
Issue 29  October 2012

http://careers.addepar.com

http://mandrill.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Rob Flickenger
Peter Seibel
Vsevolod Dyomkin
Daniel Tenner
Dan Shipper
Tal Raviv
Jeff Preshing
Alex Young
Rob Pike
Mark Shroyer
David Woods

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo: Rob Flickenger

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-29

STARTUPS

14  How to Hack the Beliefs That Are Holding
You Back
By Daniel Tenner

17  B2B Is Unsexy, and I Know It
By Dan Shipper

18  Being a Developer Makes You Valuable.
Learning How to Market Makes You Dangerous
By Tal Raviv

PROGRAMMING

20  An Introduction to Lock-Free Programming
By Jeff Preshing

25  Backbone.js: Hacker’s Guide
By Alex Young

28  Less is Exponentially More
By Rob Pike

32  Both true and false: a Zen moment with C
By Mark Shroyer

SPECIAL

36  I Am A Statistician And I Buy Lottery Tickets
By David Woods

Contents
FEATURES

06  The Tesla Gun
By Rob Flickenger

10  Lisp Hackers: Peter Seibel
By Vsevolod Dyomkin

Photo by: Lily Huang

Photo by: Rob Flickenger

Peter Seibel

http://hackermonthly.com/issue-29

6  FEATURES

By Rob Flickenger

FEATURES

The year was 1889. The War of the
Currents was well underway. At
stake: the future of electrical power

distribution on planet Earth. With the finan-
cial backing of George Westinghouse, Tesla’s
AC polyphase system competed for market
dominance with Edison’s established (but less
efficient) DC system, in one of the ugliest
and most epic tales of technological competi-
tion of the modern age.

More than a hundred years after the dust
settled, Matt Fraction and Steven Sanders
published The Five Fists of Science: a rollick-
ing graphical retelling of what really hap-
pened at the turn of the last century. (Get
yourself a copy [hn.my/ffos] and read it
immediately, unless you’re allergic to AWE-
SOME.) On the right is the cover of this
fantastic tale of electrical fury.

The Tesla Gun

http://hn.my/ffos

  7

See that dapper fellow in front?
That’s a young Mr. Tesla. See what
he’s packin’?

Yep. Tesla Guns. Akimbo.
As I read this fantastic story,

gentle reader, certain irrevocable
processes were set in motion. The
result is my answer to The Problem
of Increasing Human Energy: The
Tesla Gun. For reals.

The Tesla Gun is a hand-held,
battery powered lightning machine.
It is a spark gap Tesla coil powered
by an 18V drill battery. You pull
the trigger, and lightning comes out
the front.

 It is functionally inferior to that
of Tesla’s design in the Five Fists in
a few important respects. Notably,
it is a bit longer and heavier than
Tesla’s own. It also cannot (yet)
create an ion wind strong enough
to cushion the user when leaping
from a four story building.

On the other hand, my design is
an improvement in two important
respects: 1) It is battery powered,
and 2) It actually exists.

 I’ve given a few talks about how
this project came to be, and it’s a
bit of a long story. I could not pos-
sibly have built it without the help
and expertise of Seattle’s many
hackerspaces. Take a look at the
basic components, and you’ll see
what I mean.

The Housing
The housing is made from a nerf
gun cast in aluminum. I had never
made a metal casting before, so
I went to the expert: Rusty from
Hazard Factory. With his expert
metal working skills and my limited
ability to gather scrap aluminum,
follow directions, and stay the hell
out of the way, we had a pretty
good aluminum housing in a couple
of evenings.

Sand casts inevitably have a few
rough edges. Since I needed both
halves of the housing to fit together
perfectly, the next stop was Hack-
erbot Labs to put in some time on
the Fadal 3-axis mill.

 The milling process took a
couple of days, but in the end I was
able to remove a lot of the bulk of
the interior aluminum, and the two
halves lined up perfectly. With the
housing finished, I set off on the
next engineering challenge.

Save your soda cans.

Hot hot hot!

8  FEATURES

The HV Switch
The heart of any spark gap Tesla
coil is the high voltage switch.
It needs to be able to withstand
repeated switching events of many
thousands of volts at an instan-
taneous current of a couple of
thousand amperes, generating more
than a little bit of heat along the
way. This meant finding a material
that was a good electrical insulator
that was tough enough to with-
stand high temperatures. With the
help of the fine folks at Metrix
Create:Space, I decided to make my
switch housing out of porcelain.

The first step required the use of
a 3D powder printer. This kind of
printer is perfect for printing molds
for slip casting.

 Once the mold was printed, I
made a couple of castings using
porcelain slip. After air drying for a
couple of days, I fired them in the
kiln at Metrix, let them cool for
another day, and…Ta-da! A custom-
sized HV switch housing, complete
with little lightning bolts.

 Then it was just a matter of
inserting a couple of tungsten weld-
ing electrodes, and I had a fully
functional high power switch. The
shape was chosen to fit inside the
aluminum housing while still pro-
viding room for a cooling turbine
fan: a CPU cooler reclaimed from a
discarded 1U server. This draws hot
ions out of the switch, making for
bigger and more rapid lightning.

The Power Supply
Power is provided by an 18V lith-
ium ion drill battery. That powers
a ZVS driver circuit which drives
a flyback transformer, stepping up
that 18V to around 20,000V. This
stage is affectionately known as the
HOCKEY PUCK OF DOOM.

The circuit is small enough
that it fits neatly in a 2.5" PVC
plumbing end cap. It is potted
with household-grade silicone (yes,
Home Depot was an important
supplier for this component). The
output goes to a center tapped coil
wrapped around the ferrite core of
a flyback transformer salvaged from
a TV.

 That leads us to…

Little transformer. Big spark.Looks harmless enough, right?

Radio Shack does not carry this switch.Switch mold fresh off the printer.

  9

The Capacitor Bank
No, I didn’t roll my own capacitors
for this project. But I did make a
nifty laser cut housing for them.
Also, bleeder resistors are impor-
tant for preventing unexpected
surprises. Like waking up dead after
touching this crazy toy.

 The caps are 942C20P15K-F by
Cornell Dubilier (the cap of choice
when your current absolutely,
positively needs to get there ON
TIME). Since the housing is made
of highly conductive aluminum,
electrical connections are made
with 40kV high voltage wire.

The Coils
All of that circuitry strobes the pri-
mary coil, protected by a couple of

chunks of black HDPE (also milled
on the Fadal).

 The HDPE sandwich makes a
great electrical insulator, helping to
prevent arcs between the primary
and secondary coils. The bottom of
the secondary is also wound with
PTFE tape (another great insulator,
commonly found at Home Depot).
The coil form is a piece of 2.5" ABS
pipe wrapped in 30 gauge enameled
wire, then sprayed with polyure-
thane finish (can you tell that the
Home Depot is just a few minutes
drive from my lair?).

 The top load is an aluminum
toroid purchased from Information
Unlimited. Put it all together and
there you have it: instant lightning
at your trigger-happy fingertips.

Of course, the devil is in the
details. How do you tune this beast?
What about eddy currents in the
housing? What do you use for an
earth ground? Why is it so LOUD?
How do you not die while operat-
ing it?

I’m afraid that this article has
already gone on far too long. I’ll
explain a bit about those topics in
future ones. Until then, stay safe
and make AWESOME. n

Rob Flickenger is a life-long hacker, tech
writer, and aspiring mad scientist. His other
inventions include a 15kJ coin shrinker and
a camera array for capturing 3D photos of
Tesla coil sparks.

Really, officer, it’s just a movie prop! It
couldn’t possibly be as dangerous as it looks.HV wire. Red means DANGER.

Stand well clear. ~1100 turns of #30.

Reprinted with permission of the original author.
First appeared in hn.my/tesla (hackerfriendly.com)

http://hn.my/tesla

10  FEATURES

With his Practical Common
Lisp, Peter Seibel has helped
more people (including me)

discover and become users of Lisp as prob-
ably no one else has in the last decade. Dan
Weinreb, one of the founders of Symbolics
and later Chief Architect at ITA Software,
a successful Lisp startup sold to Google for
around $1B in 2011, wrote that their method
of building a Lisp team was by hiring good
developers and giving them PCL for two
weeks, after which they could successfully
integrate under the mentorship or their
senior Lisp people.

A few years after PCL Peter went on to
write another fantastic programming book
Coders at Work.

Aside from being a writer, he was and
remains a polyglot programmer, interested
in various aspects of our trade, about which
he blogs occasionally. His code, presented in
PCL, laid the foundation for a wide-spread
CL-FAD library, which deals with filenames
and directories (as the name implies). More
recently he created a Lisp documentation
browser, Manifest. Before Lisp, Peter had
worked a lot on Weblogic Java application
server.

Lisp Hackers:
Peter Seibel
Interviewed by Vsevolod Dyomkin

  11

Tell us something interesting about
yourself.
I’m a second generation Lisp pro-
grammer. My dad discovered Lisp
when he was working at Merck
in the 80s and ended up doing a
big project to simulate a chemical
plant in Lisp, taking over from some
folks who had already been trying
for quite a while using Fortran, and
saving the day. Later he went to
Bolt Beranek and Newman where
he did more Lisp. So I grew up
hearing about how great Lisp was
and even getting to play around
with some graphics programs on a
Symbolics Lisp Machine.

I was also a childhood share-
holder in Symbolics. I had a little
money from some savings account
that we had to close when we
moved, so my parents decided I
should try investing. I bought Sym-
bolics because my parents just had.
Never saw that money again. As a
result, for most of my life I thought
my parents were these naive, clue-
less investors. Later I discovered
that around that time they had also
invested in Microsoft which, need-
less to say, they did okay with.

Oh, and something I learned
recently: not only was Donald
Knuth one of the subjects in my
book Coders at Work, but he has
read the whole thing himself and
liked it. That makes me happy.

What’s your job? Tell us about your
organization.
A few months ago I started work-
ing part-time at Etsy. Etsy is a giant
online marketplace for people
selling handmade and vintage items
and also craft supplies. I’m in the
data group where we try to find
clever ways to use data to improve
the website and the rest of the
business.

Do you use Lisp at work? If yes, how
you’ve made it happen? If not, why?
I always have a SLIME session going
in Emacs for quick computations,
and sometimes I prototype things
in Lisp or write code to experiment
with different ideas. However, these
days I’m as likely to do those things
in Python, because I can show my
co-workers a sketch written in
Python and expect them to under-
stand it. I’m not sure I could do
that with Lisp. But it makes me sad
how slow CPython is compared to
a native-compiling CL like SBCL.
Usually that doesn’t matter but
it is annoying sometimes, mostly
because Python has no real excuse.
The rest of my work is in some
unholy mishmash of Scala, Ruby,
Javascript, and PHP.

