
Issue 32 January 2013

100 Mile Bike Courier
James Greig

Accept payments online.

http://stripe.com

 3

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

4

Curator
Lim Cheng Soon

Contributors
James Greig
Joel Runyon
Gabriel Weinberg
Barry Steyn
Luc Gommans
Greg Lehey
Kalid Azad
Carlos Bueno
Dan Ariely
Alex MacCaw

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

HACKER MontHLy is the print magazine version
of Hacker news — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. the submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker news and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media
46, taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photographs by James Greig

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 5

For links to Hacker News dicussions, visit hackermonthly.com/issue-32

Contents
FEATURES

06 100 Mile Bike Courier
By JAMES GREiG

12 An Unexpected Ass Kicking
By JoEL Runyon

STARTUPS

14 Traction Mistakes
By GABRiEL WEinBERG

PROGRAMMING

16 JavaScript: Function Invocation Patterns
By BARRy StEyn

19 How Does SSL Work?
By LuC GoMMAnS

22 Hacking ls -l
By GREG LEHEy

26 An Intuitive Guide to Linear Algebra
By KALiD AzAD

SPECIAL

32 Pascal’s Apology
By CARLoS BuEno

34 Understanding Ego Depletion
By DAn ARiELy

38 Small
By ALEx MACCAW

Pale Blue Dot

http://hackermonthly.com/issue-32

6 FEATURES

FEATURES

When I started selling
CycleLove t-shirts,
i made a quiet

promise to myself: that i would
deliver my first order in person, and
by bike.

it seemed like a simple way of
celebrating this small but important
milestone in my new venture.

CycleLove is the first thing in a
long time that i really care about;
something i quit my job to do. And
so making the effort to meet my
first customer seemed like the very
least i could do.

As i’m based in London, i figure
this as-yet-nameless-customer
won’t be too far away, so you can
imagine my mixed emotions when
this email lands in my inbox a few
weeks later:

Plugging the Peterborough
postcode into Google Maps quickly
confirms my hunch: to keep my
promise, i must cycle over a hun-
dred miles to deliver a t-shirt.

For a few days i chew the idea
over in my head. i’ve completed
the 120-odd miles of the Dunwich
Dynamo overnight and raced 80
miles in Scotland on the Etape

Caledonia. How hard could a
hundred-odd miles on my own
be? (First mistake: cycling long
distances alone plays tricks on the
mind).

Still unsure if i have the required
huevos to do the ride, i email Peter
to explain it may be a while before
the t-shirt is delivered.

He fires back a quick response:

“I’ve purchased this tee for my
brother’s birthday (in November)
so there’s a bit of time to play with
;)”

this is the sucker punch. the
t-shirt is a birthday present and
i’ve got two months to deliver it.
i resolve to stick to my plan and
deliver it by bike, whatever it takes.

By JAMES GREiG

100 Mile Bike Courier
Why I cycled a hundred miles to meet my first customer

 7

Best-laid plans (or not)
i set a few ground rules for myself:

1. no training — this is not to be
a race.

2. no visible lycra — i am not,
and do not intend to become, a
mamil.

3. no fancy gear, cleats or hi-vis
— i will make the journey as a
human on a bike, not a “cyclist.”

the first half of the route i
already know well from my train-
ing for the Etape Caledonia — the
quiet country roads and softly
rolling hills between Epping Forest
and Cambridge. the second half
between Cambridge and Peterbor-
ough is unknown territory, and i
decide to keep it that way. (Second
mistake: always know your route).

now it’s a matter of waiting for
good weather. october passes. i am
ill on and off. november rolls in,
temperatures drop, and i start to
regret waiting so long. Had i left it
for too late? Would anyone join me
on the ride?

With time running out, i spot a
full day of sunshine in the forecast,
and the date is set. Sunday 11th
november is the day i will become
a one-hundred mile bike courier.

i arrange with Pete to meet him
and his brother Rob in a pub that
Sunday afternoon, pack as light a
bag as possible with an SLR camera,
and set my alarm for 4.30am.

 it’s a cold, dark morning, but i’m
excited to start my journey after
weeks of planning.

Sunday at 5am marks an overlap
of worlds. Revelers are heading

home whilst workers head out. A
young couple is scaling a fence into
Brockwell Park, whilst somber fig-
ures wait alone at bus stops. traffic
on London Bridge is reduced to less
than a trickle. Drunken kids hang
like monkeys from scaffolding in
Leyton, howling with laughter.

After ten miles or so, i’m sweat-
ing and stop to remove a layer.
(third mistake: cities generate heat.
the countryside doesn’t, as i will
soon remember).

As the light imperceptibly
increases, i finally break out of
Epping Forest into open country-
side, and the temperature plum-
mets towards freezing. i feel obliged
to make use of the light by taking
photos, even though it means
removing both sets of gloves.

Giro/Vulpine/Specialized/Brixton Cycles/
Canon/Knog/Her Majesty’s treasury 4:42am Breakfast and last minute route check

5:35am London Bridge 6:56am Epping Forest

8 FEATURES

By this point, i’m feeling the cold
however fast i ride, and i stop to
put everything i’ve got in my bag
back on.

i’m also cursing my decision not
to wear overshoes. (Fourth mistake:
extremities suffer first). Luckily i
have some spare socks, intended for
the journey home, and put them on
over my long wooly socks. A mouth
full of chocolate and a sausage roll
is no comfort to my toes but settles
a now-hungry stomach.

Switching my camera-phone lens
around, a blue face peers back at
me from the screen. i wish i had
the Michelin Man’s insulation to
keep me warm.

 i may be riding alone, but i know
that a few people are following my
progress on twitter, and i realize
they can offer the support i need.

i’m not sure if my phone bat-
tery will last the distance if i keep
refreshing my feed, but it’s worth
the risk. Sure enough, twitter offers
me some badly needed words of
encouragement:

Oh. How are your feet doing then?
:) How much longer have you got?
— Discerning Cyclist
(@discerningcyc)

Keep going. Hope you warm up
and have a great ride.
— Belinda Scott (@Condorbee)

7:09am Winding roads and freezing fog

8:29am Cold feet

 9

Belinda is right. the only way to
get warm is to speed up.

i know this part of England well
from training rides, and familiar
place names are now flashing by:
Roydon. Much Hadham. Little
Hadham. Patmore Heath.

A handful of lycra-clad cyclists
are already out for their Sunday
spin, and i bob my head in
acknowledgement, not really caring
if they respond or not.

two hours later, i roll over the
M11 into newport, twenty miles
south of Cambridge, and can’t help
but think: maybe this isn’t going to
be so tough after all? (Fifth mistake:
it’s not over until it’s over, James).

 After a short stop in newport, i
head out north from the village.

Suddenly cars are buzzing by
uncomfortably close. the road sur-
face is rough like three-day stubble,
and my speed drops.

Confused i pull into the first
layby to check my location. i’m on
the fucking A1301! (Sixth mistake:
avoid fast roads at all cost).

 For the first time on the ride, i’m
angry. What the hell am i doing?
Why didn’t i plan my route better?
Why didn’t i do some training?

of course it’s too late to be
asking these kinds of questions, so i
ease gently back onto my bike, and
force myself to press on.

Fortunately, signs of civilization
have started to appear in the form
of cycle paths. they’re not marked
on my map (thanks, Apple), but i’m
sure they must be headed to my
checkpoint of Cambridge. An hour
later i’m there, tucking into what
tastes like the best fish and chips in
the world.

68 miles completed. 38 to go.

10:22am newport

10:46am Audley End House 11:35am Shouldn’t be here

10 FEATURES

With a full belly, i start off slowly
on the second leg of the journey.
i’m under no pretentions that it’s
going to be easy — especially con-
sidering i have no idea how flat or
hilly the road ahead is.

Each town and village on the
route now becomes a target.

i memorize a few at a time and
chant them to myself on repeat,
like a mantra, before stopping to
learn a new batch of place names.

i’m taking another break for food
when, out of nowhere, a recumbent

bike appears, and i find myself
smiling again. Looking at the photo
now at full size, its owner seems to
be wearing green wellington boots.
Chapeau!

 it’s now several hours since
lunch, and my energy levels are
flagging. Even the smallest of hills
seem to grind on relentlessly.

thankfully i have the cure for
the problem and am soon trip-
ping on an awesome wave of sugar
and caffeine. time is running out
though — i need to get to my

destination before the hit wears off
— and as if to heighten the sense of
urgency, the sun is dipping towards
the horizon.

At this point i get lucky, hitting
the smoothest, straightest and flat-
test stretch of road i’ve ever seen…

11:47am Where does this go, ioS6? 12:38pm Lunch, Cambridge

13:53pm Chance encounter with a recumbent

14:08pm Magic potion

 11

if you’re reading this B1040, i love you. Let’s do it
again sometime soon.

With fifteen or so miles covered at top speed, i’m
feeling more positive. the first road sign for Peterbor-
ough appears, and there’s no doubt in my mind that
i’m going to make it.

i allow myself the luxury of stopping to get out my
camera and document the last rays of sun for the day.

 As the light fades, i hit the outskirts of Peterbor-
ough, knowing that Pete and his brother Rob will
already be at our rendezvous point, a floating bar
moored on the River nene in the center of town.

By the time i arrive there, the novelty of the location
escapes me — all i can think about is getting my lips
around a cold beer.

