
Issue 35  April 2013

The Absolute Beginner’s
Guide to Arduino

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

http://careers.addepar.com

  3

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Martin Legeer
Andrew Chalkley
Grant Mathews
Bryan Kennedy
Patrick Wyatt
Pete Keen
Craig Kerstiens
Amber Feng
Alex Baldwin
John Biesnecker
Rachel Kroll

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo: Beraldo Leal [flickr.com/photos/beraldoleal/6297076850]

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://flickr.com/photos/beraldoleal/6297076850

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-35

Contents
FEATURES

06  How I Created a Matrix Bullet Time-Style Rig
By Martin Legeer

12  The Absolute Beginner’s Guide to Arduino
By Andrew Chalkley

PROGRAMMING

16  From AS3 to Haxe
By Grant Mathews

19  My First 5 Minutes On A Server
By Bryan Kennedy

22  Whose Bug Is This Anyway?
By Patrick Wyatt

28  How I Run My Own DNS Servers
By Pete Keen

30  How I Work With Postgres
By Craig Kerstiens

34  Building Stripe’s API
By Amber Feng

SPECIAL

36  Goldeneye 64’s Inspirational Startup Story
By Alex Baldwin

37  The Joys of Having a Forever Project
By John Biesnecker

38  Avoiding “The Stupid Hour”
By Rachel Kroll

Arduino Photo: Pete Prodoehl
[flickr.com/photos/raster/5933659066/]

http://hackermonthly.com/issue-35
http://flickr.com/photos/raster/5933659066/

6  FEATURES

By Martin Legeer

How I Created a Matrix
Bullet Time-Style Rig

FEATURES

  7

Back in March, a client for
whom I’ve done some light
consulting work asked me

if it was possible to capture a 360-
degree image that can be rotated
afterwards. I said of course, but I
didn’t think that much about the
consequences — it’s a project that
would wake me up at night for the
next few months.

Everything was fine until the
moment he showed me the room I
was supposed to make the rig in —
it was his villa.

 This type of project is generally
done in warehouse-sized spaces,
and there are good reasons for that
(lighting being one of them). Well,
this was a garage about 130-square-
feet in area and a ceiling about 8
feet tall. My first reaction was to

laugh for a little while. Then I asked
if he was serious. I saw from the
look on his face that he really did
want me to build the rig there, so
my next reaction was, “I have to
think about it.”

 Don’t get me wrong, I’m up for
any badness, but this was beyond
crazy and bananas.

The next day, we sat down in
a restaurant and started talking
about this a little more — what his
vision was, what look he wanted to
achieve, and so on. What I ended
up with was that he would like to
have a shadowless photo on a white
background with maybe some
contrast in there, but definitely
shadowless.

This was a bit funny because the
only thing I know that makes con-
trast (light-wise, not color-wise) is a
shadow. But sure, let’s make history.

 Another request he made was
to make it as easy as possible for
further retouches, since he planned
to use the rig extensively.

I took a few days to think about
what direction I would go with
the project — things like lighting
the subject, the background, the
fluency between the photos — the
distance between the cameras,
subject, camera count — just about
everything. I’ve seen quite a few
results from “bullet time” systems
all around the world, so I knew
what things and results I would like
to avoid, especially with my white
background.

8  FEATURES

I came up with some ideas, but
just to be sure, I called my friend
Daniel over (he’s pretty much at
the same technical level as I am) to
have somebody to bounce ideas off.
From that moment on, the concept
just grew.

 The next day, I called the client
and accepted the challenge. I asked
for an advance before putting
everything together, making phone
calls, etc. just to be sure there
would be no trouble afterwards. I
got the advance the very same day
(to my surprise) and then we got
started.

Since we had so little space to
make the rig on (mainly due to the
low ceiling), my initial idea was to
put up some kind of a diffusing tent
around the subject and light it from

the outside with big octas around.
However, we moved on from this
idea because there were so many
issues we had to address (possible
flares, the quality of the image due
to the lighting, how to spread the
light evenly from the close distance,
tension of the diffusing textile, the
possibility of someone damaging
the textile, etc.).

 I called another colleague and
we came up with the idea of
making a cylinder, which we could
paint from the inside and repaint
if necessary in the future. The only
problem we had to solve with
this new design was how to light
it from within. Since the request
was to have a subject on a white
background, we decided to build
it completely in white so that the

light would bounce around like
crazy (eliminating shadows).

We started putting together the
precise lighting setup. We wanted to
give the client the option of using
other styles of lighting for non-
shadowless photos, so we arranged
6 lights on the ceiling in a circular
formation.

 For those of you wondering
about the brand of the lights, I
normally shoot with Profoto, but
I chose to go with Elinchrom this
time (to save some money). Elin-
chrom satisfies the requirements for
professional use, since it has such a
consistent amount of light, consis-
tent color temperature, etc.

  9

So that was step one. Step two
was putting together a list of
the gear we needed to buy. You
wouldn’t believe how much trouble
it was to simply find a seller who
was able to send us 50 cameras
and prime lenses to the middle
of Europe. It was unbelievable. If
it were Canon 5D MKIIIs, Nikon
D800s, or something of that class,
that would be understandable, but
Canon 600Ds? Come on!

We chose the cheaper Canon
DSLRs over other brands simply
due to budget constraints.

 I originally wanted to go for
Nikon (since it’s the brand I shoot
with), but we had trouble solving
certain issues with Nikon techni-
cians. We had to fire all 50 cameras
at once and transfer all the data off

the cameras, and there is currently
no software on the market (that I
am aware of) that can do the job (at
least at the time we did this proj-
ect). Maybe there is, but I couldn’t
find it.

 There were potential programs
we could use, but they were written
for Linux. I also could have had
programmers around me write the
software, but that would have taken
weeks or months, which we didn’t
have.

 We eventually found a single
program for Canon DSLRs, which
turned out to be a huge waste of
money. The trial version had limited
options, so we had to buy the full
software. After we did, we found
out that although the software is
able to trigger all the cameras at

once, it has a slight delay between
the cameras — like 1/5s between
each camera.

 This was a big issue for us
since we needed to sync the flash
between the 50 cameras as well (we
can’t light it with other types of
lights, lest we fry the person in the
cylinder).

Just like Leonardo DiCaprio in
Inception, we had to go deeper.
Finally, we reached the best and
simplest solution. Since each
camera can be fired via a cable
trigger, we created a net of cables
that does just that — triggers all the
cameras at once. Two buttons are
located at the end of the net: the
focus/wakeup and trigger buttons.
Voila! Firing problem solved.

10  FEATURES

 The software allows us to download the
RAW images onto computers (there has to
be 4 laptops since the software can operate
only up to 14 or 16 cameras and there are
also bandwidth issues).

That’s pretty much the entire build
process. Of course, I simplified quite a few
things to not bore you with my thoughts
throughout the whole project, but all in all, I
hope you enjoyed the ride. I know I did, and
I would love to do it again — perhaps in a
larger space.

The last thing I have to say will be a disap-
pointment to many of you: I don’t have any
resulting images to share with you due to
the client’s request to not share any sample
photos outside. Perhaps in the future some of
his photos will begin to appear on the web. n

Martin Legeer is a photographer who went from
shooting events for companies like AXE, RedBull,
Ferrero to commercial photography. He is trying to
make his mark in fashion industry and taking some
challenges along the way.

Reprinted with permission of the original author.
First appeared in hn.my/bullet (petapixel.com)

http://hn.my/bullet

Accept payments online.

http://stripe.com

12  FEATURES

By Andrew Chalkley

Over the Christmas
break from work I
wanted to learn some-

thing new.
I’ve been eyeing up Arduino for

some time now, and for Christmas I
got an Arduino UNO R3 board.

What is Arduino?

Arduino is an open-source electron-
ics prototyping platform based on
flexible, easy-to-use hardware and
software. It is intended for artists,

designers, hobbyists, and anyone
interested in creating interactive
objects or environments.
Source: arduino.cc

Microcontroller
Arduino is a microcontroller on a
circuit board which makes it easy to
receive inputs and drive outputs.

A microcontroller is an integrated
computer on a chip.

Inputs
Some examples of inputs would
be a temperature sensor, a motion

sensor, a distance sensor, a switch,
and so forth.

Outputs
Some examples of outputs would
be a light, a screen, a motor and so
forth.

TL;DR
Arduino is a small computer that
you can program to read and
control electrical components con-
nected to it.

The Absolute Beginner’s
Guide to Arduino

http://arduino.cc

  13

Obtaining an Arduino Board
There are several online distributors
that stock Arduino boards.

Often boards are bundled up
with starter kits. Kits include a wide
variety of inputs, outputs, resistors,
wires and breadboards. Breadboards
are solderless circuit prototyping
boards that you can plug wires and
components into.

Arduinos come in different fla-
vors. Most people starting off go for
the UNO board. Its current revision
is the third, hence the R3 listed by
stockists.

Most enthusiasts use sites like
Adafruit [adafruit.com] and Ele-
ment14 [element14.com].

You can even pick one up from
your local RadioShack.

