
Issue 33 February 2013

Justin Kan
My Entrepreneurship Story

2

Curator
Lim Cheng Soon

Contributors
Justin Kan
Rohin Dhar
Rob Spectre
Derek Sivers
Charles Leifer
Rob Pike
Bram Moolenaar
Clay Allsopp
Feross Aboukhadijeh
Joel Perras
Reginald Braithwaite
Jeff Atwood

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

HACKER MontHLy is the print magazine version
of Hacker news — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. the submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker news and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media
46, taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover: Justin Kan

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-33

Contents
FEATURES

04 My Entrepreneurship Story
By JuStin KAn

08 What Happens to Stolen Bicycles?
By RoHin DHAR

STARTUPS

12 What A Hacker Learns After A Year In
Marketing
By RoB SPECtRE

15 Push, Push, Push
By DEREK SivERS

SPECIAL

34 What I’ve Learned About Learning
By REGinALD BRAitHwAitE

36 I Was a Teenage Hacker
By JEFF AtwooD

PROGRAMMING

16 Using Python and k-means to Find the
Dominant Colors in Images
By CHARLES LEiFER

19 “The Best Programming Advice I Ever Got”
By RoB PiKE

20 Effective Text Editing
By BRAM MooLEnAAR

25 Give a Damn
By CLAy ALLSoPP

26 How To Set Up Your Linode For Maximum
Awesomeness
By FERoSS ABouKHADiJEH

32 Simplify Your Life With an SSH Config File
By JoEL PERRAS

Photo: flickr.com/photos/jontintinjordan/5513995496/

http://hackermonthly.com/issue-33

4 FEATURES

FEATURES

By JuStin KAn

My parents were
entrepreneurs in the
beginning. My mom

had her own real estate agency and
having that example was really, i
think, a big part of it. there are a
lot of people out there who would
like to do something, but they
don’t because they’re getting a nice
paycheck.

For me, i tell myself all the time,
“it doesn’t matter.” those external
things or how much money you
have isn’t really that important. the
thing that’s important is that you
enjoy what you’re doing every day
or every hour. i think that’s some-
thing most people don’t get the
opportunity to do. it’s easy to make

no money when you’ve never made
any money. when i was at yale as
an undergraduate, i started this
company called Kiko, which was a
web calendar. Kiko was in the first
class of y Combinator Companies,
which is a seed fund created by
Paul Graham, who was investing in
startups by younger entrepreneurs.

y Combinator, at the time, was in
a building in Cambridge. we went
there for an interview and they
told us they didn’t like the idea of
Kiko, but they thought we might
be promising. we showed up, and
i didn’t say a single thing. i said,
“Hey, i’m Justin.” And they called
us back that night and said, “Hey.
okay, we’ll take you.”

Emmett Shear, my partner, had
followed Paul for a while online. i
didn’t know anything, so i just kind
of figured, “Get that money.” we
took it and we moved to Boston.
the first batch of y Combina-
tor startups had eight companies,
including Kiko (of course, the best
and first); Loopt, started by Sam
Altman; and Reddit, which was
started by my friends Steve Huff-
man and Alexis ohanion. Reddit
is the homepage for the web and
probably the most interesting and
prolific web community today.

My Entrepreneurship Story

 5

there was also Memamp, which
was started by a couple of other
friends of mine; ClickFacts, a mal-
ware solution company; and info-
gami, a blogging software started by
Aaron Swartz. we spent a year and
a couple months working at Kiko
and we realized we weren’t very
good at making a calendar, probably
because we didn’t use calendars.
we were college students and what
did we need to schedule? i only had
class two days a week, so i could
remember that. All we did was sit
around and program, so we didn’t
have any appointments. we really
didn’t know what we were doing,
and we didn’t know who we were
building this for.

then, Google Calendar came
out. A lot of people liked that, and
we decided Kiko wasn’t working.
Eventually, about 14 months later,
we sold it to tucows in toronto,
Canada. we had put it on eBay
and said, "Hey, maybe we can get
$50,000 to pay back our inves-
tors.” when i woke up on the last
day of our eBay auction, there was
a bid for $80,000. that’s awe-
some. we had made no money,
and the bid just kept going up
every time i would refresh. it was
$80,000, $113,000, $150,000,
and then finally, an hour later, it
was $258,000. we were pretty
ecstatic. i was sitting there in my
friend’s apartment in my under-
wear refreshing an eBay page and
screaming. it was pretty awesome.

one day, we were with Paul
and Robert Morris, who’s another
partner at y Combinator and also a
famous computer science professor
at Mit. Emmett and i told them we
had an idea for something called
Justintv. we explained it as a
crazy, camera-on-head thing where
we would run around and film our
own reality tv show. i remember
Robert said, “i would fund that just
to see you make a fool of yourself.”

So, we walked out of there with
a check for $50,000, and that was
it. we were doing it. Justintv was
called Justintv because i was the
only one that volunteered to wear
the camera.

it started off as us trying to make
our own live video reality show on
the web. when we launched the
show, it immediately became this
epicenter for pranks. one time, it
was pretty serious. they had called
in a stabbing in our apartment, and
the cops came and kicked in the
doors with guns drawn, expect-
ing to see a stabbing victim in our
apartment, but it was just us sitting
there on our laptops. it was a pretty
awkward situation.

we didn’t know anything about
creating content; most of the
content we created was us sitting
around on our couch using our
laptops. People would text or email
me, saying, “Get off your computer
and go do something. Entertain us.”

Pretty quickly, we realized we
weren’t that interesting, but we
needed to do something else. we
turned Justintv into a platform for
anyone to create live video content.
After that, people who were much
more interesting than us started
broadcasting and that’s when it
really took off.

After Justintv, we started a
couple projects that have kind
of become bigger than originally
planned. the first one was twitch,
which is our gaming site — like
ESPn for gaming. we now have
about 20 million unique users that
watch gaming content every month.
that’s everyone from professional
Starcraft players, to people playing

new releases, to gaming journal-
ists demoing new games and doing
reviews, to people just having fun.

we also spun off another com-
pany called SocialCam, which is
like instagram for videos. it’s the
easiest way to get video off your
iPhone and share it with your
friends. that’s been running as an
independent company outside of
Justintv. SocialCam just uploads
your video and shrinks it in size,
but it also transposes it to different
qualities so you can watch it on dif-
ferent devices. the goal is to get a
video to whomever you want to as
fast as possible.

“We really didn’t know what we were doing, and
we didn’t know who we were building this for. ”

6 FEATURES6 FEATURES

Recently, SocialCam was
acquired by Autodesk for $60 mil-
lion. that happened on tuesday
actually, the day after my birthday.
it’s been the longest road for the
team, and we had 100 million Face-
book users.

Exec is a company i started with
my brother and a longtime friend of
ours. the inspiration for Exec came
from a trip to Burning Man. one of
my friends had forgotten his ticket
at his apartment building, which
was in downtown San Francisco,
so how could he get the ticket
without going back? it turned out
another friend of ours was driving
up but was leaving in half an hour,
so we needed to get that friend the
key. i said, “Hey, call uber and tell
the driver to go to point A, wait for
a girl and pick up a key, and then
drive to point B and drop it off
with the doorman.” it worked. After
that, i thought it would be cool to
have a service like that — a service
to get something done while you’re
busy or remote in the real world.
Exec is the easiest and fastest way
to get anything you want done right
now. when you submit your job
on an iPhone or the web, you just
write a short description and then
press a button. we go out and find
someone for you right then. you
don’t have to choose the person,
and there’s no negotiation; it’s just a
flat rate of $25 an hour.

the social aspect of Exec — the
way that we create jobs for people
who can’t find jobs right now —
has been really impactful because
it’s something we really didn’t
expect. it has been really meaning-
ful to me to have people tell us, “i
would be in a really dark place right
now if i didn’t have this job. thank
you.” that makes me feel like i’m
doing something that’s bigger than
any project i’ve worked on before.

i think Exec can change the
world because everyone can either
be working on Exec or hiring
people through Exec. we have all
sorts of jobs that people can pick
up and make some extra money.
the future of America requires us
to figure out better education and
specifically job retraining, but hope-
fully we can do our part at Exec to
help provide people with ways to
make money in the interim while
we’re figuring that out. n

Justin Kan is the founder and CEO of Exec,
your on demand work force. Previously he
founded Justin.tv, TwitchTV and Socialcam.
He is a part time partner at Y Combinator.

Based on Justin Kan’s interview by Interloper Films.
Reprinted with permission. First appeared in hn.my/jkan (justinkan.com)

http:/hn.my/jkan

 7

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

8 FEATURES

By RoHin DHAR

At priceonomics, we are
fascinated by stolen
bicycles. Put simply, why

the heck do so many bicycles get
stolen? it seems like a crime with
very limited financial upside for
the thief, and yet bicycle theft is
rampant in cities like San Francisco
(where we are based). what is the
economic incentive for bike thieves
that underpins the pervasiveness
of bike theft? is this actually an
efficient way for criminals to make
money?

 it seems as if stealing bikes
shouldn’t be a lucrative form of
criminal activity. used bikes aren’t
particularly liquid or in demand
compared to other things one could
steal (phones, electronics, drugs).
And yet, bikes continue to get
stolen, so they must be generating
sufficient income for thieves. what
happens to these stolen bikes, and
how do they get turned into crimi-
nal income?

The Depth of the Problem
in San Francisco, if you ever leave
your bike unlocked, it will be stolen.
if you use a cable lock to secure
your bike, it will be stolen at some

point. unless you lock your bike
with medieval-esque u-locks, your
bike will be stolen from the streets
of most American cities. Even if you
take these strong precautions, your
bike may still get stolen.

 According the national Bike
Registry and FBi, $350 million in
bicycles are stolen in the united
States each year. Beyond the finan-
cial cost of the crime, it’s heart-
breaking to find out someone stole
your bike; bikers love their bikes.

As one mom wrote in an open
letter to the thief who pinched her
twelve year old son’s bike:

It took CJ three weeks to finally
decide on his bike. We looked at a
brown bike at Costco, even brought
it home to return it the next day,
and a blue one at Target. But his
heart was set on the green and
black Trek he saw at Libertyville
Cyclery. CJ knew it was more
than we wanted to spend, but the
boy had never asked for anything
before. You see, CJ had to live
through his dad being unemployed
for 18 months and knew money
was tight. Besides, he’s just an all
around thoughtful kid.

CJ didn’t ride his bike to school if
there was rain in the forecast and
he always locked it up. You prob-
ably noticed that it doesn’t have a
scratch on it. CJ treated his bike
really well and always used the
kick-stand.

You should know that CJ has cried
about the bike and is still very
sad. He had to learn a life lesson a
little earlier than I had liked: that
there are some people in the world
who are just plain mean. Now
you know a little about my really
awesome son and the story behind
his green and black Trek 3500,
16-inch mountain bike.

An Economic Theory of Bike
Crime
in 1968, Chicago economist Gary
Becker introduced the notion that
criminal behavior could be mod-
eled using conventional economic
theories. Criminals were just
rational actors engaged in a careful
cost-benefit analysis of whether to
commit a crime. is the potential
revenue from the crime greater
than the probability adjusted
weight of getting caught? or, as

What Happens to
Stolen Bicycles?

Photo: flickr.com/photos/narciss/3543547214/

 9

the antagonist in the movie the
Girl next Door puts it, “is the juice
worth the squeeze?”

