
Issue 28 September 2012

The Slow Web
Jack Cheng

http://getharvest.com/hackers
http://careers.addepar.com

http://getharvest.com/hackers
http://getharvest.com/hackers
http://careers.addepar.com

4

Curator
Lim Cheng Soon

Contributors
Jack Cheng
Kent Nerburn
Avery Pennarun
Adam Wiggins
Elaine Wherry
Sondra Eklund
Teddy Worcester
Emma Coats
Steve Hanov
Fernando Meyer
Andy Boothe
Joe Zim

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

HACKEr MoNTHLy is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo by: Jenny Downing

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 5

For links to Hacker News dicussions, visit hackermonthly.com/issue-28

Contents
FEATURES

06 The Slow Web
By JACK CHENG

10 The Cab Ride I’ll Never Forget
By KENT NErBurN

STARTUPS

14 A Profitable, Growing, Useful, Legal,
Well-Loved...Failure
By AvEry PENNAruN

19 How To Scale a Development Team
By AdAM WiGGiNS

22 The Recruiter Honeypot
By ELAiNE WHErry

SPECIAL

28 My Prime Factorization Sweater
By SoNdrA EKLuNd

30 Hacking the iPod
By TEddy WorCESTEr

31 The Rules of Story Telling
By EMMA CoATS

PROGRAMMING

32 20 Lines of Code That Will Beat A/B Testing
Every Time
By STEvE HANov

34 Evolution of a Python Programmer.py
By FErNANdo MEyEr

36 Complication is What Happens When You
Try to Solve a Problem You Don’t Understand
By ANdy BooTHE

38 The Lazy Man’s URL Parsing in JavaScript
By JoE ZiM

Photo by: Ben Fredericson

Photo by:
Sondra Eklund

http://hackermonthly.com/issue-28

6 FEATURES

FEATURES

one of the
better spots
to enjoy a
bowl of ramen

noodles here in New york is Minca,
in the East village. Minca is the
kind of place just enough out of
the way that as you’re about to get
there, you start wondering if you’ve
already passed it. A bowl of noodles
at Minca isn’t quite as neatly put

together as those of other ramen
establishments in the city, but it is
without a doubt among the tasti-
est. There’s a home-cooked quality
to a bowl of noodles at Minca, and
there’s a homey vibe to the restau-
rant. Minca is a good place to meet
a friend and sit and talk and eat and
drink, and eat and talk and sit and
drink some more.

The last time i was at Minca, i
had an especially enjoyable conver-
sation with Walter Chen. Walter
is the CEo of a company called
idoneThis, a quiet little service that
helps you catalog the things you’ve
accomplished each day. idoneThis
sends you a daily email at your
specified time, and you simply reply
with a list of things you did that
day. it’s useful for teams who want

By JACK CHENG

The Slow Web

Photo by: Jenny Downing [flickr.com/photos/jenny-pics/6908438828]

http://flickr.com/photos/jenny-pics/6908438828

 7

to keep track of what everyone is
working on, and for individuals who
just want to keep track.

i first reached out to Walter
because i was mesmerized by this
koan at the bottom of the daily
emails:

iDoneThis is a part of the slow web
movement. After you email us, your
calendar is not updated instanta-
neously. But rest up, and you’ll find
an updated calendar when you
wake.

idoneThis is a part of the slow
web movement. The Slow Web
Movement. i had never heard that
phrase before. i immediately started
digging around — and by that i
mean i googled “Slow Web Move-
ment” — and the lone relevant
search result was a blog post from
two years ago. if you run the search
again today, you’ll find Walter’s
writeup on his company blog,
which reflects a lot of what he told
me over dinner.

As we talked further, i said to
Walter that as soon as i saw “the
slow web movement,” i assigned
my own meaning to it. Because
it’s a great name, and great names
are like knots — they’re woven
from the same stringy material as
other words, but in their particular
arrangement, they catch, become
junctions to which new threads
arrive and from which other
threads depart. For me, “The Slow
Web” neatly tied together a slew of
dangling thoughts.

 Slow Web and Slow Food
The Slow Web Movement is a lot
like the Slow Food Movement, in
that they’re both blanket terms that
mean a lot of different things. Slow
Food began in part as a reaction
to the opening of a Mcdonald’s in

Piazza di Spagna in rome, so from
its very origin, it was defined by
what it’s not. it’s not Fast Food, and
we all know what Fast Food is…
right?

yet, if you ask a bunch of people
to describe to you the qualities
of Fast Food, you’re likely to get
a bunch of different answers: it’s
made from low-grade ingredients,
it’s high in sugar, salt and fat, it’s
sold by multinational corporations,
it’s devoured quickly and in over-
large portions, it’s Mcdonalds/Tac-
oBell/Subway, even though Subway
has spent a lot of money marketing
fresh bread and ingredients — it’s
still Fast Food albeit “healthy” Fast
Food.

Fast Food has an “i’ll know it
when i see it” quality, and it has
this quality because it’s describ-
ing something greater than all of
its individual traits. Fast Food, and
consequently, Slow Food, describes
a feeling that we get from food.

Slow Web works the same way.
Slow Web describes a feeling we get
when we consume certain web-
enabled things, be it products or
content. it is the sum of its parts,
but let’s start by describing what
it’s not: the Fast Web.

The Fast Web
What is the Fast Web? it’s the
out-of-control web. The oh-my-
god-there’s-so-much-stuff-and-i-
can’t-possibly-keep-up web. it’s
the spend-two-dozen-times-a-day-
checking web. The in-one-end-out-
the-other web. The web designed to
appeal to the basest of our intellec-
tual palettes — the salt-sugar-and-
fat-of-online-content web. it’s the
scale-hard-and-fast web. The create-
a-destination-for-billions-of-people
web. The you-have-two-hundred-
twenty-six-new -updates web. Keep

up or be lost. Click me. Like me.
Tweet me. Share me. The Fast Web
demands that you do things and do
them now. The Fast Web is a cruel
wonderland of shiny, shiny things.

Timely vs. Real-Time
one of the centerpieces of the Fast
Web is this notion of real-time.
your friend listens to a song, and
you find out about it. The smaller
the gap between these two, the
closer it is to real-time.

real-time interactions happen
as they happen. Timely ones, on
the other hand, happen as you
need them to happen. Some real-
time interactions, like breaking
news about an earthquake, can be
timely. But not all timely interac-
tions are real-time. i’d argue that
most are not. And where the Fast
Web is built around real-time-
ness, the Slow Web is built around
timeliness.

A great example of a Slow Web
product is instapaper. instapaper
takes the process of discovering a
long article and reading it on the
spot (real-time). it breaks it apart,
deferring the act of reading until
later when we have an extended
moment to read (timely). i may
be stretching my analogy a bit
here, but it’s kind of like boxing
up a meal and putting it away in
the fridge for when you’re hungry,
except in this case, it doesn’t lose as
much of its taste.

Likewise, idoneThis takes a
pretty standard interaction of
creating an item in a database and
then reading it back — one that
might normally take less than a few
seconds to execute — and blows it
apart.

A typical app might work like
this: there’s a text field for you to
type in what you did. you type it in

8 FEATURES

and hit submit. The database gets
updated and almost instantly you
see the submitted text displayed
back to you. idoneThis takes
those last two steps — the update
and the review — and stretches
them out from a few milliseconds
to half a day. The database gets
updated sometime overnight and
the display-back happens the next
morning in your inbox.

 Another name for this is turn-
based, as in turn-based gaming.
A traditional game of Scrabble or
Pictionary is relatively demand-
ing in real-time: it requires two
or more people in the same place
with the both desire and freedom
to play these games. deconstruct-
ing the real-time experience gives
you the Words With Friends and
draw Somethings of the world.
An activity that would otherwise
be impractical can now carry on
in a manner more timely for each
participant. instapaper is turn-based
reading. idoneThis is turn-based
data tracking.

But timeliness alone doesn’t
make something Slow Web. Email,
after all, is turn-based communi-
cation, and our email inboxes are
probably one of the biggest sources
of Fast Web distress. Those turn-
based games can also quickly get
overwhelming if we have too many
of them going at once. What’s
missing in these cases is an inherent
sense of rhythm.

Rhythm vs. Random
Let’s say i told you there was a new
HBo drama that aired for one hour
from 9-10pm every Wednesday
night. once you decide it’s a show
you’re interested in and can make
room for, the act of watching takes
over. it becomes about the show.
Now, let’s say i told you there’s a
new HBo drama that’s sometimes
times an hour, sometimes half an
hour, sometimes two hours, that
may or may not air every Tuesday,
Wednesday, and Thursday night,
between 6 and 11pm. Suddenly it’s
no longer just about the show. it’s
about whether or not the show will
be on. What next? becomes When
next?

in the Fast Web, we’re faced with
this proposition numerous times a
day. The randomness and frequency
of the updates in our inboxes and
on our dashboards stimulate the
reward mechanisms in our brain.
While this can give us a boost when
we come across something unex-
pectedly great, dependency leads
to withdrawal, resulting in a roller
coaster of positive and negative
emotions. The danger of unreliable
rhythms is too much reward juice.

reliable rhythms lead to predict-
able outcomes, and rhythm is an
expression of moderation. Apps like
idoneThis have this moderation:
you receive your email prompt at
the same time each day, and each
interaction is similarly demanding.
unlike your inbox, where there can
be a large range of demands: there
are newsletters you can scan and
trash, personal emails that require
lengthy responses, and everything
in between. The lack of moderation
means sometimes you spend a few
minutes going through your inbox,
and other times you spend a few
hours.

 That’s why most email produc-
tivity systems are concerned with
a form of moderation: standard-
ization. They encourage you to
standardize the size and demands
of the interaction (archive or delete
messages and move on, transfer
email requiring lengthy follow-ups
to a to-do list, limit responses to
three sentences [three.sentenc.es])
and standardizing the frequency
(limit checking email to x times a
day, at specified times).

A great example of rhythm and
moderation in practice is the rollout
of Wander [onwander.com]. For
the weeks leading up to their beta
launch, Keenan and crew took what
could have been a first-run experi-
ence on another site and stretched
it out over the course of four weeks
into something akin to an advent
calendar. Every week there is a
similarly demanding interaction:
give a place, pick a photo, type a
reason.

 Another service that does this
well is Budge [bud.ge] from Buster
and the team at Habit Labs. Budge
is built around notifications remind-
ing you to do the daily things that
improve your life in small but ben-
eficial ways, like flossing, meditat-
ing, or tracking your weight. once
you’ve signed up, you can interact
with Budge solely through their
notifications. in the past i’ve gone
for weeks without visiting their site
or app while still happily using the
service just by replying to the timed
texts i get on my phone.

http://three.sentenc.es
http://bud.ge

 9

This is a tremendously impor-
tant distinction between Slow
Web and Fast Web. Fast Web is
destination-based. Slow Web is
interaction-based. Fast Web is
built around homepages, inboxes,
and dashboards. Slow Web is built
around timely notifications. Fast
Web companies often try to rack
up page views, since page views
mean ad impressions. Slow Web
companies tend to put effectiveness
first. Here’s the crazy thing about
Budge: the better it works, the less
i use it. once i get in the habit of
flossing, my brain takes over, and
i no longer need the notifications.
Walter describes this credo well in
the aforementioned blog post:

Behavior change, not growth.
Behavior change is about improv-
ing the lives of others, scale is about
ego. Getting scale after nailing
behavior change is easier than
nailing behavior change (and thus
having a shot at durability) after
hitting scale.

it doesn’t mean Slow Web com-
panies can’t grow. it simply means
that they put effectiveness before
growth. And effectiveness leads to a
sense of gratitude — i may be done
flossing with Budge, but there are
other things i could improve, and
having been through it once, i trust
the company even more.

