
Issue 30 November 2012

Wrote JavaScript?
What If Hemingway

Angus Croll

http://careers.addepar.com

 3

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://careers.addepar.com
http://duckduckhack.com

4

Curator
Lim Cheng Soon

Contributors
Sau Sheong Chang
Angus Croll
Dave McClure
Matt Swanson
Boris Wertz
Joshua Gross
Noah Sussman
Eli Bendersky
Chris Eppstein
Alan O’Donnell
Nicholas C. Zakas
Dan Schultz
Alex Hillman

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

HACkEr MONtHLy is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. the submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Illustration: Kevin O’Brien

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 5

For links to Hacker News dicussions, visit hackermonthly.com/issue-30

Contents
FEATURES

06 Getting Your Heart Rate Using R and Ruby
By SAu SHEONG CHANG

10 If Hemingway Wrote JavaScript
By ANGuS CrOLL

STARTUPS

14 Late Bloomer, Not A Loser
By DAvE MCCLurE

16 Move Your Feet
By MAtt SWANSON

18 The Only Two Ways to Build a $100
Million Business
By BOriS WErtZ

19 The “Work” Trap
By JOSHuA GrOSS

SPECIAL

34 A Tor of the Dark Web
By DAN SCHuLtZ

38 How I Learned to Defrag My Brain
By ALEx HiLLMAN

PROGRAMMING

20 Falsehoods Programmers Believe About Time
By NOAH SuSSMAN

22 How Statically Linked Programs Run on Linux
By ELi BENDErSky

25 A Software Architect
By CHriS EPPStEiN

26 Learning C with GDB
By ALAN O’DONNELL

30 The Innovations of Internet Explorer
By NiCHOLAS C. ZAkAS

http://hackermonthly.com/issue-30

6 FEATURES

FEATURES

the heart rate, or the rate
at which your heart beats,
is one of the measure-

ments you’ve probably heard most
about in relation to exercise. it’s
also often a good indication of your
health, because a heart rate that is
too high or low could indicate an
underlying health issue. the heart
rate is usually measured in beats
per minute (bpm) and varies from
40 to 220 bpm. An average healthy
person at rest has a heart rate of
60–90 bpm, while conditioned
athletes have a resting heart rate of
40–60 bpm.

A popular and fast way to effec-
tively get the heart rate is pulse
oximetry. A pulse oximeter is a
device placed on a thin part of a
person’s body, often a fingertip or
earlobe. Light of different wave-
lengths (usually red and infrared)
is then passed through that part
of the body to a photodetector.

the oximeter works by measuring
the amounts of red and infrared
light absorbed by the hemoglobin
and oxyhemoglobin in the blood
to determine how oxygenated
the blood is. Because this absorp-
tion happens in pulses as the heart
pumps oxygenated blood through-
out the body, the heart rate can also
be determined.

We are not going to build an
oximeter, but in this post we’ll use
the same concepts used in oxim-
etry to determine the heart rate.
We will record a video as we pass
light through our finger for a short
duration of time. With each beat of
the heart, more or less blood flows
through our body, including our
finger. the blood flowing through
our finger will block different
amounts of the light accordingly. if
we calculate the light intensity of
each frame of the video we cap-
tured, we can chart the amount of

blood flowing through our finger at
different points in time, therefore
getting the heart rate.

Homemade Pulse Oximeter
Creating a homemade oximeter is
really simple. you can use any of
the following techniques, or even
try your own methods. it doesn’t
really matter, as long as you can
capture the video. record for about
30 seconds. (recording for a longer
time can be more accurate, but not
significantly so.)

Finger on a webcam
Place your finger directly on your
computer’s webcam (i used the
iSight on my Mac). Shine a small
light (penlight or table lamp; it
doesn’t matter much) through your
finger. then use any video record-
ing software to record what’s on the
webcam (i used Quicktime video
recording).

Getting Your Heart Rate
Using R and Ruby

By SAu SHEONG CHANG

 7

Finger on the phone camera
Place your finger directly on your
phone camera. turn on the flash
or use a small light and shine it
through your finger. then use your
phone’s video recording software to
record what’s on the phone camera.

Finger on a digital video camera
this is slightly harder because the
camera lens is normally larger than
your finger. the parts that aren’t
covered don’t really matter, but you
need to position your finger so that
the image captured is consistent
throughout your recording. A trick
is to use a lamp as the background,
so you can have the light shining
through your finger and maintain a
consistent background at the same
time.

in the following example, i used
the phone camera method with
my iPhone. that’s the easiest for
me, because the flash on the phone
is very effective. if you did things
right, you’ll end up with a video
filled with a red blotch that’s your
finger.

Extracting Data from Video
Assuming that you have a nice
video file now (it doesn’t really
matter what format it is in; you’ll
see why soon), let’s dig in a bit
deeper to see how we can extract
information from it. For the sake of
convenience, i’ll assume the file is
called heartbeat.mov. Next we’ll
be using FFmpeg, a popular free
video library and utility, to convert
the video into a series of individual
image files.

Let’s take a look at some ruby code.

 require 'csv'
 require 'rmagick'
 require 'active_support/all'
 require 'rvideo'
 vid = RVideo::Inspector.new(:file => "heartbeat.mov")
 width, height = vid.width, vid.height
 fps = vid.fps.to_i
 duration = vid.duration/1000
 if system("/opt/local/bin/ffmpeg -i heartbeat.mov -f image2
'frames/frame%03d.png'")
 CSV.open("data.csv","w") do |file|
 file << %w(frame intensity)
 (fps*duration).times do |n|
 img = Magick::ImageList.new("frames/
frame#{sprintf("%03d",n+1)}.png")
 ch = img.channel(Magick::RedChannel) i= 0
 ch.each_pixel {|pix| i += pix.intensity} file << [n+1, i/
(height*width)]
 end end
 end

it doesn’t look complicated, does
it? the most complex part you’ll
probably have to tackle is installing
the necessary ruby libraries. in the
case of both RMagick and RVideo,
described next, you need native
developer tools support in order to
compile the native components of
the gem for your platform.

We start off the code by inspect-
ing the video and getting some
attributes from it. these will be
useful later on in the code. Specifi-
cally, we will need the number of
frames per second, the duration
of the video, and the height and
width of the video. you can obtain
these through RVideo, but if you
didn’t succeed in getting it installed,
you can still find the information
by simply opening up the video
with any player and viewing its
properties.

Next, we use the system method
to issue a command to the underly-
ing shell, and return either true or
false depending on whether it suc-
ceeds or not:

system("/opt/local/bin/ffmpeg
-i heartbeat.mov -f image2
'frames/frame%03d.png'")

this runs ffmpeg, taking in the
input file heartbeat.mov and con-
verting it frame by frame into a set
of images ordered by number. this
is the reason why the video format
is unimportant. As long as FFmpeg
has the correct library to support
the codecs, it will convert the video
file to a series of PNG image files,
numbered sequentially.

8 FEATURES

in this example, we specify that there are
three digits to this series of numbers. How do
we know this? in my case, i have a 30-second
video with a frame rate of 30 frames per
second, so the number of still frames that
will be created by FFmpeg is 30×30, or 900
frames. Slightly more frames could be created
— some video players round off the duration
— but the total would not be more than 999
frames. if the command runs successfully, we
will get a set of frames in the frames folder,
each named framennn.png, where nnn runs
from 001 to 900 or so.

Next, we create a CSv file to store the
data and enter the column names, which are
the frame number and the average frame
intensity:

file << %w(frame intensity)

then, for every frame image, we create the
RMagick image object that represents that
frame and extract the red channel (the file
uses the rGB colorspace):

ch = img.channel(Magick::RedChannel)

We iterate through each pixel in the red
channel and add up their intensities, then
divide the sum of pixel intensities by the
total number of pixels:

i= 0
ch.each_pixel {|pix| i += pix.intensity}
file << [n+1, i/(height*width)]

this is the value we consider to be the
average frame intensity. Finally, we store the
frame number and intensity in the CSv file.

Once we have done this, we will end up
with a data file with two columns. the first is
the frame number, and the second is the cor-
responding frame’s average intensity.

Generating the Heartbeat Waveform and Calculating the
Heart Rate
Generating the heartbeat waveform is trivial, so we’ll combine
both creating the waveform and calculating the heart rate into a
single r script.

 library(PROcess)
 library(ggplot2)
 data <- read.csv(file='data.csv', header=T)
 png("heartbeat.png")
 qplot(data=data, frame, intensity, geom="line")
 dev.off()
 peaks <- peaks(data$intensity,span=10)
 peak_times <- which(peaks==T, arr.in=T)
 intervals <- c()
 i <- 1
 while (i < length(peak_times)) {
 intervals <- append(intervals, peak_times[i+1] -
peak_times[i])
 i <- i + 1
 }
 average <- round(mean(intervals))
 print(paste("Average interval between peak intensi-
ties is", average))
 heartbeat_rate <- round(60 * (30/average))
 print(paste("Heartbeat rate is",heartbeat_rate))

All it takes to generate the waveform is a single line that calls
qplot with the frame and the intensity and uses the line geom.

 9

 As you can see from the chart,
the light intensity changes over
time. Each pulse corresponds with a
heartbeat. to find the heart rate, we
need to find the number of frames
between two peaks of the wave.
We know that there are 30 frames
in one second. Once we know the
number of frames between the two
peaks, we’ll know how much time
it takes to go from peak to peak,
and therefore can calculate the
number of beats per minute.

to calculate the distance from
peak to peak, we need to first
determine where the peaks are in
the chart. For this, we will be using
an r package that was originally
designed to process protein mass
spectrometry data, found in the
Bioconductor library. the Bio-
conductor library is a free/open
source project that provides tools
for analyzing genomic data. it’s
based primarily on r, and most of
the Bioconductor components are
r packages. the package we will
be using is called PROcess. Once
we include the library in our script,
we can start using the peaks()
function, which, true to its name,
determines which values are peaks
in data.

the input parameter to the
peaks() function is the intensity
data and a span value. this span
value determines how many of its
neighboring values it must exceed
before it can be considered a peak.
this is useful to filter off noise,
though not perfectly.

the returned result is a logical
vector that is the same length as the
data. this means we have a vector
of truEs and FALSEs, where the
truEs indicate a peak:

[1] FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE
 [13] FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE
 [25] FALSE FALSE FALSE
TRUE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE

While this vector is informative,
it’s not really the answer we want,
so we pass it through the which()
function, and it returns a vector of
the indices where the element is
truE:

 [1] 28 50 73 96 119
142 167 190 213 236 259 282 306
330 353 374 397 420 445
 [20] 469 494 517 540 563
586 610 632 656 678 701 723 746
769 791 812 836 859 882

As before, we want to find the
distance between the two peaks, so
we take two consecutive elements
and subtract the first from the
second. this gives us a new vector
that contains the differences:

[1] 22 23 23 23 23 25 23 23 23
23 23 24 24 23 21 23 23 25 24
25 23 23 23 23 24
 [26] 22 24 22 23 22 23 23
22 21 24 23 23

the final two steps are the same
as in the previous section. First, we
find the average distance using the
mean() function. then, from that,
we know that there are 23 frames
between two peaks, meaning each
heartbeat takes 23 frames or 23/30
seconds (since each second has 30
frames). From that, we calculate
that the heart rate is 78 bpm. n

Sau Sheong is the Director of HP Labs in
Singapore, and manages a team of engi-
neers and research scientists focusing on
research on how people use cloud com-
puting. He is also an active programmer,
technology enthusiast and a frequent
speaker at technology-related confer-
ences. Sau Sheong has written 3 books
on Ruby and the latest is “Exploring Every-
day Things with R and Ruby” published by
O’Reilly Media.