Criminal activity (especially
crime with a clear economic incen-
tive like theft) could therefore be
modeled like any financial deci-
sion on a risk reward curve. if you
are going to take big criminal risk,
you need to expect a large finan-
cial reward. Crimes that generate
more reward than the probability
weighted cost of getting caught
create expected value for the
criminal. Criminals try to find “free
lunches” where they can generate
revenue with little risk. the govern-
ment should respond by increasing
the penalty for that activity so that
the market equilibrates and there is
an “optimal” amount of crime.

 using this risk-return framework
for crime, it begins to be clear why
there is so much bike theft. For all
practical purposes, stealing a bike is
risk-free crime. it turns out there
is a near zero chance you will be
caught stealing a bike and if you
are, the consequences are minimal.

there are a few great accounts of
journalists getting their bikes stolen
and then going on a zealous mission
to try to capture bikes thieves. in
each account, they ultimately learn
from local police that the pen-
alty for stealing a bike is generally
nothing.

“We make it easy for them. The
DA doesn’t do tough prosecutions.
All the thieves we’ve busted have
got probation. They treat it like a
petty crime.”

“You can’t take six people off a
murder to investigate a bike theft.”

Bike thievery is essentially a risk-
free crime. if you were a criminal,
that might just strike your fancy. if
Goldman Sachs didn’t have more
profitable market inefficiencies to
exploit, they might be out there
arbitraging stolen bikes.

What Happens to the Stolen
Bikes?
Just because the risk of a crime
is zero, that doesn’t mean that a
criminal will engage in that crime.
if that were the case, thieves would
go about stealing dandelions and
day-old newspapers. there has to
be customer demand and a liquid
market for the product in order for
the criminal to turn their contra-
band into revenue. So, how exactly
does a criminal go about converting
a stolen bicycle to cash?

we decided to survey the prior
literature on where stolen bikes are
sold as well as consult with bike
shops and experts in San Francisco
to get a better picture of who steals
bikes and where the stolen bikes
end up.

 Amateur Bike Thieves. Amateur
bike thieves sell their stolen goods
at local fencing spots and are typi-
cally drug addicts or down on their
luck homeless.

Sgt. Joe McKolsky, bike theft spe-
cialist for the SFPD, estimates that
the overwhelming majority of bike
thefts are driven by drug addicts
and end up being sold on the street
for 5 to 10 cents on the dollar. Any
bike will do, whether it’s a $50
beater or a $2,000 road bike. these
thieves are amateurs just opportu-
nistically stealing unsecured bikes
to get some quick cash:

“Bikes are one of the four commodi-
ties of the street — cash, drugs,
sex, and bikes….You can virtually
exchange one for another.”

in San Francisco, these amateur
stolen bikes end up on the streets
at the intersection of 7th Street and
Market Street in front of the Carl’s
Jr restaurant. we chatted with Brian
Smith, co-owner of HuckleBerry
Bicycles, which is located across
the street from this fencing joint.
He confirmed it’s not uncommon
for people to come into the shop
having just purchased a $50 bike
across the street or with obviously
stolen bikes.

Professional Thieves. on the
other end of the spectrum are
professional bike thieves. instead of
opportunistically targeting poorly
locked bicycles, these thieves target
expensive bicycles. they have the
tools that can cut through u-locks
and aim to resell stolen bikes at a
price near their “fair market value.”
these thieves acquire the bicycles
from the streets, but then resell
them on online markets to maxi-
mize the selling price.

10 FEATURES

we asked Aubrey Hoermann,
owner of used bicycle shop Refried
Cycles in the Mission, about profes-
sional bike thieves and where they
sell their merchandise:

“It has to end up somewhere where
you can sell it in another city. My
feeling is that people steal enough
bikes to make it worth to take a
trip somewhere like LA and then
sell it there on Craigslist. If you
have about 10 stolen bikes, it’s
probably worth the trip.”

Another bike shop proprietor
who asked not to be named added:

“Most of these guys are drug
addicts, but a lot of them are pro-
fessionals. You can cut through a
u-lock in a minute and a half with
the right tools. Steal three bikes and
sell them in LA for $1500 a piece
and you’re making money.”

these thieves essentially are
maximizing their revenue per van
trip to a market in which they
can sell the bicycle. in the past
they might’ve been able to resell
it locally, but according to Aubrey,
this opportunity is fading:

You can’t just steal a bike and sell
it on Craigslist in San Francisco
anymore. It’s too well known that’s
where it would be and it’s too
much work to change it to make it
look different. I used to be a bike
messenger and if your bike was
stolen you’d go check at 7th and
Market. Now that’s too well known
to just sell a bike there.

increasingly when a bicycle is
stolen, the victims know where to
check locally (Craigslist, 7th and
Market, the oakland Flea Market)
so that makes it hard to sell the
bikes there. Because bikes aren’t
even that popular in the first place,

it’s just not worth the effort to
customize and disguise them for
local sale.

Because of this dynamic, Aubrey
concludes that professional bike
theft is replacing amateur theft as
the predominant form of bike theft.
while the police may not penalize
bicycle thieves, it’s becoming easier
for the person whose bike was
stolen to investigate the bike theft
themselves. this is making it harder
for the amateur thief to casually flip
a stolen bike.

Is There at Keyser Söze of the
Bike Underworld?
Bike theft is rampant and increas-
ingly the province of professionals.
is there any evidence that a “crimi-
nal mastermind” exists behind this
network where bikes are stolen in
one city, transported to another and
then resold? ultimately, there is no
evidence that a bike kingpin exists.

the largest bike theft arrests
ever recorded are rather mundane
actually. in San Francisco, recently a
local teen was arrested with hun-
dreds of stolen bikes found in his
storage locker. Did these bicycles
end up in some exotic fencing ring?
nope, they were being resold at an
oakland flea market.

in toronto, a mentally imbal-
anced bike shop owner was found
hoarding 2,700 stolen bikes. Mostly,
he was just letting them rust.

Criminal masterminds have to
value their time and resources, and
bike theft isn’t really that profitable.
the transportation costs and low
value density ratio of the product
likely kill the economics of the
stolen bike trade. the bike shop
proprietor we interviewed that
requested anonymity concluded:

You’d be in the prostitution or
drugs business if you were running
a criminal ring to make money.
There just isn’t that much money
in bikes. These people who steal
bikes are professionals but small
time operators. Or, they’re just
assholes.

Conclusion
ultimately, that’s the point every-
one seems to agree on: bike thieves
are assholes. For everything else,
there is little consensus and hard
evidence. However, some things are
clear and explain a lot of the bike
theft that occurs.

it’s dead simple to steal a bike
and the consequences are near zero.
you can resell stolen bikes. if you
want to get a good price for a stolen
bicycle, it requires a decent amount
of work. that amount of work is
what limits the bike theft trade
from really flourishing. Criminal
masterminds have an opportunity
cost for their time; they can’t be
messing around lugging heavy
pieces of metal and rubber that are
only in limited demand.

So, if your bike ever gets stolen,
you can at least take solace in the
fact that the illicit bike trade isn’t
a very easy way to make a lot of
money. that probably won’t make
you feel any better though. n

Rohin Dhar is the co-founder of Priceo-
nomics Price Guides. He is also the co-
founder of Personforce job boards and
has an MBA from Stanford and BA from
Dartmouth. You can follow him on Twitter
here @rohindhar

Reprinted with permission of the original author.
First appeared in hn.my/stolenbikes (priceonomics.com)

http://twitter.com/rohindhar
http://hn.my/stolenbikes

 11

http://mandrill.com

12 STARTUPS

STARTUPS

By RoB SPECtRE

A year ago last Friday i
left eight years cutting
code and plumbing serv-

ers to take my very first marketing
job. Prior to then and even before in
college and high school, hard skills
were what paid my bills — techni-
cal work building stuff mostly for
the internet. Everything i had done
up until last year required only the
soft skills needed to send a group
email or interview a candidate, cer-
tainly a pittance to those required
to craft a message and get it in front
of an audience.

i knew i needed more than that.
while i was at Boxee working for
Avner Ronen i made the determina-
tion that i wanted the CEo role for
my startup. Like a lot of folks who
spend their career in the high risk,
high reward, high laughs world of
early stage tech, i’ve long held my
own entrepreneurial ambitions, but
after working for a programmer-
turned-head-honcho, i came around
to the notion i could make a greater
contribution to that endeavor by
pushing the vision and the culture
rather than the technology and

architecture. i didn’t want to be the
technical co-founder; i wanted to
run the circus.

But, i was sorely deficient. Sales
and marketing were skills i just
didn’t have and were i to ask others
to entrust their livelihoods and
their families in such an enterprise,
it would be incumbent upon me
to learn. to do such a thing with
a knowledge base very nearly zero
would just be irresponsible.

So, to get some of those skills
while keeping my technical chops
up, i hopped onboard twilio as a
developer evangelist. Like a lot of
companies, twilio’s devangelism
program is under the marketing
aegis, and the gig meant working for
one of the best marketers i knew
[distributionhacks.com]. i’d still
write code, but would do so sur-
rounded by the thoroughly unfa-
miliar context of message craft and
story telling. And through the daily
demands of the job and the prox-
imity of those who do it well, hope-
fully i’d learn a thing or two about
this marketing thing and ultimately
serve those i wish to lead better.

Holy biscuits, did i learn plenty!
A year in, i thought it might be
helpful to my fellow developers to
share what it’s like to turn to the
Dark Side and what i picked up in
the process.

➊ This Shit Is Hard
Like many folks who build

stuff, my disdain for marketing as
a business discipline had grown
ironclad. i thought soft skills meant
it was a soft job: 9 to 5 without
pagers ringing, apocalyptic dead-
lines, or material consequences for
poor workmanship. A marketer was
never around when i had to get a
server back up or the prod db was
borked; this gig must be easy.

i learned swiftly that this view
was as legitimate as assuming web
development is easy after install-
ing a Squarespace theme. My view
(and likely yours) was informed
mostly by bad marketing, which
is every bit as prevalent as bad
programming. install ten wordPress
plugins and base a view on software
engineering and i’m sure the 7 out
of 10 bad experiences one would

What A Hacker Learns After
A Year In Marketing

http://distributionhacks.com

 13

encounter would foster a belief that
the entire discipline is bankrupt.

As it turns out, the ones who do
it well are rare and far less visible
because, like good programmers,
their work is a lot harder to notice.
Good marketing is a product of
the same inputs as good code; long
hours, sweating the details, and the
judicious application of experience
doing it the right way.

➋ Data Wins Arguments
when debating the per-

formance of a chunk of code or a
particular architectural decision,
i’d often find myself at loggerheads
with my colleagues with none in
the argument operating with any
real evidence. And, invariably, to
win i’d just test the hypothesis on
a small scale, show the comparative
data, and the decision would be
much clearer.

Sometimes i was right, some-
times i was wrong. But the practice
of testing intuition on reduced
scope to gain confidence about a
decision is one i use every day as
an evangelist. And, as it turns out,
it is a practice used by every person
good at marketing. “it’s all a num-
bers game,” people would tell me,
leading me to believe that i’d be
spending a lot of time in spread-
sheets fiddling with a formula until
it did what i wanted. Surely those
charts and graphs meant nothing,
and at the end of the day a small
amount of math could be twisted
to support my own preconceptions.
“Developers don’t want a bunch of
examples,” i’d say. ”Just give them
really strong reference documenta-
tion, and they’ll figure it out.”

not so. Marketing data shows in
stark relief what works and what
doesn’t and — especially when
working on the internet — is

readily available if you spend a little
effort trying to find it. Folks with a
technical background excel at such,
and wielding that power in this
discipline can yield very powerful
results, if less powerful buzzwords.