Knowledge vs. Information
Timeliness. rhythm. Moderation.
These things dovetail into what
i consider the biggest difference
between Slow Web and Fast Web.
Fast Web is about information. Slow
Web is about knowledge. informa-
tion passes through you; knowledge
dissolves into you. And timeliness,
rhythm, and moderation are all
essential for memory and learning.

 Again, idoneThis serves as a
fitting example. After you use it
for a few days, you start seeing at
the bottom of your daily emails
the things you’ve done in the past,
a day or a week before. it’s kind
of a contained version of Timehop
[timehop.com], Benny and Jon’s
product that, once you’ve con-
nected it to your various social
accounts, sends you a daily — get
ready for this word — digest with
everything you did a year ago on
that day.

 Timehop and idoneThis both
help us remember and reflect, and
this gives us perspective. it grounds
us in the flow of time, or perhaps
lifts us up above the treetops.
idoneThis is the only task manage-
ment tool i’ve come across with the
potential to help you realize you’re
working on the wrong thing. Fast
Web derives value from the just-
happened or the soon-to-happen.
Slow Web unlocks value from
deeper in the past.

 The Slow Web
Timely not real-time. rhythm not
random. Moderation not excess.
Knowledge not information. These
are a few of the many character-
istics of the Slow Web. it’s not so
much a checklist as a feeling, one
of being at greater ease with the
web-enabled products and services
in our lives.

Like Slow Food, Slow Web is
concerned as much with produc-
tion as it is with consumption. We
as individuals can always set our
own guidelines and curb the effect

of the Fast Web, but as i hope i’ve
illustrated, there are a number of
considerations the creators of web-
connected products can make to
help us along. And maybe the Slow
Web isn’t quite a movement yet.
Maybe it’s still simmering. How-
ever, i do think there is something
distinctly different about the feeling
that some of these products impart
on their users, and that feeling
manifests from the intent of their
makers.

Fast Web companies want to be
our lovers, they want to be by our
sides at all times, want us to spend
every moment of our waking lives
with them. Sometimes that’s not
what we really need. Sometimes
what we really need are friends we
can meet once every few months
for a bowl of ramen noodles at
a restaurant in the East village.
Friends with whom we can sit and
talk and eat and drink and maybe
learn a little about ourselves in the
process. And at the end of the night
get up and go our separate ways
until next time.

until next time. n

Jack Cheng is writer, designer and entre-
preneur living in Brooklyn. He co-founded
Disrupto, a digital product development
studio, and Memberly, a platform for sub-
scription services.

Reprinted with permission of the original author.
First appeared in hn.my/slow (jackcheng.com)

http://timehop.com
http://hn.my/slow

10 FEATURES

By KENT NErBurN

There was a time
in my life twenty
years ago when i
was driving a cab

for a living. it was a cowboy’s life,
a gambler’s life, a life for some-
one who wanted no boss, constant
movement and the thrill of a dice
roll every time a new passenger got
into the cab.

What i didn’t count on when i
took the job was that it was also a
ministry. Because i drove the night
shift, my cab became a rolling con-
fessional. Passengers would climb
in, sit behind me in total anonymity
and tell me of their lives.

We were like strangers on a
train, the passengers and i, hurtling
through the night, revealing intima-
cies we would never have dreamed
of sharing during the brighter light
of day. i encountered people whose
lives amazed me, ennobled me,

made me laugh and made me weep.
And none of those lives touched me
more than that of a woman i picked
up late on a warm August night.

i was responding to a call from a
small brick fourplex in a quiet part
of town. i assumed i was being sent
to pick up some partiers, or some-
one who had just had a fight with
a lover, or someone going off to an
early shift at some factory for the
industrial part of town.

When i arrived at the address,
the building was dark except for
a single light in a ground-floor
window. under these circum-
stances, many drivers would just
honk once or twice, wait a short
minute and then drive away. Too
many bad possibilities awaited a
driver who went up to a darkened
building at 2:30 in the morning.

But i had seen too many people
trapped in a life of poverty who

depended on the cab as their only
means of transportation. unless a
situation had a real whiff of danger,
i always went to the door to find
the passenger. it might, i reasoned,
be someone who needs my assis-
tance. Would i not want a driver to
do the same if my mother or father
had called for a cab?

So i walked to the door and
knocked.

“Just a minute,” answered a frail
and elderly voice. i could hear the
sound of something being dragged
across the floor. After a long pause,
the door opened. A small woman
somewhere in her 80s stood before
me. She was wearing a print dress
and a pillbox hat with a veil pinned
on it, like you might see in a cos-
tume shop, in a Goodwill store or
in a 1940s movie. By her side was a
small nylon suitcase. The sound had
been her dragging it across the floor.

The Cab Ride I’ll
Never Forget

 11

The apartment looked as if no
one had lived in it for years. All the
furniture was covered with sheets.
There were no clocks on the walls,
no knickknacks or utensils on the
counters. in the corner was a card-
board box filled with photos and
glassware.

“Would you carry my bag out
to the car?” she said. “i’d like a few
moments alone. Then, if you could
come back and help me? i’m not
very strong.”

i took the suitcase to the cab, and
then returned to assist the woman.
She took my arm, and we walked
slowly toward the curb. She kept
thanking me for my kindness.

“it’s nothing,” i told her. “i just
try to treat my passengers the way i
would want my mother treated.”

“oh, you’re such a good boy,” she
said. Her praise and appreciation
were almost embarrassing.

When we got in the cab, she
gave me an address and then
asked, “Could you drive through
downtown?”

“it’s not the shortest way,” i
answered.

“oh, i don’t mind,” she said. “i’m
in no hurry. i’m on my way to a
hospice.”

i looked in the rearview mirror.
Her eyes were glistening. “i don’t
have any family left,” she continued.
“The doctor says i should go there.
He says i don’t have very long.”

i quietly reached over and shut
off the meter. “What route would
you like me to go?” i asked.

For the next two hours we drove
through the city. She showed me
the building where she had once
worked as an elevator operator. We
drove through the neighborhood
where she and her husband had
lived when they had first been mar-
ried. She had me pull up in front
of a furniture warehouse that had
once been a ballroom where she
had gone dancing as a girl. Some-
times she would have me slow in
front of a particular building or
corner and would sit staring into
the darkness, saying nothing.

As the first hint of sun was creas-
ing the horizon, she suddenly said,
“i’m tired. Let’s go now.”

Photo by: Ben Fredericson [flickr.com/photos/xjrlokix/4379281690]

http://flickr.com/photos/xjrlokix/4379281690

12 FEATURES

We drove in silence to the
address she had given me. it was a
low building, like a small convales-
cent home, with a driveway that
passed under a portico. Two order-
lies came out to the cab as soon
as we pulled up. Without waiting
for me, they opened the door and
began assisting the woman. They
were solicitous and intent, watching
her every move. They must have
been expecting her; perhaps she
had phoned them right before we
left.

i opened the trunk and took the
small suitcase up to the door. The
woman was already seated in a
wheelchair.

“How much do i owe you?” she
asked, reaching into her purse.

“Nothing,” i said.
“you have to make a living,” she

answered.
“There are other passengers,” i

responded.
Almost without thinking, i bent

and gave her a hug. She held on to
me tightly. “you gave an old woman
a little moment of joy,” she said.
“Thank you.”

There was nothing more to say. i
squeezed her hand once and then
walked out into the dim morning
light. Behind me, i could hear the
door shut. it was the sound of the
closing of a life.

i did not pick up any more pas-
sengers that shift. i drove aimlessly,
lost in thought. For the remainder
of that day, i could hardly talk.
What if that woman had gotten
an angry driver or one who was
impatient to end his shift? What
if i had refused to take the run or
had honked once and then driven
away? What if i had been in a foul
mood and had refused to engage
the woman in conversation? How
many other moments like that had
i missed or failed to grasp?

We are so conditioned to think
that our lives revolve around great
moments. But great moments often
catch us unawares. When that
woman hugged me and said that i
had brought her a moment of joy,
it was possible to believe that i had
been placed on earth for the sole
purpose of providing her with that
last ride.

i do not think that i have ever
done anything in my life that was
any more important. n

Kent Nerburn is the highly acclaimed
author of over a dozen books on Native
American issues and spirituality. The Cab
Driver story is excerpted from his book,
Make Me an Instrument of Your Peace:
Living in the Spirit of the Prayer of St.
Francis. It is published here in its original
form with permission of the author. Visit
his website atkentnerburn.com to learn
more about Kent Nerburn’s life and work
and to purchase books.

“We are so conditioned to think that our
lives revolve around great moments. But
great moments often catch us unawares.”

Reprinted with permission of the original author.
First appeared in hn.my/cab (zenmoments.org)

http://atkentnerburn.com
http://hn.my/cab

 13

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

14 STARTUPS

STARTUPS

By AvEry PENNAruN

Since before graduating from
college and up until taking
my current job, i’ve initiated

several things that could be called
startups. That is, we incorporated
companies, we had a small number
of people that got paid wages, we
collected Canada Sr&Ed tax cred-
its, etc. Every one of these startups
turned a profit and more than one
had outside financing. one of them
we sold to iBM.

i’m telling you this not to show
off, but as a setup for the rest of this
story. What i want to explain is that
i fail strangely. or at least, it feels
like i do. Maybe it’s not so strange;
maybe you should just go read Paul
Graham’s How Not to die article
[hn.my/die], where he advises us
that “Startups rarely die in mid
keystroke. So keep typing!”

Because that’s really the moral
of this story; or maybe it isn’t.
Maybe this story is about how that
advice hasn’t actually worked for
me because inside each of those
successes is a story of failure. it’s
interesting that by leaving out some

details i can honestly make any
one of the companies i’ve started
sound like resounding successes or
resounding messes. if i include all
the details, then, well they’re just
confusing. So you’ll usually hear
just one side or the other, depend-
ing what point i’m trying to make.

Today i’ll tell you both sides
though for just one of those com-
panies. i’m not going to name the
company here but it’s still alive, it’s
still making money, and my co-
founder is still working his butt off
to keep it from falling over. Given
the details i’m about to share, it’s
trivially easy to find the company
name with a little Googling, and i
encourage you to do so. i just don’t
want to name it here because i
really don’t want this article to be
the first one that comes up when
you Google it.

So anyway, here’s what hap-
pened. We started the company
back in 2008. We wanted to do
something in the world of data-
bases because we figured databases
were ripe for disruption, what with

SQL being So vEry SuCKy in so
many ways. We wanted to create a
new variant of SQL based on the
analogy that our “new thing” is to
SQL as C is to assembly language.
That is, C is little more than a
portable assembly language, so we
need a portable version of SQL. (if
you’ve used more than one SQL
variant, you know the analogy is
apt.) oh, and maybe we’ll throw in
functions and variable assignment
and loop control structures while
we’re there. yeah, i know, crazy. But
if you’ve written stored procedures
in MS SQL, those are the things
you know you need.

Why did we want the C of
database query languages, instead of
something modern, like the Python
of database query languages? We
thought this was the clever part
of the analogy: it’s because people
already *tried* the high-level query
languages. They’re called orMs
(object relational mappings), and
sure enough, they’re just like
high-level languages were in 1975:
slow, bloated, wasteful, unreliable,

A Profitable, Growing, Useful,
Legal, Well-Loved...Failure

 15

non-portable, and nobody can agree
which one is best. C changed all
that. Sure, there were non-portable
features in C (there still are), but
dammit, + was just always +, and
for loops were for loops, and the
world made one big step forward.
People still use C today. High-level
languages are much better now, but
they’re almost all still built on top
of C. How much better could the
world be if we could do that for
SQL?