If you enjoyed this
article, we recommend
picking up Exploring
Everyday Things with
R and Ruby: Learning
About Everyday Things.
[hn.my/everyday]

Reprinted with permission of the original author.
First appeared in hn.my/everydayruby (airbrake.io)

http://hn.my/everyday
http://hn.my/everydayruby

10 FEATURES

i loved literature long before i ever wrote a
line of code. Now i write JavaScript — lots of
it — and i’m writing a book about it.

What is it about JavaScript that attracts so
many literature devotees? i have a few half-baked
theories relating to the expressive potential of a lim-
ited syntax, but that’s for another time. What about
the great writers? What would they have made of

JavaScript? Even as a long-time Hemingway nut, i’d
be the first to admit that Papa would probably have
loathed programming (and programmers). yet i’m
betting that amongst all that general contempt there
would have lurked a soft spot for JavaScript, because
it’s his kind of language, am i right? A spare and
deceptively plain surface, masking substance and drama
beneath.

If Hemingway Wrote
JavaScript
By ANGuS CrOLL

 11

The Mother of All Code Reviews
 recently, i had a dream in which i asked Heming-
way and four other literary luminaries to write
some JavaScript for me; specifically a function that
returned a fibonacci series of a given length. inter-
estingly each author chose to solve the problem in a
different way. they did pretty well actually — as far
as i can tell, every solution works as advertised (yes,
even Andre Breton’s). Here’s what i got:

Ernest Hemingway
function fibonacci(size) {

 var first = 0, second = 1, next, count = 2,
result = [first, second];

 if(size < 2)
 return "the request was made but it was
not good"

 while(count++ < size) {
 next = first + second;
 first = second;
 second = next;
 result.push(next);
 }
 return result;
}

No surprises here. Code reduced to its essentials
with no word or variable wasted. it’s not fancy;
maybe it’s even a little pedantic, but that’s the
beauty of Hemingway’s writing. No need for elabo-
rate logic or clever variable names. it’s plain and
it’s clear and it does what it has to — and nothing
more.

Hemingway didn’t suffer fools gladly, so if you
ask for a series with less than two numbers he’ll just
ignore you. “i’m tired and this question is idiotic.”

William Shakespeare
function theSeriesOfFIBONACCI(theSize) {

 //a CALCKULATION in two acts.
 //employ'ng the humourous logick of JAVA-SCRIPTE

 //Dramatis Personae
 var theResult; //an ARRAY to contain THE NUMBERS
 var theCounter; //a NUMBER, serv'nt to the FOR
 //LOOP

 //ACT I: in which a ZERO is added for INITIATION

 //[ENTER: theResult]

 //Upon the noble list bestow a zero
 var theResult = [0];

 //ACT II: a LOOP in which the final TWO NUMBERS
 //are QUEREED and SUMM'D

 //[ENTER: theCounter]

 //Commence at one and venture o'er the numbers
 for (theCounter = 1; theCounter < theSize; the-
Counter++) {
 //By divination set adjoining members
 theResult[theCounter] =
(theResult[theCounter-1]||1) + theResult[Math.
max(0, theCounter-2)];
 }

 //'Tis done, and here's the answer.
 return theResult;

 //[Exeunt]
}

the Bard gets a little wordy here but we wouldn’t have
it any other way. Notice how the comments (other than
titular captions and stage directions) are written in iambic
pentameter — a meter of ten paired syllables with the
stress falling on the second syllable of each pair (or foot).
in his plays, Shakespeare often adds dramatic emphasis
by deviating from strict iambic pentameter — he might
add an extra syllable or use an alternate stress. it looks as
though he’s using the same trick in this coding exercise.
Way to go, Will.

12 FEATURES

Andre Breton
function Colette(umbrella) {
 var staircase = 0, galleons = 0,
brigantines = 1, armada = [galleons,
brigantines], bassoon;
 Array.prototype.embrace = [].push;

 while(2 + staircase++ < umbrella) {
 bassoon = galleons + brigantines;
 armada.embrace(brigantines = (galleons =
brigantines, bassoon));
 }

 return armada;
}

As a founding member of the surrealist move-
ment, Breton believed dreams were more interesting
than reality and should form the basis of our creative
endeavors. Nouns are chosen accordingly. Although
it’s easy to knock Breton, his work has aged well and
is invariably heartfelt and beautiful — an unconscious
upwelling of imagery folded into his own conscious
expression. Here’s a translation of the gorgeous poem
Facteur Cheval [hn.my/cheval].

Breton has most likely named his fibonacci exercise
after an old flame, while he imagines the resulting
collection as a fleet of ancient vessels. the solution is
underscored by characteristically elegant logic — he’s
using a comma operator to simultaneously shift ele-
ments between galleons, brigantines and bassoons. Hats
off, Andre!

Roberto Bolano
function LeonardoPisanoBigollo(l) {

 if(l < 0) {
 return "I'd prefer not to respond. (Although
several replies occur to me)"
 }

 /**/

 //Everything is getting complicated.
 for (var i=2,r=[0,1].slice(0,l);i<l;r.
push(r[i-1]+r[i-2]),i++)

 /**/

 //Here are some other mathematicians. Mostly
 //it's just nonsense.

 rationalTheorists = ["Archimedes of Syra-
cuse", "Pierre de Fermat (such margins, boys!)",
"Srinivasa Ramanujan", "Rene Descartes", "Leon-
hard Euler", "Carl Gauss", "Johann Bernoulli",
"Jacob Bernoulli", "Aryabhata", "Brahmagupta",
"Bhaskara II", "Nilakantha Somayaji", "Omar
Khayyám", "Muhammad ibn Mūsā al-Khwārizmī",
"Bernhard Riemann", "Gottfried Leibniz", "Andrey
Kolmogorov", "Euclid of Alexandria", "Jules
Henri Poincaré", "Srinivasa Ramanujan", "Alex-
ander Grothendieck (who could forget?)", "David
Hilbert", "Alan Turing", "von Neumann", "Kurt
Gödel", "Joseph-Louis Lagrange", "Georg Cantor",
"William Rowan Hamilton", "Carl Jacobi", "Éva-
riste Galois", "Nikolay Lobachevsky", "Rene
Descartes", "Joseph Fourier", "Pierre-Simon
Laplace", "Alonzo Church", "Nikolay Bogolyubov"]

 /**/

 //I didn't understand any of this, but here it
 //is anyway.
 return r

 /**/

 //Nothing happens here and if it does I'd
 //rather not talk about it.
}

if you don’t read at least one Bolano book before
you die then you’ve wasted your life. Bolano’s writing
is remarkable; at once effortlessly sophisticated and
charmingly naive, his narrative style is characterized by
a disarmingly winsome honesty. No aspect of human
frailty is off limits, but the warmth and humor with
which every foible is conveyed is both engaging and
uplifting.

true to form, roberto’s exam paper is peppered
with admissions of insecurity, embarrassment and igno-
rance. the solution, though rather brilliant, is presented
as something of an afterthought. Always the obsessive,
always tangential, he’s much happier offering us a
mildly interesting but ultimately useless list of math-
ematical genii.

http://hn.my/cheval

 13

there are other Bolano traits here — the juxtaposi-
tion of long and short paragraphs, the absence of semi-
colons (mirroring the absence of quotation marks in
his novels), and the use of implicit globals that suggest
each variable is destined to make further appearances
in subsequent chapters.

Charles Dickens
function mrFibbowicksNumbers(enormity) {
 var assortment = [0,1,1], tally = 3, artfulRa-
tio = 1.61803;

 while(tally++ < enormity) {
 //here is an exceedingly clever device
 assortment.push(Math.
round(assortment[tally-2] * artfulRatio));
 }

 //should there be an overabundance of
 //elements, a remedy need be applied
 return assortment.slice(0, enormity);
}

i’m not a fan of Dickens. Mostly i agree with Henry
James’ damning assessment:

“If we might hazard a definition of his literary character,
we should, accordingly, call him the greatest of superfi-
cial novelists. We are aware that this definition confines
him to an inferior rank in the department of letters
which he adorns; but we accept this consequence of our
proposition. It were, in our opinion, an offense against
humanity to place Mr. Dickens among the greatest nov-
elists. For, to repeat what we have already intimated, he
has created nothing but figure. He has added nothing to
our understanding of human character.”
– Henry James on Charles Dickens, in a review of Our
Mutual Friend, in The Nation (December 21, 1865).

Boz’s superficiality is borne out by his fibonacci
solution. yes, there are some mildly amusing names,
but a complete lack of substance and understanding
at its heart. He has failed to appreciate the underly-
ing philosophy of the fibonacci series and has instead
resorted to bludgeoning his way through the problem
with multiplication. Sigh.

Closing Thoughts
Whether it’s Crockford’s protective albumen or the
dry and narrow minded confines of computer science
classes, doctrine and dogma are the enemies of good
JavaScript. Some developers like rulebooks and boiler-
plate, which is why we have Java. the joy of JavaScript
is rooted in its lack of rigidity and the infinite possibili-
ties that this allows for. Natural languages hold the
same promise. the best authors and the best JavaScript
developers are those who obsess about language, who
explore and experiment with language every day, and
in doing so, develop their own style, their own idioms,
and their own expression.

that’s all. Hope you enjoyed it. it’s mostly nonsense. n

Angus Croll is a literature junkie and front end developer on the
twitter web core team and author of the JavaScript JavaScript
blog [javascriptweblog.wordpress.com]. He’s writing an advanced
JavaScript book for No Starch Press (for release in 2013) and is a
regular conference speaker.

Reprinted with permission of the original author.
First appeared in hn.my/hemingway (byfat.xxx)

Illustration by Kevin O'Brien [poeticoddity.deviantart.com]

http://javascriptweblog.wordpress.com
http://hn.my/hemingway
http://poeticoddity.deviantart.com

14 STARTUPS

STARTUPS

By DAvE MCCLurE

Most of the time i
think of myself as a
failure.

When i’m optimistic, i think
maybe i’m just a late bloomer.

i know a lot of folks won’t
understand this perspective, but
when i was growing up, i was
always the smartest kid around. it
was expected that i would do great
things, by my mom, by my teach-
ers, and most importantly, by me. i
don’t know whether that’s a good
thing or bad thing, but high expec-
tations were always around me, and
for the first 10–15 years, the results
would seem to indicate that i likely
would do great things.

But after lots of good grades
and academic achievements (i
skipped 8th grade and another in
high school), that kind of stopped
happening. i went to college early,
and found out that performing well
wasn’t always based on being smart.
Hard work and regular, consistent
effort was also required…and i
wasn’t really very good at those
things. i also had a lot of trouble in
college with too many fun things to
do, many of which didn’t involve
school. i got really good at playing
foosball, pool, frisbee, going to lots
of parties, and making friends, but

i kind of barely made it to gradua-
tion. Although i did make Dean’s
list later in college, i was also on
probation a few times, and i spent
a lot of time doing “recreational
activities” (ahem) which caused a
lot of pain and hassle for me, and
probably even more for my family.
i got through those times, but i
started to think about all the things
i was supposed to be, and the real-
ity was that i wasn’t quite getting to
the goals that had been expected. i
didn’t become an astronaut, or an
astrophysicist, or a great singer or
dancer or pianist, i didn’t end up
in politics, i didn’t join the peace
corps, i didn’t get a PhD or even a
masters degree. By my mid-twen-
ties, i had headed west to California
in search of myself. barely managed
to become a decent programmer
who bounced around a few jobs,
and wasn’t really sure where i was
going next.