If you’re just getting a single
Arduino board or starter kit, be
sure you have a USB A-to-B cable.
Most, if not all, starter kits come
with the USB A-to-B cable. Most
printers have this type of interface
so you may have this cable already
lying around. You need the cable to
program the device, so it’s best to
double check when ordering.

Programming Arduino
For the example I’m showing, you’ll
only need the Arduino UNO R3
board itself and the required USB
cable to transfer the program from
your computer to the board.

 On the board left of the Arduino
logo there’s an LED, short for Light
Emitting Diode, a small light, with
the letter L next to it.

We’re going to switch it on and
off and then look into making it
blink on and off for 2 seconds at a
time.

When you first plug your USB
cable into your Arduino and your
computer, you may notice that this
LED is blinking. Not to worry! It’s

the default program stored on the
chip. We’re going to override this.

The USB cable powers the
device. Arduinos can run stand-
alone by using a power supply in
the bottom left of the board. Once
you’re done programming and
don’t require it to be constantly
connected to your machine, you
can opt to power it separately. This
is entirely dependant on the use
case and circumstances you want to
use the device in.

Download Arduino Software
You’ll need to download the
Arduino Software package for your
operating system from the Arduino
download page [hn.my/adl].

When you’ve downloaded and
opened the application you should
see something like this:

 This is where you type the code
you want to compile and send to
the Arduino board.

The Initial Setup
We need to setup the environment
to Tools menu and select Board.

 Then select the type of Arduino
you want to program, in our case
it’s the Arduino Uno.

The Code
The code you write for your Ardu-
ino are known as sketches. They are
written in C++.

Every sketch needs two void type
functions, setup() and loop(). A
void type function doesn’t return
any value.

The setup() method is run once
just after the Arduino is powered
up and the loop() method runs
continuously afterwards. The
setup() is where you want to
do any initialization steps, and in
loop() you run the code you want
to run over and over again.

So, your basic sketch or program
should look like this:

void setup()
{

}

void loop()
{

}

Now that we have the basic skel-
eton in place, we can do the Hello,
World program of microcontrollers,
a blinking an LED.

Headers and Pins
If you notice on the top edge of the
board there’s two black rectangles
with several squares in it. These
are called headers. Headers make
it easy to connect components to
the Arduino. The places where they
connect to the board are called
pins. Knowing what pin something
is connected to is essential for pro-
gramming an Arduino.

The pin numbers are listed next
to the headers on the board in
white.

The onboard LED we want to
control is on pin 13.

http://adafruit.com
http://element14.com
http://hn.my/adl

14  FEATURES

In our code above the setup()
method let’s create a variable called
ledPin. In C++ we need to state
what type our variable is before-
hand, in this case it’s an integer, so
it’s of type int.

int ledPin = 13;

void setup()
{

}

void loop()
{

}

Each line ends with a semicolon
(;).

In the setup() method, we want
to set the ledPin to the output
mode. We do this by calling a
special function called pinMode()
which takes two variables, the
first the pin number, and second,
whether it’s an input or output pin.
Since we’re dealing with an output,
we need to set it to a constant
called OUTPUT. If you were working
with a sensor or input it would be
INPUT.

int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop()
{

}

In our loop we are going to first
switch off the LED to make sure
our program is being transferred to
the chip and overriding the default.

We do this by calling
another special method called
digitalWrite(). This also takes
two values, the pin number and the
level, HIGH or the on state or LOW
the off state.

int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 digitalWrite(ledPin, LOW);
}

Next we want to compile to
machine code and deploy or upload
it to the Arduino.

Compiling the Code
If this is your first time you’ve ever
compiled code to your Arduino,
before plugging it in to the com-
puter, go to the Tools menu, then
Serial Port and take note of what
appears there.

Here’s what mine looks like
before plugging in the Arduino
UNO:

 Plug your Arduino UNO board
into the USB cable and into your
computer. Now go back to the
Tools > Serial Port menu and you
should see at least 1 new option.
On my Mac 2 new serial ports
appear.

 The tty and cu are two ways
that computers can talk over a serial
port. Both seem to work with the
Arduino software so I selected the
tty.* one. On Windows you should
see COM followed by a number.
Select the new one that appears.

Once you have selected your
serial or COM port, you can then
press the button with the arrow
pointing to the right.

 Once that happens you should
see the TX and RX LEDs below
the L LED flash. This is the com-
munication going on between the
computer and the Arduino. The L
may flicker, too. Once this dance is
complete, your program should be
running, and your LED should be
off.

Now let’s try to switch it on
using the HIGH constant.

int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 digitalWrite(ledPin, HIGH);
}

  15

Press Upload again, and you should see your
LED is now on!

Let’s make this a little more interesting now.
We’re going to use another method called
delay(), which takes an integer of a time inter-
val in milliseconds, meaning the integer of 1000
is 1 second.

So after we switch the LED on, let’s add
delay(2000), which is two seconds, then
digitalWrite(ledPin, LOW) to switch it off and
delay(2000) again.

int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 digitalWrite(ledPin, HIGH);
 delay(2000);
 digitalWrite(ledPin, LOW);
 delay(2000);
}

Press Upload and you should see your LED
blinking!

 What next?
The Arduino platform is an incredibly easy
and versatile platform to get started with. It’s
open-source hardware, meaning that people can
collaborate to improve, remix and build on it.

It’s the brains to some of the most popular
devices that are driving the next Industrial
Revolution, the 3D printer. [makerbot.com]

And as Massimo Banzi says, “You don’t need
anybody’s permission to create something
great.” So what you waiting for? n

Andrew Chalkley is an Expert Teacher at Treehouse,
Co-founder of iOS app development company Secret
Monkey Science and technical writer on Screencasts.org.
In his spare time he hacks around with hardware such as
Arduino, Raspberry Pi and Kinect.

Reprinted with permission of the original author.
First appeared in hn.my/arduino (forefront.io)

http://makerbot.com
http://screencasts.org
http://hn.my/arduino

16  PROGRAMMING

PROGRAMMING

By Grant Mathews

I recently converted a codebase of about 5000
lines from ActionScript 3 to Haxe [haxe.org].
Here’s what I learned.

Initial impressions:

➊ Haxe compiles really fast.
I see compile times from 0.1 to 1 second — usu-

ally 0.1. As a comparison, the same project used to see
compile times from 2-15 seconds in AS3. This is great
when you’re testing out lots of small changes rapidly.

➋ Autocompletion is built in.
Haxe was designed with autocompletion in mind.

This means almost any Haxe editor supports it, since
the API is so simple. I’ve personally been using Sublime
Text 2, which handles Haxe like a dream, and runs on
Windows, OSX and Linux (I run OSX). If you run
Windows, you’d be a fool not to use FlashDevelop,
which is rock solid.

AS3 autocomplete was a shaky proposition outside
of FlashDevelop, so having it available everywhere (and
being able to even autocomplete the flash API) is a
boon.

➌ The AS3 target is solid.
Through the entire translation phase, I didn’t

encounter a single Haxe bug. Debugging was a breeze
because the backtrace given was relative to the Haxe
files (as you should expect).

Language differences

➊ Stronger type system.
Generics

This is a huge, huge win for Haxe. If you’ve used AS3,
you might be familiar with how they have a parameter-
ized Vector.<T>. You’re probably familiar with how
you got your hopes up for properly generic types and
functions, only to have them dashed when it turned
out Vector.<T> is an Adobe hardcode and you can’t do
anything like it. Haxe, on the other hand, has generics
built into the language, so you can make both functions
and objects generic.

Function types
In AS3, functions have one type: Function. In Haxe,
they have many. For instance, a function that takes
an Int and converts it to a String would be Int ->
String. This catches many bugs.

➋ No more Object.
The problem with Object from AS3 is that it’s

not type safe. In AS3 you can do something like this:

var myObject:Object = {};

myObject[1] = "hi";
myObject["somekey"] = 4.3;

Obviously if you do a loop through that object, you
couldn’t specify the type of the key. Haxe gets around
this by splitting Object into two types that encompass
all of its expected functionality.

From AS3 to Haxe

http://haxe.org

  17

The first is TypedDictionary<Key, Value>. Typed-
Dictionary is your typical key-value store: put in a key
of one type, get out a value of another.

The second is typedef. typedef is really similar to
struct from C. If you’re not familiar with struct, you
can also think of it as an AS3 Object that you can’t add
any more properties to. Here’s an example.

typedef User = {
 var age : Int;
 var name : String;
}
var u : User = { age : 26, name : "Tom" };
u.age = 32;
trace(u.name);
u.xyz = 557; //Error!

Both of these have the advantage of type safety. Also
notice how they really do separate the two use cases
of AS3’s Object. In AS3 you shouldn’t be using Object
for structs; you should be making classes — but I’d
bet that you do anyways because Objects are so much
more lightweight.

There’s a nice interplay between typedefs and
classes. For instance, the Iterator typedef defines two
methods: next and hasNext. You can make an Iterator
like so:

var a:Array<Int> = [1,2,3,4,5,6];
var loc:Int = 0;
var i:Iterator<Int> = {
 hasNext = function() return loc != a.length,
 next = function() return a[loc++]
 }

But you can also make an iterator like this:

class MyIterator<Int> {
 function hasNext(): Bool {
 // do some stuff
 }
 function next(): T {
 // do other stuff
 }
}

Both these two iterators are interchangeable. Nice!
Strictly speaking, you can simulate an AS3 object

by declaring a var Dynamic and using Reflect.setField
and Reflect.getField. I encourage you not to do this,
though, because the built-in Object replacements are
far superior in terms of type-safety.