Anyway, that seemed really hard,
and we were just two guys who
wanted to get a minimal product
launched in, say, 4 months. So we
decided to trim down the idea.
What’s the minimal idea that
would get us in that direction, but
with a product in 4 months? Well,
first of all, to invent C you don’t
need multiple assembly language
variants; you just need one to start
with. Let’s pick one. Why not the
simplest one we can find? A bit of
searching around revealed the obvi-
ous candidate: Microsoft Access. it’s
even dumber than MySQL.

okay then, what will we build
on top of Access? Well, we want
to make a portable, slightly-higher-
level query language. What will be
its initial use case? Forgetting about
other databases for now, what do
Access developers need most? ...
Ah, to publish their data on the
web, of course. Access totally sucks
for web development. Even now it
does. They keep claiming to have
finally added web support, but it’s
nearly useless every single time.
Still is.

So we would write code to let
you easily query Access tables using
web tools, like AJAX or JSoN or
whatever. Excellent, that justifies
writing our query parser, but it
doesn’t have to be feature-complete

on day 1. We can add more data-
base engine plug-ins later. We can
get a few customers, launch, and
iterate. Perfect!

Just one little problem. you have
to actually get that data to the
web server. Access sucks for web
apps because Access databases are
a single .mdb file on your desktop
machine. Multi-user access means
multiple clients accessing the .mdb
file using a samba file share. But
how do you get the data onto the
web?

Well, the .mdb file format is
undocumented. reverse-engi-
neering it will take forever, so we
figured we’d write a plug-in for
Access that reads through your
data, exports it to text, and uploads
it to our server. That turned out
to be a fair bit of work, of course,
but whatever. i do love replicating
data, and we figured the ability to
replicate SQL databases could be a
big deal, so it’s certainly not a waste
of time.

once we were well under way
writing the replication system, we
thought about it some more and
realized that the minimal product
for our 4-month launch target
didn’t have to include a query
language at all; just replicating
the databases was surely enough
to please some user somewhere,
as long as it would sync in two
directions. Ta-da, internet-enabled
Access replication! We stopped
after writing only the barest mini-
mum query parser.

We got the basic Access web rep-
lication engine working, which was
a huge amount of work, don’t get
me wrong, and the code is singu-
larly awesome, but i’m going to skip
over it here. We gave it a convinc-
ing-sounding version number with
the word BETA in it, put it up on a

web site i designed with my super
lame web design skills, and waited
for the world to beat a path to our
door.

okay, you know how this goes,
right? you can’t just do that.
Nobody will come.

Well, this time you’re wrong.
People came. We had stumbled
onto a huge unsolved problem and
unaddressed market. There are lots,
and lots, and lots, and lots of legacy
Access databases in places you
don’t even want to think about. if
you find our web site and go to Tes-
timonials and scroll to the bottom,
you’ll see what i mean. The actual
Cio of a huge pharmaceutical
company called us out of the blue
and asked us to solve their prob-
lem because they had thousands of
Access databases they wanted to
share across their tens of thousands
of seats.

But i’m jumping ahead of myself.
Not all those people called us
on day 1. on day 1, our website
sucked because it was talking about
Access replication.

And what the bloody hell is
replication? Most Access users with
Access problems didn’t have a clue.
They certainly weren’t searching
for it.

That didn’t stop some of them
from finding us and calling anyway.
See, we also had a couple of pages
talking about our query engine, and
they contained phrases like “Access
on the Web.” Turned out a lot of
people were searching for that.
They still are. Microsoft caught on
with Access 2010 and marketed the
heck out of that search phrase, so
if you search for it now, you’ll find
them and not us, which is funny
because Access 2010 is still basically
useless for the web. But it shows
what marketing dollars can do.

16 STARTUPS

Now, i’m badmouthing Access
2010 a lot here, but here’s how i
know it’s useless: because people
keep on clicking and searching, and
i don’t even know what keywords
they search anymore, but they keep
finding us. They use Access 2010.
They’re not dumb; they’re real pro-
grammers and they know what fea-
tures Access 2010 has. Even if they
were dumb, God knows Microsoft
has marketed them to death. And
these people still want to pay us to
put Access on the web.

Anyway, i’ve gotten ahead of
myself again. The important part
of the story is, we had a web site
all about Access replication and
nobody had any clue what we were
talking about, but they called and
emailed and the message was clear:
We want Access on the web. How
much money can we pay you to
provide it?

um, well, look, the on-the-web
part is kind of sucky and...

...and the customer is always
right. So, back to the drawing board.
one day, a customer called me
and explained his very specific and
immediate problem. He had just
billed a customer many thousands
of dollars over many months to
build a custom Access application.

right at the end, the customer said
they were happy. Now...he should
just publish it on the web and
they’ll be done.

oh. Crap. The guy was really
in trouble. Serious trouble. They
hadn’t specified the requirement
up front; he was an Access-only
developer, so he couldn’t rewrite
it. Even if he knew how, it would
be months more work.So he had
a serious problem, and let me tell
you, our 5%-finished JSoN query
language was not going to solve it.
Neither was “replication,” but that
day on the phone, we came up with
an idea.

What if we could run Access on
our servers and display it over vNC
in a web browser? What if we ran
Access under Wine on Linux so we
could squeeze more instances onto
a single box? What if changes to
the database in these vNC sessions
could be replicated back down to
your desktop copy of Access using
our plug-in?

What if, indeed. Turns out there’s
a cool program called Flashlight-
vNC that’s an implementation
of vNC in Flash, which runs in
virtually any web browser (this was
before there was an iPad and before
Apple dropped Flash out of Safari).

Turns out recent versions of Wine
can actually run some versions of
Access. Turns out...well, let’s just
say it worked. And that, my friends,
is the product we have today, more
or less. Sure, since then we’ve added
performance optimizations and reli-
ability improvements. We store the
database contents in git and use a
custom merge algorithm for resolv-
ing changes made while in discon-
nected mode. (it’s neat; git can store
the whole revision history in less
space than the original .mdb.) But
fundamentally, that’s the product.

And people want it. No, i take
that back; the product is a mag-
nificent heap upon heaps of insane
hackery. i mean, we are running
Access in Wine in X11 on Linux
in an isolated user account on our
server slice that revision controls
your Access database in git, and
we’re displaying it using vNC in
your web browser in Flash. People
can’t possibly want that, but they
need it, which is better.

That’s the other neat thing.
They need it because nobody else
has ever created something like
this. i don’t think anybody ever
will. i mean, how many people
know Linux, Flash, C++ (for the
plug-in), Python (for the server),

“The customers need it because nobody
else has ever created something like this.
I don’t think anybody ever will.”

 17

“

and Microsoft Access, of all things,
and are willing to combine them
all with a healthy knowledge of
streaming network protocols and
database replication? And even if
you could find a whacko like that,
would that person be willing to
enter the market, starting from
scratch, knowing someone else got
there first?

Every month, we have more rev-
enue. And our costs are tiny, so that
means more profit.

Customers need this so badly
that they’re willing to pay a lot for
it. Like $35/user/month/database
for the basic plan. in case you’re
counting, in a year, that’s much
more than a copy of Access. And
just to be safe, because we want to
avoid lawyers, we tell customers to
make sure all their users already
have an Access license on their
desktop (in addition to the legally
required ones we have for our serv-
ers). This isn’t so bad; turns out big
companies — the kind with lots of
Access databases — pretty much all
buy Microsoft office Professional
for everybody anyway. So no, in
case you were wondering, our busi-
ness model is not about cheating on
Access licensing. if anything, people
are buying more licenses than they

strictly need, and i don’t feel like
getting on Microsoft’s bad side, and
neither do they, so everybody wins.

No, it’s not about cheating. it’s
just about providing something
people want and are willing to pay
for. What do they want? They want
to not rewrite legacy apps. Please,
please, let us just keep running
the app we spent the last 10 years
building, but let us run it outside
our office because we all have lap-
tops now.

How much money will people
pay to keep their app going? About
as much as the cost of rewriting
it in a web language. More, even,
since it lowers their risk. you do
the math. As a bonus, it’s a small
monthly expense, not a big capital
expenditure.

And yes, every month, our profit
is more than the last one.

But all that was the good news.
i’ve already given you a hint

about the bad news. remember
when i asked what whacko, with all
those skills, would want to do this?
i now know one of the answers, and
it’s oH God NoT ME. Eventually
i realized that there is no windfall
big enough to rationalize spending
3-5 years of my life, working full

time, writing compatibility layers
for Microsoft Access. in the ideal
world, if we were successful, my
days would involve on-site visits to
huge bureaucratic companies of the
sort that...well, let’s be honest, the
sort that would run mission-critical
Access databases.

really, on a rational level, i know
that’s unfair. i know these are good
people. i think Access developers
are great, actually. i love the fact
that they know a good thing when
they see it. Access *is* the easiest,
most rapid of rapid development
environments i’ve ever seen. i think
almost all database developers
have terrible tast, because they can
use Access and compare it to, say,
MS SQL, and not see what makes
Access great and MS SQL suck,
even knowing perfectly well the
development in MS SQL + C# or
Java will take something like 10x
as many man-hours. For some apps,
it’s worth it for the higher quality;
for a random internal business pro-
cess app, it’s not, but people spend
it anyway because they “heard
Access isn’t industrial strength.”

Eventually I realized that there is no
windfall big enough to rationalize
spending 3-5 years of my life writing
compatibility layers for Microsoft Access.”

18 STARTUPS

So don’t get me wrong. i like
Access users. Access develop-
ers, in particular, are the anti-iT
department, the rebels, the people
who aren’t willing to wait for the
system administrators to provi-
sion them a server, and they don’t
have to because they can just share
an Access file on the fileserver. iT
departments hate them, which is
how i know they’re on to some-
thing. These are the kind of people
i want to help. This is the sort of
thing that’s the reason i do the
work that i do. No kidding.

But, Lord, no, don’t make me
actually code Access plug-ins. don’t
make me work with Windows any-
more. Just don’t.

it’s so lame when i write it down.
Actually, it’s been lame for months,
every time i even think it. i can’t
believe i have that kind of lack
of follow-through. i don’t want
to think that about myself. it’s a
travesty. A terrible embarrassment.
Something that makes me question
my self-worth. if i can’t take some-
thing that’s so obviously working,
and milk it for all it’s worth, then
what kind of human am i, anyway?
i think i suck at capitalism. Maybe
that’s it.

you know the truth? i don’t
know. i just don’t know. i am a
completely irrational human being,
and i hate it, but deep inside me
there’s a voice that just says, “No.
Get the hell out. if you continue
doing this, you will die.”

So i got the hell out. i “stopped
typing,” as Paul Graham might say.
Nowadays i have a pretty great “real
job” where i can spend all night
hacking the Linux kernel, program-
ming embedded systems, and work-
ing on highly parallel build systems.
And even though the potential
upside is much less, i like it. For
now, at least. i’m happy.

And that’s my failure. Every day,
my co-founder keeps working away,
keeping the systems running with as
little effort as he can spare. He’s got
a day job now for various reasons;
among them, he’s an extravert and
he needs co-workers. i still own
half the shares, but i told him to
keep the operating profits; the least
i could offer, literally, i guess. That
huge pharma deal is still in the
pipeline and needs another callback,
but there’s nobody willing to do it.
We don’t optimize the web site for
Google anymore; we haven’t updated
the news page since 2010 and even
i can’t find our site in Google using
any generic keywords. i guess i’m not
looking hard enough because new
customers still find it, sign up, and
subscribe. virtually nobody ever can-
cels once they’ve started. There is no
competition and nothing to switch
to. There never will be. Where would
they go if they stopped?

i know i’ve let my co-founder
down. if the company would just
die — if it would only be so simple,
and nobody would want the prod-
uct, or the users got angry at us and
quit, or it were impossible to run
it at a profit and we finally ran out
of cash — then stopping would be
easy. But no. They love it instead.
They need it. There’s an opportu-
nity cost in continuing, but there’s a
sentimental cost in shutting it down
— to say nothing of the users who
have no other options.

in short, i learned that i don’t
have what it takes. Someone proba-
bly does, now that the actual insane
part has already been invented, but
i don’t know who.