 Sitting down with the pint that Pete has just bought
me, i grab the packaged CycleLove t-shirt out of
my bag. i search for the best words to explain to his
brother who this sweaty and exhausted-looking man
sitting across from him at the table is.

i turn to Rob and find myself saying…
“Well, i’ve got this blog about cycling… and…” n

Distance ridden: 105 miles
Total time: 11.5 hours
Resting time: 2.5 hours approx.
Photos taken: 112
Ales drunk: 2
Happy customers: 1

James Greig trained as a graphic designer at Glasgow School of
Art in Scotland before returning to London in 2009 to pursue his
career as a graphic designer. In the spring of 2012 he quit his job
to travel across America, and began working (almost) full-time
on CycleLove.

the B1040

15:52pm twilight

16:42pm Peterborough

16:57pm My first customer: Rob

Reprinted with permission of
the original author.
First appeared in hn.my/cycle
(cyclelove.com)

http://hn.my/cycle
http://hn.my/cycle

12 FEATURES

i sat down at yet another coffee
shop in Portland determined to
get some work done, catch up

on some emails and write another
blog post.

About 30 minutes into my work-
ing, an elderly gentleman at least 80
years old sat down next to me with
a hot coffee and a pastry. i smiled
at him and nodded and looked back
at my computer as i continued to
work.

“Do you like Apple?” he asked as
he gestured to the new Macbook
Air i had picked up a few days
prior.

“yea, i’ve been using them for
a while,” i said, wondering if i was
going to get suckered into a Mac vs.
PC debate in a Portland coffee shop
with an elderly stranger.

“Do you program on them?”
“Well, i don’t really know how

to code, but i write quite a bit and
spend a lot of time creating online
projects and helping clients run
their businesses,” i replied.

“i’ve been against Macintosh
company lately. they’re trying to
get everyone to use iPads and when
people use iPads they end up just
using technology to consume things
instead of making things. With a

computer you can make things. you
can code, you can make things and
create things that have never before
existed and do things that have
never been done before.”

“that’s the problem with a lot
of people,” he continued, “they
don’t try to do stuff that’s never
been done before, so they never do
anything, but if they try to do it,
they find out there’s lots of things
they can do that have never been
done before.”

i nodded my head in agreement
and laughed to myself — mostly
because that would be something
that i would say and because of
the coincidence that out of all the
people in the coffee shop i ended
up talking to, it was this guy. What
a way to open a conversation.

the old man turned back to his
coffee, took a sip and then looked
back at me.

“in fact, i’ve done lots of things
that haven’t been done before,” he
said half-smiling.

not sure if he was simply toying
with me or not, i let my curiosity
get the better of me.

“oh, really? Like what types of
things?” i asked, all the while half-
thinking he was going to make up
something fairly non-impressive.

“i invented the first computer,”
he said.

um, Excuse me?
“i created the world’s first inter-

nally programmable computer. it
used to take up a space about as
big as this whole room and my wife
and i used to walk into it to pro-
gram it.”

“What’s your name?” i asked,
thinking that this guy was either
another crazy homeless person in
Portland or legitimately who he said
he was.

“Russell Kirsch,” he answered.
Sure enough, after .29 seconds,

i found out he wasn’t lying to my
face. Russell Kirsch indeed invented
the world’s first internally program-
mable computer [hn.my/russell] as
well as a bunch of other things, and
he definitely lives in Portland. As he
talked, i began googling him.

He read my mind and volun-
teered, “Here, i’ll show you.”

By JoEL Runyon

An Unexpected Ass Kicking

http://hn.my/russell

 13

He stood up and directed me to a
variety of websites and showed me
through the archives of what he’d
created while every once in a while
dropping some minor detail like, “i
also created the first digital image.
it was a photo of my son.”

At this point, i learned better
than to call Russell’s bluff, but
sure enough, a few more Google
searches [hn.my/newborn] showed
that he did just what he said he did.

 As he showed me through the
old history archives of what he did
(and while any hope of productivity
vacated my mind), i listened to his
stories and picked his brain.

At some point in the conversa-
tion, i said to him, “you know Rus-
sell, that’s really impressive.”

“i guess. i’ve always believed that
nothing is withheld from us which
we have conceived to do. Most
people think the opposite — that
all things are withheld from them
which they have conceived to do
and they end up doing nothing.”

“Wait,” i said, pausing at his last
sentence, “What was that quote
again?”

“nothing is withheld from us
which we have conceived to do.”

“that’s good. Who said that?”
“God did,” he said.
“What?”
“God said it and there were only

two people who believed it. you
know who?”

“nope. Who?” i asked.
“God and me, so i went out and

did it,” he replied.
Well then, i thought as he

finished showing me the archives,
i’m not going to argue with the
guy who invented the computer.
After about 20 minutes of walking
me through his contributions to
technology, he sat down, finished
his coffee, glanced at his half-eaten
pastry now-cold, checked his watch
and announced, “Well, i have to go
now.”

With that, we shook hands, he got
up, walked to his car and drove off
as i just sat there trying to figure
out what exactly had just hap-
pened. As i sat there thinking, two
things he said reverberated in the
back of my mind:

 n nothing is withheld from us
which we have conceived to do.

 n Do things that have never been
done.

the first meaning: if you have
conceived something in your mind,
have decided to do it and are will-
ing to put in the work, then nothing
can stop you.

the second is fairly self-explana-
tory but carries the extra weight of
coming from the guy who invented
the very thing that’s letting me type
these words out on the internet. n

Joel Runyon is the author of the Blog of
Impossible Things & Impossible HQ, where
he writes about pushing your limits and
doing the impossible through physical
challenges, adventure and service.

“Nothing is withheld from us
which we have conceived to do.”

Reprinted with permission of the original author.
First appeared in hn.my/kick (joelrunyon.com)

Want to mess with your mind?
Without the man in the photo, the
photo of this man wouldn’t exist.

http://hn.my/newborn
http://hn.my/kick

14 STARTUPS

STARTUPS

Most startups don’t fail
at building a product.
they fail at acquiring

customers.
the biggest mistakes i see over

and over again when startups try to
get traction are as follows (in order
of importance).

➊ They don’t pursue traction
in parallel with product

development.
the benefits of parallel customer
acquisition cannot be understated.
First and foremost, you can use
initial customer development to
inform your product roadmap
and literally prevent yourself from
a) building something people
don’t really want, and b) building
something people want but not
enough to form a business around
it. Second, you can launch with
a nice base of initial users. third,
you’re prepared to scale to the next
step because you’ve been testing
messaging and distribution chan-
nels since the beginning and thus
have a great idea of where to focus
post-launch.

➋ They didn’t spend enough
time pursuing traction.

i believe distribution is equally
important as product. that means
quite literally you should be spend-
ing 50% of your time on it. For tech
people, you should probably bias
it to 75% so you end up getting to
equal in the end.

At 50%, it competes with being
at the top of your mind, which
means you can actually make
real headway and be creative.
otherwise, it becomes an after-
thought and progress drops off
exponentially.

note i’m not a fan of doing
this 50/50 split between a tech
and non-tech co-founder. you will
maximize success probabilities if
each co-founder does both. the
other problem with the split is
the non-tech guy ends up pick-
ing up all sorts of other stuff (QA,
paperwork, etc.) and 50% starts to
become 25%.

➌ They were biased towards
or against certain traction

verticals.
there are many verticals that
startups have used to get traction.
usually in a given growth stage, one
ends up mattering the most, but
which one is a bit unpredictable.

the biggest bias here is avail-
ability bias. Startups generally just
don’t think of things like billboards
and infomercials because they’re
out of their vision. Another large
bias is a negative bias towards
things people find icky, e.g. sales,
affiliates — but they don’t have to
be icky at all. A third bias is the
general bias against schlep — busi-
ness development is in this category
for sure.

the point is that you should
consider all traction verticals in the
pursuit of traction. i’m not saying
actually act on all of them at all,
but at least consider them.

By GABRiEL WEinBERG

Traction Mistakes

 15

➍ They didn’t take a
systematic approach to

getting traction.
People have established processes
for product development, but
less so for distribution. the usual
approach is to build the product,
then frantically try to figure out
how startups promote things,
then haphazardly attempt various
obvious things in serial (try to get
press coverage, buy some Adwords,
Facebook ads, etc.).

you can do better, however. What
i like to see is an educated guess
at a few traction verticals that are
likely to work based on product
type, market approach and stage of
company. List them all out in order
of potential usefulness.

then approach the most promis-
ing verticals (say five) with small
but effective tests using something
like quant based marketing (i.e.
with numbers). if one or two out
of the initial five seem promising,
focus hard on them. if they turn
out not to work, then back up and
pick the next set of verticals.

➎ They didn’t take
advantage of

micro-opportunities.
Startup micro-opportunities are
little moments that pop up every
now and again that can give
you a nice blip in traction if you
move fast on them. two common
examples are responding to stuff in
the press or memes in an interest-
ing way and trying out new tactics
within traction verticals that appear
(e.g. Pinterest ads if they come out
with them).

to take advantage of these
opportunities you have to be
watching, flexible and creative.
What this means in practice is that
you generally need #2, i.e. to be
spending enough time on pursuing
traction to recognize one when you
see it.

For what it’s worth, i’ve made
all these mistakes myself. My first
company was a disaster in this
regard. My second one swung like
a pendulum in the other direction
and i spent too much time get-
ting traction and not enough on
product development to build a
long-term sustainable company. At
DuckDuckGo i’ve tried to avoid
these mistakes as best i can. n

Gabriel Weinberg is the founder of Duck-
DuckGo, a search engine. He is also an
active angel investor, based out of Valley
Forge, PA.

“The usual approach is to build the product,
then frantically try to figure out how startups
promote things, then haphazardly attempt
various obvious things in serial.”

