
Issue 41 October 2013

Najaf Ali

You Are Dangerously Bad
at Cryptography

2

Curator
Lim Cheng Soon

Contributors
Ram Rachum
Najaf Ali
Craig Gidney
Sacha Chua
Kyle MacDonald
Jeff Escalante
Jason Cohen
David Cain
Shaanan Cohney

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Stefan Hartmann

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

HACKER MoNtHLy is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. the submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Stefan Hartmann

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-41

Contents
FEATURES

04 Indescribable Numbers
By RAM RACHuM

10 You Are Dangerously Bad At Cryptography
By NAJAF ALi

PROGRAMMING

14 Breaking a Toy Hash Function
By CRAiG GiDNEy

20 How to Learn Emacs
By SACHA CHuA

22 Nginx for Developers: An Introduction
By KyLE MACDoNALD & JEFF ESCALANtE

STARTUPS

26 The Unprofitable SaaS Business Model Trap
By JASoN CoHEN

SPECIAL

30 Procrastination Is Not Laziness
By DAviD CAiN

36 The Attack
By SHAANAN CoHNEy

http://hackermonthly.com/issue-41

4 FEATURES

FEATURES

By RAM RACHuM

Indescribable Numbers

Let me open this blog post
by quoting a Zen koan
from Mumonkan, along

with the comments and poem that
Zen master Mumon added to it:

Koan:

A monk asked Zen master
Nansen, “Is there any teaching no
master has ever taught before?”
Nansen replied, “Yes, there is.”
“What is it?” asked the monk.
Nansen answered, “It is not
mind, it is not Buddha, it is not
things.”

Mumon’s comments about the
koan:

Being asked a question, old
Nansen gave away his treasure
words. He must have been greatly
upset.

Mumon’s poem about the koan:

Nansen was too kind and lost his
treasure,
Clearly words have no power.
Even though the mountain
becomes the sea,
Words cannot open another’s
mind.

Now that i’ve put you in the
mood, i’d like to tell you the story
of my theorem about “indescribable
numbers.” i can’t believe i didn’t
write about this thing years ago.
this theorem was one of the most
exciting episodes in my love affair
with math, and it’s a tale worth
telling.

the year was 2005. i was about
19 years old, with only a general
and vague idea of what i wanted
to do with my life. i enrolled to
study Electrical Engineering at the
technion, a leading university in
israel. Why did i choose Electrical
Engineering? Because (a) it sounded
science-y and (b) it was said that
there was a lot of money in it.

Contrasting my present self with
my 2005 one, the most striking
thing is how empty my mind was
from the various strong opinions
and views that inhabit it today. Not
quite the emptiness of mind that
a Zen master would aspire to, but
rather an emptiness in which the
two promises above, of scienciness
and money, were all i needed to
decide that EE was indeed for me,
at least for a little while.

 one morning i was walking
to class, or perhaps i should say

climbing; the technion, built upon
Mount Carmel, is famous for its
brutally steep slopes. i lived in
the Canada dorms, which were
located at the lowermost point in
the campus, and i had to walk up
all the way to the campus’ vertical
center. i’m not the athletic type, so
this daily ordeal left me sweaty and
tired every time i got to class.

Just as i was passing the faculty
for Civil Engineering on my right,
the first beads of sweat already
formed on my forehead, a funny
thought came to me.

that thought was: Could
there be numbers that cannot be
described?

i should explain this idea in
detail.

imagine that you’re solving a
homework problem in physics.
Say the problem introduces you
to a helium-filled balloon as it is
making its way towards the ceiling,
and you are tasked with finding its
y coordinate at t equals 3 seconds,
air resistance neglected. After some
work you come up with an answer.
if the homework in question is
given in junior high or high school,
the resulting number describing the
height is likely to be a simple one.

The theorem that made me fall in love with math

 5

Perhaps 7 meters, or 11 meters;
thanks are due to the invisible
compassion of high school physics
teachers who have a hard enough
time as it is teaching physics to
teenagers who are much more
interested in sex. the teachers,
knowing they have only a precious
modicum of the students’ atten-
tion at their disposal, compose their
problems in such a way that the
final number would be so simple,
usually an integer and in wild cases
a simple fraction, that when the
student finally hits upon it, he can
put his mind at ease. After all, if
after these complex and error-prone
calculations, fraught with quadratic
equations, you got a result of 7
meters, that’s a good enough reas-
surance as any that an error was
not made and that the answer you
came upon is the correct one.

As high school pupils become
university students and are gradu-
ally weaned from the soft and cozy
world of integers, the numerical
solutions gradually become more
complex. you could be hard at
work on a more advanced variant
of the above physics problem in
Physics 101, air resistance emphati-
cally not neglected, only to arrive at
a result of 3*Sin(57) meters, which
the last few pages of the book reas-
sure you is the correct answer.

you stare at that number,
3*Sin(57), or 2.516011703836(...)
in all its decimal glory, and you
imagine the fictional God of that
fictional universe who placed each
and every one of the sextillions of
helium atoms in that balloon in just
the right position, so that when t
equals 3 seconds, the height of the
center mass of the balloon would
be at precisely 3*Sin(57) meters,
to the last of its infinite digits. And
you realize, of course, that this

invisibly compassionate God is
nothing more than a braver version
of the invisibly compassionate high
school teacher, who was so careful
not to frighten you with an unholy
number such as -6.33333.

So you imagine what a real God
would do, and what the real height
of a real helium balloon would
be. Since we’re dealing with pure
math, where two numbers would
be absolutely different even if they
differ from one another only in the
billionth digit, it is obvious that
physical experiments are not going
to help us here. We turn to thought
experiments instead.

We imagine a real God, creating
a real balloon with sextillions of
real helium atoms, each of which
is emphatically apathetic to our
desire for beautiful numbers as
our solution. And we imagine that
balloon at t equals 3 seconds. We
think, what would be its height?
Definitely not 3*Sin(57) meters.
there is no chance in hell that
the solution would be as pretty as
that. in fact, intuition tells us that
the number would be as ugly a
number as we’ve ever seen. Next
to that number, 3*Sin(57) or even
3*Sin(57)^74*Arctan(0.42^3.5)
would look as pathetically simple
as 7. No, that number would be so
ugly, that…that there won’t even
be a way to describe it. And now
we’re finally reaching the original
thought with which i opened this
discussion: indescribable numbers.

Let me humbly take upon myself
the job of being that real God of
that apathetic universe; and let
me hereby declare, with the full
power of my omnipotence, that the
height of the balloon in meters is, as
suspected, not 3*Sin(57), but rather
the following number:

3.74936850968347125220391
27(...)

yes, be impressed by the glory of
these digits that i have created in
my infinite wisdom; look at them
and wonder what pattern might
lie behind them, knowing full well
that i am too terrible a God to
have planted there any pattern you
might be able to understand with
your limited human mind; stare
imploringly into the siren call of the
final ellipsis, for you know that no
matter how often you expand it, i
will always smile when giving you
more and more digits, because you
and i will both know that the final
wisdom of the Number will always
be mine and never yours.

Please excuse me, it’s not that
often that i get to be an omnipotent
being and i’d like to have fun with
it as long as it lasts. i’ll retire now
and join you in the pathetic human
race.

