
Issue 31 December 2012

http://careers.addepar.com

 3

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://careers.addepar.com
http://duckduckhack.com

4

Curator
Lim Cheng Soon

Contributors
Brent Yorgey
Jesse Spaulding
David Hauser
Zachary Voase
Senthil Arivudainambi
Nick Johnson
Wesley Darlington
Pablo Rivera
Joel Gascoigne
Geoffroy Tremblay

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

HACkER MoNTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover “Factorization Diagrams” by Brent Yorgey

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 5

For links to Hacker News dicussions, visit hackermonthly.com/issue-31

Contents
FEATURES

06 Factorization Diagrams
By BRENT YoRGEY

11 How I Made $500K with Machine Learning and HFT
By JESSE SPAuLDiNG

STARTUPS

16 25 Entrepreneurs Tell What They Wish
They’d Known before Founding Their First
Startup
By DAViD HAuSER

PROGRAMMING

22 Probabilistic M2M Relationships Using
Bloom Filters
By ZACHARY VoASE

27 Keep a Programming Journal
By SENTHiL ARiVuDAiNAMBi

28 Homomorphic Hashing
By NiCk JoHNSoN

31 Thoughts on Being a Programmer
By WESLEY DARLiNGToN

32 Teaching My 10 Year Old Niece How To
Program
By PABLo RiVERA

SPECIAL

34 Things I Do To Be Consistently Happy
By JoEL GASCoiGNE

36 KindleBerry Pi
By GEoFFRoY TREMBLAY

http://hackermonthly.com/issue-31

6 FEATURES

FEATURES

in an idle moment a while ago i wrote a program
to generate “factorization diagrams.” Here’s 700:

it’s easy to see, just by looking at the arrangement of
dots, that there are 7 x 5 x 5 x 2 x 2 in total.

Here’s how i did it. First, a few imports: a function
to do factorization of integers and a library to draw
pictures [projects.haskell.org/diagrams].

 module Factorization where

 import Math.NumberTheory.Primes.Factorisation
(factorise)

 import Diagrams.Prelude
 import Diagrams.Backend.Cairo.CmdLine

 type Picture = Diagram Cairo R2

The primeLayout function takes an integer n
(assumed to be a prime number) and some sort of
picture, and symmetrically arranges n copies of the
picture.

primeLayout :: Integer -> Picture -> Picture

There is a special case for 2: if the picture is wider
than tall, then we put the two copies one above the
other; otherwise, we put them next to each other. in
both cases we also add some space in between the
copies (equal to half the height or width, respectively).

primeLayout 2 d
 | width d > height d
 = d === strutY (height d / 2) === d
 | otherwise
 = d ||| strutX (width d / 2) ||| d

This means that when there are multiple factors of
two and we call primeLayout repeatedly, we end up
with things like:

 if we always put the two copies next to each other,
we would get:

 which is much clunkier and harder to understand at a
glance.

By BRENT YoRGEY

Factorization Diagrams

http://projects.haskell.org/diagrams

 7

For other primes, we create a regular polygon of the
appropriate size (using some trig i worked out on a
napkin; don’t ask me to explain it) and position copies
of the picture at the polygon’s vertices.

primeLayout p d = decoratePath pts (repeat d)
 where pts = polygon with
 { polyType = PolyRegular (fromIntegral p) r
 , polyOrient = OrientH
 }
 w = max (width d) (height d)
 r = w * c / sin (tau / (2 * fromIntegral p))
 c = 0.75

For example, here’s primeLayout 5 applied to a green
square:

 Now, given a list of prime factors, we recursively
generate an entire picture. First, if the list of prime fac-
tors is empty, that represents the number 1, so we just
draw a black dot.

factorDiagram' :: [Integer] -> Diagram Cairo R2
factorDiagram' [] = circle 1 # fc black

otherwise, if the first prime is called p and the rest
are ps, we recursively generate a picture from the rest
of the primes ps, and then lay out p copies of that pic-
ture using the primeLayout function.

factorDiagram' (p:ps) = primeLayout p
 (factorDiagram' ps) # centerXY

Finally, to turn a number into its factorization dia-
gram, we factorize it, normalize the returned factoriza-
tion into a list of primes, reverse it so the bigger primes
come first, and call factorDiagram'.

factorDiagram :: Integer -> Diagram Cairo R2
factorDiagram = factorDiagram'
 . reverse
 . concatMap (uncurry $ flip replicate)
 . factorise

And voila! of course, this really only works well for
numbers with prime factors drawn from the set {2, 3,
5, 7} (and perhaps 11). For example, here’s 121:

 Are there 11 dots in those circles? 13? i can’t really
tell at a glance. And here’s 611:

 uhh… well, at least it’s pretty!
Here are the factorization diagrams for all the inte-

gers from 1 to 36:

8 FEATURES

 Powers of three are especially fun, since their factor-
ization diagrams are Sierpinski triangles [hn.my/stri]!
For example, here’s 35 = 243:

 Powers of two are also fun. Here’s 210 = 1024:

 one last one: 104.

Improved Diagrams
Now, on to the improved diagrams! Quite a few people
suggested improvements, some of which i’ve adopted
here.

 module Factorization2 where

 import Math.NumberTheory.Primes.Factorisation
(factorise)
 import Diagrams.Prelude
 import Diagrams.Backend.Cairo.CmdLine
 import Data.List.Split (chunksOf)
 import Data.Char (digitToInt)

 type Picture = Diagram Cairo R2

 primeLayout :: Integer -> Picture -> Picture

Layout for 2 is mostly the same as before, except i’ve
moved the diagrams a bit closer together, and added
some extra calls to things like reflectY and centerX as
preparation for the first improvement…

primeLayout 2 d
 | width d >= height d = (d === strutY (height
d / 3) === d # reflectY) # centerY
 | otherwise
 = (d ||| strutX (width d / 3) ||| d)
 # centerX

…which is to lay out rotated copies of a subdiagram at
the vertices of a p-sided polygon, as suggested by Mark
Lentczner. This makes the diagrams much more sym-
metric and aesthetically pleasing.

primeLayout p d = (mconcat $
 iterateN (fromIntegral p)
 (rotateBy (1/fromIntegral p))
 (d # translateY r)
)

http://hn.my/stri

 9

The next improvement is to add color (as suggested
by Sjoerd Visscher). instead of coloring the dots (which
might look nice but doesn’t really help visually iden-
tify the factorization), we color in the area inside each
prime polygon, using a different color scheme for each
prime. Actually, there’s only a different color for each
digit, and multi-digit primes are shown using vertical
bars of color.

 <>
 colorBars p poly
where poly = polygon with
 { polyType = PolyRegular (fromIntegral p) r
 , polyOrient = OrientH
 }
 w = max (width d) (height d)
 r = w * c / sin (tau / (2 * fromIntegral p))
 c = 0.75

And here are the colors i chose. They’re based very
loosely on the color code for resistors. i lightened them
all up a bit (by blending with white), which i think
looks nice.

colors = map (blend 0.1 white)
[black,red,orange,yellow,green,blue,gray,purple,
white,brown]

 For example, here’s the diagram for 47:

 The odd primes up through each get their own
color:

 And here’s the diagram for 611:

 Referring to the table of colors (and it’s not hard to
memorize), we can see that 611 = 13 x 47.

For completeness, here’s the implementation of
colorBars:

 colorBars p poly | p <= 11 = stroke poly
 # fc (colors!!(fromIntegral p `mod` 10))
 # lw 0
 colorBars p poly = bars # clipBy poly
 where
 barColors = map ((colors!!) . digitToInt)
 (show p)
 barW = width poly / fromIntegral
 (length barColors)
 barH = height poly
 bars = (hcat $ map (\c -> rect barW barH
 # fc c # lc c) barColors) # centerX

The code to actually generate complete factorization
diagrams is almost the same as before, except i don’t
reverse the factors anymore. i think drawing the factors
from largest to smallest actually gives more pleasing
(and intelligible) diagrams.

 factorDiagram' :: [Integer] -> Picture
 factorDiagram' [] = circle 1 # fc black
 factorDiagram' (p:ps) = primeLayout p
 (factorDiagram' ps)

 factorDiagram :: Integer -> Picture
 factorDiagram = centerXY
 . factorDiagram'
 . concatMap
 (uncurry $ flip replicate)
 . factorise

10 FEATURES

To show it off, here’s some code for generating a
table of factorization diagrams from 1 to n:

fd n = factorDiagram n # scaleUToY 0.8 <> square 1
table n = vcat . map hcat . (map . map) fd
 . chunksOf (fromIntegral n) $ [1..n*n]

Here’s 1 to 36 as before:

And here’s 1 to 100:

Sweet! n

Brent Yorgey is a PhD student studying programming languages
at the University of Pennsylvania in Philadelphia. He enjoys
creating beauty and explaining mind-bending things to the
uninitiated.

Reprinted with permission of the original author.
First appeared in hn.my/facto (mathlesstraveled.com)

http://hn.my/facto

 11

This article will detail
what i did to make
approximately $500k

from high frequency trading from
2009 to 2010. Since i was trading
completely independently and am
no longer running my program, i’m
happy to tell all. My trading was
mostly in Russel 2000 and DAX
futures contracts.

The key to my success, i believe,
was not because of a sophisticated
financial equation but rather the
overall algorithm design that tied
together many simple compo-
nents and used machine learning
to optimize for maximum profit-
ability. You won’t need to know
any sophisticated terminology here
because when i set up my program
it was all based on intuition.

First, i just want to demonstrate
that my success was not simply the
result of luck. My program made
1000-4000 trades per day (half
long, half short) and never got
into positions of more than a few
contracts at a time. This meant the
random luck from any one particu-
lar trade averaged out pretty fast.

The result was i never lost more
than $2k in one day and never had
a losing month:

 Below is also a chart to give you
a sense of the daily variation. Note
that this excludes the last 7 months
because i lost my motivation to
enter them as the figures stopped
going up.

 My trading background
Prior to setting up my automated
trading program, i had 2 years of

experience as a “manual”
day trader. This was back
in 2001 — it was the early
days of electronic trading
and there were opportuni-
ties for “scalpers” to make
good money. i can only
describe what i was doing
as akin to playing a video
game/gambling with a
supposed edge. Being
successful meant being

fast, being disciplined, and having
good intuitive pattern recognition
abilities. i was able to make around
$250k, pay off my student loans,
and have money left over. Win!

over the next five
years, i launched two
startups, picking up some
programming skills along
the way. it wasn’t until
late 2008 that i got back
into trading. With money
running low from the sale
of my first startup, trading
offered hopes of some
quick cash while i figured
out my next move.