➌ Calendar Management Is
A Skill

Managing my meetings was by far
the most difficult part of my first
few months as a developer evan-
gelist. when i was writing code,
meetings were always something
i could punt. when a reminder
would come in and i didn’t feel
like being bothered, i could always
throw some headphones on, spit
out a quick email about needing to
stay heads down on a problem, and
everyone would just magically wait
until i was ready for them. People
came to me.

Man, those were the days. A
lot of marketing is gently align-
ing external forces to craft the
right message and get it in front of
the right people at the right time.
And since those external forces
don’t need me for a login page or
a bug fix, they are far less inclined
to tolerate last minute pushes or
tardiness.

i must have run up and down
Manhattan every day the first
month i was at twilio. i’d set a
meeting at 42nd and Broadway
next to one at Fulton and Church
with 15 minutes in between. i’d
double and triple book in email,
leaving two or three of the parties
asking where the hell i was. this
function that had always been a
nuisance in my life was now a criti-
cal skill, and i found out i sucked
at it.

took a long while to learn. i’m
still not very good at it.

➍ You Can Learn To
Schmooze

i’m not naturally very charismatic
or talkative. Despite having played
in a band and given a fair number
of technical presentations, it’s just
not something i have a genetic
talent for, and i have to work very
hard to do it. But in evangelism,
this is part and parcel of the profes-
sion and indeed a valuable ability in
the marketing game.

And, much to my delight, it is
something you do get better at with
practice. Programming is something
i felt i could always just do. But
public speaking, networking at a
party, meeting people at a confer-
ence just never came as easily to me
as writing code. it is now something
i feel i can do and do well, and the
only difference was a lot of practice.

there aren’t any real secrets. Ask
people what they are working on,
always treat them not as a means
but an end, and be your authentic,
flawed, fully present self. nearly
every human you meet will respond
kindly. And those who don’t, you
just don’t have to worry about.

it’s hard, but so is learning Erlang.
And just like you cringe when you
revisit the first Post-nuke you ever
built, so too will you when you
recall your first attempts at building
your interpersonal skills (just ask
the kids at PennApps about my first
twilio demo. what a bomb on stilts
that was).

Don’t get discouraged. Just grit
your teeth, plow through and prac-
tice. you will get better.

14 STARTUPS

➎ The Impact You Can Make
Is Huge

i long thought my maximum point
of power to effect real change was
in the text editor in front of me.
the only way i could make an
impact on people’s lives at scale
was to write great software. while
i still think we who can write code
wield awesome power indeed, i’ve
learned more parts of a startup than
just engineering can make a huge
impact.

while in the thick of the olym-
pics of hustling called SXSw, my
paths crossed into a coder from LA
named will. He gave me a high-
five for my twilio shirt and said he
was working on an app that would
let people create disposable phone
numbers to use for Craiglist posts,
job interviews, and other calls you
needed screened. My somewhat
flippant question after hearing
about his product was, “when you
going to ship?”

“Soon, soon,” he said. “we’re
working on it.”

“well, hurry up!” i exclaimed.
“People need this!”

A few months later he and his
crew at AdHoc did ship that app,
launched it on Hackernews, and
the response has been incredible.
So incredible in fact only a few
days after launch, it helped a guy in
Portland catch the thief who stole
his bike.

After the launch, i got a very
kind thank you from will for the
little push to get his app shipped.
the right message at the right time
to the right person helped encour-
age an intrepid team to finish a
great idea, earn a lot of business,
and help a dude i’ll never meet got
his bike back.

now i can code all goddamn day
and probably never achieve the
same impact as that little conversa-
tion in the middle of a busy confer-
ence. Just a little encouragement at
the right moment helped a team
build something of which they are
rightfully proud and serve some
people who needed it. the satis-
faction i got from watching that
squad’s product blow up on the
news was immense.

And when i’m doing this market-
ing thing right, that’s what it always
feels like. i was anticipating a lot of
different outcomes starting down
this path, but i didn’t expect it to
feel so rewarding. Good marketing
is tough to do, good programming
is tough to do; i’m starting to learn
that anything good is tough to do.

And, for this hacker at least,
doing something well will always
feel magical. n

Doing just about anything for a good
laugh, Rob runs developer evangelism for
Twilio and is an ardent supporter of open
source software and creative commons art,
the startup scene in New York, and every
professional sports club from Boston. In
addition to writing on Brookyn Hacker,
he runs a number of exploits into Internet
ridiculousness, including the heartwarm-
ing documentary service how i knew you
were the one, the robotic telephonic joke
machine Laugh-o-Tron, and the Nobel
Prize-losing Chrome Extension Jeter Filter.

Reprinted with permission of the original author.
First appeared in hn.my/hacketer (brooklynhacker.com)

http://hn.my/hacketer

 15

i’m 40 meters underwater. it’s
getting cold and dark. it’s only
the third dive in my life, but

i’m taking the advanced training
course, and the Caribbean teacher
was a little reckless, dashing ahead,
leaving me alone.

the next day i’m in a govern-
ment office, answering an interview,
raising my right hand, becoming a
citizen of Dominica.

i’m in a Muslim indian family’s
house in Staten island, washing
my feet, with the imam waiting
for my conversion ceremony. next
week they will be my family in-law.
the Muslim wedding will make
her extended family happy. i’ve
memorized the syllables i need
to say. “Ash hadu alla ilaha illal-
lah. Ash hadu anna muhammadar
rasulullah.”

i’m backstage at the tED
Conference, about to go on, but i
can’t remember my lines. in the
audience are Bill Gates, Al Gore,
Peter Gabriel, and a few hundred
other intimidating geniuses. Heart
pounding so fast and hard, i think
i’m going to explode. they call my
name. Ack! i still can’t remember
my lines! But i hit the stage anyway.

i’m alone on a bicycle in a forest
in Sweden. i left from Stockholm 6
hours ago, headed south, with only
50 kronor, and i’m getting hungry. i
don’t know the way back.

we’re in a filthy dorm-room
apartment in Guilin, China,

studying at the local university. At
the local grocery store, we choose
from a bin of live frogs.

the india Embassy official hands
me a pseudo-passport that says i am
now officially a “Person of indian
origin,” a pseudo-citizen of india.

i’m in the back of a truck in
Cambodia, soaking wet, hitching a
ride back to Phnom Penh after an
all-day bike ride. the roads were
flooded, but we rode our bikes
through anyway, Mekong River
water waist-high.

that week i speak at four confer-
ences in Cambodia, Singapore,
Brunei, and indonesia. By the
4th one, my American accent has
started to morph into something
kind of Asian.

we’re in a hospital in Singapore,
having a baby. it’s a boy, which
means he’ll serve 2 years in the Sin-
gapore military in 2030. the birth
certificate says his race is Eurasian,
a word i’ve never heard.

i’m on a diplomatic mission in
Mongolia, with the Singapore Busi-
ness Federation, talking with the
Mongolian government’s head of
business development, walking with
the next mayor of ulaanbaatar.

i suppress a laugh at the ridicu-
lousness of this situation.

i’m just a musician from Califor-
nia! what the hell am i doing here?

But that feeling lets me know i’m
on the right track. this is exactly
what i wanted.

Some people push themselves
physically, to see how far they can
go. i’ve been doing the same thing
culturally, trying to expand my
California-boy perspective.

i love that when we push push
push, we expand our comfort zone.
things that used to feel intimi-
dating now are as comfortable as
home.

i remember how scary new york
City felt when i moved there in
1990, just 20 years old. two years
later it was “my” city, my comfort
zone.

now previously-exotic Singapore
is my long-term comfortable home,
while i push myself into exploring
foreign places, new businesses, and
different perspectives.

After years of stage fright, per-
forming over 1000 shows, i have a
strong case of “stage comfort.” Being
the lead singer or speaker on stage
is now my comfort zone.

A lot of my musician friends feel
this when playing on stage with
their legendary heroes. you push
push push, and then one day find
yourself on the very stage you used
to dream about. And it feels so
natural — almost relaxing. it’s your
new comfort zone.

the question is: what scares you
now? what’s intimidating? what’s
the great unknown?

i keep using that question to
guide my next move. n

Derek Sivers founded a music distribution
company, CD Baby, in 1997, a web hosting
company, Hostbaby, in 2000, and sold both
in 2008. Since then he’s been a popular
speaker at the TED Conferences, and writ-
ing short essays at sivers.org

Push, Push, Push
Expanding Your Comfort Zone

By DEREK SivERS

Reprinted with permission of the original author.
First appeared in hn.my/push (sivers.org)

http://sivers.org
http://hn.my/push

16 PROGRAMMING

PROGRAMMING

By CHARLES LEiFER

i’m working on a little pho-
tography website for my Dad
and thought it would be neat

to extract color information from
photographs. i tried a couple of
different approaches before finding
one that works pretty well. this
approach uses k-means cluster-
ing [hn.my/kmeans] to cluster the
pixels in groups based on color. the
center of those resulting clusters
is then the “dominant” color(s).
k-means is a great fit for this prob-
lem because it is (usually) fast, but
the caveat is that it requires you to
specify up-front how many clusters
you want — i found that it works
well when i specified around 3.

A warning
i’m no expert on data-mining —
almost all my experience comes
from reading toby Segaran’s excel-
lent book Programming Collec-
tive intelligence. in one of the first

chapters toby covers clustering
algorithms, including a nice treat-
ment of k-means, so if you want to
really learn from an expert i’d sug-
gest picking up a copy. you won’t
be disappointed.

How it works
the way i understand it to work
is you start with a bunch of data
points. For simplicity, let’s say
they’re numbers on a number-line.
you want to group the numbers
into “k” clusters, so pick “k” points
randomly from the data to use as
your “clusters.”

now, loop over every point in
the data and calculate its distance
to each of the “k” clusters. Find the
nearest cluster and associate that
point with the cluster. when you’ve
looped over all the points they
should all be assigned to one of the
“k” clusters. now, recalculate each
cluster’s center by averaging the

distances of all the associated points
and start over.

when the centers stop moving
very much you can stop looping.
you will end up with something
like this: the points are colored
based on what “cluster” they are in
and the dark-black circles indicate
the centers of each cluster.

Using Python and k-means
to Find the Dominant

Colors in Images

http://hn.my/kmeans

 17

Applying it to photographs
the neat thing about this algorithm
is that, since it relies only on a
simple distance calculation, you can
extend it out to multi-dimensional
data. Color is often represented
using 3 channels: Red, Green, and
Blue. So what i did was treat all the
pixels in the image like points on
a 3-dimensional space. that’s all
there was to it!

i made a few optimizations along
the way:

1. Resize the image down to 200 x
200 or so using PiL [hn.my/pil]

2. instead of storing “duplicate”
points, store a count with each
— saves on calculations

Looking at some results

the result:

the result:

the result:

The source code
Below is the source code. it requires PiL to resize the image down to
200x200 and to extract the colors/counts. the colorz function is the one
that returns the actual color codes for a filename.

from collections import namedtuple
from math import sqrt
import random
try:
 import Image
except ImportError:
 from PIL import Image

Point = namedtuple('Point', ('coords', 'n', 'ct'))
Cluster = namedtuple('Cluster', ('points', 'center', 'n'))

def get_points(img):
 points = []
 w, h = img.size
 for count, color in img.getcolors(w * h):
 points.append(Point(color, 3, count))
 return points

rtoh = lambda rgb: '#%s' % ''.join(('%02x' % p for p in rgb))

def colorz(filename, n=3):
 img = Image.open(filename)
 img.thumbnail((200, 200))
 w, h = img.size

 points = get_points(img)
 clusters = kmeans(points, n, 1)
 rgbs = [map(int, c.center.coords) for c in clusters]
 return map(rtoh, rgbs)

def euclidean(p1, p2):
 return sqrt(sum([
 (p1.coords[i] - p2.coords[i]) ** 2 for i in range(p1.n)
]))

def calculate_center(points, n):
 vals = [0.0 for i in range(n)]
 plen = 0
 for p in points:
 plen += p.ct
 for i in range(n):
 vals[i] += (p.coords[i] * p.ct)
 return Point([(v / plen) for v in vals], n, 1)

http://hn.my/pil

18 PROGRAMMING

def kmeans(points, k, min_diff):
 clusters = [Cluster([p], p, p.n) for p in random.sample(points, k)]

 while 1:
 plists = [[] for i in range(k)]

 for p in points:
 smallest_distance = float('Inf')
 for i in range(k):
 distance = euclidean(p, clusters[i].center)
 if distance < smallest_distance:
 smallest_distance = distance
 idx = i
 plists[idx].append(p)

 diff = 0
 for i in range(k):
 old = clusters[i]
 center = calculate_center(plists[i], old.n)
 new = Cluster(plists[i], center, old.n)
 clusters[i] = new
 diff = max(diff, euclidean(old.center, new.center))

 if diff < min_diff:
 break

 return clusters

Playing with it in the browser
i ported the code over to JavaScript — let me
tell you, it’s pretty rough, but it works and
is fast. if you’d like to take a look at a live
example, check out:

charlesleifer.com/static/colors/

you can view the source to see the JavaS-
cript version, but basically it is just using
the HtML5 canvas and its getImageData
method. n

Charles Leifer is a Python developer both profession-
ally and for his own open source projects [github.com/
coleifer]. He previously worked three and a half years
for Mediaphormedia, the company responsible for
creating the Django framework.