 So the question is: Are there
really such numbers as 3.749(...),
whose pattern is not only unknown
to us, but could never be known
and will forever be beyond the
grasp of us mere mortals? Could
there be a number that simply
cannot be described by any means
known to us? A number which is
definitely not an integer, obviously
not rational, desperately not alge-
braic; we know that it is at some
innocuous-looking spot on the
line of real numbers, somewhere
between honest old 3.749 and

6 FEATURES

honest old 3.750, but we know that
it is a different creature entirely
than these two model citizens of
the Reals. our number carries
secrets infinitely more profound,
and therefore we know that unlike
the above duo, we’ll never be able
to pinpoint the exact spot in which
this number resides. Like a tele-
phone number that is unlisted in
the yellow Pages; if God didn’t give
you the number as he spoke from
behind a burning bush, you’ll never
find it using the scientific method.

those were my thoughts as i was
wiping sweat off of my forehead
and passing the faculty for Civil
Engineering. Being 19, my math-
ematical mind not yet fully devel-
oped, i thought: What an inter-
esting philosophical conundrum.
that’s pretty cool. i doubt it could
ever be solved though; yet another
unanswered, vague philosophi-
cal question in the long history of
unanswered, vague philosophical
questions. i got to class, i believe it
was Calculus, and concentrated on
that instead.

Fast forward a few months.

i was into my second semester
by now, which would prove to be
my final semester. i had a little bit
more training in math, given to me
not only in the courses i’ve taken,
but also from random math-related
articles i would read on the web.

it was morning again.
i was taking my usual morning

climb from Canada dorms to class,
passing Civil Engineering on my
right.

that is when the answer came to
me. As Zen master Mumon would
say: At that moment, I became
enlightened.

i found an answer to the ques-
tion of indescribable numbers, and
i found a mathematical proof to
the answer. i managed to take this
philosophical question, so vague
and soft, and not only define it
mathematically, but find an actual
goddamned water-tight proof to vali-
date my answer.

i was amazed. i was shaken. i
could hardly believe this was really
happening.

the answer to the question is
this: yes, there are such things as
indescribable numbers. in fact,
the vast majority of real numbers
are indescribable, and only a tiny
fraction of real numbers are of the
familiar describable variety.

Holy shit.
i didn’t really know what to do

with this. is my proof even right?
Did i just make a first-rate scien-
tific discovery? Perhaps i’ve redis-
covered a known truth, perhaps a
theorem my Calculus 3 teacher will
teach to us next semester as my
classmates will yawn and doodle
in their notebooks? Perhaps i am
simply deranged?

then i got an idea who to turn
to: My Calculus 2 teacher. He was
a friendly old man. He was clumsy,
had a huge unkempt beard, and his
great love and fascination for math
showed through in our Calculus 2
lectures. He was your classic math
professor. i would later learn that
he was originally from Australia,
which helped explain how clumsily
energetic he was.

“The vast majority of real numbers
are indescribable, and only a tiny
fraction of real numbers are of
the familiar describable variety.”

 7

i found his love for math con-
tagious, even when it was hard for
me to keep up with the technical
aspects, which was often. My fellow
Electrical Engineering students,
more enchanted by the promise
of great money in EE rather than
a love for science, were less coop-
erative with him. it was sad to see
someone so passionate trying to
inspire those who simply did not
want to be inspired. (No disrespect
intended to these students; i love
money too.)

After the class ended, and all the
students were putting their note-
books back in their backpacks and
leaving, i went to the professor’s
desk. He was packing as well. i told
him i had a mathematical thought
that i didn’t really know what to
do with. He was intrigued. He was
too busy at that time to continue
the conversation, but he told me to
email him, and via email we set a
time for an appointment.

i arrived at his office. it was small
and cramped and incredibly messy.
there were boxes of papers every-
where. Fortunately, there was a
whiteboard.

i was excited. i’ve never been to a
professor’s office before. i’ve never
had a serious conversation about
math before with someone who
could be actually considered an
expert in it. i tunneled my energies
of excitement to making sure that
i’m explaining the original question
and my proof in a clear, calm, but
relentlessly watertight way.

i will recreate the explanation of
the proof for you now, leaving out
the more technical parts.

the proof is not complex; any
BSc of Mathematics would under-
stand it quite easily.

the only way us humans have
of describing numbers is using
language. Sometimes that could be
a non-math-specific language like
English. For example, “seven” is a
description of 7; “the sum of ten
and three” is 13; and “the ratio of a
circle’s circumference to its diam-
eter” is a concise expression of Pi.

Quite often though, we prefer to
describe numbers using mathemati-
cal language. “7” is a simple number
described by that language. our
previous acquaintance “3*Sin(57)”
is a more complicated one, and
“3*Sin(57)^74*Arctan(0.42^3.5)”
is an even more impressive
specimen.

this mathematical language
is more powerful for describing
numbers than the English language,
but it’s still a language; every such
description of a number is just a
finite string of symbols, taken from
a finite pool of available symbols:
“3”, then “*”, then “S”, then “i”, then
“n”, then “(”, then “5”, then “7”,
and finally “)”. Descriptions can get
much longer than that, as long as
they’re finite. But there is an infinite
number of descriptions, since we
can combine symbols in infinite
many ways to make descriptions as
long as we want.

Now this is where things start to
get interesting. i’ll try not to get too
technical.

in math, we have several differ-
ent kinds of infinity. the smallest
kind is “countable infinity” also
known as Aleph zero. it is the infin-
ity of natural numbers, the infinity
of 0, 1, 2, 3…

the infinity just a step bigger
than it is Aleph one, the infinity
of real numbers: the infinity of an
impossibly dense line of numbers,
between each two, no matter how
close, resides yet another infinite
spectrum of numbers, itself bigger
than the previously mentioned
infinity of natural numbers.

“The experience of having taken a vague phil-
osophical question, and using the precise
machinery of math to state it rigorously and
then actually prove it, was amazing for me.”

8 FEATURES

it is well proven that Aleph one,
which is the infinity of the real
numbers, is undeniably bigger than
the infinity of the natural numbers.
What this means, is that you can
never “cover” the real numbers with
the natural numbers. in technical
terms, you can’t have a surjective
mapping from the set of naturals
to the set of reals. in more intuitive
terms, if you try to pair up each
natural number to a real number,
you will run out of natural num-
bers way before you’ll run out of
real numbers. (We can never really
imagine the moment where we’ve
run out of natural numbers, since
there are an infinity of them… But
bear in mind that the set of real
numbers is “even more infinite,” and
that’s the closest i can give you to
an intuitive description.)

Let’s get back to describing num-
bers. We’ve said that our descrip-
tions of numbers using mathemati-
cal language are nothing but finite
strings of a finite language. there’s
infinitely many of them, but that
infinity can be easily shown to be
Aleph zero, the smallest infinity.
Just consider that any such descrip-
tion, like “3*Sin(57)”, could be
saved as a text file on a computer,
and every file on a computer is just
ones and zeroes.

However, the real numbers have
the bigger infinity of Aleph one.
you can feel the proof forming,
can’t you?

When we take a description
like “3*Sin(57)”, we know it has
an obvious counterpart in the
set of real numbers: the number
it’s describing, the very real
number close to 2.51. We can
in fact pair every such descrip-
tion to the number it describes.
“7” could be paired with the
number 7, and the venerable

“3*Sin(57)^74*Arctan(0.42^3.5)”
will also be paired with the number
it describes. We’re in effect pair-
ing up each member of the set of
descriptions to a member in the set
of real numbers.

But, remember what we said
before, that if you try to pair up an
infinite set of size Aleph zero with
an infinite set of size Aleph one,
you will never be able to cover the
entire Aleph one set. there will
always be unfortunate members
in that bigger set that would be
left without a counterpart in the
smaller set.

Those unfortunate members are
indescribable numbers.

Why? Because consider what
they are: they are real numbers,
for which we have just proven it
is impossible to find a description
that will match them. We have
proven that no description will ever
describe them.