By JESSE SPAuLDiNG

How I Made $500K with
Machine Learning and HFT

(These figures are after paying commissions.)

12 FEATURES

A trading API
in 2008 i was “manually” day trad-
ing futures using software called T4.
i wanted some customized order
entry hotkeys, so after discovering
T4 had an APi, i took on the chal-
lenge of learning C# (the program-
ming language required to use the
APi) and went ahead and built
myself some hotkeys.

After getting my feet wet with
the APi, i soon had bigger aspira-
tions: i wanted to teach the com-
puter to trade for me. The APi
provided both a stream of market
data and an easy way to send orders
to the exchange — all i had to do
was create the logic in the middle.

Below is a screenshot of a T4
trading window. What was cool
is that when i got my program
working i was able to watch the
computer trade on this exact same
interface. Watching real orders pop-
ping in and out (by themselves with
my real money) was both thrilling
and scary.

 The design of my algorithm
From the outset, my goal was to
setup a system such that i could
be reasonably confident i’d make
money before ever making any live
trades. To accomplish this, i needed
to build a trading simulation frame-
work that would — as accurately as
possible — simulate live trading.

While trading in live mode
required processing market updates
streamed through the APi, simula-
tion mode required reading market
updates from a data file. To collect
this data i setup the first version of
my program to simply connect to
the APi and record market updates
with timestamps. i ended up using
4 weeks’ worth of recent market
data to train and test my system.

With a basic framework in place
i still had the task of figuring out
how to make a profitable trading
system. As it turns out my algo-
rithm would break down into two
distinct components, which i’ll
explore in turn:

 n Predicting price movements; and

 n Making profitable trades

Predicting price movements
Perhaps an obvious component of
any trading system is being able to
predict where prices will move, and
mine was no exception. i defined
the current price as the average of
the inside bid and inside offer, and i
set the goal of prediction to where
the price would be in the next 10
seconds. My algorithm would need
to come up with this prediction
moment-by-moment throughout
the trading day.

Creating & optimizing indicators
i created a handful of indicators
that proved to have a meaningful
ability to predict short-term price
movements. Each indicator pro-
duced a number that was either
positive or negative. An indicator
was useful if more often than not a
positive number corresponded with
the market going up and a nega-
tive number corresponded with the
market going down.

My system allowed me to quickly
determine how much predictive
ability any indicator had, so i was
able to experiment with a lot of
different indicators to see what
worked. Many of the indicators
had variables in the formulas that
produced them, and i was able to
find the optimal values for those
variables by doing side by side com-
parisons of results achieved with
varying values.

The indicators that were most
useful were all relatively simple and
were based on recent events in the
market i was trading in as well as
the markets of correlated securities.

Making exact price move
predictions
Having indicators that simply
predicted an up or down price
movement wasn’t enough. i needed
to know exactly how much price
movement was predicted by each
possible value of each indicator.
i needed a formula that would
convert an indicator value to a price
prediction.

To accomplish this, i tracked
predicted price moves in 50 buck-
ets that depended on the range
the indicator value fell in. This
produced unique predictions for
each bucket that i was then able to
graph in Excel. As you can see, the
expected price change increases as
the indicator value increases.

 13

Based on a graph such as this i
was able to make a formula to fit
the curve. in the beginning i did
this “curve fitting” manually, but i
soon wrote up some code to auto-
mate this process.

Note that not all the indicator
curves had the same shape. Also
note the buckets were logarithmi-
cally distributed so as to spread
the data points out evenly. Finally
note that negative indicator values
(and their corresponding downward
price predictions) were flipped and
combined with the positive values.
(My algorithm treated up and down
exactly the same.)

Combining indicators for a
single prediction
An important thing to consider was
that each indicator was not entirely
independent. i couldn’t simply just
add up all the predictions each
indicator made individually. The
key was to figure out the additional
predictive value each indicator had
beyond what was already predicted.
This wasn’t too hard to imple-
ment, but it did mean that if i was
“curve fitting” multiple indicators
at the same time i had to be care-
ful; changing one would affect the
predictions of another.

in order to “curve fit” all of the
indicators at the same time i setup
the optimizer to step only 30% of
the way towards the new prediction
curves with each pass. With this
30% jump i found that the predic-
tion curves would stabilize within a
few passes.

With each indicator now giving
us its additional price prediction, i
could simply add them up to pro-
duce a single prediction of where
the market would be in 10 seconds.

Why predicting prices is not
enough
You might think that with this
edge on the market i was golden,
but you need to keep in mind that
the market is made up of bids and
offers — it’s not just one market
price. Success in high frequency
trading comes down to getting good
prices and it’s not that easy.

The following factors make creat-
ing a profitable system difficult:

 n With each trade i had to pay
commissions to both my broker
and the exchange.

 n The spread (difference between
highest bid and lowest offer)
meant that if i were to simply
buy and sell randomly i’d be
losing a ton of money.

 n Most of the market volume was
comprised of other bots that
would only execute a trade with
me if they thought they had
some statistical edge.

 n Seeing an offer did not guarantee
that i could buy it. By the time
my buy order got to the exchange
it was very possible that the offer
would have been cancelled.

 n As a small market player there
was no way i could compete on
speed alone.

Building a full trading simulation
i had a framework that allowed me
to backtest and optimize indica-
tors, but i had to go beyond this.
i needed a framework that would
allow me to backtest and optimize
a full trading system — one where
i was sending orders and getting in
positions. in this case, i’d be opti-
mizing for total P&L and to some
extent average P&L per trade.

This would be trickier and in
some ways impossible to model
exactly, but i did as best as i could.
Here are some of the issues i had to
deal with:

 n When an order was sent to the
market in simulation i had to
model the lag time. The fact that
my system saw an offer did not
mean that it could buy it straight
away. The system would send the
order, wait approximately 20 mil-
liseconds, and then consider it an
executed trade only if the offer
was still there. This was inexact
because the real lag time was
inconsistent and unreported.

 n When i placed bids or offers i
had to look at the trade execu-
tion stream (provided by the
APi) and use that to gauge when
my order would have gotten
executed against. To do this
right, i had to track the position
of my order in the queue. (it’s a
first-in first-out system.) Again,
i couldn’t do this perfectly, but i
made a best approximation.

To refine my order execution
simulation, i took my log files from
live trading through the APi and
compared them to log files pro-
duced by simulated trading from
the exact same time period. i was
able to get my simulation to the
point that it was pretty accurate.
For the parts that were impossible
to model exactly, i made sure to at
least produce outcomes that were
statistically similar (in the metrics i
thought were important).

14 FEATURES

Making profitable trades
With an order simulation model
in place i could now send orders
in simulation mode and see a
simulated P&L. But how would my
system know when and where to
buy and sell?

The price move predictions were
a starting point but not the whole
story. What i did was create a scor-
ing system for each of 5 price levels
on the bid and offer. These included
one level above the inside bid (for a
buy order) and one level below the
inside offer (for a sell order).

if the score at any given price
level was above a certain thresh-
old that would mean my system
should have an active bid/offer
there — if it was below the thresh-
old, then any active orders should
be cancelled. Based on this, it was
not uncommon that my system
would flash a bid in the market
then immediately cancel it. (i tried
to minimize this, as it’s annoying
as heck to anyone looking at the
screen with human eyes — includ-
ing me.)

The price level scores were calcu-
lated based on the following factors:

 n The price move prediction (that
we discussed earlier).

 n The price level in question.
(inner levels meant greater price
move predictions were required.)

 n The number of contracts in front
of my order in the queue. (Less
was better.)

 n The number of contracts behind
my order in the queue. (More
was better.)

Essentially these factors served
to identify “safe” places to bid/offer.
The price move prediction alone
was not adequate because it did not

account for the fact that when plac-
ing a bid i was not automatically
filled - i only got filled if someone
sold to me there. The reality was
that the mere fact of someone sell-
ing to me at a certain price changed
the statistical odds of the trade.

The variables used in this step
were all subject to optimization.
This was done in the exact same
way as i optimized variables in the
price move indicators except in this
case i was optimizing for bottom-
line P&L.

What my program ignored
When trading as humans we often
have powerful emotions and biases
that can lead to less than optimal
decisions. Clearly i did not want to
codify these biases. Here are some
factors my system ignored:

 n The price that a position was
entered — in a trading office it’s
pretty common to hear conver-
sation about the price at which
someone is long or short, as if
that should affect their future
decision making. While this has
some validity as part of a risk
reduction strategy, it really has no
bearing on the future course of
events in the market. Therefore,
my program completely ignored
this information. it’s the same
concept as ignoring sunk costs.

 n Going short vs. exiting a long
position — Typically a trader
would have different criteria that
determines where to sell a long
position versus where to go short.
However, from my algorithm’s
perspective there was no reason
to make a distinction. if my
algorithm expected a downward
move, selling was a good idea
regardless if it was currently long,
short, or flat.

 n A “doubling up” strategy — This
is a common strategy where
traders will buy more stock in
the event that their original trade
goes against them. This results
in your average purchase price
being lower, and it means when
(or if) the stock turns around,
you’ll be set to make your money
back in no time. in my opinion,
this is really a horrible strategy
unless you’re Warren Buffet.
You’re tricked into thinking you
are doing well because most of
your trades will be winners. The
problem is that when you lose,
you lose big. The other effect is
it makes it hard to judge if you
actually have an edge on the
market or are just getting lucky.
Being able to monitor and con-
firm that my program did in fact
have an edge was an important
goal.

Risk management
Since my algorithm made decisions
the same way regardless of where
it entered a trade or if it was cur-
rently long or short, it did occasion-
ally sit in (and take) some large
losing trades (in addition to some
large winning trades). But, you
shouldn’t think there wasn’t any
risk management.

To manage risk i enforced
a maximum position size of 2
contracts at a time, occasionally
bumped up on high-volume days. i
also had a maximum daily loss limit
to safeguard against any unex-
pected market conditions or a bug
in my software. These limits were
enforced in my code but also in the
backend through my broker. As it
happened, i never encountered any
significant problems.

