
Is
su

e
40

 S
ep

te
m

be
r 2

01
3

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

2  ﻿

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com
http://mandrill.com

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

  3

http://gotealeaf.com
http://mandrill.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Damian Sowers
Peter Cooper
Vibhu Norby
Zach Hoeken Smith
Stuart Sierra
Ben Howdle
Josh Wills
John Graham-Cumming
Nick Knowlson

Illustrator
Matthew Billington

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Matthew Billington

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-40

Contents
FEATURES

06  Sacrificing Everything For My Dog
By Damian Sowers

11  How to Spread The Word About Your Code
By Peter Cooper

STARTUPS

18  Don’t Launch Your Product
By Vibhu Norby

20  Shenzhen Maker: Mr. Chen
By Zach Hoeken SMITH

PROGRAMMING

22  My Clojure Workflow, Reloaded
By Stuart Sierra

27  Too Scared To Write A Line Of Code
By Ben Howdle

28  Reservoir Sampling
By Josh Wills

30  How I Coded In 1985
By John Graham-Cumming

32  Why Maybe Is Better Than Null
By Nick Knowlson

Deimos (Damian’s dog)

Mr. Chen

KIM-1

http://hackermonthly.com/issue-40

6  FEATURES

By Damian Sowers

Sacrificing Everything For
My Dog

Nobody will bat an eye
if you’re making big
sacrifices to give your

children a better life. This sacrificial
behavior is hard wired into our
DNA and it’s expected of every
parent. In fact, evolution depends
on this behavior.

However, if you tell somebody
you’re restructuring your life to
make your dog happy, there’s a
good chance they will laugh and
think your future involves a strait-
jacket and a big nurse by the name
of Ratched.

Until now I never told anybody
about my reasons for my big life
changes and I feel quite embar-
rassed as I’m typing this. The truth

is, if I didn’t love my dog so much,
my life would be radically different
and I’m sure I would be miserable.

I don’t believe in God, but I do
believe in karma. Maybe karma is
similar to luck, as in “the harder
I work, the luckier I get” type of
thing. Being good to someone or
something seems to create a bunch
of collateral happiness.

Here is my story.
It was 2008 and I was headed in

a very respectable direction, cur-
rently enrolled in a Ph.D. program
for chemistry at the University
of Colorado at Boulder. I worked
incredibly hard to get to this point
and had earned myself a number
of gold stars along the way, all of

which looked really good on paper.
For example, I spent some time
after my undergraduate studies
working on the NASA Genesis mis-
sion at the Berkeley Space Sciences
Laboratory.

I liked my advisor in Boulder and
my situation was ideal. My advisor
gave me a two-month paid trip to
Prague the summer before gradu-
ate school. This trip was arranged
so I could do theoretical chemistry
work for the Czech Academy of
Sciences, but I also used it as an
opportunity to drink a lot of good
Czech beer.

FEATURES

How I Became A Programmer

  7

By Damian Sowers

On the surface I had a great life,
but deep down something about
my situation was wrong. I was
tired of chemistry yet I didn’t want
to admit this to myself. It’s easy
to delude yourself when you’ve
invested so heavily into something.
After all, everything I had done in
the past 10 years was dedicated to
this career path.

Enter Deimos, my Golden
Retriever/Shar Pei hybrid. A master
of Tug o’ War and decimator of
sticks, Deimos also has the ability to
lay on a massive guilt trip when-
ever I leave him. He puts his head
down in that pleading fashion and
gives me those eyes that seem to
say, “Please dad, take me with you. I
just want to spend time with you.”
Every time I left for graduate school
duties I had to suffer through this
departure. I died a little on the
inside each time.

It’s unfair to a dog to make them
wait 8 hours each day while we are
at work. Dogs only have about a
decade of time on this Earth. In dog
years, this amounts to waiting 56
hours for us while we are off work-
ing every day. That is a waste of a
very short, bright life. If you’ve ever
owned a dog, you know just how
intelligent they actually are (espe-
cially larger breeds). Such intel-
ligence deserves great experiences
and grand adventure.

So, while I was unable to admit
to myself that I was headed down
the wrong career path, I was able to
recognize my intense desire to give
Deimos a situation where I could
spend more time with him. This
invisible guiding paw would press
on me daily.

Enter Typhoid. Yes, Typhoid. As
in the main way your character
died when playing The Oregon Trail
computer game in the 5th grade.
Around month four of graduate
school I started getting really high
fevers on a regular basis and pain in
my lower abdomen. I didn’t know
what was going on and the doctors
didn’t either. A couple of doctors
tried to tell me I had Crohn’s dis-
ease. I didn’t believe this diagnosis,
though.

After an abscess and a lot more
pain, I mentioned to my doctor that
this could be related to a case of
Typhoid I contracted while moun-
taineering down in Bolivia. I had
all sorts of stomach problems after
that trip and I theorized that the
Typhoid could have caused some
scarring in my intestines, which was
then acting as nucleation points for
infection (maybe also helped along
by extreme stress).

The doctor said it was worth
a shot to try a prolonged course
of strong antibiotics to see if this
theory was correct. So I went home
for Christmas break with a truck-
load of drugs. The guiding paw of
Deimos would make it so I would
never go back.

The antibiotic treatment worked
and it wasn’t too long before I
was completely healthy again. Yet,
seeing how happy Deimos was in
Tahoe made me think deeply about
different career paths which would
allow me to work from home so I
could spend more time with him.

Enter programming. I decided
I wasn’t going back to graduate
school. I would disappoint a lot
of people who had invested in me
(especially my advisor), but that
bad feeling is so small in compari-
son to living the wrong life. Some
people stay on the wrong path their
entire lives just to avoid this disap-
pointment and/or out of a sense of
obligation. I didn’t want this to be
me. Fuck obligation.

“Some people stay on the wrong path their
entire lives out of a sense of obligation.
I didn’t want this to be me. Fuck obligation.”

8  FEATURES

I had a plan. I was going to teach
myself programming and change
my life. I had a very superficial
introduction to Fortran in the past
with computational chemistry, but
that was the extent of my program-
ming knowledge. So I decided I
would need to hunker down for
many months and learn how to
make a living with code.

Fortunately I have amazing
parents and they let me live in
their house in Tahoe (they retired
and moved away to Navarro, near
Mendocino). As for my other living
expenses, I still had the remainder
of my student loan and I decided
I was going to gamble and put the
rest of my life on a credit card
while I went through this self-
taught re-education.

Many people believe that credit
cards and debt are pure evil and
stupid. I see credit cards as being
the saving grace which prevented
another great depression during the
recent economic collapse. Having
access to rainy day/investment
money is the single greatest inven-
tion of our economic system.

As long as you use the money
properly, and investing in yourself is
the best possible way to use money,
credit cards can give you a new life.
While I was living on the card I
didn’t spend my time playing World
of Warcraft or watching TV. I made
sure I dedicated 8-10 hours a day
to learning the wonderful craft of
programming.

A little while later I started earn-
ing money with my first business,
Tallac Interactive. This was just a
front-end local web design business
and I didn’t spend much time inter-
acting with server side languages,
other than the occasional dive into
the Wordpress back-end. But it was
enough to get noticed by the CEO
and President of Fretlight Guitar,
which led to my first high-paying
job as a programmer.

Fast forward to now and I’ve
founded Mycelial, Briarpatch, and
AppRaptor. I’ve taught myself
PHP, MySQL, Ruby, Ruby on Rails,
Javascript and many more amazing
languages and technologies. I can’t
get enough of programming. I am
paid well to do it from home and I
even spend all of my free time on
programming side projects. Building
stuff with code is the most satisfy-
ing thing in the world for me.

And yet, I wouldn’t be a pro-
grammer today if it weren’t for
my intense desire to find a lifestyle
which would make Deimos happy.
In other words, I wouldn’t be
happy today if I didn’t sacrifice my
previous life for my dog. I’m sure
I would still be in graduate school,
poor and miserable and covered in
organic toxins from the lab.

I’m not trying to knock chemis-
try. I have tremendous respect for
anyone who dedicates their life
to chemistry. Chemists make our
lives better and often shorten their
own in the process. It’s a harsh
bargain and an extremely noble
one. I still have a massive scar from
a Nitric acid spill on my wrist
which reminds me every day of the
sacrifices chemists make for the rest
of us.

The guiding paw of Deimos also
had another great effect on my
life. As a result of not going back
to graduate school and staying in
Tahoe, I reconnected with Lisa,
who is absolutely amazing, and
we’ve been together for four years
now.

I don’t think the karma of this
situation is mystical or spiritual or
anything of that nature. Providing
my furry little dependent with a life
of pure happiness and grand adven-
ture merely showed me the way to
a lifestyle with the perfect balance
of nature and intellectual stimula-
tion, and I encourage others to find
a similar balance.

There are probably a lot of
people out there who balk at the
idea of personal sacrifice for a dog.
It’s easy to spot these people, how-
ever. They are cat people. n

Damian Sowers is a Rails and JavaScript
programmer living in South Lake Tahoe,
California. His work can be found at
appraptor.com

Reprinted with permission of the original author.
First appeared in hn.my/dog (medium.com)

http://appraptor.com
http://hn.my/dog

  9

A B Advanced A/B Testing for SaaS apps

VisualWebsiteOptimizer.com

http://vwo.me/serverdensity

  11

You spent an entire week-
end building a library,
jQuery plugin, build

tool, or other great piece of code
you wanted to share far and wide,
but after some tweets and a failed
attempt to make the front page
of Hacker News, your creation
languished, unloved, in a GitHub
repo. A common situation for many
developers nowadays, but one you
can avoid.

As the editor of several program-
ming newsletters, I frequently get
two types of e-mails from devel-
opers. Those reaching out to ask
if I can mention their projects,
and those expressing surprise and
excitement that their work has
been featured. If you’re a developer
doing good work but feel more like
you’d be in that second group, the
three steps in this article are for
you.

Before we get started, there’s
a stumbling block we need to
kick away. Terms like “marketing”
and “advertising” are dirty words
for many developers and it’s not
uncommon for developers to be
reluctant to do much promotion.
“Build it and they will come” used
to work when exciting open source

projects were few and far between,
but now everyone seems to be
working on something and making
noise about it. Few successes come
through pure luck, but rather
because developers are actively
promoting their work or, at least,
making it discoverable. It’s time to
join them!