We have proven that inde-
scribable numbers exist. Q.E.D.,
and please someone hand me a
cigarette.

i explained all this to the profes-
sor. He asked a bunch of questions,
and i managed to answer all of
them without having an “oh shit,
you just discovered a critical flaw in
my proof, my entire proof is wrong
now fuck me” moment. At the
end, when he was quite convinced
that my proof was correct, he said
something along the lines of “that’s
pretty cool.” He said he was unfa-
miliar with this area of mathemat-
ics, but that he thought my proof
was correct and really interesting.

i felt so proud. i managed to find
a proof that impressed not only me,
but a genuine crazy math professor!
i’m smart!!!

the professor arranged an
appointment for me with a differ-
ent professor who did specialize
in logic, and was familiar with my
theorem. He said that my theorem
and proof have been well known to
logicians since the 1940s. He was
still impressed that i was able to
prove them despite being a first-
year Electrical Engineering student.

i was a bit saddened that my
theorem was old stuff for logicians
and not a new discovery. there goes
my Nobel Prize…

But i was still so happy just to
have found the proof. the expe-
rience of having taken a vague
philosophical question, and using
the precise machinery of math to
state it rigorously and then actually
prove it, was amazing for me. it was
like discovering a net with which
i managed to catch a beautiful
butterfly. imagining those indescrib-
able numbers out there, the math-
ematical equivalent of dark matter,
occupying most of the space in the
set of real numbers despite being
completely invisible and unattain-
able… i was in love with math.

that episode was one of the rea-
sons that i quit Electrical Engineer-
ing and spent the next 2 years of
my life studying mathematics. But
that’s another story :) n

Ram Rachum is a freelance software
developer based in Tel-Aviv, Israel. He
works almost exclusively in Python. He
loves nothing more than stripping bullshit
away until all that is left is the unembel-
lished truth.

Reprinted with permission of the original author.
First appeared in hn.my/indescribable (ram.rachum.com)

http://hn.my/indescribable

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

10 FEATURES

By NAJAF ALi

the four stages of competence:

1. Unconscious incompetence: When you don’t know
how bad you are or what you don’t know.

2. Conscious incompetence: When you know how bad
you are and know what steps you need to take to
get better.

3. Conscious competence: When you’re good and you
know it (this is fun!)

4. Unconscious competence: When you’re so good
you don’t know it anymore.

We all start at stage one whether we like it or not.
the key to progressing from stage one to stage two in
any subject is to make lots of mistakes and get feed-
back. if you’re getting feedback, you begin to create a
picture of what you got right, what you got wrong and
what you need to do better next time.

Cryptography is perilous because you get no feed-
back when you mess up. For the average developer, one
block of random base 64 encoded bytes is as good as
any other.

you can get good at programming by accident.
if your code doesn’t compile, doesn’t do what you
intended it to or has easily observable bugs, you get
immediate feedback, you fix it and you make it better
next time.

you cannot get good at cryptography by accident.
unless you put time and effort into reading about and
implementing exploits, your home-grown cryptogra-
phy-based security mechanisms don’t stand much of a
chance against real-world attacks.

unless you pay a security expert who knows how to
break cryptography-based security mechanisms, you
have no way of knowing that your code is insecure.
Attackers who bypass your security mechanism aren’t
going to help you with this either (their best case is
bypassing it without you ever finding out).

take a look at some examples of misused crypto
below. Ask yourself, if you hadn’t read this post, would
you have caught these errors in real life?

Authenticating the API for your photo sharing
website

Message Authentication with md5 + secret
once upon a time, a photo sharing site authenticated
its APi with the following scheme:

 n users have the following two credentials:

A public user id that they use to identify them-
selves (safe to send in the clear)

A shared secret that they use to sign messages
(must be kept private)

You Are Dangerously
Bad At Cryptography

 11

 n the user makes APi requests over HttP/HttPS (it
doesn’t matter). Destructive changes are made using
a PoSt/GEt request with specific parameters (e.g. {
action: create, name: 'my-new-photo' }).

 n to authenticate the message, the user sends their
user id as a parameter, and then signs the message
with their secret key. the signature is the md5 of the
shared secret concatenated with the key-value pairs.

to check that the client is the user he claims to be,
the server generates the signature from the request
parameters and the secret key it has on file for that
user.

the code for this could be:

CLIENT SIDE

require 'openssl'

Our user credentials
user_id = '42'
secret = 'OKniSLvKZFkOhlo16RoTDg0D2v1QSBQvGll1h
HflMeO77nWesPW+YiwUBy5a'

The request params we want to send
params = { foo: 'bar', bar: 'baz', user_id:
user_id }

Build the MAC
message = params.each.map { |key, value|
"#{key}:#{value}" }.join('&')
params[:mac] = OpenSSL::Digest::MD5.
hexdigest(secret + message)

Then send the request via something like...
HTTP.post 'api.example.com/v3', params

SERVER SIDE

Grab the user credentials out of the DB
user = User.find(params[:user_id])
secret = user.secret

Get the MAC out of the request params
challenge_mac = params.delete(:mac)

Calculate the MAC using the same method the
client uses
message = params.each.map { |key, value|
"#{key}:#{value}" }.join('&')
calculated_mac = OpenSSL::Digest::MD5.
hexdigest(secret + message)

Compare the challenge and calculated MAC
if challenge_mac == calculated_mac
 # The user authenticates successfully, do what
 # they ask
else
 # The user is not authenticated, fail
end

With a basic understanding of how md5 works,
this is a perfectly reasonable implementation of APi
authentication. that looks secure, right? Are you sure?

it turns out that this scheme is vulnerable to what’s
called a length extension attack.

Briefly:

 n if you know the value of md5('foo'), due to the way
md5 works, it’s trivial to compute md5('foobar'),
without knowing the prefix “foo”.

 n So if you know the value of md5('secretfoo:bar'),
it’s trivial to compute md5(secretfoo:bar&bar:baz)
without knowing the prefix “secret”.

 n this means that as long as you have one example
of a signed message, you can forge signatures for
that message plus any arbitrary request parameters
you like and they will authenticate under the above
described scheme.

Any developer who didn’t know about this before-
hand would have easily been caught out. the develop-
ers at Flickr, vimeo and Remember the Milk rolled this
out to production.

the point isn’t that you should know about every
esoteric detail of the internals of cryptographic func-
tions. the point is there are a million ways to mess up
cryptography, so don’t touch it.

Not convinced? oK, let’s try fixing this example and
see if we can make it secure...

12 FEATURES

Message Authenticating with HMAC
you hear about this security vulnerability via your
friendly neighbourhood whitehat and he recommends
that you use a Hash-based Message Authentication
Code or HMAC to authenticate your APi requests.

Great! HMAC’s are designed for our use case. this
is a drop-in replacement for what you were doing to
verify the signature before. our server verification code
can now look like this:

require 'openssl'

Grab the user credentials out of the DB
user = User.find(params[:user_id])
secret = user.secret

Get the MAC out of the request params
challenge_mac = params.delete(:hmac)

Calculate the HMAC
We'll do the same thing on the client when we
generate the challenge
message = params.each.map { |key, value|
"#{key}:#{value}" }.join('&')
calculated_hmac = OpenSSL::HMAC.
hexdigest(OpenSSL::Digest.new('md5'), secret,
message)

Compare the challenge and calculated MAC
if challenge_hmac == calculated_hmac
 # The user authenticates successfully, do what
 # they ask
else
 # The user is not authenticated, fail
end

that looks secure, right? Are you sure?
it turns out that the verification code above is vul-

nerable to a timing attack that allows you to guess the
correct MAC for a given message.

Briefly:

 n For a given message, attempt to send it with a
HMAC of all one single character. Do this once for
each ASCii char (e.g. “aaaa...”, “bbbb...”, etc.).

 n Measure the time each request takes to complete.
Since string equality takes a tiny bit longer to com-
plete when the first char matches, the message that
takes the longest to return will have the correct first
character.

 n Smooth out noise from latency in two ways:

Run a couple of hundred or thousand requests for
each guess to get an average time.