What brought you to Lisp? What
holds you?
As I mentioned, I grew up hearing
from my dad about this great lan-
guage. I actually spent a lot of my
early career trying to understand
why Lisp wasn’t used more and
exploring other languages pretty
deeply to see how they were like
and unlike Lisp. I played around
with Lisp off and on until finally in
2003 I quit the startup I had been
at for three years (which wasn’t
going anywhere) with a plan to take
a year off and really learn Common
Lisp. Instead I ended up taking
two years off and writing Practical
Common Lisp.

At this point I use it for things
when it makes sense to do so,
because I know it pretty well and
most of my other language chops
are kind of rusty. Though I’m sure
my CL chops are rusty, too, com-
pared to when I had just finished
PCL.

Did you ever develop a theory why
Lisp isn’t used more?
Not one that is useful in the sense
of helping it to be used more
today. Mostly it seems to me to
be the result of a series of histori-
cal accidents. You could argue that
Lisp was too powerful too early and
then got disrupted, in the Innova-
tor’s Dilemma sense, by various
Worse is Better languages, running
on systems that eventually became
dominant for perhaps unrelated
reasons.

Every Lisper should read The
UNIX-HATERS Handbook to
better understand the relation
between the Lisp and Unix cul-
tures. Lisp is the older culture, and
back when the UNIX-HATERS
Handbook was written, Unix
machines were flaky and under-
powered. They were held in the
same contempt by Lisp geeks as
Windows NT machines would be
held by Unix geeks a few decades
later. But for a variety of reasons
people kept working on Unix and it
got better.

And then it was in a better
position than the Lisp culture to
influence the way personal comput-
ing developed once micro comput-
ers arrived. While it would be a
while before PCs were powerful
enough to run a Unix-like OS, early
on C was around to be adopted
by PC programmers (including at
Microsoft) once micros got power-
ful enough to not have to program
everything in assembly. And from
there, making things more Unix-like
seemed like a good goal. Of course
it would have been entirely possible
to write a Lisp for even the earli-
est PCs that probably would have
been as performant as the earliest
Lisps running on IBM 704s and
PDP-1s. My dad, back from his Lisp

12  FEATURES

course at Symbolics, wrote a Lisp
in BASIC on our original IBM PC.
But by that point Lispers’ idea of
Lisp was what ran on powerful Lisp
machines, not something that could
have run on a PDP-1.

The AI boom and bust played its
role as well. After the bust, Lisp’s
reputation was so tainted by its fail-
ure to deliver on the over-promises
of the Lisp/AI companies that even
many AI researchers disassociated
themselves from it. And throughout
the ‘90s various languages adopted
some of Lisp’s dynamic features, so
folks who gravitated to that style of
programming had somewhere else
to go. Then when the web sprang
into prominence, those languages
were well positioned to become the
glue of the Internet.

That all said, I’m heartened that
Lisp continues to not only be used
but to attract new programmers.
I don’t know if there will ever be
a big Lisp revival that brings Lisp
back into the mainstream. But even
if there were, I’m pretty sure that
there would be plenty of old-school
Lispers who’d still be dissatisfied
with how the revival turned out.

What’s the most exciting use of Lisp
you had?
I’m pretty proud of the tool chain
I’ve built over the years while
writing my two books and editing
the magazine I tried to start, Code
Quarterly. When I first started
working on Practical Common Lisp
I had some Perl scripts that I used
to convert an ad-hoc light-weight
text markup language into HTML.
But after a little while of that I
realized both that Jamie Zawinski
was right about regexps and that
of course I should be using Lisp if I
was writing a book called Practical
Common Lisp.

So I implemented a proper parser
for a mostly-plain-text language
that I uncreatively call Markup
and backends that could generate
HTML and PDF using cl-type-
setting. When I was done writing
and Apress wanted me to turn in
Word files, I wrote an RTF backend
so I could generate RTF files with
all the Apress styles applied cor-
rectly. An Apress project manager
later exclaimed over how “clean”
the Word files I had turned had
been. For editing Code Quarterly I
continued to use Markup and wrote
a prose diff tool that is pretty smart
about when chunks of text get
moved and edited a little bit.

What you dislike the most about
Lisp?
I don’t know if “dislike” is the right
term because the alternative has its
own drawbacks. But I do sometimes
miss the security of refactoring with
more static checks. For instance,
when I programmed in Java, there
was nothing better than the feeling
of knowing a method was private
and, therefore, I didn’t have to look
anywhere but in the one file where
the method lived to see everywhere
it could possibly be used. And in
Common Lisp the possibilities for
action at a distance are even worse
than in some other dynamic lan-
guages because of the loose relation
between symbols and the things
they name. In practice that’s not
actually a huge problem and some
implementations provide package
locks and so on, but it always makes
me feel a bit uneasy to know that if
I :use a package and then DEFUN a
function with the name of an inher-
ited symbol, I’ve changed some
code I really didn’t mean to.

From time to time I imagine
a language that lets you write

constraints on your code in the
language yourself — kind of like
macros but instead of extending the
syntax your compiler understands,
they would allow you to extend the
set of things you could say about
your code that the compiler would
then understand. So you could say
things like, “this function can only
be called from other functions
in this file” but also anything else
about the static structure of your
code. I’m not sure exactly what the
API for saying those things would
look like, but I can imagine it being
pretty useful, especially in larger
projects with lots of programmers.
You could establish certain rules
about the overall structure of the
system and have the compiler
enforce them for you. But then if
you want to do a big refactoring
you could comment out various
rules and move code around just
like in a fully dynamic language.
That’s just a crazy idea; anyone
who’s crazy in the same way should
feel free to take it and run with it
and see if they get anywhere.

Among software projects you’ve par-
ticipated in, what’s your favorite?
Probably my favorite software I
ever wrote was a genetic algorithm
I wrote in the two weeks before I
started at Weblogic in 1998, in order
to build up my Java chops. It played
Go and eventually got to the point
where it could beat a random player
on a 5x5 board pretty much 100%
of the time. One of these days I need
to rewrite that system in Common
Lisp and see if I can work up to a
full-size board and tougher oppo-
nents than random. (During evolu-
tion the critters played against each
other to get a Red Queen effect — I
just played them against a random
player to see how they were doing.)

  13

Describe your workflow, give
some productivity tips to fellow
programmers.
I’m not sure I’m so productive
I should be giving anybody tips.
When I’m writing new code I tend
to work bottom up, building little
bits that I can be confident in and
then combining. This is obviously
easy to do in a pretty informal
way in Common Lisp. In other
languages unit tests can be useful
if you’re writing a bigger system,
though I’m often working on things
for myself that are small enough
I can get away with testing less
formally. (I’m hopeful that some-
thing like Light Table will allow the
ease of informal testing with the
assurances of stricter testing — I’d
love to have a development envi-
ronment that keeps track of what
tests go with what production code,
shows them together, and runs the
appropriate tests automatically
when I change the code.)

When I’m trying to understand
someone else’s code I tend to find
the best way is to refactor or even
rewrite it. I start by just formatting
it to be the way I like. Then I start
changing names that seem unclear
or poorly chosen. And then I start
mucking with the structure. There’s
nothing I like better than discover-
ing a big chunk of dead code I can
delete and not have to worry about
understanding. Usually when I’m
done with that I not only have a
piece of code that I think is much
better but I also can understand the
original. That actually happened
recently when I took Edi Weitz’s
Hunchentoot web server and
started stripping it down to create
Toot (a basic web server) and Whis-
tle (a more user friendly server built
on top of Toot). In that case I also
discarded the need for backward

compatibility which allowed me to
throw out lots of code. In that case
I wasn’t going for a “better” piece of
code so much as one that met my
specific needs better.

If you had all the time in the world
for a Lisp project, what would it be?
I should really get back to hack-
ing on Toot and Whistle. I tried
to structure things so that all the
Hunchentoot functionality could
be put back in a layer built on top
of Toot — perhaps I should do that
just to test whether my theory was
right. On the other hand, I went
down this path because the whole
Hunchentoot API was too hard
for me to understand. So maybe I
should be getting Toot and Whistle
stable and well-documented
enough that someone else can
take on the task of providing a
Hunchentoot compatibility layer.

I’d also like to play around with
my Go playing critters, reimple-
menting them in Lisp where I
could take advantage of having a
to-machine-code compiler available
at run time.

PCL was the book that opened the
world of Lisp to me. I’ve also greatly
enjoyed Coders at Work. So I’m look-
ing forward for the next book you’d
like to write. What would it be?
My current theory is that I’m going
to write a book about statistics for
programmers. Whenever I’ve tried
to learn about statistics (which I’ve
had to do, in earnest, for my new
job), I find an impedance mismatch
between the way I think and the
way statisticians like to explain
stuff. But I think if I was writing for
programmers, then there are ways I
could explain statistics that would
be very clear to them at least. And I
think there are lots of programmers
who’d like to understand statistics
better and may have had difficulties
similar to mine. n

Peter Seibel is a programmer and author of
Practical Common Lisp and Coders At Work.

Vsevolod Dyomkin is a Lisp programmer
from Kyiv, Ukraine. He works on Gram-
marly's core grammatical engine and over-
all architecture. He also teaches Operating
Systems in Kyiv Politechnic.

Reprinted with permission of the original author.
First appeared in hn.my/seibel (lisp-univ-etc.blogspot.com.au)

Photo by: Lily Huang

http://hn.my/seibel

14  STARTUPS

STARTUPS

We all have beliefs
that are holding us
back. Sometimes

we’re aware of them, sometimes
not.

One entrepreneur I know, who
shall remain nameless, admitted
(after quite a lot of wine) that he
has a block around sending invoices.
He was perhaps exaggerating when
he said that before he could send an
invoice he had to down a bottle of
wine and get drunk so he could hit
the send button, but even so, it was
clear that he had a serious block
around asking people to pay him.

As an entrepreneur, that’s obvi-
ously a deadly flaw. In terms of
“holding you back,” struggling to
ask people for money for work that
you’ve done is like wearing blocks
of cement as boots. It won’t just
slow you down; it will probably
stop you dead in your tracks.

