder
to another. if you tried to transfer
money to somebody who didn’t
have an account in the system, it
would forward them an email invit-
ing them to open an account.

When we would pitch the idea
to investors for a central financial
services portal for consumers, we’d
tell them how much effort it took
to develop the convenient features.
And people would go, “Hmmm.”
We would throw the email pay-
ment feature in as an afterthought
and they would say, “Wow!” After
this reaction, we focused the com-
pany’s business on email payments.

in the early days, our company
was called x.com. There was also
another company called Confinity,
which started out from a differ-
ent area. Confinity had Palm Pilot
cryptography and the demo appli-
cation they were using had the
ability to beam token payments
from one Palm Pilot to another via
the infrared port. They also had a
website named PayPal where users
could reconcile the beamed pay-
ments. it didn’t take too long for
them to notice the website portion
was actually far more interest-
ing to users than the Palm Pilot
cryptography.

They started leaning their busi-
ness in that direction, and in early
2000, x.com acquired Confinity.
About a year later, we changed
the company name to PayPal. And
that’s a summary of the evolution
of the company.

Success through Viral Marketing
PayPal is really a perfect case
example of viral marketing, just like
Hotmail. in this case, customers act
like a sales person for you by bring-
ing in other customers. in PayPal’s

case, they would send money to a
friend and, essentially, recruit that
friend into the network, so we had
this exponential growth. The more
customers, the faster it grew. it was
like bacteria in a Petri dish; it just
keeps going like an S-curve.

i ran PayPal for about the first
two years of its existence. By the
end of year two, we had a million
customers. it gives you a sense
of how fast things grow in that
scenario. And we didn’t have a sales
force. Actually, we didn’t even have
a VP of Sales or a VP of Marketing.
And we didn’t spend any money on
advertising.

Selling PayPal
in 2002, PayPal went public. We
were the only internet company
to go public in the first part of
that year. it went reasonably
well, although we had more SEC
rewrites than any company i can
imagine. i think we set a record on
SEC rewrites. This was right around
the time when there were all sorts
of corporate scandals. So, they
put us through the ringer. Shortly
thereafter, about June or July, we
struck a deal and sold the company
to eBay for over $4 billion. But that
was when eBay’s stock price was
about $55 and they hadn’t split. So,
i guess, in today’s dollars we were
about $3 billion. So it worked out
pretty well.

Comparing Zip2 and PayPal
 i guess both Zip2 and PayPal
involved software as the heart of
the technology, even though Zip2
was servicing the media sector and
PayPal was servicing the financial
sector. However, the heart of it was
really the software and the internet
Both companies were also in Palo
Alto, where i live.

We also took a similar approach
to building both companies by
having a small group of very tal-
ented people and keeping it small.
PayPal, at its height, probably had
30 engineers for a system that, i
would say, is more sophisticated
than the Federal reserve clearing
system. i’m pretty sure it is actually
because the Federal reserve clear-
ing system sucks.

So, what else is there? Gener-
ally, both Zip2 and PayPal operated
as your canonical “Silicon Valley”
start up. you know, a pretty flat
hierarchy. And anyone could talk to
anyone. We have to go for the best
idea as opposed to a person pro-
posing an idea that is considered
to be a winner just because of who
they are.

obviously, everyone was an
equity stake holder. if there were
two paths that, let’s say, we had
to choose between and one wasn’t
obviously better than the other,
then instead of spending a lot of
time trying to figure out which one
was slightly better, we would just
pick one and do it. Sometimes we’d
be wrong and we’d pick ourselves
up. But often it’s better to pick a
path and do it than to just vacillate
endlessly on a choice. We didn’t
worry too much about intellectual
property, paperwork, or legal stuff.
We were really just focused on
building the best product that we
possibly could.

Both Zip2 and PayPal were very
product-focused companies. We
were incredibly obsessive about cre-
ating something that would provide
the best possible customer experi-
ence. And that was a far more effec-
tive selling tool than having a giant
sales force or thinking of marketing
gimmicks or twelve-step processes,
or whatever.

 9

The Right Time to Sell
We had several offers from a
number of different entities for
PayPal, and in fact, the closer we
got to iPo, the more offers we got.
However, we always felt that those
offers undervalued the company
and subsequently we went public.
i think the public markets kind of
indicated the value of the company,
and that’s one of the good things
about public markets. it’s difficult
for private companies to say how
much they’re worth because they
need some kind of metric. Are you
going to go for future earnings? Are
you going to base it on revenue?
What are your comparables going
to be? There are all sorts of ques-
tions and the value of a company is
really up for debate. When you’re
public, however, you’re worth what
the market says you’re worth. yes,
eBay made a number of offers prior
to our iPo that would substantially
blown the value once we went
public.

eBay initially had Billpoint and
then there was eBay Payments.
it was a really tough, long run-
ning battle of PayPal versus eBay’s

payment system. it was certainly
very challenging. There were times
when it felt like we were trying to
win a land war in Asia and they
kind of set the ground rules, or
trying to beat Microsoft in their
own operating system. it’s really
pretty hard and it took a lot of our
effort to actually beat eBay on their
own system. one of the long-term
risks for the company was that eBay
would one day prevail, and one way
to retire that risk obviously was to
sell to eBay.

Qualities of an Entrepreneur
Successful entrepreneurs probably
come in all sizes, shapes, and flavors.
i’m not sure there’s any one par-
ticular critical quality. For me, some
of the things i’ve described already
are very important, such as an
obsessive nature with respect to the
quality of the product. Being obses-
sive compulsive is a good thing in
this context. Also, really liking what
you do is important because even if
you’re the best of the best, there’s
always a chance of failure, so i think
it’s important that you really like
whatever you’re doing. if you don’t

like it, life is too short. And if you
really like what you’re doing, you
think about it even when you’re not
working. it’s something that your
mind is drawn to and if you don’t
like it, you just really can’t make it
work. n

Elon Musk is the co-founder of SpaceX,
Tesla Motors and PayPal.

“Really liking what you do is important
because even if you’re the best of the
best, there’s always a chance of failure.”

Originally appeared on Stanford Technology Ven-
tures Program (STVP) Entrepreneurship Corner in
video format: hn.my/elon (ecorner.stanford.edu)

Photograph by Brian Solis (briansolis.com)

http://hn.my/elon
http://briansolis.com

10 FEATURES

By NiKoS MiCHALAKiS

Last sunday, i taught
6 kids ages 5 to 7
how to program. “in
what programming

language?” you may ask. Well…i
didn’t use a programming language,
at least none that you know of. in
fact, i didn’t even use a computer.
instead, i devised a game called
“How To Train your robot.” Before
i explain how the game works, let
me tell my motivation.

i learned how to program during
my freshman year at MiT when
i was 19. it’s not because i didn’t
have a computer at home or i

hadn’t heard about programming
languages. it was because (a) i
thought programming was boring,
and (b) no one had told me why i
should bother. in fact, my computer
teacher in high school had told me
“you don’t need to waste your time
learning how to program. Now we
have visual tools to build programs.
Programming languages are already
obsolete.” That was in 1994 and
he was referring to Visual Basic.
Luckily for me, MiT wiped all that
nonsense away in a matter of weeks.
But does one need to wait to go to
college to get the proper education?

Learning how to program is going
to be the most useful new skill we
can teach our kids today. More than
ever our lives depend on how smart
we are when we instruct comput-
ers. They hold our personal data
and they make decisions for us.
They communicate for us, and they
are gradually becoming an exten-
sion of our brains. if we don’t learn
programming as part of our child-
hood, we will never evolve. As the
famous futurist, ray Kurzweil, put
it “The only second language you
should worry about your kids learn-
ing is programming.”

How To Train Your
Robot

“The only second language you should worry
about your kids learning is programming.

— Ray Kurzweil
”

 11

How To Train Your Robot
The game works as follows:
every kid is turned into a
“robot master” and their
mom or dad becomes their
“robot.” i give each kid a
“robot Language Diction-
ary” and explain to them
that this is the language
their robot understands.
The dictionary has symbols
for “move left leg forward,”
“turn left,” “grab,” “drop,” etc.

 The goal is for the robots
to go through an obstacle
course, pick up a ball, and
bring it back. The kids have
to write a program that will
tell the robot how to do all
that. Every time they write
a program, they hand it to
their robot, and the robot
executes it. To do that, i give
each kid a pen and paper
where they copy symbols
from the dictionary to write
their programs and off their
robots go!

kid name

Empty space
for inventing
new commands

12 FEATURES

 The fun part begins when each
robot retrieves the ball. Now i let
kids invent their own moves and
symbols that they add to their dic-
tionary and then teach their robots.
There is no limit to what the kids
come up with.

i designed the class to teach some
very basic principles of computer
science and programming:

 n Programming languages are just
another way to communicate to
an entity (via programs).

 n Programs are recipes for automat-
ing stuff.

However, i was pleasantly sur-
prised on how much more the kids
learned. on their own they fig-
ured out the following things (in a
30-min session):

 n Program Parameterization: instead
of putting a forward step ten
times, they put a 10 in front of
the “step” symbol (A five-year-old
figure it out and asked me if she
could do it).

 n Composition: Grouping of a set
of moves (“move left leg forward,
then move right leg forward and
do this combo 10 times”)

 n Abstraction: “run in a circle, then
say “i’m dizzy!”, then call this the
“run Dizzy” program and do it
100 times. (For some reason, kids
loved making their parents repeat
stuff 100 times over.)

 n unit testing: They’d write a
test program to get the parents
moving a few steps, have their
parents run it, then fix it and run
it again, and then add a few more
steps until they reach the goal.

 13

i’ve ran the class twice now and
i’ve seen the same patterns, which
support my belief that when kids
have fun, they get very smart and
creative about programming. Many
of the parents plan to play the
game at birthday parties. if you
have questions about how to set up
the game, don’t hesitate to write.
you can find my contact info at
facebook.com/drtechniko

you can also find instruc-
tions on how to teach the class
as well as materials i used here
[hn.my/robotm].

i hope we learned something
useful today,

DrTechniko n

Nikos Michalakis graduated from MIT with
a degree in Electrical Engineering and
Computer Science. As DrTechniko, in his
spare time he teaches kids about computer
science and technology through storytell-
ing and games. He lives in Brooklyn with
his wife and their son and works for Knew-
ton, an education technology startup.