Run your timing attack code from within the same
data centre. if you’re having trouble determining
the data centre, in the worst case you can spin up
a box at each of the major providers and find out
which box takes significantly less time to ping the
target server.

 n once you’ve determined the first character, repeat
for the second by changing the second char onwards
(e.g. if “x” is the first char, try “xaaa...”, “xbbb...”, etc.).

 n Keep going until you have the whole HMAC.

 n using the above defined technique, you can reliably
determine the HMAC of any message you want to
send to the APi and authenticate successfully.

Again, perhaps you didn’t know about timing attacks
and you’re not expected to. the point isn’t that you
should have known the details of specific vulnerabili-
ties and watched out for them. the point is that there
are a million ways to mess up cryptography, so don’t
touch it.

All the same, let’s go ahead and try to make this
more secure...

 13

Verifying HMACs in a time-insensitive way
you get around timing attacks by comparing the sent
and computed MAC in a time-insensitive way. this
means you can’t rely on your programming languages
built in string equality operator, as it will return imme-
diately when it finds a single character difference.

to compare strings, we can take advantage of the fact
that any byte XoRed with itself is 0. All we have to do
is XoR each byte from string A with the correspond-
ing byte from string B, sum the resulting bytes and
return true if the result is 0, false otherwise. in Ruby,
that might look like this:

require 'openssl'

Time insensitve string equality function
def secure_equals?(a, b)
 return false if a.length != b.length
 a.bytes.zip(b.bytes).inject(0) { |sum, (a, b)|
sum |= a ^ b } == 0
end

Grab the user credentials out of the DB
user = User.find(params[:user_id])
secret = user.secret

Get the MAC out of the request params
challenge_hmac = params.delete(:hmac)

Calculate the HMAC
We'll do the same thing on the client when we
generate the challenge
message = params.each.map { |key, value|
"#{key}:#{value}" }.join('&')
calculated_hmac = OpenSSL::HMAC.
hexdigest(OpenSSL::Digest.new('md5'), secret,
message)

Compare the challenge and calculated MAC
if secure_equals?(challenge_hmac, calculated_
hmac)
 # The user authenticates successfully, do what
 # they ask
else
 # The user is not authenticated, fail
end

that looks secure, right? Are you sure?
i doubt it. it marks the edge of my knowledge in

terms of potential attack vectors on this sort of scheme,
but i’m not convinced that there’s no way to break it.

Save yourself the trouble. Don’t use cryptography. it
is plutonium. there are millions of ways to mess it up
and precious few ways of getting it right.

P.S. if you must verify HMACs by hand
and you have activesupport handy, you’ll get
that time-insensitive comparison from using
ActiveSupport::MessageVerifier. Don’t code it from
scratch, and for crying out loud don’t copy-paste my
implementation above.

P.P.S. Still not convinced? Do the Matasano Crypto
Challenges [hn.my/matasano] and see if that doesn’t
change your mind. i’m not half way through and i’ve
already had to get in touch with two former clients to
fix their broken crypto. n

Najaf Ali is an independent technical consultant based in London,
UK. He helps startups and small businesses build better software.

Reprinted with permission of the original author.
First appeared in hn.my/crypto (happybearsoftware.com)

Illustration by Stefan Hartmann.

http://hn.my/matasano
http://hn.my/crypto

14 PROGRAMMING

PROGRAMMING

By CRAiG GiDNEy

you probably know that hash functions can be
used to protect passwords. the idea is that
someone with access to the hash can’t figure

out the corresponding password, but can use the hash
to recognize that password when it is received. this is
really, really useful in cases where attackers have access
to your source code and your data.

For example, consider WarCraft 3 maps (essentially
little self-contained games). Maps specify terrain, units,
code, etc. but can’t access the internet, the file system,
or even the current time. Anyone who has a map
knows every detail of how it works, if they care to look.
if you want to make a map that recognizes a password,
perhaps to give yourself some sort of unfair admin
powers as a joke, you’ll want to protect that password
so that people who look inside the map won’t be able
to play the joke on you.

in fact, years ago, i happened across exactly that
sort of thing: a bit of JASS code that hashes the user’s
name and a password in order to recognize the map
maker and a couple of their friends. However, the hash
function being used was created by a friend of the map
maker. it is not a standard cryptographic hash function.

one of the standard refrains in cryptography is “Do
not write your own crypto.” Given that this person
wrote their own crypto, i wondered if i could break
their hash function. i tried a bit and gave up, but the
problem stayed in the back of my mind. Every year or
so i’d get the urge to go back and try again, waste a day
messing with it, and give up again.

this year, i finally succeeded. i reversed the pass-
word, and all three usernames.

Note that i am not a cryptographer. the way i broke
this function is probably… naive. i assume that, to a
real cryptographer, this function is a toy to be crushed
in an hour (“Ha! Just use X!”).

Nevertheless, i broke the hash function and i’m
going to explain how.

The Hash Function
Given that most readers won’t know the intricacies of
obfuscated JASS, i’ve taken the liberty of translating
the hash function to C#:

static Tuple<Int32, Int32> Hash(string text) {
 var charSet="abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
`~!@#$%^&*()_+-=|[];',.{}:<>? ";
 Int32 a = 0;
 Int32 b = 0;
 foreach (var letter in text) {
 var e = charSet.IndexOf(letter);
 if (e == -1) e = charSet.Length + 1;
 for (var i = 0; i < 17; i++) {
 a = a *-6 + b + 0x74FA - e;
 b = b / 3 + a + 0x81BE - e;
 }
 }
 return Tuple.Create(a, b);
}

Breaking a
Toy Hash Function

 15

As you can see, the state of the hash function is
made up of two 32-bit signed integers (a,b) that both
start out as 0. the input is a sequence of characters,
drawn from 93 possibilities. Each character from the
input is mixed into the state over a progression of 17
rounds and, when the last character has been mixed in,
the result is just the final state of (a,b).

Note that addition and multiplication are unchecked
(e.g. int32.Maxvalue+1 = int32.Minvalue, int32.Max-
value*2 = -2) and division rounds towards 0 (e.g. -4/3=
-1, 7/3 = 2).

in addition to the hash function, here is translated
code to verify that a username/password combination
is valid:

static bool Verify(string username, string pass-
word) {
 var expectedPassHash = Tuple.Create(-
0x20741256, -0x4A579222);
 var expectedNameHashes = new[] {
 Tuple.Create(-0x52BEB283, -0x733C9599),
 Tuple.Create(0x605D4A4F, 0x7EDDB1E5),
 Tuple.Create(0x3D10F092, 0x60084719)
 };

 var passHash = Hash(password);
 var nameHash = Hash(username);
 return password.StartsWith("<+")
 && passHash.Equals(expectedPassHash)
 && expectedNameHashes.
Contains(nameHash);
}

As you can see, both the valid usernames and the
valid password are protected by hashing them. Also,
the first two characters of the password are included in
the code.

Side Note: Although it might seem dumb to give
away some of the password’s characters, it’s actually
a good idea given the context. the prefix is used as a
filter for the chat event that triggers the hashing, to
avoid hashing every single chat message said by anyone.
the filter also allows the game to avoid secretly sharing
all team messages with opponents. (they need to know
something matching the filter was said in order to run
the chat event trigger, and they need to know what was
said in order to feed the right information into the hash
function. otherwise they can’t advance in lockstep.)

our goal is to find a username and a password that
make verify return true.

Leaking Entropy
the first thing to notice about the above function
that suggests it should be easy to break, is that it leaks
entropy. it is using non-reversible operations, which
decrease the number of states the system might be in.

to make it easier to talk about that, here’s a spread
out version of the internal loop, with the multiplication
by -6 factored and the division by 3 split into rounding
followed by inverse-multiplying.

a *= 2;
a *= -3;
a += b;
a += 0x74FA;
a -= e;
b -= b % 3; // round to multiple of 3, towards 0
b *= -1431655765; // multiplicative inverse of 3
(mod 2^32)
b += a;
b += 0x81BE;
b -= e;

When working in modular arithmetic, some mul-
tiplications are reversible (do not leak entropy), but
others aren’t.