I have — or used to have —
similar blocks. Generally, many
geeks early in their entrepreneurial
career tend to have a general dis-
like of things like marketing and
sales. These are things that, in my

opinion, often are rooted not only
in fear of an unknown activity, but
also in beliefs about money. For
example, I used to believe (sub-
consciously) that money was bad.
I would spend money as quickly as
(or more quickly than) I earned it.
If your first thought when you’re
given £10,000 is how to spend it
(rather than how it adds to your
wealth), you probably have a simi-
lar belief that money is something
to be gotten rid of, to push away.
That’s not a belief that’s conducive
to making money and becoming
comfortably well off because you
have to have a saving, wealth-build-
ing mindset for that.

Another would-be entrepreneur
I spoke to recently was afraid to
quit his job. He hated the work
passionately. His wife supported his
decision to quit, and he was fairly
confident that he’d find something
else (he had previously been a
successful freelance developer).
Yet, he couldn’t bring himself to
actually quit because he couldn’t
quite make the leap to believe in
himself, even though he knew he

should. Despite the evidence and
arguments being stacked in favor of
quitting, he felt he couldn’t.

Now, perhaps the beliefs holding
you back are of a different nature,
but even if the “money thing” or
the “quitting thing” doesn’t apply
to you, don’t disregard this article.
Chances are there are other beliefs
rooted deep inside you that are
holding you back, even if they have
nothing to do with money.

So, if you’re aware of such a
belief and want to “fix” it, what can
you do to hack your brain?

Having gone through the process,
I am sharing a handful of tech-
niques I’ve found that really help in
a tangible way.

➊ Self-affirmations
This feels really cheesy and

weird when you start doing it, but
it’s probably the most effective on
the list. Many of the beliefs that we
might want to get rid of manifest
themselves as "internal monologue.”
They’re things that your subcon-
scious is telling your conscious
throughout the day.

By Daniel Tenner

How to Hack the Beliefs
That Are Holding You Back

  15

For example, some people have
an internal monologue that con-
stantly repeats “you’re a failure” to
them. By repeating it over and over
again, the message becomes true.
Some people precondition them-
selves to fail. They draw the failure
to them by accepting this message
over and over during the day.

Self-affirmations hack around this
by overriding the negative message
with a positive one. The way that
it’s worked for me is:

1.	Craft a brief, positive message
(phrase it in positive terms)
that overrides the internal mes-
sage that’s bothering you. For
example, if “you’re a failure” is
the message that’s bothering you,
a positive override might be “I
will succeed in many things that
make a difference.” It doesn’t
need to be exactly true, but it
needs to be something you can
stand by and believe in, however
briefly.

2.	Write this message on a post-it
note or a piece of cardboard, and
stick it on your mirror — the one

that you dress yourself in front of
every morning.

3.	Every morning (and as many
times during the day as you can),
stand in front of your mirror
and, looking yourself straight in
the eyes, repeat, loudly, with all
the confidence you can muster
in your voice, “I will succeed in
many things that make a differ-
ence” (or whatever the affir-
mation is). Repeat it 10 times.
Repeat it 50 times. However
many times you can.

Three things will happen from
this. First, you will feel very silly.
That’s ok, don’t worry about it. It
won’t pass (you’ll still feel silly the
20th time you do this), but it really
doesn’t matter. Secondly, you’ll feel
a good buzz. I haven’t quite figured
out why that happens. I guess it’s a
sense that you’re taking things into
your own hands, taking action. That
feels good.

Most importantly, over time
(surprisingly quickly), the internal
message in your head will change.
As it changes, you will feel the need

for the affirmations lessen. Obvi-
ously, if the message you’re over-
riding is deeply ingrained, it will
take longer, but for me, typically, I
haven’t needed to do this for more
than a few weeks before the new
message had sunk in.

This is an extremely effective
method. You can also do variants
of this, like recording a video or
audio for yourself, or writing it
out by hand fifty times, but in my
experience, speaking to yourself
while looking into your own eyes is
brutally effective.

➋ Brainwashing yourself
When you read stuff and

you don’t take notes, you’re effec-
tively just brainwashing yourself.
Most people read whatever comes
their way or whatever they feel like
without really considering selec-
tion, but you can choose what you
brainwash yourself with.

If you know that you have, for
example, a problem with pushing
away money, then there are books
that repeat the opposite message
over and over again. If you spend a

“The main thing holding you back from
achieving what you want is often yourself.
These tools give you a means to fix that.”

16  STARTUPS

few weeks reading a bunch of those
books, chances are you’ll come
out the other end with an altered
outlook. In my experience, it doesn’t
stick as much as self-affirmation, so
if you do this you’ll probably want
to find a steady source of relevant
books so you can keep re-brain-
washing yourself until it really sticks.

You don’t have to stick to books.
Videos, podcasts, blogs, or even
meetups can achieve the same
thing. The key is to keep exposing
yourself to information that contra-
dicts the belief you’re trying to get
rid of.

Of course, you can use this in
conjunction with self-affirmation to
enhance the effect.

➌ Who you hang out with
Another strong influence on

your internal message is, sadly, who
you hang out with. People have
certain expectations and percep-
tions of you, and it’s very hard to
shake them off if they are one of
the sources of the negative mes-
sages you’re struggling with.

Obviously, if your parents or your
friends constantly tell you you’re a
failure, that’s going to work just as
well as positive self-affirmations in
convincing you that you are indeed
a failure. If they expect you to fail,
and you spend a lot of time with
them, you will probably fail.

This is a tricky one, since these
sources of negative influence are
often not deliberate. Your parents
or friends probably don’t want you
to fail, and if confronted, they’ll
almost certainly agree to change
their ways — but they won’t.
Changing habits is very, very hard,
and if people have got into the
habit of perceiving you in a certain
way, the change of perception has
to come from you.

Sadly, I think the only thing that
can be done in this case is to spend
less time with people who project
their negative perceptions on you,
at least until you’ve properly dealt
with the negative message so that
it’s no longer holding you back. But
even then, be aware that exposing
yourself to that external, repeated
message again could bring it back.

➍ Digging to the root
Finally, one last technique

which also helps, especially when
combined with all the others, is
to truly examine your beliefs, and
figure out where they come from,
how they grew in you over time,
what role they’ve played in your
life, etc.

Now, I’m fully aware that our
memory of these sorts of things is
often very hazy, and most likely
the “explanation” or “history” that
you come up with will be, in many
ways, a fabrication. But despite that,
this somehow still works.

For example, through this type
of introspection, I realized that
my lack of interest in accumulat-
ing money was something that had
been with me since childhood.
It was something that had been
encouraged by my parents, and
that was one of the components of
why I’m generally a “happy person.”
Through this insight, I also realized
that one of the reasons why I found
it hard to bring myself to care about
money was that I associated caring
about money, and accumulating it,
with unhappiness. The belief there
was not so much that “money is
bad,” but that "people who care
about making money are unhappy,
sharks, obsessive people who live
empty lives.”

Once I discovered this reasoning
in my subconscious, I was able to
target it directly with self-affirma-
tions like “I want to make more
money so that I can do more good,”
which replace the link between
money and unhappiness with one
between money and the capacity to
do good.

Disclaimer
These techniques may not work at
all for you, or you may think that
they’re hocus pocus. However, they
worked for me and have helped me.
I’ve discussed them with enough
people to come to the conclusion
that many people don’t know or
haven’t thought about these types
of tools, and most people are not
using them. Some of these tech-
niques (e.g. self-affirmations) are
standard tools that therapists use to
help people, so there’s some valida-
tion for these things working in a
wide range of cases.

The main thing holding you back
from achieving what you want is
often yourself. These tools give you
a means to fix that. If they don’t
work for you, you won’t have lost
anything, except perhaps for the
terrible experience of feeling mildly
silly while talking to yourself in
front of a mirror.

If they do work, then you can
gain a lot. Specifically, you can give
yourself the ability to achieve what
you want in life. That’s pretty valu-
able, I reckon.

Good luck with it all! n

Daniel Tenner is the founder of Woobius
and GrantTree. Known as “swombat” on
Hacker News and Twitter, he is now pro-
ducing swombat.com, a daily updated
resource for people who like to read
startup articles.

Reprinted with permission of the original author.
First appeared in hn.my/belief (swombat.com)

http://swombat.com
http://hn.my/belief

  17

When I tell people I
do B2B software I
get some very inter-

esting reactions.
“Why do B2B? It’s so unsexy.”
And that’s true. B2B is unsexy

in that I don’t build things that my
college friends want to use. But that
doesn’t mean it’s unsatisfying or
somehow inherently less valuable
than a social/consumer product. In
fact, I’d argue that the opposite is
true. Spending every day making
someone’s life easier is awesome,
especially when that someone actu-
ally wants to pay you for it.

So here are a few reasons why I
do B2B:

Nobody ever went out of busi-
ness making a profit
If you truly solve a business’s prob-
lems they’ll want to pay you for
it. If you solve a consumer’s prob-
lems, in many cases, they need to
be dragged kicking and screaming
to open their wallets. Writing B2B
software makes it easier to make
money from day one. That means
that it’s much more likely to gener-
ate a sustainable revenue stream
than a social product that requires
massive scale.

You don’t need to win the lot-
tery to succeed
The kind of scale required to
generate a real return from a social
product is pretty staggering. And
certainly skill, experience and an

understanding of social dynamics
plays a large part in a company’s
ability to reach scale with a social
product. But as far as I can tell, luck
also plays a large part in creating
something viral and sticky enough
to succeed.

When we built WhereMyFriends.
Be we had some idea that it would
be a cool product, but the real
reason it blew up probably had
little to do with our incredible
entrepreneurial foresight. We got
lucky enough to hit on a small
product that resonated with people,
and a Mashable writer happened to
like the sound of it.

We’ve had about 50,000 signups
so far, but other than that we have
very little to show for it except a
sizeable hosting bill.

B2B requires no voodoo or mid-
night incantations
Chris Dixon and others have com-
mented that B2B entrepreneurs
seem to be much more likely to
string together successful compa-
nies than other types of founders.
I think that’s because there’s a lot
less voodoo involved in creating a
successful B2B software business
than a social one.

Like everything else, it’s hard as
hell. But it’s a problem that you
can get your arms around and pin
down. If you only need 10, 100 or
1000 customers to generate a small
profit, it makes things a lot easier
than needing 1 million.

“Are you making something that
solves a problem for a business?”

“How do you sell it to them in a
scalable way?”

“Who’s making the buying deci-
sion on this problem within the
organizations we’re trying to target?
Is it the same person who’s experi-
encing pain?”