What would you do? n

Avery founded his first startup, Nitix,
making Linux-based server appliances
while at the University of Waterloo. The
company was acquired by IBM and is now
called Lotus Foundations. He wrote wvdial,
netselect, git-subtree, sshuttle, bup, and
redo, and now lives in New York.

Reprinted with permission of the original author.
First appeared in hn.my/fail (apenwarr.ca)

http://hn.my/fail

19 STARTUPS

By AdAM WiGGiNS

As hackers, we’re familiar
with the need to scale
web servers, databases,

and other software systems. An
equally important challenge in a
growing business is scaling your
development team.

Most technology companies hit
a wall with development team
scalability somewhere around ten
developers. Having navigated this
process fairly successfully over the
last few years at Heroku, this post
will present what i see as the stages
of life in a development team and
the problems and potential solu-
tions at each stage.

Stage 1: Homebrewing
in the beginning, your company is
two to four guys/gals working in
someone’s living room, a cafe, or a
coworking space. Communication
and coordination is easy: with just
a few people sitting right next to
each other, everyone knows what
everyone else is working on. Found-
ers and early employees tend to be
very self-directed, so the need for
management is nearly non-existent.
Everyone is a generalist and works
on a little bit of everything. you
have a single group chat channel
and a single all@yourcompany.com
mailing list. There’s no real need
to track any tasks or even bugs. A
full copy of the state of the entire
company and your product is easily
contained within everyone’s brain.

At this stage, you’re trying to
create and vet your minimum
viable product, which is a fancy
way of saying that you’re trying to
figure out what you’re even doing
here. Any kind of structure or pro-
cess at this point will be extremely
detrimental. Everyone has to be
a generalist and able to work on
any kind of problem — specialists
will be (at best) somewhat bored
and (at worst) highly distracting
because they want to steer product
development into whatever realm
they specialize in.

Stage 2: The first hires
once you’ve gotten a little funding
and been able to hire a few more
developers, for a total of five to
nine, you may find that the ad-hoc
method of coordination (expecting
to overhear everything of impor-
tance by sitting near teammates)
starts to break down. you have both
too much communication (keep-
ing tabs on six other people’s work
is time-consuming) and too little
communication (you end up collid-
ing on trying to fix the same bug,
answer the same support email, or
respond to the same Nagios page).

At this point, you want to add
just a sprinkle of structure: maybe
an iteration planning on Monday,
daily standups, and tracking big
to-do items and bugs on a white-
board or in a simple tool like
Lighthouse. Perhaps you switch to a

support system like Zendesk where
incoming support requests can be
assigned and you add a simple on-
call rotation for pages via Pagerduty.
your single internal chat and email
channels continue to work fine.

resist the urge to introduce too
much structure and process at this
point. Some startups, on reaching
this stage, declare “we’ve got to
grow up and act like a real com-
pany now” and immediately try
to switch to heavy-handed tactics.
For example: full-fledged SCruM,
heavyweight tools like Jira, or hiring
a project manager or engineering
manager. don’t do that stuff. you’ve
got a team that works well together
in an ad-hoc way. you probably
have some natural leaders on the
team who direct a lot of the work
while still being hands-on them-
selves. And while your product is
launched and in the hands of users,
in many ways you’re still trying
to figure out what your company
is really all about. introducing
bureaucracy into this environment
is almost guaranteed to block you
from doing what you’re really sup-
posed to be doing, which is pivoting
in search of your scalable business
model.

Focus at this stage is key. Every-
one is still a generalist, but the
whole development team should
be aligned behind a single goal (aka
milestone) at a time. if you try to
attack multiple battlefronts at once,

How To Scale a Development Team

20 STARTUPS

you’ll do everything badly. Great
companies are more likely to die of
indigestion from too much oppor-
tunity than starvation from too
little. Pick your battles carefully and
stay focused.

Crisis on the brink of Stage 3
Grow to 10-15 developers, and
you’re on the verge of a major team
structure change. i’ve been told that
many promising startups have been
killed by failing to weather the
transition between these stages.

With this many developers,
iteration planning, standups, or any
other kind of development-team
meeting has become so big that the
attendees spend most of their time
bored. Any individual developer
will find it difficult to find a sense
of purpose or shared direction in
the midst of trudging through laun-
dry lists of details on other people’s
work.

in programming, when a class or
sourcefile gets to big, the solution
is to break it down into smaller
pieces. The same principle holds for
scaling a development organization.
you need to break into targeted
teams.

Stage 3: Breaking into teams
dividing your single team of gener-
alists is harder than it sounds. draw
the fences in the wrong place, and
you’ll create coordination problems
that make things even worse. Find
the right places to divide, and you’ll
see a massive increase in focus, hap-
piness, and productivity.

The key to a good team is a
well-defined sphere of authority,
with clear interfaces to other teams.
The team should own the vision
and direction for the part of your
product that it works on. it should
be able to operate with maximum

autonomy on everything it owns
without having to ask for permis-
sion or information from other
teams, except for the infrequent
case of a feature or bug that crosses
team boundaries.

A close mapping between your
software architecture and your
team architecture will be a big help
here. By this time you have prob-
ably already converted your mono-
lithic application into a distributed
system of multiple components
communicating over rEST, AMQP,
or other rPC mechanism. (And if
not, you should strongly consider
doing so, coincident with your dev
team split.) There should be an
obvious mapping between software
components — each of which has
their own source repository and
deployment location/procedure —
and your nascent teams.

deciding what person goes on
what team will be somewhat arbi-
trary at first. My approach was to
sit down with each developer and
dig in to understand what parts of
the system they were most pas-
sionate about working on. From
there i divided up the teams as
best i could. Some people found
perfect homes on their first team
assignment; others were dissatisfied
and needed to transfer to another
team fairly quickly. over time,
the team territories became very
well-defined, so it became much
easier to slot new hires in the right
place. Let developers follow their
own passions and they will gravitate
toward the team where they will do
the best work.

Separately, you should have
found your product/market fit by
this point. if you’ve grown to this
size and are still figuring out your
company’s meaning for existence,
you’ve got big problems. if that’s

the case, stop growing and scale
back down until you nail the prod-
uct/market fit.

Specialization
Another reason to break into
teams is specialization. Types of
engineering specialists include ops
engineers/sysadmins, infrastructure
developers, front-end web devel-
opers, back-end web developers,
business engineers / data analysts,
and developers who focus on a par-
ticular language. Language special-
ists are becoming more common,
because many internet-scale
companies write high-concurrency
components in functional program-
ming like Erlang, Scala, or Clojure,
generally handled by a different
set of developers than the authors
of the ruby, Python, or PHP web
components.

Early on, specialists are rarely
desirable. There are too many dif-
ferent layers to work on in deliver-
ing a software product relative to
the number of people available
to contribute, so everyone pitches
in on everything. This may put a
developer doing such far-ranging
work from projects like kernel
updates on the oS to front-end
projects like writing JQuery effects
for the ui.

once you reach the point where
you’ve got a dozen developers, your
product has reached a level of usage
and maturity where the problems
are getting much harder. Scaling the
database is something that is not
only a full-time job, but requires a
deep level of specialized knowledge
that can’t be acquired if that person
is also simultaneously learning to be
a JQuery expert and an ioS expert
and an Erlang expert.

 21

you need people who can and are
willing to focus on just a few closely
related areas so that they can build
very deep knowledge in those areas.
Some of these will be your exist-
ing generalists deciding to special-
ize, and some will be new hires.
you can now hire for the kind of
specialist that would not have been
appropriate when your company
was smaller. Generalists are always
useful to have around, and some
of them may move into manage-
ment — filling business owner roles
for a team, rather than hands-on
development.

Heroku’s first teams
Heroku’s initial team breakdown
looked like this:

 n APi: owns our user-facing web
app and the matching Heroku
client gem.

 n data: Builds and runs our
PostgreSQL-as-a-service database
product.

 n ops: Shepherds and protects avail-
ability of the production system.

 n routing: Manages everything
necessary to get HTTP requests
routed to user web processes.

 n runtime: Handles packaging
code for deploy and starting/stop-
ping/managing user processes.

Each of these teams owns
between one and five components.
For example, the APi team owns
the rails app, which runs at api.
heroku.com, and the Heroku client
gem. The data team owns the pro-
visioning and monitoring tool for
our database service, as well as all of
the individual running databases.

Team size and roles
For us, the ideal team layout has
been two developers and one busi-
ness owner. one developer is not
enough over the long term (they
need a second pair of eyes on the
code, and besides, one is a lonely
number). Three developers works
fine as well. Get to four or five
and things start to become a bit
crowded; there may not be enough
surface area for them to all work
without stepping on each others’
toes constantly. Almost all of Her-
oku’s teams have two developers.

“Business owner” is a somewhat
clumsy term, but it’s the best we’ve
come to describe the person doing
some combination of product
management, project management,
and general management for the
team. The business owner fills the
important role of knowing the busi-
ness value of the team’s work to
the company and how it fits in with
the larger product. They can broker
cross-team communication, help
prioritize projects and tasks by busi-
ness value, and may provide status
reports on the team’s progress or
presentations to the senior execu-
tives and/or the entire company to
justify the team’s ongoing existence.

i’m a fan of hacker-entrepreneurs
in the business owner role: a strong
technical background means they
have an in-depth understanding of
the work being done and are able to
command huge respect from those
whose work they are directing.
This sort of person is not necessar-
ily available for all teams, but find
them when you can. in many cases
it involves quite a bit of convincing
to get a hacker to give up coding as
their primary function.

Avoid having developers belong
to more than one team. They are
makers and need to be able to

focus their full attention on their
team’s current projects without
distractions or attempts at multi-
tasking. Business owners, however,
can sometimes belong to multiple
teams. it’s not always a full-time
job, and there are benefits to cross-
team communication by having one
person as the business owner for
two or more related teams.

Cohesion
in the earlier stages, you should
avoid attacking on multiple battle-
fronts, and instead keep all develop-
ers focused on a single goal for the
company. With creation of fiefdoms
for each team, this has changed.
Now you can and should attack on
multiple battlefronts. Each team
should be executing independently
against its own goals and not wor-
rying too much about what other
teams are doing.

it’s awesome to be able to pursue
three, four, five big goals simultane-
ously. A few months after breaking
into teams at Heroku, we had a day
where three different teams were
all releasing major new features. it’s
an incredible feeling.

But now you have a new prob-
lem: lack of cohesion. your decen-
tralized teams are setting their own
roadmaps and deciding on features
independently. To avoid fragmen-
tation in your product, someone
needs to decide an overall direction
and set of product values. More suc-
cinctly: you need a strategy. n

Adam is a hacker, technology entrepre-
neur, and occasional rapscallion. He’s co-
founder and CTO at Heroku, and author
of The Twelve-Factor App [12factor.net].
Follow his work via adam.heroku.com or
@hirodusk

Reprinted with permission of the original author.
First appeared in hn.my/devteam (adam.heroku.com)

http://12factor.net
http://adam.heroku.com
http://twitter.com/hirodusk
http://hn.my/devteam

22 STARTUPS

By ELAiNE WHErry

in late 2009, i created an online
persona named Pete London, a
self-described JavaScript ninja,

to help attract and hire the best
JavaScript recruiters. While i never
hired a recruiter from the experi-
ment, i learned a ton about how to
compete in today’s Silicon valley
talent war. Based upon two years of
non-scientific research, here’s what
you should know…

The recruiting crisis
in late 2009, my desk was piled
with JavaScript resumes. our
homegrown JavaScript framework
edged us over competitors but
maintaining our technical advan-
tage meant carefully crafting a lean,
delta-force Web team. Though i
averaged two interviews a day, we
had only grown the team by three
or four engineers each year.