➊ Get your project ready
Before you can promote

your project, you need to make
it attractive to potential users
and evangelists (including general
well-wishers, the media, and other
developers).

A good name
Ensure your project has a palatable
name. It doesn’t need to be clever
or even descriptive, but it’s worth
avoiding innuendos that may pres-
ent a problem down the line. For
example, the popular Testacular and
Authgasm projects, are now named
Karma and Authlogic respectively
after users raised a fuss.

You should perform a search
for the name you choose to be
sure you’re not clashing with
anything else that’s popular or
trademarked (did you know Firefox
was called Phoenix and Firebird

prior to Firefox?). The US Patent
and Trademark Office has an
online trademark search facility.
[tess2.uspto.gov]

A benefit of having a relatively
unique or uncommon name is so
you can search for it over time (or
even set up a Google Alerts notifi-
cation for the name) and find men-
tions of your project without many
irrelevant results popping up. If you
want to have something descrip-
tive but unique, consider joining
two words together. For example,
when I created a Ruby library to do
natural language detection, I called
it WhatLanguage and it’s easy to
search for.

An official homepage/project URL
The term “homepage” is a bit out-
dated but you ideally need a single
“home” URL that you can promote
and point people to in relation
to your project. You don’t need
to splash out on a fancy template
or even a domain name, but your
project needs a focal point. That
could be an entire site with its own
domain, such as those for Yeoman
[yeoman.io] or HTML5 Boilerplate
[html5boilerplate.com], a simple
single page on an existing domain,
such as that for RoughDraft.js,

How to Spread The Word
About Your Code

By Peter Cooper

http://tess2.uspto.gov
http://yeoman.io
http://html5boilerplate.com

12  FEATURES

[ndreckshage.github.io/roughdraft.js]
or even a regular GitHub repo, such
as for vague.js. [github.com/
GianlucaGuarini/vague.js]

If you have the freedom to do
so, make sure your site looks good
on the major browsers (including
mobile), hook up some analytics to
your page and ensure the <title>
tag is well written. Use a title like
“MyProject — A JavaScript Library
to X, Y and Z” instead of just
“MyProject — About” or a blank
title. With social bookmarking, this
matters as you can’t guarantee your
evangelists will write a good title of
their own.

If you’re not a Web designer,
don’t have the time to spend
making a complete design, but still
want a complete site rather than
just a GitHub repo and README,
consider using a framework like
Bootstrap as it’ll provide a clean
layout out of the box and you can
forget about many cross browser
and device issues.

Documentation and copywriting
It’s only just a cliché that develop-
ers don’t like to write documenta-
tion, but you need something for
potential users to fall back on, and
time invested in producing useful
documentation up front will pay
dividends later.

At a cynically bare minimum,
you need to write enough docu-
mentation that someone will be
confident about sharing your link
or promoting your project and
not feel like they’re sending their
own followers into a black hole of
misunderstanding. This means your
homepage or README needs to
cover a few angles. You’ll need to:

■■ Prominently feature a “[noun] is”
paragraph. An alarming number
of project homepages don’t

explain, in simple terms, what
the project is actually for or does.
If you’ve built a JavaScript library
that does language detection, say,
you have to say so. For example:
“LanguageDetect is a JavaScript
library for detecting the natural
language of text.”

An excellent example of this in
action is on libcinder.org where it
states right up front: “Cinder is a
community-developed, free and
open source library for professional-
quality creative coding in C++.”
Perfect!

■■ Write clear titles, subheadings,
and support copy. At a bare
minimum, ensure titles, subtitles,
and any sort of writing on your
homepage are straightforward
and clear. Write for the lowest
common denominator on your
homepage. You can get more
advanced elsewhere.

■■ Write a beginner’s tutorial and
link to it from your home page.
Unless everything’s simple
enough to explain on a single
page, quickly write a tutorial
that covers basic installation and
usage and either include it in
your README file or put it on
the Web and link to it from your
README and/or homepage.

■■ State dependencies and require-
ments clearly. Does your library
only work on a specific version
of Node? Is it a browser exten-
sion for Firefox? Does your code
require PostgreSQL, Redis, or
another specific database? Be
sure to include a bullet point list
of dependencies and require-
ments for your project to be
usable so as not to disappoint
potential users.

■■ Specify the license for your code.
While you could get away with
keeping your licensing informa-
tion tucked away in a LICENSE
file in your GitHub repo, speci-
fying what license your code
is released under up front and
center will help put many devel-
opers at ease. Likewise, if your
project is commercial in nature
and costs money, don’t hide that
detail and mislead visitors.

■■ If your project is a library or
API, feature some example code
on the homepage. Unless your
library is particularly complex,
let visitors see an example of its
usage on the project homepage.
If your API is good, this could be
a great way to get an “easy sale.”
I’m not a huge fan of the code
example chosen, but the homep-
age for Ruby [ruby-lang.org]
shows off this technique.

Extra materials
A blog post is a great way to intro-
duce a project that might need
more background or have more of
a story than it’s practical to tell on
a homepage or within documen-
tation. If there’s any sort of story
behind your project, a blog post
is a great way to tell it. Be sure to
link to the post from your project’s
homepage and consider promoting
the blog post separately to relevant
sites within your niche.

If you have the ability, recording
a screencast or other sort of video
can help. Could you put together a
simple 5 minute screencast of how
to install and use your library? Or
have you built a game that could be
demonstrated in a few minutes of
gameplay? Record a simple video,
put it on YouTube, and embed it
on your homepage. Your accent
doesn’t have to be as crisp as a

http://ndreckshage.github.io/roughdraft.js
https://github.com/GianlucaGuarini/vague.js
https://github.com/GianlucaGuarini/vague.js
http://libcinder.org
http://ruby-lang.org

  13

newsreader’s, and you don’t even
have to appear within the video. All
that matters is you get to the point
quickly and your audio is tolerable
(not muffled, clipping, or drowned
in background music).

As the editor of several program-
ming newsletters, I look at thou-
sands of projects each year, and
it’s still uncommon to see simple
screencasts, yet they certainly help
a project stand out and, as a conse-
quence, make it more likely for me
to talk about it. You can see a per-
fect example on Punch’s homepage.
The early popularity of Ruby on
Rails also depended upon a popular
“build a blog engine in 15 minutes”
video, back when the concept of
using video to promote an open
source project was very novel.

If you’re sticking to the straight
up, GitHub README approach
(and it’s certainly not a bad idea
for a simple library), a bonus tip is
to create a tiny screencast of your
code in action and convert it to an
animated GIF for inclusion in your
README. Richard Schneeman
outlines this technique in “Use GIFs
in your Pull Request for Good,
not Evil.” [hn.my/gifs] The result
is striking and could help your
README stand out.

For further ideas on how to
make your project stand out
before you begin promoting it,
check out the great “How to Make
Your Open Source Project Really
Awesome” by Michael Klishin.
[hn.my/osawesome] It digs into
more detail about versioning,
announcements, having a changelog
and writing good documentation.

➋ Get the word out
You’ve polished your project,

got a URL to promote, and you’re
ready to get the news out.

A word of caution, however.
Don’t use every technique on day
one. You could overload your site
with traffic or, worse, be subjected
to a barrage of online criticism if
your work or site is broken. With
something like a library or tool, a
gentler approach will work well and
building up small streams of visitors
and users over time will give you a
much better time.

Social networking
Your own social networking profiles
are always a good place to start if
you have them. You’ll get more
immediate feedback from people
who actually know you and if your
project is particularly interesting,
it could go viral even from a single
mention.

A great example of a simple proj-
ect going viral was YouTube Instant
by Feross Aboukhadijeh. Feross
built YouTube Instant quickly, men-
tioned it on Facebook before going
to bed, and woke up to a flood of
traffic and press mentions.

If you like to experiment and
have several bucks going spare, you
could also consider paying for a
promoted post on Facebook. This
will give your post more visibility in
your news feed, but is best reserved
for if your Facebook friends are
mostly developers or people likely
to be interested in your project. If
not, and you’d still like to spend
some money, consider an ad on
Reddit or a relevant programming
blog instead.

Influencers, bloggers, and niche
media
Whether you’re working on a
JavaScript library, Firefox extension,
backend app in Rails, or a theme
for Bootstrap, your code will fit into
one or more niches, and every tech-
nical niche has a variety of “influ-
encers,” people and publications
who are popular and well known
for the topic at hand.

Getting a tweet, retweet, or even
an entire blog post from an influ-
encer could have a significant impact
on your project, as could being
invited to blog elsewhere (Mozilla
Hacks, for example!). If Brendan
Eich tweeted about your JavaScript
library, Lea Verou wrote a blog post
about a CSS trick you discovered,
or Paul Irish mentioned a Web
development tool you built in a talk,
you would attract a lot of interest
quickly. It is key, however, to realize
there are many great influencers in
every space, and you’ll achieve noth-
ing by hounding any one person, so
be prepared to move on.

Spend some time working
out who the influencers and
key publications are in your
niche. For Twitter, Followerwonk
[followerwonk.com] is a handy tool
that searches Twitter biographies
for certain words. If you search for
“JavaScript” the first page includes
several users who would be useful
to reach out to if you had a particu-
larly interesting JavaScript-related
release to promote. Reaching out on
Twitter can be as simple as a single
tweet and many busy folks prefer
Twitter as it takes less time to reply
than an e-mail. A single tweet
from @smashingmag could drive
thousands of visitors your way, so
consider tweeting them, and other
similar accounts, when you have
something relevant.

http://hn.my/gifs
http://hn.my/osawesome
http://followerwonk.com

14  FEATURES

I’d also advise looking for blogs
and e-mail newsletters in your
niche. Start with something as
simple as Googling for “JavaScript
blog”, “JavaScript newsletter”,“css
blog” or whatever’s relevant to your
project. Most bloggers or e-mail
newsletter publishers will not be
offended by you sending them a
quick note (emphasis on quick) let-
ting them know about your work.
Indeed, some weeks there can be
a shortage of interesting things
to write about, and you might be
doing them a huge favor.