Reprinted with permission of the original author.
First appeared in hn.my/mistrack (gabrielweinberg.com)

http://hn.my/mistrack

16 PROGRAMMING

JavascrIpt has been described as a Functional
oriented Language (this as opposed to object
oriented Language). the reason is because func-

tions in JavaScript do more than just separate logic into
execution units; functions are first class citizens that
also provide scope and the ability to create objects.
Having such a heavy reliance upon functions is both
a blessing and a curse: it’s a blessing because it makes
the language lightweight and fast (the main goal of its
original development), but it is a curse because you can
very easily shoot yourself in the foot if you don’t know
what you are doing.

one concern with JavaScript functions is how dif-
ferent invocation patterns can produce vastly different
results. this article explains the four patterns, how to
use them and what to watch out for. the four invoca-
tion patterns are:

1. Method invocation

2. Function invocation

3. Constructor invocation

4. Apply And Call invocation

Function Execution
JavaScript (like all languages these days) has the ability
to modularize logic in functions which can be invoked
at any point within the execution. invoking a function
suspends execution of the current function, passing
controls and parameters to the invoked function. in
addition, a parameter called this is also passed to the
function. the invocation operator is a pair of round
brackets (), that can contain zero or more expressions
separated by a comma.

unfortunately, there is more than one pattern that
can be used to invoke functions. these patterns are not
nice-to-know: they are absolutely essential to know. this
is because invoking a function with a different pattern
can produce a vastly different result. i believe that this

is a language design error in JavaScript, and had the
language been designed with more thought (and less
haste), this would not have been such a big issue.

The Four Invocation Patterns
Even though there is only one invocation operator (),
there are four invocation patterns. Each pattern differs
in how the this parameter is initialized.

Method Invocation
When a function is part of an object, it is called a
method. Method invocation is the pattern of invoking a
function that is part of an object. For example:

var obj = {
 value: 0,
 increment: function() {
 this.value+=1;
 }
};

obj.increment(); //Method invocation

Method invocation is identified when a function is
preceded by object., where object is the name of
some object. JavaScript will set the this parameter to
the object where the method was invoked on. in the
example above, this would be set to obj. JavaScript
binds this at execution (also known as late binding).

Function Invocation
Function invocation is performed by invoking a func-
tion using ():

add(2,3); //5

When using the function invocation pattern, this
is set to the global object. this was a mistake in the
JavaScript language! Blindly binding this to the global
object can destroy its current context. it is noticeable
when using an inner function within a method func-
tion. An example should explain things better:

By BARRy StEyn

JavaScript:
Function Invocation Patterns

PROGRAMMING

 17

var value = 500; //Global variable
var obj = {
 value: 0,
 increment: function() {
 this.value++;

 var innerFunction = function() {
 alert(this.value);
 }
 innerFunction();
 //Function invocation pattern
 }
}
obj.increment(); //Method invocation pattern

What do you think will be printed to screen? For
those that answered 1, you are wrong (but don’t be too
hard on yourselves, this is because JavaScript does not
do things very well). the real answer is 500. note that
innerFunction is called using the function invocation
pattern, therefore this is set to the global object. the
result is that innerFunction (again, it is important to
note that it is invoked with function pattern) will not
have this set to current object. instead, it is set to the
global object, where value is defined as 500. i stress
that this is bad language design; the increment function
was invoked with the method invocation pattern, and
so it is natural to assume the this should always point
to the current function when used inside it.

there is an easy way to get round this problem, but
it is in my opinion a hack. one gets around this prob-
lem by assigning a variable (by convention, it is named
that) to this inside the function (aside: this works
because functions in JavaScript are closures):

var value = 500; //Global variable
var obj = {
 value: 0,
 increment: function() {
 var that = this;
 that.value++;

 var innerFunction = function() {
 alert(that.value);
 }
 innerFunction();
 //Function invocation pattern
 }
}
obj.increment();

if this could be bound to the current object whose
scope it is called in, function and method invocations
would be identical.

Constructor Invocation
Warning: this is another JavaScript peculiarity! JavaS-
cript is not a classical object oriented language. instead,
it is a prototypical object oriented language, but the
creators of JavaScript felt that people with classical
object orientation experience (the vast majority) may
be unhappy with a purely prototype approach. this
resulted in JavaScript being unsure of its prototypical
nature and the worst thing happened: it mixed classical
object orientation syntax with its prototypical nature.
the result: a mess!

in classical object orientation, an object is an instan-
tiation of a class. in C++ and Java, this instantiation
is performed by using the new operator. this seems to
be the inspiration behind the constructor invocation
pattern....

the constructor invocation pattern involves putting
the new operator just before the function is invoked.
For example:

var Cheese = function(type) {
 var cheeseType = type;
 return cheeseType;
}

cheddar = new Cheese("cheddar");
//new object returned, not the type.

Even though Cheese is a function object (and
intuitively, one thinks of functions as running modu-
larized pieces of code), we have created a new object
by invoking the function with new in front of it. the
this parameter will be set to the newly created object
and the return operator of the function will have its
behavior altered. Regarding the behavior of the return
operator in constructor invocation, there are two cases:

1. if the function returns a simple type (number,
string, Boolean, null, or undefined), the return will
be ignored and instead this will be returned (which
is set to the new object).

2. if the function returns an instance of Object (any-
thing other than a simple type), then that object
will be returned instead of returning this. this pat-
tern is not used that often, but it may have utility
when used with closures.

18 PROGRAMMING

For example:

var obj = {
 data : "Hello World"
}

var Func1 = function() {
 return obj;
}

var Func2 = function() {
 return "I am a simple type";
}

var f1 = new Func1(); //f1 is set to obj
var f2 = new Func2(); //f2 is set to a new object

We might ignore this, and just use object literals to
make objects, except that the makers of JavaScript
have enabled a key feature of their language by using
this pattern: object creation with an arbitrary prototype
link. this pattern is unintuitive and also potentially
problematic. there is a remedy which was championed
by Douglas Crockford: augment Object with a create
method that accomplishes what the constructor invo-
cation pattern tries to do. i am happy to note that as of
JavaScript 1.8.5, Object.create is a reality and can be
used. Due to legacy, the constructor invocation is still
used often, and for backward compatibility, will crop
up quite frequently.

Apply And Call Invocation
the apply pattern is not as badly thought out as the
preceding patterns. the apply method allows manual
invocation of a function with a means to pass the func-
tion an array of parameters and explicitly set the this
parameter. Because functions are first class citizens,
they are also objects and hence can have methods
(functions) run on it. in fact, every function is linked to
Function.prototype, and so methods can very easily be
augmented to any function. the apply method is just
an augmentation to every function as, i presume, it is
defined on Function.prototype.

Apply takes two parameters: the first parameter is an
object to bind the this parameter to, the second is an
array which is mapped to the parameters:

var add = function(num1, num2) {
 return num1+num2;
}

array = [3,4];
add.apply(null,array); //7

in the example above, this is bound to null (the
function is not an object, so it is not needed) and array
is bound to num1 and num2. More interesting things can
be done with the first parameter:

var obj = {
 data:'Hello World'
}

var displayData = function() {
 alert(this.data);
}

displayData(); //undefined
displayData.apply(obj); //Hello World

the example above uses apply to bind this to
obj. this results in being able to produce a value for
this.data. Being able to explicitly assign a value to
this is where the real value of apply comes about.
Without this feature, we might as well use () to invoke
functions.

JavaScript also has another invoker called call, that
is identical to apply except that instead of taking an
array of parameters, it takes an argument list. if JavaS-
cript would implement function overriding, i think that
call would be an overridden variant of apply. there-
fore one talks about apply and call in the same vein.

Conclusion
For better or worse, JavaScript is about to take over the
world. it is therefore very important that the peculiari-
ties of the language be known and avoided. Learning
how the four function invocation methods differ and
how to avoid their pitfalls is fundamental to anyone
who wants to use JavaScript. i hope this article has
helped people when it comes to invoking functions. n

Barry is an entrepreneur in the tech space and loves building
programs. He also loves the building process that is inherent
with entrepreneurism.

Reprinted with permission of the original author.
First appeared in hn.my/invo (doctrina.org)

http:// hn.my/invo

 19

By LuC GoMMAnS

SsL (and Its successor, tLS)
is a protocol that oper-
ates directly on top of tCP

(although there are also imple-
mentations for datagram-based
protocols, such as uDP). this way,
protocols on higher layers (such as
HttP) can be left unchanged while
still providing a secure connection.
underneath the SSL layer, HttP is
identical to HttPS.

When using SSL/tLS correctly,
all an attacker can see on the cable
is which iP and domain you are
connected to, roughly how much
data you are sending, and what
encryption and compression is used.
He can also terminate the connec-
tion, but both sides will know that
the connection has been inter-
rupted by a third party.

High-level description of the
protocol
After building a tCP connection,
the SSL handshake is started by the
client. the client (which can be a
browser as well as any other pro-
gram, such as Windows update or
Putty) sends a number of specifi-
cations: which version of SSL/tLS
it is running, what ciphersuites it
wants to use, and what compression
methods it wants to use. the server

checks for the highest SSL/tLS
version that is supported by them
both, picks a ciphersuite from one
of the client’s options (if it supports
one), and optionally picks a com-
pression method.

After this basic setup is done,
the server sends its certificate.
this certificate must be trusted by
either the client itself or a party
that the client trusts. For example,
if the client trusts thawte, then
the client can trust the certificate
from Google.com because thawte
cryptographically signed Google’s
certificate.

After the client verifies the
certificate and is certain this server
really is who he claims to be (and
not a man in the middle), a key is
exchanged. this can be a public
key, a “PreMasterSecret” or simply
nothing, depending on the chosen
ciphersuite. Both the server and the
client can now compute the key for
the symmetric encryption whynot
PKE?. the client tells the server
that all communication will be
encrypted from now on, and sends
an encrypted and authenticated
message to the server.

the server verifies that the MAC
(used for authentication) is cor-
rect and that the message can be

correctly decrypted. it then returns
a message, which the client verifies
as well.

the handshake is now finished
and the two hosts can communicate
securely.

to close the connection, a close_
notify “alert” is used. if an attacker
tries to terminate the connection
by finishing the tCP connection
(injecting a Fin packet), both sides
will know the connection was
improperly terminated. the con-
nection cannot be compromised by
this though, merely interrupted.