However, in 2010, that had to
change. it was our first year with a
real revenue target and also the first
time we planned to pivot from our
original iM product. We charted
our end-of-year goals and quar-
terly milestones, and we eventually
backtracked to our team and hiring
priorities. To meet our 2010 goals,
i needed to double the JavaScript
team in just one quarter. if i didn’t,

innovation would stall and without
revenue, our business would be in
serious jeopardy.

 i had very little more to give.
over the previous four years, i
had already spent my personal
networks, seeded every nook of
the Web with job descriptions, and
experimented with guerilla recruit-
ing tactics like hosting JavaScript
meetups across the country, plant-
ing hand-written congratulatory
notes on the seats of CS Stanford
students who’d just finished their
finals, coding a spidering engine to
find online JavaScript resumes, and
even buying Google AdWords for
relevant terms like xmlhttp, open-
database, and localstorage.

 But then my recruiting problem
went from serious to heart-stopping
dire. in the final months of 2009,
every female on Meebo’s recruit-
ing team became pregnant within a
month of each other. our expectant

mothers were searching for contract
replacements, but as winter crept
closer, finding someone who could
temporarily step up to our extraor-
dinary JavaScript challenges during
our most critical hiring quarter
looked unlikely. i was truly on my
own.

Pete London is born
i desperately needed amazing
recruiters. After the third expectant
mother relayed her good news, i
sunk into to my chair overwhelmed
with urgency and stared blankly at
my monitor thinking over and over,
oh my god, what do i do now?
My first impulse was to look at the
recruiters in my inbox — specifi-
cally those who had pinged me for
a JavaScript role and presumably
had prior JavaScript recruiting
experience. However, i also needed
a recruiter who was smart enough
not to poach a founder.

The Recruiter Honeypot

 23

 The honeypot idea emerged
slowly, if only i weren’t a founder!
Which recruiters would have con-
tacted me as an engineer? i stewed
on the idea of posting my resume
online with a fictitious name for
days. Then one sleepless night,
without telling anyone, i woke
up and posted a small three-page
website [petelondon.com] with an
about page, resume, and blog for
a supposed Pete London whose
interests and engineering per-
sona mirrored my own except he
wasn’t a founder. i swapped out my
post-graduate experience with my
husband so it wouldn’t be too easy
to trace back to me. i returned to
bed with a small glimmer of hope
— i had been hunting for recruiters
for months, but now the recruiters
would come to me!

Last resort — Linkedin
My hopes sank pretty quickly.
PeteLondon.com sat alone in
internet ether for weeks with
absolutely nada activity. i was about
to pull down the entire site when i
thought, i’ll just post the resume on
Linkedin as a last resort.

Bam. it was as if i’d finally stum-
bled upon the door to the party.

 on december 10th, 2009, the
first Linkedin message arrived
from Google. Mozilla followed on

december 15th. Ning and Face-
book followed in January. Since
then, Pete averaged a recruiter ping
every 40 hours and saw 530 emails
from 382 recruiters across 172
organizations.

What I learned
After two and a half years, i learned
less about recruiting recruiters and
more about recruiting engineers.
Here are my eight biggest take-
aways to finding the best talent
online…

Lesson 1: Recruiters rely exclu-
sively on Linkedin

you might be thinking, really?
This is obvious! But understand
the context. i was interviewing
tech recruiters who said they had
“moved beyond Linkedin.” Linke-
din was a “crutch for everyone
else” but them. When i asked what
techniques they used to fulfill
JavaScript roles, they’d describe
complex Boolean queries, highway
101 billboards, and obscure search
engines. i ate it up! But at the same
time, i wondered, Wait, if this is all
true, why hasn’t anyone found Pete
London yet?

To further my confusion, Linke-
din wasn’t how Meebo found its
initial superstar JavaScript team.
From 2005-2011, only one JavaS-
cript team member was hired via
Linkedin — the rest came from
personal networking, meetups, blog
scouting, and other guerilla recruit-
ing approaches.

 i also assumed that a profes-
sional who made their living from
recruiting would want to optimize
their response rate and would seek
out ways to contact Pete London
beyond Linkedin. Though Pete
London’s website and personal
email address were just one click
from his Linkedin profile page, the
majority of emails still arrived via
Linkedin — especially from larger
companies.

 Surprisingly, very few recruiters
tried more than one communica-
tion channel.

TIP #1: If you’re a start-up who
always feels like you’re scraping the
bottom of the LinkedIn barrel, you’re
probably right — LinkedIn is incred-
ibly competitive. Recruit latent talent
off the grid.

TIP #2: Recruiters usually flock
to LinkedIn first, if not always. To
increase your personal opportunities,
join LinkedIn.

Lesson 2: Fear the Silicon Valley
long tail

 When i wrote to potential engi-
neers, i always imagined my email
landing next to recruiting giants like
Google or Facebook. As a result, i
was careful to emphasize Meebo’s
unique start-up learning oppor-
tunities, amazing culture, and the
opportunity to make impact.

http://petelondon.com

24 STARTUPS

However, my strategy was mis-
guided. The Silicon valley compa-
nies that drew TechCrunch head-
lines from 2010-2012 (i.e. Adobe,
Amazon, AoL, Apple, Facebook,
Google, Linkedin, Netflix, Micro-
soft, Mozilla, Skype, Twitter, yahoo,
Zynga) only represented 15% of the
landscape.

 But i should have been more
scared than i was — the emails
from start-ups and mid-sized
companies sounded nearly identical
(my own included): “We’re a fast-
growing start-up disrupting a lucra-
tive space where your talents will
shine and your efforts will be amply
rewarded.” By emphasizing the clas-
sic start-up experience, everyone
sounded exactly the same:

Start-up in Mountain View:
“We’ve assembled a world class
team. Our monthly uniques have
already exceeded [###] million
and continue to trend higher at
a rapid pace. We’ve reached an
inflection point where we’re looking
to scale, and with your background
I wanted to speak with you about
our engineering hiring.”

Start-up in San Francisco: “There
are a variety of interesting technical
challenges in front of us includ-
ing scaling for millions of users,
developing applications, building
a sophisticated data platform,
securing user data and, most
importantly, ensuring an incredible
experience for our users. Aside from
our plethora of awesome technical
projects, this is also a great place to
work. Everyone on the team ben-
efits from free meals and tremen-
dous organizational transparency
(weekly all hands, daily stand ups,
etc.)”

Larger companies employed
an entirely different strategy and
anecdotally, i saw terser, canned
emails from larger companies than
start-ups. To quantitatively compare
strategies, i went through all emails
and noted whether the recruiter
included role details, company
information, or if the email was
personalized specifically to Pete.
i was incredibly lenient and gave
points whenever i could. By almost
every metric, the larger compa-
nies performed weakest: smallest
word count (114 vs. 148 words per
email), least likely to describe the
company mission or personalize
email, and least likely to use a per-
sonal email address. However, large
companies hired triple the number
of recruiters and made up for their
shortcomings in volume. Pete heard
from an average of 1.4 recruiters at
each start-up and 4.6 recruiters at
each large company.

 you might assume that with
more internal recruiters, big compa-
nies would do better than start-
ups that depend more on external
recruiters. After all, big companies
have had more time, resources, and
infrastructure to make this a key
strategic asset. But it turns out you
don’t want to emulate the big guys
and you also don’t want to assume
they are your stiffest competition.

TIP #3: Your real recruiting nemesis
is the start-up down the street. Pitch
your job opportunities with more
specificity than “fast-paced, innova-
tive startup.”

Lesson 3: The recruiting land-
scape isn’t just filled with
recruiters

 only 97% of the recruiting emails
can be attributed to traditional
recruiting. So who represents the
remaining 3%?

Surprise! vCs — specifically
early-stage angel investors.

Though they are a small lot, they
are a super lethal bunch with an
eye on your jugular artery — your
revered first engineers who built
your system from scratch. The
charming vCs know that your
prized engineers could fulfill a
similar role at their future portfo-
lio companies and set their hooks
early. in most cases they don’t have
a specific company or role in mind
but are just proactively networking
and hoping to be top-of-mind in
the future. Given how intercon-
nected and fast-moving the start-up
world is, this might be inevitable
but woah! good to know.

“I’m with [a VC firm] and my
charter is to build out their talent
services capabilities. What that
means is we are looking for high
caliber individuals that would be
interested in potentially exploring
opportunities with our portfolio
companies.

Your experience is exceptional
and you have the type of back-
ground that should be a part of
the network. If you are interested
in learning more I would love the
opportunity to speak with you in
more detail. What we are looking to

 25

establish is a “go to” network of top
notch individuals that would be a
value add to our portfolio of compa-
nies. I hope to hear from you soon.”

TIP #4: Keep your engineers happy
(i.e. free food, great people, & amaz-
ing challenges). When the VCs come
knocking, make sure your MVPs are
glued in.

Lesson 4: Can a start-up rely on
external recruiting?

As a start-up, you are inevitably
resource-starved. When you have
the good fortune to gain traction,
you have the setback of suffering
infrastructure growing pains while
realizing the only way to get ahead
is to find time to recruit, interview,
and close candidates. in the early
days, external recruiters appeared
on Meebo’s doorstep and promised
to screen and pass along qualified
candidates so i could turn my atten-
tion back to Friday’s release — it
seemed like a dream come true!

However, the first people you
hire set your engineering and
cultural dNA for the lifetime of
the organization and while you
desperately need to hire well, can
you depend on external recruiters
to step up to the task? once the
scaling challenges strike, does it
make more sense to proactively hire
a superstar in-house recruiter or to
rely on external recruiters to scale
the engineering team?

The answer is surprising — exter-
nal and internal recruiters perform
similarly in start-up environments.
internal recruiters are 14% more
likely to describe the position but
14% less likely to personalize the
email.

However, larger companies don’t
have a viable external recruiting
option. External recruiters at the
top companies were much weaker
overall — 340% less likely to
include a description of the role,
140% less likely to personalize
their email, and 88% less likely to
include detailed company infor-
mation. Though larger company
recruiters were relatively weak
overall, in-house recruiters are their
only viable option.

 Given this significant perfor-
mance difference, it’s no surprise
that larger companies also employ
far more internal recruiters than
start-ups.

 TIP #5: As a start-up, you can sleep
easier knowing that external recruit-
ers are a fantastic resource. Find your
superstar engineers first and your
superstar in-house recruiters second.

TIP #6: Contingency recruiting firms
are financially incentivized to hire for
less selective companies. For difficult
roles, a dedicated contract recruiter
may be your only realistic option.

However, before you get too
excited about external recruiters,
read further…

Lesson 5: Be careful whom you
invite into your house

 unfortunately, it’s not all about the
numbers. Though external recruit-
ers perform well for start-ups,
there’s another side to this story. it
pains me to write this, but i think
it’s important to share…

Meebo employed lots of external
recruiters when we were getting
off the ground. We had standard
18-month no-poach restrictions
with all of our contractors speci-
fying that those recruiters were
not allowed to contact Meebo
employees within 18 months of our
contract expiring. Most of those
contracts expired in 2008-2009.

However, every recruiter and
firm we’d worked with who was
still in the recruiting business tried
to poach Pete London.

Every single one!
it’s impossible to know whether

our former recruiters were pinging
employees during the no-poach
period prior to 2009 but i wouldn’t
be surprised. However, i doubt they
were being malicious — it’s more
likely they were just disorganized
and didn’t communicate an off-
limits list to their staff.

in addition to pings from too-
familiar recruiters, there were two
cases that left me especially uneasy.
in the first case, a former recruit-
ing agency tried to poach Pete
London and then 15 minutes later,
wrote to me offering recruiting
services! i was being pulled on both
ends! When i didn’t respond, they

26 STARTUPS

repeated the stunt again six weeks
later. i got wind that they’d sent
recruiting emails to everyone on
our Engineering teams and i called
them on it (without referencing
Pete London). i never heard from
them again.

May 13th, 2:20pm

“Hi Peter,

I am a recruiter who works with
high-growth, top-tier start ups and
industry leaders. I came across your
information and was impressed
with your background. I’m guessing
you may not be actively looking for
a new job right now, but I’m sure
you plan on continuing to advance
your career in the long term, and
would be open to hear about oppor-
tunities that may accelerate that
advancement.