Reprinted with permission of the original author.
First appeared in hn.my/color (charlesleifer.com)

http://charlesleifer.com/static/colors/
http://github.com/coleifer
http://github.com/coleifer
http://hn.my/color

 19

A year or two after i’d joined the
Labs, i was pair programming with
Ken thompson on an on-the-

fly compiler for a little interactive graphics
language designed by Gerard Holzmann. i
was the faster typist, so i was at the keyboard
and Ken was standing behind me as we pro-
grammed. we were working fast, and things
broke, often visibly — it was a graphics lan-
guage, after all. when something went wrong,
i’d reflexively start to dig in to the problem,
examining stack traces, sticking in print state-
ments, invoking a debugger, and so on. But
Ken would just stand and think, ignoring me
and the code we’d just written. After a while
i noticed a pattern: Ken would often under-
stand the problem before i would, and would
suddenly announce, “i know what’s wrong.”
He was usually correct. i realized that Ken
was building a mental model of the code and
when something broke it was an error in the
model. By thinking about how that problem
could happen, he’d intuit where the model
was wrong or where our code must not be
satisfying the model.

Ken taught me that thinking before debug-
ging is extremely important. if you dive into
the bug, you tend to fix the local issue in the
code, but if you think about the bug first,
how the bug came to be, you often find and
correct a higher-level problem in the code
that will improve the design and prevent
further bugs.

i recognize this is largely a matter of style.
Some people insist on line-by-line tool-driven
debugging for everything. But i now believe
that thinking — without looking at the code
— is the best debugging tool of all, because it
leads to better software. n

Rob Pike is a Distinguished Engineer at Google, Inc.
He works on distributed systems, data mining, pro-
gramming languages, and software development
tools. Most recently he has been a co-designer and
developer of the Go programming language.

“The Best Programming
Advice I Ever Got”

By RoB PiKE

Reprinted with permission of the original author.
First appeared in hn.my/bestadvice (informit.com)

http://hn.my/bestadvice

20 PROGRAMMING

By BRAM MooLEnAAR

if you spend a lot of time typing
plain text, writing programs or
writing HtML, you can save

much of that time by using a good
editor and using it effectively. this
article will present guidelines and
hints for doing your work more
quickly and with fewer mistakes.

the open source text editor
vim (vi iMproved) will be used
here to present the ideas about
effective editing, but they apply to
other editors just as well. Choos-
ing the right editor is actually the
first step towards effective editing.
the discussion about which editor
is the best for you would take too
much room and is avoided. if you
don’t know which editor to use or
are dissatisfied with what you are
currently using, give vim a try; you
won’t be disappointed.

Part 1: edit a file

➊ Move around quickly
Most time is spent reading,

checking for errors and looking for
the right place to work on, rather
than inserting new text or chang-
ing it. navigating through the text
is done very often, thus you should
learn how to do that quickly.

Quite often you will want to
search for some text you know is
there. or look at all lines where a
certain word or phrase is used. you
could simply use the search com-
mand /pattern to find the text, but
there are smarter ways:

 n if you see a specific word and
want to search for other occur-
rences of the same word, use the
* command. it will grab the word
from under the cursor and search
for the next one.

 n if you set the 'incsearch'
option, vim will show the first
match for the pattern, while you
are still typing it. this quickly
shows a typo in the pattern.

 n if you set the 'hlsearch' option,
vim will highlight all matches
for the pattern with a yellow
background. this gives a quick
overview of where the search
command will take you. in pro-
gram code, it can show where a
variable is used. you don’t even
have to move the cursor to see
the matches.

in structured text there are even
more possibilities to move around
quickly. vim has specific commands
for programs in C (and similar lan-
guages like C++ and Java):

 n use % to jump from an open
brace to its matching closing
brace. or from a “#if” to the
matching “#endif.” Actually, % can
jump to many different matching
items. it is very useful to check
if () and {} constructs are bal-
anced properly.

 n use [{ to jump back to the “{”
at the start of the current code
block.

 n use gd to jump from the use of a
variable to its local declaration.

there are many more, of course.
the point is that you need to get to
know these commands. you might
object that you can’t possibly learn
all these commands — there are
hundreds of different movement
commands, some simple, some very
clever — and it would take weeks
of training to learn them all. well,
you don’t need to. instead, realize
what your specific way of editing is,
and learn only those commands that
make your editing more effective.

Effective Text Editing

 21

there are three basic steps:

1. while you are editing, keep an
eye out for actions you repeat
and/or spend quite a bit of time
on.

2. Find out if there is an editor
command that will do this
action quicker. Read the docu-
mentation, ask a friend, or look
at how others do this.

3. train using the command. Do
this until your fingers type it
without thinking.

Let’s use an example to show
how it works:

1. you find that when you are edit-
ing C program files, you often
spend time looking for where a
function is defined. you cur-
rently use the * command to
search for other places where
the function name appears, but
you end up going through a lot
of matches for where the func-
tion is used instead of defined.
you get the idea that there must
be a way to do this faster.

2. Looking through the quick ref-
erence you find a remark about
jumping to tags. the docu-
mentation shows how this can
be used to jump to a function
definition. Just what you were
looking for!

3. you experiment a bit with gen-
erating a tags file, using the ctags
program that comes with vim.
you learn to use the CTRL-]
command and find you save
lots of time using it. to make
it easier, you add a few lines to
your Makefile to automatically
generate the tags file.

A couple of things to watch out
for when you are using these three
steps:

 n “i want to get the work done. i
don’t have time to look through
the documentation to find some
new command.” if you think like
this, you will get stuck in the
stone age of computing. Some
people use notepad for every-
thing, and then wonder why
other people get their work done
in half the time.

 n Don’t overdo it. if you always
try to find the perfect com-
mand for every little thing you
do, your mind will have no time
left to think about the work you
were actually doing. Just pick
out those actions that take more
time than necessary, and train the
commands until you don’t need
to think about it when using
them. then you can concentrate
on the text.

in the following sections there
will be suggestions for actions that
most people have to deal with.
you can use these as inspiration for
using the three basic steps for your
own work.

➋ Don’t type it twice
there is a limited set of

words we type, and even a limited
number of phrases and sentences,
especially in computer programs.
obviously, you don’t want to type
the same thing twice.

very often you will want to
change one word into another. if
you need to do this for the whole
file, you can use the :s (substitute)
command. if only a few locations
need changing, a quick method is to
use the * command to find the next
occurrence of the word and use cw

to change the word. then, type n to
find the next word and . (dot) to
repeat the cw command.

the . command repeats the last
change. A change, in this context,
is inserting, deleting or replacing
text. Being able to repeat this is a
very powerful mechanism. if you
organize your editing around it,
many changes will become a matter
of hitting just that . key. watch
out for making other changes in
between because it will replace the
change that you were repeating.
instead, you might want to mark
the location with the m command,
continue your repeated change and
come back there later.

Some function and variable
names can be awkward to type. Can
you quickly type “XpmCreatePix-
mapFromData” without a typo and
without looking it up? vim has a
completion mechanism that makes
this a whole lot easier. it looks up
words in the file you are editing,
and also in #include’d files. you can
type “XpmCr” and then hit CTRL-N,
and vim will expand it to “Xpm-
CreatePixmapFromData” for you.
not only does this save quite a bit
of typing, it also avoids making a
typo and having to fix it later when
the compiler gives you an error
message.

when you are typing a phrase
or sentence multiple times, there
is an even quicker approach. vim
has a mechanism to record a macro.
you type qa to start recording into
register “a.” then you type your
commands as usual and finally hit q
again to stop recording. when you
want to repeat the recorded com-
mands, you type @a. there are 26
registers available for this.

22 PROGRAMMING

with recording you can repeat
many different actions, not just
inserting text. Keep this in mind
when you know you are going to
repeat something.

one thing to watch out for when
recording, however, is that the com-
mands will be played back exactly
as you typed them. when moving
around you must keep in mind that
the text you move over might be
different when the command is
repeated. Moving four characters
left might work for the text where
you are recording, but it might
need to be five characters where
you repeat the commands. it’s often
necessary to use commands to move
over text objects (words, sentences)
or move to a specific character.

when the commands you need
to repeat are getting more compli-
cated, typing them right at once is
getting more difficult. instead of
recording them, you should then
write a script or macro. this is very
useful to make templates for parts
of your code; for example, a func-
tion header. you can make this as
clever as you like.

➌ Fix it when it’s wrong
it’s normal to make errors

while typing — nobody can avoid
it. the trick is to quickly spot and
correct them. the editor should be
able to help you with this, but you
need to tell it what’s wrong and
what’s right.

very often you will make the
same mistake again and again
because your fingers just don’t do
what you intended. this can be
corrected with abbreviations. A few
examples:

:abbr Lunix Linux
:abbr accross across
:abbr hte the

the words will be automatically
corrected just after you type them.

the same mechanism can be
used to type a long word with just
a few characters. this is especially
useful for words that you find hard
to type, and it avoids that you type
them wrong. Examples:

:abbr pn penguin
:abbr MS Mandrake Software

However, these tend to expand
to the full word when you don’t
want it, which makes it difficult
when you really want to insert “MS”
in your text. it is best to use short
words that don’t have a meaning of
their own.

to find errors in your text, vim
has a clever highlighting mecha-
nism. this was actually meant to
be used for syntax highlighting of
programs, but it can catch and high-
light errors as well.

Syntax highlighting shows com-
ments in color. that doesn’t sound
like an important feature, but once
you start using it you will find that
it helps a lot. you can quickly spot
text that should be a comment but
isn’t highlighted as such (you prob-
ably forgot a comment marker),
or see a line of code highlighted
as comment (you forgot to insert
a “*/”). these are errors which are
hard to spot in a B&w file and can
waste a lot of time when trying to
debug the code.

the syntax highlighting can
also catch unbalanced braces. An
unbalanced “)” is highlighted with a
bright red background. you can use
the % command to see how they
match, and insert a “(” or “)” at the
right position.

other common mistakes are
also quickly spotted. For example,
using “#included <stdio.h>” instead
of “#include <stdio.h>”. you easily

miss the mistake in B&w, but
quickly spot that “include” is high-
lighted while “included” isn’t.