 15

Running the algorithm
From the moment i started work-
ing on my program, it took me
about 6 months before i got it to
the point of profitability and ran it
live. Although to be fair, a signifi-
cant amount of time was learning
a new programming language. As i
worked to improve the program, i
saw increased profits for the next
four months.

Each week i would retrain my
system based on the previous 4
weeks’ worth of data. i found this
struck the right balance between
capturing recent market behavioral
trends and ensuring my algorithm
had enough data to establish
meaningful patterns. As the train-
ing began taking more and more
time, i split it out so that it could
be performed by 8 virtual machines
using Amazon EC2. The results
were then coalesced on my local
machine.

The high point of my trading was
october 2009 when i made almost
$100k. After this i continued to
spend the next four months trying
to improve my program despite
decreased profit each month.
unfortunately, by this point i guess
i’d implemented all my best ideas
because nothing i tried seemed to
help much.

With the frustration of not being
able to make improvements and not
having a sense of growth, i began
thinking about a new direction. i
emailed 6 different high frequency
trading firms to see if they’d be
interested in purchasing my soft-
ware and hiring me to work for
them. Nobody replied. i had some
new startup ideas i wanted to work
on, so i never followed up.

Afterwords
i posted this on Hacker News and
it has gotten a lot of attention. i just
want to say that i do not advocate
anyone trying to do something like
this by themselves now. You would
need a team of really smart people
with a range of experiences to have
any hope of competing. Even when
i was doing this, i believe it was
very rare for individuals to achieve
success (though i had heard of
others). n

Jesse Spaulding is a serial entrepreneur
with a background that includes day trad-
ing and automated algorithmic trading.
He has founded, managed, and sold a
comparison shopping site in Australia and
since then worked on several startups that
haven’t panned out. His current project is
CourseTalk, which can be considered a Yelp
for MOOCS (Massive Open Online Courses).

Reprinted with permission of the original author.
First appeared in hn.my/hft (jspauld.com)

http://hn.my/hft

16 STARTUPS

STARTUPS

By DAViD HAuSER

Hindsight is 20/20. When you look back on
any project or endeavor, you get a better
idea of what was important and what

wasn’t.
The same is true with startups. After working on a

business for a year or two or more, you have a better
idea about what was worth worrying about and what
wasn’t as big of a deal.

Since entrepreneurs are the most qualified to give
other entrepreneurs advice about starting a business,
i decided to ask twenty-five entrepreneurs about the
number one thing they wish they’d known before
founding their first startup. Below is a collection of this
advice. it’s invaluable whether you’ve recently started a
business or you’re looking to start one.

25 Entrepreneurs Tell
What They Wish They’d

Known before Founding
Their First Startup

 17

Dan Martell
Founder of Clarity
That you’re not supposed to know
how to do anything right, and that’s
okay.

it wasn’t till i sold Spheric and
started working on Flowtown that
i realized that you didn’t need to
know how to do anything in the
beginning— you just needed to get
good at finding the right answers
quickly. if you focused on learning,
getting the right advice, in near real
time, then you could take on any
challenge. it’s quite liberating once
you realize that.

neil Patel
Co-founder of Crazy Egg
i wish i knew how to price test.
When we first released the product
we based pricing off of what we
wanted to charge, versus optimizing
price to achieve maximum revenue
and profitability.

At one point in time our cus-
tomer base requested a lower pric-
ing option. We did it because their
was a high demand for it. Although
it increased the total number of
signups, it decreased our overall rev-
enue. if we knew about price test-
ing during that time, we wouldn’t
have made this big mistake.

nick Francis
Co-founder & CEO of Help Scout
i wish that i knew how difficult it is
to acquire a customer, get them to
pay for your product, and believe
it’s as magical as you think it is.

Most startup founders count on
customer acquisition as a foregone
conclusion, yet it’s the number one
thing that keeps them up at night
for the first 2-3 years if not longer.
Every part of that process is deeply
challenging for a company. it also
doesn’t happen quickly.

A few tips on how to navigate
early stage customer acquisition
challenges:

 n Talk to every person in your
target market that will speak to
you. know their needs better
than they know them. Your most
valuable insights will come from
talking to customers daily.

 n Marketing to potential custom-
ers is a series of experiments.
Before you start, define what
success/failure looks like. When
the experiment is over, rinse and
repeat.

 n Surround yourself with team
members and advisers that will
hold you accountable to the
business’ metrics and finances.
The success/failure of the busi-
ness depends on these people.
You must trust them completely
because you don’t have time to
look over their shoulder.

allan Branch
Co-founder of LessAccounting
Wow, the number one thing…

My business partner, Steve Bris-
tol, and i really used to put in major
hours the first years of the com-
pany. We were working 80+ hours
a week. After working ourselves
to a point of being burned out, we
realized that if we put in 40 x 2
hours the company didn’t move
forward 2x faster. in fact those
extra 40 hour were less productive
than the first 40 hours. The reality
is you’ll never be “done” with your
work, you’ll never finish all the
tasks, build all the features and have
the perfect design. At the end of
the day, around 4 pm, we close our
laptops and go home. Never forget
work is here to make your personal
life fruitful.

Also, i no longer care how
famous i become, i don’t care about
being filthy rich or being on the
cover of magazines. i care more
about making our customers and
employees happy. The only people
i care about being famous to are
my children and wife. i do, even at
the age of 32, still strive to make
my parents proud of me. i’ve let
go of the burden of trying to focus
the company to a $500 million
company; i’m happy being the co-
founder of an unknown software
company.

Misc Tips
 n only hire people you’d want to
hang out with during personal
time.

 n The first 10 hires set the tone for
the whole company.

 n Don’t hire people that are getting
a salary bump up by working
with you.

 n Don’t wear white pants after
labor day.

leo WiDrich
Co-founder of Buffer
The number one thing i wish i
knew is that the people around you
affect your success more than you
would ever imagine.

Focusing on who you spend time
with on a day to day basis, working
with doers instead of talkers can
make or break the progress of your
business and, more importantly,
self-improvement. Be selective who
you choose. Jim Rohn put it best:

“You are the average of the five
people you spend the most time
with.”

18 STARTUPS

renee Warren
Co-founder of Onboardly
i wish i would have better known
the value of my time. A “10 minute
chat,” which always leads to a
much longer chat, was so easy to
say yes to. it took me years to
finally start saying No to things
that would take me away from
what really needed my attention.
No to meetings. No to interviews,
and no to extra projects (for extra
money.) When i implemented my
daily to-do lists my whole day/
week/month changed. i would
only accept opportunities if they
could come after my to-do’s were
completed.

Part of this realization came from
a quote my grandfather once told
me, “if you are not 10 minutes early,
you are 10 minutes late.” He meant
this for many reasons: showing up
to meetings, flights, phone calls, the
gym, and so much more.

So, that’s it: time is the most
valuable thing you have. Make sure
you invest it wisely.

PoorniMa Vijayashankar
Founder & CEO of BizeeBee
i knew that it takes time to build
a product, but i also wish i had
known that it takes time for users
to adopt a product. While there
may be early adopters who can get
wedded to your product, main-
stream adoption takes a lot of time
and effort. Mainstream adoption
requires people who aren’t early
adopters, those who are more
reluctant to change, to discover
your product, understand the value
proposition, be willing to try it
out, then actually use it and pay
for it, and finally develop enough
of a following to want to tell other
people about it. This cycle takes a
while because it requires a product

to be solid, for a user to develop
a relationship with your company
and your product, and then finally
develop enough attachment to want
to talk about it with others.

While marketing efforts can plant
the seed, a lot of time needs to pass
where the product is out in the
market, in order for mainstream
adoption to take place. Giving
things time is hard for a founder to
process, because as a founder you
want to think you are in control,
and can make things happen, but
sometimes you just have to be
patient and wait!

jason traFF
Founder of Leaky
Coming from MiT, i got lots of
really good advice about starting a
company: the importance of vest-
ing, team chemistry, and building
a good product. i wish that i had
known more about the emotional
roller coaster of startup life. often
when startups are portrayed in
movies or TV shows, it’s a bunch of
twenty-somethings playing foosball
all day and partying all night. What
they rarely show are the lows that
accompany those highs.

Never in my life have i been
rejected as frequently or as vehe-
mently as i have for Leaky. After
all of the countless rejections, the
scrapping to make payroll, and the
cease-and-desist letters from insur-
ance companies, what i learned was
that you need fortitude to look past
the temporary highs and lows to
know that no gain or setback is ever
permanent — otherwise, it would
never be possible to get out of bed
in the morning.

raMi essaiD
Co-founder & CEO of Distil
The one thing i wish i knew before
founding my first startup would
have been how to set clear and mea-
surable goals. The problem with any
startup is that there are a million
unknowns. As you go through the
journey of creating your company,
you try and answer as many of
those questions as possible and once
enough are answered, you know you
have actually created something.
Along the way, it is easy to get lost.
To make sure you don’t, you need
to be able to set clear goals and
measure the success of your actions.
if you see something isn’t working,
it is imperative that you recognize it
as soon as possible and fix the issue
or change course quickly. Goals and
metrics are the only way to do so.

Mike arsenault
Co-founder of Rejoiner
Don’t guess at price. So much
is dictated by the way you price
your product and many first-time
Founders default to what they
“think” customers are willing to pay
for it (myself included). Focus on
the value you are creating for your
customers, not on what it costs you
to deliver your product or service.

it also turns out that there are
entire methodologies designed to
help you extract the ideal pricing
structure from your target market
(Google “von westendorp”). Equally
as important is finding out what
product features your customers
find most valuable.

By combining “willingness to
pay” data with your customers’
most desired features, you’ll have a
grounded approach for uncovering
the pricing structure that attracts
the right customers and drives the
most profits for your business.

 19

ethan Bloch
Co-founder of Flowtown
Never take advice from anyone
who hasn’t done or isn’t doing what
you want to accomplish.

kaPil kale
Co-founder of GiftRocket
ideas are great, but it is extremely
important to think backwards from
distribution. Ask yourself, who
would use this, and how would
they hear about it?

A lot of times, that will uncover
the critical features you need to
build into a product to make it
useful enough for a user to tell their
friends about it.

Bo lu
Co-founder & CEO of FutureAdvisor
Look backwards in time.