I’d like to get a better idea of your
interests and goals, so that I can
identify and present to you a few
of the most attractive opportuni-
ties in the market both now and in
the future. You may be pleasantly
surprised at what is out there for
you. Let me know a good time and
number to call you…”

May 13th, 2:35pm (15 mins later)

“Hi Elaine,

I’m a recruiter… We specialize in
the placement of technology profes-
sionals. I’ve been working with
many excellent candidates from
the space and researching com-
panies for them. meebo came up
in my search as a good company
to consider, so I’d like to present
some of these candidates to you for
interviews.

Please call me or email me a good
time and # to reach you…

Thanks and I look forward to
working with you!”

The second case that made
me uneasy involved a contractor
recruiter who worked from Mee-
bo’s office for nearly a year. during
this time, the recruiter went to
lunch with the team, participated
in hackdays, and became close with
many folks. Two years later, that
recruiter poached Pete London
and a few hours later, showed up
at Meebo’s informal Friday happy
hour! i was definitely in a queasy
gray zone where there wasn’t a
strong divide between our per-
sonal and professional relationship.
Technically, it was hard to nail
down any real grievances, but i was
certainly aware that our teams were
constantly under former recruiter
attack.

External recruiters are an inevi-
table necessity for start-ups. But
after seeing all of the emails that
those external recruiters generated
in subsequent years, i wish Meebo
had switched to in-house recruiting
sooner.

The external recruiters you work
with today are good, but they will
learn your strengths and your team,
and you’ll probably be uncomfort-
ably top-of-mind later on.

TIP #7: External recruiters are a
mixed blessing — be selective and
switch to internal recruiters as soon
as you can.

TIP #8: Push for at least 18-month
no-poach policies with external
recruiters.

Lesson #6: The most common
little white lie is…

With very few exceptions, recruiter
emails were well-written, smarmy-
free, and didn’t smell of phishing.
i expected far worse. However, if
a little white lie is going to sneak
into an email, it’s going to look like
this…

“I was referred to you as a possible
source for a position I am working
on here” – Large company

“I previously worked with [Bob]
& [Andrew] and have heard great
things about you and feel you’d be
a great fit…” – Startup

“I understand that you may not
be actively looking at this point,
but we have heard that you are
very good and wanted to see if you
might consider looking into a posi-
tion with [us]” – Startup

“I’m reaching out to you because
I’ve been an admirer of your work
at Meebo and believe you could
be the perfect founding engineer to
lead front-end engineering for our
product.” – Startup

Little white lies appeared across
all recruiting groups and generally
took the form, “i was referred to
you” or “i’ve heard very good things.”
While even unfounded flattery feels
good, i learned to be suspicious of
vague recruiter compliments.

TIP #9: Flattery will get you every-
where! Take recruiter praises with a
healthy pinch of salt.

 27

Lesson #7: It’s time to buy more
hoodies

if you are a JavaScript engineer,
you know that the talent market
is increasingly competitive and
you are inevitably feeling the pull
of San Francisco. The demand for
engineers has intensified over the
last two years and recruiting activ-
ity has exploded in the foggy north.

 it’s impossible to ignore the
momentum that is growing in San
Francisco. if i were a start-up get-
ting off the ground today, i would
start in San Francisco. in 2011,
Meebo saw more of its JavaScript
engineers hailing from SF than from
Mountain view for the first time.
While it’s exciting that there are
more geographic options to start a
tech company, it’s also time to rec-
ognize that companies need strate-
gies for geographically dispersed
teams and for recruiting from dif-
ferent areas of the Peninsula.

TIP #10: As the city of Palo Alto or
Mountain View, I would make sure
that resident tech companies are
happy and that public transportation
is a top priority.

TIP #11: When writing to candi-
dates, specify where your office is
located — it’s no longer assumed that
an opportunity is south of San Mateo
unless otherwise specified.

TIP #12: The entrepreneurial epi-
center is no longer Palo Alto. If you’re
south of San Mateo, figure out your
SF strategy now.

Lesson #8: Who’s the best in the
valley?
you are.

There were 19 emails from
managers, execs, founders, and
board members who presumably
had no professional background in
recruiting. However, those non-
recruiters collectively outperformed
every other professional recruiting
segment — scoring just as high
or higher by every metric: email
quality, outreach technique, and
word count. No matter how many
recruiters you hire, there is no sub-
stitute for a heart-felt note from a
future manager.

 However, managers have respon-
sibilities beyond recruiting and it’s
not realistic to spend eight hours a
day reading resumes and penning
candidate emails — professional
recruiters are a necessity. However,
most managers probably hope to
hire a recruiter who does the job
better than themselves. of all of
the emails Pete received, only 40%
of the recruiter emails scored better
than the average manager who
actively sought out Pete London.
And within this top 40%, there
were proportionately more start-up
recruiters than any other segment.

TIP #13: Look for recruiters with
start-up backgrounds rather than
large companies.

TIP #14: Hire the best recruiters
and treat them like gold. If a product
is only as good as its team, then the
product is only as good as its recruit-
ing team.

Summary
of the 382 recruiters, there was
only one recruiter who actually
figured it out. To do so, he did one
thing that no other recruiter did
— picked up the phone and called
someone who should have been
connected to Pete to ask for an
introduction. And that’s where the
ruse unraveled. if there were one
recruiter i would have partnered
with during my toughest hiring
crunch ever, it would have been
him.

However, that recruiter had also
recruited for Meebo the prior year
and he shouldn’t have been poach-
ing Pete London from our team. He
apologized. in the end, the honey-
pot ended up identifying the one
amazing recruiter i already knew
about but couldn’t justify working
with again.

ultimately, our recruiting chal-
lenge was solved by hiring more
JavaScript managers who could
help recruit too. n

Elaine Wherry co-founded Meebo in 2005
and served as Meebo’s Chief Experience
Officer and Vice President of Product. Prior
to Meebo, Elaine Wherry served as Man-
ager of Usability & Design at Synaptics. At
Stanford, she majored in Symbolic Systems
with a concentration in Human-Computer
Interaction. Her unmarketable interests
include seeing the world via rented bicy-
cles, playing the violin, and perfecting
homemade ice cream recipes.

Reprinted with permission of the original author.
First appeared in hn.my/honeypot (ewherry.com)

http://hn.my/honeypot

28 SPECIAL

i wore my Prime Factorization
Sweater to KidlitCon09, and it
shows up in all my pictures, so

i think it’s time for me to explain it.
This is the sweater that proves

that i am a Certified Math Nut.
okay, here’s how it works. you

have to start in the bottom left-
hand corner, because the mathema-
tician in me couldn’t bear to start
anywhere except where the origin
would be on Cartesian coordinates.
Naturally, the numbers go from left
to right and from low to high.

i’ll post a picture of the front of
the sweater:

 okay, look at the bottom row. it
looks like there is a blank space on
the left. That represents 1, because
1 is the background color, because 1
is a factor of every number.

Next is a blue square, which
represents 2.

Next is a red square, for 3.
Then comes 4. 4 = 2 x 2. So 4 is

represented by two blue rectangles.
Then comes 5. 5 is prime, so 5

gets a new color, yellow.
Next is 6. 6 = 2 x 3. So 6 is repre-

sented by a blue rectangle and a red
rectangle.

7 gets a new color, purple.

8 comes next. 8 = 2 x 2 x 2. So
8 is in a square with three blue
rectangles.

Then comes 9. 9 = 3 x 3. Two red
rectangles.

Last on the bottom row is 10. 10
= 2 x 5, so we have blue and yellow.

The second row starts with 11,
which is given the color pink.

12 has three factors, since 12 = 2
x 2 x 3, so two blues and a red.

Get the idea? This sweater
presents a chart giving the color-
coded prime factorization of every
number from 2 to 100.

The patterns are wonderful and
fascinating. you’ll quickly notice
that the yellows and the blues line
up, because 5 and 2 are factors of
10. you also might notice that all
perfect squares are symmetrical.
Multiples of 11 go in a lovely pink
diagonal across the sweater. There
are hundreds more patterns. it
would be a lovely visual aid for
teaching number theory. Fun to
quietly wear to Math competitions,
too!

My Prime Factorization
Sweater By SoNdrA EKLuNd

SPECIAL

 29

What’s more, you can use this as
a quick conversion table to convert
to octal (Base 8), because on the
back i did the same thing with rows
of 8:

 The fun thing about rows of 8
is that the patterns are all differ-
ent! Notice how the last column is
full of blue squares because every
number there is a multiple of 8 and
has at least three factors of 2. And
now 9 (two reds) acts like 11, going
diagonally up the sweater, as does
7 (purple) in the opposite direction.

on the sleeves, i did rows of 2
and rows of 3. The rows of 3 is the
only one where the blues do not
line up, because 2 and 3 are rela-
tively prime.

isn’t it just the coolest thing in
the world?!!!

okay, i warned you: this is the
item that proves i am a Certified
Math Nut. i can get hugely excited
and animated talking about this
sweater.

i have already done a library
program called “Puzzles and Pat-
terns” showing kids how they can
make simple codes using the ideas
from this sweater. There’s definitely

a children’s book in there, but i
haven’t gotten around to writing it
yet. i definitely plan to some day!

one of the cool things about this
sweater is that it works in any lan-
guage and on any planet!!! you see,
even if an alien race had only four
fingers on each hand, they could
look at the back of the sweater and
all their numbers would work. For
that matter, a number system with
a base of 7 or some other strange
base would still work, even though
it might not be in neat rows for
that base. The chart is entirely
independent of the symbols used to
represent a number, and based only
on color.

So we had a family joke that if an
alien ever came to our door, we’d
run and get the sweater to prove
that we are intelligent life.

i only hope the aliens are not
color blind!

of course i also like to tell the
story that when i was knitting this
sweater, i brought it along to visit
my family and friends one Christ-
mas. Most of my family are Math
Geeks, too, so they were impressed.
But one friend had a young son
who listened to my explanation and
responded, “That’s just weird!”

What can i say? He does have
a point. Call me weird, but i still
think it’s one of the coolest things
in the world! n

Sondra taught college math for 10 years,
then switched careers and am currently a
children’s librarian who loves getting kids
excited about reading — and math. She
knits mathematical objects for fun.

Reprinted with permission of the original author.
First appeared in hn.my/prime (sonderbooks.com)

Check out Sondra’s CafePress Store [cafepress.com/
sonderbooks], where you can order t-shirts using
this idea.

http://hn.my/prime
http://cafepress.com/sonderbooks
http://cafepress.com/sonderbooks

30 SPECIAL

After a long day at
school, the house phone
rang and my mother

answered. “it’s Apple and they want
to have a word with you,” she said.
At the time, i was 16 and i had
been hustling iPod parts to all parts
of the world.

“I’m not telling you this as an
authority but as say, an uncle
figure: you need to stop what you’re
doing.” – An undisclosed Apple
attorney

When i was 15, my third-
generation iPod had broken. This
was a tragedy as music has been a
huge part of my life for as long as
i can remember. With no funds to
purchase a new iPod, i was deter-
mined to fix it. After scouring eBay,
i purchased a logic board and read
countless tutorials on how to crack
open my iPod and surgically replace
the logic board. The operation was
successful and i felt triumphant
— functioning iPod, new awesome
skill as iPod-surgeon, and none of
my music was `lost. i grew very
curious as to how frequently out-
of-warranty iPods malfunctioned
and simply required a new part or
two. Everyone knows that out-
of-warranty Apple
repairs are absurdly
expensive, often
costing as much as
a new iPod. i found
that second- and
third-generation

iPods broke a lot and people rarely
bothered fixing them. Word spread
amongst my friends that i could fix
broken iPods and soon after, people
flocked to me to fix their iPods.
The supply for parts was scant and
as a result, prices were very high. i
started buying broken iPods by the
bulk, salvaging the functioning parts
and accumulating a surplus of parts
to fix friends’ iPods.