Some more details
Why can you trust Google.com by
trusting Thawte?
Consider that a website wants to
communicate with you securely.
in order to prove its identity and
make sure that it is not an attacker,
you must have the server’s public
key. However, you can hardly store
all keys from all websites on earth;
the database would be huge and
updates would have to run every
hour!

the solution to this is Certifi-
cate Authorities, or CA for short.
When you installed your operating
system or browser, a list of trusted
CAs probably came with it. this

How Does SSL Work?

20 PROGRAMMING

list can be modified at will; you can
remove whom you don’t trust, add
others, or even make your own CA
(though you will be the only one
trusting this CA, so it’s not much
use for public website). in this
CA list, the CA’s public key is also
stored.

When Google’s server sends you
its certificate, it also mentions it
is signed by thawte. if you trust
thawte, you can verify (using
thawte’s public key) that thawte
really did sign the server’s certifi-
cate. to sign a certificate yourself,
you need the private key, which is
only known to thawte. this way
an attacker cannot sign a certificate
himself and incorrectly claim to be
Google.com. When the certificate
has been modified by even one bit,
the sign will be incorrect and the
client will reject it.

So if I know the public key, the
server can prove its identity?
yes. typically, the public key
encrypts and the private key
decrypts. Encrypt a message with
the server’s public key, send it, and
if the server can tell you what it
originally said, it just proved that it
got the private key without reveal-
ing the key.

this is why it is so important
to be able to trust the public key:
anyone, including an attacker, can
generate a private/public key pair.
you don’t want to end up using the
public key of an attacker!

if one of the CAs that you trust
is compromised, an attacker can
use the stolen private key to sign
a certificate for any website they
like. When the attacker can send
a forged certificate to your client,
signed by himself with the private
key from a CA that you trust, your
client doesn’t know that the public

key is a forged one, signed with a
stolen private key.

But a CA can make me trust any
server they want!
yes, and that is where the trust
comes in. you have to trust the CA
not to make certificates as they
please. When organizations like
Microsoft, Apple and Mozilla trust
a CA though, the CA must have
audits during which another organi-
zation periodically checks on them
to make sure things are still running
according to the rules.

issuing a certificate is done if, and
only if, the registrant can prove they
own the domain that the certificate
is issued for.

What is this MAC for message
authentication?
Every message is signed with a
so-called Message Authentication
Code, or MAC for short. if we
agree on a key and hashing cipher,
you can verify that my message
comes from me, and i can verify
that your message comes from you.

For example, with the key “cor-
rect horse battery staple” and the
message “example,” i can compute
the MAC “58393.” When i send this
message with the MAC to you (you
already know the key), you can
perform the same computation and
match up the computed MAC with
the MAC that i sent.

An attacker can modify the mes-
sage, but does not know the key. He
cannot compute the correct MAC,
and you will know the message is
not authentic.

By including a sequence number
when computing the MAC, you can
eliminate replay attacks. SSL does
this.

You said the client sends a key,
which is then used to setup sym-
metric encryption. What prevents
an attacker from using it?
the server’s public key does. Since
we have verified that the public
key really belongs to the server and
no one else, we can encrypt the
key using the public key. When the
server receives this, he can decrypt
it with the private key. When
anyone else receives it, they cannot
decrypt it.

this is also why key size matters:
the larger the public and private
key, the harder it is to crack the key
that the client sends to the server.

How to crack SSL
In summary:

 n try if the user ignores certificate
warnings;

 n the application may load data
from an unencrypted channel
(e.g., http), which can be tam-
pered with;

 n An unprotected login page that
submits to HttPS may be modi-
fied so that it submits to HttP;

 n unpatched applications may
be vulnerable for exploits like
BEASt and CRiME;

 n Resort to other methods, such as
a physical attack.

In detail:
there is no simple and straight-
forward way; SSL is secure when
done correctly. An attacker can try
if the user ignores certificate warn-
ings though, which would break
the security instantly. When a user
does this, the attacker doesn’t need
a private key from a CA to forge a
certificate; he merely has to send a
certificate of his own.

 21

Another way would be by a flaw
in the application (server- or client-
side). An easy example is in web-
sites: if one of the resources used
by the website (such as an image or
a script) is loaded over HttP, the
confidentiality cannot be guaran-
teed anymore. Even though brows-
ers do not send the HttP Referer
header when requesting non-secure
resources from a secure page, it is
still possible for someone eaves-
dropping on traffic to guess where
you’re visiting from. For example,
if they know images x, y, and z are
used on one page, they can guess
you are visiting that page when
they see your browser request those
three images at once. Additionally,
when loading JavaScript, the entire
page can be compromised. An
attacker can execute any script on
the page, modifying for example to
whom the bank transaction will go.

When this happens (a resource
being loaded over HttP), the
browser gives a mixed-content
warning: Chrome, Firefox, internet
Explorer 9.

Another trick for HttP is when
the login page is not secured, and it
submits to an https page. “Great,”
the developer probably thought,
“now i save server load and the
password is still sent encrypted!”
the problem is sslstrip, a tool that
modifies the insecure login page so
that it submits somewhere so that
the attacker can read it.

there have also been various
attacks in the past few years, such
as the tLS renegotiation vulner-
ability, sslsniff, BEASt, and very
recently, CRiME. All common
browsers are protected against all
of these attacks though, so these
vulnerabilities are no risk if you are
running an up-to-date browser.

Last but not least, you can resort
to other methods to obtain the
information that SSL denies you
to obtain. if you can already see
and tamper with the user’s connec-
tion, it might not be that hard to
replace one of his/her .exe down-
loads with a keylogger or simply
to physically attack that person.
Cryptography may be rather secure,
but humans and human error are
still a weak factor. According to this
paper [hn.my/breach] by Verizon,
10% of the data breaches involved
physical attacks (see page 3), so
it’s certainly something to keep in
mind. n

Luc Gommans is a software development
student from Eindhoven, The Netherlands.
He is interested in coding, computer net-
working, security, and is a regular contribu-
tor to security.stackexchange.com

Reprinted with permission of the original author.
First appeared in hn.my/ssl (stackexchange.com)

http://hn.my/breach
http://security.stackexchange.com
http://hn.my/ssl

22 PROGRAMMING

By GREG LEHEy

once upon a time, files were small. the first edition
of unix had a maximum file size of 64 KB, and even
today we see the effect of the ancient 2 GB limit in

the Linux O_LARGEFILE flag to open. But the truth is much larger.
i back up my systems to disk, and looking at them is something
like:

Hacking ls -l

=== grog@eureka (/dev/pts/14) ~ 29 -> ls -l /src/dump/boskoop/
total 168169
-rw-r--r-- 1 root wheel 36211690564 Mar 20 2012 boskoop.disk0-1.bz2
-rw-r--r-- 1 root wheel 16596907252 Dec 24 2009 boskoop.disk0.bz2
-rw-r--r-- 1 grog wheel 4173914809 Jul 20 2006 boskopp.tar.gz
-rw-r--r-- 1 root wheel 10273920512 Mar 18 2012 delicious-image
-rw-r--r-- 1 root wheel 80026361856 Mar 18 2012 old-boskoop-image
-rw-r--r-- 1 root wheel 28968755200 Mar 16 2012 root.tar

What are those values? How big are the files? your eyes go
funny just trying to count the digits. How much easier would
this be:

=== grog@eureka (/dev/pts/14) ~ 32 -> ls -l, /src/dump/boskoop/
total 168169
-rw-r--r-- 1 root wheel 36,211,690,564 20 Mar 2012 boskoop.disk0-1.bz2
-rw-r--r-- 1 root wheel 16,596,907,252 24 Dec 2009 boskoop.disk0.bz2
-rw-r--r-- 1 grog wheel 4,173,914,809 20 Jul 2006 boskopp.tar.gz
-rw-r--r-- 1 root wheel 10,273,920,512 18 Mar 2012 delicious-image
-rw-r--r-- 1 root wheel 80,026,361,856 18 Mar 2012 old-boskoop-image
-rw-r--r-- 1 root wheel 28,968,755,200 16 Mar 2012 root.tar

then again, i have the source, so i can do it. But the “how” is interesting.
there are a number of steps.

 23

➊ How do you get printf to print the commas?
Does it even work? Clearly a case for RtFM,

which tells me:

`'' Decimal conversions (d, u, or i) or
the integral portion of a floating point conver-
sion (f or F) should be grouped and separated
by thousands using the non-monetary separator
returned by localeconv(3).

What’s that character? it looks like a quote (`) or
apostrophe ('), but so does the character after it, and
they don’t look the same. But they are: it’s just in what
passes for bold font on an xterm. But further up other
confusing characters (zero and space) are explained, so
this one’s a candidate, too.

On my to-do list: Update man page to explain that the
character is an apostrophe.

➋ Find the code and do a quick-and-dirty modifi-
cation. ls is /bin/ls, so the source should be in

/usr/src/bin/ls/, and it is. it was relatively trivial to
find the place: it’s in print.c. For test purposes, i just
added an apostrophe (') to the format, which of course
would always print the commas:

--- print.c (revision 241498)
+++ print.c (working copy)
@@ -612,7 +612,7 @@
- (void)printf("%*jd ", (u_int)width, bytes);
+ (void)printf("%*j'd ", (u_int)width, bytes);

But that came up with an unexpected problem:

cc -O2 -pipe -DCOLORLS -std=gnu99 -fstack-
protector -Wsystem-headers -Werror -Wall -Wno-
format-y2k -W -Wno-unused-parameter -Wwrite-
strings -Wswitch -Wshadow -Wredundant-decls
-Wold-style-definition -Wno-pointer-sign -c /usr/
src/bin/ls/print.c
cc1: warnings being treated as errors
/usr/src/bin/ls/print.c: In function 'print-
size':
/usr/src/bin/ls/print.c:615: warning: unknown
conversion type character ''' in format
/usr/src/bin/ls/print.c:615: warning: too many
arguments for format
*** [print.o] Error code 1

What’s that? Who’s right, the man page or the com-
piler? in this case, the man page is right. the compiler

tries to second-guess what should be in a format, and
it’s wrong. But it only does that if the format is a string
literal. the next attempt was:

@@ -611,8 +611,10 @@
- } else
- (void)printf("%*jd ", (u_int)width, bytes);
+ } else {
+ const char *format = "%*j'd ";
+ (void)printf(format, (u_int)width, bytes);
+ }
 }

And that worked. Well, it compiled anyway.