The things that first-time entre-
preneurs spend the first few days
of their life as a founder worrying
about usually don’t matter. When
i talk to new founders today, i
generally get questions about how
to structure the company legally,
whether they should leave work
now or wait for a bonus to appear,
et cetera. Experience shows that
these things do not make or break
companies.

instead, i wish first time founders
would spend the critical first few
days of their life as a founder think-
ing about their customers and what
those customers need. understand-
ing that intimately better than the
next guy will make or break your
company. The best way to do this is
to look backwards in time. Pretend
it is four years from today and you
have a successful company, and ask
yourself: is the question i am agoniz-
ing over right now likely to be the
thing i will agonize over four years
from now? The answer is usually no.

 DharMesh shah
Founder & CTO of HubSpot
it’s important to pick a big, growing
market where you have some dis-
tinct advantage. And, to ensure that
you control your own destiny and
are not overly dependent on others.

 Blake WilliaMs
Co-founder of Keepsy
Seek out the most critical opinions
of your plan that you can find. The
natural tendency for a first-time
entrepreneur is to fall in love with
an idea and then look for friends
and colleagues to support it. After
all, who wants to have a fledgling
idea crushed by naysayers? But
these are exactly the types of folks
you should be looking for.

Have them shred your plan and
designs from top to bottom. if you
find yourself agreeing with them
and having doubts, then your plan
(and possibly you) may not have
the mettle to make it. But if you are
able to defend it with conviction,
repeatedly, then you probably have
both the moxie to last through the
long, tough grind you’re facing, as
well as a plan that just might work.

rick Perreault
Co-founder & CEO of Unbounce
i wish i knew how important
accurate metrics would become and
that we could more easily support
our reporting needs by preparing
on day one. over the last two years
i’ve heard time and time again, “we
can’t track that easily because our
app [insert issue here].” Had we
decided early on what key metrics
we would need to track and built
the app to support our needs, we
would have likely saved ourselves a
world of pain.

Walter chen
Co-founder & CEO of iDoneThis
i wish i’d known that running a
startup team is a lot like parenting.
You check up on them, you wonder
what they’re doing and you worry
about them Skype-ing while driv-
ing. often, you have to yell “Every-
body calm down!” on some days,
you have to remind them to buckle
down and get their work done
before dinner. on other days, you
have to entertain them, so you take
them to see movies and drive them
to a go-karting arenas.

As a startup founder, you want
to help your team identify their
strengths on the job and support
them. You want them to make
mistakes and learn from them,
instead of shying away from them.
You don’t dictate, you ask, “What
do You think?” You’re sensitive to
the ebb and flow in their moods,
you know when they’re discouraged
or frustrated. You get frustrated
yourself, but you express it to them
constructively. Above all, like any
parent, you want them to be happy.
ok, AND successful. Because i’m
an Asian parent.

otto hilska
Founder & CEO of Flowdock
it’s well known that “premature
optimization is the root of all evil,”
but somehow i failed to recognize
that when we spent a lot of time
playing with different databases
before we even had any customers.
in the beginning it’s ok to validate
your assumptions with a half-baked
product.

ash rust
Co-founder of SendHub
Focus is more important than you
can ever imagine.

20 STARTUPS

anDreW angus
Founder & CEO of Switch Video
i wish i knew how big the oppor-
tunity was so i could have better
planned to take advantage of it.
Now that my company is older
and more structured it is great to
be able to focus on strategy, rather
then just reacting all the time.
At the beginning if i had stepped
back and developed and funded
a better plan i could have saved
myself making a ton of mistakes.
That being said these mistakes are
what my education is built on and
learning from them is why i think
i will continue to be successful. (i
would like to have made a few less
mistakes though.)

alex schiFF
Co-founder & CEO of Fetchnotes
i wish someone had taught me ear-
lier that you should be optimizing
for speed and not cost. Everything
in startups is about speed and your
ability to move quickly. We were
bootstrapped for a long time before
raising a round, so we didn’t have
much of a choice but to be super
frugal, but i do wish that i learned
that lesson earlier since it makes all
the difference. if it takes an hour
of your time to hack something
together to save $20/month, then
it’s not worth it.

gautaM guPta
Co-founder of NatureBox
Starting NatureBox has been an
amazing experience for me and i
will be forever grateful for having
the opportunity to start this
company. i think it’s important
for founders to know that when
starting a company, they are about
to embark on an emotional roller
coaster ride. Managing your emo-
tional state will become so hard but

so important. When you hit a low
point, remind yourself that it is just
a bump in the road.

You can loose so much time
worrying about things that don’t
even matter. You’ll get good and
bad news all the time and you’ll
feel like your life depends on the
success of your company but keep
your head down and execute.

ari tulla
Co-founder & CEO of BetterDoctor
Build a public working prototype as
quickly as possible and then iterate
furiously.

our plan at BetterDoctor was to
build the first MVP product in two
months and release it publicly. We
got this done, but it was so light on
the viability side that we could only
release it in closed beta. Closed beta
meant very few users and little real
world feedback.

in the end it took over six
months before we finally launched
the first beta product, which was
still very much an MVP. Now after
a year we have released BetterDoc-
tor search service nationwide and
have a stable platform to build
upon. Today we can release new
features in couple of days and test
them with real users immediately.

A year is a long time, and if there
is any way to get the product into
consumer hands sooner, you should
try to do it.

 tri tran
Co-founder & CEO of Munchery
There will be a lot of ups and
downs. When you feel down, stay
calm and know that things will get
better. When you feel up, enjoy the
moment but save some of that for a
rainy day.

i’ve been fortunate to have
worked at multiple startups to

know roughly what to expect.
Reading Hacker News regularly
gave me a good head start. Most
every top rated advice you read
there will come into play.

Be prepared that founding your
first startup is likely the hardest
thing you have ever done in your
life to date. it’s not at all glamorous.
Seek full support from your spouse
(if you have one), and seek out co-
founder(s) that you can fully trust
and work well with. ultimately, i
cannot imagine a better professional
experience than founding your very
own company!

elizaBeth yin
Co-founder & CEO of LaunchBit
The first company i started, a social
shopping application, was a com-
plete disaster. We built out what we
thought was an awesome tool, but
nobody wanted it. We wasted about
$20k and about 1.5 years. From
that experience, i realized that as
much as there is a shortage of tech
talent, the hard part isn’t the tech-
nology — it’s getting user demand.

if i were to have done things
differently, i would’ve tested the
market with little hacks before
building out a product. i would’ve
created landing pages to capture
contact information of potential
users and would’ve talked with
them beforehand. i would’ve gener-
ated fake buttons that led nowhere
or to a “coming soon” message to
measure demand. in short, i wish
i’d known to build as little as
possible to test the market before
building a product. n

David Hauser is the co-founder at Grass-
hopper Group and Chargify. Follow him
on Twitter at @dh

Reprinted with permission of the original author.
First appeared in hn.my/25 (davidhauser.com)

http://twitter.com/dh
http://hn.my/25

 21

http://mandrill.com

22 PROGRAMMING

By ZACHARY VoASE

PROGRAMMING

Here’s an idea that’s been kicking around
inside my head recently.

A standard M2M relationship, as repre-
sented in SQL, looks like this:

CREATE TABLE movie (
 id SERIAL PRIMARY KEY,
 title VARCHAR(255)
);

CREATE TABLE person (
 id SERIAL PRIMARY KEY,
 name VARCHAR(255)
);

CREATE TABLE movies_people (
 movie_id INTEGER REFERENCES movie,
 person_id INTEGER REFERENCES person
);

To find the people for a given movie (including the
details of the movie itself):

SELECT *
FROM
 movie
 INNER JOIN movie_people ON (movie.id = movie_
people.movie_id)
 INNER JOIN person ON (movie_people.person_id =
person.id)
WHERE movie.id = MOVIE_ID;

Finding the movies for a given person just involves
changing the WHERE predicate to filter for person.id
instead.

using a junction table for a sparse or small data
set (where there are not many associations between
movies and people) gives acceptable space and time
consumption properties. But for denser association
matrices (which may grow over time), the upper
bound on the size of the junction table is O(n(movies)
* n(people)), and the upper bound on the time taken
to join all three tables will be the square of that. So
what optimizations and trade-offs can be made in such
a situation?

Well, we can use a Bloom filter on each side of the
M2M relationship and do away with the junction table
altogether. Here’s what the SQL (for Postgres) looks
like:

Probabilistic M2M
Relationships Using

Bloom Filters

 23

CREATE TABLE movie (
 id SERIAL PRIMARY KEY,
 title VARCHAR(255) UNIQUE,
 person_filter BIT(PERSON_FILTER_LENGTH),
 hash BIT(MOVIE_FILTER_LENGTH)
);

CREATE TABLE person (
 id SERIAL PRIMARY KEY,
 name VARCHAR(255),
 movie_filter BIT(MOVIE_FILTER_LENGTH),
 hash BIT(PERSON_FILTER_LENGTH)
);

i haven’t calibrated these filters yet, so i’ve yet to
decide how long to make each one. i’m also doing
something different compared to the normal expla-
nation of a Bloom filter. Typically each element is
expressed as the set of results of k hash functions, each
mapping to an index in a bit array of length m. i prefer
to think of a single hash function with an m-bit output
and a popcount guaranteed to be less than or equal to
k. This is effectively identical, but it helps you think of
the filters themselves in a different way: as a union of a
set of hash outputs. All of a sudden, these filters seem
less daunting — they’re just fancy bit arrays. That’s
why length(person.hash) = length(movie.person_
filter), and vice versa.

Picking a hash
According to kirsch and Mitzenmacher [hn.my/rsa],
you can implement k hash functions using only two,
with no increase in the false positive probability. Here’s
a Python example:

import pyhash
import bitstring

murmur = pyhash.murmur3_32()
def bloom_hash(string, k, m):
 """Hash a string for a bloom filter with
given `m` and `k`."""
 hash1 = murmur(string)
 hash2 = murmur(string, seed=hash1)
 output = bitstring.BitArray(length=m)
 for i in xrange(k):
 index = (hash1 + (i * hash2)) % m
 output[index] = True
 return output

i’m generating a bit array here so it can be simply
oR’d with an existing Bloom filter to add the given
element to the set.

Testing on example data
To test my system out, i’ll use the community-gener-
ated MovieLens [hn.my/lens] database.