This is my favorite program (written by a five year old girl)

mom robot is running
the “lie down, hug and
kiss me” program

Reprinted with permission of the original author.
First appeared in hn.my/drtechniko (drtechniko.com)

Photographs by Nikos Michalakis.

http://facebook.com/drtechniko
http://hn.my/robotm
http://hn.my/drtechniko

14 STARTUPS

By ANDrEW CHEN

STARTUPS

you’ve said this before. We
all have.
Anyone working on

getting their first product out to
market will often have the feel-
ing that their product isn’t quite
ready. or even once it’s out and
being used, nothing will seem as
perfect as it could be, and if you
only did x, y, and Z, then it would
be a little better. in a functional
case, this leads to a great roadmap
of potential improvements, and
in a dysfunctional case, it leads
to unlaunched products that are
endlessly iterated upon without a
conclusion.

About a year ago i visited Pixar’s
offices and learned a little about
this product, and i wanted to share
this story:

Over at Pixar…
Matt Silas, a long-time Pixar
employee offered to take me on a
tour of their offices and i accepted
his gracious offer. After an hour-
long drive from Palo Alto to
Emeryville, Matt showed up while
i was admiring a glass case full of
oscars, and started a full tour.

i’ve always been a huge fan of
Pixar — not just their products,
but also their process and culture.
There’s a lot to say about Pixar and
their utterly fascinating process
for creating movies, and i’d hugely
recommend this book: To infinity
and Beyond [hn.my/pixarbook]. it
gave me a kick to know that Pixar
uses some very collaborative and
iterative methods for making their
movies — after all, a lot of what
they do is software. Here are some
quick examples:

 n Pixar’s teams are ultimately a
collaboration of creative people
and software engineers. This is
reflected at the very top by John
Lasseter and Ed Catmull.

 n The process of coming up with a
Pixar movie starts with the story,
then the storyboard, then many
other low-fidelity methods to
prototype what they are ulti-
mately make.

 n They have a daily “build” of their
movies in progress so they know
where they stand, with sketches
and crappy CGi filling holes
where needed. Compare this to
traditional moviemaking where
it’s only at the end.

 n Sometimes, as with the original
version of Toy Story, they have
to stop doing what they’re doing
and restart the entire moviemak-
ing process since the whole thing
isn’t clicking. Sound familiar,
right?

The other connection to the tech
world is that Steve Jobs personally
oversaw the design of their office
space. Here’s a great little excerpt
on this, from director Brad Bird
(who directed The incredibles):

Why You’ll Always Think
Your Product Is Shit

“My product isn’t
quite there yet.”

http://hn.my/pixarbook

 15

“Then there’s our building. In the center,
he created this big atrium area, which
seems initially like a waste of space. The
reason he did it was that everybody goes
off and works in their individual areas.
People who work on software code are
here, people who animate are there, and
people who design are over there. Steve
put the mailboxes, the meetings rooms,
the cafeteria, and, most insidiously and
brilliantly, the bathrooms in the center
— which initially drove us crazy — so
that you run into everybody during the
course of a day. [Jobs] realized that
when people run into each other, when
they make eye contact, things happen.
So he made it impossible for you not to
run into the rest of the company.”

Anyway, i heard a bunch of stories
like this and more. As expected, the tour
was incredible, and near the end, we
stopped at the Pixar gift shop.

There, i asked Matt a casual question
that had an answer i remember well, a
year later:

Me: “What’s your favorite Pixar
movie?”

Matt: *SIGH*

Me: “Haha! Why the sigh?”

Matt: “This is such a tough question,
because they are all good. And yet at
the same time, it can be hard to watch
one that you’ve worked on, because you
spend so many hours on it. You know
all the little choices you made, and all
the shortcuts that were taken. And you
remember the riskier things you could
have tried but ended up not, because
you couldn’t risk the schedule. And so
when you are watching the movie, you
can see all the flaws, and it isn’t until
you see the faces of your friends and
family that you start to forget them.”

Wow! So profound.

A company like Pixar, who undoubt-
edly produces some of the most beloved
and polished experiences in the world,
ultimately still cannot produce an
outcome where everyone on the team
thinks it is the best. And after thinking
about why, the reason is obvious and
simple: to have the foresight and the
skill to refine something to the point of
making it great also requires the abil-
ity to be hugely critical. More critical, i
think, than your ability to even improve
or resolve the design problems fast
enough. And because design all comes
to making a whole series of tradeoffs,
ultimately you don’t end up having what
you want.

The lesson: You’ll always be unhappy
What i took away from this conversation
is that many of us working to make our
products great will never be satisfied.
A great man once said, your product is
shit, and maybe you will always think it
is. yet at the same time, it is our creative
struggle with what we do that ultimately
makes our creations better and better.
And one day, even if you still think your
product stinks, you’ll watch a customer
use it and become delighted.

And for a brief moment, you’ll forget
what it is that you were unhappy about. n

Andrew Chen is a blogger and entrepreneur
focused on consumer internet, metrics and user
acquisition. He is an advisor/angel for early-
stage startups and is also a 500 Startups mentor.

Reprinted with permission of the original author.
First appeared in hn.my/shit (andrewchen.co)

http://hn.my/shit

16 STARTUPS

By CHriS STroM

Like most developers, i am
an introvert, so it is hard to
say this:

i am awesome.
Fuuuuuu.... i can’t even leave it

at that. i look at so many amazing
people in the ruby, Javascript, and
other communities that actually are
amazing, and i feel like i haven’t
done anything. But even so, look-
ing back at the 366 days of the last
year, what i did was, well... amazing.

i wrote three books on very
different technologies that i knew
nothing about.

i wrote The SPDy Book, which is
still the only book on SPDy:

 Three months later, i co-authored
recipes with Backbone.js with Nick
Gauthier:

 Three months later, i wrote
the first book on Dart, Dart for
Hipsters:

Each of these technologies has
two things in common:

1. They are game changing (or at
least possibly).

2. i knew nothing about them
before i started writing them.

What business did i have writ-
ing books on topics about which i
knew nothing? Well, let me put it
this way: i did it, so why shouldn’t i
(or anyone else)?

How did I do it?
i blogged every single day. For one
full year. 366 days. Every day. No
matter what.

i honestly don’t know why i
started doing this. one night i had
a brilliant idea and before i stopped
and thought about how stupid it

was, i publicly committed myself to
doing it.

And it worked. Every night, i ask
a question to which i don’t know
the answer, and i try my damnedest
to answer it.

 Every time i do this, i learn. The
daily deadline forces me to learn.
Blogging about it challenges my
assumptions and makes me learn
even more.

And then, doing it again the next
day reinforces the learning. As does
writing the book. And the second
edition.

How I Tricked Myself into
Being Awesome

 17

 i am proud that i didn’t let this get in
the way of what’s important. i still took
vacations with the family — drove to the
beach and Disney World. Birthdays, anni-
versary, sickness — i was there for it all.

And in the end, what did i learn? Well
aside from a ton about coos technologies,
i learned that:

I tricked myself into being awesome.
i heard a story on radioLab about a

lady named Zelda. She tricked herself
into quitting smoking by swearing that
she would donate $5,000 to the KKK if
she ever smoked another cigarette. And
she never did. Would she have really
donated that money if she had given in?
Maybe not, but it was enough for her
to have convinced herself that it would
happen.

And, in the end, i did the same. Would
the world have ended if i missed a day?
of course not. Very few, if any people
would have noticed. But i would have
noticed because i committed to doing
this. And, after 366 days, i have more than
not smoking to show for it. i have three
books, the last of which is being published
by The Pragmatic Programmers. n

Chris is an author and web developer at EEE Com-
putes LLC with more than 10 years professional
experience in a variety of domains. Despite this
extensive background, you could fill a book with
what he does not know, which is rather the point.

The thing about hard problems is that there
are many difficulties and few solutions.
Sounds obvious, but what’s often overlooked

is the psychological component to this asymmetry.
There’s a simple reason why tackling a hard problem
can lead to depressive symptoms: you’re necessarily
wrong 99% of the time.

i’m getting my PhD in math, and developing a web
app/startup on the side. i can tell you one thing from
my PhD research that i can carry over to my entrepre-
neurial ambitions: you only have to be right 1% of the
time. The hard part is, you need to be psychologically
prepared to be wrong all other times.

i haven’t seen much discussion of this idea, but i’ve
faced it repeatedly myself, and i often see it in others.
i’ve seen it so often i’m convinced of its pervasive-
ness. Here’s an example. one of my peers tells me his
numerics code isn’t working:

Me: Have you tried this test case?
Him: No, actually.
Me: Well that may isolate the bug.
Him: But I’m afraid that it won’t work.

Sound silly and contrived? it isn’t, and i have com-
plete sympathy for this situation. So many times in
my work i’ve fantasized about the solution to an idea,
and have been too afraid to implement it because of
the subliminal fear that i will be, yet again, wrong.
it’s a Pavlovian response to the track record of being
repeatedly disappointed. Meanwhile, i delight in having
new ideas, and enjoy brainstorming them. But without
implementing them, the process is worthless.

The point is to be aware. if you find yourself resist-
ing an obvious step due to an irrational fear, step back
and force yourself to push onward. you only need to be
right 1% of the time. n

David Valdman is finishing his PhD in applied math at UC Santa
Barbara this summer. Soon to be “not that kind of doctor”. He’s
also the founder of Quip Video, a web app for annotating online
video. Follow David on twitter at @dmvaldman

The Psychology of
Tackling Hard Problems
By DAViD VALDMAN

Reprinted with permission of the original author.
First appeared in hn.my/tricked (japhr.blogspot.com)

Reprinted with permission of the original author.
First appeared in hn.my/psych (davidvaldman.com)

http://twitter.com/dmvaldman
http:// hn.my/tricked
http://hn.my/psych

18 STARTUPS

By JuSTiN KAN

What Good is Experience?

When i didn’t have
any experience, i
thought that experi-

ence was totally worthless. Emmett
and i taught ourselves how to build
web applications in a few months in
college and built the first version of
Kiko pretty quickly. i did the front
end by piecing together JavaScript
tutorials until we had something
that resembled a calendar.

We thought we were pretty awe-
some. if we could build a web app
that easily and drum up a bunch of
public interest, then it seemed to
us that everyone should be start-
ing startups right out of college,
and that anyone who wasn’t was
just too scared. What was the point
of waiting? you aren’t getting any
younger.