“How long does the sales process
take?”

Those are some questions you get
to ask yourself when you’re build-
ing software for businesses. When
you’re building a social product, it’s
a little less clear how to proceed.
Most people I know end up build-
ing their product and hoping to get
covered in Techcrunch or Mashable
so they can go viral.

As my dad would say: hope is not
a plan.

The biggest opportunities prob-
ably aren’t in social anymore
There are only so many different
types of location-based, photo-shar-
ing apps that can be built. Certainly,
the unprecedented amount of data
being generated by social products
brings with it huge opportuni-
ties for future businesses, but the
vanilla “share more easily with your
friends” social model seems to be
rather played out.

None of this is to say that build-
ing social products is inherently
a bad idea or that social products
aren’t valuable. It’s just a small
explanation for why, as a college-
age entrepreneur, I’ve chosen to go
down a different route. n

Dan Shipper is a student, blogger and
entrepreneur. Dan has been programming
for 10 years, and he’s currently working on
Firefly and Airtime for Email.

By Dan Shipper

B2B Is Unsexy, and I Know It

Reprinted with permission of the original author.
First appeared in hn.my/b2b (danshipper.com)

http://hn.my/b2b

18  STARTUPS

By Tal Raviv

I love engineering, and not just
because I’m a nerd.

The best part of engineering
isn’t the technical details or the par-
ticular science behind it, rather, it’s
the opportunity to solve an unfairly
hard problem in a way no one has
before. The harder the problem the
more exciting it is. As a chemical-
turned-software engineer, I can say
the thrill is the same.

In business and marketing there’s
a word for that kind of person:
“hustler” — or, in the software
startup space, “growth hacker.”

As much as engineers like to joke
about our counterparts in sales
and marketing, the most successful
salespeople and marketers think
like engineers. They do enormous
amounts of research, are systematic
and methodical, apply known facts
and patterns, and make approxima-
tions when necessary. They measure
results objectively, and they iterate.
(They are admittedly rare, and it’s
those who don’t fit this description
that earn derision.)

I got an email from a student
who reached out via our “breaking
every rule” page. The developer,
Wasswa Samuel, in his final year
of computer science in Uganda,
is clearly very passionate and full
of energy to work on something
awesome.

He described his previous entre-
preneurial experience:

I started a small startup which
unfortunately has refused to take
off. I am guessing the idea wasn’t
all that awesome or it will pick up
after a year, whatever. I have left
the site around but am not actively
working on it.

I checked out Wasswa’s site. The
dude’s got energy, skills, appreci-
ates good UX, and there’s definitely
a business there. Maybe all that’s
missing is some hustling.

I proposed to Wasswa that his
Ugandan deals site could go from
being a technical project, to a
marketing project of his. It could
be a chance to experiment and
learn about all the different kinds
of online and offline marketing and
solve the “taking off” problem.

After exchanging some links for
getting started, Wasswa sent me
this:

Thanks for all this great content.
Am loving it. I never knew there
was all this amazing stuff.

That’s when I realized: it’s not
just that developers don’t see
themselves as potentially amazing
marketers. They might not even
realize how deep and interesting of
a field marketing is.

And developers who can also
hack their way to growth…those
guys are dangerous.

Becoming Dangerous
If you don’t work closely with
amazing marketers, it’s hard to
know where to start or what the
scope of the field is. (Like learning
to code, but backwards.)

The most important thing to
know is: trust me, if you are smart
enough to build stuff, you can crack
this. To paraphrase Paul Graham’s
premise in founding YCombinator,
“It’s easier to teach an engineer
business than it is to teach a busi-
ness person engineering.”

I bet you didn’t learn coding
from reading a curriculum or a list
of links. You found a starting point
and let your curiosity take you from
there. So, here are some starting
places to whet your appetite, start-
ing with two dangerous engineers.

Patrick McKenzie’s systematic,
hard-working approach to letting
Google do your marketing for free:
hn.my/gmark. This is an amazing
interview by Gabriel Weinberg,
probably the case study for this
article himself.

Gabe is working on an incredible
traction book [tractionbook.com]
compiling all of his interviews of
other developers and non-devel-
opers and how they acquired their
first 1k, 10k, 100k users (or dollars).
He asks the questions you’d wish
you could ask his guests.

Being a Developer Makes You Valuable.
Learning How to Market Makes You
Dangerous

http://hn.my/gmark
http://tractionbook.com

  19

By Tal Raviv

Get on the Mixergy list serve
[mixergy.com]. Not only do they
have the best subject lines your
inbox has ever seen, but Andrew
approaches every interview just
like Gabe: he’s not there to do a
talk show interview. He’s there
to extract the specific tactics and
figure out what these hustlers do at
each challenge.

As you go through these
resources, beyond listening to what
they’re saying, observe what they’re
doing; how Neville and Andrew and
Gabe got their audiences (in three
very different ways), how often
do they post, how people seem to
find them, how active they are in
the comments, the calls to action,
tone…an infinite amount of cal-
culated (and uncalculated) actions
that make them good at building
audiences.

Engineers know the importance
of benchmarks and “maximum
theoretical” success. Fortunately,
people like Rob Fitz will even share
their notes [hn.my/fitz] with you
so you can see what goes on behind
the scenes and make concrete

assumptions. Even early startups,
like this one for personal funding
[hn.my/gtstats], are sharing their
metrics like they never have before.

There are stories of non-digital
pure hustle. [hn.my/phustle]

Or pure digital. [hn.my/dhustle]
Both are highly recommended

stories. The second link from Rand
Fishkin’s talk to Hackers and
Founders is a long video. I used to
see these as an hour lost. I now see
them as an hour of free tuition for
a topic that will probably help me
more than any one hour I spent in
college.

Paul, Toan, and I wrote a guide
on how to get to your first 1,000
customers [hn.my/first1000] for
StartupPlays. Unlike the above
resources it costs money but that
was the deal we made in exchange
for distribution. StartupPlays,
however, is an extremely valuable
resource (especially Dan Martell’s
play [hn.my/danplay]) for a com-
paratively tiny price.

Don’t forget Quora. There’s
some great stuff on growth hacking.
[quora.com/growth-hacks]

Like engineering, the key is not to
know everything, but rather to know
where to look when you need to.
Developers are in the best position
to succeed; they have the hard skills
and everything else is learnable. n

Tal is the Co-Founder at Ecquire. He has
constructed mobile hardware at the MIT
Media Lab, designed medical imaging
software for the Penn School of Medi-
cine, developed computer simulations
of biofuel processes, and created mobile
applications for BlackBerry, iPhone, and
Android. Tal holds a Guinness Record for
the World’s Largest Ball of Tape.

Reprinted with permission of the original author.
First appeared in hn.my/danger (talsraviv.com)

“As much as engineers like to joke about
our counterparts in sales and marketing,
the most successful salespeople and
marketers think like engineers. ”

http://mixergy.com
http://hn.my/fitz
http://hn.my/gtstats
http://hn.my/phustle
http://hn.my/dhustle
http://hn.my/first1000
http://hn.my/danplay
http://quora.com/growth-hacks
http://hn.my/danger

20  PROGRAMMING

PROGRAMMING

By Jeff Preshing

Lock-free programming is a
challenge, not just because
of the complexity of the

task itself, but because of how
difficult it can be to penetrate the
subject in the first place.

I was fortunate in that my first
introduction to lock-free (also
known as lockless) programming
was Bruce Dawson’s excellent and
comprehensive white paper, Lock-
less Programming Considerations.
[hn.my/lockless] And like many,
I’ve had the occasion to put Bruce’s
advice into practice while develop-
ing and debugging lock-free code
on platforms such as the Xbox 360.

Since then, a lot of good mate-
rial has been written, ranging from
abstract theory and proofs of cor-
rectness to practical examples and
hardware details. I’ll leave a list
of references in the footnotes. At
times, the information in one source
may appear orthogonal to other
sources. For instance, some material
assumes sequential consistency, and
thus sidesteps the memory ordering
issues that typically plague lock-
free C/C++ code. The new C++11

atomic library standard throws
another wrench into the works,
challenging the way many of us
express lock-free algorithms.

In this article, I’d like to re-intro-
duce lock-free programming, first
by defining it and then by distill-
ing most of the information down
to a few key concepts. I’ll show
how those concepts relate to one
another using flowcharts, and then
we’ll dip our toes into the details
a little bit. At a minimum, any
programmer who dives into lock-
free programming should already
understand how to write correct
multithreaded code using mutexes
and other high-level synchroniza-
tion objects such as semaphores and
events.

What Is It?
People often describe lock-free pro-
gramming as programming without
mutexes, which are also referred to
as locks. That’s true, but it’s only
part of the story. The generally
accepted definition, based on aca-
demic literature, is a bit broader. At
its essence, lock-free is a property
used to describe some code, with-
out saying too much about how
that code was actually written.

Basically, if some part of your
program satisfies the following con-
ditions, then that part can rightfully
be considered lock-free. Conversely,
if a given part of your code doesn’t
satisfy these conditions, then that
part is not lock-free.

 In this sense, the lock in lock-
free does not refer directly to
mutexes, but rather to the pos-
sibility of “locking up” the entire
application in some way, whether
it’s deadlock, livelock, or even due
to hypothetical thread schedul-
ing decisions made by your worst
enemy. That last point sounds
funny, but it’s key. Shared mutexes
are ruled out trivially because as

An Introduction to
Lock-Free Programming

  21

soon as one thread obtains the
mutex, your worst enemy could
simply never schedule that thread
again. Of course, real operating sys-
tems don’t work that way — we’re
merely defining terms.

Here’s a simple example of an
operation that contains no mutexes
but is still not lock-free. Initially, X
= 0. As an exercise for the reader,
consider how two threads could
be scheduled in a way that neither
thread exits the loop.

while (X == 0)
{
 X = 1 - X;
}

Nobody expects a large appli-
cation to be entirely lock-free.
Typically, we identify a specific set
of lock-free operations out of the
whole codebase. For example, in a
lock-free queue, there might be a
handful of lock-free operations such
as push, pop, perhaps isEmpty, and
so on.

Herlihy & Shavit, authors of The
Art of Multiprocessor Programming
[hn.my/multipro], tend to express
such operations as class methods
and offer the following succinct
definition of lock-free: “In an
infinite execution, infinitely often
some method call finishes.” In other
words, as long as the program is
able to keep calling those lock-free
operations, the number of com-
pleted calls keeps increasing, no
matter what. It is algorithmically
impossible for the system to lock
up during those operations.