If you choose to e-mail people
(and your project will probably be
more substantial than a few hours’
work to justify this), take care not
to make demands or to even expect
a reply. Many bloggers and influen-
tial people have overflowing inboxes
and struggle to reply to everything
they receive. Make your e-mail
as easy to process as possible by
including a single URL (to your now
superb homepage or README)
and include your “[noun] is” para-
graph. Don’t take a non-response
as an insult but keep moving on to
the next most relevant person. You
might even consider taking a “Here’s
my project that does X, Y and Z.
No reply needed, I just thought you
might like it” approach. Softly, softly
works here, as long as you get to the
point quickly.

“How To Get Attention From
Internet Celebrities” by Jason
Cohen [hn.my/emailbrain] and
“How to Write the Perfect Out-
reach Email” by Gregory Ciotti
[hn.my/perfectemail] go into more
detail about e-mail etiquette when
promoting your work to influenc-
ers. While you might not need to
contact any “celebrities” in your
niche, the principles of keeping it
short, including a call to action, and
ensuring your work is appropriate
to the person are really true for
anyone you’re sending unsolicited
messages to.

Podcasters are an often forgotten
source of promotion opportunities,
too. While some podcasts don’t
cover news or new releases at all,
many do, and being on the radar
of their hosts could help you get a
mention on a show. Smashing Mag-
azine has put together a list of tech
podcasts [hn.my/podcasts] covering
the areas of design, user experience,
and Web development in general.
Again, keep your e-mails short and
sweet with no sense of expectation
to get the best results.

User-curated social news sites
As well as reaching influencers and
niche media, sometimes reaching
the public “firehose” of news can
work, too. There are few better
examples of these in the modern
world of development than Hacker
News or Reddit.

Hacker News in particular is
notoriously hard to reach the front
page on and “gaming” it by getting
other people to vote up your post
can backfire. (Indeed, it will back-
fire if you link people to your post
on Hacker News and encourage
them to upvote. They have ways of
detecting this behavior. Get people
to manually find your post instead.)
If you do reach the front page of
Hacker News, of course, you can
certainly expect an audience of
many thousands of developers to be
exposed to your work, so be sure
to try.

With Reddit, the key isn’t to dive
straight into a huge sub-Reddit like
/r/programming but to look for
sub-Reddits more directly related
to your project. For a JavaScript
library, I’d post to /r/JavaScript or
possibly /r/webdev. Reddit ads can
also perform well if you’re OK with
spending some money, and these
can be targeted to specific sub-
Reddits, too.

“If you choose to e-mail people, take care not
to make demands or to even expect a reply.”

http://hn.my/emailbrain
http://hn.my/perfectemail
http://hn.my/podcasts

  15

There are many similar sites
that are less well-known but
which are respected in their
niches and can drive a lot of
interested visitors, including
Designer News (mobile and Web
design) [news.layervault.com],
DZone (general developer stuff)
[dzone.com], EchoJS (JavaScript)
[echojs.com], RubyFlow (Ruby
and Rails) [rubyflow.com], and
Lobste.rs (general hacker and devel-
oper stuff). Finding the right site
like this and taking time to make an
on-topic, well-written post will help
a lot.

➌ Maintain momentum
You’ve built up some inter-

est, your GitHub stars, Reddit votes,
and pageviews are all rocketing up,
but now you want to capitalize on
the attention and maintain some
momentum.

User support
Whether you’ve built an open
source project or a cool tool, you’re
going to end up with users or fellow
developers who want to provide
feedback, get help, or point out
issues with your work. On GitHub,
the common way to do this is
through the built-in “issues” tracker,
but you might also find people start
to e-mail you, too.

Be sure to define a policy, what-
ever it is. Users won’t feel good
about opening issues on your
GitHub repo if there are already
many unresolved issues there, and
your project could stagnate. Ensure
you respond to your audience or at
least make your policy clear within
your README or on your site. If
you don’t want issues raised or code
contributions, make this clear up
front.

Extending your reach
For many projects, create a dedi-
cated Twitter account, blog, Face-
book page, or Google+ page in
advance is overkill, but if your proj-
ect starts to take off, consider these
things. They’ll provide an extra
way not only for users to remain in
touch with your project, but also
a way for them to help promote it
by retweeting things you post or by
directing potential new users your
way.

You can also extend your reach
in person by going to user groups
and conferences and, if you’re really
lucky, you can speak about your
work, too. This is a great way to
get new users, as people are much
more likely to look into your work
if they’ve met you in person.

Avoid being defensive
If your project does well on sites
like Hacker News or Reddit, you’ll
be tempted to read all of the
comments your peers leave, but
be careful. Comments about your
work will, naturally, seem magnified
in their intensity and critical com-
ments that might not actually be
mean spirited may seem as if they
are to you.

It’s hard, but the best policy is
to not let any overtly mean com-
ments get to you, duly correct any
observations that are wrong, and to
thank anyone who goes out of their
way to compliment your work.
Even if you’re in the right, with the
lack of body language and verbal
cues, being too defensive can look
bad online and result in the post
becoming a lightning rod for drama.
Engage as best you can, but if it
feels wrong to reply to something,
listen to your gut.

Be careful if you go into a new
community to promote your work
and get negative feedback. Most
communities have rules or expecta-
tions and merely entering a com-
munity to promote your work is
frequently considered a faux pas. Be
sensitive to people’s environments
and try to abide by a community’s
rules at all times.

“Comments about your work will, naturally,
seem magnified in their intensity.”

http://news.layervault.com
http://dzone.com
http://echojs.com
http://rubyflow.com
http://Lobste.rs

16  FEATURES

The long term
If your project does particularly well, you
could be presented with the opportunity
of turning it into a business in its own
right. Many simple open source projects,
often started by a single developer, have
turned into long term work or even entire
companies for their creators.

Back in 2010, Mitchell Hashimoto
released Vagrant, a Ruby-based tool for
building a deploying VirtualBox-based
virtualized development environments. In
late 2012, Mitchell launched Hashicorp,
a company providing Vagrant consult-
ing services to enterprise customers. An
even higher profile example is Puppet
Labs, a company built around the Puppet
open-source configuration management
tool and which has taken total funding of
$45.5 million so far.

If your project becomes respected and
heavily used within its field, you might
also be approached to write a book or
article about it or even speak at a confer-
ence. This is a good sign that your project
has “made it” to some extent as publishers
and event organizers are in the business of
working out what it makes business sense
to present.

Putting it all together: A checklist
This has only been a basic introduction
to promoting your work and with prac-
tice you’ll come up with tons of tips of
your own. Based on all of the ideas above,
here’s a basic checklist to run through
next time you release a new project and
want to get some added exposure:

■■ Focus most of your efforts on your
project’s homepage or README.

■■ Check your project’s name so it doesn’t
clash with anything else and is unique
enough to find references to your work
later.

■■ Promote your work to your closest
social group first to unbury any prob-
lems with your work.

■■ Record a screencast or write a blog post
about your project if some extra back-
ground would be useful for others.

■■ Work out a perfect *“[project name]
is”* sentence to describe what your
project is or does.

■■ Use your *“[project name] is”* sentence
to give your page a descriptive title.

■■ Find influential people, blogs, podcasts,
and e-mail newsletters in your niche
and send them a short, pleasant note.

■■ Post to social news and bookmarking
sites. Ensure your title is descriptive.

■■ Use your *“[project name] is”* sentence
in e-mails and contacts with influencers.

■■ Take a positive, “look on the good side”
approach to responding to comments
about your work.

Good luck! n

Peter is the chief publisher at Cooper Press, pro-
grammer, editor of Ruby & HTML5 Weekly and
founding chair of O’Reilly’s Fluent conference.

Reprinted with permission of the original author.
First appeared in hn.my/spread (mozilla.org)

http://hn.my/spread

  17The fast and easy way to accept affiliates into your online business

AFFILIATE.IO
Visit affiliate.io/hacker for discount

Without affiliate.io...

With affiliate.io...

Just you - 7 sales/week

Affiliate #042
- Lisa, Marketing expert

Affiliate #011
- Tim, power user & ambassador

Affiliate #094
- Diana, owns 7 blogs

Affiliate #027
- Tom, industry expert

Recruit, track, and promote your business

http://affiliate.io/hacker

Photo: flickr.com/photos/jurvetson/6252455266

18  STARTUPS

It was Monday, April 9, 2012
and we were at a team dinner.
We were launching Everyme

the next day at 10:00am. Launch
was a Tuesday, of course. Con-
sumers use their phones and the
web more on Tuesdays than any
other day. We had everything
set: the TechCrunch article, the
AllThingsD piece, and a handful
of interviews with top tech blogs.
We had 25,000+ people that had
signed up to be notified about our
launch. We designed and shipped
a special page with a countdown
three weeks earlier on our homep-
age. It seemed like the perfect time
for our iPhone-only social network
for groups: Instagram had been
purchased the same day as our
team dinner for a billion dollars
and Everyme was, in our minds, the
Next Big Thing™.

Our plan was simple. Launch
the app and generate enough buzz
for 25-50,000 downloads, or what
we guessed was enough to propel
us into the top apps in the Social

Networking category in the App
Store. Once we got there, we would
start generating “organic” down-
loads from people checking out the
top free social apps. A month later
we’d roll out an Android app and
web, and we would be proclaimed
king of the messaging space. Mark
Zuckerberg would invite us to Fuki
Sushi for vegetable tempura rolls,
and we would laugh about how we
crushed all of our competitors as
he handed us a billion-dollar check
addressed to Everyme, Inc.

So that Monday night, we were
on top of the world and there was
no way we could lose. We were
probably in the top percentile of
all startups already, having checked
everything off of our startup bucket
list: Y Combinator. CHECK. Raise
a big seed round. CHECK. Tech-
Crunch. CHECK. When I went to
sleep that night, my body buzzed
with excitement.

Tuesday morning rolled around,
and everything went live. Manda-
tory tweets and Facebook posts
went out, congratulatory emails
from investors filled our inboxes,
and my second monitor looked
like NASA mission control, full of
custom stats dashboards and Twit-
ter searches.

Just hours later, by Tuesday after-
noon, we already knew that our
plans and the reality were far apart.
Signups were coming in, but at a
pace that would never reach 25,000
the first day. TechCrunch was send-
ing hundreds of visitors, not thou-
sands. Our Twitter searches were
full of users that didn’t get it. And
there was no Zuckerberg dinner
invitation in our inbox. We peaked
at rank 35 in the Social Networking
category and ended up with 11,000
downloads and 6,000 sign-ups for
our first day. Not exactly the day
we expected.