Multiplying a 32-bit integer by 3 does not decrease
the amount of entropy because it is reversible. Every
input state corresponds to exactly one output state.
you can even efficiently run the operation back-
wards by multiplying by the modular multiplicative
inverse of 3. the multiplicative inverse of 3 is 3 · 1=
-1431655765 (mod 232) because multiplying them
together gives a result equivalent to one: 3 · 3-1 = 3 ·
-1431655765 = -42846795 = -232 + 1 = 1 (mod 232).

Multiplying by 2 is Not reversible. it does decrease
the amount of entropy. this happens because (x + 231)
· 2 = x · 2 + 232 = x · 2 (mod 232), meaning both inputs
of either x or x + 231 are collided into the single output
of 2 * x. in the worst case this limits the possible
number of output states to be half the number of input
states, destroying 1 bit of entropy. Many inputs map to
one output, so the operation is not reversible and leaks
entropy.

the other non-reversible operation is rounding to
the nearest multiple of 3 towards 0. in the worst case
this destroys about 1.5 bits of entropy, reducing the
number of possible states by about a third.

16 PROGRAMMING

these leaks occur every single round, and it’s pos-
sible for their cumulative effects to be very bad. it’s
a bit like those “mixing tank” problems you solve
when learning differential equations, except the input
mixture keeps changing color. if the tank is leaking
then the contributions of the early colors to the aver-
age color decrease exponentially, instead of linearly, as
more colors are added.

these leaks make me suspect that earlier values are
in danger of “diluting away.” Every round destroys a
couple bits and replaces them with mixtures of the
remaining entropy. Later values don’t get destroyed and
mixed much, but early ones do. Maybe, to find a preim-
age, i only have to care about the last few characters
instead of all the characters. Maybe, to find a collision,
i can significantly increase my chances by adding the
same long suffix to any two starting strings.

it turns out that these leaks weren’t devastating, but
they really shouldn’t have existed in the first place.
Fixing the leak caused by multiplying by -6 is as easy as
changing 6 to 7. Fixing the leak caused by rounding to
a multiple of 3 is also easy: just remove the rounding.

Wait, no, that last idea is terrible.

Almost Linear
All of the operations in the hash function, except
rounding to a multiple of three, are linear. they distrib-
ute over addition.

if we removed the rounding operation, the contribu-
tions of every input could be separated and reduced
to a single multiplicative constant that depended only
on the position relative to the end of the string. Each
input value would be multiplied by the constant cor-
responding to its position, you’d sum up the products,
and that’d be the result of hashing. Suddenly, finding
an input that hashes to a given value would be like
solving the subset sum problem, and there'd be all this
structure we might be able to take advantage of to save
huge amounts of time.

Fun fact: if you fixed the entropy leak due to the
rounding (by removing it), but didn’t fix the leak due
to the multiplication by -6, you’d have made things
far, far worse. the constants corresponding to positions
would keep gaining factors of two. ultimately, only the
last four characters would get non-zero corresponding
constants and collisions would be somewhat easier to
find.

it’s interesting that the operation that rounds b to be
a multiple of three affects the state very little. it offsets
it by at most 2, but that little tweak is the only reason
reversing the hash function is difficult. of course, in a
properly designed hash function, the non-linearities are
reversible and their effects are not tiny tweaks to state
(e.g. they might XoR a into b instead of adding a into
b, presumably flipping half of b’s bits).

the fact that the non-linearity is so small made me
wonder if i could just apply integer programming to
the problem. Presumably integer constraint solvers are
super-fast when there’s this sort of regularity. that did
not go well.

integer constraint solvers are not designed with
modular arithmetic in mind. Every solver i used failed
to reverse even three of the seventeen rounds needed
to process a single character, because the solutions
required values that exceeded the solvers’ valid range.
Confusingly, the solvers mostly just claimed “no solu-
tion”. the only solver that actually told me i was
going out of range, instead of pretending there was no
solution, was iBM’s CPLEX. i hereby award them one
competence point.

i also tried extracting the non-linearities by rear-
ranging the code by hand. i took this way, way too far
before giving up.

Meet in the Spring
Eventually, i figured maybe i should try the obvious
thing and brute-force the answer.

First, i tried just enumerating all inputs. this starts
getting pretty slow once you get to five characters,
since there are 93 possibilities for each character and
935 = 6956883693 ≈ 1010. With that many possibilities
to check, every additional operation needed to check
a single possibility is adding at least a second to your
running time (and hashing involves hundreds of opera-
tions). At six characters that goes up to a hundred sec-
onds per operation, and you’ll be left waiting for days.

Second, i tried to meet in the middle.
Because the entirety of the hash function’s state is

used as its output, it’s possible to run it backwards (this
is slower, though). Just do the inverse of each opera-
tion. this allows you to explore both forwards and
backwards, while trying to find common middle states.

 17

to say that this gives a performance boost is a bit of
an understatement. instead of using almost a trillion
hash operations to try all possible six character strings,
we’re only going to spend a million hash operations
and a million reverse-hash operations. the million hash
operations are used to try all possible three character
prefixes, building a dictionary that takes a reached state
and tells you the prefix that reaches it. the million
reverse hash operations are used to try all possible
three character suffixes, telling you which intermediate
states can be reached by exploring backwards from the
end state. if there’s a path from the start point to the
end point, then one of the states reached by traveling
backwards will be in the dictionary, and you’re done.

i used meeting in the middle to go from searching all
five character strings to all six character strings. i didn’t
bother with seven because my machine would go out
of memory trying to store all the four-character states.

third, i decided to use a bloom filter instead of a
dictionary to store the middle states. Now, instead of
immediately getting a solution when i found a match
in the middle, each match was a possible solution that
i could verify later on by re-exploring the possible
prefixes.

Why is it worth sacrificing the immediate result to
go from three “cached” rounds to four cached rounds?
Because every cached round is effectively a 100-fold
speedup. i could even have gone to five cached rounds,
if my machine had more than 4 gigs of memory (the
bloom filters had to be quite large to accommodate the
hundreds of millions of items while maintaining low
false-positive rates).

Fourth, i tried tracking integer constraints. i knew
a lot of constraints that intermediate states had to
satisfy, so i checked them constantly and discarded
states that didn’t fit. When i measured how much this
was reducing the search space, it was a staggering 50%
per reverse-round. i assumed most of this was being
burned countering the search space increasing as irre-
versible operations had multiple possible inputs.

At this point i found my first result, which i could
have found earlier if i’d just let things run longer. one
of the usernames only had seven characters: “Procyon”.
However, i was still hitting a massive time investment
wall. Checking all those constraints took time.

then i realized the 50% reduction in search space
from the constraints was wrong. it turned out that
the constraints were just catching what would have
been caught by the very next reverse-multiplication
or reverse-division-by-3. the constraints were actually
achieving a... 0% reduction. Whoops. Removing them
sped things up quite a bit, allowing me to search all 9
character strings.

Finally, i realized that i should switch the direction
of caching. Going backwards was more expensive than
going forwards, and i was memory-limited to cach-
ing fewer rounds than i was exploring from the other
direction. Caching the results of going backwards,
instead of going forwards, would reduce the amount
of reverse hash operations and allow me to search all
strings up to ten characters as long as i was willing to
wait a couple days while my laptop chugged away.

Collision
We’ve finally reached the weakness i ultimately used to
beat the hash function: the size of its output.

the output size is 64 bits, which allows a bit more
than 1019 possibilities. i can search through every string
up to ten characters (with 93 possibilities per charac-
ter), which is 9310 possibilities. that’s about five times
1019.