A hobby and good deed turned
into an obsession and i started
buying huge bulk orders of broken
iPods and selling the parts on eBay.
By the time i was 17, i had pur-
chased over a hundred iPods, turning
a spare room in my house into an
iPod graveyard. From 2005 to 2008
(15-18), i had taken in more than
$65,000 in revenue from my iPod
and eBay ventures before i could
even legally hold a Paypal account.

i saw the third-generation iPod
evolve into the fourth-generation
and then the fourth-generation
color, and eventually the beauti-
ful fifth- generation, arguably the
biggest leap in technology of any
of the iPod generations. Generation
after generation, as the components
shrank, repairs became harder and
harder. i hated working on iPod

Minis. Nanos? Forget
about it. The parts
became so integrated
and hard to replace
that the market
for parts deterio-
rated. i had a good

two-year run, but i wasn’t making
much money off of parts anymore.
instead of buying and selling parts,
i started to buy broken iPods that
were still under warranty, mailing
them back to Apple and receiving
brand new refurbished iPods for the
cost of shipping. This was the most
lucrative venture of all, but it was
the primary reason why an Apple
lawyer had called me that day.
understandably so, they did not like
me taking advantage of their trans-
ferrable warranties. They knew that
i was a kid and let me off the hook,
but it hurt to have Apple crush
your income stream, the income
that had allowed me to avoid a high
school job while my cohort was
slaving away at part-time jobs.

i learned so much peddling iPod
parts. From customer service, to
accounting, to shipping logistics; it
was my foray into how a business
functioned. i made a lot of silly
mistakes, but they were all part of
the learning experience. My profit
margin was not monstrous, but the
hard work and the lessons learned
were invaluable. i differentiated
myself by offering international
shipping, a service that few sellers
bothered with at the time. receiv-
ing orders from China, Eastern
Europe, Australia, and numerous far
flung regions was incredibly excit-
ing and eye-opening. The power of
e-commerce allowed a high school
student to offer an affordable way
for someone across the world to
repair their iPod. it fascinated the
hell out of me. once you expe-
rience this power first-hand, it
becomes addicting. The internet had
won me over one iPod at a time. n

Teddy Worcester is a 22-year old product
manager living and working remotely in
San Francisco. In his spare time, he rides
bicycles and writes about travel. You can
follow him on Twitter at @teddy

By TEddy WorCESTEr

Hacking the iPod
How I Earned $65K in High School

Reprinted with permission of the original author. First appeared in teddy.is/ipod

http://twitter.com/teddy
http://teddy.is/ipod

 31

01 You admire a character for trying more than
for their successes.

02 You’ve got to keep in mind what’s interest-
ing to an audience, not what’s fun to do as a

writer. They can be very different.

03 Trying for theme is important, but you won’t
see what the story is actually about till you’re

at the end of it. Now rewrite.

04 Once upon a time there was ___. Every
day, ___. One day ___. Because of that, ___.

Because of that, ___. Until finally ___.

05 Simplify. Focus. Combine characters. Hop over
detours. You’ll feel like you’re losing valuable

stuff but it sets you free.

06 What is your character good at, comfortable
with? Throw the polar opposite at them. Chal-

lenge them. How do they deal?

07 Come up with your ending before you figure
out your middle. Seriously. Endings are hard,

get yours working up front.

08 Finish your story, let go even if it’s not perfect.
In an ideal world you have both, but move on.

Do better next time.

09 When you’re stuck, make a list of what
WOULDN’T happen next. Lots of times the

material to get you unstuck will show up.

10 Pull apart the stories you like. What you like in
them is a part of you; you’ve got to recognize it

before you can use it.

11 Putting it on paper lets you start fixing it. If it
stays in your head, a perfect idea, you’ll never

share it with anyone.

12 Discount the 1st thing that comes to mind.
And the 2nd, 3rd, 4th, 5th — get the obvious

out of the way. Surprise yourself.

13 Give your characters opinions. Passive/mal-
leable might seem likable to you as you write,

but it’s poison to the audience.

14 Why must you tell THIS story? What’s the
belief burning within you that your story feeds

off of? That’s the heart of it.

15 If you were your character, in this situation,
how would you feel? Honesty lends credibility

to unbelievable situations.

16 What are the stakes? Give us reason to root
for the character. What happens if they don’t

succeed? Stack the odds against.

17 No work is ever wasted. If it’s not working, let
go and move on. It’ll be useful later.

18 You have to know yourself: the difference
between doing your best and fussing. Story is

testing, not refining.

19 Coincidences to get characters into trouble are
great; coincidences to get them out of it are

cheating.

20 Exercise: take the building blocks of a movie
you dislike. How do you rearrange them into

what you DO like?

21 You’ve got to identify with your situation/char-
acters; you can’t just write “cool.” What would

make YOU act that way?

22 What’s the essence of your story? What’s the
most economical telling of it? If you know

that, you can build out from there. n

Emma Coats worked as a storyboard artist at Pixar for over five
years, and has been writing & directing live-action short films
almost as long. She recently left Pixar to pursue a career in the live-
action film industry. You can follow her on Twitter: @lawnrocket

The Rules of Story Telling
By EMMA CoATS

Reprinted with permission of the original author.

http://twitter.com/lawnrocket

32 PROGRAMMING

PROGRAMMING

By STEvE HANov

A/b testing is used far
too often, for something
that performs so badly.

it is defective by design: segment
users into two groups. Show the A
group the old tried-and-true stuff.
Show the B group the new whiz-
bang design with the bigger buttons
and slightly different copy. After a
while, take a look at the stats and
figure out which group presses the
button more often. Sounds good,
right? The problem is staring you
in the face. it is the same dilemma
faced by researchers administering
drug studies. during drug trials, you
can only give half the patients the
life saving treatment. The others get
sugar water. if the treatment works,
group B lost out. This sacrifice
is made to get good data. But it
doesn’t have to be this way.

in recent years, hundreds of the
brightest minds of modern civiliza-
tion have been hard at work not
curing cancer. instead, they have
been refining techniques for getting
you and me to click on banner ads.
it has been working. Both Google
and Microsoft are focusing on using
more information about visitors
to predict what to show them.

Strangely, anything better than A/B
testing is absent from mainstream
tools, including Google Analyt-
ics and Google Website optimizer.
i hope to change that by raising
awareness about better techniques.

With a simple twenty-line change
to how A/B testing works, that
you can implement today, you can
always do better than A/B testing—
sometimes, two or three times
better. This method has several
good points:

 n it can reasonably handle more
than two options at once, e.g., A,
B, C, d, E, F, G….

 n New options can be added or
removed at any time.

But the most enticing part is
that you can set it and forget it. if
your time is really worth $1000/
hour, you really don’t have time
to go back and check how every
change you made is doing and pick
options. you don’t have time to
write rambling blog entries about
how you got your site redesigned
and changed this and that and it
worked or didn’t work. Let the
algorithm do its job. These twenty

lines of code automatically find the
best choice quickly, and then uses it
until it stops being the best choice.

The Multi-armed Bandit Problem
 The multi-armed bandit prob-
lem takes its terminology from a
casino. you are faced with a wall of
slot machines, each with its own
lever. you suspect that some slot
machines pay out more frequently
than others. How can you learn
which machine is the best, and get
the most coins in the fewest trials?

Like many techniques in machine
learning, the simplest strategy is
hard to beat. More complicated
techniques are worth considering,
but they may eke out only a few
hundredths of a percentage point of
performance. one strategy that has
been shown to perform well time
after time in practical problems
is the epsilon-greedy method. We
always keep track of the number of
pulls of the lever and the amount
of rewards we have received from
that lever. We choose a lever at
random10% of the time. The other
90% of the time, we choose the
lever that has the highest expecta-
tion of rewards.

20 Lines of Code That Will
Beat A/B Testing Every Time

 33

def choose():
 if math.random() < 0.1:
 # exploration!
 # choose a random lever 10% of the time.
 else:
 # exploitation!
 # for each lever,
 # calculate the expectation of
 # reward. This is the number of
 # trials of the lever divided by the
 # total reward given by that lever.
 # choose the lever with the greatest
 # expectation of reward.
 # increment the number of times the chosen
 # lever has been played.
 # store test data in redis, choice in
 # session key, etc..

def reward(choice, amount):
 # add the reward to the total for the given
 # lever.

Why Does This Work?
Let’s say we are choosing a color for the “Buy now!”
button. The choices are orange, green, or white. We
initialize all three choices to one win out of one try.
it doesn’t really matter what we initialize them to,
because the algorithm will adapt. So when we start
out, the internal test data looks like this.

Orange Green White

1/1 = 100% 1/1 = 100% 1/1 = 100%

Then a website visitor comes along and we have to
show them a button. We choose the first one with the
highest expectation of winning. The algorithm thinks
they all work 100% of the time, so it chooses the first
one: orange. But, alas, the visitor doesn’t click on the
button.

Orange Green White

1/2 = 50% 1/1 = 100% 1/1 = 100%

Another visitor comes along. We definitely won’t
show them orange, since we think it only has a 50%
chance of working. So we choose Green. They don’t

click. The same thing happens for several more visitors,
and we end up cycling through the choices. in the pro-
cess, we refine our estimate of the click through rate
for each option downwards.

Orange Green White

1/4 = 25% 1/4 = 25% 1/4 = 25%

But suddenly, someone clicks on the orange button!
Quickly, the browser makes an Ajax call to our reward
function $.ajax(url:"/reward?testname=buy-button");
and our code updates the results:

Orange Green White

2/5 = 40% 1/4 = 25% 1/4 = 25%

When our intrepid web developer sees this, he
scratches his head. What the F*? The orange button is
the worst choice. its font is tiny! The green button is
obviously the better one. All is lost! The greedy algo-
rithm will always choose it forever now!

But wait, let’s see what happens if orange is really
the suboptimal choice. Since the algorithm now
believes it is the best, it will always be shown. That is,
until it stops working well. Then the other choices start
to look better.

Orange Green White

2/9 = 22% 1/4 = 25% 1/4 = 25%

After many more visits, the best choice, if there is
one, will have been found, and will be shown 90% of
the time. Here are some results based on an actual web
site that i have been working on. We also have an esti-
mate of the click through rate for each choice.

Orange Green White

114/4071 = 2.8% 205/6385 = 3.2% 59/2264 = 2.6%

Steve Hanov has worked on everything from embedded wireless
protocol stacks to natural language processing and web apps. In
his spare time, Steve works on websequencediagrams.com and
rhymebrain.com and blogs about computer science topics from
his home base in Waterloo, Ontario.