➌ Improved for loops.
This is a nice advantage over AS3. Haxe’s loops

only use iterators. A traditional for loop looks like this:

for (x in 0...10)
 trace(x)

If you want to loop through an Array, it looks like
this:

var myArray:Array<Int> = [1,2,3,4,5];

for (val in myArray)
 trace(val)

This means that you can make any user-defined
object loopable simply by defining an iterator()
method on the object.

➍ Different setter/getter syntax.
public var someInt(getSomeInt, setSomeInt): Int;

This indicates that the variable someInt has a setter
and getter method named getSomeInt and setSomeInt,
respectively.

➎ Enumerations
enum Color { Red; Green; Blue; }

They type check; no mismatching enumerations
because you did something like var Red:Int = 1.

Enumerations in Haxe are a bit more powerful than,
say, those found in Java or C++. If you’re familiar with
Haskell, you’ll see that they take influence from alge-
braic datatypes. They can have values and be recursive.
(And if you’re not familiar with Haskell, don’t be
scared away! It’s quite simple.) Nicolas Cannasse wrote
Haxe in OCaml, so the influence is obvious.

Here’s your basic binary tree, where each node in the
tree is either a leaf or a node with two trees beneath:

enum Tree {
 Leaf(val: Int);
 Node(left:Tree, right:Tree);
}

Of course, we don’t need to be showing favoritism to
Int — we can templatize!

enum Tree<T> {
 Leaf(val: T);
 Node(left:Tree<T>, right:Tree<T>);
}

Let’s see AS3 typecheck that!

18  PROGRAMMING

➏ Using
The using keyword allows you to add additional

methods onto existing types. The classic example of
using is the Lambda class. The Lambda class has a bunch
of static methods on it. We’ll use Lambda.exists as an
example. The definition looks like this:

static function exists<T>(it: Iterable<T>, F: T
-> Bool);

For example, you could use the function like this:

var myArray:Array<Int> = [1,2,3,4];
var is3:Int -> Bool = function(x: Int) return x
== 3;

if (Lambda.exists(myArray, is3)) {
 trace("I found a 3 in the array!");
}

The using keyword lets you drop exists right onto
the Array object itself — or any other object that
implements Iterable<T>, for that matter. Check it out:

using Lambda;

var myArray:Array<Int> = [1,2,3,4];
var is3:Int -> Bool = function(x: Int) return x
== 3;

if (myArray.exists(is3)) {
 trace("I found a 3 in the array!");
}

Nice, huh?

Problems

➊ No cross-platform Dictionary type.
The AS3 target has TypedDictionary, but sadly

it doesn’t exist on all platforms. The NME target has
ObjectHash, but the problem with ObjectHash is that it
can’t have primitive types (Int,String, Float, Bool)
as keys.

To solve this problem, I wrote SuperObjectHash.hx
[hn.my/soh] which combines ObjectHash and Hash
into a single interface that you can use without having
to worry about having primitive typed values.

(It was pointed out on #haxe that ObjectHash is
planned to be introduced to Haxe, and will make it in
by Haxe 3. Then my SuperObjectHash won’t even be
necessary.)

➋ Overriding setters/getters is tricky.
Essentially, you can override a variable setter and

getter, but only if you know the name of the functions
you’re overriding (which rules out extending some
built-ins), and you’re not permitted to use super to
access the parent’s property. From what I understand,
these limitations stem from problems with target
languages, primarily PHP. This essentially means that
enhancing old behavior is impossible.

The good news is that the super limitation is going
away in Haxe 3, too. The first Haxe 3 release candidate
is coming out in late February, and I’m definitely look-
ing forward to it.

Closing thoughts
My overall impression? As a suffering AS3 developer,
Haxe is a dream come true. It has all the features I
wished AS3 would have — and a few more. It compiles
faster than AS3 and it has better autocompletion than
AS3. It optimizes code better than AS3 (which is to say
not at all— AS3 optimizes absolutely nothing). It even
has macros. Yep, a language with macros that doesn’t
have parenthesis all over the place (not to speak badly
of Lisp, of course). Haxe is impressive.

Even better, Haxe doesn’t feel like a dead end lan-
guage. I can cross-compile to any number of platforms
with NME, which is exciting. I’ve been experimenting
with using NME, which is admittedly a bit shakier than
using the AS3 libraries, but it’s there, and it’s exciting.
I no longer feel nervous about the world moving to
HTML5. Nicolas Cannasse and the Haxe team move
incredibly fast. Just the other day I noticed they were
writing a Haxe shader language and a set of generic
3D bindings that will interoperate between Flash’s
Stage3D, HTML5’s WebGL, and more. Wow.

I have to feel like one of the big reasons that Haxe
hasn’t seen more widespread attention is that it’s not
English. The documentation is full of imprecise word-
ing that feels amateur. (In fact, I spent some time clean-
ing it up the other day.) It’s easy to draw the conclu-
sion that the language is like the docs — mismatched
and awkward — but it’s not.

Check it out. The possibilities are wild. n

Grant Mathews is a 22-year-old senior currently attending Stan-
ford University. He wants to prove that games can be art, and
invent the tools to make it happen.

Reprinted with permission of the original author.
First appeared in hn.my/haxe (grantmathews.com)

http://hn.my/soh
http://hn.my/haxe

  19

Server security doesn’t need
to be complicated. My secu-
rity philosophy is simple:

adopt principles that will protect
you from the most frequent attack
vectors, while keeping administra-
tion efficient enough that you won’t
develop “security cruft.” If you use
your first 5 minutes on a server
wisely, I believe you can do that.

Any seasoned sysadmin can
tell you that as you grow and add
more servers and developers, user
administration inevitably becomes
a burden. Maintaining conventional
access grants in the environment of
a fast-growing startup is an uphill
battle— you’re bound to end up
with stale passwords, abandoned
intern accounts, and a myriad of
“I have sudo access to Server A,
but not Server B” issues. There are
account sync tools to help mitigate
this pain, but IMHO the incremen-
tal benefit isn’t worth the time nor
the security downsides. Simplicity is
the heart of good security.

Our servers are configured with
two accounts: root and deploy. The
deploy user has sudo access via an
arbitrarily long password and is the
account that developers log into.
Developers log in with their public
keys, not passwords, so administra-
tion is as simple as keeping the
authorized_keys file up-to-date
across servers. Root login over ssh
is disabled, and the deploy user can
only log in from our office IP block.

The downside to our approach is
that if an authorized_keys file gets
clobbered or mis-permissioned, I
need to log into the remote termi-
nal to fix it (Linode offers some-
thing called Lish, which runs in the
browser). If you take appropriate
caution, you shouldn’t need to do
this.

Note: I’m not advocating this as the
most secure approach— just that it
balances security and management
simplicity for our small team. From
my experience, most security breaches
are caused either by insufficient
security procedures or sufficient proce-
dures poorly maintained.

Let’s Get Started
Our box is freshly hatched, virgin
pixels at the prompt. I favor
Ubuntu; if you use another version
of linux, your commands may vary.
Five minutes to go:

passwd

Change the root password to
something long and complex. You
won’t need to remember it, just
store it somewhere secure. This
password will only be needed if you
lose the ability to log in over ssh or
lose your sudo password.

apt-get update
apt-get upgrade

The above gets us started on the
right foot.

By Bryan Kennedy

My First 5 Minutes On A Server
Essential Security for Linux Servers

20  PROGRAMMING

Install Fail2ban

apt-get install fail2ban

Fail2ban is a daemon that monitors login attempts to
a server and blocks suspicious activity as it occurs. It’s
well configured out of the box.

Now, let’s set up your login user. Feel free to name
the user something besides “deploy”, it’s just a conven-
tion we use:

useradd deploy
mkdir /home/deploy
mkdir /home/deploy/.ssh
chmod 700 /home/deploy/.ssh

Require Public Key Authentication
The days of passwords are over. You’ll enhance security
and ease of use in one fell swoop by ditching those
passwords and employing public key authentication for
your user accounts.

vim /home/deploy/.ssh/authorized_keys

Add the contents of the id_rsa.pub on your local
machine and any other public keys that you want to
have access to this server to this file.

chmod 400 /home/deploy/.ssh/authorized_keys
chown deploy:deploy /home/deploy -R

Test the New User and Enable Sudo
Now test your new account logging into your new
server with the deploy user (keep the terminal window
with the root login open). If you’re successful, switch
back to the terminal with the root user active and set a
sudo password for your login user:

passwd deploy

Set a complex password. You can either store it
somewhere secure or make it something memorable to
the team. This is the password you’ll use to sudo.

visudo

Comment all existing user/group grant lines and add:

root ALL=(ALL) ALL
deploy ALL=(ALL) ALL

The above grants sudo access to the deploy user
when they enter the proper password.