When i think about that first
codebase today i want to vomit
in my own mouth. i am glad that
i no longer have access because i
want to deny it ever existed. it was
a mess of spaghetti code, and even
though we built it quickly, it took a
lot longer than it should have.

ironically, now that i have experi-
ence, i think experience is priceless.
What’s made me change my mind?

 n Experience makes you move
more quickly. it turns out i’m
still not a wonderful program-
mer. i am, however, a pretty
decent web developer, and this is
entirely due to experience. Need
a rails CruD app with an APi?

Boom, i’ve been doing that for
seven years now. i built the entire
backend, frontend, and APi for
Exec myself in three weeks in
January.

 n Experience helps you focus on
the right things. When you don’t
know what’s important, it is easy
to think every decision is impor-
tant. Most of them aren’t. Having
experience helps you know what
decisions you can ignore, post-
pone, or delegate (almost all of
them), and what things you actu-
ally need to do right now.

 n Experience gives you confidence.
We’ve raised venture money for
our companies before; i know
i can do it again. i’ve built web
apps before; i know i don’t need
to hire a programmer to replace
myself unless we find someone
who is really excellent. in the
meantime, i can wait. When
you’ve done something before,
you aren’t worried you can’t do
it again.

i still think there are some poten-
tial downsides to having experience
that are worth watching out for:

 n Experience tends to pre-empt
innovation. it’s been said before,
but when you have a lot of
experience in a certain area, you
generally think of solutions and
approaches that have worked
for you in the past. Sometimes

this prevents you from taking a
fresh approach which ultimately
would work out better.

 n Experience takes time to get.
Waiting for experience is also an
excuse not to get started. By the
time you feel comfortable and
confident enough to jump off, the
moment might have passed.

 n You know some things to be
impossible. Most things that
were impossible or impractical
years ago became possible or will
become possible some time later.
your experience might tell you
that something you want to do
can’t be done. other people will
go on to do them.

And lastly, something i’ve been
wondering: is it possible to fake
experience by getting advice? Per-
haps for highly specialized topics,
like how to scale your exploding
website. However, i think that there
are a great many things that people
are destined to learn themselves the
hard way. So, don’t worry too much
about trying to find a hack to get
experience, when you get enough
experience you’ll be experienced
enough to know one doesn’t exist. n

Justin Kan is the founder and CEO of Exec,
your on demand work force. Previously he
founded Justin.tv, TwitchTV and Socialcam.
He is a part time partner at Y Combinator.

Reprinted with permission of the original author.
First appeared in hn.my/exp (justinkan.com)

http://hn.my/exp

19 STARTUPS

http://paymo.biz

20 PROGRAMMING

By ALExANDru NEDELCu

PROGRAMMING

Some use-cases for building a
classifier:

 n Spam detection; for example, you
could build your own Akismet
APi.

 n Automatic assignment of catego-
ries to a set of items.

 n Automatic detection of the
primary language (e.g. Google
Translate).

 n Sentiment analysis, which in
simple terms refers to discovering
if an opinion is about love or hate
for a certain topic.

in general, you can do a lot better
with more specialized techniques,
however the Naive Bayes classi-
fier is general-purpose, simple to
implement, and good-enough for
most applications. And while other
algorithms give better accuracy, i
discovered that having better data
in combination with an algorithm
that you can tweak gives better
results for less effort.

in this article i’m describing
the math behind it. Don’t fear
the math, as this is simple enough

that a high-schooler could under-
stand. And even though there are
a lot of libraries out there that
already do this, you’re far better off
understanding the concept behind
it. otherwise, you won’t be able
to tweak the implementation in
response to your needs.

0. The Source Code
i published the source-code asso-
ciated at github.com/alexandru/
stuff-classifier. The implementation
itself is at lib/bayes.rb, with the
corresponding test/test_002_
naive_bayes.rb.

1. Introduction to Probabilities
Let’s start by refreshing forgotten
knowledge. Again, this is very basic
stuff, but if you can’t follow the
theory here, you can always go to
the probabilities section on Khan
Academy [hn.my/proba].

1.1. Events and Event Types
An “event” is a set of outcomes (a
subset of all possible outcomes)
with a probability attached. So
when flipping a coin, we can
have one of these two events:
tail or head. Each of them has a

probability of 50%. using a Venn
diagram, this would look as follows:

 The example below clearly
shows the dependence between
“rain” and "cloud formation” since
rain can only happen if there are
clouds:

 The relationship between events
is very important, as you’ll see next:

 n 2 events are disjoint (exclusive)
if they can’t happen at the same
time (a single coin flip cannot
yield a tail and a head at the
same time). For Bayes classifica-
tion, we are not concerned with
disjoint events.

How to Build a Naive Bayes
Classifier

http://github.com/alexandru/stuff-classifier
http://github.com/alexandru/stuff-classifier
http://hn.my/proba

 n 2 events are independent when
they can happen at the same
time, but the occurrence of
one event does not make the
occurrence of another more or
less probable. For example, the
second coin-flip you make is not
affected by the outcome of the
first coin-flip.

 n 2 events are dependent if the
outcome of one affects the other.
in the example above, clearly
it cannot rain without a cloud
formation. Also, in a horse race,
some horses have better perfor-
mance on rainy days.

What we are concerned with
here is the difference between
dependent and independent events
because calculating the intersection
(both happening at the same time)
depends on it. So, for independent
events, calculating the intersection
is easy:

Some examples:

 n if you have 2 hard-drives, each of
them having a 0.3 (30%) prob-
ability of failure within the next
year, that means there’s a 0.09
(9%) probability of them failing
both within the next year.

 n if you flip a coin 4 times, there’s
a 0.0625 probability of getting a
tail 4 times in a row (0.5 ^ 4).

Things are not so simple for
dependent events, which is where
the Bayes Theorem comes into play.

1.2. Conditional Probabilities and
the Bayes Theorem
Let’s take one example with the
following stats:

 n 30 emails out of a total of 74 are
spam messages.

 n 51 emails out of those 74 contain
the word “penis.”

 n 20 emails containing the word
“penis” have been marked as
spam.

So the question is: what is the
probability that the latest received
email is a spam message, given that
it contains the word “penis”?

These 2 events are clearly
dependent, which is why you must
use the simple form of the Bayes
Theorem:

With the solution being:

 The above example is simple so
you can see the result without com-
plicating yourself with the Bayes
formula.

1.3. The Naive Bayes Approach
Let us complicate the problem
above by adding to it:

 n 25 emails out of the total contain
the word “viagra.”

 n 24 emails out of those have been
marked as spam.

What’s the probability that an
email is spam, given that it contains
both “viagra” and “penis”?

Shit just got more complicated,
because now the formula is this
one:

 And you definitely don’t want
to bother with it if we keep adding
words. But what if we simplified
our assumptions and just say that
the occurrence of penis is totally
independent from the occurrence
of viagra? Then the formula just got
much simpler:

 To classify an email as spam,
you’ll have to calculate the condi-
tional probability by taking hints
from the words contained. And the
Naive Bayes approach is exactly
what i described above: we make
the assumption that the occurrence
of one word is totally unrelated to
the occurrence of another, to sim-
plify the processing and complexity
involved.

22 PROGRAMMING

This does highlight the flaw of this method of classi-
fication, because clearly the 2 events we picked (viagra
and penis) are correlated and our assumption is wrong.
But this just means our results will be less accurate.

2. Implementation
i’ll mention it again: you can take a look at the source-
code published at github.com/alexandru/stuff-classifier

2.1. General Algorithm
you simply get the probability for a text to belong to
each of the categories you test against. The category
with the highest probability for the given text wins:

 Do note that above i also eliminated the denomina-
tor from our original formula because it is a constant
that we do not need (called evidence).

2.2. Avoiding Floating Point Underflow
Because of the underlying limits of floating points, if
you’re working with big documents (not the case in
this example), you do have to make one important
optimization to the above formula:

 n instead of the probabilities of each word, you store
the (natural) logarithms of those probabilities.

 n instead of multiplying the numbers, you add them
instead.

So instead of the above formula, if you need this
optimization, then use this one:

 2.3. Training
your implementation must have a training method.
Here’s how mine looks like:

def train(category, text)
 each_word(text) {|w| increment_word(w, category)}
 increment_cat(category)
end

And its usage:

classifier.train :spam, "Grow your penis to 20
inches in just 1 week"
classifier.train :ham, "I'm hungry, no I don't
want your penis"

For the full implementation, take a look at base.rb

2.4. Getting Rid of Stop Words / Stemming
First of all, you must get rid of the junk. Every lan-
guage has words that are so commonly used that they
become meaningless for any kind of classification you
may want to do. For instance, in English, you can safely
strip out such words as “the,” “to,” “you,” “he,” “only,” “if,”
and “it” from the text.

i’ve compiled a list of such words in this file:
stop_words.rb. you can compile such a list by yourself
if you’re using a language other than English. Head
over to Project Gutenberg [gutenberg.org], download
some books in the language you want, count the words
in them, sort by popularity in descending order, and
keep the top words as words that you can safely ignore.

Also, our classifier is really dumb in the sense that it
does not care about the meaning or context of a word.
So there’s a problem: consider the word “running.”
What you want is to treat this just as “run”, which is
the morphological root of the word. you also want to
treat “parenting” and “parents” as “parent.”

This process is called stemming and there are lots of
libraries for it. i think currently the most up-to-date
and comprehensive library for stemming is Snowball.
it’s a C library with lots of available bindings, including
for ruby and Python, and it even has support for my
native language (romanian).

Take a look at what i’m doing in tokenizer.rb,
where i’m getting rid of stop words and stemming the
remaining words.

each_word('Hello world! How are you?')

=> ["hello", "world"]

each_word('Lots of dogs, lots of cats!
 This is the information highway')

=> ["lot", "dog", "lot", "cat", "inform",
"highway"]

each_word("I don't really get what you want to
accomplish. There is a class TestEval2, you
can do test_eval2 = TestEval2.new afterwards.
And: class A ... end always yields nil, so your
output is ok I guess ;-)")

=> ["really", "want", "accomplish", "class",
"testeval", "test", "eval", "testeval",
"new", "class", "end", "yields", "nil",
"output", "ok", "guess"]

http://github.com/alexandru/stuff-classifier

 23

2.5. Implementation Guidelines
When classifying emails for spam, it is a good idea
to be sure that a certain message is a spam message.
otherwise, users may get pissed by too many false
positives.