To-do list: Fix compiler’s format parsing.

➌ So, run ls -l again. no change. it seems that
printf is ignoring the format specifier. Back to

RtFM:

`'' Decimal conversions (d, u, or i) or
the integral portion of a floating point conver-
sion (f or F) should be grouped and separated
by thousands using the non-monetary separator
returned by localeconv(3).

Locales rearing their ugly head again. oK, how
do i find out what my non-monetary separator is?
localeconv() is a library function, so i can’t use that to
look. What commands are there? it proves that there’s
only locale(1) and mklocale(1). locale(1) seems the
obvious one to choose:

DESCRIPTION The locale utility is supposed
to provide most locale specific information to
the standard output.

that “supposed” didn’t exactly fill me with confi-
dence. But still, all i wanted to do was print the con-
tents of my current locale. How do you do that? Run
locale(1) with no options:

=== grog@eureka (/dev/pts/7) ~ 20 -> locale
LANG=
LC_CTYPE="C"
LC_COLLATE="C"
LC_TIME="C"
LC_NUMERIC="C"
LC_MONETARY="C"
LC_MESSAGES="C"
LC_ALL=

24 PROGRAMMING

not quite what i was looking for. i wanted to know
what values i had set, and for that i needed keywords.
the -k option looked like a possibility:

-k Print the names and values of all
selected keywords.

But that’s the wrong way: it wants me to tell it
which keywords, and i want it to tell me all keywords.
there doesn’t seem to be a way to get it to show all of
them.

To-do list: Modify locale(1) to print all keywords if
no argument is passed to the -k option.

➍ i carried on searching in localeconv(3), which
gave me the contents of struct lconv, con-

veniently with comments that are missing from the
header file /usr/include/locale.h.

To-do list: Add comments to /usr/include/locale.h.

the name of the struct member is thousands_sep,
and locale(1) understands that:

=== grog@eureka (/dev/pts/9) ~/fbbg/www/BGIS 48
-> locale -k thousands_sep
thousands_sep=""

not quite what i was hoping for, but at least it
explains part of the problem. But why isn’t it set? i
have LC_NUMERIC="C". Does that not allow commas?
How do i find out? i still don’t know. Round about this
time, Callum Gibson was trying his own experiments
and established that setting the variable LC_ALL changes
things:

export LC_ALL=en_AU.ISO8859-1

that’s not as obvious as it seems. the output of
locale(1) looks like these environment variables, but
the only one that seems to make any difference is LC_
ALL. After that, my test version of ls finally worked:

=== grog@eureka (/dev/pts/14) ~ 32 -> /usr/obj/
usr/src/bin/ls/ls -l /src/dump/boskoop/
total 168169
-rw-r--r-- 1 root wheel 36,211,690,564
20 Mar 2012 boskoop.disk0-1.bz2
-rw-r--r-- 1 root wheel 16,596,907,252
24 Dec 2009 boskoop.disk0.bz2
-rw-r--r-- 1 root wheel 28,968,755,200
16 Mar 2012 root.tar

To-do list: Review documentation of how to set locales;
possibly fix.

➎ next, i had to do things properly by adding an
option for the commas, rather than printing

them all the time. that’s relatively trivial, but which
option? ls doesn’t have too many option characters
left, and there’s the consideration of compatibility with
PoSix.2, the other BSDs and Linux. in many ways
it’s a lost cause, of course. the options for Gnu ls vary
wildly from those for BSD ls, including lots of long
options such as --show-control-chars, a verbose way
of representing FreeBSD’s -w option. And others, such
as -T, have completely unrelated meanings.

Still, it’s good not to add more entropy than neces-
sary, and i’m going to have to investigate this one.

To-do list: Choose a good option character.

For now, the most obvious one seems to be the
comma (,) character. that works, but it’s possible that
PoSix doesn’t like that, and it’s liable to stir up a
bikeshed when i commit.

➏ So, finally i’m done. or am i? no, there’s more:

To-do list: Update man page and usage() function.

➐ But then we’re done! Well, no. Callum Gibson
reported that it still didn’t work for his pro-

gram, so i wrote a little one that just called printf
with the apostrophe (') format modifier. And it didn’t
work. We traced the problem to the difference in ls: at
the start of the program there’s a:

(void)setlocale(LC_ALL, "");

And this appears to be necessary. is it adequately
documented? there’s something in setlocale(3)
(obviously), but i managed to miss it. So:

To-do list: Investigate setlocale() documentation.

But then i’m really done — i hope. it’s amazing how
much work there is apart from just hacking the code. n

Greg Lehey is an independent computer consultant specializing
in UNIX. In the course of over 20 years in the industry he has
performed most jobs you can think of, ranging from kernel sup-
port to product marketing, systems programming to operating,
processing satellite data to programming gasoline pumps.

Reprinted with permission of the original author. First appeared in hn.my/ls (lemis.com)

http://hn.my/ls

http://the-mobile-book.com

26 PROGRAMMING

By KALiD AzAD

DespIte two LInear
algebra classes, my
knowledge consisted

of “Matrices, determinants, Eigen
something something.”

Why? Well, let’s try this course
format:

 n name the course “Linear Alge-
bra” but focus on things called
matrices and vectors

 n Label items with similar-looking
letters (i/j), and even better,
similar-looking-and-sounding
ones (m/n)

 n teach concepts like Row/Column
order with mnemonics instead of
explaining the reasoning

 n Favor abstract examples (2d vec-
tors! 3d vectors!) and avoid real-
world topics until the final week

the survivors are physicists,
graphics programmers, and other
masochists. We missed the key
insight:

Linear algebra gives you mini-
spreadsheets for your math
equations.

We can take a table of data (a
matrix) and create updated tables
from the original. it’s the power
of a spreadsheet written as an
equation.

Here’s the linear algebra intro-
duction i wish i had, with a real-
world stock market example.

What’s In A Name?
“Algebra” means, roughly, “rela-
tionships.” Grade-school algebra
explores the relationship between
unknown numbers. Without know-
ing x and y, we can still work out
that (x + y)^2 = x^2 + 2xy + y^2.

“Linear Algebra” means, roughly,
“line-like relationships.” Let’s clarify
a bit.

Straight lines are predictable.
imagine a rooftop: move forward
3 horizontal feet (relative to the
ground), and you might rise 1
foot in elevation (the slope! Rise/
run = 1/3). Move forward 6 feet,
and you’d expect a rise of 2 feet.
Contrast this with climbing a dome:
each horizontal foot forward raises
you a different amount.

Lines are nice and predictable:

 n if 3 feet forward has a 1-foot rise,
then going 10x as far should give
a 10x rise (30 feet forward is a
10-foot rise)

 n if 3 feet forward has a 1-foot rise,
and 6 feet has a 2-foot rise, then
(3 + 6) feet should have a (1 + 2)
foot rise

in math terms, an operation F is
linear if scaling inputs scales the
output, and adding inputs adds the
outputs:

 in our example, F(x) calculates
the rise when moving forward x
feet. F(10*3) = 10 * F(3) = 10 and
F(3+6) = F(3) + F(6) = 3.

Linear Operations
An operation is a calculation based
on some inputs. Which operations
are linear and predictable? Multipli-
cation, it seems.

An Intuitive Guide to
Linear Algebra

F (ax) = a · F (x)

F (x + y) = F (x) + F (y)

 27

Exponents (F(x) = x^2) aren’t predictable: 10^2 is
100, but 20^2 is 400. We doubled the input but qua-
drupled the output.

Surprisingly, regular addition isn’t linear either. Con-
sider the “add three” function:

 We doubled the input and did not double the
output. (yes, F(x) = x + 3 happens to be the equation
for an offset line, but it’s still not “linear” because F(10)
isn’t 10 * F(1). Fun.)

our only hope is to multiply by a constant: F(x)
= ax (in our roof example, a=1/3). However, we can
still combine linear operations to make a new linear
operation:

 G is made of 3 linear subpieces: if we double the
inputs, we’ll double the output.

We have “mini arithmetic”: multiply inputs by a con-
stant, and add the results. it’s actually useful because
we can split inputs apart, analyze them individually,
and combine the results:

 if the inputs interacted like exponents, we couldn’t
separate them — we’d have to analyze everything at
once.

Organizing Inputs and Operations
Most courses hit you in the face with the details of a
matrix. “ok kids, let’s learn to speak. Select a subject,
verb and object. next, conjugate the verb. then, add
the prepositions….”

no! Grammar is not the focus. What’s the key idea?

 n We have a bunch of inputs to track

 n We have predictable, linear operations to perform
(our “mini-arithmetic”)

 n We generate a result, perhaps transforming it again

ok. First, how should we track a bunch of inputs?
How about a list:

x
y
z

not bad. We could write it (x, y, z) too — hang onto
that thought.

next, how should we track our operations? Remem-
ber, we only have “mini arithmetic”: multiplications,
with a final addition. if our operation F behaves like
this:

 We could abbreviate the entire function as (3, 4, 5).
We know to multiply the first input by the first value,
the second input by the second value, etc., and add the
result.

only need the first input?