Lock Down SSH
Configure ssh to prevent password and root logins and
lock ssh to particular IPs:

vim /etc/ssh/sshd_config

Add these lines to the file, inserting the IP address
from where you will be connecting:

PermitRootLogin no
PasswordAuthentication no
AllowUsers deploy@(your-ip) deploy@
(another-ip-if-any)

Now restart ssh:

service ssh restart

Setup A Firewall
No secure server is complete without a firewall.
Ubuntu provides ufw, which makes firewall manage-
ment easy. Run:

ufw allow from {your-ip} to any port 22
ufw allow 80
ufw allow 443
ufw enable

This sets up a basic firewall and configures the server
to accept traffic over port 80 and 443. You may wish to
add more ports depending on what your server is going
to do.

  21

Enable Automatic Security Updates
I’ve gotten into the apt-get update/upgrade habit over
the years, but with a dozen servers, I found that servers
I logged into less frequently weren’t staying as fresh.
Especially with load-balanced machines, it’s impor-
tant that they all stay up to date. Automated secu-
rity updates scare me somewhat, but not as badly as
unpatched security holes.

apt-get install unattended-upgrades
vim /etc/apt/apt.conf.d/10periodic

Update the file to look like this:

APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages
"1";
APT::Periodic::AutocleanInterval "7";
APT::Periodic::Unattended-Upgrade "1";

One more config file to edit:

vim /etc/apt/apt.conf.d/50unattended-upgrades

Update the file to look like below. You should prob-
ably keep updates disabled and stick with security
updates only:

Unattended-Upgrade::Allowed-Origins {
 "Ubuntu lucid-security";
// "Ubuntu lucid-updates";
};

Install Logwatch To Keep An Eye On Things
Logwatch [hn.my/logwatch] is a daemon that moni-
tors your logs and emails them to you. This is useful for
tracking and detecting intrusion. If someone were to
access your server, the logs that are emailed to you will
be helpful in determining what happened and when, as
the logs on your server might have been compromised.

apt-get install logwatch
vim /etc/cron.daily/00logwatch

Add this line:

/usr/sbin/logwatch --output mail --mailto test@
gmail.com --detail high

All Done!

I think we’re at a solid place now. In just a few min-
utes, we’ve locked down a server and set up a level of
security that should repel most attacks while being easy
to maintain. At the end of the day, it’s almost always
user error that causes break-ins, so make sure you keep
those passwords long and safe! n

Bryan Kennedy is the Co-Founder and CTO of Sincerely, helping
to scale thoughtfulness across the world. Bryan is a YCombinator
alum and an angel investor. On warm summer nights he runs
MobMov.org, a worldwide collective of guerrilla drive-ins.

Reprinted with permission of the original author.
First appeared in hn.my/5mins (plusbryan.com)

http://hn.my/logwatch
http://MobMov.org

22  PROGRAMMING

By Patrick Wyatt

At a certain point in
every programmer’s
career we each find a

bug that seems impossible because
the code is right, dammit! So it
must be the operating system, the
tools, or the computer that’s caus-
ing the problem. Right?!?

Today’s story is about some of
those bugs I’ve discovered in my
career.

This bug is Microsoft’s fault…
or not
Several months after the launch of
Diablo in late 1995, the StarCraft
team put on the hustle and started
working extra long hours to get the
game done. Since the game was
“only two months from launch,”
it seemed to make sense to work
more hours every day (and some
weekends, too). There was much to
do, because even though the team
started with the Warcraft II game
engine, almost every system needed
rework. All of the scheduling
estimates were willfully wrong (my
own included), so this extra effort
kept on for over a year.

I wasn’t originally part of the
StarCraft dev team, but after
Diablo launched, when it became

clear that StarCraft needed more
“resources” (a.k.a. people), I joined
the effort. Because I came aboard
late I didn’t have a defined role, so
instead I just “used the force” to
figure out what needed to happen
to move the project forward.

I got to write fun features like
implementing parts of the com-
puter AI, which was largely devel-
oped by Bob Fitch. One was a
system to determine the best place
to create “strong-points” — places
that AI players would gather units
for defense and staging areas for
attacks. I was fortunate because
there were already well-designed
APIs that I could query to learn
which map areas were joined
together by the path-finding algo-
rithm and where concentrations of
enemy units were located in order
to select good strong-points, as it
would otherwise be embarrassing to
fortify positions that could be trivi-
ally bypassed by opponents.

I re-implemented some compo-
nents like the “fog of war” system
I had written for previous incarna-
tions of the ‘Craft series. StarCraft
deserved to have a better fog-of-
war system than its predecessor,
Warcraft II, with finer resolution

in the fog-map, and we meant
to include line-of-sight visibility
calculations so that units on higher
terrain would be invisible to those
on lower terrain, greatly increasing
the tactical complexity of the game:
when you can’t see what the enemy
is doing, the game is far more
complicated. Similarly, units around
a corner would be out of sight and
couldn’t be detected.

The new fog of war was the most
enjoyable part of the project for
me, as I needed to do some quick
learning to make the system func-
tional and fast. Earlier efforts by
another programmer were graphi-
cally displeasing and moreover,
ran so slowly as to be unworkable.
I learned about texture filtering
algorithms and Gouraud shading,
and wrote the best x386 assem-
bly language of my career — a
skill now almost unnecessary for
modern game development. Like
many others I hope that StarCraft is
eventually open-sourced, in my case
so I can look with fondness on my
coding efforts, though perhaps my
memories are better than seeing the
actual code!

Whose Bug Is This Anyway?

  23

But my greatest contribution to the Star-
Craft code was fixing defects. With so many
folks working extreme hours writing brand
new code, the entire development process
was haunted by bugs: two steps forward, one
step back. While most of the team coded new
features, I spent my days hunting down the
problems identified by our Quality Assurance
(QA) test team.

The trick for effective bug-fixing is to dis-
cover how to reliably reproduce a problem.
Once you know how to replicate a bug, it’s
possible to discover why the bug occurs, and
then it’s often straightforward to fix. Unfor-
tunately reproducing a “will o’ the wisp” bug
that only occasionally deigns to show up can
take days or weeks of work. Even worse is
that it is difficult or impossible to determine
beforehand how long a bug will take to fix, so
long hours investigating were the order of the
day. My terse status updates to the team were
along the lines of “yeah, still looking for it.” I’d
sit down in the morning and basically spend
all day cracking on, sometimes fixing hun-
dreds of issues, but many times fixing none.

One day I came across some code that
wasn’t working: it was supposed to choose a
behavior for a game unit based on the unit’s
class (“harvesting unit”, “flying unit”, “ground
unit”, etc.) and state (“active”, “disabled”,
“under attack”, “busy”, “idle”, etc.). I don’t
remember the specifics after so many years,
but something along the lines of this:

if (UnitIsHarvester(unit))
 return X;

if (UnitIsFlying(unit)) {
 if (UnitCannotAttack(unit))
 return Z;
 return Y;
}

... many more lines

if (! UnitIsHarvester(unit)) // "!" means "not"
 return Q;

return R; <<< BUG: this code is never reached!

After staring at the problem for too many hours, I guessed it
might be a compiler bug, so I looked at the assembly language
code.

For the non-programmers out there, compilers are tools
that take the code that programmers write and convert it into
“machine code”, which are the individual instructions executed
by the CPU.

// Add two numbers in C, C#, C++ or Java
A = B + C

; Add two numbers in 80386 assembly
mov eax, [B] ; move B into a register
add eax, [C] ; add C to that register
mov [A], eax ; save results into A

“The trick for effective bug-fixing is to dis-
cover how to reliably reproduce a problem.”

24  PROGRAMMING

After looking at the assembly
code I concluded that the compiler
was generating the wrong results,
and sent a bug report off to Micro-
soft — the first compiler bug report
I’d ever submitted. And I received
a response in short order, which in
retrospect is surprising: consider-
ing that Microsoft wrote the most
popular compiler in the world, it’s
hard to imagine that my bug report
got any attention at all, much less a
quick reply!

You can probably guess — it
wasn’t a bug, there was a trivial
error I had been staring at all along
but didn’t notice. In my exhaustion
— weeks of 12+ hour days — I had
failed to see that it was impossible
for the code to work properly. It’s
not possible for a unit to be neither
“a harvester” nor “not a harvester”.
The Microsoft tester who wrote
back politely explained my mistake.
I felt crushed and humiliated at the
time, only slightly mitigated by the
knowledge that the bug was now
fixable.

Incidentally, this is one of the
reasons that crunch time is a failed
development methodology, as
I’ve mentioned in past posts on
this blog; developers get tired and

start making stupid mistakes. It’s
far more effective to work reason-
able hours, go home, have a life,
and come back fresh the next day.
When I started ArenaNet with
two of my friends, the “no crunch”
philosophy was a cornerstone of
our development effort, and one of
the reasons we didn’t buy foosball
tables and arcade machines for the
office. Work, go home at a reason-
able time, and come back fresh!