One important consequence
of lock-free programming is that
if you suspend a single thread, it
will never prevent other threads
from making progress, as a group,
through their own lock-free opera-
tions. This hints at the value of
lock-free programming when writ-
ing interrupt handlers and real-time
systems, where certain tasks must
complete within a certain time
limit, no matter what state the rest
of the program is in.

A final precision: Operations that
are designed to block do not dis-
qualify the algorithm. For example,
a queue’s pop operation may
intentionally block when the queue
is empty. The remaining codepaths
can still be considered lock-free.

Lock-Free Programming
Techniques
It turns out that when you attempt
to satisfy the non-blocking condi-
tion of lock-free programming, a
whole family of techniques falls
out: atomic operations, memory
barriers, and avoiding the ABA
problem, to name a few. This is
where things quickly become
diabolical.

So how do these techniques
relate to one another? To illustrate,
I’ve put together the following
flowchart. I’ll elaborate on each one
next.

http://hn.my/multipro

22  PROGRAMMING

  23

Atomic Read-Modify-Write Operations
Atomic operations manipulate memory in a way
that appears indivisible: No thread can observe the
operation half-complete. On modern processors,
lots of operations are already atomic. For example,
aligned reads and writes of simple types are usually
atomic.

 Read-modify-write (RMW) operations go a step
further, allowing you to perform more complex
transactions atomically. They’re especially useful
when a lock-free algorithm must support multiple
writers because when multiple threads attempt an
RMW on the same address, they’ll effectively line
up in a row and execute those operations one at a
time. I’ve already touched upon RMW operations in
this blog, such as when implementing a lightweight
mutex, a recursive mutex, and a lightweight logging
system.

Examples of RMW operations include
_InterlockedIncrement on Win32, OSAtomicAdd32
on iOS, and std::atomic<int>::fetch_add in
C++11. Be aware that the C++11 atomic standard
does not guarantee that the implementation will be
lock-free on every platform, so it’s best to know the
capabilities of your platform and toolchain. You can
call std::atomic<>::is_lock_free to make sure.

Different CPU families support RMW in differ-
ent ways. Processors such as PowerPC and ARM
expose load-link/store-conditional instructions,
which effectively allow you to implement your own
RMW primitive at a low level, though this is not
often done. The common RMW operations are usu-
ally sufficient.

As illustrated by the flowchart, atomic RMWs
are a necessary part of lock-free programming even
on single-processor systems. Without atomicity, a
thread could be interrupted halfway through the
transaction, possibly leading to an inconsistent state.

Compare-And-Swap Loops
Perhaps the most often-discussed RMW operation
is compare-and-swap (CAS). On Win32, CAS is
provided via a family of intrinsics such as _Inter-
lockedCompareExchange. Often, programmers
perform compare-and-swap in a loop to repeat-
edly attempt a transaction. This pattern typi-
cally involves copying a shared variable to a local
variable, performing some speculative work, and
attempting to publish the changes using CAS:

void LockFreeQueue::push(Node* newHead)
{
 for (;;)
 {
 // Copy a shared variable (m_Head) to a
 // local.
 Node* oldHead = m_Head;

 // Do some speculative work, not yet
 // visible to other threads.
 newHead->next = oldHead;

 // Next, attempt to publish our changes to
 // the shared variable.
 // If the shared variable hasn't changed,
 // the CAS succeeds and we return.
 // Otherwise, repeat.
 if (_InterlockedCompareExchange(&m_Head,
newHead, oldHead) == oldHead)
 return;
 }
}

Such loops still qualify as lock-free because if the test
fails for one thread, it means it must have succeeded for
another. Some architectures, however, offer a weaker
variant of CAS where that’s not necessarily true. When
implementing a CAS loop, special care must be taken to
avoid the ABA problem.

Sequential Consistency
Sequential consistency means that all threads agree on
the order in which memory operations occurred, and that
order is consistent with the order of operations in the
program source code. Under sequential consistency, it’s
impossible to experience memory reordering shenanigans
like the one I demonstrated in a previous post.

A simple (but obviously impractical) way to achieve
sequential consistency is to disable compiler optimizations
and force all your threads to run on a single processor. A
processor never sees its own memory effects out of order,
even when threads are pre-empted and scheduled at
arbitrary times.

Some programming languages offer sequential consis-
tency even for optimized code running in a multiproces-
sor environment. In C++11, you can declare all shared
variables as C++11 atomic types with default memory
ordering constraints. In Java, you can mark all shared vari-
ables as volatile. Here’s the example from my previous
post, rewritten in C++11 style:

24  PROGRAMMING

std::atomic<int> X(0), Y(0);
int r1, r2;

void thread1()
{
 X.store(1);
 r1 = Y.load();
}

void thread2()
{
 Y.store(1);
 r2 = X.load();
}

Because the C++11 atomic types
guarantee sequential consistency,
the outcome r1 = r2 = 0 is impos-
sible. To achieve this, the compiler
outputs additional instructions
behind the scenes — typically
memory fences and/or RMW oper-
ations. Those additional instructions
may make the implementation less
efficient compared to one where
the programmer has dealt with
memory ordering directly.

Memory Ordering
As the flowchart suggests, any time
you do lock-free programming
for multicore (or any symmetric
multiprocessor), and your environ-
ment does not guarantee sequential
consistency, you must consider how
to prevent memory reordering.

On today’s architectures, the
tools to enforce correct memory
ordering generally fall into three
categories, which prevent both
compiler reordering and processor
reordering:

■■ A lightweight sync or fence
instruction, which I’ll talk about
in future posts.

■■ A full memory fence instruc-
tion, which I’ve demonstrated
previously.

■■ Memory operations that provide
acquire or release semantics.

Acquire semantics prevent
memory reordering of operations
which follow it in program order,
and release semantics prevent
memory reordering of operations
preceding it. These semantics
are particularly suitable in cases
when there’s a producer/consumer
relationship, where one thread
publishes some information and the
other reads it.

Different Processors Have Differ-
ent Memory Models
Different CPU families have dif-
ferent habits when it comes to
memory reordering. The rules are
documented by each CPU vendor
and followed strictly by the hard-
ware. For instance, PowerPC and
ARM processors can change the
order of memory stores relative to
the instructions themselves, but
normally, the x86/64 family of pro-
cessors from Intel and AMD do not.
We say the former processors have
a more relaxed memory model.

There’s a temptation to abstract
away such platform-specific details,
especially with C++11 offering us
a standard way to write portable
lock-free code. But currently, I
think most lock-free programmers
have at least some appreciation of
platform differences. If there’s one
key difference to remember, it’s
that at the x86/64 instruction level,
every load from memory comes
with acquire semantics, and every
store to memory provides release
semantics — at least for non-SSE
instructions and non-write-com-
bined memory. As a result, it’s been
common in the past to write lock-
free code which works on x86/64
but fails on other processors.

If you’re interested in the
hardware details of how and why
processors perform memory reor-
dering, I’d recommend Appendix
C of Is Parallel Programming Hard
[hn.my/perf]. In any case, keep in
mind that memory reordering can
also occur due to compiler reorder-
ing of instructions.

In this article, I haven’t said much
about the practical side of lock-free
programming, such as: When do
we do it? How much do we really
need? I also haven’t mentioned the
importance of validating your lock-
free algorithms. Nonetheless, I hope
that for some readers, this introduc-
tion has provided a basic familiarity
of lock-free concepts so you can
proceed into the additional reading
without feeling too bewildered. n

Jeff Preshing is a video game developer
in Montreal, Canada. He thinks lock-free
programming will always play a role in
software development, making it worth
trying to stop messing up. His favorite
muppet is Fozzie.

Reprinted with permission of the original author.
First appeared in hn.my/lockfree (preshing.com)

http://hn.my/perf
http://hn.my/lockfree

25  PROGRAMMING

There’s no denying the popularity and impact
that Backbone.js [backbonejs.org] by Jeremy
Ashkenas and DocumentCloud has made.

Although the documentation and examples are excel-
lent, I thought it would be interesting to review the
code on a more technical level. Hopefully this will give
readers a deeper understanding of Backbone, and as
the MVC series progresses these code reviews should
prove useful in accurately comparing the many com-
peting frameworks.

Follow me on a guided tour through Backbone’s
source to really learn how it works and what it
provides.

Namespace and Conflict Management
Like most client-side projects, Backbone.js wraps every-
thing in an immediately invoked function expression:

(function(){
 // Backbone.js
}).call(this);

Several things happen during this configuration
stage. A Backbone “namespace” is created, and multiple
versions of Backbone on the same page are supported
through the noConflict mode:

var root = this;
var previousBackbone = root.Backbone;

Backbone.noConflict = function() {
 root.Backbone = previousBackbone;
 return this;
};

Multiple versions of Backbone can be used on the
same page by calling noConflict like this:

var Backbone19 = Backbone.noConflict();
// Backbone19 refers to the most recently loaded
// version, and `window.Backbone` will be
// restored to the previously loaded version

This initial configuration code also supports Com-
monJS modules so Backbone can be used in Node
projects:

var Backbone;
if (typeof exports !== 'undefined') {
 Backbone = exports;
} else {
 Backbone = root.Backbone = {};
}

The existence of Underscore.js [underscorejs.org]
(also by DocumentCloud) and a jQuery-like library is
checked as well.

Server Support
During configuration, Backbone sets a variable to
denote if extended HTTP methods are supported by
the server. Another setting controls if the server under-
stands the correct MIME type for JSON:

Backbone.emulateHTTP = false;
Backbone.emulateJSON = false;

The Backbone.sync method that uses these values
is actually an integral part of Backbone.js. A jQuery-
like ajax method is assumed, so HTTP parameters are
organized based on jQuery’s API. Searching through
the code for calls to the sync method shows it’s

By Alex Young

Backbone.js: Hacker’s Guide

http://backbonejs.org
http://underscorejs.org

26  PROGRAMMING

used whenever a model is saved, fetched, or deleted
(destroyed).

What if jQuery’s ajax API isn’t appropriate for
your project? Well, it seems like the sync method is
the right place to override for changing how models
are persisted, and this is confirmed by Backbone’s
documentation:

The sync function may be overriden globally as Back-
bone.sync, or at a finer-grained level, by adding a sync
function to a Backbone collection or to an individual
model.