By my late twenties, i stumbled
into running my own consulting
firm, which sort of became my first
startup. We had a lot of ups and
downs, and although we won a few
awards and did some interesting
and innovative work, after five-to-
six years of trials and tribulations
and serious questioning of my

own ability as an entrepreneur and
leader, i barely escaped bankruptcy
multiple times and ended up with
only a very small and desperate
acquisition that was hardly anything
to brag about. i didn’t take the
job with Microsoft or intel in the
early ‘90s, and i didn’t join yahoo
or Netscape in the late ‘90s. i had
applied to business school at Stan-
ford, but didn’t get in. i was fortu-
nate to get a job at PayPal in 2001
after the first dot-com blowup, but
it wasn’t with any fanfare, and i was
struggling to adjust to a new career
in marketing, working with people
ten years younger than me from
Stanford and Mit who seemed to
have their shit together a lot more
than i did. After three years’ hard
work at PayPal, i made some prog-
ress, but didn’t get any promotions
and mostly got shuffled around
working with three different bosses
who really didn’t know what to do
with me. in fact, i felt lucky i didn’t
get fired during my time there,
and as i walked out the door i was
relieved no one had figured out i
was a lame duck who didn’t know
where the hell i was going.

Late Bloomer, Not A Loser

 15

Don’t get me wrong: PayPal was
a great place and i made some
wonderful friendships and learned
a hell of a lot. My own startup
had been a comedy of errors, but
i did learn a lot about running a
business (mostly what not to do)
and learned a lot about myself in
the process. i also ran a lot of user
groups and events, and realized i
was pretty good at marketing, and
i really loved technology and the
Silicon valley culture. But i still felt
like an unfocused underachiever,
and at forty i hadn’t accomplished
much other than finding a good
woman foolish enough to marry
me, and somehow managing to
father two wonderful children i
was vastly unqualified to raise. i
joined Simply Hired for a few years
and did some work i was proud of
there, but then continued bounc-
ing around at consulting gigs with
oDesk, Mint.com, O’reilly Media,
and others where i still felt like
i didn’t quite fit in and wasn’t
making the impact i had hoped. At
Mint, i was again fortunate to work
with some amazing people, but
Aaron correctly assessed i wasn’t
really the right guy for the job, and
i felt lucky to just play a small part
in a decent success story. (Aaron

did let me invest some money in
the company, which worked out
pretty well for me; thanks Aaron!)

So after twenty years in the
valley, i had made only a little
bit of money, had some modest
accomplishments as a programmer,
an entrepreneur, and a marketer.
Meanwhile my peers at PayPal had
gone on to create incredible busi-
nesses like Linkedin, youtube, yelp,
and yammer, and other kids half
my age were seemingly even more
ambitious. Most folks thought i was
a decent fellow, but over the hill
with my best days behind me…and
i guess i thought so, too. i watched
as other friends helped make com-
panies like Google and Facebook
and twitter into juggernauts, but
mostly i was on the sidelines, only
peripherally involved in their big
ideas. But i had started doing some
angel investing when i left PayPal
in 2004, and after finding Mint.
com, SlideShare, and Mashery, i
figured maybe i had some talent as
an investor — since it seemed like i
was only a half-assed entrepreneur.

So after some small notoriety in
2007 teaching a class on Facebook
at Stanford (strangely, a school
where i wasn’t good enough to get
accepted as a student, somehow let

me become a visiting lecturer), i
decided i’d try to become a venture
capitalist. My timing was of course
impeccable, and as i was attempting
to raise a small fund in the summer
of 2008, the next huge financial
crisis hit and the bottom fell out of
the market. Again i was fortunate,
and my plan B was to humbly say
yes to a job offer by Sean Parker to
help do some marketing and invest-
ing at Founders Fund. i was likely
the only person hired in the entire
venture industry in Q4 of 2008
(thanks, Sean, i owe you one). i
threw myself into the job, and after
a year and a half had made some
decent picks investing in twilio,
SendGrid, Wildfire, and taskrab-
bit among others. Along the way, i
also got the opportunity to run the
Facebook fbFund for a short time,
and made some friends at Accel,
redpoint, and Bluerun. these
folks, along with Founders Fund,
Mitch kapor, Michael Birch, Fred
Wilson, Brad Feld, Marc Andrees-
sen, and several other generous
souls helped me to finally and
barely raise a small fund in 2010
that i brazenly named 500 Startups.
[500.co]

“Nowhere near a great success story, yet
fighting the good fight and perhaps
helping others to achieve greatness as
I attempt a bit of my own.”

http://500.co

16 STARTUPS

it would have been easy at any
point in this journey to rational-
ize my limited success, and accept
being a small cog in a bigger wheel,
at likely much better pay and much
less stress. But i was still hoping
i had a little fire in the belly, and
maybe some gas left in the tank to
make something more of myself,
before i ended up with just a
broken spirit and a comfortable life.

And so here i am: still standing in
the arena, in hand-to-hand combat
with demons mostly of my own
making, aiming to make a small
dent in the universe. Nowhere near
a great success story, yet fighting
the good fight and perhaps help-
ing others to achieve greatness as
i attempt a bit of my own. i’ll be
forty-six in a month, well past the
age when most folks have already
shown what they’re made of. But
i’m still grasping for that brass ring.

i don’t mean to whine or bemoan
my lot in life — i’ve been far more
than lucky, and i’ve had a great
time on this planet. i have nothing
to complain about, nor will it be
the end of the world if all i get to
do in the next thirty-to-forty years
is to breathe in the air. All things
said, it’s been a wonderful life.

But i’m not giving up yet.
i’m still betting my epitaph

will read “late bloomer,” and not
“failure.”

Wish me luck! n

Dave McClure is a geek, startup investor,
former software developer & entrepreneur,
occasional tech blogger and internet mar-
keting nerd. He’s lived in Silicon Valley for
over 20 years and loved every minute. Dave
is the founding partner of 500 Startups, an
Internet seed fund and startup incubator
that has invested in ~400 companies all
over the world.

 n Four books. 28 hours of screencasts. two online courses.

result: Zero specs in my rails project.

 n Old pair of shoes. treadmill. One mile in 20 mins, 23 seconds.

result: 866 miles traveled by foot this year.

Why did i fail so hard at one activity and succeed at the other?
With a bit of hindsight, i am starting to figure out the answer.

the first activity (doing tDD in a rails project of mine) suffered
from extreme analysis paralysis. After working as a professional
developer for two years, it is so hard for me to just dive in and start
sucking at something. i want to learn the best practices so i don’t
“waste” time doing it incorrectly.

But in this case, best practices are a poison; a hindrance that
prevents me from even writing the first spec in my project until
i have a perfect vision and roadmap for achieving some mystical
tDD nirvana.

in contrast, i was able to ignore this mental roadblock in the
second activity. Like many before me, i started the New year want-
ing to get into better shape. But instead of finding a book or reading
posts on reddit.com/r/running for 2 months, i did something different.

i found an old pair of shoes, got on the treadmill, and just started
running. And man, did i really suck at running.

But i didn’t care. i could see my improvement every week —
the time to run a mile went down, the speed and distance went
up (slowly!).

in the software domain, i struggled to convince myself that it
was okay to regress in an area as i learned and improved. instead
of starting from the beginning, i tried to skip straight to mastery.
With running, my activities were directly related to practicing and
improving. instead of reading guides or spending hours on Amazon
trying to find the perfect shoes, i was actually running.

A few weeks ago, i finally went to get some proper running shoes.
Once i got to the store, i reverted back to full “Engineer Mode” —
trying to determine which brand of shoe was optimal, how many
pairs of wicking socks i would need, etc. — when the trainer looked
over and made a comment that really resonated with me:

“Want to know the secret to improving your running?
Move your feet.” n

Matt Swanson is a software engineer from Indiana and he ships code at SEP.
When he’s not hacking on side projects, Matt writes about his thoughts on
software and personal development at swanson.github.com and tries to
make jokes on Twitter (@_swanson).

Move Your Feet
By MAtt SWANSON

Reprinted with permission of the original author.
First appeared in hn.my/bloom (500hats.com)

Reprinted with permission of the original author. First appeared in hn.my/feet (swanson.github.com)

http://reddit.com/r/running
http://swanson.github.com
http://twitter.com/@_swanson
http://hn.my/bloom
http://hn.my/feet

http://kiurma.com/products_magazine

18 STARTUPS

By BOriS WErtZ

With tens of thou-
sands of new
startups being cre-

ated every year, the potential of a
company to truly scale and become
a large, standalone business is more
crucial than ever before. A great
product is always the foundation,
but a clear distribution strategy
becomes essential to cut through
the noise. So most early-stage vCs
have started to evaluate invest-
ment opportunities with an imagi-
nary benchmark in mind: can this
company become a $100 million
opportunity?

Generally speaking, there are two
ways (and only two ways) to scale
a business to hit that $100 million
threshold:

 n your business has a high Life
time value (Ltv) per user,
giving you the freedom to spend
a significant amount of money in
customer acquisition. High Ltv
can usually be found in transac-
tional or subscription businesses.

 n your business has a high viral co-
efficient (or perhaps even a net-
work effect) that lets you amass

users cheaply without worrying
too much about the monetization
per user or spending money on
paid acquisition.

Route ➊ High LTV Per User
the exact definition of a “high” user
Ltv depends on the specific verti-
cal, so it’s typically better to analyze
the ratio between Customer Acqui-
sition Costs (CAC) and the Ltv
of the customer. in my experience,
having an Ltv that’s three to four
times greater than CAC makes a
business interesting.

the biggest driver for high Ltv
is repeat purchase behavior (in an
e-commerce business) and a respec-
tively low churn rate (in a SaaS
company). Companies that score
highest in this area are typically:
e-commerce businesses that fulfill
regular needs and offer a differenti-
ated experience or SaaS businesses
that help businesses or individuals
manage core activities.

As a vC, the biggest challenge
in evaluating Ltv models is that
metrics can dramatically change
at scale. For example, CACs often
increase once the more efficient

marketing channels are maxed out
and the company needs to find new
users through less efficient means.
in addition, churn tends to rise as
a company grows. Early users of a
product are often strong advocates
and company ambassadors, while
those users acquired through paid
marketing channels down the road
show far less loyalty.

Route ➋ The Viral Effect
the other way to scale a business
is through a strong viral and/or
network effect that lets businesses
grow to tens or even hundreds of
millions of users. With this model,
user acquisition is generally close
to free and monetization per user
is often low (advertising-based or
freemium businesses).

Many businesses built in the early
days of the Facebook platform (like
Zynga) benefitted from a huge viral
co-efficient and scaled very rapidly.
(As we all know, this is no longer
the case as Facebook has essentially
removed most of the free viral
channels and businesses must now
pay for most of their user acquisi-
tion via Facebook.)