This bug is actually Microsoft’s
fault
Several years later, while working
on Guild Wars, we discovered a
catastrophic bug that caused game
servers to crash on startup. Unfortu-
nately, this bug didn’t occur in the
“dev” (“development”) branch that
the programming team used for
everyday work, nor did it occur in
the “stage” (“staging”) branch used
by the game testers for final verifi-
cation, it only occurred in the “live”
branch which our players used to
play the game. We had “pushed”
a new build out to end-users, and
now none of them could play the
game! WTF!

Having thousands of angry play-
ers amps up the pressure to get

that kind of problem fixed quickly.
Fortunately we were able to “roll
back” the code changes and restore
the previous version of the code
in short order, but now we needed
to understand how we broke the
build. Like many problems in pro-
gramming, it turned out that several
issues taken together conspired to
cause the bug.

There was a compiler bug
in Microsoft Visual Studio 6
(MSVC6), which we used to build
the game. Yes! Not our fault! Well,
except that our testing failed to
uncover the problem. Whoops.

Under certain circumstances, the
compiler would generate incorrect
results when processing templates.
What are templates? They’re
useful, but they’ll blow your mind.
[hn.my/fqa]

C++ is a complex programming
language, so it is no surprise that
compilers that implement the
language have their own bugs. In
fact the C++ language is far more
complicated than other mainstream
languages. Ruby is a complex and
fully-featured language, but C++
is twice as complex, so we would
expect it to have twice as many
bugs, all other things being equal.

“Crunch time is a failed development
methodology; developers get tired and
start making stupid mistakes.”

http://hn.my/fqa

  25

When we researched the com-
piler bug it turned out to be one
that we already knew about, and
that had already been fixed by the
Microsoft dev team in MSVC6
Service Pack 5 (SP5). In fact all
of the programmers had already
upgraded to SP5. Sadly, though we
had each updated our work com-
puters, we neglected to upgrade the
build server, which is the computer
that gathers the code, artwork,
game maps, and other assets and
turns them into a playable game. So
while the game would run perfectly
on each programmers’ computer, it
would fail horribly when built by
the build server. But only in the live
branch!

Why only in live? Hmmm….
Well, ideally all branches (dev,
stage, live) would be identical to
eliminate the opportunity for bugs
just like this one, but in fact there
were a number of differences. For a
start, we disabled many debugging
capabilities for the live branch that
were used by the programming and
test teams. These capabilities could
be used to create gold and items, or
spawn monsters, or even crash the
game.

We wanted to make sure that the
ArenaNet and NCsoft staff didn’t
have access to cheat functions
because we wanted to create a level
playing field for all players. Many
MMO companies have had to fire
folks who abused their godlike “GM”
powers, so we thought to eliminate
that problem by removing capability.

A further change was to elimi-
nate some of the “sanity checking”
code that’s used to validate that
the game is functioning properly.
This type of code, known as asserts
or assertions by programmers, is
used to ensure that the game state
is proper and correct before and
after a computation. These asser-
tions come with a cost, however:
each additional check that has to
be performed takes time; with
enough assertions embedded in
the code, the game can run quite
slowly. We had decided to disable
assertions in the live code to reduce
the CPU utilization of the game
servers, but this had the unintended
consequence of causing the C++
compiler to generate the incorrect
results which led to the game crash.
A program that doesn’t run uses a
lot less CPU, but that wasn’t actu-
ally the desired result.

The bug was easily fixed by
upgrading the build server, but in
the end we decided to leave asser-
tions enabled even for live builds.
The anticipated cost-savings in
CPU utilization (or more correctly,
the anticipated savings from being
able to purchase fewer computers
in the future) were lost due to the
programming effort required to
identify the bug, so we felt it better
to avoid similar issues in future.

Lesson learned: everyone, pro-
grammers and build servers alike,
should be running the same version
of the tools!

Your computer is broken
After my experience reporting a
non-bug to the folks at Microsoft,
I was notably shyer about suggest-
ing that bugs might be caused by
anything other than the code I or
one of my teammates wrote.

During the development of
Guild Wars (GW), I had occa-
sion to review many bug reports
sent in from players’ computers.
As GW players may remember, in
the (hopefully unlikely) event that
the game crashed, it would offer
to send the bug report back to our
“lab” for analysis. When we received

“Everyone, programmers and build
servers alike, should be running the
same version of the tools! ”

26  PROGRAMMING

those bug reports we triaged to
determine who should handle each
report, but of course bugs come in
all manner of shapes and sizes and
some don’t have a clear owner, so
several of us would take turns at
fixing these bugs.

Periodically we’d come across
bugs that defied belief, and we’d
be left scratching our heads. While
it wasn’t impossible for the bugs
to occur, and we could construct
hypothetically plausible explana-
tions that didn’t involve redefining
the space-time continuum, they
just “shouldn’t” have occurred. It
was possible they could be memory
corruption or thread race issues, but
given the information we had, it
just seemed unlikely.

Mike O’Brien, one of the co-
founders and a crack programmer,
eventually came up with the idea
that they were related to com-
puter hardware failures rather than
programming failures. More impor-
tantly, he had the bright idea for
how to test that hypothesis, which
is the mark of an excellent scientist.

He wrote a module (“OsStress”)
which would allocate a block of
memory, perform calculations in
that memory block, and then com-
pare the results of the calculation

to a table of known answers. He
encoded this stress-test into the
main game loop so that the com-
puter would perform this verifica-
tion step about 30-50 times per
second.

On a properly functioning com-
puter this stress test should never
fail, but surprisingly we discovered
that on about 1% of the comput-
ers being used to play Guild Wars,
it did fail! One percent might not
sound like a big deal, but when one
million gamers play the game on
any given day that means 10,000
would have at least one crash bug.
Our programming team could
spend weeks researching the bugs
for just one day at that rate!

When the stress test failed, Guild
Wars would alert the user by clos-
ing the game and launching a web
browser to a Hardware Failure page
which detailed the several common
causes that we discovered over
time:

■■ Memory failure: in the early days
of the IBM PC, when hardware
failures were more common,
computers used to have “RAM
parity bits” so that in the event
a portion of the memory failed,
the computer hardware would
be able to detect the problem

and halt computation, but parity
RAM fell out of favor in the
early ’90s. Some computers use
“Error Correcting Code” (ECC)
memory, but because of the addi-
tional cost, it is more commonly
found on servers rather than
desktop computers.

■■ Overclocking: while less common
these days, many gamers used
to buy lower clock rate — and
hence less expensive — CPUs
for their computers, and would
then increase the clock frequency
to improve performance. Over-
clocking a CPU from 1.8 GHz
to 1.9 GHz might work for
one particular chip but not for
another. I’ve overclocked com-
puters myself without experienc-
ing an increase in crash-rate, but
some users ratchet up the clock
frequency so high as to cause
spectacular crashes as the signals
bouncing around inside the CPU
don’t show up at the right time
or place.

■■ Inadequate power supply: many
gamers purchase new comput-
ers every few years, but pur-
chase new graphics cards more
frequently. Graphics cards are
an inexpensive system upgrade

“Bugs come in all manner of shapes and sizes
and some don’t have a clear owner, so several
of us would take turns at fixing these bugs.”

  27

which generate remarkable
improvements in game graph-
ics quality. During the era when
Guild Wars was released, many
of these newer graphics cards
had substantially higher power
needs than their predecessors,
and in some cases a computer
power supply was unable to
provide enough power when the
computer was “under load,” as
happens when playing games.

■■ Overheating: Computers don’t
much like to be hot and mal-
function more frequently in
those conditions, which is why
computer datacenters are usu-
ally cooled to 68-72F (20-22C).
Computer games try to maximize
video frame-rate to create better
visual fidelity; that increase in
frame-rate can cause computer
temperatures to spike beyond
the tolerable range, causing game
crashes.

In college I had an external
hard-drive on my Mac that would
frequently malfunction during
spring and summer when it got too
hot. I purchased a six-foot SCSI
cable that was long enough to reach
from my desk to the mini-fridge
(nicknamed Julio), and kept the

hard-drive in the fridge year round.
No further problems!

Once the Guild Wars tech
support team was alerted to the
overheating issue, they had success
fixing many otherwise intractable
crash bugs. When they received
certain types of crash reports, they
encouraged players to create more
air flow by relocating furniture,
adding external fans, or just blow-
ing out the accumulated dust that
builds up over years, and that
solved many problems.

While implementing the com-
puter stress test solution seems
beyond the call of duty, it had a
huge payoff: we were able to iden-
tify computers that were generating
bogus bug reports and ignore their
crashes. When millions of people
play a game in any given week,
even a low defect rate can result in
more bug reports than the program-
ming team can field. By focusing
our efforts on the bugs that were
actually our fault, the programming
team was able to spend time creat-
ing features that players wanted
instead of triaging unfixable bugs.

Ever more bugs
I don’t think that we’ll ever reach
a stage where computer programs
don’t have bugs — the increase in
the expectations from users is rising
faster than the technical abilities of
programmers. The Warcraft 1 code
base was approximately 200,000
lines of code (including in-house
tools), whereas Guild Wars 1 even-
tually grew to 6.5 million lines of
code (including tools). Even if it’s
possible to write fewer bugs per
line of code, the vast increase in the
number of lines of code means it
is difficult to reduce the total bug
count. But we’ll keep trying.