Therefore it is a good idea to have thresholds. This is
how my implementation looks:

def classify(text, default=nil)
 # Find the category with the highest probability

 max_prob = 0.0
 best = nil

 scores = cat_scores(text)
 scores.each do |score|
 cat, prob = score
 if prob > max_prob
 max_prob = prob
 best = cat
 end
 end

 # Return the default category in case the
 # threshold condition was not met. For
 # example, if the threshold for :spam is 1.2
 #
 # :spam => 0.73, :ham => 0.40 (OK)
 # :spam => 0.80, :ham => 0.70 (Fail, :ham
 # is too close)

 return default unless best
 threshold = @thresholds[best] || 1.0

 scores.each do |score|
 cat, prob = score
 next if cat == best
 return default if prob * threshold > max_prob
 end

 return best
end

Final Words
My example involved spam classification, but this is
not how modern spam classifiers work. Because the
independence assumptions are often inaccurate, this
type of classifier can be gamed by spammers to trigger
a lot of false positives, which will make the user even-
tually turn the feature off.

But it is general purpose, being useful not only for
spam detection, but also for lots of other use-cases, and
it’s enough to get you started. n

Alexandru is an experienced software developer that ventured
across anything he found interesting. Besides trying to make
people’s lives better, he also enjoys cooking and spending time
with his toddler. He lives in Romania and works remotely for U.S.
based startups.

Reprinted with permission of the original author.
First appeared in hn.my/bayes (bionicspirit.com)

http://hn.my/bayes (bionicspirit.com)

24 PROGRAMMING

By HArVEy GrEEN

if you’ve got any real world
programming experience, then
no doubt at some point you’ve

had to resort to some quick and
dirty fix to get a problem solved
or a feature implemented while a
deadline loomed large. Game devel-
opers often experience a horrific
“crunch” (also known as a “death
march”), which happens in the last
few months of a project leading up
to the game’s release date. Failing to
meet the deadline can often mean
the project gets cancelled or even
worse, you lose your job. So what
sort of tricks do they use while
they’re under the pump, doing 12+
hour days for weeks on end?

Below are some classic anecdotes
and tips (many thanks to Bran-
don Sheffield who originally put
together this article [hn.my/dirty]
on Gamasutra). i have included a
few of his stories and also added
some more from newer sources.

The Programming Antihero
–Noel Llopis
i was fresh out of college, still wet
behind the ears, and about to enter
the beta phase of my first profes-
sional game project, a late-90s
PC title. it had been an exciting
rollercoaster ride, as projects often
are. All the content was in and the
game was looking good. There was
one problem though: we were way
over our memory budget.

Since most memory was taken up
by models and textures, we worked
with the artists to reduce the
memory footprint of the game as
much as possible. We scaled down
images, decimated models, and
compressed textures. Sometimes
we did this with the support of the
artists, and sometimes over their
dead bodies.

We cut megabyte after mega-
byte, and after a few days of frantic
activity, we reached a point where
we felt there was nothing else we
could do. unless we cut some major
content, there was no way we

could free up any more memory.
Exhausted, we evaluated our cur-
rent memory usage. We were still
1.5 MB over the memory limit!

At this point one of the most
experienced programmers in the
team, one who had survived many
years of development in the “good
old days,” decided to take matters
into his own hands. He called me
into his office, and we set out upon
what i imagined would be another
exhausting session of freeing up
memory.

instead, he brought up a source
file and pointed to this line:

static char
buffer[1024*1024*2];

“See this?” he said. And then
deleted it with a single keystroke.
Done!

He probably saw the horror in
my eyes, so he explained to me
that he had put aside those two
megabytes of memory early in
the development cycle. He knew
from experience that it was always

Coding Tricks of Game
Developers

http://hn.my/dirty

 25

impossible to cut content down to
memory budgets, and that many
projects had come close to failing
because of it. So now, as a regular
practice, he always put aside a nice
block of memory to free up when
it’s really needed.

He walked out of the office and
announced he had reduced the
memory footprint to within budget
constraints. He was toasted as the
hero of the project.

As horrified as i was back then
about such a “barbaric” practice, i
have to admit that i’m warming up
to it. i haven’t gotten into the frame
of mind where i can put it to use
yet, but i can see how sometimes,
when you’re up against the wall,
having a bit of memory tucked
away for a rainy day can really
make a difference. Funny how time
and experience changes everything.

Cache It Up –Andrew Russell
To improve performance when
you are processing things in a tight
loop, you want to make the data for
each iteration as small as possible,
and as close together as possible in
memory. That means the ideal is
an array or vector of objects (not
pointers) that contain only the data
necessary for the calculation.

This way, when the CPu fetches
the data for the first iteration of
your loop, the next several itera-
tions worth of data will get loaded
into the cache with it.

There’s not really much you
can do with using fewer and faster
instructions because the CPu is
as fast as it’s going to get, and the
compiler can’t be improved. Cache
coherence is where it’s at. This article
[hn.my/coherence] contains a good
example of getting cache coherency
for an algorithm that doesn’t simply
run through data linearly.

Plan Your Distractions
–Jay Barnson
The internet is one of the great-
est tools ever invented for both
improving and destroying produc-
tivity. Twitter and forums and blogs
and instructional websites can be
extremely motivational and educa-
tional, but they can also be a dis-
traction that completely destroys all
hope of ever getting anything done.
one thing i’ve done in the past
which has proven pretty successful
is to stick to a plan for when i can
spend some minutes checking email
and Twitter, or play a quick game
or something. Either at the comple-
tion of a task, or after a period of
time (say one five-minute break
every hour). otherwise, the brows-
er’s only use is for reading reference
manual pages, if necessary. That
way i turn a potential distraction
into a motivating tool.

Collateral damage
–Jim Van Verth
Don’t know how many remem-
ber Force 21, but it was an early
3D rTS which used a follow cam
to observe your current platoon.
Towards the end of the project
we had a strange bug where the
camera would stop following the
platoon — it would just stay where
it was while your platoon moved
on and nothing would budge it. The
apparent cause was random because
we couldn’t find a decent repro
case. until, finally, one of the testers
noticed that it happened more
often when an air strike occurred
near your vehicles. using that info i
was able to track it down.

Because the camera was using
velocity and acceleration and was
collidable, i derived it from our
Physicalobject class, which had
those characteristics. it also had

another characteristic: Physicalob-
jects could take damage. The air
strikes did enough damage in a
large enough radius that they were
quite literally “killing” the camera.

i did fix the bug by ensuring
that cameras couldn’t take damage,
but just to be sure, i boosted their
armor and hit points to ridiculous
levels. i believe i can safely say we
had the toughest camera in any
game.

The Blind Leading the Blind
–Maurício Gomes
At university, there was a team that
made a FPS flash game. For some
bizarre reason, the programmer,
instead of checking if the character
was colliding with the wall to keep
you from going there, he did the
inverse: he checked if there was a
wall, and only allowed you to move
parallel to it!

This sparked a bizarre bug: in
crossings or T junctions in the level,
you could not actually cross, only
turn to the passage on your left or
right. The deadline was closing, and
they had no idea on how to fix it.

Then the team writer fixed the
issue; he told the artist to add an
animation of hands touching the
walls, and then he added in the
background story that the main
character was blind and needed to
constantly touch the walls to know
where he was going.

You Wouldn’t Like Me When I’m
Angry –Nick Waanders
i once worked at THQ studio relic
Entertainment on The outfit,
which some may remember as one
of the earlier games for the xbox
360. We started with a PC engine
(single-threaded), and we had to
convert it to a complete game on
a next-gen multi-core console in

http://hn.my/coherence

26 PROGRAMMING

about 18 months. About 3 months
before shipping, we were still run-
ning at about 5 FPS on the 360.
obviously this game needed some
severe optimization.

When i did some performance
measurements, it became clear
that as much as the code was slow
and very “PC,” there were also
lots of problems on the content
side as well. Some models were
too detailed, some shaders were
too expensive, and some missions
simply had too many guys running
around.

it’s hard to convince a team of
100 people that the programmers
can’t simply “fix” the performance
of the engine, and that some of
the ways people had gotten used
to working needed to change.
People needed to understand that
the performance of the game was
everybody’s problem, and i figured
the best way to do this is with a bit
of humor that had a bit of hidden
truth behind it.

The solution took maybe an
hour. A fellow programmer took
4 pictures of my face: one really
happy, one normal, one a bit angry,
and one where i am pulling my hair
out. i put this image in the corner
of the screen, and it was linked to
the frame rate. if the game ran at
over 30fps, i was really happy, if it
ran below 20, i was angry.

After this change, the whole FPS
issue transformed from, “Ah, the
programmers will fix it.” to, “Hmm,
if i put this model in, Nick is going
to be angry! i’d better optimize this
a little first.” People could instantly
see if a change they made had an
impact on the frame rate, and we
ended up shipping the game at
30fps.

It’s Not a Bug,It’s a Feature!
–Philip Tan
i worked on an rPG in which we
were trying to get the NPCs (Non-
player Characters) to spot when
you were in range, walk up to you,
and strike up a conversation with
you by activating the dialog system.

We forgot to add code to distin-
guish NPCs from PCs (Player Char-
acters), so we’d walk into town and
all the NPCs would be talking with
each other. Because all NPC Ai
code used the same dialog template,
they actually got a few sentences
in before the conversations became
nonsensical. And because character
dialog was broadcast, you could
read everything they said if you
were in range.

We decided to turn that bug into
a major feature.

Dirty Deeds –Tim Randall
The engine team at Gremlin inter-
active used to keep a single glove in
their office. When someone asked
why it was there, they were told it
was only used when someone was
about to type some really dirty
code. it wasn’t so much a case of
not wanting to leave fingerprints
but rather not wanting to actually
touch the dirtiest fixes!

Explicit Conditional Hinting
–ZorbaTHut
A very, very low-level tip, but one
that can come in handy: most com-
pilers support some form of explicit
conditional hinting. GCC has a
function called __builtin_expect
which lets you inform the compiler
what the value of a result prob-
ably is. GCC can use that data to
optimize conditionals to perform as
quickly as possible in the expected
case, with slightly slower execution
in the unexpected case.

if(__builtin_expect(entity-
>extremely_unlikely_flag, 0)) {
 // code that is rarely run
}

i’ve seen a 10-20% speedup with
proper use of this.

Objective Oriented Programming
–Anonymous
Back at a game studio, i think it was
near the end of the project, we had
an object in one of the levels that
needed to be hidden. We didn’t
want to re-export the level and we
did not use checksum names. So
right smack in the middle of the
engine code we had something like
the following:

if(level==10 && object==56)
{
 HideObject();
}

The game shipped with this in.
Maybe a year later, an artist

using our engine came to us very
frustrated about why an object in
their level was not showing up after
exporting. The level they had a
problem with resolved to level 10. i
wonder why?