 Let’s spice it up: how should we handle multiple
sets of inputs? Let’s say we want to run operation F on
both (a, b, c) and (x, y, z). We could try this:

 But it won’t work: F expects 3 inputs, not 6. We
should separate the inputs into groups:

1st Input 2nd Input

a x
b y
c z

Much neater.
And how could we run the same input through sev-

eral operations? Have a row for each operation:

F: 3 4 5
G: 3 0 0

neat. We’re getting organized: inputs in vertical
columns, operations in horizontal rows.

G(x, y, z) = F (x + y + z) = F (x) + F (y) + F (z)

F (x) = x + 3

F (10) = 13

F (20) = 23

G(x, y, z) = G(x, 0, 0) + G(0, y, 0) + G(0, 0, z)

F (x, y, z) = 3x + 4y + 5z

G(x, y, z) = 3x + 0y + 0z = (3, 0, 0)

F (a, b, c, x, y, z) =?

28 PROGRAMMING

Visualizing The Matrix
Words aren’t enough. Here’s how i visualize inputs,
operations, and outputs:

 imagine “pouring” each input along each operation:

 As an input passes an operation, it creates an output
item. in our example, the input (a, b, c) goes against
operation F and outputs 3a + 4b + 5c. it goes against
operation G and outputs 3a + 0 + 0.

time for the red pill. A matrix is a shorthand for our
diagrams:

A matrix is a single variable representing a spread-
sheet of inputs or operations.

Trickiness #1: The reading order
instead of an input => matrix => output flow, we use
function notation, like y = f(x) or f(x) = y. We usually
write a matrix with a capital letter (F), and a single
input column with lowercase (x). Because we have
several inputs (A) and outputs (B), they’re considered
matrices too:

Trickiness #2: The numbering
Matrix size is measured as RxC: row count, then
column count, and abbreviated mxn. items in the
matrix are referenced the same way: aij is the ith row
and jth column. Mnemonics are ok with context, and
here’s what i use:

 n RC, like Roman Centurion or RC Cola

 n use an “L” shape. Count down the L, then across

Why does RC ordering make sense? our operations
matrix is 2×3 and our input matrix is 3×2. Writing
them together:

[Operation Matrix] [Input Matrix]
[operation count x operation size] [input size x
input count]
[m x n] [p x q] = [m x q]
[2 x 3] [3 x 2] = [2 x 2]

notice the matrices touch at the “size of opera-
tion” and “size of input” (n = p). they should match! if
our inputs have 3 components, our operations should
expect 3 items. in fact, we can only multiply matrices
when n = p.

the output matrix has m operation rows for each
input, and q inputs, giving a “m x q” matrix.

Inputs = A =
[
input1 input2

]
=

a x
b y
c z

Operations = M =

[
operation1
operation2

]
=

[
3 4 5
3 0 0

]

MA = B

[
3 4 5
3 0 0

]

a x
b y
c z

 =

[
3a + 4b + 5c 3x + 4y + 5z

3a 3x

]

 29

Fancier Operations
Let’s get comfortable with operations. Assuming 3
inputs, we can whip up a few 1-operation matrices:

 n Adder: [1 1 1]

 n Averager: [1/3 1/3 1/3]

the “Adder” is just a + b + c. the “Averager” is simi-
lar: (a + b + c)/3 = a/3 + b/3 + c/3.

try these 1-liners:

 n First-input only: [1 0 0]

 n Second-input only: [0 1 0]

 n third-input only: [0 0 1]

And if we merge them into a single matrix:

[1 0 0]
[0 1 0]
[0 0 1]

Whoa — it’s the “identity matrix”, which copies 3
inputs to 3 outputs, unchanged. How about this guy?

[1 0 0]
[0 0 1]
[0 1 0]

He reorders the inputs: (x, y, z) becomes (x, z, y).
And this one?

[2 0 0]
[0 2 0]
[0 0 2]

He’s an input doubler. We could rewrite him to 2*i
(the identity matrix) if we were so inclined.

And yes, when we decide to treat inputs as vector
coordinates, the operations matrix will transform our
vectors. Here are a few examples:

 n Scale: make all inputs bigger/smaller

 n Skew: make certain inputs bigger/smaller

 n Flip: make inputs negative

 n Rotate: make new coordinates based on old ones
(East becomes north, north becomes West, etc.)

these are geometric interpretations of multiplica-
tion, and how to warp a vector space. Just remember
that vectors are examples of data to modify.

A Non-Vector Example: Stock Market Portfolios
Let’s practice linear algebra in the real world:

 n input data: stock portfolios with dollars in Apple,
Google, and Microsoft stock

 n operations: the changes in company values after a
news event

 n output: updated portfolios

And a bonus output: let’s make a new portfolio list-
ing the net profit/loss from the event.

normally, we’d track this in a spreadsheet. Let’s
learn to think with linear algebra:

 n the input vector could be ($Apple, $Google,
$Microsoft), showing the dollars in each stock. (oh!
these dollar values could come from another matrix
that multiplied the number of shares by their price.
Fancy that!)

 n the 4 output operations should be: update Apple
value, update Google value, update Microsoft value,
Compute Profit

Visualize the problem. imagine running through
each operation:

 the key is understanding why we’re setting up the
matrix like this, not blindly crunching numbers.

Got it? Let’s introduce the scenario.
Suppose a secret iDevice is launched: Apple jumps

20%, Google drops 5%, and Microsoft stays the same.
We want to adjust each stock value, using something
similar to the identity matrix:

New Apple [1.2 0 0]
New Google [0 0.95 0]
New Microsoft [0 0 1]

30 PROGRAMMING

the new Apple value is the origi-
nal, increased by 20% (Google = 5%
decrease, Microsoft = no change).

oh wait! We need the overall
profit:

total change = (.20 * Apple) +
(-.05 * Google) + (0 * Microsoft)

our final operations matrix:

New Apple [1.2 0 0]
New Google [0 0.95 0]
New Microsoft [0 0 1]
Total Profit [.20 -.05 0]

Making sense? three inputs enter,
four outputs leave. the first three
operations are a “modified copy”
and the last brings the changes
together.

now let’s feed in the portfolios
for Alice ($1000, $1000, $1000)
and Bob ($500, $2000, $500). We
can crunch the numbers by hand,
or use a Wolfram Alpha:

 (Note: Inputs should be in columns,
but it’s easier to type rows. The Trans-
pose operation, indicated by t (tau),
converts rows to columns.)

the final numbers: Alice has
$1200 in AAPL, $950 in GooG,
$1000 in MSFt, with a net profit
of $150. Bob has $600 in AAPL,
$1900 in GooG, and $500 in
MSFt, with a net profit of $0.

What’s happening? We’re doing
math with our own spreadsheet.
Linear algebra emerged in the
1800s yet spreadsheets were
invented in the 1980s. i blame
the gap on poor linear algebra
education.

Historical Notes: Solving Simul-
taneous Equations
An early use of tables of numbers
(not yet a “matrix”) was bookkeep-
ing for linear systems:

becomes

We can avoid hand cramps by
adding/subtracting rows in the
matrix and output, vs. rewriting
the full equations. As the matrix
evolves into the identity matrix, the
values of x, y and z are revealed on
the output side.

this process, called Gauss-Jordan
elimination, saves time. However,
linear algebra is mainly about
matrix transformations, not solving
large sets of equations (it’d be like
using Excel for your shopping list).

Terminology, Determinants, and
Eigenstuff
Words have technical categories
to describe their use (nouns, verbs,
adjectives). Matrices can be simi-
larly subdivided.

Descriptions like “upper-triangu-
lar,” “symmetric,” and “diagonal” are
the shape of the matrix, and influ-
ence their transformations.

the determinant is the “size”
of the output transformation. if
the input was a unit vector (rep-
resenting area or volume of 1),
the determinant is the size of the
transformed area or volume. A
determinant of 0 means matrix
is “destructive” and cannot be
reversed (similar to multiplying by
zero: information was lost).

the eigenvector and eigenvalue
are the “axes” of the transformation.

Consider a spinning globe: every
location faces a new direction,
except the poles.

An “eigenvector” is the input that
doesn’t change direction after going
through the matrix (it points “along
the axis”). And although the direc-
tion doesn’t change, the size might.
the eigenvalue is the amount the
eigenvector is scaled up or down
when going through the matrix.

input interpretation:

Result:

x + 2y + 3z = 3

2x + 3y + 1z = −10

5x + −y + 2z = 14

1 2 3
2 3 1
5 −1 2

x
y
z

 =

3
−10
14

 31

Matrices As Inputs
A funky thought: we can treat the
operations matrix as inputs!

think of a recipe as a list of com-
mands (Add 2 cups of sugar, 3 cups of
flour…).

What if we want the metric version?
take the instructions, treat them like
text, and convert the units. the recipe is
“input” to modify. When we’re done, we
can follow the instructions again.

An operations matrix is similar:
commands to modify. Applying one
operations matrix to another gives a
new operations matrix that applies both
transformations, in order.

if n is “adjust for portfolio for news”
and t is “adjust portfolio for taxes” then
applying both:

tn = x

means “Create matrix x, which first
adjusts for news, and then adjusts for
taxes”. Whoa! We didn’t need an input
portfolio, we applied one matrix directly
to the other.

the beauty of linear algebra is repre-
senting an entire spreadsheet calculation
with a single letter. Want to apply the
same transformation a few times? use
n^2 or n^3.

Can We Use Regular Addition,
Please?
yes, because you asked nicely. our “mini
arithmetic” seems limiting: multiplica-
tions, but no addition? time to expand
our brains.

imagine adding a dummy entry of 1 to
our input: (x, y, z) becomes (x, y, z, 1).

now our operations matrix has an
extra, known value to play with! if we
want x + 1 we can write:

[1 0 0 1]

And x + y - 3 would be:

[1 1 0 -3]

Huzzah!