By Vibhu Norby

STARTUPS

Don’t Launch Your Product

  19

It didn’t get any better the rest
of the week either. We had fewer
sign-ups on Wednesday than on
Tuesday: 2,000. And fewer sign-ups
on Thursday than on Wednesday.
And so on. To top it off, all of our
team members had access to the
stats dashboards. You could see the
psychological effects of dropping
numbers significantly impacting
productivity and morale. It felt like
we had bet it all on red and the ball
stopped on black.

The fact is that when you create
the big launch event, you will
always see the subsequent big drop-
off. Your market is not TechCrunch
readers and Mark Zuckerberg does
not want to eat vegetable tempura
rolls with you. If you plan for mas-
sive scale out of the gate, you will
face disappointment and a morale
drain that can kill your company.
And unlike a lot of other problems
that you face in the startup world,
learning this lesson the hard way
can cost you your startup right at
the outset. Here are a couple rea-
sons why focusing on a big launch
is the wrong strategy:

■■ “Launching” screws with your
metrics — and you need clean
metrics to evaluate and iterate on
your business. If you see 6,000
signups on day one and 2,000 on
day two, you can be misled about
the strength of your vision. It
clouds your ability to single out
the passionate users and under-
stand their usage patterns.

■■ You’re probably not going to
find product/market fit right out
of the gate. So whatever press
or marketing you have planned
will fall on uninterested eyes.
Again, this will mislead you.
You’ll spend less money and

waste less time by locating your
interested market first and then
pursuing marketing channels to
reach them when ready. It sounds
obvious, but it isn’t. When you
have a consumer app, at first
everyone seems like part of your
target audience even though they
aren’t. Likewise with enterprise,
not all businesses are candidates
for your software.

■■ As mentioned earlier, the bigger
your launch, the quicker you
will enter the famous “trough of
sorrow.” No human can easily
withstand the emotional roller-
coaster of startup metrics. Such
baggage can lose you co-founders,
employees, and your capital. And
you will lose faith in yourself in
the process.

■■ You’ll be penalized when rais-
ing your next round. Neither the
bell-curve nor the downward
slope is an attractive graph to
show investors. You can dem-
onstrate growth by finding one
passionate user, and then ten,
and then 100 instead of taking in
6,000 sign-ups to find 111 pas-
sionate ones. Some savvy inves-
tors will ignore your charts and
focus on you — fine — but you
have to be a champion. You can’t
afford to think negative thoughts
about your business when talking
to an investor.

Having been through multiple
launches, seen companies launch
at big conferences, and talked with
many startups that have expe-
rienced the same effect, what I
recommend — and what we’re
doing at Origami — is not launch-
ing at all. Take the word launch
out of your vocabulary — it’s a
sign that you are gambling on your

app and not building a long-term,
sustainable company. Instead, put
your sign-up page up or your app
out because you need more feed-
back on your idea. Find an audience
of passionate users, even if small,
and reach out to their community
through appropriate means. Try
SEM and Facebook ads to find a
target market. Experiment with
business models and onboarding
flows. Let the press come to you
because they love what you’ve
made.

You wouldn’t know it by its plain
homepage, but our new product has
a thriving community of families in
the hundreds already. We’ve been
“testing it” for months. One of these
days we might put out a homepage
where families can sign-up — but
you won’t hear about it from the
press. You’ll hear about it from a
passionate fan. n

Vibhu the founder of Origami.com (YC S11),
an online home for families. Previously,
he was a lead engineer at Myspace and
Threadbox.

Reprinted with permission of the original author.
First appeared in hn.my/dontlaunch (philosophically.com)

http://hn.my/dontlaunch

20  STARTUPS

By Zach Hoeken SMITH

Shenzhen Maker: Mr. Chen

I’ve been living in Shenzhen
for almost 2 years now, and
I’m continually amazed by this

city. The people here are creative,
it has the best resources for build-
ing things you can find anywhere in
the world, an amazing climate, and
friendly people everywhere. This is
the story of one particular Maker
I’ve met in Shenzhen, Mr. Chen.

 In my ongoing obsession with
digital fabrication and small volume
manufacturing, I stumbled upon
the Chinese SMT Pick and Place
scene. It started with the TM-240A

that I found on Taobao, and through
that I discovered diysmt.com and
oursmt.com. It turns out there are a
bunch of people building and using
low-cost pick and place machines
for actual production of real prod-
ucts. I had to find out more.

 I used my super-crappy Chinese
skills and posted in the diysmt
forum to see if anyone was local to
Shenzhen and could show me their
machine. I got a couple responses,
and Mr. Chen agreed to meet me
and show me his operation. Always
down for an adventure, I agreed and

got his address. My assistant/transla-
tor and I hopped in a taxi and away
we went.

We arrived in a neighborhood on
the outskirts of Shenzhen — the
type with small alleys separating
dozens of dusty apartments with
stray dogs running around and
open-air grocery stores selling meat
on hooks. If you’ve ever been to
China and ventured off the beaten
track, you’ll know exactly what it’s
like.

  21

Entering Mr. Chen’s place,
you feel like you’re stepping into
a whole new world. His apart-
ment was immaculate, but signs
of making were there if you knew
what to look for. Tucked away in
one corner was the pick and place
machine. Next to it was a coffee
table with boards ready to be popu-
lated, surrounded by tea cups.

 After a round of tea, he showed
me the machine in operation. This
$4000 pick and place machine was
awesome to see. He had about 16
feeders and was populating entire
boards in a single go. Between snap-
ping pics and taking video, I asked
him about what he does with it and
why he needs gear like this.

It turns out, Mr. Chen was more
interesting than his machine! You
see, he’s managed to carve out
a nice little niche for himself by
designing and manufacturing his
own electronics and then selling
them at the infamous Huaqiang-
bei electronics market. He started
about 7 years ago and has been
building and selling various things
that whole time. Today he was
making AVR ICE programmers, but

tomorrow he might build control-
lers for the fans for his brother’s
small DC fan factory.

As we got to talking about
making and DIY culture, I began
to get a sense that this down-to-
earth guy was someone who really
understands the so-called Maker
culture. He was very business savvy,
and even had a slogan: 花小钱,赚
大钱 which roughly means, “spend
less and earn more.” What he was
describing was a lean operation
where he had digital fabrication
tools that allowed him to retool and
switch around really quickly and
efficiently. His house was dou-
bling as his production floor, so he
had very little overhead. He also
understood that he needed to find
niche markets in order to remain
competitive.

 His setup was slick and efficient:
order pcbs and stencils from a fab,
apply solder paste using a clever
fixture, use the pick and place
machine to get the parts on the
board, reflow everything in his smt
oven, and then hand-solder the
connectors. The solder paste fixture
itself was rather brilliant. The
stencil was attached to a hinged
lid. He took a sacrificial pcb, hand
aligned it with the stencil, and then
glued it in place. He then took 2
header pins and nailed them into
a connector hole until just a small
nub was sticking out. These pins
then became the alignment pins for
the pcb to apply solder to. Brilliant,
cheap, and effective.

 I complimented him on his self-
reliance and was surprised by yet
another twist that would be enough
to turn any urban farm-loving
hipster green with jealousy. In addi-
tion to running his own electronics
manufacturing operation, Mr. Chen
was growing organic vegetables, and
raising chickens and pigeons on the
roof of his apartment! This guy was
the picture of self-reliance, and he
had a relaxed attitude that told me
immediately that he had carved out
a cozy existence in his life with his
wife, son, pigeons, and electronics.
Watching the flock of pigeons flying
freely through the sky on a sunny
winter afternoon, it was easy to see
why.

 All in all, it was a lovely after-
noon, and I feel like I’ve come
closer to understanding the impen-
etrable culture of Shenzhen makers.
To all the Mr. Chen’s of the world
out there, and anyone else who pur-
sues the goal of self-employment
through making, I salute you! n

Zach Hoeken Smith is the co-founder of
MakerBot Industries and built the object
sharing website Thingiverse.com, as well
as the web-based digital manufacturing
hub BotQueue.com. Lately he is living in
hardware paradise also known as Shen-
zhen, China.

Reprinted with permission of the original author.
First appeared in hn.my/chen (hoektronics.com)

http://Thingiverse.com
http://BotQueue.com
http://hn.my/chen

22  PROGRAMMING

By Stuart Sierra

PROGRAMMING

One of the great plea-
sures of working with
a dynamic language is

being able to build a system while
simultaneously interacting with
it. To make this possible, first you
need the ability to redefine parts
of the program while it is running:
Clojure provides this capability
admirably. However, some aspects
of Clojure’s runtime are not quite
as late-binding as one might wish
for interactive development. For
example, the effect of a changed
macro definition will not be seen
until code which uses the macro
has been recompiled. Changes to
methods of a defrecord or deftype
will not have any effect on existing
instances of that type.

The facilities that Clojure pro-
vides for loading code from files
are not sufficient to deal with these
issues. I wrote the second version
of tools.namespace to make a
“smarter” require that recognizes
dependencies between namespaces
and reloads them appropriately.

But tools.namespace is only
part of the story. To really get the
benefit of interactive development,
I want to ensure that the version

of the application I am currently
interacting with is congruent with
the source files I’m editing. That
means not only that the application
must be running the most up-to-
date version of the code, but also
that any state in the application was
produced by that same code. It is
dangerously easy, when changing
and reloading code at the REPL,
to get an application into a state
which could not have been reached
by the code it is currently running.

Therefore, after every signifi-
cant code change, I want to restart
the application from scratch. But
I don’t want to restart the JVM
and reload all my Clojure code in
order to do it: that takes too long
and is too disruptive to my work-
flow. Instead, I want to design my
application in such a way that I
can quickly shut it down, discard
any transient state it might have
built up, start it again, and return
to a similar state. And when I say
quickly, I mean that the whole pro-
cess should take less than a second.

To achieve this goal, I make the
application itself into a transient
object. Instead of the application
being a singleton tied to a JVM

process, I write code to construct
instances of my application, pos-
sibly many of them within one
JVM. Each time I make a change, I
discard the old instance and con-
struct a new one. The technique
is similar to dealing with virtual
machines in a cloud environment:
rather than try to transition a VM
from an old state to a new state, we
simply discard the old one and spin
up a new one.