A more complex example: for
English text there is a long list of
all words that are used. Any word
not in this list could be an error.
with a syntax file, you can highlight
all words that are not in the list.
with a few extra macros, you can
add words to the wordlist, so that
they are no longer flagged as an
error. this works just as you would
expect in a word processor. in vim
it is implemented with scripts and
you can further tune it for your
own use; for example, to only check
the comments in a program for
spelling errors.

Part 2: edit more files

➍ A file seldom comes alone
People don’t work on just

one file. Mostly there are many
related files, and you edit several
after each other, or even several at
the same time. you should be able
to take advantage of your editor
to make working with several files
more efficient.

the previously mentioned tag
mechanism also works for jumping
between files. the usual approach is
to generate a tags file for the whole
project you are working on. you
can then quickly jump between
all files in the project to find the
definitions of functions, structures,
typedefs, etc. the time you save
compared with manually searching
is tremendous; creating a tags file is
the first thing i do when browsing a
program.

Another powerful mechanism is
to find all occurrences of a name
in a group of files using the :grep
command. vim makes a list of all
matches and jumps to the first one.

 23

the :cn command takes you to
each next match. this is very useful
if you need to change the number
of arguments in a function call.

include files contain useful
information, but finding the one
that contains the declaration you
need to see can take a lot of time.
vim knows about include files and
can search them for a word you
are looking for. the most common
action is to lookup the prototype of
a function. Position the cursor on
the name of the function in your file
and type [I:. vim will show a list of
all matches for the function name
in included files. if you need to see
more context, you can directly jump
to the declaration. A similar com-
mand can be used to check if you
did include the right header files.

in vim you can split the text
area in several parts to edit differ-
ent files. then you can compare
the contents of two or more files
and copy/paste text between them.
there are many commands to open
and close windows, jump between
them, temporarily hide files, etc.
Again you will have to use the
three basic steps to select the set of
commands you want to learn to use.

there are more uses of multiple
windows. For example, the pre-
view-tag mechanism is a good fea-
ture. this opens a special preview
window while keeping the cursor
in the file you are working on. the
text in the preview window shows,
for example, the function declara-
tion for the function name that is
under the cursor. if you move the
cursor to another name and leave
it there for a second, the preview
window will show the definition
of that name. it could also be the
name of a structure or a function
which is declared in an include file
of your project.

➎ Let’s work together
An editor is for editing text.

An e-mail program is for sending
and receiving messages. An operat-
ing System is for running programs.
Each program has its own task and
should be good at it. the power
comes from having the programs
work together.

A simple example: you need to
write a summary of no more than
500 words. Select the current para-
graph and write it to the “wc” pro-
gram: vip:w !wc -w. the external
“wc -w” command is used to count
the words. Easy, isn’t it?

there will always be some func-
tionality that you need that is not
in the editor. Making it possible to
filter text with another program
means you can add that functional-
ity externally. it has always been
the spirit of unix to have separate
programs that do their job well and
work together to perform a bigger
task. unfortunately, most editors
don’t work too well together with
other programs. you can’t replace
the e-mail editor in netscape with
another one, for example. you end
up using a crippled editor. Another
tendency is to include all kinds
of functionality inside the editor;
Emacs is a good example of where
this can end up. (Some call it an
operating system that can also be
used to edit text.)

vim tries to integrate with other
programs, but this is still a struggle.
Currently it’s possible to use vim as
the editor in MS-Developer Studio
and Sniff. Some e-mail programs
that support an external editor, like
Mutt, can use vim. integration with
Sun workshop is being worked on.
Generally, this is an area that has to
be improved in the near future. only
then will we get a system that’s
better than the sum of its parts.

➏ Text is structured
you will often work with

text that has some kind of struc-
ture, but different from what is sup-
ported by the available commands.
then you will have to fall back to
the “building blocks” of the editor
and create your own macros and
scripts to work with this text. we
are getting to the more complicated
stuff here.

one of the simpler things is
to speed up the edit-compile-fix
cycle. vim has the :make command,
which starts your compilation,
catches the errors it produces and
lets you jump to the error locations
to fix the problems. if you use a dif-
ferent compiler, the error messages
will not be recognized. instead
of going back to the old “write it
down” system, you should adjust
the 'errorformat' option. this tells
vim what your errors look like and
how to get the file name and line
number out of them. it works for
the complicated gcc error messages,
thus you should be able to make it
work for almost any compiler.

Sometimes adjusting to a type of
file is just a matter of setting a few
options or writing a few macros. For
example, to jump around manual
pages, you can write a macro that
grabs the word under the cursor,
clears the buffer and then reads the
manual page for that word into the
buffer. that’s a simple and efficient
way to lookup cross-references.

using the three basic steps, you
can work more effectively with any
sort of structured file. Just think
about the actions you want to do
with the file, find the editor com-
mands that do it and start using
them. it’s really as simple as it
sounds; you just have to do it.

24 PROGRAMMING

Part 3: sharPen the saw

➐ Make it a habit
Learning to drive a car takes

effort. is that a reason to keep driv-
ing your bicycle? no, you realize
you need to invest time to learn a
skill. text editing isn’t different. you
need to learn new commands and
turn them into a habit.

on the other hand, you should
not try to learn every command
an editor offers. that would be
a complete waste of time. Most
people only need to learn 10 to 20
percent of the commands for their
work, but it’s different for every-
onr. it requires that you lean back
now and then and wonder if there
is some repetitive task that could
be automated. if you do a task only
once and don’t expect having to
do it again, don’t try to optimize it.
But you probably realize you have
been repeating something several
times in the last hour. then search
the documentation for a command
that can do it quicker. or write a
macro to do it. when it’s a larger
task, like lining out a specific sort
of text, you could look around in
newsgroups or on the internet to
see if somebody already solved it
for you.

the essential basic step is the
last one. you can think of a repeti-
tive task, find a nice solution for it
and after the weekend forgot how
you did it. that doesn’t work. you
will have to repeat the solution
until your fingers do it automati-
cally. only then will you reach the
efficiency you need. trying to learn
too many things at once won’t
work, but doing a few at the same
time will work well. For tricks you
don’t use often enough to get them
in your fingers, you might want
to write them down to look them

up later. Anyway, if you keep the
goal in view, you will find ways to
make your editing more and more
effective.

one last remark to remind you of
what happens when people ignore
all the above: i still see people who
spend half their day behind a vDu
looking up at their screen, then
down at two fingers, then up at the
screen, etc., and then they wonder
why they get so tired... type with
ten fingers! it’s not just faster but
also is much less tiresome. using
a computer program for one hour
each day, it only takes a couple of
weeks to learn to touch-type. n

Bram Moolenaar is the main author of Vim.
He writes the core Vim functionality and
selects what code submitted by others is
included. He mainly works on software, but
he still knows how to handle a soldering
iron. He is founder and treasurer of ICCF
Holland, which helps orphans in Uganda.

Reprinted with permission of the original author.
First appeared in hn.my/habits (moolenaar.net)

http://hn.my/habits

 25

i want to tell you about the
Kid. i met the Kid a few years
ago, right out of high school; he

had shipped some popular iPhone
apps, made a few websites, and had
a bright future.

i don’t know how it started, but
the Kid really believed in “Move
Fast and Break things.” He was a
ship-first-questions-later sort of guy.
it made sense to him: the product
was the purpose, and the code was
a means to an end. He loved the
things he could build, but he wasn’t
big on the process.

So, the Kid carried on and built
a lot of cool stuff. i saw some of
the code; it wasn’t pretty, but the
end result still worked fine. And it
got him pretty far, too. He’d flaunt
these creations and eyes would go
wide because it all looked impres-
sive. He was young, sure, but who
wouldn’t want to grab that talent
while it was cheap?

the Kid started working. He was
famous for shipping new features
that users loved, and damn could
he do it fast! it usually took just
a few days from idea to produc-
tion — hundreds of lines of code
in an afternoon, i kid you not. Lots
of pats on his back, i’m sure. it all
seemed to be working out for him,
living the good life.

And then things changed. i saw
the Kid just about a year ago,
working feverishly on a complete
product redesign. it was lots of new
code and not a lot of time to think
about it. Just him on the project

— no second opinions or
supervision. As with all
redesigns, feature requests
piled up at the pace of a
bad game of tetris. But
who was the Kid to say
no? Sleepless nights later,
the Kid emerged with

something. At first glance it looked
great; even i couldn’t believe it
came together so quickly. Cham-
pion effort on his part, right?

But here’s the rub: beneath the
surface, it was just too buggy. And
these weren’t just sloppy edge-case
bugs; they were “what idiot do we
need to fire?” class problems. the
redesign was shelved and rewritten
again without the Kid.

the Kid didn’t lose his job, but
i could tell it hurt him like hell.
Because to programmers like us,
what is our work but extensions of
ourselves? what did this disaster
say about the Kid?

He laid low for a bit, ashamed of
what he had done. Moving fast and
breaking things had gotten him far,
but now he had finally broken too
much. Kind of world-shattering to
him, i guess. it was a dark place for
the Kid.

And that’s when i heard the Kid
grew up. you could say he became
the Guy, the Dude, whatever. the
point is he had a change of heart.
He started to realize shipping might
not be everything, and his screw-
up was a loud wakeup call that he
needed to change his scene.

And so (and this is all hearsay,
mind you), the Kid started caring
about his code. not just caring, but
really giving a damn about it, and
not because it was a means to an
end, but for the sole sake of caring
about it. “Code is more than just a
tool,” i heard he said. “it’s our craft.
it’s our muscle. And we need to

train it. Chop wood. Carry water.
Code.”

i heard all sorts of wild rumors
that the Kid started using “best
practices” in all his Google searches.
i even heard he started learning
the deep internals of the beasts he
wrangled, whether it was Rails or
ioS or whatever, just for the intel-
lectual pleasure of it all. Code was
no longer a beast to be tamed; it
was a creature, to be both studied
and admired. He even tried to teach
others the error of his old ways.
wild stuff, right?

Did the Kid completely aban-
don his old ways? well, apparently
not. He said something about how
there’s a “time and place for every-
thing” — that sometimes we need
to ship fast and break things. But if
we take all the other time we have
and put it to good use by really
learning and crafting our code, we’ll
break less.

that’s kind of a crazy change,
but i’d believe it. i thought a lot of
things about the Kid when i met
him years ago, but i didn’t think he
was stupid. He grew and evolved
as we all do, and he’s probably not
even done yet, wherever he is. But
next time you need to move fast,
take a deep breath before taking the
dive and remember the Kid in all
of us. n

Clay Allsopp is a hacker, Thiel Fellow, and
internet enthusiast. An iOS developer since
day one, Clay has crafted beautiful mobile
apps with over a million cumulative down-
loads for startups like Circle. He is currently
building Propeller [usepropeller.com], the
best way for anyone to build a mobile app.

Give a Damn
By CLAy ALLSoPP

Reprinted with permission of the original author.
First appeared in hn.my/kid (clayallsopp.com)

http://usepropeller.com
http://hn.my/kid

26 PROGRAMMING

By FERoSS ABouKHADiJEH

i’ve set up at least five new servers with Linode
[linode.com] and each time i complete the ritual, i
learn new incantations that make the Linux angels

sing. i’m pretty happy with my current recipe.
Setting up a new server can be confusing, so using a

tutorial like this one is a good idea the first time you do
it.

in this guide, i will demonstrate how to set up a
fresh ubuntu server from scratch, update everything,
install essential software, lock down the server to make
it more resilient against basic attacks and denial-of-ser-
vice, improve server stability, setup automatic backups
to another server, and finally install common software
like nginx, MySQL, Python, node, etc.