Reprinted with permission of the original author.
First appeared in hn.my/bandits (stevehanov.ca)

http://websequencediagrams.com
http://rhymebrain.com
http://hn.my/bandits

34 PROGRAMMING

#Newbie programmer
def factorial(x):
 if x == 0:
 return 1
 else:
 return x * factorial(x - 1)
print factorial(6)

#First year programmer, studied Pascal
def factorial(x):
 result = 1
 i = 2
 while i <= x:
 result = result * i
 i = i + 1
 return result
print factorial(6)

#First year programmer, studied C
def fact(x): #{
 result = i = 1;
 while (i <= x): #{
 result *= i;
 i += 1;
 #}
 return result;
#}
print(fact(6))

#First year programmer, SICP
@tailcall
def fact(x, acc=1):
 if (x > 1): return (fact((x - 1), (acc * x)))
 else: return acc
print(fact(6))

#First year programmer, Python
def Factorial(x):
 res = 1
 for i in xrange(2, x + 1):
 res *= i
 return res
print Factorial(6)

#Lazy Python programmer
def fact(x):
 return x > 1 and x * fact(x - 1) or 1
print fact(6)

#Lazier Python programmer
f = lambda x: x and x * f(x - 1) or 1
print f(6)

#Python expert programmer
import operator as op
import functional as f
fact = lambda x: f.foldl(op.mul, 1, xrange(2, x
+ 1))
print fact(6)

#Python hacker

import sys
@tailcall
def fact(x, acc=1):
 if x: return fact(x.__sub__(1), acc.__mul__(x))
 return acc
sys.stdout.write(str(fact(6)) + '\n')

#EXPERT PROGRAMMER
import c_math
fact = c_math.fact
print fact(6)

#ENGLISH EXPERT PROGRAMMER
import c_maths
fact = c_maths.fact
print fact(6)

Evolution of a Python
Programmer.py
By FErNANdo MEyEr

 35

#Web designer
def factorial(x):
 #---
 #-- Code snippet from The Math Vault --
 #-- Calculate factorial (C) Arthur Smith 1999 --
 #---
 result = str(1)
 i = 1 #Thanks Adam
 while i <= x:
 #result = result * i #It's faster
 #result = str(result * result + i)
 #result = int(result *= i) #??????
 result str(int(result) * i)
 #result = int(str(result) * i)
 i = i + 1
 return result
print factorial(6)

#Unix programmer
import os
def fact(x):
 os.system('factorial ' + str(x))
fact(6)

#Windows programmer
NULL = None
def CalculateAndPrintFactorialEx(dwNumber,
 hOutputDevice,
 lpLparam,
 lpWparam,
 lpsscSecurity,
 *dwReserved):
 if lpsscSecurity != NULL:
 return NULL #Not implemented
 dwResult = dwCounter = 1
 while dwCounter <= dwNumber:
 dwResult *= dwCounter
 dwCounter += 1
 hOutputDevice.write(str(dwResult))
 hOutputDevice.write('\n')
 return 1
import sys
CalculateAndPrintFactorialEx(6, sys.stdout,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)

#Enterprise programmer
def new(cls, *args, **kwargs):
 return cls(*args, **kwargs)

class Number(object):
 pass

class IntegralNumber(int, Number):
 def toInt(self):
 return new (int, self)

class InternalBase(object):
 def __init__(self, base):
 self.base = base.toInt()

 def getBase(self):
 return new (IntegralNumber, self.base)

class MathematicsSystem(object):
 def __init__(self, ibase):
 Abstract

 @classmethod
 def getInstance(cls, ibase):
 try:
 cls.__instance
 except AttributeError:
 cls.__instance = new (cls, ibase)
 return cls.__instance

class StandardMathematicsSystem(MathematicsSystem):
 def __init__(self, ibase):
 if ibase.getBase() != new (IntegralNumber, 2):
 raise NotImplementedError
 self.base = ibase.getBase()

 def calculateFactorial(self, target):
 result = new (IntegralNumber, 1)
 i = new (IntegralNumber, 2)
 while i <= target:
 result = result * i
 i = i + new (IntegralNumber, 1)
 return result

print StandardMathematicsSystem.getInstance(new
(InternalBase, new (IntegralNumber, 2))).
calculateFactorial(new (IntegralNumber, 6))

Fernando is a brazilian software engineer who nowadays lives in
Sao Paulo and enjoys his wife, books, gadgets and life. He blogs
at fmeyer.org

Reprinted with permission of the original author.
First appeared in hn.my/evo (github.com)

http://fmeyer.org
http://hn.my/evo

36 PROGRAMMING

By ANdy BooTHE

Code should be simple.
Code should be butt
simple. Code should be

so simple that there’s no way it can
be misunderstood. Good code has
no nooks. Good code has no cran-
nies. Good code is a round room
with no corners for bugs to hide in.

We all know this. So why does
most code suck?

Because it’s written by people
who don’t understand the problem
they’re trying to solve.

What is a program?
To make a gross oversimplification,
a program is nothing but a model
of things (for the sake of discus-
sion, call them “objects”) and rules
for how those objects interact with
each other.

 A factorial program is nothing
but a group of objects (those “inte-
ger” things), and a rule that turns
one integer into another (the facto-
rial function). A word processor is
nothing but a group of objects (the
“alphabet”), and a bunch of rules

that describe how those letters can
be combined and displayed on a
page. And a social network is noth-
ing but a group of objects (“people,”
usually “idiots”) and a bunch of
rules about how those people can
do stuff to annoy you.

i may be an introvert.
Anyway, these objects and their

associated rules should be very
simple. in fact, as Einstein pointed
out, these objects and their associ-
ated rules should be made as simple
as possible, but no simpler. As the
model needs to be able to do more
and harder things, the objects and
the rules will start to:

 n increase in number

 n remember more data

 n Gain more and more corner cases

This gradual accretion of nuance
and behavior is called “complexity.”

Complexity? But this is about
complication, you moron.
oh. right.

So, remember a minute ago when
i said “This gradual accretion of
nuance and behavior is called ‘com-
plexity’”? Well… i lied.

But just a little.
in reality, this gradual accre-

tion of nuance and behavior from
none at all up to and including
the minimum possible simplic-
ity is called “complexity.” Any
incremental nuance and behavior
above and beyond that minimum is
“complication.”

Complexity is a necessary evil
when building systems that do
anything useful. if you’re doing
anything more complex than put-
ting Hello, world! on the screen,
you’re going to need some com-
plexity. Complication, on the other
hand, is the bane of programmers’
existence.

Complication is What Happens
When You Try to Solve a Problem
You Don’t Understand

 37

When you pick up a new code
base and it’s a Gordian mess of
1,000-line functions, 10-deep if/else
ladders, and — shudder — gotos,
you’re bearing horrified witness to
a monument of complication. And
when you start adding to your own
code things like haphazard condi-
tions, or duplicated, slightly differ-
ent exceptional cases in 6 different
layers of your model, or generally
making any change to your program
just hoping that it will work this
time for the love of God without
understanding the changes you’re
making, you’re worshipping at
complication’s altar.

So what’s a dev to do?
ultimately, a programmer’s job
is less to actually write code, and
more to manage complexity. obvi-
ously you need to build features
and meet deadlines, but the code
itself is incidental. Hypothetically,
if you could build features without
writing code — such as by making
a configuration change — then you
should. When you do have to write
code, though, it’s your job to write
the simplest possible code as much
as it is to build the feature at hand.

So, since a programmer’s real job
to manage complexity, there’s only
one thing a developer can do in the
face of complication — simplify,
simplify, simplify.

A good developer has a natu-
ral, almost visceral aversion to
complexity. A good developer
smells complexity a mile away,
and constantly shifts the code to
keep his eyes to the front and his
back upwind just so complexity
can’t sneak up on him. it’s only by
diligently trying to avoid all com-
plexity that one can in fact avoid
unnecessary complexity.

The best way to manage compli-
cation is to avoid creating it in the
first place. if you find yourself in a
mindless change → pray → run
loop, you don’t understand your
code well enough to be editing it.
Stop what you’re doing, actually
get up and walk away from the
keyboard, think about what you’re
trying to do, and don’t come back
to the keyboard until you under-
stand exactly what you’re doing
and how to do it. obviously there’s
some slack here for debugging, but
it’s not controversial to say that
you shouldn’t change code you
don’t understand, even (especially?)
when it’s your own.

unfortunately, despite our best
efforts, complication always finds
its way in. The best way to deal
with complication that has already
found its way into your codebase
is to attack it whenever you find it.
As you’re sitting down for a coding
session and reading your code to
get it back into your head, if it takes
you longer than about 10 minutes
to really get going, your code’s too
complicated. Take the opportu-
nity to make it simpler. (if you’re
unfamiliar with refactoring, Martin
Fowler’s refactoring: improving
the design of Existing Code is the
bible. read it, live it, love it, thank
me later.) do that every time you sit
down, and before too long your code
will be less complicated, and you’ll
hate yourself just a little less. n

Andy Boothe has been a developer for
more than 10 years, during which time
he’s written code for everything from cal-
culators to enterprise application servers.
He spends his time now as an analyst and
data scientist specializing in social media
analysis for the Fortune 500. You can find
Andy on his website, sigpwned.com, or on
Twitter as @sigpwned

Reprinted with permission of the original author. First appeared in hn.my/complicate (sigpwned.com)

http://sigpwned.com
http://twitter.com/sigpwned
http://hn.my/complicate

38 PROGRAMMING

Have you ever needed to parse a urL using
regular expressions? it’s not easy to write
regular expressions (for a lot of people,

including myself), and it’s even tougher to test if that
regular expression is reliable across every situation. you
could, of course, just copy and paste a regular expres-
sion (or function or library) that someone else devel-
oped and use that, but i propose that there is a simpler
and more concise way of parsing urLs that doesn’t
require any regular expressions.

This method — originally posted on Github by John
Long [gist.github.com/2428561], though probably
not originally discovered by him — uses native parsing
abilities built into the doM to give you simple access
to the parts of a urL simply by querying properties of
an anchor element. Check it out:

var parser = document.createElement('a');
parser.href = "http://example.com:3000/
pathname/?search=test#hash";

parser.protocol; // => "http:"
parser.hostname; // => "example.com"
parser.port; // => "3000"
parser.pathname; // => "/pathname/"
parser.search; // => "?search=test"
parser.hash; // => "#hash"
parser.host; // => "example.com:3000"

This code is pulled directly from the Gist that John
Long posted at the above link. i haven’t seen any state-
ments about which browsers this works with, but i
assume that, at a minimum, it works with all modern
browsers. if you don’t trust it, you can either test it
yourself, or use a library such as uri.js [hn.my/uri.js].

one of the coolest things about this method is that
you can enter a partial/relative urL into the href
property and the browser will make it a full urL, just
like it translates partial urLs on real HTML links into

full urLs. For example, try this using your browser’s
console on this page:

var parser = document.createElement('a');
parser.href = "/";

parser.href; // => "http://www.joezimjs.com/"

you could also just use an empty string for the href
and it would give you your current urL (not including
the hash, though), but this is a waste because window.
location has the exact same properties, so you don’t
even need to create an anchor element for that.

in all of these examples, you still need to parse the
query string, but at least you’ve got it pulled out of the
urL.

This does not work in iE6 because the href prop-
erty isn’t parsed into a full urL unless it is parsed by
the HTML parser. There is a simple workaround that
forces the HTML parser to go over it though:

function canonicalize(url) {
 var div = document.createElement('div');
 div.innerHTML = "<a>";
 div.firstChild.href = url;
 // Ensures that the href is properly escaped
 div.innerHTML = div.innerHTML;
 // Run the current innerHTML back through the
 // parser
 return div.firstChild.href;
} n

Joe Zim has been doing web development for 12 years, which
may make him sound old, but since he started in middle school,
he’s still pretty young. HTML and CSS were the coolest inventions
ever. In college, Joe was introduced to real JavaScript, starting
his full addiction. Now his addiction pushes him to continuously
learn more and spread the knowledge to the internet.

By JoE ZiM

The Lazy Man’s URL Parsing
in JavaScript

Reprinted with permission of the original author. First appeared in hn.my/lazy (joezimjs.com)

Accept payments online.

http://gist.github.com/2428561
http://hn.my/URI.js
http://hn.my/lazy
http://stripe.com

Accept payments online.

http://stripe.com

http://memset.com

	Contents
	FEATURES
	The Slow Web
	The Cab Ride I'll Never Forget

	STARTUPS
	A Profitable, Growing, Useful, Legal, Well-Loved...Failure
	How To Scale a Development Team
	The Recruiter Honeypot

	SPECIAL
	My Prime Factorization Sweater
	Hacking the iPod
	The Rules of Story Telling

	PROGRAMMING
	20 Lines of Code That Will Beat A/B Testing Every Time
	Evolution of a Python Programmer.py
	Complication is What Happens When You Try to Solve a Problem You Don't Understand
	The Lazy Man’s URL Parsing
in JavaScript