Designing applications this way
requires discipline. First and fore-
most, all states must be local. Any
global state, anywhere, breaks the
whole model. Second, all resources
acquired by the application instance
must be carefully managed so that
they can be released when the
instance is destroyed.

Enough talk. Here’s how it works.

My Clojure Workflow,
Reloaded

  23

The System Constructor
In some “main” namespace, I provide a constructor
function for the application. I usually call it system
because it represents the whole system I am working
on.

;; In src/com/example/my_project/system.clj

(ns com.example.my-project.system)

(defn system
 "Returns a new instance of the whole
application."
 []
 ...)

The system constructor can optionally take param-
eters which specify its configuration.

Creating a system is not the same as starting it and
should not have side effects. Usually the system con-
structor will create instances of other components it
depends on and return a data structure such as a map
or defrecord which contains them. My system instance
might look something like this:

{:db {:uri "datomic:mem://dev"}
 :scheduler #<ScheduledThreadPoolExecutor...>
 :cache #<Atom {}>
 :handler #<Fn ...>
 :server #<Jetty ...>}

Sometimes I have different versions of the con-
structor that produce different systems for interactive
development, testing, and production.

Notice that some things which are “global” from the
point of view of the application, such as my web server
and scheduled thread pool, become “local” instances
in this data structure. Any function which needs one
of these components has to take it as a parameter.
This isn’t as burdensome as it might seem: each func-
tion gets, at most, one extra argument providing the
“context” in which it operates. That context could be
the entire system object, but more often will be some
subset. With judicious use of lexical closures, the extra
arguments disappear from most code. In addition to
enabling more interactive development, this approach
makes testing easier.

Start and Stop
Next, I have functions to start and stop the system. Ide-
ally, these behave like real functions, in that they return
a new value representing the “started” or “stopped”
system, but they also have to perform side effects along
the way, such as opening a connection to a database or
starting a web server.

;; In src/com/example/my_project/system.clj

(defn start
 "Performs side effects to initialize the
system, acquire resources, and start it running.
Returns an updated instance of the system."
 [system]
 ...)

(defn stop
 "Performs side effects to shut down the system
and release its resources. Returns an updated
instance of the system."
 [system]
 ...)

These functions can call similar start/stop functions
on sub-systems in turn. In the past, I’ve talked about a
“Lifecycle” protocol containing start and stop methods.
It’s not necessary, but is sometimes useful to ensure
that all components of the system can be started and
stopped in a consistent way.

There’s usually a bit of trial-and-error while I get the
start/stop functions working correctly. If something in
start/stop throws an exception, I could easily end up in
a state where a sub-system has acquired a resource —
such as a socket connection — but I do not have any
handle on that sub-system with which to shut it down
and release the resource. In that situation, there’s noth-
ing for it but to restart the JVM.

24  PROGRAMMING

Dev Profile and user.clj
You probably know that the Clojure REPL starts by
default in the user namespace. In addition, if there is a
file named user.clj at the root of the Java classpath,
Clojure will load that file automatically when it starts.

You probably don’t want user.clj to be loaded in
a deployed production app or library release, but by
using Leiningen 2 profiles we can ensure that it is only
loaded during development.

In my Leiningen project.clj file, I create a :dev
profile with an extra :source-paths directory, plus
whatever dependencies I want to use during develop-
ment. tools.namespace has to be there, and I fre-
quently add testing/development tools such as java.
classpath or Criterium.

;; In project.clj:
(defproject com.example/my-project
"0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.5.1"]]
 :profiles {:dev {:source-paths ["dev"]
 :dependencies [[org.clojure/
tools.namespace "0.2.3"]
 [org.clojure/
java.classpath "0.2.0"]]}})

Leiningen will automatically merge the :dev pro-
file into the project configuration for the repl, test,
and run tasks, but not jar or uberjar. That means if I
deploy my application (or release a library) as a JAR
file, the files in dev will be excluded.

I create a user.clj file in the dev directory which
defines a normal namespace called user and refers to
a bunch of symbols I commonly use during develop-
ment, as well as the symbols to construct, start, and
stop the system.

;; In dev/user.clj

(ns user
 (:require [clojure.java.io :as io]
 [clojure.string :as str]
 [clojure.pprint :refer (pprint)]
 [clojure.repl :refer :all]
 [clojure.test :as test]
 [clojure.tools.namespace.repl :refer
(refresh refresh-all)]
 [com.example.my-project.system :as
system]))

Also in user.clj, I have a few things that I will only
use during development, starting with a global Var to
hold the system itself:

;; In dev/user.clj

(def system nil)

Now wait a minute, you might say, isn’t that the
global state you told us to avoid? It would be, if it were
part of the application. Instead it’s a container in which
I can put the current instance of the application. I’m
only going to use it for interactive development.

The system Var is manipulated by the following
functions:

;; In dev/user.clj

(defn init
 "Constructs the current development system."
 []
 (alter-var-root #'system
 (constantly (system/system))))

(defn start
 "Starts the current development system."
 []
 (alter-var-root #'system system/start))

(defn stop
 "Shuts down and destroys the current
development system."
 []
 (alter-var-root #'system
 (fn [s] (when s (system/stop s)))))

(defn go
 "Initializes the current development system
and starts it running."
 []
 (init)
 (start))

The exact division of these functions isn’t important.
Sometimes I omit init and start and just have go. The
important thing is to have one function that creates
and starts the system, and another function that tears it
down.

  25

Finally, the heart of my workflow: the reset func-
tion. This is one function which I can call at the REPL
to 1) stop the current application instance; 2) reload
any source files that have changed; and 3) create and
start a new application instance.

;; In dev/user.clj

(defn reset []
 (stop)
 (refresh :after 'user/go))

The real work of reloading files is handled by the
clojure.tools.namespace.repl/refresh function. It
takes my go function as an argument, but go has to
be passed as a namespace-qualified symbol so that it
can be resolved after the user namespace has been
reloaded. (This is a trick that refresh knows how to
do.)

Workflow
I do all my Clojure development in Emacs using
nREPL.el, but nothing about this workflow is Emacs-
specific. It should work with any environment that
provides a REPL, as long as it doesn’t try to do any
code-reloading of its own. (For example, the reload-on-
every-request functionality of ring-devel is incompat-
ible with tools.namespace.) The fact that I use Emacs
as my REPL is one reason I use user.clj instead of
:repl-options in Leiningen’s project.clj: those
options have no effect on remote nREPL sessions.

The first thing I do when I start work is launch an
nREPL session and call reset. Now my application
is running and I can start working on it. Every time
I make a change, I save the file and call reset at the
REPL. (I have an Elisp helper function that I can bind
to a keystroke.) Presto! My application is running again
in a clean state with all the new code.

Rather than switching the REPL among several
namespaces, I generally stay in user, where I have
all my development tools like clojure.pprint and
clojure.repl. I use the REPL itself for examining the
application’s state and testing individual functions. I
frequently define little helper functions to examine the
state of the application as I work on it, all of which are
accessible by navigating the system object.

Anything I want to hang on to, such as a snippet of
test data, I define in the user.clj file, because tools.
namespace will destroy any Vars I created with def at
the REPL.

Snags
This process isn’t perfect by any means. One of the
more irritating aspects is that any syntactic errors in
a source file prevent all the code from being loaded,
including user.clj. If a file fails to compile during the
tools.namespace reloading process, any namespaces
which depend on it no longer exist. So the reset func-
tion isn’t available to call, nor are any of my aliases or
referred symbols in the user namespace.

As a work-around, in tools.namespace 0.2.3 I added
a feature to recover aliases and referred symbols in the
current REPL namespace after a failed reload. This
isn’t perfect: the reset function still doesn’t exist. But
at least I can call the refresh function from tools.
namespace without typing out its fully-qualified name
clojure.tools.namespace.repl/refresh. Once I have
successfully reloaded all the source files with refresh, I
can call reset again to start the app.

A slightly worse problem occurs when starting a new
REPL process: if there are any compilation errors in
something loaded by user.clj, then the REPL will not
start at all. I try to avoid this by starting the REPL from
a known working commit, then only changing code
after it’s running. I also try not to commit any code
which does not compile, but sometimes it happens.

Occasionally I do get my application into a state
that I cannot recover from. Usually this happens
when something in a start or stop function throws
an exception. At that point, some component of the
application may be in a broken state, but I don’t have
a reference to it that I can use to shut it down. If that
component acquired external resources which I need
to release before restarting it, e.g. socket connections,
then there’s basically nothing I can do but restart the
JVM. Fortunately, these situations usually only occur
while I’m writing the start/stop functions themselves,
so after a few development cycles to get them working
I don’t have to worry about it.

Entry Points
The central thrust of this approach is to design
your application so that you can construct multiple
instances of it within a single JVM process. That’s ideal
for development, but what about production?

If you control the entry point to your application
process, it’s easy. Just write a -main function that cre-
ates a single instance of your application and starts it.

26  PROGRAMMING

But often we deploy apps to environments where
we do not control the -main function. For example,
Ringweb apps deployed to a Servlet container have no
-main. Furthermore, they expect a static reference to a
Var which contains the root web handler function. If
that handler is meant to be a closure over some con-
textual state, there’s no place to construct it.

There are a couple of ways to work around this.
One is to have a separate namespace in a “produc-
tion” profile that constructs a single instance of the
application and assigns it to a global Var. Alternatively,
if the framework provides an “initialization” hook (as
lein-ring does), you can use that to create the applica-
tion instance and store it in a global Var. The root web
handler function, created exclusively for production
deployment, can pass the system object to functions
that need it.

Epilogue
I’m continually tweaking this process, looking for
improvements, but overall I’m pretty happy with it. It
has enabled me to work rapidly on some fairly large
applications. Best of all, it’s agnostic with regard to
development tools. You can adapt this workflow to any
build tool that can substitute different CLASSPATHs
for different circumstances.

Some of my Relevance coworkers like this
approach; others find it too constraining. The Pedestal
team uses pieces of this technique, such as the :dev
profile, but without tools.namespace. They were
annoyed that compiler errors prevented them from
starting a new REPL, so they came up with a variation
that uses a function in user.clj to load another file
called dev.clj.