Provision a New Linode
First, you need to provision a new Linode. using Lin-
ode’s web ui, it’s quite easy. Select your desired Linode
size. if you’re unsure, choose the smallest size. you can
always resize it later. Select “ubuntu 12.04 LtS” as
your oS. you’ll be asked to create a password for the
root user.

After a few minutes, your server will be ready. now,
it’s time to connect to it!

Connecting to Your Server
First, open terminal on your Mac. on windows, you’ll
want to use putty [hn.my/putty], since windows
doesn’t come with a proper terminal.

to connect to your server, type this into your termi-
nal and hit Enter:

ssh root@<your server ip>

of course, replace <your server ip> with your
Linode’s actual iP address, which you can find on the
“Remote Access” tab in the control panel.

this command launches the SSH program and
asks it to connect to your server with the username
root, which is the default ubuntu user. you will be
prompted for the root password you created earlier.

Basic Ubuntu Setup
to set up your new server, execute the following
commands.

Set the hostname
Set the server hostname. Any name will do — just
make it memorable. in this example, i chose “future”.

echo "future" > /etc/hostname
hostname -F /etc/hostname

How To Set Up Your
Linode For Maximum

Awesomeness

http://linode.com
http://hn.my/putty

 27

Let’s verify that it was set correctly:

hostname

Set the fully-qualified domain name
Set the FQDn of the server by making sure the follow-
ing text is in the /etc/hosts file:

127.0.0.1 localhost.localdomain localhost
127.0.1.1 ubuntu
<your server ip> future.<domain>.net future

it is useful if you add an A record that points
from some domain you control (in this case i used
“future.<domain>.net”) to your server iP address. this
way, you can easily reference the iP address of your
server when you SSH into it, like so:

ssh future.<your domain>.net

Set the time
Set the server timezone:

dpkg-reconfigure tzdata

verify that the date is correct:

date

Update the server
Check for updates and install:

aptitude update
aptitude upgrade

Basic Security Setup
Create a new user
the root user has a lot of power on your server. it has
the power to read, write, and execute any file on the
server. it’s not advisable to use root for day-to-day
server tasks. For those tasks, use a user account with
normal permissions.

Add a new user:

adduser <your username>

Add the user to the sudoers group:

usermod -a -G sudo <your username>

this allows you to perform actions that require root
privilege by simply prepending the word sudo to the
command. you may need to type your password to
confirm your intentions.

Login with new user:

exit
ssh <your username>@<your server ip>

Set up SSH keys
SSH keys allow you to login to your server without
a password. For this reason, you’ll want to set this up
on your primary computer (definitely not a public or
shared computer!). SSH keys are very convenient and
don’t make your server any less secure.

if you’ve already generated SSH keys before (maybe
for your GitHub account?), then you can skip the next
step.

Generate SSH keys
Generate SSH keys with the following command:

(NOTE: Be sure to run this on your local computer — not
your server!)

ssh-keygen -t rsa -C "<your email address>"

when prompted, just accept the default locations for
the keyfiles. Also, you’ll want to choose a nice, strong
password for your key. if you’re on Mac, you can save
the password in your keychain so you won’t have to
type it in repeatedly.

now you should have two keyfiles, one public and
one private, in the ~/.ssh folder.

Copy the public key to server
now, copy your public key to the server. this tells the
server that it should allow anyone with your private
key to access the server. this is why we set a password
on the private key earlier.

From your local machine, run:

scp ~/.ssh/id_rsa.pub <your username>@
<your server ip>:

on your Linode, run:

mkdir .ssh
mv id_rsa.pub .ssh/authorized_keys
chown -R <your username>:<your username> .ssh
chmod 700 .ssh
chmod 600 .ssh/authorized_keys

28 PROGRAMMING

Disable remote root login and change the SSH port
Since all ubuntu servers have a root user and most
servers run SSH on port 22 (the default), criminals
often try to guess the root password using automated
attacks that try many thousands of passwords in a very
short time. this is a common attack that nearly all serv-
ers will face.

we can make things substantially more difficult
for automated attackers by preventing the root user
from logging in over SSH and changing our SSH port
to something less obvious. this will prevent the vast
majority of automatic attacks.

Disable remote root login and change SSH port:

sudo nano /etc/ssh/sshd_config

Set “Port” to “44444” and “PermitRootLogin” to “no”.
Save the file and restart the SSH service:

sudo service ssh restart

in this example, we changed the port to 44444. So,
now to connect to the server, we need to run:

ssh <your username>@future.<your domain>.net -p
44444

Advanced Security Setup
Prevent repeated login attempts with Fail2Ban
Fail2Ban [fail2ban.org] is a security tool to prevent
dictionary attacks. it works by monitoring important
services (like SSH) and blocking iP addresses which
appear to be malicious (i.e. they are failing too many
login attempts because they are guessing passwords).

install Fail2Ban:

sudo aptitude install fail2ban

Configure Fail2Ban:

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/
jail.local
sudo nano /etc/fail2ban/jail.local

Set “enabled” to “true” in the [ssh-ddos] section. Also,
set “port” to “44444” in the [ssh] and [ssh-ddos] sec-
tions. (Change the port number to match whatever you
used as your SSH port).

Save the file and restart Fail2Ban to put the new
rules into effect:

sudo service fail2ban restart

Add a firewall
we’ll add an iptables [hn.my/iptables] firewall to the
server that blocks all incoming and outgoing connec-
tions except for ones that we manually approve. this
way, only the services we choose can communicate
with the internet.

the firewall has no rules yet. Check it out:

sudo iptables -L

Setup firewall rules in a new file:

sudo nano /etc/iptables.firewall.rules

the following firewall rules will allow HttP (80),
HttPS (443), SSH (44444), ping, and some other
ports for testing. All other ports will be blocked.

Paste thist gist [gist.github.com/4665695] into /etc/
iptables.firewall.rules.

Activate the firewall rules now:

sudo iptables-restore < /etc/iptables.firewall.
rules

verify that the rules were installed correctly:

sudo iptables -L

Activate the firewall rules on startup:

sudo nano /etc/network/if-pre-up.d/firewall

Paste this into the /etc/network/if-pre-up.d/fire-
wall file:

#!/bin/sh
/sbin/iptables-restore < /etc/iptables.firewall.
rules

Set the script permissions:

sudo chmod +x /etc/network/if-pre-up.d/firewall

Get an email anytime a user uses sudo
i like to get an email anytime someone uses sudo. this
way, i have a “paper trail” of sorts, in case anything bad
happens to my server. i use a Gmail filter to file these
away and only look at them occasionally.

Create a new file for the sudo settings:

sudo nano /etc/sudoers.d/my_sudoers

Add this to the file:

Defaults mail_always
Defaults mailto="feross@feross.org"

http://fail2ban.org
http://hn.my/iptables
http://gist.github.com/4665695

 29

Set permissions on the file:

sudo chmod 0440 /etc/sudoers.d/my_sudoers

this isn’t mentioned anywhere on the web, as far as i
know, but in order for the “mail on sudo use” feature to
work, you need to install an MtA server. sendmail is a
good choice:

sudo aptitude install sendmail

now, you should get an email anytime someone uses
sudo!

Improve Server Stability
vPS servers can easily run out of memory during traffic
spikes.

For example, most people don’t change Apache’s
default setting which allows 150 clients to connect
simultaneously. this is way too large a number for a
typical vPS server. Let’s do the math. Apache’s pro-
cesses are typically ~25MB each. if our website gets a
temporary traffic spike and 150 processes launch, we’ll
need 3750MB of memory on our server. if we don’t
have this much (and we don’t!), then the oS will grind
to a halt as it swaps memory to disk to make room for
new processes, but then immediately swaps the stuff
on disk back into memory.

no useful work gets done once swapping happens.
the server can be stuck in this state for hours, even
after the traffic rush has subsided. During this time,
very few web requests will get serviced.

it’s very important to configure your applications so
memory swapping does not occur. if you use Apache,
you should set MaxClients to something more reason-
able like 20 or 30. there are many other optimizations
to make, too.

Reboot server on out-of-memory condition
Still, in cases where something goes awry, it is good to
automatically reboot your server when it runs out of
memory. this will cause a minute or two of downtime,
but it’s better than languishing in the swapping state
for potentially hours or days.

you can leverage a couple kernel settings and Lassie
to make this happen on Linode.

Adding the following two lines to your /etc/
sysctl.conf will cause it to reboot after running out of
memory:

vm.panic_on_oom=1
kernel.panic=10

the vm.panic_on_oom=1 line enables panic on ooM;
the kernel.panic=10 line tells the kernel to reboot ten
seconds after panicking.

Miscellaneous nice-to-haves
these next things are not required (in fact, nothing in
this guide really is), but are nice to do.

Set up reverse DNS
the reverse DnS system allows one to determine the
domain name that lives at a given iP address. this is
useful for network troubleshooting — (ping, tracer-
oute, etc.), as well as email anti-spam measures.

it’s pretty easy to set up. From the Linode Manager,
select your Linode, click on “Remote Access”, then
click on “Reverse DnS” (under “Public iPs”). type in
your domain, and that’s it!

Set up a private IP address
Private iPs are useful for communicating data on the
Linode network, i.e. Linode to Linode. this is handy
if you have multiple Linodes (say, one for your web
server and one for your database). Private network
traffic is more secure (only other Linode customers can
see it, vs. the whole internet), faster (the traffic never
has to leave the datacenter if both Linodes are in the
same datacenter), and free (doesn’t count towards your
monthly bandwidth quota).

i currently put my database server on its own
Linode, so that i can scale it independently of my fron-
tend servers and debug performance issues easier since
the systems are isolated. this hasn’t been super-handy
yet, but if one of my sites gets a huge traffic rush, i bet
it will be immensely useful.

it’s easy to set up. on the Remote Access tab, click
Add a Private iP.

then, edit the file /etc/network/interfaces to
contain:

The loopback interface
auto lo
iface lo inet loopback

Configuration for eth0 and aliases

This line ensures that the interface will be
brought up during boot.
auto eth0 eth0:0
eth0 - This is the main IP address that will
be used for most outbound connections.

30 PROGRAMMING

The address, netmask and gateway are all
necessary.
iface eth0 inet static
 address 12.34.56.78
 netmask 255.255.255.0
 gateway 12.34.56.1

eth0:0 - Private IPs have no gateway (they are
not publicly routable) so all you need to
specify is the address and netmask.
iface eth0:0 inet static
 address 192.168.133.234
 netmask 255.255.128.0

of course, adjust the iP addresses to reflect your own
addresses from the Remote access tab.

then, restart your Linode and remove DHCP since
we’re using static networking now:

sudo aptitude remove isc-dhcp-client dhcp3-cli-
ent dhcpcd

Install Useful Server Software
At this point, you have a pretty nice server setup. Con-
grats! But your server still doesn’t do anything useful.
Let’s install some software.

Install a compiler
A compiler is often required to install Python packages
and other software, so let’s just install one up-front.

sudo aptitude install build-essential

Install MySQL

sudo aptitude install mysql-server
libmysqlclient-dev

Set root password when prompt asks you.
verify that MySQL is running.

sudo netstat -tap | grep mysql

For connecting to MySQL, instead of the usual
PHPMyAdmin, i now use Sequel Pro [sequelpro.com],
a free app for Mac.

Improve MySQL security
Before using MySQL in production, you’ll want to
improve your MySQL installation security. Run:

mysql_secure_installation

this will help you set a password for the root
account, remove anonymous-user accounts, and
remove the test database.