Want the geeky explanation? We’re
pretending our input exists in a 1-higher
dimension, and put a “1” in that dimen-
sion. We skew that higher dimension,
which looks like a slide in the current
one. For example: take input (x, y, z, 1)
and run it through:

[1 0 0 1]
[0 1 0 1]
[0 0 1 1]
[0 0 0 1]

the result is (x + 1, y + 1, z + 1, 1).
ignoring the 4th dimension, every input
got a +1. We keep the dummy entry, and
can do more slides later.

Mini-arithmetic isn’t so limited after
all.

Onward
i’ve overlooked some linear algebra
subtleties, and i’m not too concerned.
Why?

these metaphors are helping me think
with matrices, more than the classes i
“aced.” i can finally respond to “Why is
linear algebra useful?” with “Why are
spreadsheets useful?”

they’re not, unless you want a tool
used to attack nearly every real-world
problem. Ask a businessman if they’d
rather donate a kidney or be banned
from Excel forever. that’s the impact of
linear algebra we’ve overlooked: efficient
notation to bring spreadsheets into our
math equations.

Happy math. n

Kalid is a YC alum living in Seattle. He loves to
simplify complex ideas, blog aha! moments at
BetterExplained, and do math with instacalc.com

Reprinted with permission of the original author.
First appeared in hn.my/linear (betterexplained.com)

http://instacalc.com
http://hn.my/linear

32 SPECIAL

BLaIse pascaL once
famously ended a letter
with an apology: I’m sorry

that this was such a long letter, but I
didn’t have time to write you a short
one. Computer science has pretty
much the same problem. it’s a
young field, and young fields are, by
their nature, messy. As we race to
generate new knowledge, we also
generate excess jargon. there are
multiple names for the same ideas,
and the ideas themselves are often
tangled together. What’s worse is
that because that’s the way things
are now, we assume that’s the way
they are always going to be. it’s a
complicated science because we
haven’t taken the time to make a
simple one.

Let me show you what i mean:

A Von Neumann randomness
extractor takes as input a Bernoulli
sequence with p not necessar-
ily equal to 1/2, and outputs a
Bernoulli sequence with p equal to
1/2. More generally, it applies to
any exchangeable sequence relying
on the fact that for any pair, 01
and 10 are equally likely.

And now you know about as
much as you did before. Let me try
that again. imagine that you have a
coin that is unfair. it’s biased. if you
flip it you’ll get heads seventy per-
cent of the time. if you wanted to
make a fair, fifty-fifty choice, what
do you do?

Well, one way is to get a coin that
doesn’t suck. Another way, discov-
ered by John von neumann, is to
use the bias against itself. you can
flip it two times. if you get a heads
and then a tails, you say heads is
your answer. if you get a tails and
then a heads, you say tails. if you
get anything else, you just start over.
And that’s it. this works because
no matter what the bias happens to
be, the odds of getting a heads and
then tails will always be exactly the
same as the odds of getting a tails
and then heads. this is for the same
reason that seven times three is
equal to three times seven.

 that’s all very interesting, but
why should you care? this algo-
rithm was invented to ensure
that you can get a clean source of
random numbers even if you are
stuck with buggy hardware, which
happens all the time. Quality

randomness is essential for cryp-
tography. Cryptography is essential
for secure communications, which
is the basis of our entire modern
life. Without this little coin trick
there would be no Facebook, no
Gmail, no Skyping grandma, no
Pin numbers on your credit cards,
no buying books online, no banking
from your mobile phones. And, no
mobile phones. it’s fundamental,
and it turns out that it’s also easy to
understand. you could teach it to a
child. So, why don’t we?

My overall complaint here,
and the reason i wrote this book
[laurenipsum.org], is a little
nuanced. i’m not just saying, “Hey
everyone! Guess what — com-
puter science is hard!” Anything
worth doing is going to be hard,
and i can’t change that. But some
parts are harder than others. My
complaint is that if the hard stuff
is messy and complicated, and we
allow the easy stuff to be messy
and complicated too, then you can’t
really tell the difference.

that means, as teachers, we’re
probably starting in the wrong
place.

By CARLoS BuEno

Pascal’s Apology

SPECIAL

http://laurenipsum.org

 33

i don’t think it has to be this way. What
do we expect children to understand
about math? negative numbers, zero,
exponents, the square root of two, pi, etc.
in those boring little facts i see hope, pre-
cisely because they are boring little facts.
it wasn’t always like that. once upon a
time, the existence of negative numbers
was considered the most difficult question
in the world. People died arguing about
the hypotenuse, for God’s sake. the fact
that we can teach this to innocent chil-
dren is evidence of progress — real, mea-
surable, personally empowering progress.
it’s the kind of progress we haven’t had
time to make in computer science.

if the mathematicians are making fun
of you for being too complicated, you
know there’s work to do.

i started writing Lauren ipsum by
looking for ideas that i understood well
enough to explain to a nine-year-old child,
without regard for how supposedly hard
they were. if i found something i couldn’t
clearly explain, then i tried to break it
down further to learn why. Sometimes
it worked, sometimes not. i learned a lot
from this.

Early on i decided that i wasn’t actually
writing a book about how to program. i
was writing a book about how program-
mers think. once you get past the first
hump and really start to learn this stuff,
you develop some mental habits to help
you cope. So, i figured, let’s write those
down. Start there.

the book starts with a character called
the Wandering Salesman. He’s lost, but
only mostly lost. He actually knows where
he is, and he knows where he’s going. He’s
still lost because he doesn’t know how
to get there. this is the essence of effec-
tive problem solving. it’s about having a
clear goal and knowing where you stand.
instead of giving in to that instinct to do
the first thing that comes to mind, you try
to imagine all the possible ways to solve
the problem, compare them, and choose
one.

 this is a big part of what computer
science actually studies. it’s not about
computers; they are just a tool. it’s about
how to generate those possible answers
and those algorithms; how to characterize
them so they can be compared; and how
to choose.

As the hero, a little girl named Lauren,
goes through her adventures, she learns
not just that she is responsible for her
own decisions, but that there may be
better ways to make them. And, by the
way, here are some tools to help you do
that.

So far the response has been pretty
good. it’s a start. A small start. But i think
this is a rich vein to explore. think about
it this way: if you leave this world as com-
plicated as you found it and if the next
generation takes just as long to learn what
you’ve learned, then they’ll never have
time to do better than you.

So, wherever you can, don’t just trans-
mit knowledge. Simplify it. take the time.
Write the short letters. Because that’s
how we make progress. n

Carlos Bueno is an engineer at Facebook. He writes
occasionally about programming, performance,
internationalization, and why everyone should
learn computer science.

Reprinted with permission of the original author.
First appeared in hn.my/pascal (bueno.org)

http://hn.my/pascal

34 SPECIAL

From your own experience,
are you more likely to finish
half a pizza by yourself on

a) Friday night after a long work
week, or b) Sunday evening after a
restful weekend? the answer that
most people will give, of course, is
“a.” And in case you hadn’t noticed,
it’s on stressful days that many of
us give in to temptation and choose
unhealthy options. the connection
between exhaustion and the con-
sumption of junk food is not just a
figment of your imagination.

And it is the reason why so many
diets bite it in the midst of stressful
situations, and why many resolu-
tions derail in times of crisis.

How do we avoid breaking under
stress? there are six simple rules.

➊ Acknowledge the tension,
don’t ignore it.

usually in these situations, there’s
an internal dialogue (albeit one of
varying length) that goes something
like this:

“I’m starving! I should go home and
make a salad and finish off that
leftover grilled chicken.”

“But it’s been such a long day. i
don’t feel like cooking.” [Walks by
popular spot for Chinese takeout]
“Plus, beef lo mein sounds amazing
right now.”

“Yes, yes it does, but you really need
to finish those vegetables before they
go bad, plus, they’ll be good with some
Dijon vinaigrette!”

“not as good as those delicious
noodles with all that tender beef.”

“Hello, remember the no carbs resolu-
tion? And the eat vegetables every
day one, too? You’ve been doing so
well!”

“Exactly, i’ve been so good! i can
have this one treat…”

And so the battle is lost. this is
the push-pull relationship between
reason (eat well!) and impulse (eat
that right now!). And here’s the
reason we make bad decisions: we
use our self-control every time we
force ourselves to make the good,
reasonable decision, and that self-
control, like other human capaci-
ties, is limited.

➋ Call it what it is:
ego-depletion.

Eventually, when we’ve said “no”
to enough yummy food, drinks,
and potential purchases, and forced
ourselves to do enough unwanted
chores, we find ourselves in a state
that Roy Baumeister calls “ego-
depletion,” where we don’t have
any more energy to make good
decisions. So, back to our earlier
question: when you contemplate
your Friday versus Sunday night
selves, which one is more depleted?
obviously, the former.

you may call this condition by
other names (stressed, exhausted,
worn out, etc.) but depletion is the
psychological sum of these feelings,
of all the decisions you made that
led to that moment. the decision
to get up early instead of sleep-
ing in, the decision to skip pastries
every day on the way to work, the
decision to stay at the office late to
finish a project instead of leaving it
for the next day (even though the
boss was gone!), the decision not
to skip the gym on the way home,
and so on, and so forth. Because
when you think about it, you’re

By DAn ARiELy

Understanding
Ego Depletion

 35

not actually too tired to choose
something healthy for dinner (after
all, you can just as easily order
soup and sautéed greens instead of
beef lo mein and an order of fried
gyoza), you’re simply out of will
power to make that decision.

➌ Understand
ego-depletion.