Cleaning the data
Download and unzip the 1M dataset, with ~6000
users, ~4000 movies and 1 million ratings:

$ ls
README movies.dat ratings.dat users.dat
$ wc -l *.dat
 3883 movies.dat
 1000209 ratings.dat
 6040 users.dat
 1010132 total

The field separators in these files are ::, but i want
to convert them to tabs, so they play better with stan-
dard GNu userspace tools:

$ sed -i -e 's/::/\t/g' *.dat

Because we’re treating set membership as binary,
i’ll use a high-pass filter for ratings — that is, i’ll only
consider higher-than-average ratings.

Compute the average (the rating is the third
column of ratings.dat)
$ awk '{ sum += $3 } END { print sum/NR }' \
 ratings.dat
3.58156
Ratings are integral, so we just keep ratings
of 4 or 5.
$ awk '$3 > 3 { print }' ratings.dat > \
 good-ratings.dat

How many ratings now?

$ wc -l good-ratings.dat
575281

http://hn.my/rsa
http://hn.my/lens

24 PROGRAMMING

Picking filter sizes
Given that we have 3,883 movies, 6,040
users, and 575,281 ratings, we can esti-
mate the average number of elements in
movie.person_filter to be 148, and for
person.movie_filter, 95. The optimal
size for a filter is given by the following
formula:

 Choosing a false positive probability
of 0.5% (0.005), that gives us a movie.
person_filter of 1,632 bits, and a person.
movie_filter of 1,048 bits. So our schema
now looks like this (with some minor
modifications):

CREATE TABLE movie (
 id INTEGER PRIMARY KEY,
 title VARCHAR(255) UNIQUE NOT NULL,
 person_filter BIT(1632) DEFAULT
0::BIT(1632),
 hash BIT(1048) NOT NULL
);

CREATE TABLE person (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) UNIQUE NOT NULL,
 movie_filter BIT(1048) DEFAULT
0::BIT(1048),
 hash BIT(1632) NOT NULL
);

These may seem large, but we’re only
adding 335 bytes for each movie and
person. our k value can also be calculated
as follows:

 Yielding a k of around 8 for both filters
(since we decided our p in advance).

Loading the data: movies and people
The next step is to load the raw data for movies and people (but
not yet ratings) into the database. Assuming the CREATE TABLE state-
ments have already been issued separately:

from collections import namedtuple
import csv

import psycopg2

Classes for handling the TSV input.

_User = namedtuple('_User', 'id gender age occupation
 zipcode')
class User(_User):

 @property
 def name(self):
 return '%s:%s:%s' % (self.id, self.age,
 self.zipcode)

 @property
 def hash(self):
 return bloom_hash(self.name, 8, 1632).bin

_Movie = namedtuple('_Movie', 'id title genres')
class Movie(_Movie):

 @property
 def hash(self):
 return bloom_hash(self.title.encode('utf-8'), 8,
 1048).bin

This should be run from the directory containing
`users.dat` and `movies.dat`
conn = psycopg2.connect('host=localhost dbname=movielens')

with conn.cursor() as cur:
 cur.execute('BEGIN')

 with open('users.dat') as users_file:
 users = csv.reader(users_file, delimiter='\t')
 for user in users:
 # The input is encoded as ISO-8859-1, and
 # unfortunately Python's csv lib doesn't handle
 # Unicode text well, so we have to decode it
 # after reading it.
 user = User(*[s.decode('iso-8859-1')
 for s in user])

 25

 cur.execute('''INSERT INTO person (id, name, hash)
 VALUES (%s, %s, %s)''',
 (int(user.id), user.name, user.hash))

 with open('movies.dat') as movies_file:
 movies = csv.reader(movies_file, delimiter='\t')
 for movie in movies:
 movie = Movie(*[s.decode('iso-8859-1') for s in movie])
 cur.execute('''INSERT INTO movie (id, title, hash)
 VALUES (%s, %s, %s)''',
 (int(movie.id), movie.title, movie.hash))

 cur.execute('COMMIT')

Loading the data: ratings
For the purpose of comparison, i’m going to load the
data using both Bloom filters and a standard junction
table. Create that table:

CREATE TABLE movie_person (
 movie_id INTEGER REFERENCES movie (id),
 person_id INTEGER REFERENCES person (id)
);

Now load in the ratings data for both the junction
table and the Bloom filters:

with closing(conn.cursor()) as cur:
 cur.execute('BEGIN')
 with open('good-ratings.dat') as ratings_file:
 ratings = csv.reader(ratings_file, delimiter='\t')
 for rating in ratings:
 cur.execute('''INSERT INTO movie_person (movie_id, person_id)
 VALUES (%s, %s)''',
 (int(rating[1]), int(rating[0])))
 cur.execute('''UPDATE movie
 SET person_filter = (
 SELECT bit_or(person.hash)
 FROM person, movie_person
 WHERE person.id = movie_person.person_id AND
 movie_person.movie_id = movie.id);''')
 cur.execute('''UPDATE person
 SET movie_filter = (
 SELECT bit_or(movie.hash)
 FROM movie, movie_person
 WHERE person.id = movie_person.person_id AND
 movie_person.movie_id = movie.id);''')
 cur.execute('COMMIT')

This may take a few minutes.

26 PROGRAMMING

Checking the performance
To query the movies for a given user (and vice versa) in
the traditional way:

CREATE VIEW movies_for_people_junction AS
SELECT movie_person.person_id,
 movie.id AS movie_id,
 movie.title AS title
FROM movie, movie_person
WHERE movie.id = movie_person.movie_id;

And in the new, Bloom filtered way:

CREATE VIEW movies_for_people_bloom AS
SELECT person.id AS person_id,
 movie.id AS movie_id,
 movie.title AS title
FROM person, movie
WHERE (person.hash & movie.person_filter) =
person.hash;

Checking the query performance for the junction-
based query:

EXPLAIN ANALYZE SELECT * FROM movies_for_people_
junction WHERE person_id = 160;

The result:

Hash Join (cost=282.37..10401.08 rows=97
width=33) (actual time=7.440..64.843 rows=9
loops=1)
 Hash Cond: (movie_person.movie_id = movie.id)
 -> Seq Scan on movie_person
(cost=0.00..10117.01 rows=97 width=8) (actual
time=2.540..59.933 rows=9 loops=1)
 Filter: (person_id = 160)
 -> Hash (cost=233.83..233.83 rows=3883
width=29) (actual time=4.884..4.884 rows=3883
loops=1)
 Buckets: 1024 Batches: 1 Memory Usage:
233kB
 -> Seq Scan on movie
(cost=0.00..233.83 rows=3883 width=29) (actual
time=0.010..2.610 rows=3883 loops=1)
Total runtime: 64.887 ms

And for the Bloom query:

EXPLAIN ANALYZE SELECT * FROM movies_for_people_
bloom WHERE person_id = 160;

The result:

Nested Loop (cost=4.26..300.35 rows=1 width=33)
(actual time=0.033..2.546 rows=430 loops=1)
 Join Filter: ((person.hash & movie.person_
filter) = person.hash)
 -> Bitmap Heap Scan on person
(cost=4.26..8.27 rows=1 width=216) (actual
time=0.013..0.013 rows=1 loops=1)
 Recheck Cond: (id = 160)
 -> Bitmap Index Scan on person_id_
idx (cost=0.00..4.26 rows=1 width=0) (actual
time=0.009..0.009 rows=1 loops=1)
 Index Cond: (id = 160)
 -> Seq Scan on movie (cost=0.00..233.83
rows=3883 width=241) (actual time=0.014..0.785
rows=3883 loops=1)
Total runtime: 2.589 ms

Much better! i’m pretty sure there are still places
where both the junction table and the Bloom table
could be optimized, but this serves as a great demonstra-
tion of how a typically inefficient query can be sped up
by just using a garden-variety probabilistic data struc-
ture, and sacrificing a minimal amount of accuracy. n

Zack is a freelance Python and UNIX hacker based in London.
He’s currently working on kickstarting the London Big-O Meetup.

Reprinted with permission of the original author.
First appeared in hn.my/m2mbloom (zacharyvoase.com)

http://hn.my/bloom

 27

one of my favorite past
times is to look at the
notebooks of famous

scientists. Da Vinci’s notebook
[hn.my/davincii] is well known,
but there plenty [hn.my/edison]
of others [hn.my/einstein]. Wor-
shipping Da Vinci like no other,
i bought a Think/Create/Record
journal, used it mostly to jot down
random thoughts and take notes.
This was great in the beginning, but
the conformity of lines drove me
nuts. only moleskines made blank
notebooks, so i had to buy one.

At the same time, i started a free-
lance project. The project itself is
irrelevant, but suffice it to say it was
very complex and spanned several
months. it seemed like a perfect
opportunity to use the moleskine.
Looking back, all my entries fell
under few categories:

 n To-do
 n Question
 n Thought
 n Bug
 n Feature

Clearly there isn’t any technolog-
ical reason you couldn’t use Github
issues or Pivotal or Jira. i tried
those, but none of them caught on.
The real value for me was, oddly,
not looking back at the entries,
but writing them down on paper,
especially the question or thought.
i’d write it down, research online,
test it, and write down the results. it
gets tedious at times, but at the end
of the day it’s a real pleasure to look
back and see how far i’ve come.

if you decide to start your own
journal, here are few tips:

 n keep a list of contents
 n Number each page
 n Note date and time before each
entry

 n Write everything

i’ve been doing this experiment
for the past 4 months and it’s been
very helpful. Some days i’d feel lazy
or be excited to write stuff down,
but inevitably the regret train hits me

the next day. Nowadays i open the
notebook and write down date and
time first thing in the morning. n

Senthil Arivudainambi is a Ruby developer
current doing Hacker School Fall 2012 batch
in New York.

By SENTHiL ARiVuDAiNAMBi

Keep a Programming Journal

Reprinted with permission of the original author.
First appeared in hn.my/journal (getriver.com)

Photographs by Senthil Arivudainambi.

http://hn.my/davincii
http://hn.my/edison
http://hn.my/einstein
http://hn.my/journal

28 PROGRAMMING

in the last Damn Cool Algo-
rithms article (Hacker Monthly
issue #21), we learned about

Fountain Codes [hn.my/fountain],
a clever probabilistic algorithm that
allows you break a large file up into
a virtually infinite number of small
chunks, such that you can collect
any subset of those chunks — as
long as you collect a few more than
the volume of the original file —
and be able to reconstruct the origi-
nal file. This is a very cool construc-
tion, but as we observed last time, it
has one major flaw when it comes
to use in situations with untrusted
users, such as peer to peer net-
works: there doesn’t seem to be a
practical way to verify if a peer is
sending you valid blocks until you
decode the file, which happens
very near the end — far too late to
detect and punish abuse.

it’s here that homomorphic
hashes come to our rescue. A
homomorphic hash is a construc-
tion that’s simple in principle: a
hash function such that you can
compute the hash of a compos-
ite block from the hashes of the
individual blocks. With a construc-
tion like this, we could distribute
a list of individual hashes to users,
and they could use those to verify

incoming blocks as they arrive, solv-
ing our problem.