Stuart Sierra is a developer at Relevance, Inc., contributor to
Clojure, and the co-author of Practical Clojure (Apress 2010) and
ClojureScript: Up and Running (O’Reilly 2012).

Reprinted with permission of the original author.
First appeared in hn.my/clojureflow (thinkrelevance.com)

http://hn.my/clojureflow

27  PROGRAMMING

By Ben Howdle

“Design Patterns,” “Code
architecture,” “Scalability,”
“OOP,” “Maintainability,”

“The code you write now, is the legacy code
of the future,” “Be kind to your future self” &
“Code smells.”

Just like Bruce Almighty trying to block
out the voices in his head, my pangs of guilt
and angst come from the paradigms above;
like an unwavering, continuous stream of
distraction overwhelming my thinking as I’m
trying to write one single line of code. One
single line of code. That’s it. Nothing special.
No one’s going to live or die if it’s not the
most optimised, architected and scalable line
in the world.

We are under a constant barrage of posts,
tutorials and articles about these paradigms.
I often feel guilty if these paradigms aren’t at
the forefront of my mind whilst developing.

It often kills my output.
I’m trying to adopt a new workflow

where I won’t try and solve a problem until
it becomes a problem; until I see it in the
“wild.” Just like Adii Pienaar wrote , why
do we worry about scalability on day 1?
[hn.my/day1]

This is precisely the approach I’m trying
to apply to my development. However, it’s
the same with any new approach — I’m not
blindly following it. It doesn’t give you an
excuse to write shit code, but forces you to
complete a task more quickly and get that
feature out there.

Your users care about precisely two things,
“Does it work?” and “Is it fast?” (I’m talking
specifically development here; they obviously
care about design and all that jazz.)

So, I’m trying to stick to the following
mantra:

Build it, release it, analyse it and only then
decide if it needs optimising. n

London-based JavaScript developer Ben Howdle got
into development aged 19. He started learning to
code in the evenings until he managed to get his first
paid client. This year, Howdle has been building the
next generation of KashFlow using BackboneJS and
co-hosting Upfront Podcast.

Too Scared To Write
A Line Of Code

Kill your output with premature optimisation

Reprinted with permission of the original author.
First appeared in hn.my/scared (medium.com)

http://hn.my/day1
http://hn.my/scared

28  PROGRAMMING

By Josh Wills

Data scientists, that
peculiar mix of software
engineer and statistician,

are notoriously difficult to inter-
view. One approach that I’ve used
over the years is to pose a problem
that requires some mixture of algo-
rithm design and probability theory
in order to come up with an answer.
Here’s an example of this type of
question that has been popular in
Silicon Valley for a number of years:

Say you have a stream of items
of large and unknown length that
we can only iterate over once.
Create an algorithm that randomly
chooses an item from this stream
such that each item is equally
likely to be selected.

The first thing to do when you
find yourself confronted with such a
question is to stay calm. The data sci-
entist who is interviewing you isn’t
trying to trick you by asking you to
do something that is impossible. In
fact, this data scientist is desperate to
hire you. She is buried under a pile
of analysis requests, her ETL pipeline
is broken, and her machine learn-
ing model is failing to converge. Her
only hope is to hire smart people
such as yourself to come in and help.
She wants you to succeed.

The second thing to do is to
think deeply about the question.
Assume that you are talking to a
good person who has read Daniel
Tunkelang’s excellent advice
about interviewing data scientists
[hn.my/dtunkelang]. This means
that this interview question proba-
bly originated in a real problem that
this data scientist has encountered
in her work. Therefore, a simple
answer like, “I would put all of the
items in a list and then select one
at random once the stream ended,”
would be a bad thing for you to
say, because it would mean that
you didn’t think deeply about what
would happen if there were more
items in the stream than would fit
in memory (or even on disk!) on a
single computer.

The third thing to do is to create a
simple example problem that allows
you to work through what should
happen for several concrete instances
of the problem. The vast majority
of humans do a much better job of
solving problems when they work
with concrete examples instead of
abstractions, so making the problem
concrete can go a long way toward
helping you find a solution.

A Primer on Reservoir Sampling
For this problem, the simplest
concrete example would be a
stream that only contained a single
item. In this case, our algorithm
should return this single element
with probability 1. Now let’s try a
slightly harder problem, a stream
with exactly two elements. We
know that we have to hold on to
the first element we see from this
stream, because we don’t know if
we’re in the case that the stream
only has one element. When the
second element comes along, we
know that we want to return one
of the two elements, each with
probability 1/2. So let’s generate a
random number R between 0 and
1, and return the first element if
R is less than 0.5 and return the
second element if R is greater than
0.5.

Now let’s try to generalize this
approach to a stream with three
elements. After we’ve seen the
second element in the stream, we’re
now holding on to either the first
element or the second element,
each with probability 1/2. When
the third element arrives, what
should we do? Well, if we know
that there are only three elements
in the stream, we need to return

Algorithms Every Data Scientist Should Know
Reservoir Sampling

http://hn.my/dtunkelang

  29

this third element with probability
1/3, which means that we’ll return
the other element we’re holding
with probability 1 — 1/3 = 2/3.
That means that the probability
of returning each element in the
stream is as follows:

1.	 First Element: (1/2) * (2/3) =
1/3

2.	 Second Element: (1/2) * (2/3)
= 1/3

3.	 Third Element: 1/3

By considering the stream of
three elements, we see how to
generalize this algorithm to any N:
at every step N, keep the next ele-
ment in the stream with probability
1/N. This means that we have an
(N-1)/N probability of keeping the
element we are currently holding
on to, which means that we keep
it with probability (1/(N-1)) *
(N-1)/N = 1/N.

This general technique is called
reservoir sampling, and it is useful
in a number of applications that
require us to analyze very large
data sets. You can find an excellent
overview of a set of algorithms for
performing reservoir sampling in
this blog post [hn.my/gregable] by
Greg Grothaus. I’d like to focus on
two of those algorithms in particu-
lar, and talk about how they are
used in Cloudera ML [hn.my/ml],
our open-source collection of data
preparation and machine learning
algorithms for Hadoop.

Applied Reservoir Sampling in
Cloudera ML
The first of the algorithms Greg
describes is a distributed reservoir
sampling algorithm. You’ll note
that in order for the algorithm we
described above to work, all of
the elements in the stream must

be read sequentially. To create a
distributed reservoir sample of size
K, we use a MapReduce analogue
of the ORDER BY RAND() trick/
anti-pattern from SQL: for each
element in the set, we generate a
random number R between 0 and
1, and keep the K elements that
have the largest values of R. This
trick is especially useful when we
want to create stratified samples
from a large dataset. Each stratum
is a specific combination of cat-
egorical variables that is important
for an analysis, such as gender, age,
or geographical location. If there
is significant skew in our input
data set, it’s possible that a naive
random sampling of observations
will underrepresent certain strata
in the dataset. Cloudera ML has
a sample command that can be
used to create stratified samples
for text files and Hive tables (via
the HCatalog interface to the Hive
Metastore) such that N records will
be selected for every combination
of the categorical variables that
define the strata.

The second algorithm is even
more interesting: a weighted dis-
tributed reservoir sample, where
every item in the set has an associ-
ated weight, and we want to sample
such that the probability that an
item is selected is proportional
to its weight. It wasn’t even clear
whether or not this was even pos-
sible until Pavlos Efraimidis and
Paul Spirakis figured out a way
to do it and published it in the
2005 paper “Weighted Random
Sampling with a Reservoir.” The
solution is as simple as it is elegant,
and it is based on the same idea as
the distributed reservoir sampling
algorithm described above. For each
item in the stream, we compute
a score as follows: first, generate a

random number R between 0 and
1, and then take the nth root of R,
where n is the weight of the current
item. Return the K items with the
highest score as the sample. Items
with higher weights will tend to
have scores that are closer to 1, and
are thus more likely to be picked
than items with smaller weights.

In Cloudera ML, we use the
weighted reservoir sampling algo-
rithm in order to cut down on the
number of passes over the input
data that the scalable k-means++
algorithm needs to perform.
The ksketch command runs the
k-means++ initialization proce-
dure, performing a small number
of iterations over the input data set
to select points that form a repre-
sentative sample (or sketch) of the
overall data set. For each iteration,
the probability that a given point
should be added to the sketch is
proportional to its distance from
the closest point in the current
sketch. By using the weighted
reservoir sampling algorithm, we
can select the points to add to the
next sketch in a single pass over
the input data, instead of one pass
to compute the overall cost of the
clustering and a second pass to
select the points based on those
cost calculations. n

Josh Wills is Cloudera’s Senior Director of
Data Science, working with customers and
engineers to develop Hadoop-based solu-
tions across a wide-range of industries.
He is the founder and VP of the Apache
Crunch project for creating optimized
MapReduce pipelines in Java and lead
developer of Cloudera ML, a set of open-
source libraries and command-line tools
for building machine learning models on
Hadoop.

Reprinted with permission of the original author.
First appeared in hn.my/rs (cloudera.com)

http://hn.my/gregable
http://hn.my/ml
http://hn.my/rs

30  PROGRAMMING

By John Graham-Cumming

Back in 1985 I worked on the computeriza-
tion of a machine designed to stick labels on
bottles. The company that made the machines

was using electromechanical controls to spool labels off
a reel and onto products (such as bottles of shampoo)
passing by on a conveyor. The entire thing needed to
work with mm accuracy because consumers don’t like
labels that aren’t perfectly aligned.

Unfortunately, electromechanical controls aren’t as
flexible as computer controls, so the company con-
tracted a local technical college (where I was studying
electronics) to prototype computer control using a
KIM-1. Another student had put together the machine
with a conveyor, a mechanism for delivering the labels,
control of stepper motors, and infrared sensors for
detecting labels and products.

My job was to write the software in 6502 assem-
bly. Unfortunately, there wasn’t an assembler and the
KIM-1 just had a hex keypad and small display. So, it
meant writing the code by hand, hand assembling, and
typing it in. The code looked like this:

How I Coded In 1985

  31

It was immediately obvious that computer control
was going to be more flexible. The program first did
automatic calibration: it measured the length of labels
on the spool itself, it measured the distance between
labels itself, and it enabled an operator to quickly set
up the “overhang” distance (how much of the label is
sticking out so the product can catch onto it).