Stack vs. Heap
–Torbjörn Gyllebring
Stack allocation is much faster than
heap allocation since all it really
does is move the stack pointer.
using memory pools, you can get
comparable performance out of
heap allocation, but that comes
with a slight added complexity and
its own headaches.

Also, stack vs. heap is not only a
performance consideration; it also
tells you a lot about the expected
lifetime of objects. The stack is
always hot, and the memory you
get is much more likely to be in

 27

cache than any far heap allocated
memory.

The downside of the stack is that
it is actually a stack. you can’t free a
chunk of memory used by the stack
unless it is on top of it. There’s no
management — you push or pop
things on it. on the other hand,
the heap memory is managed: it
asks the kernel for memory chunks,
maybe splits them, merges them,
reuses them, and frees them. The
stack is really meant for fast and
short allocations.

I’m a Programmer, Not an Artist
–Damian Connolly
For indie/solo developers who are
working on an iPhone or Android
game on their own, while you’re
looking for an artist, you should be
developing your game at the same
time. use programmer art, stand-
ins, free sprites — anything. Most
of the time, before even thinking
about final assets, i just want some-
thing up and running quickly to see
if it’s fun. Prototype the crap out of
it and find the game. Then, when
the gameplay’s locked down, you
can start putting in the proper art.
Doing it the other way around leads
to lost money, and work that needs
to be redone multiple times, which
aside from harming your project,
sucks your motivation to finish it
(and if you’re making a game to get
a job, showing that you can finish a
project is a good thing). Another tip
if you’re lacking upfront finance is
to find a freelance game artist who
will accept a revenue sharing deal,
e.g. typically something like 30% of
game revenue, payable once it gets
published to the AppStore.

Remove Unnecessary Branches
–tenpn
on some platforms and with some
compilers, branches can throw
away your whole pipeline, so even
insignificant if() blocks can be
expensive.

The PowerPC architecture (PS3/
x360) offers the floating-point
select instruction, fsel. This can be
used in the place of a branch if the
blocks are simple assignments:

float result = 0;
if(foo > bar){ result = 2.0f; }
else { result = 1.0f; }

Becomes:

float result = fsel(foo-bar,
2.0f, 1.0f);

When the first parameter is
greater than or equal to 0, the
second parameter is returned, else
the third. The price of losing the
branch is that both the if{} and
the else{} block will be executed,
so if one is an expensive operation
or dereferences a NuLL pointer,
this optimization is not suitable.
Sometimes your compiler has
already done this work, so check
your assembly first.

Hack the Stack –Steve DeFrisco
i was one of a few interns at
iMAGiC in 1982-83. We were all
doing intellivision carts. one of the
programmers had to leave to go
back to school, and i was chosen
to fix the random crash bug in his
game. it turned out to be a stack
overflow in the timer interrupt han-
dler. Since the only reason for the
handler was to update the *display*
of the on-screen timer, i added
some code to test the depth of the
stack at the beginning of the inter-
rupt routine. if we were in danger
of overflowing the stack, return

without doing anything. Since
the handler was called multiple
times per second, the player never
noticed, and the crash was fixed.

Meet My Dog, “Patches”
–Mick West
There’s an old joke that goes some-
thing like this:

Patient: “Doctor, it hurts when I do
this.”

Doctor: “Then stop doing it.”

Funny, but are these also wise
words when applied to fixing bugs?
Consider the load of pain i found
myself in when working on the port
of a 3D third person shooter from
the PC to the original PlayStation.

Now, the PS1 has no support for
floating point numbers, so we were
doing the conversion by basically
recompiling the PC code and over-
loading all floats with fixed point.
That actually worked fairly well,
but where it fell apart was during
collision detection.

The level geometry that was
supplied to us worked reasonably
well in the PC version of the game,
but when converted to fixed point,
all kinds of seams, T-Junctions, and
other problems were nudged into
existence by the microscopic dif-
ferences in values between fixed
and floats. This problem would
manifest itself in one case with the
main character touching a particu-
lar type of door in a particular level
in a particular location; rather than
fix the root cause of the problem,
i simply made it so that if he ever
touched the door, then i’d move
him away, and pretend it never hap-
pened. Problem solved.

Looking back i find this code
quite horrifying. it was patch-
ing bugs and not fixing them.

28 PROGRAMMING

unfortunately the real fix would
have been to go and rework the
entire game’s geometry and colli-
sion system specifically with the
PS1 fixed point limitations in mind.
The schedule was initially aggres-
sive, and since we always seemed
close to finishing, the quick patch
option won over against a compre-
hensive (but expensive) fix.

But it did not go well. Hundreds
of patches were needed, and then
the patches themselves started
causing problems, so more patches
were added to turn off the patches
in hyper-specific circumstances.
The bugs kept coming, and i kept
beating them back with patches.
Eventually i won, but at a cost of
shipping several months behind
schedule, and working 14 hour days
for all of those several months.

That experience soured me
against “the patch.” Now i always
try to dig right down to the root
cause of a bug, even if a simple, and
seemingly safe, patch is available.
i want my code to be healthy. if
you go to the doctor and tell him
“it hurts when i do this,” then you
expect him to find out why it hurts,
and to fix that. your pain and your
code’s bugs might be symptoms of
something far more serious. The
moral: treat your code like you
would want a doctor to treat you;
fix the cause, not the symptoms.

Identity Crisis –Noel Llopis
This scene is familiar to all game
developers: it’s the day we’re send-
ing out the gold candidate for our
xbox 1 game. The whole team is
playtesting the game all day long,
making sure everything looks good.
it’s fun, it’s solid, it’s definitely a go
in our minds.

in the afternoon, we make the
last build with the last few game-
balancing tweaks, and do one last
playthrough session when disaster
strikes: the game crashes hard! We
all run to our workstations, fire up
the debugger, and try to figure out
what’s going on. it’s not some-
thing trivial, like an assert, or even
something moderately hard to track
down, like a divide by zero. it looks
like memory is garbage in a few
places, but the memory reporting
comes out clean. What’s going on?

one dinner and many hours later,
our dreams of getting out on time
shattered, we manage to track it
down to one data file being loaded
in with the wrong data. The wrong
data? How’s that possible? our
resource system boiled down every
asset to a 64-bit identifier made out
of the CrC32 of the full filename
and the CrC32 of all the data
contents. That was also our way of
collapsing identical resource files
into a single one in the game. With
tens of thousands of files, and two
years of development, we never had
a conflict. Never.

until now, that is.
it turns out that one of the

innocent tweaks the designers had
checked in that afternoon made it
so a text file had the exact same
filename and data CrC as another
resource file, even though they were
completely different!

our hearts sank to our feet
when we recognized the problem.
There’s no way we could change
the resource indexing system in
such a short period of time. Even
if we pulled an all-nighter, there
was no way to know for sure that
everything would be stable in the
morning.

Then, as quickly as despair swept
over us, we realized how we could
fix this on time for the gold can-
didate release. We opened up the
text file responsible for the conflict,
added a space at the end, and saved
it. We looked at each other with
huge grins on our faces and said:

“Ship it!”
The extra space meant the

CrC32 checksum of the text file
was altered and therefore no longer
conflicted with the other resource.

HexEdit to the Rescue
–Ken Demarest
Back on Wing Commander 1 we
were getting an exception from our
EMM386 memory manager when
we exited the game. We’d clear
the screen and a single line would
print out, something like “EMM386
Memory manager error. Blah blah
blah.” We had to ship ASAP. So i
hex edited the error in the memory
manager itself to read “Thank you
for playing Wing Commander.”

8-bit Audio Stomper –Toonse
For a launch product of a certain
console i had a nasty bug report
from QA that took 20+ hours to
reproduce. Finally (with 24 hours
left to go to hit console launch)
tracked it down to some audio
drivers in the firmware that were
erroneously writing 1 random byte
“somewhere” at random times
where the “somewhere” was always
in executable code space. i finally
figured out that any given run of
the game that “somewhere” was
always the same place, luckily. 1st
party said sorry, can’t fix it in time
as we don’t know why it’s being
caused! So i shipped that game
with stub code at the very start of
main that immediately saved off
the 1 byte from the freshly loaded

 29

executable in the place i knew it
would overwrite for that particular
version of the exe. There was then
code that would run each frame after
audio had run and restore that byte
back to what it should be just in
case it had been stomped that frame.
Good times! We hit launch.

To this day i still feel very, very
dirty about this hack, but it was
needed to achieve the objectives and
harmed no one.

Rainy Day Server Pool
–Potatolicious
i used to work for a company that
had a horrific hardware requisition
policy. if your team needed a server,
it had to go through a lengthy and
annoying approvals process — and
even then, it took months before
infrastructure would actually provide
said servers.

in other words, when a project
gets handed down from above to
launch in, say, 3 months, there’s no
way in hell you can get the servers
requisitioned, approved, and installed
in that time. it became standard
practice for each team to slightly
over-request server capacity with
each project and throwing the excess
hosts into a rainy day pool, immedi-
ately available and repurposeable as
required.

New servers will still get requested
for these projects, but since they took
so long to approve, odds are they’d
go right into the pool whenever they
actually arrived, which sometimes
took up to a year.

of course, it was horrifyingly inef-
ficient. Just on my team alone i think
we had easily 50 boxes sitting around
doing nothing (and powered on to
boot) waiting to pick up the slack of
a horrendously broken bureaucracy.

Bit Shifting Magic
–Steven Pigeon
in order to avoid stalls in the proces-
sor pipeline due to branching, one
can often use a branchless equivalent,
that is, code transformed to remove
the if-then-else’s and therefore jump
prediction uncertainties. For exam-
ple, a straightforward implementa-
tion of abs() in C might be:

inline int abs(int x)
{
 return (x<0) ? -x : x;
}

Which is simple enough but
contains an inline if-then-else. As the
argument, x, isn’t all that likely to
follow a pattern that the branch pre-
diction unit can detect, this simple
function becomes potentially costly
as the jump will be mispredicted
quite often.

How can we remove the if-then-
else, then? one solution is to use the
right shift operator (>>) and the bit-
wise xor operator (^) as following:

inline int abs_no_branch(int x)
{
 int m = (x >> (8 *
sizeof(int)-1));
 return ((x ^ m) - m);
}

Where the expression (8 *
sizeof(int) - 1) evaluates to 15,
31, or 63 depending on the size of
integers on the target computer. n

Harvey Green has spent the past few years
developing in .NET and C# for the Oil & Gas
and related industries. He believes that core
language skills plus good domain knowl-
edge has been the key to most of the proj-
ects he’s worked on.