To close, I wanted to share one of
my favorite tongue-in-cheek quotes
from Bob Fitch, whom I worked
with back in my Blizzard days. He
posited that, “All programs can be
optimized, and all programs have
bugs; therefore all programs can be
optimized to one line that doesn’t
work.” And that’s why we have
bugs. n

Patrick Wyatt is a lifelong programmer,
game developer, and game-player, and as
of 2004, a parent as well. He has worked on
many popular games including Warcraft,
Diablo, Starcraft, Guild Wars and TERA.

“By focusing our efforts on the bugs that were
actually our fault, the team was able to spend
time creating features that players.”

Reprinted with permission of the original author.
First appeared in hn.my/bug (codeofhonor.com)

http://hn.my/bug

28  PROGRAMMING

By Pete Keen

For the longest time I used
zoneedit.com as my DNS
provider of choice. All of

my important domains were hosted
there, and they never really did
me wrong. A few months back I
decided that I wanted to learn how
DNS actually works in the real
world though. Like, what does it
actually take to run my own DNS
servers?

Step 0: Why would you ever do
that?!
I’m mostly motivated by curios-
ity, but also by frustration. When
something isn’t going my way it
just starts to make sense to do it
myself. My frustration with zone-
edit wasn’t anything super specific.
Their dynamic DNS system wasn’t
too terribly dynamic and adding
and editing zones through their
web interface got to be pretty
tedious after awhile. I have a bunch
of zones (32 at last count), most
of which are very simple setups.
bugsplat.info is way more compli-
cated, but we’ll get into that later.

Step 1: The Hardware
I decided that if I’m going to do
this, I’m going to go all out. To
that end, I rented two VPSs, one
from RamNode.com in Atlanta and
another from Prgmr.com in San Jose.
Overall I would say that my Ram-
Node experience has been more
positive than my Prgmr experi-
ence. The network links have gone
down twice in the past six months
at Prgmr, which isn’t the end of
the world when you’re running
a redundant service, but it’s still
pretty annoying. RamNode has had
100% uptime so far.

Specs on these bad boys:

■■ prgmr (teroknor.bugsplat.info): 1
core, 1024MiB ram, 24GiB Disk,
160GiB transfer

■■ ramnode (empoknor.bugsplat.
info): 4 core, 2048MiB ram,
30GiB SSD-backed Disk,
4000GiB transfer

I’m not even close to exploiting
these two machines. I’m planning
on moving more and more of my
apps and sites over to them, but
right now they’re mainly handling
this site and my email and DNS.

Why two machines? To host your
own DNS servers, the registrars
require you to list two IP addresses
with the idea that you’ll be pro-
viding redundant service. The one
thing you don’t want is downtime
with DNS; it screws everything up.

How I Run My Own
DNS Servers

Photo: flickr.com/photos/zagrobot/2731084578/

http://zoneedit.com
http://RamNode.com
http://Prgmr.com
http://flickr.com/photos/zagrobot/2731084578/

  29

Step 2: The Software
Once you decide to go down this
DNS rabbit hole, there are a bunch
of decisions to make on the soft-
ware side. I considered PowerDNS
and BIND and finally settled on
tinydns.org managed via puppet and
supply drop. Tinydns is a proj-
ect started by Daniel J. Bernstein
many years ago and has proven to
be extremely reliable when run as
intended (no axfr, configuration
propogation via scp, etc). My setup
is thus:

■■ Puppet [puppetlabs.com] manag-
ing the config for both boxes

■■ Supply drop [hn.my/supplydrop]
deploys this configuration via
Capistrano [hn.my/cap]

■■ Tinydns has a static config file
checked into git, controlling most
of my zones

■■ Tinydns also has a dynamic file
that does my dynamic DNS
updates for the home router

bugsplat.info is my oldest and
thus most complicated domain.
It’s not even really that com-
plicated; it just handles a lot of
stuff. My Mac mini runs a cron
job every minute that ssh’s into
both machines and rebuilds the
tinydns config file if its IP has
changed. That IP is then assigned
to subspace.bugsplat.info, and
I have a wildcard CNAME for
*.bugsplat.info pointing at sub-
space. This lets me do things, like
having various services running on
that Mac mini with distinct host-
names, all hiding behind a common
nginx. In addition, each VPS has
a wildcard CNAME pointing to it
from *.<hostname>.bugsplat.info,
which lets me set up new apps and
sites easily.

Step 3: The Email
One of the other problems I had
with zoneedit was their free email
forwarding setup. It was slow. So
slow. Slower than molasses spread
onto the back of the slowest dog.
Even before this whole DNS
adventure started I knew I wanted
to get rid of that.

Each VPS runs its copy of my
Postfix [postfix.org] setup (also
managed via puppet), which mostly
just forwards incoming email into
my Gmail account. I don’t send
through it, since I haven’t quite
figured out all of the various DKIM
and DMARC and SenderID and
SPF things I need to do, and besides,
Gmail won’t send out through my
SMTP server anyway.

Step 4: Logging
One of the more interesting aspects
of this whole project has been
getting a comprehensive view of
everything that goes on in my
little empire. The other day I set
up global logging using Papertrail
[papertrailapp.com], a hosted log-
ging service. It doesn’t do a whole
lot; mostly it just seeps up logs from
all of my services, including these
two VPSs and a bunch of Heroku
apps, makes them searchable for
a few days, and drops tarballs of
them onto S3 nightly. It has given
me really valuable insight into at
least two things: my Gmail backup
wasn’t working, and I get hit a lot
by Chinese and India SSH breakin
attempts. Still working on how to
deal with that one, but the Gmail
backup is up and running.

Conclusion
So after all of that, what have I
learned? Mostly that I’m a very
particular person with regards to
this stuff. It’s fun right now, but I
can see it getting kind of tedious
down the line. We’ll find out! It’s
been an interesting ride thus far and
I’ve learned quite a bit, which is the
most important thing. n

Pete Keen is a software developer currently
residing in Portland Oregon. He writes arti-
cles about a variety of technology issues
at bugsplat.info

Reprinted with permission of the original author.
First appeared in hn.my/dns (bugsplat.info)

http://tinydns.org
http://puppetlabs.com
http://hn.my/supplydrop
http://hn.my/cap
http://postfix.org
http://papertrailapp.com
http://bugsplat.info
http://hn.my/dns

30  PROGRAMMING

By Craig Kerstiens

On at least a weekly basis and not uncom-
monly multiple times in a single week I get
this question:

I’ve been hunting for a nice PG interface that works
within other things. PGAdmin kinda works, except the
SQL editor is a piece of shit.
— @neilmiddleton

Sometimes it leans more to, “what is the Sequel Pro
equivalent for Postgres?” My default answer is: I just
use psql, though I do have to then go on to explain
how I use it. For those who are interested, you can read
more below or just get the highlights here:

■■ Set your default EDITOR then use \e

■■ On postgres 9.2 and up \x auto is your friend

■■ Set history to unlimited

■■ \d all the things

Before going into detail on why psql works perfectly
fine as an interface I want to rant for a minute about
what the problems with current editors are and where
I expect them to go in the future. First this is not a
knock on the work that’s been done on previous ones,
for their time PgAdmin, phpPgAdmin, and others
were valuable tools, but we’re coming to a point where
there’s a broader set of users of databases than ever
before and empowering them is becoming ever more
important.

Empowering developers, DBA’s, product people,
marketers, and others to be comfortable with their
database will lead to more people taking advantage
of what’s in their data. pg_stat_statements was a
great start to this, laying a great foundation for valu-
able information being captured. Even with all of
the powerful stats being captured in the statistics of
PostgreSQL, so many are still terrified when they see
something like:

QUERY PLAN
--
 Hash Join (cost=4.25..8.62 rows=100 width=107)
(actual time=0.126..0.230 rows=100 loops=1)
 Hash Cond: (purchases.user_id = users.id)
 -> Seq Scan on purchases (cost=0.00..3.00
rows=100 width=84) (actual time=0.012..0.035
rows=100 loops=1)
 -> Hash (cost=3.00..3.00 rows=100 width=27)
(actual time=0.097..0.097 rows=100 loops=1)
 Buckets: 1024 Batches: 1 Memory
Usage: 6kB
 -> Seq Scan on users (cost=0.00..3.00
rows=100 width=27) (actual time=0.007..0.042
rows=100 loops=1)
 Total runtime: 0.799 ms
(7 rows)

How I Work With Postgres

  31

Empowering more developers
by surfacing this information in
a digestible form, such as build-
ing on top of pg_stat_statements
tools such as datascope [datascope.
heroku.com] by @leinweber and
getting this to be part of the default
admin we will truly begin empow-
ering a new set of users.

But enough of a detour, those
tools aren’t available today. If you’re
interested in helping build those
to make the community better,
please reach out. For now I live in a
world where I’m quite content with
simple ole psql. Here’s how:

Editor
Ensuring you’ve exported your
preferred editor to the environ-
ment variable EDITOR when you run
\e will allow you to view and edit
your last run query in your editor of
choice. This works for vim, emacs,
or even sublime text.

export EDITOR=subl
psql
\e

Gives me:

Note you need to make sure you con-
nect with psql and have your editor
set. Once you do that, saving and
exiting the file will then execute the
query.