Enter Baba Shiv (a professor at
Stanford university) and Sasha
Fedorikhin (a professor at indiana
university) who examined the idea
that people yield to temptation
more readily when the part of the
brain responsible for deliberative
thinking has its figurative hands full.

in this seminal experiment, a
group of participants gathered
in a room and were told that
they would be given a number to
remember and which they were to
repeat to another experimenter in a
room down the hall. Easy enough,
right? Well, the ease of the task
actually depended on which of
the two experimental groups you
were in. you see, people in group 1
were given a two-digit number to
remember. Let’s say, for the sake

of illustration, that the number is
62. People in group two, however,
were given a seven-digit number
to remember, 3074581. Got that
memorized? okay!

now here’s the twist: half way to
the second room, a young lady was
waiting by a table upon which sat
a bowl of colorful fresh fruit and
slices of fudgy chocolate cake. She
asked each participant to choose
which snack they would like after
completing their task in the next
room, and gave them a small ticket
corresponding to their choice. As
Baba and Sasha suspected, people
laboring under the strain of remem-
bering 3074581 chose chocolate
cake far more often than those who
had only 62 to recall. As it turned
out, those managing greater cogni-
tive strain were less able to over-
turn their instinctive desires.

 this simple experiment doesn’t
really show how ego-depletion
works, but it does demonstrate that
even a simple cognitive load can
alter decisions that could poten-
tially have an effect on our lives
and health. So consider how much
greater the impact of days and days

of difficult decisions and greater
cognitive loads would be.

➍ Include and consider the
moral implications.

Depletion doesn’t only affect our
ability to make good decisions,
it also makes it harder for us to
make honest ones. in one experi-
ment that tested the relationship
between depletion and honesty,
my colleagues and i split par-
ticipants into two groups and had
them complete something called a
Stroop task, which is a simple task
requiring only that the participant
name aloud the color of the ink
a word (which is itself a color) is
written in. the task, however, has
two forms: in the first, the color of
the ink matches the word, called
the “congruent” condition, in the
second, the color of the ink differs
from the word, called the “incon-
gruent” condition. Go ahead and try
both tasks yourself…

“Depletion doesn’t only affect our ability
to make good decisions, it also makes it
harder for us to make honest ones.”

36 SPECIAL

The congruent condition: color
matches word.

The incongruent condition: color
conflicts with word.

 As you no doubt observed,
naming the color in the incongru-
ent version is far more difficult than
in the congruent. Each time you
repressed the word that popped
instantly into your mind (the word
itself) and forced yourself to name
the color of the ink instead, you
became slightly more depleted as a
result of that repression.

As for the participants in our
experiment, this was only the
beginning. After they finished
whichever task they were assigned
to, we first offered them the
opportunity to cheat. Participants
were asked to take a short quiz
on the history of Florida State
university (where the experiment

took place), for which they would
be paid for the number of cor-
rect answers. they were asked to
circle their answers on a sheet of
paper, then transfer those answers
to a bubble sheet. However, when
participants sat down with the
experimenter, they discovered
she had run into a problem. “i’m
sorry,” the experimenter would say
with exasperation, “i’m almost out
of bubble sheets! i only have one
unmarked one left, and one that
has the answers already marked.”
She explained to participants that
she did her best to erase the marks
but that they’re still slightly visible.
Annoyed with herself, she admits
that she had hoped to give one
more test today after that one, then
asks a question: “Since you are the
first of the last two participants of
the day, you can choose which form
you would like to use: the clean one
or the premarked one.”

So what do you think partici-
pants did? Did they reason with
themselves that they’d help the
experimenter out and take the
premarked sheet, and be fastidi-
ous about recording their accidents
accurately? or did they realize that
this would tempt them to cheat,
and leave the premarked sheet
alone? Well, the answer largely
depended on which Stroop task
they had done: those who had
struggled through the incongruent
version chose the premarked sheet
far more often than the unmarked.
What this means is that depletion
can cause us to put ourselves into
compromising positions in the first
place.

And what about the people, in
either condition, who chose the
premarked sheet? once again, those
who were depleted by the first task,
once in a position to cheat, did

so far more often than those who
breezed through the congruent ver-
sion of the task.

What this means is that when
we become depleted, we’re not
only more apt to make bad and/
or dishonest choices, we’re also
more likely to allow ourselves to be
tempted to make them in the first
place. talk about double jeopardy.

➎ Evade ego-depletion.
there’s a saying that nothing

good happens after midnight, and
arguably, depletion is behind this
bit of folk wisdom. unless you work
the third shift, if you’re up after
midnight it’s probably been a pretty
long day for you, and at that point,
you’re more likely to make sub-
optimal decisions, as we’ve learned.

So how can we escape depletion?
A friend of mine named Dan

Silverman once suggested an
interesting approach during our
time together at the institute for
Advanced Study at Princeton,
which is a delightful place for
researchers to take a year off to
think, plan, and eat very well. Every
day, after a rich lunch, we were
plied with nigh-irresistible des-
serts: cheesecake, chocolate tortes,
profiteroles, beignets — you name
it. it was difficult for all of us, but
especially for poor Dan, who was
forever at the mercy of his sweet
tooth.

it was a daily dilemma for my
friend. Dan, who was an economist
with high cholesterol, wanted des-
sert. But he also understood that
eating dessert every day was not a
good decision. He contemplated
this problem (along with his other
academic interests), and concluded
that when faced with temptation,
a wise person should occasionally
succumb. After all, by doing so, said

 37

person can keep him- or herself from
becoming overly depleted, which will
provide strength for whatever unex-
pected temptations lie in wait. Dan
decided that giving in to daily dessert
would be his best defense against being
caught unawares by temptation and
weakness down the road.

in all seriousness though, we’ve all
heard time and time again that if you
restrict your diet too much, you’ll
likely to go overboard and binge at
some point. Well, it’s true. A crucial
aspect of managing depletion and
making good decisions is having ways
to release stress and reset, and to plan
for certain indulgences. in fact, i think
one reason the Slow-Carb Diet seems
to be so effective is because it advises
dieters to take a day off (also called
a “cheat” day — see item 4 above),
which allows them to avoid becom-
ing so deprived that they give up
entirely. the key here is planning the
indulgence rather than waiting until
you have absolutely nothing left in
the tank. it’s in the latter moments of
desperation that you throw yourself on
the couch with the whole pint of ice
cream, not even making a pretense of
portion control, and go to town while
watching your favorite tV show.

Regardless of the indulgence,
whether it’s a new pair of shoes, some
“me time” where you turn off your
phone, an ice cream sundae, or a night
out — plan it ahead. While i don’t
recommend daily dessert, this kind of
release might help you face down chal-
lenges to your will power later.

➏ Know Thyself.
 the reality of modern life is

that we can’t always avoid depletion.
But that doesn’t mean we’re help-
less against it. Many people probably
remember the G.i. Joe cartoon catch
phrase: “Knowing is half the battle.”
While this served in the context of
PSAs of various stripes, it can help
us here as well. Simply knowing you
can become depleted, and moreover,
knowing the kinds of decisions you
might make as a result, makes you far
better equipped to handle difficult
situations when and as they arise. n

Dan Ariely is also the author of several excel-
lent books, including Predictably Irrational
and, most recently, The Honest Truth About
Dishonesty.

“We can’t always avoid depletion, but that
doesn’t mean we’re helpless against it.”

Reprinted with permission of the original author.
First appeared in hn.my/ego (danariely.com)

http://hn.my/ego

38 SPECIAL

LookIng down from his perch on the
edge of space, Felix Baumgartner
remarked:

Sometimes you have to be really high, to see how
small you really are.

it turns out that this feeling is a well docu-
mented phenomena dubbed the Overview effect.
When a person gazes upon Earth from outer
space, they have a profound sense of perspec-
tive, a realization of fragility, that humanity and
all life as we know it is completely dependent
on a single planet and its thin atmosphere.

It suddenly struck me that that tiny pea, pretty
and blue, was the Earth. I put up my thumb
and shut one eye, and my thumb blotted out the
planet Earth. I didn’t feel like a giant. I felt very,
very small.
— Neil Armstrong

So while the first astronauts to the moon
went as technicians, they came back as humani-
tarians. in the words of William Anders, “We
came all this way to explore the moon, and the
most important thing is that we discovered the
Earth.”

The view of the Earth from the Moon fascinated
me — a small disk, 240,000 miles away. It was
hard to think that that little thing held so many
problems, so many frustrations. Raging nation-
alistic interests, famines, wars, pestilence don’t
show from that distance.
— Frank Borman, Apollo 8

As Voyager 1 was approaching the edge of
our Solar System, Carl Sagan convinced the
team at nASA to rotate the probe and send one
last photograph back. A photograph portraying
the earth as a tiny blue dot contrasted against
the emptiness of space.

this photograph wasn’t taken for purely scien-
tific reasons, but had a deeper significance which
Sagan elaborated on in his book Pale Blue Dot:

There is perhaps no better a demonstration of
the folly of human conceits than this distant
image of our tiny world.

Look again at that dot. that’s here, that’s
home, that’s us. on it everyone you love,
everyone you know, everyone you ever heard
of, every human being who ever was, lived out
their lives. the Earth is a very small stage in a
vast cosmic arena.

it’s no coincidence that the word small is
endemic to experiences of space. in all these
quotes from astronauts, the word comes up time
and time again. Compared against the vastness
of space, all our quarrels, conceits and concerns
fade away into insignificance.

it’s for this reason, the overview effect, that
i am extremely excited about the prospects of
Space tourism. With more people viewing the
Earth from afar, perhaps the world will gain a
little more perspective, and a better sense of
proportion. n

Alex MacCaw is a JavaScript programmer, O’Reilly author
and open source developer. He currently works at Stripe.

Small
By ALEx MACCAW

Reprinted with permission of the original author. First appeared in hn.my/small (alexmaccaw.com)

http://hn.my/small

 39

http://mandrill.com

http://memset.com

	Contents
	FEATURES
	100 Mile Bike Courier
	An Unexpected Ass Kicking

	STARTUPS
	Traction Mistakes

	PROGRAMMING
	JavaScript: Function Invocation Patterns
	How Does SSL Work?
	Hacking ls -l
	An Intuitive Guide to Linear Algebra

	SPECIAL
	Pascal’s Apology
	Understanding Ego Depletion
	Small