There’s no fancy plugin API for adding a persistence
layer — simply override Backbone.sync with the same
function signature:

Backbone.sync = function(method, model, options)
{
};

The default methodMap is useful for working out
what the method argument does:

var methodMap = {
 'create': 'POST',
 'update': 'PUT',
 'delete': 'DELETE',
 'read': 'GET'
};

Events
Backbone has a built-in module for handling events. It’s
a simple object with the following methods:

■■ on: function(events, callback, context) ,
aliased to bind

■■ off: function(events, callback, context) {,
aliased to unbind

■■ trigger: function(events) {

Each of these methods returns this, so it’s a chain-
able object. The comments recommend using Under-
score.js to add Backbone.Events to any object:

// var object = {};
// _.extend(object, Backbone.Events);
// object.on('expand', function(){
// alert('expanded'); });
// object.trigger('expand');

This won’t overwrite the existing object; it appends
the methods instead. That means it’s easy to add event
support to other objects in your project.

Model
Backbone.Model is where things start to get serious.
Models use a constructor function that sets up various
internal properties for managing things like attributes
and whether or not the model has been saved yet.
Underscore.js is used to add the methods from Back-
bone.Events, and then the public model API is defined.
This contains most of the frequently used Backbone
methods.

Notice that Backbone.Model is actually quite trans-
parent: there aren’t any private methods defined inside
the constructor.

The set method supports two different signatures,
making it easy to support a single attribute or multiple
attributes:

// Handle both `"key", value` and `{key: value}`
// -style arguments.
if (_.isObject(key) || key == null) {
 attrs = key;
 options = value;
} else {
 attrs = {};
 attrs[key] = value;
}

The save method does something similar. Notice
how the authors ensure an object is always set for
options:

options || (options = {});

In terms of expressing the programmer’s intent, this
seems better than options = options || {}.

The set method triggers validations and prevents the
method from progressing if a validation fails:

if (!this._validate(attrs, options)) return
false;

Next each attribute is iterated over. If the attri-
bute has changed, according to Underscore’s isEqual
method, then the change is recorded. Once the list of
changes has been built, the change method is called.

The change method calls trigger for each change.
This allows for changes to any attribute to be listened on
specifically, allowing the UI to be updated appropriately.
For example, let’s say I had a blogPost model instance:

  27

blogPost.on('change:title', function() {
 // Update the HTML for the page title
});

blogPost.set('title', 'All Work and No Play
Makes Blank a Blank Blank');

Other methods also trigger change events: unset,
clear, and fetch. Since we don’t always care if these
cause a change event, a silent option is supported that
will be passed from these methods to set. It’s actually
quite interesting how each of these methods is imple-
mented by reusing set:

// Clear all attributes on the model, firing
//`"change"` unless you choose to silence it.
clear: function(options) {
 options = _.extend({}, options, {unset:
true});
 return this.set(_.clone(this.attributes),
options);
},

The fetch method will trigger a sync operation that
will retrieve the latest values from the server (or suit-
able persistence layer if it’s been overridden).

The save method ensures only valid attributes and
models are persisted, and calls set if required:

if (options.wait) {
 if (!this._validate(attrs, options)) return
false;
 current = _.clone(this.attributes);
}

// Regular saves `set` attributes before
// persisting to the server.
var silentOptions = _.extend({}, options,
{silent: true});
if (attrs && !this.set(attrs, options.wait ?
silentOptions : options)) {
 return false;
}

// Do not persist invalid models.
if (!attrs && !this.isValid()) return false;

The sync method is called to persist the changes
to the server. isNew is used to determine if the model
should be created or updated. The isNew state is deter-
mined by whether an id attribute exists or not. This
could be easily overridden if a given persistence layer
works a different way. Notice that Backbone internally
references this attribute as this.id and doesn’t map it
to the value set with idAttribute in isNew.

A parse placeholder method is called whenever
models are fetched, or saved. There are examples of
people using this to parse other data formats like XML.

Conclusion
After looking at the Backbone.js setup and model code,
we’ve already learned quite a lot:

■■ Any persistence scheme can be supported by over-
riding the sync method.

■■ Models are event-based.

■■ change events can drive the UI whenever models
change.

■■ Models know when to create or update objects.

■■ Reusing Backbone’s models, events, and Underscore
methods is useful for organizing project architecture.

Although the Backbone models don’t have a
plugin layer, the authors have kept the design open
and allowed for just the right hooks to support lots
of HTTP services and data types outside the built-in
RESTful JSON-oriented design.

Backbone relies heavily on Underscore.js, which
means applications built with it can build on both of
these libraries to create (potentially) well-designed and
reusable code. n

Alex Young is a software engineer based in London, England. He
founded Helicoid as a limited company in 2006. Alex has built
5 commercial Ruby on Rails web applications for Helicoid. Each
web app he build has a mobile interface, API, and some even
have iPhone and Mac clients.

Reprinted with permission of the original author.
First appeared in hn.my/bbone (dailyjs.com)

http://hn.my/bbone

28  PROGRAMMING

By Rob Pike

Here is the text of the
talk I gave at the Go SF
meeting in June, 2012.

This is a personal talk. I do not
speak for anyone else on the Go
team here, although I want to
acknowledge right up front that the
team is what made and continues
to make Go happen. I’d also like
to thank the Go SF organizers for
giving me the opportunity to talk
to you.

I was asked a few weeks ago,
“What was the biggest surprise
you encountered rolling out Go?”
I knew the answer instantly:
Although we expected C++ pro-
grammers to see Go as an alterna-
tive, instead most Go programmers
come from languages like Python
and Ruby. Very few come from
C++.

We — Ken, Robert, and myself
— were C++ programmers when
we designed a new language to
solve the problems that we thought
needed to be solved for the kind of
software we wrote. It seems almost
paradoxical that other C++ pro-
grammers don’t seem to care.

I’d like to talk today about what
prompted us to create Go, and why
the result should not have surprised
us like this. I promise this will be

more about Go than about C++,
and that if you don’t know C++
you’ll be able to follow along.

The answer can be summarized
like this: do you think less is more,
or less is less?

Here is a metaphor, in the
form of a true story. Bell Labs
centers were originally assigned
3-digit numbers: 111 for Physics
Research, 127 for Computing Sci-
ences Research, and so on. In the
early 1980s a memo came around
announcing that as our understand-
ing of research had grown, it had
become necessary to add another
digit so we could better character-
ize our work. So our center became
1127. Ron Hardin joked, half-seri-
ously, that if we really understood
our world better, we could drop
a digit and go down from 127 to
just 27. Of course management
didn’t get the joke, nor were they
expected to, but I think there’s
wisdom in it. Less can be more. The
better you understand, the pithier
you can be.

Keep that idea in mind.
Back around September 2007, I

was doing some minor but central
work on an enormous Google C++
program, one you’ve all interacted
with, and my compilations were

taking about 45 minutes on our
huge distributed compile cluster.
An announcement came around
that there was going to be a talk
presented by a couple of Google
employees serving on the C++
standards committee. They were
going to tell us what was coming in
C++0x, as it was called at the time.
(It’s now known as C++11).

In the span of an hour at that talk
we heard something like 35 new
features that were being planned.
In fact there were many more, but
only 35 were described in the talk.
Some of the features were minor,
of course, but the ones in the talk
were at least significant enough to
call out. Some were very subtle
and hard to understand, like rvalue
references, while others are espe-
cially C++-like, such as variadic
templates, and some others are just
crazy, like user-defined literals.

At this point I asked myself a
question: did the C++ committee
really believe that what was wrong
with C++ was that it didn’t have
enough features? Surely, in a variant
of Ron Hardin’s joke, it would be
a greater achievement to simplify
the language rather than to add to
it. Of course, that’s ridiculous, but
keep the idea in mind.

Less is Exponentially More

  29

Just a few months before that
C++ talk I had given a talk myself,
which you can see on YouTube
[hn.my/toy], about a toy concur-
rent language I had built way back
in the 1980s. That language was
called Newsqueak and of course it
is a precursor to Go.

I gave that talk because there
were ideas in Newsqueak that I
missed in my work at Google, and
I had been thinking about them
again. I was convinced they would
make it easier to write server code,
and Google could really benefit
from that.

I actually tried and failed to find
a way to bring the ideas to C++.
It was too difficult to couple the
concurrent operations with C++’s
control structures, and in turn that
made it too hard to see the real
advantages. Plus, C++ just made it
all seem too cumbersome, although
I admit I was never truly facile in
the language. So I abandoned the
idea.

But the C++0x talk got me think-
ing again. One thing that really
bothered me — and I think Ken
and Robert as well — was the new
C++ memory model with atomic
types. It just felt wrong to put such
a microscopically-defined set of
details into an already over-bur-
dened type system. It also seemed
short-sighted, since it’s likely that
hardware will change significantly
in the next decade, and it would be
unwise to couple the language too
tightly to today’s hardware.

We returned to our offices
after the talk. I started another
compilation, turned my chair
around to face Robert, and started
asking pointed questions. Before
the compilation was done, we’d
roped Ken in and had decided to
do something. We did not want

to be writing in C++ forever, and
we — me especially — wanted to
have concurrency at our fingertips
when writing Google code. We also
wanted to address the problem of
“programming in the large” head on.
More on that later.

We wrote on the white board
a bunch of stuff that we wanted,
desiderata if you will. We thought
big, ignoring detailed syntax and
semantics and focusing on the big
picture.

I still have a fascinating mail
thread from that week. Here are a
couple of excerpts:

Robert: Starting point: C, fix some
obvious flaws, remove crud, add a
few missing features.

Rob: Name: “Go.” You can invent
reasons for this name, but it has
nice properties. It’s short, easy to
type. Tools: goc, gol, goa. If there’s
an interactive debugger/interpreter
it could just be called “go.” The
suffix is .go.

Robert: Empty interfaces: interface
{}. These are implemented by all
interfaces, and thus this could take
the place of void*.

We didn’t figure it all out right
away. For instance, it took us over a
year to figure out arrays and slices.
But a significant amount of the
flavor of the language emerged in
that first couple of days.

Notice that Robert said C was
the starting point, not C++. I’m
not certain but I believe he meant
C proper, especially because Ken
was there. But it’s also true that, in
the end, we didn’t really start from
C. We built from scratch, borrow-
ing only minor things like opera-
tors and brace brackets and a few
common keywords. (And of course
we also borrowed ideas from other

languages we knew.) In any case, I
see now that we reacted to C++ by
going back down to basics, breaking
it all down and starting over. We
weren’t trying to design a better
C++, or even a better C. It was to
be a better language overall for the
kind of software we cared about.