\x auto
psql has long had a method of for-
matting output. You can toggle this
on and off easily by just running
the \x command. Running a basic
query you get the output:

SELECT *
FROM users
LIMIT 1;
 id | first_name | last_name | email | data
 1 | Rosemary | Wassink | rosemary@yahoo.com | "sex"=>"F"

With toggling the output and re-running the same query, we can see
how it’s now formatted:

\x
Expanded display is on.
craig=# SELECT * from users limit 1;
-[RECORD 1]--------------------------
id | 1
first_name | Rosemary
last_name | Wassink
email | rosemary@yahoo.com
data | "sex"=>"F"

Using \x auto will automatically put this in what Postgres believes is the
most intelligible format to read it in.

psql history
Hopefully this needs no justification. Having an unlimited history of all
your queries is incredibly handy. Ensuring you set the following envi-
ronment variables will ensure you never lose that query you ran several
months ago again:

export HISTFILESIZE=
export HISTSIZE=

\d
The last item on the list of the first things I do when connecting to any
database is check out what’s in it. I don’t do this by running a bunch of
queries, but rather by checking out the schema and then poking at defini-
tions of specific tables. \d and variations on it are incredibly handy for this.
Here are a few highlights below:

Listing all relations with simply \d:

\d
 List of relations
 Schema | Name | Type | Owner
--------+------------------+---------------+-------
 public | products | table | craig
 public | products_id_seq | sequence | craig
 public | purchases | table | craig
 public | purchases_id_seq | sequence | craig
 public | redis_db0 | foreign table | craig
 public | users | table | craig
 public | users_id_seq | sequence | craig
(7 rows)

http://datascope.heroku.com
http://datascope.heroku.com

32  PROGRAMMING

List only all tables with dt:

\dt
 List of relations
 Schema | Name | Type | Owner
--------+-----------+-------+-------
 public | products | table | craig
 public | purchases | table | craig
 public | users | table | craig
(3 rows)

Describe a specific relation with \d RELATIONNAMEHERE:

\d users
 Table "public.users"
 Column | Type | Modifiers
------------+-----------------------------+--
 id | integer | not null default nextval('users_id_seq'::regclass)
 first_name | character varying(50) |
 last_name | character varying(50) |
 email | character varying(255) |
 data | hstore |
 created_at | timestamp without time zone |
 updated_at | timestamp without time zone |
 last_login | timestamp without time zone |

n

Craig Kerstiens is part of the team at Heroku. He writes code in
Python, curates Postgresguide.com and Postgres Weekly, and
frequently speaks at conferences on those topics among others.

Reprinted with permission of the original author.
First appeared in hn.my/postgres (craigkerstiens.com)

http://Postgresguide.com
http://hn.my/postgres

  33

http://mandrill.com

34  PROGRAMMING

I thought it would be interest-
ing to talk about Stripe’s API,
particularly lessons learned and

what kind of things we did to try
to make the API as easy to use as
possible.

Make it easy to get started
It may sound like a no-brainer, but
the best way to get people to try
out (and hopefully eventually use)
your API is to make it really easy to
get started.

To that end, we do things like
including pastable code snippets
throughout our site and documen-
tation. One of the first things you’ll
see on our front page is a curl snip-
pet you can paste into a terminal to
simulate charging a credit card.

Regardless of whether you have a
Stripe account or not (if logged in,
we fill in your test API key; other-
wise, it’s a sample account’s API key),
you can see the Stripe API in action.

All of our documentation code
snippets are similarly possible to
directly copy and paste — we try to
embed as much information as pos-
sible (API keys, actual object IDs
from the account, etc.) so our users
don’t have to.

Language-specific libraries and
documentation
Since Stripe’s API speaks HTTP and
JSON, you could easily integrate
it into your application with any
standard HTTP client library. How-
ever, this still requires constructing
requests and parsing responses on
your own.

We maintain and support open-
source libraries in some of today’s
most popular web languages. It
turns out people are pretty attached
to their favorite languages.

We had a lot of internal discus-
sions about whether we actually
wanted to support our own client
bindings or allow the community
to organically start and maintain
the projects themselves. Is it worth
owning the projects if it means that
you might have to maintain librar-
ies for languages or frameworks in
which you don’t have expertise?

Maybe.
Official libraries have the benefit

of being consistent: they all have
the same level of quality, support
the same interface, and get updates
at the same time. Having our
own libraries also makes it easier
for us to have language-specific

documentation and help our users
with any problems they might be
having with a particular integration.

We decided that it was worth
it, but this may not be the right
answer for everyone.

Have a focused API, but allow
flexibility
We’ve found that it’s critically
important to keep the API focused
and simple.

It’s often tempting to add new
features that are not obviously nec-
essary to the core API. For example,
our users frequently want us to add
better analytics, tax calculations, or
to send customers receipts. While
these things are nice, every feature
you add makes the API more com-
plex and cluttered.

You can instead give your users
the tools to be able to write their
own extensions. We allow our users
(and third party applications) to
hook into Stripe in a couple of
ways:

By Amber Feng

Building Stripe’s API

  35

Webhooks
Stripe uses webhooks to let our
users know when some interesting
event has happened. This ranges
from events triggered by an API
call, like charge.succeeded or
charge.refunded, to asynchronous
events like customer.subscrip-
tion.trial_will_end.

Our aim was to make it easy
to layer additional logic on top of
Stripe events (like sending cus-
tomer receipts or enabling push
notifications). Giving our users the
ability to build this kind of custom-
ized functionality allows them to
control the entire experience for
their users as well.

Stripe Connect
Stripe Connect, an API we released
just last year, is another way of
building on top of the Stripe
platform.

Connect is an OAuth2 API
[oauth.net/2] that allows a Stripe
user to authorize access to their
Stripe account to a third-party
application. We’ve seen a variety of
applications built on top of Stripe
so far: marketplaces and checkout
pages let users “plug in” their Stripe
accounts to accept payments, and
analytics dashboards fetch Stripe
data in order to show interesting
graphs or patterns.

Provide a testing environment
One of the most important
things you need with an API is a
great test/sandbox environment.
This is particularly important
for a payments API — our users
shouldn’t have to make live charges
when they’re trying to test their
integration.

In our test environment, we
allow users to send test webhooks
of any type and provide handy test
card numbers that trigger certain
errors (like declines).

This allows them to easily test
the behavior of their own applica-
tion in the face of different sce-
narios instead of having to manually
trigger things that are nondetermin-
istic, like declines, or time-depen-
dent, like expiring subscriptions.

Help your users debug
We’re developers too. We know
from experience that debugging
is a disproportionately large por-
tion of the development cycle. We
also (unfortunately) know that
sometimes you spend a lot of time
debugging something that eventu-
ally turns out to be really obvious
or silly.

For common or easy errors,
you (the API) likely know exactly
what’s wrong. So why not try to
help?

>> Stripe::Customer.create
Stripe::AuthenticationError:
No API key provided. (HINT:
set your API key using "Stripe.
api_key = ". You can generate
API keys from the Stripe web
interface. See https://stripe.
com/api for details, or email
support@stripe.com if you have
any questions.)

>> Stripe.api_key = TEST_KEY
=> ...
>> Stripe::Charge.
retrieve(LIVE_CHARGE_ID)
Stripe::InvalidRequestError:
(Status 404) No such charge:
ch_17SOe5QQ2exd2S; a similar
object exists in live mode, but
a test mode key was used to
make this request.

On the other hand, some errors
are harder to diagnose (especially
from the API’s end, since you
have limited information about
what your user is actually trying to
accomplish).

Where possible, we absolutely
think it’s worthwhile to try to
anticipate our users’ errors and help
as much as we can.

Dealing with Change
Lastly, dealing with change is never
fun. As much as you hope you’ll
never have to change the API, some-
times you need to make changes
and sometimes those changes are
backwards-incompatible.

There’s no easy answer for ver-
sioning APIs. We keep a per-user
version which reflects the state
of the API the first time the user
made an API request. Most of our
new features are additions that
aren’t backwards-incompatible, and
they just work automatically for
everyone.

Whenever we make a backwards-
incompatible change, however, it
doesn’t affect the API behavior for
any of our current users. Users can
then choose to explicitly upgrade
their version in the dashboard (after
reviewing the detailed changelogs)
or can send a version override
header in any API request to test
the behavior of a specific version. n

Amber is an engineer at Stripe, and works
primarily on the API. She loves all things
web and distributed, and enjoys hacking
on side projects and writing in her blog.

Reprinted with permission of the original author.
First appeared in hn.my/stripeapi (amberonrails.com)

http://oauth.net/2
http://hn.my/stripeapi

36  SPECIAL

SPECIAL

Growing up, GoldenEye
had a special place in
my heart; it was the first

game my parents wouldn’t let me
buy. I saved up allowances and dug
up couch treasures for months to
taste the forbidden fruit. The effort
turned into one of the pillars of my
childhood experiences. I still vividly
remember where to place the prox-
imity mines on Temple to get crazy
spawn point kill streaks against my
little brother. Fifteen years later, it’s
still inspiring me, but not for the
proximity mines.