Homomorphic hashing is
described in the paper “on-the-fly
verification of rateless erasure codes
for efficient content distribution” by
krohn et al [hn.my/hpaper]. it’s a
clever construction, but rather dif-
ficult to understand at first, so we’ll
start with a strawman construc-
tion of a possible homomorphic
hash, then improve upon it until
it resembles the one in the paper
— at which point you will hope-
fully have a better idea as to how it
works. We’ll also discuss the short-
comings and issues of the final hash,
as well as how the authors propose
to resolve them.

Before we continue, a small dis-
claimer is needed: i’m a computer
scientist, not a mathematician, and
my discrete math knowledge is
far rustier than i’d like. This paper
stretches the boundaries of my
understanding, and describing the
full theoretical underpinnings of
it is something i’m likely to make
a hash of. So my goal here is to
provide a basic explanation of the
principles, sufficient for an intuition
of how the construction works, and
leave the rest for further explora-
tion by the interested reader.

A Homomorphic Hash That Isn’t
We can construct a very simple can-
didate for a homomorphic hash by
using one very simple mathematical
identity: the observation that gx0 *
gx1 = gx0 + x1. So, for instance, 23 *
22 = 25. We can make use of this by
the following procedure:

1. Pick a random number g

2. For each element x in our mes-
sage, take gx. This is the hash of
the given element.

using the identity above, we can
see that if we sum several message
blocks together, we can compute
their hash by multiplying the
hashes of the individual blocks, and
get the same result as if we “hash”
the sum. unfortunately, this con-
struction has a couple of obvious
issues:

 n our “hash” really isn’t — the
hashes are way longer than the
message elements themselves!

 n Any attacker can compute the
original message block by taking
the logarithm of the hash for that
block. if we had a real hash with
collisions, a similar procedure
would let them generate a colli-
sion easily.

By NiCk JoHNSoN

Homomorphic Hashing

http://hn.my/fountain
http://hn.my/hpaper

 29

A Better Hash With Modular
Arithmetic
Fortunately, there’s a way we can
fix both problems in one shot: by
using modular arithmetic. Modu-
lar arithmetic keeps our num-
bers bounded, which solves our
first problem, while also making
our attacker’s life more difficult:
finding a preimage [hn.my/preim-
age] for one of our hashes now
requires solving the discrete log
problem [hn.my/discrete], a major
unsolved problem in mathemat-
ics, and the foundation for several
cryptosystems.

Here, unfortunately, is where the
theory starts to get a little more
complicated — and i start to get a
little more vague. Bear with me.

First, we need to pick a modulus
for adding blocks together. We’ll
call it q. For the purposes of this
example, let’s say we want to add
numbers between 0 and 255, so
let’s pick the smallest prime greater
than 255, which is 257.

We’ll also need another modulus
under which to perform expo-
nentiation and multiplication.
We’ll call thisp. For reasons relat-
ing to Fermat’s Little Theorem
[hn.my/fermat], this also needs
to be a prime, and further, needs
to be chosen such that p - 1 is a
multiple of q (written q | (p - 1),
or equivalently, p % q == 1). For
the purposes of this example, we’ll
choose 1543, which is 257 * 6 + 1.

using a finite field also puts some
constraints on the number, g, that
we use for the base of the expo-
nent. Briefly, it has to be “of order
q”, meaning that gq mod p must
equal 1. For our example, we’ll use
47, since 47257 % 1543 == 1.

So now we can reformulate our
hash to work like this: to hash a
message block, we compute gb mod
p — in our example, 47b mod 1543
— where b is the message block. To
combine hashes, we simply mul-
tiply them mod p, and to combine
message blocks, we add them mod q.

Let’s try it out. Suppose our
message is the sequence [72, 101,
108, 108, 111] — that’s “Hello” in
ASCii. We can compute the hash of
the first number as 4772 mod 1543,
which is 883. Following the same
procedure for the other elements
gives us our list of hashes: [883,
958, 81, 81, 313].

We can now see how the proper-
ties of the hash play out. The sum
of all the elements of the message
is 500, which is 243 mod 257. The
hash of 243 is 47243 mod 1543, or
376. And the product of our hashes
is 883 * 958 * 81 * 81 * 313 mod
1543 — also 376! Feel free to try
this for yourself with other mes-
sages and other subsets. They’ll
always match, as you would expect.

A Practical Hash
of course, our improved hash still
has a couple of issues:

 n The domain of our input values
is small enough that an attacker
could simply try them all out to
find collisions. And the domain of
our output values is small enough
the attacker could attempt to
find discrete logarithms by brute
force, too.

 n Although our hashes are shorter
than they were without modular
arithmetic, they’re still longer
than the input.

The first of these is fairly straight-
forward to resolve: we can simply
pick larger primes for p and q. if

we choose ones that are sufficiently
large, both enumerating all inputs
and brute force logarithm finding
will become impractical.

The second problem is a little
trickier, but not hugely so; we just
have to reorganize our message a
bit. instead of breaking the message
down into elements between 0 and
q, and treating each of those as a
block, we can break the message
into arrays of elements between
0 and q. For instance, suppose we
have a message that is 1024 bytes
long. instead of breaking it down
into 1024 blocks of 1 byte each,
let’s break it down into, say, 64
blocks of 16 bytes. We then modify
our hashing scheme a little bit to
accommodate this:

instead of picking a single
random number as the base of our
exponent, g, we pick 16 of them, g0

- g16. To hash a block, we take each
number gi and raise it to the power
of the corresponding sub-block. The
resulting output is the same length
as when we were hashing only a
single block per hash, but we’re
taking 16 elements as input instead
of a single one. When adding blocks
together, we add all the correspond-
ing sub-blocks individually. All
the properties we had earlier still
hold. Better, we’ve given ourselves
another tunable parameter: the
number of sub blocks per block.
This will be invaluable in getting
the right tradeoff between security,
granularity of blocks, and protocol
overhead.

http://hn.my/preimage
http://hn.my/preimage
http://hn.my/discrete
http://hn.my/fermat

30 PROGRAMMING

Practical Applications
What we’ve arrived at now is pretty
much the construction described
in the paper, and hopefully you
can see how it would be applied to
a system utilizing fountain codes.
Simply pick two primes of about
the right size (the paper recom-
mends 257 bits for q and 1024 bits
for p), figure out how big you want
each block to be (and hence how
many sub-blocks per block) and
figure out a way for everyone to
agree on the random numbers for g
(such as by using a random number
generator with a well defined seed
value).

The construction we have
now, although useful, is still not
perfect, and has a couple more
issues we should address. First of
these is one you may have noticed
yourself already: our input values
pack neatly into bytes — integers
between 0 and 255 in our example
— but after summing them in a
finite field, the domain has grown,
and we can no longer pack them
back into the same number of bits.
There are two solutions to this: the
tidy one and the ugly one.

The tidy one is what you’d
expect: since each value has grown
by one bit, chop off the leading
bit and transmit it along with the
rest of the block. This allows you
to transmit your block reasonably
sanely and with minimal expansion
in size, but is a bit messy to imple-
ment and seems (at least to me)
inelegant.

The ugly solution is this: pick the
smallest prime number larger than
your chosen power of 2 for q, and
simply ignore or discard overflows.
At first glance this seems like a
terrible solution, but consider: the
smallest prime larger than 2256 is 2256
+ 297. The chance that a random

number in that range is larger than
2256 is approximately 1 in 3.9 *
1074, or approximately one in 2247.
This is way smaller than the prob-
ability of, say, two randomly gener-
ated texts having the same SHA-1
hash.

Thus, i think there’s a reasonable
argument for picking a prime using
that method, then simply ignor-
ing the possibility of overflows. or,
if you want to be paranoid, you
can check for them, and throw
out any encoded blocks that cause
overflows. There won’t be many of
them, to say the least.

Performance And How To
Improve It
Another thing you may be wonder-
ing about this scheme is just how
well it performs. unfortunately, the
short answer is “not well.” using the
example parameters in the paper,
for each sub-block we’re raising a
1024 bit number to the power of
a 257 bit number; even on modern
hardware this is not fast. We’re
doing this for every 256 bits of the
file, so to hash an entire 1 giga-
byte file, for instance, we have to
compute over 33 million exponen-
tiations. This is an algorithm that
promises to really put the assump-
tion that it’s always worth spending
CPu to save bandwidth to the test.

The paper offers two solutions to
this problem; one for the content
creator and one for the distributors.

For the content creator, the
authors demonstrate that there
is a way to generate the random
constants g, used as the bases of
the exponents using a secret value.
With this secret value, the content
creator can generate the hashes for
their files much more quickly than
without it. However, anyone with
the secret value can also trivially

generate hash collisions, so in such
a scheme, the publisher must be
careful not to disclose the value
to anyone, and only distribute the
computed constants gi. Further, the
set of constants themselves isn’t
small. With the example param-
eters, a full set of constants weighs
in at about the size of 4 data blocks.
Thus, you need a good way to
distribute the per-publisher con-
stants in addition to the data itself.
Anyone interested in this scheme
should consult section C of the
paper, titled “Per-Publisher Homo-
morphic Hashing.”

For distributors, the authors offer
a probabilistic check that works on
batches of blocks, described in sec-
tion D, “Computational Efficiency
improvements”. Another easier to
understand variant is this: instead of
verifying blocks individually as they
arrive, accumulate blocks in a batch.
When you have enough blocks,
sum them all together, and calcu-
late an expected hash by taking the
product of the expected hashes of
the individual blocks. Compute the
composite block’s hash. if it verifies,
all the individual blocks are valid! if
it doesn’t, divide and conquer: split
your batch in half and check each,
winnowing out valid blocks until
you’re left with any invalid ones.