Reprinted with permission of the original author.
First appeared in hn.my/game (dodgycoder.net)

http://hn.my/game

30 PROGRAMMING

Deploying web applica-
tions is hard. No shiny
continuous deployment

talk and no Devops coolness can
change that. or to use Devop
Borat’s words: “is all fun and game
until you are need of put it in pro-
duction.” There are some mistakes i
see people making again and again,
so i’d like to address them here.

My background
Before i start preaching, let me tell
you a bit about me and what i do in
order to give you some perspective
from which i’m writing.

i work for a German web hoster
and domain registrar. And i’m
deploying Python-based applica-
tions all the time. Most parts of
our infrastructure are built using
Python. And those that aren’t, will
be eventually.

The sizes range from tiny glue
to mission-critical APis. We have
legacy Pylons [pylonsproject.org],
new Pyramid, some Django, &
a lot of Twisted apps
[twistedmatrix.com]. And every-
thing is seasoned with a hint of
Celery [celeryproject.org].

So if i say “application,” i don’t
mean just some Django CruD
front end. Python lives in all layers
here. And all layers have to be
deployed somehow.

Deploying so many diverse
applications requires solid and
consistent deployment stan-
dards if you don’t want to go
crazy. The main mantra is to go
for simple solutions, not for easy
ones. Something that is easy now,
can become a major PiTA down
the road.

Don’t use ancient system
Python versions
Every time someone whines about
lack of support for Python 2.4 in
recent packages, i hear Kenneth
reitz saying:

Python 2.4 is not supported. It
came out 8 years ago. That’s older
than YouTube. Upgrade.

if you’re serious about using
Python you should be prepared to
roll your own rPMs/DEBs. We’re
even running rHEL 4 on some
of our servers; but we’re a Python
company, so we use the best thing

we can get — even if it means
extra work.

We also have to compile our own
Apaches and MySQLs for our cus-
tomer servers (we don’t use any of
them for our own systems, but our
customers demand a solid LAMP-
stack) because we need that fine-
grained control. Why should Python
be an exception? rolling an own
DEB/rPM is a lot less of a nuisance
than writing code for Python < 2.6.

This works both ways. it’s
entirely possible that you have
some mission-critical web app that
isn’t compatible with Python newer
than 2.4. Are you going to install
a single server with an ancient oS,
just to accommodate? Key infra-
structure must not be dictated by
third parties.

on the other hand i’m not saying
that you have to compile Python
yourself! oneiric and later have
Python 2.7 on board — there’s
absolutely no reason to build it for
yourself. The stress is on “ancient,”
not on “system” in this caption.

Python Deployment
Anti-Patterns

By HyNEK SCHLAWACK

http://pylonsproject.org
http://twistedmatrix.com
http://celeryproject.org

 31

Use virtual environments
Gentlepeople, if you’re deploying
software, always use virtualenv.
Actually, the same goes for local
development: look into virtualen-
vwrapper which makes handling
them a breeze. So never install
into your global site packages! The
only exception is the aforemen-
tioned virtualenv, which in turn
installs pip in each environment it
installs to.

Test your software against certain
versions of packages, pinpoint
them using pip freeze and be
confident that the identical Python
environment is just a pip install
-r requirements.txt away. For
the record, i split up my require-
ment files; more on that in the
next installment.

Also, use real version pinning
like package==1.3. Don’t do pack-
age>=1.3, it will bite you eventu-
ally, just as it has bitten me and
many others.

Never use Python packages
from your distribution
This one is in fact an extreme ver-
sion of the previous anti-pattern.

First of all, there’s no reason to
succumb to a dictate of your distri-
bution which version of a package
to use. They don’t know your appli-
cation. Maybe you need the latest
version, maybe you need a slightly
older one.

1. if i write and test software, i do it
against certain packages. Packages
tend to change APis, introduce
bugs, etc.

2. My software is supposed to run
on any uNixy platform as long
as the Python it’s written against
is present.

What if the next ubuntu ships
with a different SQLAlchemyby

default? Do i have to fix all my
applications before upgrading our
servers? or what if i need to deploy
an app to an older server? Do i
have to rewrite it so it runs with
older packages? i prefer not to.

i really wish the Linux distribu-
tions wouldn’t ship anything more
than the Python interpreter and
virtualenv. Anything else just lever-
ages bad behavior.

The only good they may be doing
is automatically updating packages
with security vulnerabilities that
you may have missed. That said,
i’m convinced that if you deploy
software to the net, you have
the responsibility to monitor them
yourself anyway. relying on your
distribution gives you just a false
sense of security; if your customer’s
data gets hacked, they don’t care
that ubuntu was to slow to issue a
security update.

Don’t run your daemons in
a tmux/screen
it seems to be part of everyone’s
evolution to do it, so be the first
one to skip it!

yes, tmux is full of awesome
(and way better than screen),
but please don’t just ssh on your
host and start the service in a tmux
or screen. you have nothing that
brings the daemon back up if it
crashes. you can’t restart it on 10
servers without ssh’ing on 10 serv-
ers, get the screen and Ctrl-C it.
Granted, it’s easy in the beginning,
but it doesn’t scale and lacks basic
features that simple-to-use tools
have to offer.

My favorite one is supervisord
[supervisord.org]. A definition for a
service looks as simple as:

[program:yourapp]
command=/path/to/venv/bin/guni-
corn_django --config deploy/

gunicorn-config.py settings/pro-
duction.py
user=yourapp
directory=/apps/yourapp

you add the file to /etc/super-
visor/conf.d/, make a supervi-
sorctl update and your service is
up and running. it’s a no-brainer
and much easier than juggling rc.d
scripts. Crash recovery and optional
web interface included.

Configuration is not part of
the application
your production configuration
doesn’t belong in the (same)
source repository. There are
configuration management tools
like Puppet [puppetlabs.com]
or Chef [opscode.com/chef] that
do exactly that for you — just
better and more reliably. While
installing the configuration, Puppet
can make sure that the directories
always have certain permissions.
Configuration templates make
it perfect for mass deployments.
Some service iP changed? Just fix
it in Puppet’s repo and deploy the
changes. Eventually all services
will catch up. if you want, you can
always trigger a run, for example
using a simple Fabric [fabfile.org]
script.

But don’t use Fabric for actual
deployments! This is the perfect
example of the battle between
“simple” and “easy.” At first, it’s
easier to put everything inside of
the repo and run a Fabric script that
does a git pull and restarts your
daemon. in the long run, you’ll
regret it like many before you did.

Just to stress this point: i love
Fabric and couldn’t live without
it. But it’s not the right tool for
orchestrating deployments — that’s
where Puppet and Chef step in.

http://supervisord.org
http://puppetlabs.com
http://opscode.com/chef
http://fabfile.org

32 PROGRAMMING

Look into alternatives to
Apache + mod_wsgi setups
Many people go for Apache
and mod_wsgi by default,
because everybody has already
heard about Apache.

To me, Apache feels like
a big ball of mud, and i find
the modular combination
of gunicorn [gunicorn.org]
or uwsgi [hn.my/uwsgi]
together with nginx much
more pleasing and easier
to control.

Enough negativity
i don’t claim that i’ve discov-
ered the sorcerer’s stone. How-
ever, i’ve developed a system
for us that proved solid and
simple in the long run.

The trick is to build a
debian package (but it can be
done using rPMs just as well)
with the application and the
whole virtualenv inside. The
configuration goes into Puppet,
and Puppet also takes care that
the respective servers always
have the latest version of
the DEB.

The advantage is that such a
DEB is totally self-contained,
doesn’t require having to build
tools and libraries on the target
servers, and, paired with solid
Puppet configuration, it makes
consistent deployments over a
wide range of hosts easy, fast,
and reliable. But you have to do
your homework first. n

Hynek is a wine-loving software
engineer from Berlin/Germany, cre-
ating robust systems for a living at
Variomedia and hacking FOSS for
fame at home. He occasionally blogs
at hynek.me and regularly tweets as
@hynek

There’s a standard
format for local TV
news broadcasts that’s

easy to criticize.
There’s an initial shock-value

teaser to keep you watching.
News stories are read in a dra-
matic, sensationalist fashion by
attractive people who fill most of
the screen. There’s an inset image
over the shoulder of the reader.
Periodically there’s a cutaway to
a reporter in the field; it’s often
followed-up with side-by-side
images of the newscaster and
reporter while the former asks
a few token questions to latter.
There’s pretend banter between
newscasters after a feel-good story.

you get the idea. Now what if i
wanted to change this entrenched
structure?

i could get a degree in journal-
ism and try to get a job at the
local TV station. i’d be the new
guy with no experience, so it’s
not likely i could just step-in and
make sweeping reforms. All the
other people there have been
doing this for years or decades,
and they’ve got established
routines. i can’t make dozens of
people change their schedules
and habits because i think i’m
so smart. To be perfectly fair, a
drastic reworking of the news
would result in people who had
no issues with old presentation
getting annoyed and switching
to one of the other channels that
does things the old way.

When i sit down to work on
a personal project at home, it’s
much simpler.

i don’t have to follow the
familiar standards of whatever
kind of app i’m building. i don’t
have to use an existing application
as a model. i can disregard history.
i can develop solutions without
people saying “That’s not how it’s
supposed to work!”

That freedom is huge. There
are so many issues in the world
that people complain about, and
there’s little chance of fixing the
system in a significant way. Even
something as simple as reworking
the local news is out of reach. But
if you’re writing an ioS game, an
HTML 5 web app, a utility that
automates work so you can focus
on the creative fun stuff, then
you don’t have to fall back on the
existing, comfortable solutions
that developers before you chose
simply because they, too, were
trapped by the patterns of the
solutions that came before them.

you can fix things. you can
make new and amazing things.
Don’t take that ability lightly. n

James Hague has been Design Director
for Red Faction: Guerrilla, editor of “Hal-
cyon Days: Interviews with Classic Com-
puter and Video Game Programmers,”
co-founder of an indie game studio, and
a published photographer. He started his
blog “Programming in the 21st Century,”
in 2007.