It’s hard to imagine that this
game almost didn’t exist. Rare’s
studio head, Mark Betteridge, was
quoted as saying,

When Nintendo asked if we
wanted to do it, we said, “well not
really”…we were trying to build
our on IP, and film tie-ins meant
a lot of ownership by the film
company.

The team faced insane amounts
of adversity and uncertainty. Start-
ing out, they didn’t even know
what the specs were for the new
platform. Wikipedia on the game’s
development:

Final N64 specifications and devel-
opment workstations were not ini-
tially available to Rare: a modified
Sega Saturn controller was used
for some early play testing, and the

developers had to estimate what
the finalized console’s capabilities
would be.

Getting closer to the release
date, the final platform specs were
released and they had to make
significant graphic cuts to make it
work.

The final Nintendo 64 hardware
could render polygons faster than
the SGI Onyx workstations they
had been using, but the game’s
textures had to be cut down by
half. Karl Hilton explained one
method of improving the game’s
performance: “A lot of GoldenEye
is in black and white. RGB color
textures cost a lot more in terms
of processing power. You could do
double the resolution if you used
greyscale, so a lot was done like
that. If I needed a bit of color, I’d
add it in the vertex.”

While doing all this, their team
had almost no idea what they were
doing when they started out. Sound
familiar?

GoldenEye 007 was developed
by an inexperienced team, eight of
whom had never previously worked
on video games. David Doak com-
mented in 2004, “Looking back,
there are things I’d be wary of
attempting now, but as none of the
people working on the code, graph-
ics, and game design had worked

on a game before, there was this
joyful naïveté.”

Scope was so slim that they
didn’t even originally plan out the
legendary multiplayer mode that
arguably made the game so success-
ful. It was done almost exclusively
by one guy as an afterthought.

The game’s multiplayer mode was
added late in the development pro-
cess; Martin Hollis described it as
“a complete afterthought.” According
to David Doak, the majority of the
work on the multiplayer mode was
done by Steve Ellis, who “sat in a
room with all the code written for a
single-player game and turned Gold-
enEye into a multiplayer game.”

Despite everything, the game
went on to become the third
highest selling N64 game, inspire
console shooting games, and win a
crazy amount of awards. Next time
you’re heading down the wrong
way of the entrepreneurial roller-
coaster, take a deep breath, make a
cup of tea, and remember that you
can make it happen. Persevere and
dominate. n

Alex is a designer at thoughtbot in San
Francisco, previously with 500 Startups,
Techstars, and Console.fm. He is a lover of
lattes and dope beats.

Goldeneye 64’s
Inspirational Startup Story
By Alex Baldwin

Reprinted with permission of the original author.
First appeared in hn.my/goldeneye (alexbaldwin.com)

http://Console.fm
http://hn.my/goldeneye

  37

By John Biesnecker

I think most creative people
have something that I call a
Forever Project — a project

that, despite its audacity and seem-
ing impossibility, simply will not
put itself to bed. A project that
comes creeping back into your
consciousness when you sit down
for a break from “real work.” A proj-
ect that is hard to imagine actually
embarking on, but whose mental
cost of abandonment is far too high
to even consider. A project that
you’d totally do if you had the time,
and the money, and the talent, and
the…

I don’t know about you, but I
adore my Forever Project (mine
happens to be a game that I’ve
been punting around in various
forms since the late 1990s, and I
wouldn’t be surprised if yours was
also a game of some sort). I might
not have made the progress on it
that I wish I would have, but just
having it out there as something to
think about gives me a warm, fuzzy
feeling.

Most people would say having a
project that you can’t put down but
that you don’t make any substantial
progress on is silly — the antithesis
of the various flavors of Getting
Things Done that spring up now
and again — but I disagree. While
I may not have finished (or even
really started) my game, poking
around the edges of it have led me
to wonderful tangents during which
I’ve learned a lot about a lot of
things, things that I may have never
touched if it weren’t for my Forever
Project. Rather than be a source of
disappointment, my Forever Project
is a source of constant inspiration.

If I ever really completed it…
well…I’m not sure what I would
do. Probably replace it with a better
version of itself. But that’s silly
because I’ll never actually complete
it and because a Forever Project is
like the speed of light — you can
get infinitely close to it, but you can
never quite get there. It’s just the
nature of the beast.

Stop beating yourself up about
not making progress on your “one
big goal.” Eating healthier, exercis-
ing more, and being a better spouse,
friend, etc. are goals. Your Forever
Project is not. Your Forever Project
is your Beacon on the Hill, pushing
you to be better, to learn, to stretch,
to reach just a few finger widths
beyond your grasp, over and over
again.

Embrace your Forever Project,
and never stop dreaming. n

John Biesnecker (@biesnecker) is an
American product designer and software
developer based in Shanghai, China. He
enjoys thinking about hard problems, tell-
ing good stories, and playing with his kids.

The Joys of Having
a Forever Project

Reprinted with permission of the original author.
First appeared in hn.my/forever (dev.gd)

http://twitter.com/biesnecker
http://hn.my/forever

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

38  SPECIAL

From time to time there is a
romantic notion of teams
pulling crazy hours and

working all-nighters frequently. The
idea is that you can cheat the night
(or morning, for that matter) and
continue coding, writing, or doing
whatever it is you that you do.
Sometimes this is driven by mania-
cal managers, but other times it
comes from within.

Now, I’ve already written
[hn.my/wrong] about the occa-
sional flashes of insight which lead
to a late evening here and there.
That’s something else. That’s where
you have a fire burning inside of
you and you need to get that fire
routed through your fingers and
turned into code. You don’t do
this often. It’s just when things get
really good and all get flushed into
the computer at once.

This is more about the relentless
push to keep working night after
night even when there’s nothing
special going on. Enough has been
written about it, but it always seems
to get really complicated in how it’s
described. I want to give it a simple
name that anyone can remember
and anyone else can understand.

I call it “the stupid hour.” When
talking about myself, I call it my
stupid hour. It’s the point when
I’ve been awake for too long and
anything I create is sure to be sub-
optimal. The late hour has drained
enough out of me to where I turn
stupid and my output shows this.

In my younger days, I used to
feel this coming on and would just
keep going. This was a spectacularly
bad idea. The next morning, I’d get
up and look at the code and would
have no idea how it ever worked.
A function I had written during
the stupid hour might work for a
specific test case, but I would have
to sit and really dig at it to find out
how. Then I would also discover
that it didn’t cover other test cases,
either.

Since it was ugly and unmain-
tainable code, it needed to be
fixed. The fact it didn’t even work
properly also meant it needed to
go. More often than not I’d have to
rip it out and redo that particular
chunk of code. It was a net loss of
time. I should have spent that time
the night before just sleeping rather
than trying to fight it while coding.

In recent times, I’ve grown to
recognize this and appreciate it
as a useful signal. I tend to stop
earlier than I would have before
and switch to other things after a
certain point. Why write something
that will have a good chance of
being broken and will require an
immediate fix? Leave it as a “to do”
item and come back to it the next
day.

There’s another good reason for
doing it this way. Have you ever
come back to a project and been
unsure of where to get started?
If you had left off just one item
sooner the day or week before,
you’d already have a known starting
point. Write it down on a post-it
note and stick to your monitor, then
go do something else.

The next day, not only will you
have a nice place to resume, but
you’ll also have the benefit of sev-
eral hours (or days, if over a week-
end) of subconscious/background
processing you didn’t even realize
was going on. It’ll make for a better
result overall.

Don’t feed the stupid hour. It
never ends well. n

Rachel Kroll lives and works in Silicon
Valley. Once a Googler, she now runs her
own software consultancy business and
writes daily about software, technology,
sysadmin war stories, and productivity.
Her first book, The Bozo Loop, is a collec-
tion of posts from 2011, with another on
the way.

Avoiding “The Stupid Hour”
By Rachel Kroll

Reprinted with permission of the original author.
First appeared in hn.my/stupidhour (rachelbythebay.com)

http://gotealeaf.com
http://hn.my/wrong
http://hn.my/stupidhour

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

  39

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com

Rent your IT infrastructure from
Memset and discover the incredible
bene�ts of cloud computing.

Find out more about us at
www.memset.com

hosting

HOSTING

HOSTING

SCAN THE CODE FOR
MORE INFORMATION

$0.091/GByte/month or less
99.999999% object durability
99.995% availability guarantee
RESTful API, FTP/SFTP and CDN Service

From $0.020/hour
to 4 x 2.9 GHz Xeon cores
31 GBytes RAM
2.5TB RAID(1) disk

or chat to our sales team on
0800 634 9270.

C

M

Y

CM

MY

CY

CMY

K

http://memset.com

	Contents
	FEATURES
	How I Created a Matrix Bullet Time-Style Rig
	The Absolute Beginner's Guide to Arduino

	PROGRAMMING
	From AS3 to Haxe
	My First 5 Minutes On A Server
	Whose Bug Is This Anyway?
	How I Run My Own DNS Servers
	How I work with Postgres
	Building Stripe's API

	SPECIAL
	Goldeneye 64's Inspirational Startup Story
	The Joys of Having a Forever Project
	Avoiding "The Stupid Hour"