The nice thing about either of
these procedures is that they allow
you to trade off verification work
with your vulnerability window.
You can even dedicate a certain
amount of CPu time to verifica-
tion, and simply batch up incoming
blocks until the current computa-
tion finishes, ensuring you’re always
verifying the last batch as you
receive the next.

 31

Conclusion
Homomorphic hashing provides
a neat solution to the problem
of verifying data from untrusted
peers when using a fountain coding
system, but it’s not without its
own drawbacks. it’s complicated
to implement and computationally
expensive to compute, and requires
careful tuning of the parameters
to minimize the volume of the
hash data without compromising
security. used correctly in conjunc-
tion with fountain codes, however,
homomorphic hashing could be
used to create an impressively fast
and efficient content distribution
network. n

Nick Johnson is a Developer Programs Engi-
neer for Google App Engine. He regularly
blogs about interesting computer science
topics at his blog [blog.notdot.net], and
when he’s not saving the world there he
can be found on Twitter (@nicksdjohnson)
or Stack Overflow helping folks out. He
likes long walks on the beach, beauti-
ful sunsets, and Dijkstra’s pathfinding
algorithm.

By WESLEY DARLiNGToN

 n Don’t be an asshole.

 n Simple code is hard to write.

 n Exquisitely simple code is exquisitely hard to write.

 n Just because it’s easy to understand doesn’t mean it
was easy to write.

 n in fact, the easier it is to understand, the harder it
probably was to write.

 n There are many ways to do something.

 n The first way you think of is highly unlikely to be
the best way.

 n Anyway, there probably is no best way - just lots of
ways that are differently good.

 n There’s always plenty of room for improvement - in
your code, in your abilities, in you.

 n if you think you’re as good as you’re ever going to
be, you’re probably right.

 n “one-line changes” are never “one-line changes.”

 n Learn to desire success more than you fear failure.

 n You’re only old when you can no longer learn new
tricks.

 n Always back up before tidying up.

 n RTFM.

 n Err vicariously.

 n Sometimes it’s ok to be a bit of an asshole, but
don’t make a habit of it. n

The author, a pretty mediocre programmer, is currently between
startups, working on monitoring large networks for an unnamed
search engine company in Mountain View.

Thoughts on Being
a Programmer

Reprinted with permission of the original author.
First appeared in hn.my/homomorphic (notdot.net)

Reprinted with permission of the original author.
First appeared in hn.my/thought (yelsew.com)

http://blog.notdot.net
http://twitter.com/nicksdjohnson
http://hn.my/homomorphic
http://hn.my/thought

32 PROGRAMMING

By PABLo RiVERA

The following conversa-
tion took place some
months ago.

Niece: Uncle, will you teach me how
to use a computer?
Me: Yes. What is it that you want
to do?
Niece: I don’t know. What can it do?
Me: it can do a lot of things. Do
you have anything in mind?
Niece: No, but I want to learn how
to use it.

A normal person would have told
her computers are for nerds, and
not to waste her time with one. As
a hacker, i saw that she is really into
computers and not only wants to
learn how to use it (referring to the
operating system), but how to make
useful stuff with it (programming).

i devised a quick plan. i would
focus on showing her the basics
behind a webpage, and then intro-
duce some JavaScript to demon-
strate how the computer follows
the instructions we give it. in her
first day she learned simple HTML
markup. it was so exciting to be

able to write her name and for it to
show on the computer’s screen. it
was such a rush that she spent more
than one hour writing markup.

Fast forward some weeks, and i
sat down with her to review what
she had learned. Not surprisingly,
she still remembered about 80%
of the HTML stuff. We opened up
the same HTML file she had been
working with, and i started telling
her a bit more about the computer.
i said:

“Niece, you have to realize some-
thing if you want to learn how to
program. Computers are stupid
and dumb. They take everything
you tell them and do it. Never
asking questions. That is why pro-
gramming them is so simple. You
just tell the computer what to do.”

Her eyes lit up. She wanted to
test my words. i proceeded to write
some simple JavaScript code using
the document.write() method.
She would assign values to a set of
variables, and then have JS write
the values to her webpage. How

did she do? She wrote the example
ten times without stopping. When
she refreshed the page, some parts
were not working. Her first bugs!
Amazingly, she started debugging
the little programs by making sure
they all were typed correctly. i have
to say that made me very proud.
After some minutes of debugging,
she realized that some semi-colons
were missing. Some quick work on
her part and the scripts were work-
ing as intended.

About a month passed, and i sat
down with her again. This time to
show her how to do simple math
with JS. it was very productive
because it allowed her to see the
value of learning math, something
her math teachers have failed to
do. The multiplication tables had
given her some grief. We focused on
them. A quick and short program
taught her how it all worked. Here
is the code.

Teaching My 10 Year Old
Niece How To Program

 33

var base = 5; // table for number 5.
var num = 4;
// multiply the base number by this one.

var total = base * num
// total displays the results from multiplying
// base and num.

document.write(total);
//display the results from the operation.

it was as if someone had lifted a huge burden. She
now understood multiplication and had seen how it
worked without any complicated math syntax. This
motivated her to play with the little program for a long
while. Going through every number and saying out
loud how much X by Y was. She would then confirm
the results with the program.

Two weeks ago she brought her netbook from
home with the intention of putting every one of the
examples we had done on it. She wanted to code in her
spare time. unbelievable!

i went ahead and did something better. Went to
python.org and installed the Python programming lan-
guage on her computer. She was surprised when i told
her Python was free. Actually, she didn’t believe me at
first. So we booted up python iDLE, i showed her the
difference between the interpreter console and a blank
program page. She quickly got it, and we moved on to
programming Python.

i did not explain much, and just jumped into writing
code for her to practice with. it was something along
the lines of:

def get_name():
 name = str(raw_input("What is your name?\n"))
 return name
def show_name(name):
 print name

my_name = get_name()
show_name(my_name)

Results? She understood what the functions did
without much hassle. She even went as far as under-
standing that a function is for encapsulating function-
ality. But i wasn’t done. i added the following to the
code:

for i in range(10):
 if name == "her name":
 print "Hello ", name
 else:
 print "Hello stranger"

The for loop was tough for her. Because she didn’t
get why a computer would do the same thing over
and over. i quickly wrote some code to count from
one to ten, and that did the trick. She then understood
that computers have this thing called a stack that uses
pointers to do stuff to the data. it was already a bit late,
and she had to go home. i gave her the assignment of
writing the Python program twenty times. She did not
complain.

Did she complete her assignment? i haven’t asked,
but i’m pretty sure she did. i’m also sure that she will
have modified the source code to do other stuff.

People tend to complain about how there are not
enough women in software. it’s true, there are not
enough of them. That is why i’m doing my part to add
one more to the ranks. Teach the kids in your family
to program. You don’t know if they will be the next
Ritchie. n

Pablo Rivera is a freelance software engineer.He is also the founder
of Nuuton and Protocademy. He started hacking on a C64.

Reprinted with permission of the original author.
First appeared in hn.my/niece (orangethirty.blogspot.ca)

http://python.org
http://hn.my/niece

34 SPECIAL

SPECIAL

By JoEL GASCoiGNE

Now that it’s almost
two years since i first
had the idea for Buffer

[bufferapp.com], and since the
year and a half before that when
i worked on my previous startup,
i’ve started to notice a few patterns
amongst the ups and downs that
come with building a startup.

one of the most important things
i’ve learned during this time is that
i perform best when i’m happy. it
really does change everything. if
i’m happy then i’m more produc-
tive when hacking code, i’m better
at answering support, and i find it
easier to stay focused.

i’ve found that there are a few
key habits which, for me, act as
great rituals for enabling me to be
consistently happy. They also act
as anchor activities to bring my
happiness level back up quickly
whenever i have a period where
i’m not feeling 100%. So here are 6
things i do:

➊ Wake up early
one of the things i love

about running my own startup is
that i have complete freedom to
experiment with my daily routine.

Through experimentation, i’ve
found that waking up early every
day makes me feel most invigorated
and happy. it gives me a great start
to the day, and this almost always
leads to a great rest of the day.
over time, i’ve found i crave that
“early morning” feeling, a time i can
do some great work and be super
focused. Gretchen Rubin from
The Happiness Project mentioned
something similar a recent article:

“I get up at 6:00 a.m. every day,
even on weekends and vacation,
because I love it.”

Waking up early every day
requires discipline, especially about
what time i sleep. Right now, i have
a sleep ritual of disengaging from
the day at 9:30pm and sleeping at
10pm. i now love all aspects of this
ritual and with it in place i awake at
6am feeling fresh.

➋

“We found that people who are
more physically active have more
pleasant-activated feelings than
people who are less active.”
– Amanda Hyde

in the last three years, i’ve gone
from dabbling with exercise to
making it something i do every
weekday without fail. At first i had
no idea what to do at the gym, so i
asked my brother, who’s a personal
trainer. i then went a few times
with a good friend, and soon i was
hooked.

over time, i developed this into
a daily ritual so strong that i feel
a pull towards it, and by doing it
consistently i feel fantastic and can
more easily take on other chal-
lenges. i recently discovered that
exercise is a keystone habit which
paves the way for growth in all
other areas. i’ve also found that it
helps me to get high quality sleep
each night.

Things I Do To Be
Consistently Happy

Exercise daily

 35

➌ Have a habit of
disengagement

“The richest, happiest, and most
productive lives are characterized
by the ability to fully engage in
the challenge at hand, but also to
disengage periodically and seek
renewal.” – Loehr and Schwarz,
The Power of Full Engagement

As i mentioned earlier, a key
way i am able to wake up at 6am
is through my ritual of disengaging
in the evening. i go for a walk at
9:30pm, along a route which i’ve
done many times before. Since the
route is already decided and is the
same every time, i am simply walk-
ing and doing nothing else. This
prompts reflection and relaxation.

Various thoughts enter and leave
my mind during the walk, and
i’ve found this to be very healthy.
Sometimes i think about the great
things i enjoyed that day. other
times i will realize a change i
should make in order to be hap-
pier day to day. i also feel calm
and relaxed by the time i return
from my walk, and i can therefore
go straight to bed and fall asleep
sooner than if i been engaged in
my work and had closed my laptop
only a few minutes earlier.