The Only Two Ways to Build
a $100 Million Business

 19

Even more interesting are busi-
nesses that create network effects like
marketplaces or social networks. Not
only do they acquire lots of users for
free due to viral effects but also create
important barriers to entry and lock-in
effects as the network grows over time.

Startup Purgatory: No Man’s Land
unfortunately, many consumer inter-
net startups find themselves stuck in
the middle of these two strategies:
they have a low monetization per user
and limited viral effects. that unfortu-
nate combination makes it rather dif-
ficult to reach the $100 million mark.

As the consumer internet space
becomes more and more crowded,
every startup founder needs to think
about these two ways to scale a busi-
ness. too often i have seen entre-
preneurs believe that customers will
automatically flock to their cool new
service, completely underestimating
how tough it is to cut through the
noise and build an audience.

to build a standalone company and
capture the attention of investors, you
need a viable way to scale your busi-
ness. the earlier you figure this out
the better, since it may require you to
build your product differently. While
the $100 million mark may seem far
away in those early days, it’s impor-
tant to begin thinking about paths to
reach this threshold from the start. n

Boris Wertz is one of the top tech early-stage
investors in North-America and the found-
ing partner of version one ventures. His
portfolio encompasses over 35 early-stage
consumer internet and mobile companies.
Boris is a venture partner of Munich-based
Acton Capital Partners, a consumer Internet
fund that is focused on later stage companies
with an established track record of revenues
and profitability. He is also one of the found-
ers of GrowLab, a Vancouver-based start-up
accelerator.

i find that i — as well as many people i know — fall into
a very dangerous trap. i call it the “Work” trap. What
is it? it’s both a procrastination technique and a way

of staying in your comfort zone while feeling or seeming
productive.

you fall into the trap when you forgo other, perhaps ben-
eficial, activities because you have “too much work to do.”
you turn down a coffee with someone new, avoid going to
an interesting meetup, or put off replying to (or initiating)
important emails.

How many times have you made that excuse? How many
more times have you made that excuse, then failed to even
actually do any work?

For many people, “doing work” is easy in comparison to
these activities: it’s known, familiar, expected, and the best
part is that it’s also time consuming and “productive.” in
reality, doing these things could be equally — if not more
— beneficial than just attempting to get more work done.

i’m not going to make a bulleted five-point list of things
you can do to avoid this trap — everyone justifies it dif-
ferently. Just recognize when you’re falling into the trap
out of comfort, as opposed to a true, driving need to get
something done. n

Joshua Gross is a freelance web developer and designer based out
if Brooklyn, NY. Beyond creating fun stuff for the web (Kerning.js &
more), he spends way too much time playing with Polaroid cameras.

The “Work” Trap
By JOSHuA GrOSS

Reprinted with permission of the original author.
First appeared in hn.my/100mil (versiononeventures.com)

Reprinted with permission of the original author.
First appeared in hn.my/trap (unwieldy.net)

Image credit: flickr.com/photos/kwl/5199093132/

http://hn.my/100mil
http://hn.my/trap
http://flickr.com/photos/kwl/5199093132/

20 PROGRAMMING

PROGRAMMING

By NOAH SuSSMAN

Over the past couple of
years i have spent a
lot of time debugging

other engineers’ test code. this
was interesting work, occasionally
frustrating but always informative.
One might not immediately think
that test code would have bugs, but
of course all code has bugs and tests
are no exception.

i have repeatedly been con-
founded to discover just how
many mistakes in both test and
application code stem from mis-
understandings or misconceptions
about time. By this i mean both the
interesting way in which computers
handle time, and the fundamental

“gotchas” inherent in how we
humans have constructed our cal-
endar — daylight savings being just
the tip of the iceberg.

in fact i have seen so many of
these misconceptions crop up
in other people’s (and my own)
programs that i thought it would be
worthwhile to collect a list of the
more common problems here.

All of these assumptions are
wrong

 n there are always 24 hours in a
day.

 n Months have either 30 or 31
days.

 n years have 365 days.

 n February is always 28 days long.

 n Any 24-hour period will always
begin and end in the same day
(or week, or month).

 n A week always begins and ends in
the same month.

 n A week (or a month) always
begins and ends in the same year.

 n the machine that a program runs
on will always be in the GMt
time zone.

 n Ok, that’s not true. But at least
the time zone in which a program
has to run will never change.

Falsehoods Programmers
Believe About Time

 21

 n Well, surely there will never be
a change to the time zone in
which a program has to run in
production.

 n the system clock will always be
set to the correct local time.

 n the system clock will always be
set to a time that is not wildly
different from the correct local
time.

 n if the system clock is incorrect,
it will at least always be off by a
consistent number of seconds.

 n the server clock and the client
clock will always be set to the
same time.

 n the server clock and the client
clock will always be set to around
the same time.

 n Ok, but the time on the server
clock and time on the client clock
would never be different by a
matter of decades.

 n if the server clock and the client
clock are not in synch, they will
at least always be out of synch by
a consistent number of seconds.

 n the server clock and the client
clock will use the same time
zone.

 n the system clock will never be
set to a time that is in the distant
past or the far future.

 n time has no beginning and no
end. [hn.my/2038]

 n One minute on the system clock
has exactly the same duration as
one minute on any other clock.
[hn.my/atomic]

 n Ok, but the duration of one
minute on the system clock will
be pretty close to the duration of
one minute on most other clocks.

 n Fine, but the duration of one
minute on the system clock
would never be more than an
hour.

 n you can’t be serious.

 n the smallest unit of time is one
second.

 n Ok, one millisecond.

 n it will never be necessary to set
the system time to any value
other than the correct local time.

 n Ok, testing might require setting
the system time to a value other
than the correct local time, but it
will never be necessary to do so
in production.

 n time stamps will always be
specified in a commonly under-
stood format like 1339972628 or
133997262837.

 n time stamps will always be speci-
fied in the same format.

 n time stamps will always have the
same level of precision.

 n 3A time stamp of sufficient
precision can safely be considered
unique.

 n A timestamp represents the time
that an event actually occurred.

 n Human-readable dates can be
specified in universally under-
stood formats such as 05/07/11.

 Wait, There’s More!
that thing about a minute being
longer than an hour was a joke,
right?

No.
there was a fascinating

bug in older versions of kvM
[hn.my/kvm] on CentOS. Spe-
cifically, a kvM virtual machine
had no awareness that it was not

running on physical hardware. this
meant that if the host OS put the
vM into a suspended state, the vir-
tualized system clock would retain
the time that it had had when it
was suspended. For example, if the
vM was suspended at 13:00 and
then brought back to an active
state two hours later (at 15:00), the
system clock on the vM would still
reflect a local time of 13:00. the
result was that every time a kvM
vM went idle, the host OS would
put it into a suspended state and
the vM’s system clock would start
to drift away from reality, some-
times by a large margin depending
on how long the vM had remained
idle.

there was a cron job that could
be installed to keep the virtual-
ized system clock in line with the
host OS’s hardware clock. But it
was easy to forget to do this on
new vMs and failure to do so led
to much hilarity. the bug has been
fixed in more recent versions. n

Noah Sussman has been helping bricks-
and-mortar businesses to leverage the
Web since 1999. Thus he has had had
ample opportunity to think about the
discrepancies between how computers
and people see the world. He lives in New
York with his wife and two cats.

Reprinted with permission of the original author.
First appeared in hn.my/falsetime (infiniteundo.com)

http://hn.my/2038
http://hn.my/atomic
http://hn.my/kvm
http://hn.my/falsetime

22 PROGRAMMING

in this article i want to explore
what happens when a statically
linked program gets executed

on Linux. By statically linked i
mean a program that does not
require any shared objects to run,
even the ubiquitous libc. in reality,
most programs encountered on
Linux aren’t statically linked and do
require one or more shared objects
to run. However, the running
sequence of such programs is more
involved, which is why i want to
present statically linked programs
first. it will serve as a good basis
for understanding, allowing me to
explore most of the mechanisms
involved with less details getting in
the way.

The Linux kernel
Program execution begins in the
Linux kernel. to run a program, a
process will call a function from the
exec family. the functions in this
family are all very similar, differ-
ing only in small details regarding
the manner of passing arguments
and environment variables to the
invoked program. What they all end
up doing is issuing the sys_execve
system call to the Linux kernel.

sys_execve does a lot of work
to prepare the new program for
execution. Explaining it all is far
beyond the scope of this article — a
good book on kernel internals can
be helpful to understand the details.
i’ll just focus on the stuff useful for
our current discussion.

As part of its job, the kernel must
read the program’s executable file
from disk into memory and prepare
it for execution. the kernel knows
how to handle a lot of binary file
formats and tries to open the file
with different handlers until it suc-
ceeds (this happens in the function
search_binary_handler in fs/
exec.c). We’re only interested in
ELF here, however. For this format
the action happens in function load_
elf_binary (in fs/binfmt_elf.c).

the kernel reads the ELF header
of the program and looks for a
PT_INTERP segment to see if an
interpreter was specified. Here
the statically linked vs. dynami-
cally linked distinction kicks in. For
statically linked programs, there is
no PT_INTERP segment. this is the
scenario this article covers.

the kernel then maps the
program’s segments into memory,
according to the information con-
tained in the ELF program headers.
Finally, it passes the execution, by
directly modifying the iP register, to
the entry address read
from the ELF header
of the program
(e_entry). Arguments
are passed to the
program on the stack
(the code responsible
for this is in create_
elf_tables). Here’s
the stack layout when
the program is called,
for x64:

 At the top of the stack is argc,
the amount of command-line argu-
ments. it is followed by all the argu-
ments themselves (each a char*),
terminated by a zero pointer. then,
the environment variables are listed
(also a char* each), terminated
by a zero pointer. the observant
reader will notice that this argu-
ment layout is not what one usually
expects in main. this is because
main is not really the entry point
of the program, as the rest of the
article shows.

Program entry point
So, the Linux kernel reads the pro-
gram’s entry address from the ELF
header. Let’s now explore how this
address gets there.

unless you’re doing something
very funky, the final program binary
image is probably being created by
the system linker — ld. By default,
ld looks for a special symbol called
_start in one of the object files
linked into the program and sets
the entry point to the address of

that symbol. this will be
simplest to demonstrate
with an example written
in assembly (the following
is NASM syntax):

By ELi BENDErSky

How Statically Linked Programs
Run on Linux

 23

section .text
 ; The _start symbol must be declared for the linker (ld)
 global _start

_start:
 ; Execute sys_exit call. Argument: status -> ebx
 mov eax, 1
 mov ebx, 42
 int 0x80

this is a very basic program that simply returns 42. Note that it has
the _start symbol defined. Let’s build it, examine the ELF header and its
disassembly:

$ nasm -f elf64 nasm_rc.asm -o nasm_rc.o
$ ld -o nasm_rc64 nasm_rc.o
$ readelf -h nasm_rc64
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 ...
 Entry point address: 0x400080
 ...
$ objdump -d nasm_rc64

nasm_rc64: file format elf64-x86-64

Disassembly of section .text:

0000000000400080 <_start>:
 400080: b8 01 00 00 00 mov $0x1,%eax
 400085: bb 2a 00 00 00 mov $0x2a,%ebx
 40008a: cd 80 int $0x80

As you can see, the entry point address in the ELF header was set to
0x400080, which also happens to be the address of _start.

ld looks for _start by default, but this behavior can be modified by
either the --entry command-line flag or by providing an ENTRY command
in a custom linker script.