Keep your MySQL tables in tip-top shape
over time your MySQL tables will get fragmented
and queries will take longer to complete. you can keep
your tables in top shape by regularly running OPTIMIZE
TABLE on all your tables. But, since you’ll never remem-
ber to do this regularly, we should set up a cron job to
do this.

open up your crontab file:

crontab -e

then, add the following line:

@weekly mysqlcheck -o --user=root
--password=<your password here> -A

Also, you can try manually running the above com-
mand to verify that it works correctly.

Backup your MySQL databases
the excellent automysqlbackup utility can automati-
cally make daily, weekly, and monthly backups of your
MySQL database.

install it:

sudo aptitude install automysqlbackup

now, let’s configure it. open the configuration file:

sudo nano /etc/default/automysqlbackup

By default, your database backups get stored in /
var/lib/automysqlbackup which isn’t very intuitive. i
recommend changing it to a folder within your home
directory. to do this, find the line that begins with
BACKUPDIR= and change it to BACKUPDIR="/home/<your
username>/backups/"

you also want to get an email if an error occurs, so
you’ll know if automatic backups stop working for
some reason. Find the line that begins with MAILADDR=
and change it to MAILADDR="<your email address>".

Close and save the file. that’s it!

http://sequelpro.com

 31

Install Python
install Python environment:

sudo aptitude install python-pip python-dev
sudo pip install virtualenv

this creates a global “pip” command to install
Python packages. Don’t use it, because packages will be
installed globally. instead, use virtualenv.

Create a new virtualenv Python environment with:

virtualenv --distribute <environment_name>

Switch to the new environment with:

cd <environment_name>
source bin/activate

note that the name of your environment is added to
your command prompt.

install Python packages with “pip” inside of
virtualenv:

pip search <package_name>
pip install <package_name>

this is the best Python workflow that i’ve found.
Let me know if you know of a better way to manage
Python packages and Python installations.

Install Nginx

sudo aptitude install nginx

Install Apache

sudo aptitude install apache2

Install PHP5

sudo aptitude install php5 libapache2-mod-php5
php5-mysql
sudo service apache2 restart

Install Node.js

sudo aptitude install python-software-properties
sudo add-apt-repository ppa:chris-lea/node.js
sudo aptitude update
sudo aptitude install nodejs npm nodejs-dev

Install MongoDB
Follow instructions on 10gen’s site: install MongoDB
on ubuntu. [hn.my/instmongo]

Install Redis

sudo aptitude install redis-server

Setup Automatic Backups
Backups are really important. Linode offers a paid
backup service that’s really convenient if you acci-
dentally destroy something and need to restore your
Linode quickly. it’s $5 per month for the smallest
Linode. i enable it on all my Linodes.

if you want even more peace of mind (or don’t want
to pay for Linode’s backup service), you can roll your
own simple backup solution using rsync.

you will need access to another Linux server (maybe
another Linode?) or a home server. i just installed
ubuntu on an old desktop computer to use as a backup
server.

we’re going to create a weekly cronjob that backs up
our Linode’s home directory to a backup server. i keep
all the files that i would want to backup in my home
folder, so this works for me.

open your crontab:

crontab -e

Add this line to the file:

@weekly rsync -r -a -e "ssh -l <your username
on backup server> -p <ssh port number of backup
server>" --delete /home/<your username> <host-
name or ip address of backup server>:/path/to/
some/directory/on/backup/server

i recommend running the above command manually
to make sure you have it right before adding it to your
crontab file.

that’s it! Happy hacking! n

Feross Aboukhadijeh is a 22-year old Stanford CS student/
teacher, web developer, designer, and security researcher. He is
the founder of StudyNotes [studynotes.org] where he is helping
students to learn faster and study better.

Reprinted with permission of the original author.
First appeared in hn.my/linode (feross.org)

http://hn.my/instmongo
http://studynotes.org
http://hn.my/linode (feross.org)

32 PROGRAMMING

By JoEL PERRAS

if you’re anything like me, you probably log in
and out of a half dozen remote servers (or these
days, local virtual machines) on a daily basis. And if

you’re even more like me, you have trouble remember-
ing all of the various usernames, remote addresses and
command line options for specifying such things as a
non-standard connection port or a local port to forward
to a remote server.

Luckily, there are a few ways that we can simplify
these tedious, repetitive actions.

Shell Aliases
Let’s say that you have a remote server named dev.
example.com, which has not been set up with public/
private keys for password-less logins. the username to
the remote account is fooey, and to reduce the number
of scripted login intrusion attempts, you’ve decided
to obfuscate the default SSH port to 2200 from the
normal default of 22. this means that a typical login
command would look like:

$ ssh fooey@dev.example.com -p 2200
password: *************

not horribly complex or long, but still cumbersome
to type out a dozen times a day.

we can make things simpler and more secure by
using a public/private key pair:

$ # Assuming your keys are properly setup...
$ ssh fooey@dev.example.com -p 2200

Note: I highly recommend using ssh-copy-id for moving
your public keys around. It will save you quite a few
folder/file permission headaches.

now, this doesn’t seem all that bad. to cut down on
the verbosity you could also create a shell alias:

$ alias sshdev='ssh fooey@dev.example.com -p
2200'
$ # To connect:
$ sshdev

this works surprisingly well, and can scale linearly
for every new server you need to work with: Just add
an additional alias to your .bashrc or .zshrc, and voilà.

~/.ssh/config
Even with the simplicity of the method described
previously, there’s a much more elegant and flexible
solution to this problem. Enter the SSH config file:

contents of $HOME/.ssh/config
Host dev
 HostName dev.example.com
 Port 22000
 User fooey

this means that i can simply issue $ ssh dev in my
terminal and the options will be read from the configu-
ration file automatically, and on every invocation. Easy
peasy.

Let’s see what else we can do with just a few simple
configuration directives.

Personally, i manage a few public/private keypairs
due to having multiple machines (work/home/laptop).
Say, for illustrative purposes only, that i have a key
that i use uniquely for my github account. Let’s set it
up so that that particular private key is used for all my
github-related operations:

Simplify Your Life With
an SSH Config File

 33

contents of $HOME/.ssh/config
Host github.com
 IdentityFile ~/.ssh/github.key

the use of IdentityFile allows me to specify
exactly which private key i wish to use for authentifi-
cation with the given host instead of specifying this as
a command line parameter:

$ ssh -i ~/.ssh/blah.key username@host.com

However, the use of a config file with the Identity-
File directive is pretty much your only option if you
want to specify which identity to use for any git com-
mands. this also opens up the very interesting concept
of further segmenting your keypairs:

Host github-work
 User git
 HostName github.com
 IdentityFile ~/.ssh/github.work.key

Host github-home
 User git
 HostName github.com
 IdentityFile ~/.ssh/github.home.key

Host github-laptop
 User git
 IdentityFile ~/.ssh/github.laptop.key

which means that if i want to clone a reposi-
tory using my work credentials, i can simply use the
following:

$ git clone git@github-work:orgname/some_reposi-
tory.git

Going further
As a security-conscious developer, i make sure to set
up firewalls on all of my servers and make them as
restrictive as possible. in many cases, this means that
the only ports that i leave open are 80/443 (for web-
servers) and 22 for SSH.

on the surface, this seems to prevent me from
using things like a desktop MySQL Gui client, which
expects port 3306 to be open and accessible on the
remote server you are connecting to. the informed
reader will note, however, that a simple local port for-
ward can save you:

$ ssh -f -N -L 9906:127.0.0.1:3306 coolio@data-
base.example.com
$ # -f puts ssh in background
$ # -N makes it not execute a remote command

this will forward all local port 9906 traffic to port
3306 on the remote dev.example.com server, letting me
point my desktop Gui to localhost (127.0.0.1:9906)
and have it behave exactly as if i had exposed port
3306 on the remote server and connected directly to it.

now i don’t know about you, but remembering that
sequence of flags and options for SSH can be a com-
plete pain. Luckily, our config file can help alleviate
that:

Host tunnel
 HostName database.example.com
 IdentityFile ~/.ssh/coolio.example.key
 LocalForward 9906 127.0.0.1:3306
 User coolio

this means i can simply do:

$ ssh -f -N tunnel

And my local port forwarding will be enabled using
all of the configuration directives i set up for the tunnel
host. Slick.

Homework
there are quite a few configuration options that you
can specify in ~/.ssh/config, and i highly suggest
consulting the online documentation or the ssh_config
man page [hn.my/sshconfig]. Some interesting/useful
things that you can do include:

 n Changing the default number of connection attempts

 n Specifying local environment variables to be passed
to the remote server upon connection

 n using of * and ? wildcards for matching hosts.

And much, much more — the ssh_config man page
is 747 lines long, and consists almost entirely of con-
figuration file directives and short explanations of what
those directives do. take a look! i’m certain you’ll be
surprised at what you find. n

Joel Perras is a physicist turned Big Data geek. He is a partner at
Fictive Kin, where he gets to build applications to change the
way the world use the web.

Reprinted with permission of the original author.
First appeared in hn.my/simplify (nerderati.com)

http://hn.my/sshconfig
http://hn.my/simplify

34 SPECIAL

By REGinALD BRAitHwAitE

SPECIAL

i have a rather glaring life-long
weakness, a behavior that has
tripped me up many times.

you would think that i would have
noticed it and corrected my behav-
ior in my teens or twenties, but no,
it has persisted. while i am much
better at correcting myself, it is
extremely persistent and requires
constant vigilance to suppress.

the behavior in question is this:
when i am learning something new,
i suffer from laziness, impatience,
and hubris. i try to grasp the gist of
the thing, the conclusion, and then
i stop. i figure i “understand” it, so i
must be done learning.

this is wrong for me. i am
blessed with a quick mind for
certain subjects, so there are times
when i am reading something, or
someone is explaining something,
and i can work out the obvious
implications. Someone is telling
me about aspect-oriented pro-
gramming, and i start thinking
about cross-cutting concerns like
authorization. or perhaps database
access. then i ask myself whether
AoP is related to the “unobtrusive

JavaScript” style. or if it’s really
fine-grained dependency injection.

i’m impatient to learn, so i try
to jump to the end. i don’t “do
the work” of taking it step by step,
doing exercises with the mate-
rial, building my knowledge like a
pyramid with a broad foundation.
if a technology seems interesting,
i want to jump right into the deep
end and try it on an important proj-
ect instead of researching it more
thoroughly or playing with it a bit
on side-projects.

this has been wrong more often
than not.

Every idea has “big implications.”
Decoupling. Refactoring. Events.
idempotence. whatever. But ideas
in execution have many, many
little implications, little caveats
and gotchas, rough edges and leaky
abstractions. these “little ideas” are
less important than the big ideas in
theory, but in practice each failure
to grasp an implication or conse-
quence leads almost directly to a
flaw in the finished work.

the wrongness of my laziness,
impatience, and hubris is apparent.

when i think that i “grasp” an idea,
i’m really only grasping the big
idea. or what i think is the big idea
in my hubris. i’m assuming that
what i don’t know about the idea
can’t hurt me. But what i don’t
know about an idea can hurt me
and often has.

i don’t always make this mis-
take. Sometimes an idea catches
my fancy and i find myself playing
with it. Combinators grabbed me
in this way. i was fascinated by the
book to Mock a Mockingbird many
years ago, and when i started Ruby
programming, i had a chance to try
these ideas out in practice.

i worked from Ruby to Combina-
torial Logic and from Combinato-
rial Logic to Ruby at the same time.
i tried to view certain meta-pro-
gramming ideas from the perspec-
tive of CL, to fit them within the
framework. this opened up some
insights that had eluded me when i
thought that i had “grasped” Ruby
meta-programming. And when i
took some of the combinators and
tried to find practical uses for them
in Ruby, i learned some more.