Right. At this point it doesn’t matter how long the
real password is. By pure brute luck, i’m going to
stumble onto strings that hash to the same thing.

My work is done. i just need to let the computer
churn.

18 PROGRAMMING

Code
this is the code i used to break the hash function:

/// Returns a given start state and a sequence of values of the given length that reach the given
/// end state. If not such sequence exists, returns null.
public static Tuple<HashState, int[]> Break(HashState end,
 int assumedLength,
 IEnumerable<HashState> startStates) {
 // generate bloom filter going backwards from end
 var numExpandBackward = (assumedLength - 1).Min((assumedLength * 2) / 3).Max(0).Min(4);
 var filter = HashStateBloomFilter.GenReverseCache(end, numExpandBackward, pFalsePositive: 0.0001);

 // explore forward from starts to filter, discard states that don't match
 var possiblePartialSolutions =
 from start in startStates
 from midStateAndData in start.ExploreTraceVolatile(assumedLength - numExpandBackward)
 where filter.MayContain(midStateAndData.Item1)
 select new { start, data = midStateAndData.Item2.ToArray(), end = midStateAndData.Item1 };

 // base case: not enough length to bother meeting in the middle.
 // Partials are actually complete solutions.
 if (numExpandBackward == 0) {
 return possiblePartialSolutions
 .Select(e => Tuple.Create(e.start, e.data))
 .FirstOrDefault();
 }

 // we don't want to wait for all possible partial solutions before checking. That would take
 // tons of memory. we also don't want to check after every single possible partial solution,
 // because that's expensive. so we partition possible solutions and check whenever there's
 // enough to make it worth the time.
 var partitions = possiblePartialSolutions.PartitionVolatile(10000);

 // complete any partial solutions
 var solutions =
 from partition in partitions
 let partialSolutionMap = partition.ToDictionary(e => e.end, e => e)
 // recursively solve the gap
 let secondHalf = Break(end, numExpandBackward, partialSolutionMap.Keys, true)
 where secondHalf != null
 // Anything reaching here is a solution. Combine it with the first half and return it.
 let partialSolution = partialSolutionMap[secondHalf.Item1]
 let start = partialSolution.start
 let data = partialSolution.data.Concat(secondHalf.Item2).ToArray()
 select Tuple.Create(start, data);

 // actually run the queries
 return solutions.FirstOrDefault();
}

 19

the code on the previous page makes a bloom filter
containing states that can reach the end by adding a
suffix of some length (up to 4). it then iterates over pre-
fixes of the complementary length, noting any that match
the filter. once it has ten thousand matching prefixes,
or runs out, it recursively tries to break the gap from the
states reached by matching prefixes to the end state. if it
finds a way to break the gap, the correct prefix is paired
with the gap solution in order to make a full solution.
otherwise it keeps going until it runs out of prefixes.

Note that the code is not optimized very much. in
particular, it’s using Linq queries instead of the equiva-
lent imperative code. As far as i know, neither the C#
compiler not the .Net jit optimize them particularly
well, and so the code is paying for tons of virtual func-
tion calls when it doesn’t have to. on the other hand,
the equivalent imperative code is stupidly hard to get
right because you end up mixing everything together
in a big jumble. (i spent my time doing other things
while the computer did the tedious work.)

Solutions
After about two days of computing, and one dead
laptop, the code returned a password that matched the
password hash. the password is “<+nt1AkgbMht” (or
rather, <+nt1AkgbMht is a string that hashes to the
same thing as the true password). if you’re wondering
why the password has 12 characters, when i said i was
searching 10, recall that the first two characters of the
password were given away in the JASS code. i searched
10 additional characters.

(it’s tempting to pretend i didn’t know those two
characters, because 9312 ≈ 1024, so i could say i literally
searched a trillion trillion possibilities.)

After another three days, i had both remaining user-
names. these are clearly collisions, instead of the actual
names, but here they are nonetheless: “hRlGz%W3&R”
and “b>4FXv’Xf8” match the first and third hashed
usernames respectively (the second was “Procyon”).

My Reward
With the solutions in hand i can finally download
Phase Killer, play it in single player with a profile called
“Procyon”, say “<+nt1AkgbMht” and see... a “vALiD”
message.

 Worth it.

Summary
things we’ve learned about writing hash functions:

 n Don’t write your own hash function.

 n Don’t leak entropy. All round operations should be
reversible.

 n Don’t use the hash’s entire state as its result. Run-
ning backwards from the result should be hard. (See
also: length extension attack.)

 n use non-linear combinations of operations and apply
them a lot. the effects of each input should be dif-
ficult to separate. (See also: avalanche effect.)

 n Have a result with lots of bits. Collisions should be
hard to find. (See also: birthday attack.)

 n Don’t write your own hash function (except for
fun). n

Craig Gidney is a computer scientist who started his adventure
making maps and mods for Starcraft and Warcraft III. He works at
Twisted Oak Studios, a software consulting cooperative in Halifax,
Nova Scotia. A software developer to the core, he enjoys coding
both personally and professionally, in theory and in practice.

Reprinted with permission of the original author.
First appeared in hn.my/toyhash (twistedoakstudios.com)

http://hn.my/toyhash

20 PROGRAMMING

 21

22 PROGRAMMING

By KyLE MACDoNALD & JEFF ESCALANtE

if you are a web developer, you’ve probably heard
of nginx (pronounced engine-x). Nginx is a fast
and extremely powerful http and reverse proxy

server that can be used to quickly and easily serve
webpages.

unfortunately, like many sysops tools, there is very
little documentation and very few tutorials that explain
how it works and how to get it up and running. there
is a wiki, which is extensive and confusing, showing
you all possible options rather than presenting the
important ones as you need them. After struggling
with it myself for a bit, i finally got down the basics of
how to work with nginx, and wanted to share it so that
other developers would have an easier time picking it
up.

So let’s dive right into it. For this tutorial, you’re
going to want a vPS of some sort, preferably fresh so
that you can avoid potential conflict with other old
setups etc.

Initial Setup
Assuming you are running an ubuntu box, once you
have set up your login and have apt updated, just run
apt-get install nginx and everything should install
cleanly. visit your server’s iP address in a web browser
and you’ll see the “welcome to nginx” message. Great
success.

Finding nginx
When nginx is installed (through apt), it provides a
solid basic structure for how to set up your config files.
All nginx config files are located in /etc/nginx, so cd
there and poke around. the place you’ll want to add
new configurations is the sites-enabled folder. if you
check this folder out, you’ll find that there’s a single
text file called default in there, and opening that up
you’ll see an nginx configuration and the code that
causes the “welcome to nginx” page to display. Now
let’s make our own config file with the bare basics to
display a page. touch a new file inside sites-enabled
called “test”, open it up in your text editor of choice,
and let’s get to it.

Note: you’ll also find a /etc/nginx/sites-available
directory. if you find yourself managing many different
sites that are coming up-and-down, this folder can help
keep things organized. Add your nginx configuration
files here instead and then symlink them to sites-
enabled. this command might look something like
this...

ln -s /etc/nginx/sites-available/dotcom /etc/
nginx/sites-enabled/dotcom

only configurations in sites-enabled will actually
be public to visitors, but you may want to keep some
configurations in sites-available for archival and
symlinking purposes.