In the end of course it came
out quite different from either C
or C++. More different even than
many realize. I made a list of signifi-
cant simplifications in Go over C
and C++:

■■ Regular syntax (don’t need a
symbol table to parse)

■■ Garbage collection (only)

■■ No header files

■■ Explicit dependencies

■■ No circular dependencies

■■ Constants are just numbers

■■ Int and int32 are distinct types

■■ Letter case sets visibility

■■ Methods for any type (no classes)

■■ No subtype inheritance (no
subclasses)

■■ Package-level initialization
and well-defined order of
initialization

■■ Files compiled together in a
package

■■ Package-level globals presented in
any order

■■ No arithmetic conversions (con-
stants help)

■■ Interfaces are implicit (no “imple-
ments” declaration)

■■ Embedding (no promotion to
superclass)

http://hn.my/toy

30  PROGRAMMING

■■ Methods are declared as func-
tions (no special location)

■■ Methods are just functions

■■ Interfaces are just methods (no
data)

■■ Methods match by name only
(not by type)

■■ No constructors or destructors

■■ Postincrement and postdec-
rement are statements, not
expressions

■■ No preincrement or
predecrement

■■ Assignment is not an expression

■■ Evaluation order defined in
assignment, function call (no
“sequence point”)

■■ No pointer arithmetic

■■ Memory is always zeroed

■■ Legal to take address of local
variable

■■ No “this” in methods

■■ Segmented stacks

■■ No const or other type
annotations

■■ No templates

■■ No exceptions

■■ Built-in string, slice, map

■■ Array bounds checking

And yet, with that long list of
simplifications and missing pieces,
Go is, I believe, more expressive
than C or C++. Less can be more.

But you can’t take out everything.
You need building blocks such as an
idea about how types behave, and
syntax that works well in practice,
and some ineffable thing that makes
libraries interoperate well.

We also added some things
that were not in C or C++, like
slices and maps, composite liter-
als, expressions at the top level of
the file (which is a huge thing that
mostly goes unremarked), reflec-
tion, garbage collection, and so on.
Concurrency, too, naturally.

One thing that is conspicuously
absent is of course a type hierarchy.
Allow me to be rude about that for
a minute.

Early in the rollout of Go I was
told by someone that he could
not imagine working in a language
without generic types. As I have
reported elsewhere, I found that an
odd remark.

To be fair he was probably saying
in his own way that he really liked
what the STL does for him in
C++. For the purpose of argument,
though, let’s take his claim at face
value.

What it says is that he finds
writing containers like lists of ints
and maps of strings an unbearable
burden. I find that an odd claim. I
spend very little of my program-
ming time struggling with those
issues, even in languages without
generic types.

But more important, what it says
is that types are the way to lift that
burden. Types. Not polymorphic
functions or language primitives or
helpers of other kinds, but types.

That’s the detail that sticks with
me.

Programmers who come to Go
from C++ and Java miss the idea of
programming with types, particu-
larly inheritance and subclassing
and all that. Perhaps I’m a philistine
about types but I’ve never found
that model particularly expressive.

My late friend Alain Fournier
once told me that he considered the
lowest form of academic work to

be taxonomy. And you know what?
Type hierarchies are just taxonomy.
You need to decide what piece goes
in what box, every type’s parent,
whether A inherits from B or B
from A. Is a sortable array an array
that sorts or a sorter represented by
an array? If you believe that types
address all design issues you must
make that decision.

I believe that’s a preposterous
way to think about programming.
What matters isn’t the ancestor
relations between things but what
they can do for you.

That, of course, is where inter-
faces come into Go. But they’re
part of a bigger picture, the true Go
philosophy.

If C++ and Java are about type
hierarchies and the taxonomy of
types, Go is about composition.

Doug McIlroy, the eventual
inventor of Unix pipes, wrote in
1964 (!):

We should have some ways of
coupling programs like garden hose
— screw in another segment when
it becomes necessary to massage
data in another way. This is the
way of IO.

That is the way of Go also. Go
takes that idea and pushes it very
far. It is a language of composition
and coupling.

The obvious example is the way
interfaces give us the composition
of components. It doesn’t matter
what that thing is, if it implements
method M, I can just drop it in
here.

Another important example is
how concurrency gives us the com-
position of independently executing
computations.

And there’s even an unusual (and
very simple) form of type composi-
tion: embedding.

  31

These compositional techniques
are what give Go its flavor, which is
profoundly different from the flavor
of C++ or Java programs.

Now, to come back to the sur-
prising question that opened my
talk:

Why does Go, a language
designed from the ground up for
what C++ is used for, not attract
more C++ programmers?

Jokes aside, I think it’s because
Go and C++ are profoundly differ-
ent philosophically.

C++ is about having it all there at
your fingertips. I found this quote
on a C++11 FAQ:

“The range of abstractions that
C++ can express elegantly, flex-
ibly, and at zero costs compared to
hand-crafted specialized code has
greatly increased.” That way of
thinking just isn’t the way Go oper-
ates. Zero cost isn’t a goal, at least
not zero CPU cost. Go’s claim is
that minimizing programmer effort
is a more important consideration.

Go isn’t all-encompassing. You
don’t get everything built in. You
don’t have precise control of every
nuance of execution. For instance,
you don’t have RAII. Instead you
get a garbage collector. You don’t
even get a memory-freeing function.

What you’re given is a set of
powerful but easy to understand,
easy to use building blocks from
which you can assemble — com-
pose — a solution to your problem.
It might not end up quite as fast or
as sophisticated or as ideologically
motivated as the solution you’d
write in some of those other lan-
guages, but it’ll almost certainly be
easier to write, easier to read, easier
to understand, easier to maintain,
and maybe safer.

To put it another way, oversim-
plifying of course:

Python and Ruby programmers
come to Go because they don’t
have to surrender much expressive-
ness, but gain performance and get
to play with concurrency.

C++ programmers don’t come to
Go because they have fought hard
to gain exquisite control of their
programming domain, and don’t
want to surrender any of it. To
them, software isn’t just about get-
ting the job done, it’s about doing it
a certain way.

The issue, then, is that Go’s suc-
cess would contradict their world
view.

And we should have realized that
from the beginning. People who
are excited about C++11’s new
features are not going to care about
a language that has so much less.
Even if, in the end, it offers so much
more. n

Rob Pike is a Distinguished Engineer at
Google, Inc. He works on distributed
systems, data mining, programming lan-
guages, and software development tools.
Most recently he has been a co-designer
and developer of the Go programming
language.

There’s an unrelated aspect
of Go’s design I’d like to touch
upon: Go was designed to help
write big programs, written and
maintained by big teams.

There’s this idea about
“programming in the large” and
somehow C++ and Java own
that domain. I believe that’s
just a historical accident, or
perhaps an industrial accident.
But the widely held belief is
that it has something to do
with object-oriented design.

I don’t buy that at all. Big
software needs methodology to
be sure, but not nearly as much
as it needs strong dependency
management and clean inter-
face abstraction and superb
documentation tools, none of
which is served well by C++
(although Java does noticeably
better).

We don’t know yet, because
not enough software has been
written in Go, but I’m confi-
dent Go will turn out to be a
superb language for program-
ming in the large. Time will tell.

Reprinted with permission of the original author.
First appeared in hn.my/go (commandcenter.blogspot.nl)

http://hn.my/go

32  PROGRAMMING

By Mark Shroyer

I ran into a really fun bug at work yesterday, where
I discovered that my C program was branching
down logically inconsistent code paths. After drink-

ing another cup of coffee and firing up GDB I real-
ized that somehow a boolean variable in my code was
simultaneously testing as both true and not true.

While I cannot reproduce the actual source code
here, the effect was that code like

bool p;

/* ... */

if (p)
 puts("p is true");

if (! p)	
 puts("p is false");

would produce the output:

p is true
p is false

So what’s going on here?
Well it turns out that the authors of the C language

specification (and the people who went on to imple-
ment compilers for it) were serious about the con-
cept of undefined behavior. In particular, the result of
attempting to use an uninitialized variable is undefined.

And in this case that’s exactly what happened: I had
failed to properly initialize some memory. Easy; bug

fixed. But what I think is interesting are the reasons
this code failed in precisely the way it did. In order to
investigate that, we need to get specific.

On 64-bit Linux (Ubuntu 12.04), compiling the fol-
lowing program:

#include <stdio.h>
#include <stdbool.h>

int main(int argc, char *argv[])
{
 volatile bool p;

 if (p)
 puts("p is true");
 else
 puts("p is not true");

 if (! p)
 puts("p is false");
 else
 puts("p is not false");

 return 0;
}

with GCC 4.6.3, using the command line:

$ gcc bool1.c -g0 -O0 -fno-dwarf2-cfi-asm
-masm=intel -S -o bool1.asm

produces this (truncated) assembly language:

Both true and false:
a Zen moment with C

  33

 .file "bool1.c"
 .intel_syntax noprefix
 .section .rodata
.LC0:
 .string "p is true"
.LC1:
 .string "p is not true"
.LC2:
 .string "p is false"
.LC3:
 .string "p is not false"
 .text
 .globl main
 .type main, @function
main:
.LFB0:
 push rbp
.LCFI0:
 mov rbp, rsp
.LCFI1:
 sub rsp, 32
.LCFI2:
 mov DWORD PTR [rbp-20], edi
 mov QWORD PTR [rbp-32], rsi
 movzx eax, BYTE PTR [rbp-1]
 test al, al
 je .L2
 mov edi, OFFSET FLAT:.LC0
 call puts
 jmp .L3
.L2:
 mov edi, OFFSET FLAT:.LC1
 call puts
.L3:
 movzx eax, BYTE PTR [rbp-1]
 xor eax, 1
 test al, al
 je .L4
 mov edi, OFFSET FLAT:.LC2
 call puts
 jmp .L5
.L4:
 mov edi, OFFSET FLAT:.LC3
 call puts
.L5:
 mov eax, 0
 leave
.LCFI3:
 ret

To perform the test if (p) here, first the stack
variable is loaded into a 32-bit register with movzx
eax, BYTE PTR [rbp-1], and then we use the instruc-
tion test al, al which sets the zero flag (ZF) if the
lower eight bits of this value are zero. Next we execute
the conditional jump je .L2, which jumps to print “p
is not true” if ZF was set; otherwise we don’t jump, and
“p is true” gets printed instead.