 While running, it could automatically detect how
fast the conveyor was moving and compensate, and
spot when a label was missing from the supply spool
(which happened when one peeled off by accident).

Of course, writing code like this is a pain. You first
had to write the code (the blue), then turn it into
machine code (the red) and work out memory loca-
tions for each instruction and relative jumps. At the
time I didn’t own a calculator capable of doing hex, so
I did most of the calculations needed (such as for rela-
tive jumps in my head).

But it taught me two things: to get it right the first
time and to learn to run code in my own head. The
latter has remained important to this day. I continue
to run code in my head when debugging, typically I
reach for the brain debugger before gdb or similar. On
the KIM-1 there were only the most basic debugging
functions and I built a few into the program, but most

of the debugging was done by staring at the
output (on the hex display) and the behavior
(of the steppers), and by running the code
through in my head.

Here’s the full program [hn.my/kim1] for
the curious.

P.S. A number of people have pointed out that
in 1985 the KIM-1 was far from state-of-the-art
and we had lots of niceties like compilers, etc.
True. In fact, prior to this I had been program-
ming using BASIC and ZASM (Z80 assem-
bler) under CP/M, but you go to war with
the army you have: the technical college had
a KIM-1 to spare; it had good I/O and thus
made a fine prototyping system for an embed-
ded controller. n

Dr John Graham-Cumming is a computer programmer
and author. He can be found on the web at jgc.org

Reprinted with permission of the original author.
First appeared in hn.my/1985 (jgc.org)

http://hn.my/kim1
http://jgc.org
http://hn.my/1985

32  PROGRAMMING

By Nick Knowlson

This article is divided into
two parts: Explanation
and FAQ. The explanation

shows the reasons why a bunch of
people think Maybe is way more
useful than null. The FAQ is a list
of my responses to common argu-
ments I’ve seen about the short-
comings of Maybe.

I’m going to try to not go over-
board with details here — my aim
is to make it accessible to as many
programmers as possible, not to be
as thorough as possible.

Explanation
Motivation
Tony Hoare, the inventor of null,
has gone on record calling it his
“billion-dollar mistake”. So what
should replace it?

Maybe, at its core, is a construct
that allows programmers to move
null checks into the type system so
they can be enforced at compile-
time. Instead of forgetting to deal
with a null check and finding out
with an exception at run-time, you
forget to deal with a null check and
find out with an error at compile-
time, before anyone else even sees
it! And that’s not just some null
checks, that’s all of them!

Details
There are two components to an
environment free of null pointer
exceptions:

1.	 The elimination of null. This
means that all types (even
reference types!) become
non-nullable.

2.	 An alternative representation
for the idea of “may contain an
empty or invalid value”. This is
what Maybe is for.

So how does Maybe accomplish
this, and how does it achieve all
those benefits listed above? It’s
actually very straightforward.

I’m going to explain this in
object-oriented terms, because
if you’re already familiar with
algebraic data types, odds are
you already know about Maybe
too. Anyway, think of Maybe<T>
as an interface with a single type
parameter that has exactly two
implementing classes: Just<T> and
Nothing. The Just<T> class wraps
a value of some other type and
the Nothing class doesn’t. There
are a variety of methods provided
by Maybe to extract the value
safely, but I’m going to omit these

for now, as they’re not the point.
When you receive an object of type
Maybe<String> (for example) you
now have the type system helping
you out, telling you “there might
be a String here, but it might be
empty”. You can’t perform opera-
tions on the String until you’ve
safely extracted it and made a
choice about what to do in the case
that it’s empty.

By itself (without point #1) this
is nice but not fantastic. The benefit
really kicks in when you also have
non-nullable types. It simplifies
the 80% of the cases that don’t
involve null and gives significance
and meaning to the times when
you do deal with objects wrapped
in Maybe<T>. It lets you say both “I
know that this value will literally
never be null” and “It is immedi-
ately obvious to me that I need to
handle the case of an empty value
here”.

Why Maybe Is Better
Than Null

  33

Conclusion
It’s not that dealing with any given
instance of null is particularly
hard; it’s that it is so easy to miss
one. Removing this concern and
encoding the information in the
type system means programmers
have less things to keep track of and
simplifies control flow across the
entire program. Like with memory
management: when you don’t have
to keep track of it manually, it is
just plain easier to write code. More
importantly, it is easier to write
more robust code. This goes for all
programmers, not just the experi-
enced or talented.

And that is something I am
firmly in favor of. A product is
never the result of a single person’s
code — everything has depen-
dencies. Improvements to other
people’s code benefit all of us.

Addendum
There are two more points I’d like
to address about Maybe that are
separate from actually explaining
why it is useful.

First, I’ve been a bit inaccurate on
purpose when just referring to this
idea as Maybe. There is an imple-
mentation of this idea in Haskell
called Maybe, but implementations
in different languages have different
names.

■■ ML, Scala, F#, Rust: Option

■■ Fantom, Kotlin: ? appended to
type

■■ C#: Nullable or ? appended to
type

Second, not all languages with
Maybe have non-nullable types.
This makes Maybe less valuable in
those environments (since you lose
the very useful “I know this value
will never contain null” guarantee”)

and ends up confusing people who
are skeptical of Maybe’s benefits.

To help clarify this: I agree that
in a language where you don’t have
the guarantee provided by non-
nullable types, Maybe just isn’t as
useful. But it is not useless either
and, depending on the environ-
ment, may still provide some
benefit.

FAQ
Posts like these are tricky. To
explain something understandably
and (relatively) concisely I can’t
qualify every statement and address
all the holes inline. Here is where
I’ll address the bits I skipped as well
as some common sentiments I’ve
previously seen on this topic.

Maybe isn’t the be-all end-all.
I definitely agree. For one thing, I
haven’t even mentioned Either!
This article is for people who aren’t
even convinced of the benefits
of Maybe yet. In order to get my
point across effectively I want to
avoid overwhelming the reader
with information, so I restricted the
topics brought up here.

If you want a higher level per-
spective on this issue, take a look at
dmbarbour’s view:

There are two mistakes. One mis-
take is providing a “sum” type (eqv.
to Just Object | Nothing) without
recognition of the typechecker. The
other mistake is joining this sum
type at the hip with the idea of ref-
erences, such that you cannot have
one without the other.

These mistakes may, and I suspect
should, be resolved independently.
Thinking there’s just one mistake,
and thus just one language feature
to solve it, might very well be a
third mistake.

Beautifully stated! This is a much
more general (and elegant) way to
look at it. It’s a somewhat harder
sentiment to communicate effec-
tively to a lot of people though.

My IDE plugin already does this.
Yes, there are some IDEs and
plugins that provide limited null
reference analysis. The key though
is that it is limited. As far as I know
(and I’ve looked) none of them pro-
vide the same system-wide elimina-
tion of null that encoding it in the
type-system can guarantee.

And so, you still don’t get the
same reassurances of “I know this
value will literally never be null”
and “It is immediately obvious that
I have to handle the case of an
empty value here”.

NPEs are the proper response to a
missing value you forgot to con-
sider. You should be notified when
something goes wrong, not hide it
with Maybe.
I’ve got good news for you —
we fundamentally agree in our
approach to how errors should be
handled! You might have seen some
bad examples of Maybe usage, since
proper usage would lead to these
errors being caught even earlier than
a NullPointerException would have.

You can still choose to do the
equivalent of if (null) return;
and some examples will do that,
because it makes sense in some
contexts. What matters is that
Maybe forces you to think about it
at the time of writing the code, and
to be explicit about it.

Instead of you being notified
when things go wrong, Maybe
forces you to think things through
in the first place and make an
explicit choice about what to do (at
least as far as possibly empty values
are concerned).

34  PROGRAMMING

And finally, for those of you who
really love exceptions, implementa-
tions of Maybe usually provide an
unsafe retrieval method, so you can
replicate the behavior of null (run-
time exceptions and all) if that is
what you choose to do.

The real problem is people not
properly reasoning about their
functions, that isn’t the fault of
null.
Sure, that is one way to look at it:
it’s not null’s fault, it is the pro-
grammer’s fault. If you take this
view then null is just one of the
tools used to represent emptiness
and invalid values. But it isn’t a very
good tool, or at least not as good as
it could be.

Maybe is a tool that fills the same
gap as null but is much more help-
ful to programmers. It helps directly
address the core problem of “people
not properly reasoning about their
functions” by pointing out mistakes
in reasoning earlier. With it you can
statically verify that all null checks
are made, and eliminate an entire
class of run-time errors.

I’m not claiming it is a silver
bullet, but it is a better tool.

Null is meaningful! What if a value
cannot have any meaningful default
value?
Then either wait until it has a
meaningful value to put in it or
wrap it in Maybe and give it a value
of Nothing. That’s what Maybe is
for — to provide a type-checkable
alternative to null!

So you’re still testing against null,
except that it’s called Nothing.
What have we gained?
We have gained earlier detection
of an entire class of errors! Now
if there is a missed check for an
empty value you will find out at
compile-time rather than run-
time. Using Maybe forces you to
be explicit about possibly-empty
values and deal with the case where
they are empty.

The user doesn’t see any null
reference exceptions; they are all
fixed before they even get outside
the developer’s computer.

I think the safe navigation operator
in Groovy/Kotlin/Fantom/Coffee-
Script is better than Maybe.
I’m going to talk about Kotlin and
Fantom separately in the next sec-
tion because they’re special.

In Groovy/CoffeeScript, the
safe navigation operator (?.) lets
you safely call a method or access
a field on an object that may be
null. If the object IS null then the
method/field just returns null as
well, instead of an exception being
thrown.

I agree that the safe navigation
operator is certainly convenient, but
it is solving a different problem. If
you compare it directly to Maybe,
it’s only solving the “retrieve value
from possibly empty object” part of
Maybe. This is a nice thing to have,
but it isn’t nearly as interesting as
moving a whole class of run-time
exceptions to compile-time.

Which is fine, it doesn’t have
to be as good as Maybe to still be
useful. Just don’t misrepresent it as
being anything more than a conve-
nient syntax for null checks.

What about Fantom & Kotlin?
Fantom and Kotlin are different
because they are both languages
that have non-nullable reference
types and have built Maybe in as a
language feature. In both languages
(Fantom, Kotlin), you can distin-
guish a reference that may hold
null by appending a ? to its type
(i.e. String?). The compiler can
then keep track of it as if it were a
Maybe<String> and is able to pre-
vent you from unsafely accessing its
contents. They provide safe naviga-
tion and elvis operators to extract
the value like Groovy does.