This is Why You Spent All that
Time Learning to Program
By JAMES HAGuE

Reprinted with permission of the original author.
First appeared in hn.my/pydev (hynek.me)

Reprinted with permission of the original author.
First appeared in hn.my/spent (dadgum.com)

http://gunicorn.org
http://hn.my/uwsgi
http://twitter.com/hynek
http://hn.my/pydev
http://hn.my/spent

 33

By JAMES HAGuE

Judging the performance
of programming languages,
usually C is called the leader,

though Fortran is often faster. New
programming languages commonly
use C as their reference, and they
are really proud to be only so
much slower than C. Few language
designer try to beat C.

What does it take for a language
to be faster than C?

Better Aliasing Information
Aliasing describes the fact that two
references might point to the same
memory location. For example, con-
sider the canonical memory copy
(not memcpy from stdlib.h!):

void* memcopy(void* dst, const
void* src, size_t count) {
 while (count--) *dst++ =
*src++;
 return dst;
}

Depending on the target architec-
ture, a compiler might perform a lot
of optimizations with this code. For
example, on a modern x86 with the
SSE instruction MoVDQu, it could
copy 16 Byte blocks instead of 4
Byte (sizeof(void*)). unfortu-
nately, no. Due to aliasing, dst could
for example be src+1. in this case,
the result must be the first word
*src repeated count times at dst.
The compiler is not allowed to use
MOVDQU due to the semantics of C.

in C99 the restrict keyword
was added, which we could use
here to encode that src and dst are
different from all other references.

This mechanism helps in some
cases, but not in our example.

Fortran semantics say that func-
tion arguments never alias and there
is an array type, where in C arrays
are pointers. This is why Fortran
is often faster than C. This is why
numerical libraries are still written
in Fortran. However, it comes at the
cost of pointer arithmetic.

A language which wants to
be faster than C should provide
semantics where aliasing can be
better analyzed by the compiler.

Push Computation to
Compile-Time
Doing things at compile time
reduces the run time. of course, C
compilers do this for trivial cases
like 1+2, where the addition is
already handled at compile time.

However, languages with nice
meta-programming support enable
the programmer to do similar
application specific optimizations. A
simple example, we could optimize
fib(20) to 6765, without the compiler
knowing about Fibonacci numbers.

For a real example, the Eigen
C++ library for linear algebra uses
C++ templates to avoid copies and
be lazy about computations. of
course, Lisp is the grandfather of this
technique with its macro system.
For example, there is a nice anecdote
[hn.my/jsobel] about a student using
Scheme for an assignment. Basically,
the programmer can modify the
abstract syntax tree during compila-
tion. The trade-off with such meta
programming features is complexity.

Programmers underestimate the dif-
ficulty to write correct macros like
they underestimate the difficulty to
write correct concurrent programs.

A language designer should think
about meta programming. Some-
thing Turing-complete like C++
templates, seems to be beneficial
for performance.

Runtime Optimization
At runtime there is dynamic
information which is not available
to a static compiler. Any specific
example could be duplicated by
a C program, but usually it is not
feasible. The trick of profile-guided
optimizations solves only a small
part of the problem.

What becomes especially easy at
runtime is whole-world optimiza-
tion. While this is possible statically,
the C semantics (compilation units)
and the mandatory preprocessor
make it difficult for the compiler.
Even Python can beat C by inlining
across file borders.

of course, there are downsides
to using a JiT and especially in
systems and embedded program-
ming it is not appropriate. So there
might be examples where Java, C#,
or others beat C, but they do not
threaten C’s niche.

Conclusion
Aliasing information is the only one
where i am certain about speed
improvements, because it is impossi-
ble to reach Fortran-speed in C. The
other ideas are more about making
it easier to write faster programs. n

Andreas Zwinkau is a doctoral researcher at
the IPD Snelting since 2010. He is working
on the libFirm compiler within the InvasIC
project. However, this is only true, while he
is not occupied with managing and teach-
ing students at the KIT, Germany’s finest
university for computer science.

Faster than C
By ANDrEAS ZWiNKAu

Reprinted with permission of the original author.
First appeared in hn.my/fasterc (beza1e1.tuxen.de)

http://hn.my/jsobel
http://hn.my/fasterc

34 SPECIAL

SPECIAL

By JoE PEACoCK

yesterday, i was at the
gym. i was working out,
as i am usually doing

while i’m at the gym. And as it
happens over the years spent going
to the same gym, relationships form
and people get to know each other,
and groups form and jokes are
shared and camaraderie takes place.
And it was the same this day.

i was talking with a group of
folks who are regularly in during
the afternoons on Saturdays.
Among them was a 14-year-old boy
named Bradley (not his real name).
He’s a great kid. He’s been coming
to the gym with his parents for the
past two or so years. While his par-
ents walk around the track upstairs,
he spends his time learning how to
lift weights with us big guys. When
he first started, he was wiry and
awkward. He’s still pretty awkward;
being a teenager and all. But us
big guys set him on a good path to
maintain a healthy level of fitness.

We were cutting up and laughing.
The guys made fun of me for liking
hockey. “That’s a Canadian sport,
isn’t it?” one asked. “What are you,
part Canadian?”

“only the part that likes real
sports,” i replied. “And maple syrup.”

“i still don’t get why you don’t
like college football,” another asked.
“you’re in Georgia. SEC is bigger
than NFL here.”

“What can i say?” i asked. “South-
erners like their little league sports.
i prefer watching pros.”

And so it goes, about the same
way every Saturday. The topics
change — what cars are best, what
sports are better than other sports,
what teams are better than other
teams, what shows are better than
other shows (but never politics or
religion — something you learn
really fast in a gym is to never bring
up the two topics most likely to
incite violence in a building filled
with metal bars and heavy plates).
Someone has a divergent inter-
est, everyone else jumps on it, and
laughs are had. And invariably, the
topic turns to girls.

Husbands laugh about the young
singles and their stories about
weekend endeavors. Singles laugh
at the guys stuck at home with
their ball and chain. Whispers are
shared about which girls in the

gym are hot; warnings are issued
by the more experienced about the
dangers of dating people from your
gym or your job (short version: it
doesn’t matter how hot the guy or
girl is, it’s stupid. unless marriage is
assured, don’t do it.)

one of the guys asked Bradley
if he had a girlfriend. if there were
dirt on the gym floor, he’d have
been kicking it.

“Nah, no girlfriend,” he replied.
“young strapping lad like you?

Nonsense,” i said, knowing full well
that not only did he not have a
girlfriend, he’d have absolutely no
clue what to do with one if he did
because i was him once. But as a
grown up looking out for a younger
kid, you have to act like it’s com-
pletely ridiculous that girls don’t
flock to him. it’s the right thing to
do.

“i asked a girl out to the spring
dance,” he said. He then said some-
thing that hit me hard. “She called
me lame and said, ‘That is why you
don’t have any friends. Because
you’re weird.’”

“That’s Why You Don’t Have
Any Friends.”

 35

The words rang in my head.
Those exact words — i remem-
bered hearing them. A lot. He
didn’t explain why she thought
he was weird. He didn’t have to. i
knew the feeling very, very well.

“Come on now,” one of the guys
said. “Don’t let her get to you.”

“No, she’s right,” he said. “i don’t
have any friends. Not at school,
anyway.” His face got really sad. “i
really am weird.”

i was weird, back before i realized
i wasn’t. And it resulted in some
extremely lonely times in my young
life. My entire elementary and
junior high school tenure was spent
with no friends. in tenth grade, i
found my tiny group of four friends.

i dated the wrong girl (they’re all
wrong, until you find the right one).
The four of us fractured into two
groups of two — Mike and i split
off from Walter and rod.

Then one day, Mike got tired of
my bullshit and said those words to
me. “That’s why you don’t have any
friends,” he said at very high volume.
He deserved to say it — i’d just told
him to go fuck himself when he
tried to explain why my girlfriend
at the time was screwing someone
behind my back. i called him every
name in the book, so he bailed and
joined up with Walter and Jay while
i spent the last few weeks of high
school career. Even the furry had
more friends than i did.

And now, 17 years later, life is
fantastic. i belong to a studio full
of amazing people who were all
weird, just like me. i get to meet
freaks from across the nation who
all love anime and comics, just like
me. i get to talk to people who read
my weird stories about my weird
life and relate to it because, just like
me, they’re weird.

There are thousands — no,
hundreds of thousands — of us.
All weird. All strange. All over,
everywhere.

We all went to school and hated
everyone because they didn’t
understand us. We dealt with the
bullying and the isolation and the
feeling that we were the weird

ones. you want to know what’s
weird? Spending hundreds of dol-
lars on clothes and shoes and purses
that everyone else thinks are cool.
Spending hours of your life doing
things that everyone else is doing
because it’s cool. Liking the bands
that everyone else likes because
you’re a loser if you don’t.

you want to know what’s weird?
Hiding who you are just to have the
company of people you don’t even
like. That’s weird.

i looked him straight in the
eye. My normally grinning mouth
turned stern. With as serious a tone
as i could muster, i said “Listen to
me, okay? What i’m about to say is
something i want you to take in and
think about and really hold on to.”

He nodded. "okay,” he said.
“This isn’t just conversation, this

is important,” i said. “you listening?”
He nodded again. “i’m listening,”

he replied with a look that con-
vinced me that he was.

i took a deep breath. “right now,
you’re in high school in a small
suburban town,” i started.

He nodded.
“Everyone you know looks

the same and acts the same,” i
explained. "They may dress differ-
ently from each other or belong
to different crowds, but they’re all
the same. Hipsters, brainiacs, jocks,
so-called “geeks” — they’re all so
caught up with not being left out
that they’re changing who they are
to fit in with whoever it is that will
accept them.

“When you show up and you’re
not like that, it scares them,” i
continued. "They don’t know what
to do with you, because they have
no idea what it’s like to think for
themselves. So they try to make
you feel like the loser, because
there are more of them doing what
they’re doing than there are of
you. in such a small group of small
minds, the nail that sticks up gets
hammered down.

“To them, you are weird,” i said.
“But weird is good. No, screw
that — weird is great! Being weird
to someone just proves that you
are being you, which is the most
important thing you can ever be.
There’s nothing wrong with you.
There’s something wrong with
them. They can’t understand what
it’s like to be themselves, much less
what it’s like to be you.”

He smiled a little. “you really
think that?” he asked.

i laughed. “Dude, look at me!” i
said. “i’m 300 pounds of ex-football
player covered in cartoon and
comic book tattoos, who builds

“There are hundreds of
thousands of us.
All weird. All strange.
All over, everywhere.”