Nginx for Developers:
An Introduction

 23

Configuring a Static Server
Nginx config files use their own language, but the
good news is that it’s super simple. Much like css,
namespaces are declared followed by a block which
is bound on either side by curly braces. the top level
block we want to enter is server, which would look like
this:

server {

}

inside this block, we can, again much like css, add
key-value pairs followed by semicolons, or (more like
sass), we can add a nested block. We’ll be doing both of
these for the basic setup, and it should be no problem
to follow.

there is a ridiculous amount of possible key-value
pairs or blocks we can add (called directives; i’ll be
referring to them this way through the rest of the
tutorial), and if you jump into the documentation
[wiki.nginx.org/Directiveindex], you will find a few
hundred. For a basic server setup though, only a few
are important to know, and we’ll go over those here.
i’ll include links to the official nginx docs for each
directive we go over if you are interested. Since the
official docs are the only official way to get around
nginx, it’s important to become familiar with how they
work if and when you want to set up something more
advanced later.

listen
this directive specifies the port that your server will
listen at. if you have ever worked with rails, you’d
know that the local server runs on port 3000. Roots
runs on port 1111. SSL runs on port 443. the default
port for the internet is 80, so if there’s no port in a url,
that means it’s 80. Since you are likely trying to run a
production server here, it’s likely that you will be after
port 80, so let’s enter that here.

server {
 listen 80;
}

Note that this is the default and is not strictly neces-
sary to enter, but it’s good to do it anyway in this case
to show what’s going on. Bam, first directive written.
Feels great. Let’s keep rolling.

server_name
this directive is essentially a matcher for the url bar.
Whenever any sort of request comes in to nginx, it
takes a look at the url and looks for a server block
that has a matching server_name directive. So if your
site was at http://example.com, your server_name
for the root would be example.com. if you used an A
Record to also route http://snargles.com through to
your server, you could add another server block with
a server_name of snargles.com, and that block would
match requests coming in from that domain.

this is quite powerful. if you think about it, this
means you can host numerous sites, even coming from
different domains, on a single nginx configuration. All
you have to do is set up an A Record that points the
domain to your box’s iP, then sort out the rest with
nginx server configs.

it’s worth noting two more interesting aspects of
server_name. First, you can use this directive to also
deal with subdomains. if you want to match http://test.
example.com, you can easily do this, and even map it
to an entirely different app. Second, you can perform
some wizardry with the value of server_name. you can
use both wildcards, indicated by *, or regular expres-
sions to match routes. As you can imagine, this can be
extremely powerful. Let’s write a quick config for the
root domain of example.com.

server {
 listen 80;
 server_name example.com;
}

Sweet. only a couple more directives till we can get
our site in production.

http://wiki.nginx.org/DirectiveIndex

24 PROGRAMMING

root
this is the key to serving static sites. if you are just
trying to lay down some html and css, the root direc-
tive specifies the directory that you have stored your
files in. i like to store my sites in /var/www, so let’s go
make a folder there. Just mkdir a folder called /var/
www/example, and inside this, touch an index.html file
and add a paragraph saying “hello world” or something.
Now that we’re good, let’s get back to our config and
add our new document root:

server {
 listen 80;
 server_name example.com;
 root /var/www/example;
}

Now that we’ve got the basic variables set, let’s actu-
ally listen for hits to a specific route.

location
Location takes two parameters, a string/regex and a
block. the string/regex is a matcher for a specific loca-
tion. So if you wanted anyone who went to example.
com/whatever to hit a specific page, you would use
“whatever” as the uri. in this case, we are just trying to
match the root, so we can use / as the uri here. Let’s fill
in an empty block for now, which we will complete in
a second.

server {
 listen 80;
 server_name example.com;
 root /var/www/example;

 location / {

 }
}

Note that the first parameter has a number of
options which you can see in the linked documenta-
tion, and that the ability to match by regex is quite
powerful. inside that block, we want to actually route
to the result page. Also note that this / uri will match
all urls, since it’s treated as a regex. if you want a
location block to match only an exact string, you can
preface it with an equals sign, as shown below. But in
this case, it’s ok for it to match all urls.

location = / { ... }

Now to fill in that block from before.... We can use
another directive inside the block to serve a file called
try_files. try files takes a list of filenames or patterns
that it will try to find in you root directory, and it will
serve the first one it finds. For our simple static server,
we want to try to find a file with the name of “what-
ever” after the slash, like “whatever.html”. if there is
nothing after the slash, it should go for index.html.
there are a few other technical aspects to how you
write these which are laid out in the docs linked above;
here’s a very simple implementation.

server {
 listen 80;
 server_name example.com;
 root /var/www/example;

 location / {
 try_files $uri $uri/ /index.html;
 }
}

Now you might ask yourself, where did this $uri
business come from? Well, that’s the magic of nginx. As
soon as that request comes in, nginx makes a bunch of
variables available to you that hold information about
the request. in this case uri is exactly what we were
after. So let’s walk through the list.

 n Request comes in for http://example.com, nginx
fields it.

 n nginx finds the server block with a server_name
of example.com, and picks this one to handle the
request.

 n nginx matches the request against any location
blocks present. Since the / block matches anything
after the root domain, we have a match.

 n inside the matching location block, nginx decides to
try serving a file up. First, it looks for a file named
nothing, since uri maps to nothing in this case — no
luck. then it looks for a directory called nothing, still
no luck. Finally, it looks for /index.html within the
root directory, /var/www/example, and finds that file.
it then serves it up to you.

Now try to imagine the flow if we were to add a
test.html file to the root directory and go to http://
example.com/test.html. then try it and see what
happens.

 25

Note that you can twist this configuration any way you
want. For example, on carrot.is, we have it configured so
that when you hit a filename without the .html extension,
try_files looks for $uri.html and matches that as well.
So you could go to http://carrot.is/about as well as http://
carrot.is/about.html, and they would both return the
same document. the amount of wizardry you can do with
the server config is limited only to your crazy ambitions.

Ship It
okay, so what have we actually done here? What we’ve
done is that we’ve added a server declaration to nginx’s
configuration. When nginx runs, it slurps up all of the
configuration files you have put into /etc/sites-enabled
and uses those to know what to display to your viewers.
But wait! if you stopped here, you might not be able to
see your new server — this is because nginx doesn’t quite
know about your new changes yet. to get nginx to know
about your new configuration you need to reload nginx so
that it can pull in your new configuration. the easiest way
to do this is to run

service nginx reload

Note: this service command actually just aliases to
running the reload command on the configuration files
that apt installed into your server’s file system. in this
example it aliases to /etc/init.d/nginx reload.

Another thing you may want to do is test your con-
figurations to assure they are valid. to do this simply run,
service nginx -t.

then just visit your server’s iP address again and you
should see your shiny new page! n

Kyle MacDonald — Chief Technology Officer and Partner at Carrot
Creative. Kyle drives all technology decisions and leads develop-
ment on client projects — crafting an end-to-end experience
for users and translating that into code. Kyle has successfully
launched digital projects for clients including: Red Bull, Target,
Disney, Crayola, The Home Depot, Ford, Budweiser and more.

Jeff Escalante — With a strong background in neuroscience, user
experience, graphic design, and programming, Jeff is a Developer at
Carrot. He made roots [roots.cx] — integral to the Carrot site [carrot.
is], and is a front-end specialist. For more see, github.com/jenius

Carrot is a full-service digital agency headquartered in Brooklyn, NY.

Reprinted with permission of the original author.
First appeared in hn.my/nginxintro (carrot.is)

http://roots.cx
http://carrot.is
http://carrot.is
http://github.com/jenius

26 STARTUPS

STARTUPS

By JASoN CoHEN

Marketo filed for
iPo with impressive
80% year-over-year

growth in 2012 and almost $60M
in revenue.

Except, they lost $35M. WtF?
it’s not impressive when you

spend $1.60 for every $1.00 of rev-
enue, force-feeding sales pipelines
with an unprofitable product.

Don’t tell me this is normal for
growing enterprise SaaS companies.
i know the argument: the pay-back
period on sales, marketing, and
up-start costs is long, but there’s a
profitable result at the end of the
tunnel. Just wait!