The entry point in C code
We don’t, however, usually write our code in assembly. the situation is
different for C/C++ because the entry point familiar to users is the main
function and not the _start symbol. Now it’s time to explain how these
two are related.

Let’s start with this simple C program, which is functionally equivalent
to the assembly shown above:

int main() {
 return 42;
}

i will compile this code into an
object file and then attempt to
link it with ld, like i did with the
assembly:

$ gcc -c c_rc.c
$ ld -o c_rc c_rc.o
ld: warning: cannot find entry
symbol _start; defaulting to
00000000004000b0

Whoops, ld can’t find the entry
point. it tries to guess using a
default, but it won’t work — the
program will segfault when run. ld
obviously needs some additional
object files where it will find the
entry point. But which object files
are these? Luckily, we can use gcc
to find out. gcc can act as a full
compilation driver, invoking ld as
needed. Let’s now use gcc to link
our object file into a program. Note
that the -static flag is passed to
force static linking of the C library
and the gcc runtime library:

$ gcc -o c_rc -static c_rc.o
$ c_rc; echo $?
42

it works. So how does gcc
manage to do the linking correctly?
We can pass the -Wl, -verbose flag
to gcc, which will spill the list of
objects and libraries it passed to
the linker. By doing this, we’ll see
additional object files like crt1.o
and the whole libc.a static library
(which has objects with telling
names like libc-start.o). C code
does not live in a vacuum. to run,
it requires some support libraries,
such as the gcc runtime and libc.

Since it obviously linked and ran
correctly, the program we built with
gcc should have a _start symbol
at the right place. Let’s check:

24 PROGRAMMING

$ readelf -h c_rc
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 03 00 00 00 00 00 00 00 00
 Class: ELF64
 ...
 Entry point address: 0x4003c0
 ...

$ objdump -d c_rc | grep -A15 "<_start"
00000000004003c0 <_start>:
 4003c0: 31 ed xor %ebp,%ebp
 4003c2: 49 89 d1 mov %rdx,%r9
 4003c5: 5e pop %rsi
 4003c6: 48 89 e2 mov %rsp,%rdx
 4003c9: 48 83 e4 f0 and
$0xfffffffffffffff0,%rsp
 4003cd: 50 push %rax
 4003ce: 54 push %rsp
 4003cf: 49 c7 c0 20 0f 40 00 mov $0x400f20,%r8
 4003d6: 48 c7 c1 90 0e 40 00 mov $0x400e90,%rcx
 4003dd: 48 c7 c7 d4 04 40 00 mov $0x4004d4,%rdi
 4003e4: e8 f7 00 00 00 callq 4004e0 <__
libc_start_main>
 4003e9: f4 hlt
 4003ea: 90 nop
 4003eb: 90 nop

indeed, 0x4003c0 is the address of _start and it’s the program
entry point. However, what is all that code at _start? Where does
it come from, and what does it mean?

Decoding the start sequence of C code
the startup code shown above comes from glibc — the GNu
C library, where for x64 ELF it lives in the file sysdeps/x86_64/
start.S. its goal is to prepare the arguments for a function named
__libc_start_main and call it. this function is also part of glibc and
lives in csu/libc-start.c. Here is its signature, formatted for clarity
and with added comments to explain what each argument means:

int __libc_start_main(
 /* Pointer to the program's main function */
 (int (*main) (int, char**, char**),
 /* argc and argv */
 int argc, char **argv,
 /* Pointers to initialization and finalization functions*/
 __typeof (main) init, void (*fini) (void),
 /* Finalization function for the dynamic linker */
 void (*rtld_fini) (void),
 /* End of stack */
 void* stack_end)

Anyway, with this signature and the
AMD64 ABi in hand, we can map the
arguments passed to __libc_start_main
from _start:

main: rdi <-- $0x4004d4
argc: rsi <-- [RSP]
argv: rdx <-- [RSP + 0x8]
init: rcx <-- $0x400e90
fini: r8 <-- $0x400f20
rdld_fini: r9 <-- rdx on entry
stack_end: on stack <-- RSP

you’ll also notice that the stack is
aligned to 16 bytes and some garbage is
pushed on top of it (rax) before push-
ing rsp itself. this is to conform to the
AMD64 ABi. Also note the hlt instruc-
tion at address 0x4003e9. it’s a safeguard
in case __libc_start_main did not exit
(as we’ll see, it should). hlt can’t be
executed in user mode, so this will raise
an exception and crash the process.

Examining the disassembly, it’s easy
to verify that 0x4004d4 is indeed main,
0x400e90 is __libc_csu_init and 0x400f20
is __libc_csu_fini. the kernel also passes
another argument to _start — a finish
function for shared libraries to use (in rdx).

The C library start function
Now that we understand how it’s being
called, what does __libc_start_main
actually do? ignoring some details that are
probably too specialized to be interesting
in the scope of this article, here’s a list of
things that it does for a statically linked
program:

1. Figure out where the environment
variables are on the stack.

2. Prepare the auxiliary vector, if
required.

3. initialize thread-specific functionality
(pthreads, tLS, etc.).

4. Perform some security-related book-
keeping (this is not really a separate
step, but it is trickled all through the
function).

 25

5. initialize libc itself.

6. Call the program initialization
function through the passed
pointer (init).

7. register the program finalization
function (fini) for execution on
exit.

8. Call main(argc, argv, envp).

9. Call exit with the result of main
as the exit code.

Digression: init and fini
Some programming environments
(most notably C++, to construct
and destruct static and global
objects) require running custom
code before and after main. this is
implemented by means of coopera-
tion between the compiler/linker
and the C library. For example, the
__libc_csu_init (which, as you

can see above, is called before the
user’s main) calls into special code
that’s inserted by the linker. the
same goes for __libc_csu_fini and
finalization.

you can also ask the compiler to
register your function to be exe-
cuted as one of the constructors or
destructors. For example:

#include <stdio.h>

int main() {
 return 43;
}

__attribute__((constructor))
void myconstructor() {
 printf("myconstructor\n");
}

myconstructor will run before
main. the linker places its address
in a special array of constructors

located in the .ctors section.
__libc_csu_init goes over this array
and calls all functions listed in it.

Conclusion
this article demonstrates how a
statically linked program is set up to
actually run on Linux. in my opin-
ion, this is a very interesting topic
to study because it demonstrates
how several large components of
the Linux eco-system cooperate to
enable the program execution pro-
cess. in this case, the Linux kernel,
the compiler and linker, and the C
library are involved. n

Eli Bendersky is an Israeli programmer cur-
rently living and working in the Silicon
Valley. He likes to disassemble software
systems, understanding how they work
deep down.

A software architect lives
to serve the engineering
team — not the other

way around.
A software architect is a mentor.
A software architect is a student.
A software architect is the code

janitor, happily sweeping up after
the big party is over.

A software architect helps
bring order where there is chaos,
guidance where there is ambigu-
ity, and decisions where there is
disagreement.

A software architect codes the
parts of the system that are the
most precious and understands
them through and through.

A software architect creates
a vocabulary to enable efficient
communication across an entire
company.

A software architect reads far
more code than he or she writes,
catching bugs before they manifest
as systems change.

A software architect provides
technological and product vision
without losing sight of the present
needs.

A software architect admits when
he or she is wrong and never gloats
when right.

A software architect gives credit
where it is due and takes pride
simply in a job well done. n

Husband & Father, Software Architect for
@Caring, Rubyist, Creator of the Compass
stylesheet framework, Sass Core Devel-
oper, Beer Drinker, Alumnus of Caltech.

By CHriS EPPStEiNA Software Architect

Reprinted with permission of the original author.
First appeared in hn.my/slinked (eli.thegreenplace.net)

Reprinted with permission of the original author.
First appeared in hn.my/architect (coderwall.com)

http://twitter.com/Caring
http://hn.my/slinked
http://hn.my/architect

26 PROGRAMMING

By ALAN O’DONNELL

Coming from a background in higher-level
languages like ruby, Scheme, and Haskell,
learning C can be challenging. in addition

to having to wrestle with C’s lower-level features like
manual memory management and pointers, you have
to make do without a rEPL. Once you get used to
exploratory programming in a rEPL, having to deal
with the write-compile-run loop is a bit of a bummer.

it occurred to me recently that i could use GDB as
a pseudo-rEPL for C. i’ve been experimenting with
using GDB as a tool for learning C, rather than merely
debugging C, and it’s a lot of fun.

My goal in this post is to show you that GDB is a
great tool for learning C. i’ll introduce you to a few of
my favorite GDB commands, and then i’ll demonstrate
how you can use it to understand a notoriously tricky
part of C: the difference between arrays and pointers.

An introduction to GDB
Start by creating the following little C program,
minimal.c:

int main()
{
 int i = 1337;
 return 0;
}

Note that the program does nothing and has not a
single printf statement.1 Behold the brave new world
of learning C with GDB! Compile it with the -g flag
so that GDB has debug information to work with, and
then feed it to GDB:

$ gcc -g minimal.c -o minimal
$ gdb minimal

you should now find yourself at a rather stark GDB
prompt. i promised you a rEPL, so here goes:

(gdb) print 1 + 2
$1 = 3

Amazing! print is a built-in GDB command that
prints the evaluation of a C expression. if you’re unsure
of what a GDB command does, try running help name-
of-the-command at the GDB prompt.

Here’s a somewhat more interesting example:

(gbd) print (int) 2147483648
$2 = -2147483648

i’m going to ignore why 2147483648 ==
-2147483648; the point is that even arithmetic can be
tricky in C, and GDB understands C arithmetic.

Let’s now set a breakpoint in the main function and
start the program:

(gdb) break main
(gdb) run

the program is now paused on line 3, just before i
gets initialized. interestingly, even though i hasn’t been
initialized yet, we can still look at its value using the
print command:

(gdb) print i
$3 = 32767

Learning C with GDB

 27

in C, the value of an uninitialized local variable is
undefined, so GDB might print something different for
you!

We can execute the current line with the next
command:

(gdb) next
(gdb) print i
$4 = 1337

Examining memory with x
variables in C label contiguous chunks of memory. A
variable’s chunk is characterized by two numbers:

1. the numerical address of the first byte in the
chunk.

2. the size of the chunk, measured in bytes. the size
of a variable’s chunk is determined by the variable’s
type.

One of the distinctive features of C is that you have
direct access to a variable’s chunk of memory. the &
operator computes a variable’s address, and the sizeof
operator computes a variable’s size in memory.

you can play around with both concepts in GDB:

(gdb) print &i
$5 = (int *) 0x7fff5fbff584
(gdb) print sizeof(i)
$6 = 4

in words, this says that i’s chunk of memory starts
at address 0x7fff5fbff5b4 and takes up four bytes of
memory.

i mentioned above that a variable’s size in memory is
determined by its type, and indeed, the sizeof opera-
tor can operate directly on types:

(gdb) print sizeof(int)
$7 = 4
(gdb) print sizeof(double)
$8 = 8

this means that, on my machine at least, int vari-
ables take up four bytes of space and double variables
take up eight.