Next let’s examine the second test, if (! p), at
label .L3. This starts out the same by loading the boolean
variable into register eax, but notice how the negation
is handled. Rather than reorder the jumps or use jne
instead of je, the compiler explicitly negates the boolean
by performing a bitwise exclusive-or: xor eax, 1.

Normally this would be fine — a bool variable is
only supposed to contain a value of zero or one, in
which case its value can be negated by XOR with 1.
When you cast to a bool at runtime, the compiler gen-
erates code to ensure only one or zero gets stored. For
instance, the cast in this program:

#include <stdbool.h>

volatile char c = 0xff;
volatile bool p;

int main(int argc, char* argv[])
{
 p = (bool)c;
 return 0;
}

is implemented as the following four instructions:

 movzx eax, BYTE PTR c[rip]
 test al, al
 setne al
 mov BYTE PTR p[rip], al

wherein setne sets the register al to exactly 1 if the
char contained any nonzero value, before saving the
register’s 8-bit value to the boolean variable.

But the compiler affords us no such protection if
we accidentally use an uninitialized value as a bool-
ean. It doesn’t have to because it’s not the compiler’s
responsibility; the result of using an uninitialized stack
variable is undefined. And so if we somehow wind up
with a value of e.g. 0x60 stored at the address of a bool
variable (as I saw during my troubleshooting yester-
day), both the variable and its negation (via exclusive
or with 1) will be nonzero and therefore test as true.

34  PROGRAMMING

Interestingly, enabling optimization (-O2) in GCC
causes the compiler to factor out the XOR and instead
reorder the jumps, meaning this program actually
behaves more robustly under compiler optimization
(for certain definitions of “robust” anyway):

 .file "bool1.c"
 .intel_syntax noprefix
 .section .rodata.str1.1,"aMS",@
progbits,1
.LC0:
 .string "p is true"
.LC1:
 .string "p is not true"
.LC2:
 .string "p is false"
.LC3:
 .string "p is not false"
 .section .text.startup,"ax",@
progbits
 .p2align 4,,15
 .globl main
 .type main, @function
main:
.LFB22:
 sub rsp, 24
.LCFI0:
 movzx eax, BYTE PTR [rsp+15]
 test al, al
 je .L2
 mov edi, OFFSET FLAT:.LC0
 call puts
.L3:
 movzx eax, BYTE PTR [rsp+15]
 test al, al
 je .L7
 mov edi, OFFSET FLAT:.LC3
 call puts
.L5:
 xor eax, eax
 add rsp, 24
.LCFI1:
 ret

And of course when we compare char, int, or other
multiple-bit values for truthiness, the compiler makes
no such assumption that the value can be logically
negated by bitwise XOR; instead it uses jne in place of
the je instruction. (Maybe someone with more knowl-
edge of the compiler can say why GCC with -O0 uses
an xor at all when testing the negation of a bool.) n

Mark Shroyer is a software engineer in Miami who writes low-
level code for embedded Linux devices. In his free time he also
enjoys geeking out with high-level programming languages. You
can find him online at markshroyer.com

Reprinted with permission of the original author.
First appeared in hn.my/zenc (markshroyer.com)

http://markshroyer.com
http://hn.my/zenc

  35

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

36  SPECIAL

SPECIAL

By David Woods

When my friends hear
me say that I’m
buying a lottery

ticket for a big draw, I often get the
comment, “But aren’t you a statisti-
cian?” The implication is that only
people who are ignorant of prob-
ability would play the lottery. I’ve
also heard the belief that the lottery
is a tax on poor people. I have a
different view, that buying lottery
tickets is perfectly rational for me.

There are a number of different
lotteries here in Melbourne, Aus-
tralia, but let’s consider the draw
for this Tuesday, the “Super 7’s Oz
Lotto.” This game draws seven balls
from 45, and the big “first division”
prize is for getting all seven cor-
rect. There are six other consolation
divisions with much smaller prizes
for getting a smaller number of
balls correct. The first division prize
for this week is $70 million, which
is quite a bit bigger than usual.

The odds against winning the big
prize are 45,379,619:1. That sounds
like a long shot by any measure, and
this is the number that people usu-
ally quote when they tell you how

crazy you are. However, those are
the odds for a single combination
of balls — one line. Usually, you’d
buy a ticket with multiple lines.
For a standard 12-line ticket, the
odds shorten to 3,781,635:1, still
not very likely, but definitely much
improved. I actually got excited
by the big draw this week and
bought a 36-line ticket, for odds
of 1,260,545:1, just over “one in a
million” odds.

The standard argument of people
who think that lotto is for suckers
is based on expected return. They
are taught at school that a rational
investment is one with an expected
value greater than the price paid. I
have some problems with this argu-
ment, but I’ve never really calcu-
lated it before, so let us consider the
numbers. Each line on the ticket
costs $1.20, so a 12-line ticket
costs $14.40. The way we calculate
expected return is to multiply the
payout times the probability:

Expected return per line =
$70,000,000 / 45,379,620 =
$1.54

Hang on, each line costs us
$1.20 and has an expected value
of $1.54… that sounds like a good
investment! In fact, it could be
tempting to buy every single com-
bination of numbers to guarantee
a win, with a cost of $54,455,545
and a profit of $15,544,455.

Unfortunately, there is another
factor to consider. We only get
the full prize if we win it alone. If
another person also has the win-
ning combination, we get half,
only $35,000,000. If three or
more people win, then we get a
correspondingly smaller fraction
of the prize. To calculate the true
expected value of our ticket we
need to estimate the probability
distribution of the number of win-
ners. This requires us to know the
number of tickets sold. It turns out
we can get an estimate of this, but
we have to do some work.

I Am A Statistician And
I Buy Lottery Tickets

  37

The table below shows the results from the
$50,000,000 draw last week. Note that the no one won
the first division prize. So it jackpots to this week.

The odds allow us to calculate the probability of
winning each division. Since we know the number of
lines that actually won each division, we can estimate
the number of lines sold. This is obviously probabi-
listic, so the estimates are different, but the
estimate for the seventh division should be
the most accurate.

We would expect the number of lines sold
to be related to the advertised first division
prize. This is the headline prize that is fea-
tured on TV and posters around town. Last
week’s advertised prize was $50,000,000.
We can search to find the above table for
past draws, and we can go back through the
lottery’s twitter feed to find the advertised
first division prize. The graph below shows
the headline prize vs. estimated lines sold
(using the division seven winners) for the
past 52 draws. Also included on the graph is
the biggest draw ever, $100,000,000 on 30
June 2009.

 We can use the built-in functionality in Excel to fit
a quadratic curve to the data. With an R-Square value
of 99.76%, the curve seems to fit the data well. By

plugging $70,000,000 into this equation, we
can estimate that approximately 116,580,883
lines will be sold in the upcoming draw. We
can now use this to calculate the probability
of winning the first division alone or having
one, two, or more other winners.

The following formula gives us the proba-
bility of having X winners, where the number
of lines sold is N, and the probability per line
is p.

P(X) = NCX * p
X * (1-p)N-X

By plugging in the values of N = 116,580,883 and
p = 1 / 45,379,620, we can calculate the probability
for all values of X. The table below shows this for X
between 0 and 11.

The fifth and sixth columns are what we
are interested in. We are trying to determine
the expected returns, given that we have
won. The probabilities are calculated using
the following formula:

P(X | X > 0) = P(X) / (1 - P(0))

To find the expected return, if we win first
division, we then sum the values in the right-
hand column to give $34,244,780. Multiplying
this by p gives an expected value of each line
of $0.75. So, rationally, we shouldn’t invest in
tickets for this lottery, since 0.75 < 1.20.

38  SPECIAL

However, there is another factor to consider. We
have calculated the expected return for winning first
division; however, we also have a chance of winning the
other divisions. We need to calculate how much we can
expect to win for each of the other divisions.

116,580,883 lines at $1.20 per line gives a total
amount paid of $139,897,060. The game rules state
that at least 55% of this total must be used in the prize
pool, and analysis of results from the past year confirms
this figure. This gives a prize pool of $76,943,383. The
game odds page also gives the proportion of the prize
pool that is allocated to each division. Using the odds,
we can then determine the expected number of win-
ners and the payout per winning line. The table below
shows the expected value of a line for each division:

Adding up the values in the expected return column
gives an expected return of $0.40 for divisions two
to seven. Added to the expected return from the first
division, it gives an expected value per line of $0.75 +
$0.40 = $1.15. This is still less than the $1.20 we paid,
but not by too much.

However, even if the expected value of a ticket was
positive, it would still be a terrible investment. The
expected value argument only really works in the long
term — if I was investing in millions of lines of tickets
or millions of different draws, then in the long run
I would expect to make money. This is how casinos
work: very small positive expected returns multiplied
by millions of transactions. For an individual though,
the probability of winning is essentially zero. We don’t
get to perform millions of transactions, so we are
almost certainly going to lose our “investment.”

So why do I still buy lottery tickets? Definitely not
for the expected monetary return on investment. I
think of it as a discretionary entertainment spend. I get
literally hours of enjoyment from fantasizing what I’d
do if I won. I happily spend $25 for two hours of enter-
tainment at the movies, and I don’t judge the value of
that experience based on its expected return. For me,
a lottery ticket for the occasional big draw has just as
much entertainment value, or more, than the many
other things that I spend money on to entertain myself.

The decision of whether to buy a lottery ticket
shouldn’t be based on the probability of winning or the
expected return of a ticket, but on the entertainment
value that comes from imagining a different life. If that
entertainment value compares favorably with other

activities with a similar price, then go for it.
Plus, it has the added bonus that you might
actually win; one-in-a-million events happen
every day. Someone eventually wins the big
prize, and you have to be in to win. n

David is an analytics consultant in Melbourne, Aus-
tralia. He helps companies with things like predictive
modelling, optimization, and forecasting.

Reprinted with permission of the original author.
First appeared in hn.my/lottery (simplexity.net)

http://hn.my/lottery

Accept payments online.

http://stripe.com

http://memset.com

	Contents
	FEATURES
	The Tesla Gun
	Lisp Hackers: Peter Seibel

	STARTUPS
	How to Hack the Beliefs That Are Holding You Back
	B2B Is Unsexy, and I Know It
	Being a Developer Makes You Valuable. Learning How to Market Makes You Dangerous

	PROGRAMMING
	An Introduction to Lock-Free Programming
	Backbone.js: Hacker's Guide
	Less is Exponentially More
	Both true and false: a Zen moment with C

	SPECIAL
	I Am A Statistician And I Buy Lottery Tickets