What I’ve Learned
About Learning

 35

it turns out, there really is no
substitute for experience with an
idea. Experience that is obtained
through practice, through repeated
application of principles to prob-
lems, not just from skimming a text.

A decade ago, i would have read
an article like this and summa-
rized it thusly: “there’s more to an
idea than the obvious implication,
there are some details you need to
learn as well.” i’d have been wrong.
there’s an important factor my
mental model of ideas and implica-
tions ignores.

“A programming language that
doesn’t affect the way you think
about programming is not worth
learning.” — Alan Perlis

My personal experience is that
“learning” a programming lan-
guage requires writing programs
in that language. if i tell you that
Scheme is homoiconic, that it has
just five special forms, and that
it has hygienic macros do you
“know” Scheme? Can you say that
it “affects the way you think about
programming”?

From what i wrote above, we
say “no, because there are many
implications of these three features
of the language that are not obvi-
ous, that require further study.” But
i think there’s something else.

Knowing how to do something
is not the same thing as doing that
thing. when you actually do the
thing, and when you incorporate it
into your life, it becomes a mental
habit, it becomes part of who you
are and how you think.

that is when a language affects
the way you think about programs:
when its ideas become part of your
mental habits. And a language’s
ideas only become your mental
habits when you program in that

language on a regular basis. this
doesn’t happen from playing with it
a bit here and a bit there. it doesn’t
happen from reading a lot of books
and blog posts. it doesn’t happen
when you snap your fingers and
think you “get” its big ideas.

you have to go beyond think-
ing you know how, you have to go
beyond actually knowing how, you
have to go out and do it. Again and
again and again until it becomes a
habit. i think this is true of much
more than just programming
languages. Everything i’ve learned
works the same way: there is a dif-
ference between knowing how to
do it and doing it enough to change
your way of thinking.

In cognitive therapy, you have to
“do the work,” you have to grind it
out and do the exercises day in and
day out. Week after week. Month
after month.

i’ve experienced this in a very
direct way with Cognitive therapy.
i can tell you (and i did) that one
of the ways to combat depression
is to change the way you explain
negative events in your life, to
view them as being impersonal or
external, specific, and temporary. i
can tell you that you should view
positive events as personal or inter-
nal, general, and permanent. And
i know you will snap your fingers
and intuit how this can change your
moods and outlook.

But knowing how to change your
moods is not the same thing as
changing your moods. in cognitive
therapy, you have to “do the work,”
you have to grind it out and do the
exercises day in and day out. week
after week. Month after month.
it’s the doing of cognitive therapy
that changes your moods, not the
grasping of its big principles nor the

acquisition of the little implications.
Just doing it. Day after day after
day.

Reasoning by analogy is notori-
ously unreliable, but there seems
to be a deep truth here about the
business of learning ideas. there
are the big implications i can grasp,
sometimes quickly. But there are
also the “little” implications that
require practice and experimenta-
tion, and when i am impatient and
ignore them, i suffer.

And finally there is the way that
an idea affects my thinking which
comes only from sustained effort
applying the idea. Picking it up and
playing with it isn’t enough, i need
to use it every day if i want it to
change me in any serious way.

My weakness is thinking that
when i first grasp an idea, i think
i’m done. i’ve gotten better over
time. i have learned to exercise
ideas, to write and use little librar-
ies, even to write essays like this to
help me think the little implica-
tions through.

But i mustn’t be fooled into
thinking i’m done. So if you’ll
excuse me, i’m off to do the work. n

Reginald Braithwaite is a software devel-
oper at Leanpub, where he and his col-
leagues take the friction out of writing and
selling books. He has more than twenty
years of hands-on experience creating
software products and leading software
teams. He currently applies extremely
deep Ruby, JavaScript, CoffeeScript, and
advanced programming expertise to craft-
ing well-factored, maintainable code.

Reprinted with permission of the original author.
First appeared in hn.my/learned
(raganwald.posterous.com)

http://hn.my/learned
http://hn.my/learned

36 SPECIAL

By JEFF AtwooD

twenty-four years ago
today, i had a very bad
day.

on August 8, 1988, i was a senior
in high school. i was working my
after school and weekend job at
Safeway as a cashier, when the store
manager suddenly walked over and
said i better stop ringing up cus-
tomers and talk to my mother on
the store phone right now. Mom
told me to come home immediately
because, well, there were police at
the front door asking for me with
some legal papers in hand.

 Like i said, definitely not a good
day. the only sliver of good news
was that i was still 17 at the time,
so i enjoyed the many protections
that the law provides to a minor.
which i shall now throw away
by informing the world that i am
a dirty, filthy, reprehensible adult
criminal. thanks, law!

one of the problems you had in
the pre-internet 1980s as a hard-
core computer geek was that all the
best bulletin boards and online ser-
vices were kind of expensive. Either
because you had to pay an hourly
fee to access them, like Com-
puServe, or because they were a
long distance modem call. or both.
Even after the 1984 At&t breakup,
long distance at around 20-30 cents
a minute was a far, far cry from
today’s rates. (Does anyone actually
even worry about how much voice
calls cost any more, to anywhere

in the world? this, my friends, is
progress.)

Remember, too, that this is back
when 9600 baud modems were
blazing, state of the art devices. For
perspective, the ultra-low-power
wireless Bluetooth on your phone is
about 80 times faster. if you wanted
to upload or download any warez

software, that meant potentially
hours on your modem at rates of
around $20/hour. Adjusted for
inflation, that’s closer to $40 in
2012 dollars. My family wasn’t well
off enough to afford a second tele-
phone line, so most of my calling
was done late at night both because
the rates were lower, and also so
that i wouldn’t be monopolizing
the telephone. nothing was worse
than the dreaded “mom picked up
the phone” disconnect to an elite
difficult-to-access BBS with limited
slots.

one way or another, i eventually
got involved with the seedier side
of the community, even joining a
lesser Apple // pirate group. Prob-
ably my main claim to fame is that
while trolling BBSes, i personally
discovered and recruited a guy
who turned out to be an amazing
cracker. He was so good he eventu-
ally got recruited away.

I Was a Teenage Hacker

 37

i was, at best, a footnote to a
footnote to a footnote in Apple //
history. this was mainly a process
of self-discovery for me. i learned i
was the type of geek who doesn’t
even bother attending his high
school prom, partially because i
was still afraid of girls even as a
high school senior, yes, but mainly
because i was so addicted to com-
puters and playing my tiny role in
these nascent online communities. i
was, and am, oK with that. this is
the circuitous path of 30 years that
led me to create Stack overflow.
And there’s more, so much more,
but i can’t talk about it yet.

But addicted, i think, is too weak
a word for what i felt about being
a part of these oddball, early online
home computer communities. it
was more like an all-consuming
maniacal blood lust. So obtain-
ing access to free, unlimited long
distance calling rapidly became an
urgent priority in my teenage life. i
needed it. i needed it so bad. i had
to have it to talk on the phone to
the other members of my motley
little crew, who were spread all

over the uSA, as well as for calling
BBSes.

i can’t remember exactly how
i found it, probably on one of the
BBSes, but i eventually discovered
a local 804 area code number for
“calling cards” that accepted a 5
digit Pin, entered via touch-tone
phone. try over and over, and you
might find some valid Pin codes
that let you attain the holy grail of
free long distance calling. only one
small problem: it’s a crime. But, at
least to my addled teenage brain,
this was a victimless crime, one that
i had to commit. the spice must
flow!

All i had to do is write software
to tell the modem to dial over and
over and try different combina-
tions. Because i was a self-taught
programmer, this was no problem.
But because i was an overachieving
self-taught programmer, i didn’t
just write a program. no, i went
off and built a full-blown toolkit in
AppleBasic, with complete docu-
mentation and the best possible
text user interface i could muster,
and then uploaded it to my favorite

BBSes so every other addict could
get their online modem fix, too. i
called it the Hacking Construction
Set, and i spent months building it.
i didn’t just gold plate; i platinum
plated this freaking thing, man.
(yes, i know the name isn’t really
correct. i read as many 2600 text-
files as the next guy. this is mere
phreaking, not hacking, but i guess
i was shooting for poetic license.
Maybe you could use the long dis-
tance dialing codes to actually hack
remote machines or something.)

i never knew if anyone else ever
used my little program to dial for
calling codes. it certainly worked
for me, and i tried my level best to
make it work for all the possible
dialing situations i could think of. it
even had an intro screen with music
and graphics of my own creation.
But searching now, for the first time
in 24 years, i found my old Hack-
ing Construction Set disk image on
an Apple RoM site [hn.my/hcs]. it
even has real saved numbers in the
dialing list! Someone was using my
illicit software!

“Obtaining access to free, unlimited
long distance calling rapidly became
an urgent priority in my teenage life. ”

http://hn.my/hcs

38 SPECIAL

if you’re curious, fire up your
favorite Apple // emulator and
give the disk image [hn.my/dsk] a
spin. Don’t forget to connect your
modem. there’s full blown docu-
mentation accessible from the main
menu. which, re-reading now, was
actually not half bad, if i do say so
myself:

i used to regularly call BBSes in
Florida, California, and Missouri?
that’s news to me; i haven’t seen
any of this stuff in over 24 years!
All i did was upload a disk image to
a few BBSes in 1986. After all that
time, to discover that someone used
and loved my little bit of software
still gives me a little thrill. what
higher praise is there for a software
developer?

About that trouble. using my
own software got me in trouble
with the law. And deservedly so;
what i wrote the software to do was
illegal. i hired a local lawyer (who,
as i recall, was missing a hand; he
had a prosthetic hand that was
almost impossible not to look at)
to represent me. it was quite clear
at preliminary hearings that the
Chesterfield County court system
did not see any computer crime
cases, and they had absolutely no
idea what to make of me, or what
this was all about. All they saw
was a smart kid with a bit of bad
judgment who loved computers
and was headed to the university
of virginia, most likely not a life as
a career criminal. So the case was
dismissed for the cost of lawyer’s
fees. which, for the record, i had to
pay myself, using my income as a
Safeway cashier.

this was definitely a wake up
call for me. in the summer of
1988, i was about to graduate from
high school, and i thought i’d try
being just a regular guy at college,
with less of an obsessive focus on
computers that causes me to get in
trouble with the law, and perhaps
spread my wings to other interests.
who knows, maybe even girls!

that didn’t last long. Because
after all these years, i must confess
i’ve grown to love my own bad
judgment. it’s led me to the most
fascinating places. n

Jeff Atwood lives in Berkeley, CA with his
wife, two cats, and a whole lot of comput-
ers. He is best known as the author of pop-
ular blog Coding Horror and the cofounder
of Stack Overflow with Joel Spolsky.

Reprinted with permission of the original author.
First appeared in hn.my/teenhack (codinghorror.com)

http://hn.my/dsk
http://hn.my/teenhack

Accept payments online.

http://stripe.com

http://memset.com

	Contents
	FEATURES
	My Entrepreneurship Story
	What Happens to Stolen Bicycles?

	STARTUPS
	What A Hacker Learns After A Year In Marketing
	Push, Push, Push

	PROGRAMMING
	Using Python and k-means to Find the Dominant Colors in Images
	"The Best Programming Advice I Ever Got"
	Effective Text Editing
	Give a Damn
	How To Set Up Your Linode For Maximum Awesomeness
	Simplify Your Life With an SSH Config File

	SPECIAL
	What I've Learned About Learning
	I Was a Teenage Hacker