GDB comes with a powerful tool for directly
examining memory: the x command. the x command
examines memory, starting at a particular address. it
comes with a number of formatting commands that
provide precise control over how many bytes you’d like

to examine and how you’d like to print them; when in
doubt, try running help x at the GDB prompt.

the & operator computes a variable’s address, so that
means we can feed &i to x and thereby take a look at
the raw bytes underlying i’s value:

(gdb) x/4xb &i
0x7fff5fbff584: 0x39 0x05 0x00 0x00

the flags indicate that i want to examine 4 values,
formatted as hex numerals, one byte at a time. i’ve
chosen to examine four bytes because i’s size in
memory is four bytes; the printout shows i’s raw byte-
by-byte representation in memory.

One subtlety to bear in mind with raw byte-by-byte
examinations is that on intel machines, bytes are stored
in “little-endian” order: unlike human notation, the least
significant bytes of a number come first in memory.

One way to clarify the issue would be to give i a
more interesting value and then re-examine its chunk
of memory:

(gdb) set var i = 0x12345678
(gdb) x/4xb &i
0x7fff5fbff584: 0x78 0x56 0x34 0x12

Examining types with ptype
the ptype command might be my favorite command.
it tells you the type of a C expression:

(gdb) ptype i
type = int
(gdb) ptype &i
type = int *
(gdb) ptype main
type = int (void)

types in C can get complex, but ptype allows you to
explore them interactively.

Pointers and arrays
Arrays are a surprisingly subtle concept in C. the plan
for this section is to write a simple program and then
poke it in GDB until arrays start to make sense.

Code up the following arrays.c program:

int main()
{
 int a[] = {1,2,3};
 return 0;
}

28 PROGRAMMING

Compile it with the -g flag, run it in GDB, and then
next over the initialization line:

$ gcc -g arrays.c -o arrays
$ gdb arrays
(gdb) break main
(gdb) run
(gdb) next

At this point you should be able to print the con-
tents of a and examine its type:

(gdb) print a
$1 = {1, 2, 3}
(gdb) ptype a
type = int [3]

Now that our program is set up correctly in GDB,
the first thing we should do is use x to see what a looks
like under the hood:

(gdb) x/12xb &a
0x7fff5fbff56c: 0x01 0x00 0x00 0x00 0x02
0x00 0x00 0x00
0x7fff5fbff574: 0x03 0x00 0x00 0x00

this means that a’s chunk of memory starts at
address 0x7fff5fbff5dc. the first four bytes store a[0],
the next four store a[1], and the final four store a[2].
indeed, you can check that sizeof knows that a’s size
in memory is twelve bytes:

(gdb) print sizeof(a)
$2 = 12

At this point, arrays seem to be quite array-like.
they have their own array-like types and store their
members in a contiguous chunk of memory. However,
in certain situations, arrays act a lot like pointers! For
instance, we can do pointer arithmetic on a:

(gdb) print a + 1
$3 = (int *) 0x7fff5fbff570

in words, this says that a + 1 is a pointer to an int
and holds the address 0x7fff5fbff570. At this point
you should be reflexively passing pointers to the x
command, so let’s see what happens:

(gdb) x/4xb a + 1
0x7fff5fbff570: 0x02 0x00 0x00 0x00

Note that 0x7fff5fbff570 is four more than
0x7fff5fbff56c, the address of a’s first byte in memory.
Given that int values take up four bytes, this means
that a + 1 points to a[1].

in fact, array indexing in C is syntactic sugar for
pointer arithmetic: a[i] is equivalent to *(a + i). you
can try this in GDB:

(gdb) print a[0]
$4 = 1
(gdb) print *(a + 0)
$5 = 1
(gdb) print a[1]
$6 = 2
(gdb) print *(a + 1)
$7 = 2
(gdb) print a[2]
$8 = 3
(gdb) print *(a + 2)
$9 = 3

We’ve seen that in some situations a acts like an
array and in others it acts like a pointer to its first ele-
ment. What’s going on?

the answer is that when an array name is used in a
C expression, it “decays” to a pointer to the array’s first
element. there are only two exceptions to this rule:
when the array name is passed to sizeof and when the
array name is passed to the & operator.

the fact that a doesn’t decay to a pointer when
passed to the & operator brings up an interesting ques-
tion: is there a difference between the pointer that a
decays to and &a?

Numerically, they both represent the same address:

(gdb) x/4xb a
0x7fff5fbff56c: 0x01 0x00 0x00 0x00
(gdb) x/4xb &a
0x7fff5fbff56c: 0x01 0x00 0x00 0x00

However, their types are different. We’ve already
seen that the decayed value of a is a pointer to a’s first
element; this must have type int *. As for the type of
&a, we can ask GDB directly:

(gdb) ptype &a
type = int (*)[3]

in words, &a is a pointer to an array of three integers.
this makes sense: a doesn’t decay when passed to &,
and a has type int [3].

 29

you can observe the distinction between a’s decayed
value and &a by checking how they behave with
respect to pointer arithmetic:

(gdb) print a + 1
$10 = (int *) 0x7fff5fbff570
(gdb) print &a + 1
$11 = (int (*)[3]) 0x7fff5fbff578

Note that adding 1 to a adds four to a’s address,
whereas adding 1 to &a adds twelve!

the pointer that a actually decays to is &a[0]:

(gdb) print &a[0]
$11 = (int *) 0x7fff5fbff56c

Conclusion
Hopefully i’ve convinced you that GDB is a neat
exploratory environment for learning C. you can print
the evaluation of expressions, examine raw bytes in
memory, and tinker with the type system using ptype.

if you’d like to experiment further with using GDB
to learn C, i have a few suggestions:

1. use GDB to work through the ksplice pointer chal-
lenge. [hn.my/ksplice]

2. investigate how a struct is stored in memory. How
does this compare to arrays?

3. use GDB’s disassemble command to learn assem-
bly programming! A particularly fun exercise is to
investigate how the function call stack works.

4. Check out GDB’s “tui” mode, which provides a
graphical ncurses layer on top of regular GDB.
On OS x, you’ll likely need to install GDB from
source. n

Alan is a self-taught programmer who works at Hacker School,
where he helps people (including himself) get better at program-
ming. His interests include math, concurrency, programming
languages, and the art of learning. He lives in Brooklyn and enjoys
Crossfit and playing fetch with his cat.

Reprinted with permission of the original author.
First appeared in hn.my/gdb (hackerschool.com)

http://hn.my/ksplice
http://hn.my/gdb

30 PROGRAMMING

By NiCHOLAS C. ZAkAS

Long before internet
Explorer became the
browser everyone loves

to hate, it was the driving force
of innovation on the internet.
Sometimes it’s hard to remember
all of the good internet Explorer
did before internet Explorer 6
became the scourge of web devel-
opers everywhere. Believe it or not,
internet Explorer 4-6 is heavily
responsible for web development
as we know it today. A number of
proprietary features became de
facto standards and then official
standards, with some ending up in
the HtML5 specification. it may
be hard to believe that internet
Explorer is actually to thank for
a lot of the features that we take
for granted today, but a quick walk
through history shows that it’s true.

DOM
if internet Explorer is a browser
that everyone loves to hate, the
Document Object Model (DOM)
is the APi that everyone loves
to hate. you can call the DOM
overly verbose, ill-suited for JavaS-
cript, and somewhat nonsensical,

and you would be correct on all
counts. However, the DOM gives
developers access to every part
of a webpage through JavaScript.
there was a time when you could
only access certain elements on the
page through JavaScript. internet
Explorer 3 and Netscape 3 only
allowed programmatic access to
form elements, images, and links.
Netscape 4 improved the situation
by expanding programmatic access
to the proprietary <layer> ele-
ment via document.layers. internet
Explorer 4 improved the situation
even further by allowing program-
matic access of every element on
the page via document.all.

in many regards, document.
all was the very first version of
document.getElementById(). you
still used an element’s iD to access
it through document.all, such as
document.all.myDiv or document.
all["myDiv"]. the primary differ-
ence was that internet Explorer
used a collection instead of the
function, which matched all other
access methods at the time, such
as document.images and document.
forms.

internet Explorer 4 was also the
first browser to introduce the ability
to get a list of elements by tag name
via document.all.tags(). For all
intents and purposes, this was the
first version of document.getEle-
mentsByTagName() and worked the
exact same way. if you want to get
all <div> elements, you would use
document.all.tags("div"). Even
in internet Explorer 9, this method
still exists and is just an alias for
document.getElementsByTagName().

internet Explorer 4 also intro-
duced us to perhaps the most
popular proprietary DOM exten-
sion of all time: innerHTML. it seems
that the folks at Microsoft realized
what a pain it would be to build
up a DOM programmatically and
afforded us this shortcut, along
with outerHTML, both of which
proved to be so useful that they
were standardized in HtML5. the
companion APis dealing with plain
text, innerText, and outerText,
also proved influential enough that
DOM Level 3 introduced text-
Content, which acts in a similar
manner to innerText.

The Innovations of
Internet Explorer

 31

Along the same lines, internet
Explorer 4 introduced insertAd-
jacentHTML(), yet another way of
inserting HtML text into a docu-
ment. this one took a little longer,
but it was also codified in HtML5
and is now widely supported by
browsers.

Events
in the beginning, there was no event
system for JavaScript. Both Netscape
and Microsoft took a stab at it
and each came up with different
models. Netscape brought us event
capturing, the idea that an event
is first delivered to the window,
then the document, and so on until
finally reaching the intended target.
Netscape browsers prior to version 6
supported only event capturing.

Microsoft took the opposite
approach and came up with event
bubbling. they believed that the
event should begin at the actual
target and then fire on the parents
and so on up to the document.
internet Explorer prior to version
9 only supported event bubbling.
Although the official DOM events
specification evolved to include both
event capturing and event bubbling,
most web developers use event
bubbling exclusively, with event
capturing being saved for a few
workarounds and tricks buried deep
down inside of JavaScript libraries.

in addition to creating event
bubbling, Microsoft also created
a bunch of additional events that
eventually became standardized:

 n contextmenu – Fires when you
use the secondary mouse button
on an element. First appeared
in internet Explorer 5 and later
codified as part of HtML5. Now
supported in all major desktop
browsers.

 n beforeunload – Fires before the
unload event and allows you
to block unloading of the page.
Originally introduced in inter-
net Explorer 4 and now part of
HtML5. Also supported in all
major desktop browsers.

 n mousewheel – Fires when the
mouse wheel (or similar device)
is used. the first browser to
support this event was internet
Explorer 6. Just like the others,
it’s now part of HtML5. the
only major desktop browser to
not support this event is Firefox
(which does support an alterna-
tive DOMMouseScroll event).

 n mouseenter – A non-bubbling
version of mouseover, introduced
by Microsoft in internet Explorer
5 to help combat the troubles
with using mouseover. this event
became formalized in DOM
Level 3 Events. Also supported
in Firefox and Opera, but not in
Safari or Chrome (yet?).

 n mouseleave – A non-bubbling
version of mouseout to match
mouseenter. introduced in
internet Explorer 5 and also now
standardized in DOM Level 3
Events. Same support level as
mouseenter.

 n focusin – A bubbling version of
focus to help more easily manage
focus on a page. Originally
introduced in internet Explorer
6 and now part of DOM Level 3
Events. Not currently well sup-
ported, though Firefox has a bug
opened for its implementation.

 n focusout – A bubbling version of
blur to help more easily manage
focus on a page. Originally
introduced in internet Explorer
6 and now part of DOM Level

3 Events. As with focusin, not
well supported yet, but Firefox is
close.

<iframe>
Frames were initially introduced by
Netscape Navigator 2 as a propri-
etary feature. this included <frame-
set>, <frame>, and <noframes>. the
idea behind this feature was pretty
simple: at the time, everyone was
using modems and roundtrips to
the server were quite expensive.
the main use case was to provide
one frame with navigational ele-
ments that would only be loaded
once and another frame that could
be controlled by the navigation and
changed separately. Saving server
render time and data transfer by
having navigation as a separate page
was a huge win at the time.

internet Explorer 3 supported
frames as well, since they were
becoming quite popular on the
web. However, Microsoft added
its own proprietary tag to that
functionality: <iframe>. the basic
idea behind this element was to
embed a page within another page.
Whereas Netscape’s implementa-
tion required you to create three
pages to have static navigation (the
navigation page, the content page,
and the frameset page), you could
create the same functionality in
internet Explorer using only two
pages (the primary page including
navigation, and the content page
within the <iframe>). initially, this
was one of the major battlegrounds
between internet Explorer and
Netscape Navigator.

the <iframe> started to become
more popular because it was less
work than creating framesets.
Netscape countered by introducing
<ilayer> in version 4, which had
very similar features to <iframe>.