This is probably where opinions
will start to differ among people
who think Maybe is a good idea.

I personally am thrilled by the
steps Fantom and Kotlin have taken
and think that they are a great
solution to eliminating null refer-
ence exceptions. They use the fact
that they’ve implemented it as a
language feature to provide really
convenient and easy to understand
syntax. So easy to understand, in
fact, that it might not be obvious
that it is the same damn thing as
Maybe. The only differences are
that Fantom and Kotlin have a spe-
cial syntax for it baked in, and that
(in exchange) it is a little bit more
limited than Maybe as a library is.

The only downsides to this
approach are related to the fact that
it is specialized. When you stretch
against the limits of Maybe you
can’t drop in Either instead. You
also can’t wrap Maybes in another
Maybe (Maybe<Maybe<String>>),
which you might do when you have
nested calls that could fail.

I can’t speak to how often this
ends up being an issue for people
working in Fantom/Kotlin and what
alternatives the language pro-
vides because, frankly, I am pretty

  35

unfamiliar with them. If anyone
with experience would like to
speak up I’d be happy to add their
information to this section.

But Option in Scala DOESN’T
save you from null!
Yes, in Scala you can still get
NullPointerExceptions. Scala
doesn’t have non-nullable reference
types because Martin Odersky (for
what were probably good reasons
— I’m guessing related to java
interop) decided to include null in
his language. That doesn’t invalidate
all the other implementations of
Maybe and it doesn’t mean it can’t
still be somewhat useful in Scala.

Feel free to point out to people
that Scala’s implementation of
Option still allows for NullPointer-
Exceptions, just don’t generalize
it to “Maybe and Option aren’t
useful”.

Safety ISN’T guaranteed because
of the existence of unsafe extrac-
tion methods.
Often implementations of Maybe
will include more than just safe
extraction methods. Haskell’s
fromJust and Scala’s get are both
retrieval functions that throw run-
time errors if the value wrapped in
Maybe doesn’t exist. Just like how
null usually works.

So it is possible to shoot yourself
in the foot if you want to. The dif-
ference is you have to explicitly ask
for this behavior — it cannot sneak
in by accident.

Whenever I claim Maybe can
move null reference exceptions
to compile-time, it comes with the
assumption that you’re using the
built-in safe extraction methods
and that you’re not requesting run-
time exceptions.

Using Maybe is not worth the
overhead.
This is a hard question to answer
without getting specific. If this was
said about a specific language or
kind of application and the person
saying it has done their due dili-
gence or has some working code to
back it up, then I can’t address that
here.

If it is a less qualified statement
however, I have some counterpoints
that I can share.

➊ Bugs are expensive, even
more so the later on they

are caught.
It takes a developer time to find
and fix bugs — the more bugs, the
more time it takes. For each bug,
overhead is introduced in the form
of finding, tracking, fixing, and
testing it. Worse, bugs that make it
all the way to production impact
your users and can have even more
expensive consequences like data
corruption. For some applica-
tions, small amounts of bug-related
downtime could cost thousands (or
millions!) of dollars.

This is the whole reason why we
have test suites, type systems, static
analysis tools, code reviews, even
exceptions! We want to catch bugs
earlier.

Maybe lets you catch one of the
most common bugs, null reference
exceptions, at compile-time instead
of run-time. So if you say “it is not
worth the overhead”, think about
what null reference exceptions
are costing you first, and make sure
you really do know how much it is
worth.

Unless… you are one of those
lucky few who say that null refer-
ence exceptions really are just not
an issue for you. Maybe your other
bug prevention measures combined

are good enough and when you
tracked your faults you found you
don’t end up dealing with null ref-
erence exceptions very much. For
you guys, keep in mind that you are
probably not in the majority.

➋ There might not be as much
syntactic overhead as you

think. In many cases it actually
reduces overhead.
Languages that provide Maybe usu-
ally provide many convenient ways
to extract values which are actually
often shorter than the null checks
you would otherwise be writing.
On top of that, code that doesn’t
deal with possibly-empty values
doesn’t need to use Maybe (or
check for null!) at all.

For those of you talking about
having to mark too many properties
as optional and having to deal with
Maybe everywhere, think about
it like this: You would have had
to deal with the same amount of
possibly-empty values either way.
The only difference is that now you
have the compiler helping you out.
If your code is meant to be robust,
it will need null checks anyway. For
the cost of adding a little wrapper
around your types you can replace
those easy-to-forget null checks
with their equivalent compiler-
checked Maybe extraction methods.

You also get perfect safety and
ease of mind when dealing with
values that cannot logically be
empty.

36  PROGRAMMING

Enough vague, high-level informa-
tion. Show me some examples!
I intentionally avoided showing
examples in the explanation section
to avoid taking attention away from
the main points. For a topic like this
one, as soon as you show some code
it is like sticking a bikeshedding
magnet right in the middle of your
article. But since this post is aiming
to be a definitive reference, it could
use at least a few examples.

Another measure I am going
to be taking to avoid stirring up
unnecessary arguments is compar-
ing like with like. I will show a
scenario where null checks are
used to deal with an empty value
in a certain way, then I will show
what that example would look like
in a language with good support for
Maybe.

The languages I picked are:

■■ Java: to represent the traditional
ways of handling nulls that most
people are hopefully familiar
with.

■■ Kotlin: to represent languages
with non-nullable references and
support for Maybe baked into the
language.

■■ Haskell: to represent languages
with non-nullable references and
support for Maybe as a library.

The scenarios follow:

Dealing with it explicitly

 Java

public static void retrieveInfoExplicit() {
 String information = new Random().
nextInt(2) == 0 ? "a,b,c" : null;

 if (information == null) {
 System.out.println("No information receved.");
 } else {
 System.out.println(Arrays.
toString(parseInfo(information)));
 }
}

 Kotlin

fun retrieveInfoExplicit() : Unit {
 val information = if (Random().nextInt(2) == 0) "a,b,c" else
null

 if (information == null)
 println("No information received.")
 else
 safeParseInfo(information) forEach { println(it) }
}

 Haskell

retrieveInfoExplicit :: IO ()
retrieveInfoExplicit = do
 num <- randomRIO (0, 1)
 let information = if (num :: Int) == 0 then (Just "a,b,c")
else Nothing
 case information of
 Nothing -> putStrLn "No information retrieved."
 Just i -> putStrLn $ show $ safeParseInfo i

  37

Dealing with it implicitly

 Java

public void retrieveInfo() {
 String information = Random().
nextInt(2) == 0 ? "a,b,c" : null
 parseInfo(information);
}

 Kotlin

fun retrieveInfo() : Unit {
 val information = if (Random().
nextInt(2) == 0) "a,b,c" else null
 parseInfo(information)?.forEach {
println(it) }
}

 Haskell

retrieveInfo :: IO ()
retrieveInfo = do
 num <- randomRIO (0, 1)
 let information = if (num :: Int) == 0 then
(Just "a,b,c") else Nothing
 putStrLn $ show $ parseInfo information

Returning null as well (e.g., guard statements)

 Java

public String[] parseInfo(String information) {
 if (information == null) {
 return null;
 }

 return information.split(",");
}

 Kotlin

// Can choose to imitate java...
fun parseInfo(information : String?) :
Array<String>? {
 if (information == null) {
 return null
 }

 return information.split(",")
}

// ...Or take advantage of the safe navigation
// operator
fun parseInfo(information : String?) :
Array<String>? {
 return information?.split(",")
}

 Haskell

-- Can do it with pattern matching...
parseInfo :: Maybe String -> Maybe [String]
parseInfo Nothing = Nothing
parseInfo (Just information) = Just (splitOn ","
information)

-- ...Or with do notation...
parseInfo :: Maybe String -> Maybe [String]
parseInfo information = do i <- information
 Just (splitOn "," i)

-- ...Or with fmap
parseInfo :: Maybe String -> Maybe [String]
parseInfo information = fmap (splitOn ",")
information

Giving something a default value

Java

String name = (author == null) ? "Anonymous" :
author;

 Kotlin

val name = author ?: "Anonymous"

 Haskell

let name = fromMaybe "Anonymous" author

38  PROGRAMMING

Throwing an exception

 Java

public String[] parseInfo(String information) {
 return information.split(",");
}

 Kotlin

fun parseInfo(information : String?) :
Array<String> {
 return information!!.split(",")
}

 Haskell

parseInfo :: Maybe String -> Maybe [String]
parseInfo information = Just (splitOn "," (from-
Just information))

Not having to check for null

 Java

Does not have this option, you always have to deal
with null.

 Kotlin

// note: no ? appended to types
fun safeParseInfo(information : String) :
Array<String> {
 return information.split(",")
}

 Haskell

-- and these types are not wrapped in Maybe
safeParseInfo :: String -> [String]
safeParseInfo information = splitOn ","
information

The nice thing about this last example is that if the
code changes and this function now needs to be called
with a value that might be null, the code won’t com-
pile until the developer has revisited safeParseInfo
and explicitly chosen to deal with null in one of the
ways shown above.

In case you want to run the examples yourself:

■■ The Java examples import java.util.Arrays and
java.util.Random

■■ The Kotlin examples import java.util.Random

■■ The Haskell examples import System.Random, Data.
List.Split, and Data.Maybe

That’s it — that’s the end of both the FAQ and this
article. Hope you enjoyed it! n

Nick Knowlson is a software developer from Victoria, British
Columbia. He enjoys reading, gaming, tea and (of course) pro-
gramming. Right now he is focusing on programming languages
and language features.

Reprinted with permission of the original author.
First appeared in hn.my/maybe (nickknowlson.com)

http://hn.my/maybe

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

40  PROGRAMMING

http://twilio.com/conference

	Contents
	FEATURES
	Sacrificing Everything For My Dog
	How to Spread The Word About Your Code

	STARTUPS
	Don’t Launch Your Product
	Shenzhen Maker: Mr. Chen

	PROGRAMMING
	My Clojure Workflow, Reloaded
	Too Scared To Write A Line Of Code
	Reservoir Sampling
	How I Coded In 1985
	Why Maybe Is Better Than Null