36 SPECIAL

websites and tours the world talk-
ing to people about his anime cel
collection. Trust me, i know all
about being weird.”

He shrugged and said, “it just
sucks, you know?”

“oh, i know,” i said with a smile.
"And here’s the little bit of bad
news — it’s gonna suck for a little
while longer. But one day, you’ll get
out of school and go somewhere
besides the small town you’re in
and you’re going to discover that
there are groups of people just like
you — not that they do what you
do or act how you act, but that they
refused to change who they are
to fit in, and that makes them just
like you. And when you find them,
you’re finally going to feel at home.

“it might be college, or it might
be visiting another city. Hell, it
might even be on the internet. But
at some point you’re going to find
them. And it’s going to be great.”

He smiled. “That would be awe-
some,” he said.

“it WiLL be awesome!” i replied.
“But until then, it’s going to be
lonely and frustrating. you’re going
to do stupid things thinking it’s
going to impress them or change
their opinion of you, and it won’t,
and you’re going to get sad. Just
know that it does end. it ends the
day you realize that you never
wanted to be them in the first place
because they are losers. They lost
the battle to be themselves. you’re
the winner.”

i paused for a second, because
it had just occurred to me that, at
some point during my little moti-
vational speech, his parents had
walked up and were waiting a short
distance behind him. i presumed it
was to give him enough space to let
the conversation be his own, but i
knew they had heard me because

when i looked at them, they both
nodded and smiled.

So i put the cap on the whole
thing. “And i know your parents are
right there, but i’m going to say it
anyway: Fuck. Them.”

i kept my eyes on him, but could
see just behind him that his mom
reacted a little to my vulgarity. His
dad placed his hand on her shoul-
der and just let it be.

The guys in the group all nodded
and agreed with me and began talk-
ing to him about their perspectives
on the situation (which, in previous
conversations over the years, i knew
to be similar to mine). His parents
came up to me and thanked me for
talking to him.

“He just thinks the world of you
guys,” his mom said. “He talks about
coming here all the time to work
out with you.”

“He really needed to hear that,”
his dad said. “We try to tell him that
high school is just that way, but you
know how it is...”

“No teenager wants to listen to
his parents,” i said. “Hell, i’m an
adult and i still don’t.”

They both laughed.
“He’s a great kid,” i said. “He’s

going to be just fine in a few years.”
“Well, thank you,” the dad said.

“it means a lot.”
“Hey,” i said with a shrug, “That’s

what we’re here for. We’re his
friends.” n

When he's not teaching the Internet how
to fist-fight, why being weird is awesome
or how to self-publish your own books,
Joe Peacock tours the world, showing his
extensive "Akira" art collection. He has 13
cats and loves you.

Reprinted with permission of the original author.
First appeared in hn.my/friends (joethepeacock.blogspot.com)

http://hn.my/friends

37 SPECIAL

By ToMMy MACWiLLiAM

What I’ve Learned about
Smart People

Going to harvard means
i have the amazing
opportunity to be

around a lot of smart people. Now,
when i say “smart people,” i don’t
mean that guy who always wins
trivia night. i mean blazingly intel-
ligent individuals who are regarded
as the pre-eminent scholars in their
field. it’s pretty amazing to pass by
Turing Award winners and leading
political science scholars grabbing a
sandwich.

Before i go anywhere, let me
make one thing clear: i am not one
of these smart people. This is per-
haps the biggest lesson i’ve learned
after 3 years here. There is an abso-
lutely incredible amount of smart
people in the world, and i can name
a whole bunch of students and
professors alike who i know for a
fact i will never ever be as smart
as, no matter how hard i try. But
honestly, that’s okay — i don’t need
to be (and perhaps that’s a story for
another day). What that does mean,
though, is that i would be doing a
disservice to the ever-so-generous
Financial Aid office if i didn’t learn
from them. i don’t mean learning in
a lecture hall, but i refer to a more
personal sense of learning. What is
it that separates a “smart” person
from me? How do they conduct
themselves? What drives them?

i can of course make no authori-
tative claims here, but i have

noticed one overarching theme
among smart people: they ask
questions. When someone explains
something new to me, i usually
just nod my head like i know
what they’re talking about. if i
don’t understand something, i just
Google it later. After all, i don’t
want this person to think i’m a
moron. Smart people are different.
if they don’t understand some-
thing, or even if they think they
understand something, they ask
questions. i distinctly remember, as
an immature and perhaps arrogant
freshman, a guest lecturer in one
of my classes. After explaining
what i thought was a straightfor-
ward concept, the guest lecturer
asked if anyone had any questions.
Looking around the room, every
student simply nodded, indicating
everything was clear. A question,
however, came from a tenured pro-
fessor who had undoubtedly been
exposed to the material before.
At the time, i thought nothing of
it and perhaps even thought that
i was smarter than the professor
because i understood a concept he/
she didn’t. Now, i am confident that
this professor did not ask the ques-
tion just to make the guest lecturer
feel better, to start a discussion, or
anything else. The intonation of
the question and the intensity with
which the professor listened to the
response definitively suggested that

the professor’s question was genu-
ine and that the answer was of great
importance.

Based on the research and find-
ings of so many of the students and
professors here, it’s clear that this
trend is no accident. Not only do
smart people ask questions when
they don’t understand something,
but they also ask questions when
the world thinks it understands
something. Smart people chal-
lenge the very limit of human
understanding, and they push the
envelope of what’s possible farther
than many people would argue
it’s meant to be pushed. Smart
people don’t take claims at face
value, and smart people don’t rest
until they find an explanation
they’re comfortable accepting and
understanding.

Smart people challenge every-
thing. (you know who taught me
that? A smart person.)

Maybe someday, people will call
me a smart person. For now, i’m
going to keep asking them ques-
tions. n

Tommy is a Computer Science major at
Harvard University known for his affinity
for JavaScript. With a passion for promot-
ing innovation, Tommy loves teaching CS
courses and empowering students to build
killer apps. He also loves cupcakes.

Reprinted with permission of the original author.
First appeared in hn.my/smart (tommymacwilliam.com)

http://hn.my/smart

38 SPECIAL

By Lou MoNTuLLi

i am widely credited as the
inventor of the <blink> tag. For
those of you who are rela-

tively new to the Web, the <blink>
tag is an HTML command that
causes text to blink, and many,
many people find its behavior to
be extremely annoying. i won’t
deny the invention, but there is a
bit more to the story than is widely
known.

Back in 1994, i was a founding
engineer at Netscape, and prior
to that i had written the Lynx
browser, which predated all of the
other popular browsers at that
time. Lynx had been and still is
a text-only browser and is com-
monly used in a console window on
uNix machines. At Netscape we
were building software that used a
graphical user interface and could
express vastly more text styles
and layouts as well as images and
other media. We spent a lot of
time thinking about the future of
the web and new technologies that
would enable new classes of docu-
ments, applications, and uses. A few
examples were HTML tables, SSL
for secure communications, plugins
for extensions, and JavaScript to
enable dynamic HTML.

Sometime in late summer i took
a break with some of the other
engineers and went to a local bar
on Castro Street in Mountain View.
The bar was the St. James infirmary
and it had a 30 ft Wonder Woman
statue, among other interesting
things. At some point in the eve-
ning i mentioned that it was sad
that Lynx was not going to be able

to display many of the HTML
extensions that we were propos-
ing. i also pointed out that the only
text style that Lynx could exploit
given its environment was blinking
text. We had a pretty good laugh
at the thought of blinking text and
talked about blinking this and that
and how absurd the whole thing
would be. The evening progressed
pretty normally from there, with a

fair amount more drinking and me
meeting the girl who would later
become my first wife.

Saturday morning rolled around
and i headed into the office only
to find what else but blinking text.
it was on the screen blinking in all
its glory and in the browser. How
could this be, you might ask? it
turns out that one of the engineers
liked my idea so much that he left
the bar sometime past midnight,
returned to the office, and imple-
mented the blink tag overnight. He
was still there in the morning and
quite proud of it.

At the time there were 3 ver-
sions of the browser that ran on
uNix, Windows, and Mac operat-
ing systems. For a short 12 hours
the blinking was constrained only to
the uNix version, but it didn’t take
long for the blinking to spread to
Windows and then Mac. i remem-
ber thinking that this would be a
pretty harmless Easter egg; that
no one would really use it, but i
was very wrong. When we released
Netscape Navigator 1.0 we did not
document the blink functionality
in any way, and for a while all was
quiet. Then somewhere, somehow

the arcane knowledge of blink-
ing leaked into the real world and
suddenly everything was blinking.
“Look here,” “buy this,” “check this
out” — all blinking. Large advertise-
ments blinking in all their glory. it
was a lot like Las Vegas, except it
was on my screen, with no way of
turning it off.

in the end, much was said —
most of it in the form of flaming

posts to various discussion boards,
and the <blink> tag will probably
be remembered as the most hated
of all HTML tags. i would like to
publicly state that at no time did i
actually write code or even seri-
ously advocate the <blink> tag. it
is true that i put forth the initial
inspiration, but it really was merely
a thought experiment. i am not
going to name any names of the
people who coded the dastardly
deed. if they wish to step forward,
they will need to do it themselves.
in the end, the thing that i am truly
sad about is that Lynx never did
get to blink. i am also sad to report
that the St James infirmary burned
to the ground in 1997. it was a
great place to hang out and will be
missed.

<blink> on,
:lou n

Lou Montulli is a programmer who is well
known for his work in producing web
browsers. He co-authored a text web
browser called Lynx and programmed the
networking code for the first versions of
the Netscape web browser. He is currently
working on a new Enterprise class cloud
storage service at a company named Zetta.

The Origins of the <Blink> Tag

Reprinted with permission of the original author. First appeared in hn.my/blink (montulli.org)

http://hn.my/blink

http://hn.my/codeschool

http://memset.com

	Contents
	FEATURES
	On Entrepreneurship
	How To Train Your Robot

	STARTUPS
	Why You’ll Always Think Your Product Is Shit
	How I Tricked Myself into Being Awesome
	The Psychology of Tackling Hard Problems
	What Good is Experience?

	PROGRAMMING
	How to Build a Naive Bayes Classifier
	Coding Tricks of Game Developers
	Python Deployment
Anti-Patterns
	This is Why You Spent All that Time Learning to Program
	Faster than C

	SPECIAL
	“That’s Why You Don’t Have Any Friends.”
	What I’ve Learned about Smart People
	The Origins of the <Blink> Tag