32 PROGRAMMING

Of course, the <iframe> won out
and is now an important part of
web development. Both Netscape’s
frames and Microsoft’s <iframe>
were standardized in HtML4, but
Netscape’s frames were later obso-
leted (deprecated) in HtML5.

XML and Ajax
Although xML isn’t used nearly
as much in the web today as many
thought it would be, internet
Explorer also led the way with
xML support. it was the first
browser to support client-side xML
parsing and xSLt transformation
in JavaScript. unfortunately, it did
so through Activex objects repre-
senting xML documents and xSLt
processors. the folks at Mozilla
clearly thought there was some-
thing there because they invented
similar functionality in the form
of DOMParser, XMLSerializer, and
XSLTProcessor. the first two are
now part of HtML5. Although the
standards-based JavaScript xML
handling is quite different than
internet Explorer’s version, it was
undoubtedly influenced by internet
Explorer.

the client-side xML handling
was all part of internet Explorer’s
implementation of XMLHttpRequest,
first introduced as an Activex
object in internet Explorer 5. the
idea was to enable retrieval of
xML documents from the server
in a webpage and allow JavaS-
cript to manipulate that xML
as a DOM. internet Explorer’s
version requires you to use new
ActiveXObject("MSXML2.XMLHttp"),
also making it reliant upon ver-
sion strings and making developers
jump through hoops to test and
use the most recent version. Once
again, Firefox came along and
cleaned up the mess up by creating

a then-proprietary XMLHttpRequest
object that duplicated the inter-
face of internet Explorer’s version
exactly. Other browsers then copied
Firefox’s implementation, ulti-
mately leading to internet Explorer
7 creating an Activex-free version
as well. Of course, XMLHttpRequest
was the driving force behind the
Ajax revolution that got everybody
excited about JavaScript.

CSS
When you think of CSS, you proba-
bly don’t think much about internet
Explorer. After all, it’s the one that
tends to lag behind in CSS support
(at least up to internet Explorer
10). However, internet Explorer 3
was the first browser to implement
CSS. At the time, Netscape was pur-
suing an alternate proposal, JavaS-
cript Style Sheets (JSSS). As the
name suggested, this proposal used
JavaScript to define stylistic infor-
mation about the page. Netscape
4 introduced JSSS and CSS, a full
version behind internet Explorer.
the CSS implementation was less
than stellar, often translating styles
into JSSS in order to apply them
properly. that also meant that if
JavaScript was disabled, CSS didn’t
work in Netscape 4.

While internet Explorer’s imple-
mentation of CSS was limited to
font family, font size, colors, back-
grounds, and margins, the imple-
mentation was solid and usable.
Meanwhile, Netscape 4’s imple-
mentation was buggy and hard to
work with. yes, in some small way,
internet Explorer led to the success
of CSS.

the box model, an important
foundation of CSS, was heavily
influenced by internet Explorer.
their first implementation in
internet Explorer 5 interpreted

width and height to mean that
the element should be that size in
total, including padding and border.
this came to be known as border-
box sizing. the W3C decided that
the appropriate box sizing method
was content-box, where width and
height specified only the size of
the box in which the content lived
so that padding and border added
size to the element. While internet
Explorer switched its standards
mode to use the content-box
approach to match the standard,
internet Explorer 8 introduced
the box-sizing property as a way
for developers to switch back to
the border-box model. Of course,
box-sizing was standardized in
CSS3 and some, most notably Paul
irish, recommend that you should
change your default box-sizing to
border-box.

internet Explorer also brought us
other CSS innovations that ended
up being standardized:

 n text-overflow – used to show
ellipses when text is larger than
its container. First appeared in
internet Explorer 6 and standard-
ized in CSS3. Now supported in
all major browsers.

 n overflow-x and overflow-y –
Allows you to control overflow
in two separate directions of
the container. this property first
appeared in internet Explorer 5
and later was formalized in CSS3.
Now supported in all major
browsers.

 n word-break – used to specify
line-breaking rules between
words. Originally in internet
Explorer 5.5 and now standard-
ized in CSS3. Supported in all
major browsers except Opera.

 33

 n word-wrap – Specifies whether
or not the browser should break
lines in the middle of words. First
created for internet Explorer 5.5
and now standardized in CSS3 as
overflow-wrap, although all major
browsers support it as word-wrap.

Additionally, many of the new
CSS3 visual effects have internet
Explorer to thank for laying the
groundwork. internet Explorer 4
introduced the proprietary filter
property making it the first browser
capable of:

 n Generating gradients from CSS
instructions (CSS3: gradients).

 n Creating semitransparent ele-
ments with an alpha filter (CSS3:
opacity and rGBA).

 n rotating an element an arbitrary
number of degrees (CSS3: trans-
form with rotate()).

 n Applying a drop shadow to an
element (CSS3: box-shadow).

 n Applying a matrix transform to
an element (CSS3: transform
with matrix()).

Additionally, internet Explorer
4 had a feature called transitions,
which allowed you to create some
basic animation on the page using
filters. the transitions were mostly
based on the transitions commonly
available in PowerPoint at the time,
such as fading in or out, checker-
board, and so on.

All of these capabilities are
featured in CSS3 in one way or
another. it’s pretty amazing that
internet Explorer 4, released in
1997, had all of these capabilities
and we are now just starting to
get the same capabilities in other
browsers.

Other HTML5 contributions
there is a lot of HtML5 that
comes directly out of internet
Explorer and the APis introduced.
Here are some that have not yet
been mentioned in this post:

 n Drag and Drop – One of the
coolest parts of HtML5 is the
definition of native drag-and-
drop. this APi originated in
internet Explorer 5 and has been
described, with very few changes,
in HtML5. the main difference
is the addition of the draggable
attribute to mark arbitrary ele-
ments as draggable (internet
Explorer used a JavaScript call,
element.dragDrop() to do this).
Other than that, the APi closely
mirrors the original and is now
supported in all major desktop
browsers.

 n Clipboard Access – Now split
out from HtML5 into its own
spec. it grants the browser
access to the clipboard in certain
situations. this APi originally
appeared in internet Explorer 6
and was then copied by Safari,
who moved clipboardData off of
the window object and onto the
event object for clipboard events.
Safari’s change was kept as part
of the HtML5 version and
clipboard access is now available
in all major desktop browsers
except for Opera.

 n Rich Text Editing – rich text
editing using designMode was
introduced in internet Explorer
4 because Microsoft wanted a
better text editing experience
for Hotmail users. Later, internet
Explorer 5.5 introduced con-
tentEditable as a lighter weight
way of doing rich text editing.
Along with both of these came

the dreaded execCommand()
method and its associated meth-
ods. For better or worse, this APi
for rich text editing was standard-
ized in HtML5 and is currently
supported in all major desktop
browsers as well as Mobile Safari
and the Android browser.

Conclusion
While it’s easy and popular to poke
at internet Explorer, in reality, we
wouldn’t have the web as we know
it today if not for its contributions.
Where would the web be without
XMLHttpRequest and innerHTML?
those were the very catalysts for
the Ajax revolution of web applica-
tions, upon which a lot of the new
capabilities have been built. it seems
funny to look back at the browser
that has become a “bad guy” of the
internet and see that we wouldn’t
be where we are today without it.

yes, internet Explorer ha its
flaws, but for most of the history of
the internet it was the browser that
was pushing technology forward.
Now that were in a period with
massive browser competition and
innovation, it’s easy to forget where
we all came from. So, the next time
you run into people who work on
internet Explorer, instead of hurling
insults and tomatoes, say thanks
for helping to make the internet
what it is today and for making web
developers one of the most impor-
tant jobs in the world. n

Nicholas C. Zakas is a web technologist,
consultant, author, and speaker. He worked
at Yahoo! for almost five years, where he
was front-end tech lead for the Yahoo!
homepage and a contributor to the YUI
library. He blogs regularly at nczonline.net
and can be found on Twitter via @slicknet

Reprinted with permission of the original author.
First appeared in hn.my/ie (nczonline.net)

http://nczonline.net
http://twitter.com/slicknet
http://hn.my/ie

34 SPECIAL

tell me if you’ve been in
this situation: you’re chat-
ting about online anonym-

ity with your wife and the other
knight-Mozilla Fellows over a pizza
in Florence. A quiet-spoken stranger
sitting across the room walks up
to your table and asks, “Are you all
here for the tor hackathon?” you
respond, “Why yes, yes we are!”

He goes on to explain that he is a
journalist writing about tor. He also
tells us that he bets that the CiA
and the italian Secret Service are
going to have moles there. What he
obviously meant to say was, “i work
for the CiA and i’ve been watching
you for quite some time now.”

it’s possible that he didn’t actu-
ally work for the CiA. His name
and photo checked out under the
website he claimed to write for. it
was probably just a one-time job.
Even if this isn’t true, even if a
network of government spies didn’t
track my position across Europe
just to meet us in a restaurant, his
comment set the tone for my week-
end in Florence.

tor is serious business.

What the hell is Tor?
tor [torproject.org] is a program
that makes you anonymous. this
means that, for better or for worse,
the big brothers, neighborhood
hackers, and ad agencies of the
world can’t tell what you are doing
on the internet without going
through a lot of effort and expense.

is that too abstract? Here are
some illustrative statements. *taps
the microphone*

 n A tor user walks into a bar and
the bartender asks, “Who are
you?”

 n How many tor users does it take
to screw in a light bulb? Only a
few, but you’ll never know who
did it.

 n i used tor last night and now my
wife says that she doesn’t even
know who i am any more.

i’ll be here all night.
if you use tor you become

Spartacus. tor takes everything
you do, makes it look exactly like
what everyone else is doing, and
gets random computers on their
network to do the talking for you.
ta-da! Now it is practically impos-
sible to pin an action on you.

The Original Need
i bet you wouldn’t have guessed
that this idea was invented by the
u.S. Navy. you would have? Oh.

Put on your paper sailor hat and
i’ll explain. imagine you are the
king of the Navy and you’re going
to war with your fleet of a thousand
brand new Navy cars (i don’t really
know how the Navy works). Being
king, you are in the most important
car of all because you’re calling the
shots. you don’t want the enemy to
know which vehicle is yours. you
also don’t want them to know who
is receiving orders because that
could give away your tactics.