➍ Regularly help others
one of my most fascinating

discoveries about myself so far this
year, is how happy it makes me to
help others. For some time i had
been consistently meeting founders
to help them with their startups
without realizing that it was making
me so happy. Then when i read
Happiness: A Guide to Developing
Life’s Most important Skill by Mat-
thieu Ricard, i connected the dots
of when i was happy and the activ-
ity i was doing: helping others.

i read Ricard’s section on the link
between altruism and happiness
and everything clicked. Since then,
i’ve been consistently helping many
startup founders and it’s brought
me much happiness through both
the challenge of finding ways to
help each person, and the feeling
that comes when i help the other
person discover ways to make
faster progress with their current
challenges.

➎

“Being in the moment, focusing
completely on a single task, and
finding a sense of calm and happi-
ness in your work. Flow is exactly
that.” – Leo Babauta

one thing i’ve found during my
time working on Buffer, is that a
key reason i’ve been happy for most
of that time is that i’ve consistently
had new challenges to take on. it
may seem odd that new challenges
can equate to happiness, but it is
the times when i’ve slipped into a
few weeks of working on something
i already know well, that have led
me to feel less happy than i want
to be.

i think a key part of why learn-
ing new skills can bring happiness,
is that you need to concentrate in
order to make progress. The “flow”
state has been found to trigger hap-
piness. in addition, when learning
something new you are able to
learn a lot in a short space of time
due to a steep learning curve. For
example, in the last two weeks i’ve
started learning Android develop-
ment from scratch and i’ve person-
ally found incredible the amount
i know now compared to nothing
two weeks ago.

➏ Have multiple ways to
“win” each day

Since the above activities are
habitual, many days of the week
i actually accomplish all of them.
if i succeed with all five, i have a
truly amazing day and feel fantastic.
i have goals for Buffer, and i have
goals in my weights routine, too. in
addition, i try to schedule one or
two meetings or Skype calls to help
people each day. i do this based on
learning from around a year ago
through an interview Tim Ferriss
had with Matt from 37signals. i’ve
mentioned it before on my blog, but
it’s so good that i want to repeat it:

“If your entire ego and identity is
vested in your startup, where there
are certainly factors outside of your
control, you can get into a depres-
sive funk that affects your ability to
function. So, you should also, let’s
say, join a rock climbing gym. Try
to improve your time in the mile.
Something like that. I recommend
at least one physical activity. Then
even if everything goes south — you
have some horrible divorce agree-
ment with your co-founder — if
you had a good week and set a
personal record in the gym or on
the track or wherever, that can still
be a good week.”

So if i start my morning with a
gym routine, work on Buffer during
the day and help two people during
lunch, i have 4 chances to have a
great day. it almost always works. n

Joel is the founder of Buffer, a smarter way to
share. Joel started Buffer on the side whilst
working full-time, and within 4 months it
was profitable and he quit his work. Joel
blogs regularly about startups, life, learning
and happiness at joel.is and loves to be in
touch on Twitter at @joelgascoigne

Learn new skills

Reprinted with permission of the original author. First appeared in hn.my/happy (joel.is)

http://joel.is
http://twitter.com/joelgascoigne
http://hn.my/happy

36 SPECIAL

By GEoFFRoY TREMBLAY

We left our little studio in
the kootenays last July,
traveling throughout

Europe to explore new media, spiritual
centers, art, design and open source
initiatives. i decided to go really mini-
mal on the computer gear stuff, so i only
packed my kindle, a camera, an Android
phone and, of course, my Raspberry Pi
[raspberrypi.org]!

The Raspberry Pi, although a beauti-
ful project and quite an electronic feat,
can be a bit limiting as a main production
machine, but i convinced myself i could
use it as my main traveling computer.

The plan was to use a kindle as a
screen and connect it to the processing
power of the Raspberry Pi while using an
external keyboard to work comfortably.
Since connecting an external keyboard
to the kindle seemed impossible at that
point, i needed to use the Raspberry Pi as
the “hub.” The tinkering started and the
kindleBerry Pi was soon born.

Although i ended up buying a laptop
while traveling, all that dreaming and tin-
kering ended up working nicely, creating a
really portable development platform. At
the least it has become a proof of concept
that could be used for other similar proj-
ects. So here is how you can create your
very own kindleBerry Pi!

KindleBerry Pi

The kindleBerry Pi!

 37

Let’s get started
What you will need to do this hack:

 n one kindle 3 (or two, if you end
up breaking the first one)

 n one Raspberry Pi

 n Two micro uSB to uSB cables
(one for power and one to con-
nect the kindle to the Raspberry
Pi)

 n one keyboard connected to the
Raspberry pi

 n optional: A kindle stand (you
can use an old audio tape box)

 n optional: A uSB hub since the
kindleBerry Pi has both ports in
use when assembled

Hacking the Kindle

DISCLAIMER: You can brick
(render unusable) your Kindle
doing so. These are just pointers
and I take no responsibility what-
ever you do with your kindle, or
your life…

The first part — connecting the
kindle to the Raspberry Pi — is
simple enough:

 n Jail break the kindle. [hn.my/jbk]

 n install a terminal emulator like
this one. [hn.my/tek]

 n install usbNetwork and make
sure it is enabled. [hn.my/usbn]

 n Connect the devices through
uSB,

 n Do a quick ifconfig usb0
192.168.2.1.

Voila, i can login into
the Raspberry Pi with no
problem, using the great
display of the kindle but
sadly also using its limit-
ing keyboard.

The main challenge
now is to use the key-
board connected to the
Raspberry Pi instead
of the kindle’s. This is
where the magic of GNu
Screen comes into play!
GNu Screen is a terminal
multiplexer. if you don’t
know what a terminal
is, well, i am not sure
why you are reading this
article in the first place,
but let’s say “GNu Screen
is a terminal on steroid.”

one of the nice func-
tions of GNu Screen

is that you can be multiple users
on the same “screen” session. For
instance, let’s say you want to
monitor what people do when they
connect to your computer through
ssh, or if you want to… well…
screencast in a terminal environ-
ment (whatever enjoyment that
would give you). Anyhow, i am not
sure why there is a multiuser mode,
but it is that ability that makes the
kindleBerry Pi possible.

So what happens is that by using
the keyboard connected to the
Raspberry Pi, you can login into the
Raspberry Pi with the kindle and
then share the same “screen” session
so that you can use the keyboard
connected on the Raspberry Pi.
You will still need to use the kindle
keyboard to create that first con-
nection, but once you’re connected,
you can use your mail keyboard.

Although GNu Screen comes to
save the day, automating the whole
process takes a few more steps.

http://hn.my/jbk
http://hn.my/tek
http://hn.my/usbn

38 SPECIAL

USB network for the Raspberry Pi
First, we want to be able to use usbNetworking when
connecting the kindle. When the kindle is on usb-
Networking, it assigns the iP 192.168.2.2 to its uSB
port. We then need the Raspberry Pi to automatically
assign its uSB port the iP 192.168.2.1. To do so, the
first step is to add the following to your /etc/network/
interfaces:

allow-hotplug usb0
mapping hotplug
script grep
map usb0
iface usb0 inet static
address 192.168.2.1
netmask 255.255.255.0
broadcast 192.168.2.255
up iptables -I INPUT 1 -s 192.168.2.1 -j ACCEPT

Automatic login on the Raspberry Pi
Now we need the Raspberry Pi to 1) make sure one
user can login automatically and 2) initiate a screen
multiuser session at boot time. We will be using the
same user for the login at boot time and login with the
kindle.

For automatic login on debian (which is one of the
main builds of the Raspberry Pi) you have to:

vim /etc/inittab

(or using any other editor) and comment out:

 #1:234:respawn:/sbin/getty 3840 tty1

and then add:

1:2345:respawn:/bin/login -f YOUR_USER_NAME
tty1/dev/tty1 2< & 1

Some readers have mentioned that using the follow-
ing code worked better for them:

1:2345:respawn/sbin/agetty -a YOUR_USER_NAME -8
-s 38500 tty1 linux

That should do the trick. Now let’s make sure GNu
Screen starts automatically when the Raspberry Pi
starts and whenever you login from the kindle.

Bashrc
We now have to make sure the user that is automati-
cally logged in will start a screen session. We also have
to make sure that when you login with the kindle,
you don’t start another screen session but instead join
the already started screen session. Mileage might vary
depending on your system here, so experiment with
the code, but most of it should be in the .bash_profile.
There is probably many other ways to go about it (use
the bashrc and bash_profile, have more than one user,
etc…), but this is one of the solutions i came up with.

Here is my .bash_profile:

if [-z "$&;STY"]; then
 exec screen -xR
fi

So once it’s all in place, you should be able to fire up
your kindleBerry Pi. once the boot sequence is done,
you can connect the kindle in usbNetwork mode
through uSB, moving into your shell and ssh into the
Raspberry Pi. From there you should be able to use
the keyboard connected to the Raspberry Pi and see
the result on the kindle! For some reason, sometimes i
have to fiddle with the screen session, killing the extra
one and then connecting to the main one.

You probably can work some simple password-less
ssh with authentication key to save some time and add
some cute scripting to simplify the whole connection
process, but once you are connected you can then start
using the Raspberry Pi keyboard.

it was really fun to create the kindleBerry Pi, and i
even used that setup for few weeks. But i quickly real-
ized that if i wanted to do anything productive, it was
better to get myself a computer. My skill in command
line and programming might have been too low to
completely move to a shell-only lifestyle. So sadly the
kindleBerry Pi at this point is only a proof of concept
and could probably be really neat in an “end of the
world” scenario! There still might be some minimal
hardcore coder out there who would enjoy such a
platform! n

Geoffroy is a Web Designer and Yogi, who loves to tinker with
opensource software and hardware. Living now in Berlin with
his wife Melina, they are busy launching studio ponnuki, a joint
creative project offering web design, online publication as well
as yoga, massage and healing dance event!

Reprinted with permission of the original author.
First appeared in hn.my/kindleberry (ponnuki.net)

http://hn.my/kindleberry

Accept payments online.

http://stripe.com

http://memset.com

	Contents
	FEATURES
	Factorization Diagrams
	How I Made $500K with Machine Learning and HFT

	STARTUPS
	25 Entrepreneurs Tell What They Wish They’d Known before Founding Their First Startup

	PROGRAMMING
	Probabilistic M2M Relationships Using
Bloom Filters
	Keep a Programming Journal
	Homomorphic Hashing
	Thoughts on Being a Programmer
	Teaching My 10 Year Old Niece How To Program

	SPECIAL
	Things I Do To Be Consistently Happy
	KindleBerry Pi