“i know,” you say, “i’ll encrypt
everything so that they can’t see the
content. then they won’t be able
to tell that my broadcasts are more
important than others.”

unfortunately for you, the enemy
has fancy technology. they can’t
decrypt messages, but they are able
to track where everything comes
from and where it is going. they
can’t tell what you’re saying, but
they have all they need.

After about 5 minutes you
think you’re doing well. Half of
the enemy cars are already on fire!
yours explodes. “How did they do

By DAN SCHuLtZ

A Tor of the Dark Web

SPECIAL

http://torproject.org

 35

that?” you ask in the afterlife. “Easy,”
responds God, “they were able to
see that your car was sending out
the most messages. they knew
exactly where you were.” then he
slaps you with a piece of linguini
and drifts away.

to prevent this from ever hap-
pening again, the Navy decided to
invent the concept of an “Onion
Network” (not to be confused with
the Onion Network). Now instead
of having packets go directly from
point A to point B, each one ran-
domly hops around the fleet first.
Because of encryption, the enemy
can’t tell the difference between a
new message and a “hop” message
— they all look the same. it’s like
running an invisible sprinkler in a
thunderstorm.

Suddenly, nobody but the sender
and the recipient can figure out the
end points of a message chain. Even
the middle men (the ones doing the
hops) don’t know the path. Each
piece of the hop — each “layer” of
the message — is encrypted with
a different key, so the only thing a
relay knows is who gave them the
package and where it should go next.

Onions have layers too, that’s
why this setup is called an Onion
Network. Get it? it’s like Shrek!

What’s it Good For?
tor has applications in the real
world. you can buy drugs and guns,
share illegal pictures, and hire
assassins. Oh wait, i’m just describ-
ing tor’s reputation (more on that
later). Seriously, there are a lot of
important situations where people
have moral and compelling reasons
to want anonymity.

Here are a few:

 n Protecting witnesses and victims
of domestic abuse. Anyone who
wants to be able to access the
internet without being discov-
ered by a third party can use tor
to defend against their stalkers.

 n If you don’t like being tracked by
your government, internet Ser-
vice Providers, or search engines.

 n Providing truly anonymous tips.
there are times when people
need or want to share informa-
tion against the wishes of pow-
erful and potentially dangerous
forces (e.g., mafias, governments,
corporations).

 n Safely bypassing censorship. if
you live in Syria, China, or the
united States of riAA/MPAA,
you might use tor to access con-
tent from the outside world more
safely.

these kinds of reasons explain
why organizations with very good
reputations, like the knight Foun-
dation, are devoting resources to
tor.

The Dark Web
What i’ve just described is a spin
on the way people access normal
information online. if you point tor
Browser to Google you will see the
same old Google. it’s just that now
Google doesn’t know who you are.
that’s powerful enough, but there’s
more: tor also lets you see hidden
content on the internet.

using tor is like entering a
cheat code into real life and play-
ing the lost levels. it is the digital
equivalent of platform 9 and 3/4
[hn.my/platform9]. this secret
section of the internet is possible
because tor users can serve content
anonymously too.

if you don’t know much about
how the internet works, believe me
when i say that if a website’s loca-
tion is hidden it becomes essentially
impossible to access. it would be
like trying to visit someone’s house
without knowing anything about
where they live — not even the
country. tor gives you a blindfold
and leads you there. you still don’t
know where the house is, but at
least you can visit.

Anonymous sites are accessed
through something called an “onion
address,” which is made up of a
series of random letters and num-
bers. For instance, this is a “clean”
version of tor’s wikipedia: 3suaollt-
fj2xjksb.onion [hn.my/onion].
Feel free to try going to the link;
it won’t work (unless, of course,
you are using the tor browser
[hn.my/torbrowser]).

trolls use the internet, Ogres use tor
(illustration by Anne Buckwalter)

http://hn.my/platform9
http://hn.my/onion
http://hn.my/torbrowser

36 SPECIAL

that random looking string is used to find
the server within the tor network. Because
the addresses don’t point to a real address on
the internet, there is no way to fully access
this content without tor. there are services
[onion.to] you can use to get there without
using tor, but you lose all benefits of ano-
nymity and content is often censored.

Onion addresses are the most fascinat-
ing part of tor, albeit the most potentially
disturbing. rest assured that they don’t
all lead to child porn, guns, and drugs. For
example there is a secret version of twit-
ter [hn.my/twitteronion], a bunch of
blogs [hn.my/blogonion], a search engine
[hn.my/searchonion], and an email service
[hn.my/emailonion]. there is even a secret
version of 4chan (called torchan), which i
won’t link to because that one does lead to
child porn and drugs.

these types of content networks — ones
that are served on top of the normal web so
that you need special programs to reach them
— are known as the Dark Web. Not neces-
sarily because the content is darker (it is),
but because it is hidden from view and can’t
really be searched and scraped as reliably.

Implications of the Dark Web
Most uses for tor become more potent with
onion addresses. Anonymous servers are just
as protected from higher powers as anony-
mous users. if Amazon suddenly started sell-
ing illegal drugs they would get in trouble. if
a tor marketplace started selling illegal drugs,
the law would have to figure out a way to
find them first.

this power applies to legitimate uses
as well. if a government official wanted to
contact the Boston Globe with a corrup-
tion leak, he or she could use tor to create a
gmail account anonymously. the government
could then subpoena Google, and Google
might be willing to give away the information
they have. they won’t know much, but now
things like account access patterns and full
email logs would be fair game.

if the official had used tormail, then even
Google wouldn’t know what happened. the
government would have no course of action
because there would be no service provider
to ask. Every journalist in the world should
be able to agree that there is no good reason
for a watchdog to trust the organizations they
are watching. Why should you trust corpora-
tions and governments to keep sources safe?

tor has a reputation because it has a lot of
criminal content, but the social good that it
supports is just so important (criminals will
always be criminals). i’m working on a game
called torwolf [hn.my/torwolf] to simulate
a few situations where tor would be effec-
tive (if you have played Werewolf or Mafia,
you can start to imagine what the game will
be like). in the mean time, read up on tor if
you’re curious [hn.my/torfaq]. Better yet, go
try it out. n

Dan Schultz (@slifty) is a 2012 Knight-Mozilla Fellow at
the Boston Globe developing open code and exploring
innovation in journalism. He recently graduated from
the MIT Media Lab, where he designed and prototyped
Truth Goggles, an automated bullshit detector for the
Internet. Before coming to the lab Dan was trained
to think in terms of systems at Carnegie Mellon Uni-
versity, and was awarded a Knight News Challenge
grant to write about “Connecting People, Content,
and Community” on the PBS Idea Lab.

Reprinted with permission of the original author.
First appeared in hn.my/tor (slifty.com)

http://onion.to
http://hn.my/twitteronion
http://hn.my/blogonion
http://hn.my/searchonion
http://hn.my/emailonion
http://hn.my/torwolf
http://hn.my/torfaq
http://twitter.com/slifty
http://hn.my/tor

 37

http://mandrill.com

38 SPECIAL

Steven Johnson is one of
my favorite authors. i wish
i could remember who

introduced me to him so i could
thank them. the first book of his i
read was the invention of Air, and
his most recent Where Good ideas
Come From.

recently, Steven started a
series called “the Writers room.”
[hn.my/wroom] truth be told, his
last post is nearly a month old but
has moved me so hard for the last
month that i wanted to share.

Enter the Spark File
the Spark File, Steven describes,
is a process/tool that he uses to
collect “half-baked ideas” and then
revisit them. For 8 years, he has
maintained a single document with
notes and ideas with zero organiza-
tion or taxonomy; simply a chro-
nology of thoughts. He calls this
document his Spark File.

Once a month, he reviews the
ENtirE Spark File from top to
bottom, revisiting old ideas and
potentially combing them with
newer ideas.

i’ve adopted this process for the
last 30 days and it’s had a remark-
able effect. the most astounding
part is how often i find myself writ-
ing the same thing in different ways.
i’ve taken that pattern as a clue to
explore a concept further and see if
it merits more investigation.

Your Crippling Compulsion, and
the Solution
i was sharing this process with one
of my co-conspirators, tony Baci-
galupo, while working with him
last week and he said “this process
is amazing, it sounds like a defrag-
mentation for your brain.”

And it is.
this is particularly important

because, as tony pointed out, we
don’t have ideas all at once and
we certainly don’t have them in
any particular order. Perhaps more
importantly, we tend to either have
a compulsion to act on our ideas
immediately or not at all.

This compulsion is blocking your
greatest work.

By using a Spark File, i’m able to
“act” on an idea simply by writing it
down at the bottom of the docu-
ment. Compulsion fulfilled. But
unlike the process without Spark
File assistance, the idea’s destiny
isn’t written yet. it has the potential
to become something greater than
an idea, and i’d argue something
greater than most 99.9% of all
execution.

Any of your half-baked ideas can
contribute to the development of
better answers.

Where Better Answers Come From
Once a month (or any time i wish),
i revisit my Spark File notes and
look for patterns and clues. i can
find inspiration and most impor-
tantly, i can find answers — some-
times answers to questions i didn’t
even know how to ask while i was
jotting down my half-baked ideas.

i’ve found that the inspiration
and answers i’m gleaning from
my Spark File tend to be more
complete, overall deeper and more
thorough than if i sit down to work
on a single idea “in the moment”
that i’m having that idea.

Homework
your homework, should you choose
to accept it:

 n read the invention of Air.
[hn.my/invention]

 n read Where Good ideas Come
From. [hn.my/goodideas]

 n read Steven’s post on his Spark
File. [hn.my/sparkfile]

 n Start a Spark File of your own.
Write in it every day.

 n read through your entire Spark
File every few weeks (but not
every day) looking for links and
patterns.

you can defrag your brain too. n

Alex Hillman is the co-founder of Indy
Hall [indyhall.org], one of the world’s
most respected coworking communi-
ties with hundreds of active members
and thousands of participants annually
from around the world. He publishes
the Coworking Weekly email newsletter
[coworkingweekly.com] every Thursday.
And he teaches people how to build amaz-
ing communities in the Community Builder
Masterclass [masterclass.indyhall.org].

How I Learned to
Defrag My Brain
By ALEx HiLLMAN

Reprinted with permission of the original author.
First appeared in hn.my/defrag (alexhillman.com)

Accept payments online.

http://hn.my/wroom
http://hn.my/invention
http://hn.my/goodideas
http://hn.my/sparkfile
http://indyhall.org
http://coworkingweekly.com
http://masterclass.indyhall.org
http://hn.my/defrag
http://stripe.com

Accept payments online.

http://stripe.com

http://memset.com

	Contents
	FEATURES
	Getting your heart rate using R and Ruby
	If Hemingway Wrote JavaScript

	STARTUPS
	Late Bloomer, Not A Loser
	Move Your Feet
	The Only Two Ways to Build a $100 Million Business
	The “Work” Trap

	PROGRAMMING
	Falsehoods Programmers Believe About Time
	How Statically Linked Programs Run on Linux
	A Software Architect
	Learning C with GDB
	The Innovations of
Internet Explorer

	SPECIAL
	A Tor of the Dark Web
	How I Learned to Defrag My Brain