Bullshit. Eloqua was also a SaaS
company, also selling to enterprise
and selling the same product in
exactly the same space. it was also
tightly integrated with Salesforce.
com, and iPo’ed with a $5M loss
on $71M in revenue — a 7% loss
instead of Marketo’s massive 60%
loss.

So no, this upside-down business
model isn’t what a SaaS busi-
ness should construct. i wish the
modern startup community would
understand the mindset that gets a
company to this point, and resist it.

the mindset works like this:

1. it costs a lot of money to land an
enterprise customer: marketing,
sales, legal, account manage-
ment, on-boarding, technical
guidance, training, etc. And how
many times do you run through
that process and still lose the
customer? So these costs are
amortized over the customers
you do land.

2. SaaS companies earn their
revenue over time. Whereas
a normal software company
might charge $100,000 for
an enterprise deal, and thus
immediately earn back those
“customer startup” costs plus
profit, the same SaaS deal might
be $5,000/month, and it might

take 18 months to get that
same amount of revenue. the
good news is that after those 18
months, the SaaS company still
charges $5,000/mo. the other
company has to bust ass for
measly 20%/year maintenance
fees.

3. As a result, enterprise-facing
SaaS companies are unprofitable
for the first 12-24 months of a
given customer’s life.

4. But, a growing SaaS company
will be landing new customers
and increasing numbers, which
means piling up more and more
unprofitable operations.

5. So much so, that even when
an older customer individually
crosses into profitability, there
are so many more unprofitable
customers, the company remains
permanently unprofitable so
long as it maintains healthy
growth.

The Unprofitable SaaS
Business Model Trap

Photo: flickr.com/photos/bongonian/8534960933/

http://flickr.com/photos/bongonian/8534960933/

 27

6. Plus, there’s all the other costs
— R&D to build the stuff, office
space, executive salaries, bill-
ing, legal, finance, HR, tech
support, account managers, etc.
to actually be profitable, you
need to cover those costs too.
So it takes even longer to be
bottom-line-profitable.

7. therefore, it is healthy and
reasonable for SaaS companies
to be unprofitable as long as
they’re growing even a little bit.

Early in a company’s life, this
line of reasoning is correct. But at
Marketo’s size, this argument falls
apart.

Why, exactly?
there’s a tacit assumption that if
only we just stopped spending to
grow, we’d be profitable. thus, this
“really is” a profitable company, and
the only reason it’s not is because of
growth, which means market domi-
nation, which is a Good thing.

the fallacy is: that time never
comes. No company stops trying
to grow! the mythical time when
growth rates are small so the com-
pany reaps the rewards of having a
huge stable of profitable customers
never arrives. When do you “show
me the money?”

it’s worse. Growth becomes
harder and harder for SaaS com-
panies because of cancellations.
Even with a great retention rate
(e.g., 75%/year), you have to
replace 25% of your revenue with
new — which means unprofitable
— customers just to break even in
top-line revenue! More losses, more
unprofitability.

Even with very broad numbers,
you can see how this model doesn’t
work. Here’s typical numbers for an
enterprise SaaS company at scale:

 n 1.5 year pay-back period (i.e.,
time to earn back the revenue to
cover all your customer acquisi-
tion expenses).

 n 75% annual retention (which also
means you turn over the entire
customer base every 4 years. on
average, of course — some stay
longer, many shorter).

 n 30% cost to serve the customer
(which can also be stated at
70% Gross Profit Margin, mean-
ing for every $1.00 of revenue,
$0.30 disappears in direct costs
to service that customer, like
servers, licenses, tech support,
and account management. Many
public SaaS companies, even the
titans like Salesforce.com, are
about 70% GPM).

 n 15% revenue == cost for R&D
department.

 n 15% revenue == cost for Admin
department (office space, finance,
HR, execs).

Say the average customer repre-
sents R dollars in annual revenue.
that’s:

 n $4R of revenue over the lifetime
of the customer. But:

 n $1.5R is spent to acquire the cus-
tomer (the pay-back period).

 n $1.2R is spent in gross margin
to service the customer (4 years
times 30% cost).

 n $0.6R spent on R&D (15% over
4 years).

 n $0.6R spent on Admin (15% over
4 years).

So out of the original $4R, we’re
left with $0.1R in profit. that’s
1/40th of the revenue making
its way to actual bottom-line

profitability, and even that takes 4
years to achieve.

And that is without any growth
at all. But you need to grow enough
to keep up with cancellations at
minimum, so that consumes the
last notion of profitability.

What’s the solution?
Successful, profitable SaaS compa-
nies at scale (certainly by $30M/
year revenue, but should be paying
attention to this stuff by $5M/
year), do several things to make the
math work:

 n Undo the effect of cancella-
tions through up-sells/upgrades.
Salesforce.com and ZenDesk
charge more for every person you
add, and more per person when
you increase the features in your
plan. their customers grow (on
average). thus, their revenue over
four years is not 4R, but rather
it might be R on the first year,
1.5R on the second, 2R on the
third, etc., so perhaps 7R in four
years. that drastically changes
the equation, because cost to
“acquire” the customer doesn’t
go up, and in general R&D and
Admin don’t either. taking “rate
of cancellations” minus “rate of
upgrades” is called “net churn.”
Getting to zero net-churn is a
big step in getting profitable; the
most successful SaaS companies
have negative net churn. it’s not
just pure software companies
that achieve this — hardware/
server SaaS company Rackspace
also has negative net churn,
which enables them to grow
revenues 30% year-over-year with
$1.5B in revenue and $300M in
profit.

28 STARTUPS

 n Use viral growth to offset cancel-
lations. Few B2B companies can
truly claim “viral growth” charac-
teristics. But for the few who do,
they can maintain growth rates of
X%/year where X is much larger
than cancellation, and do so
with very little acquisition costs.
in this case, cancellation never
“catches up,” and you win.

 n Drastically reduce the cost
of customer acquisition. An
18-month pay-back period is a
killer. if customers can be found
with paid advertising; if they
can sign up without talking to a
sales person; if they can learn the
product through in-product tuto-
rials, great documentation, and
how-to videos; if they can import
their data without assistance; if
they can demonstrate value to
the purse-string-holders without
a sales person writing the pre-
sentation for them, then the cost
of cancellation-replacement and
proper growth becomes small
enough that it’s no longer a bar-
rier to profitability, even under
conditions of growth.

 n Drastically improve GPM.
it’s hard for a service-oriented
enterprise-sales company to
not have real costs around tech
support, account management,
and extensive it infrastructure,
which is why even the most
cost-efficient (and profitable!)
enterprise-facing SaaS compa-
nies often can’t push much past
70% GPM (e.g. Salesforce.com,
Rackspace). But, companies with
extremely low-touch customer
service (which doesn’t necessar-
ily mean bad customer service!)
can push it way up (Google,
Facebook, Freshbooks), unlocking
“free money” for profitability.

Another way to think about these
solutions is that a SaaS business
cannot have static fundamental
metrics. the metrics themselves
need to improve — lowering can-
cellation rates, lowering net churn,
increasing GPM, reducing cost to
acquire customers. Leaving the
metrics alone, and trying to “grow
until profitable” doesn’t work.

it’s like the old Jackie Mason
joke — A man is selling jackets at
cost. the customer asks “how can
you sell at cost, how do you make
any money?” Answer: “i sell a lot of
jackets!”

Marketo is selling a lot of jackets. n

Jason Cohen is the founder of WP Engine
— Heroku for WordPress, after exitting
from three previous companies. He blogs
at blog.asmartbear.com

Reprinted with permission of the original author.
First appeared in hn.my/saas (asmartbear.com)

http://hn.my/saas

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

30 SPECIAL

SPECIAL

By DAviD CAiN

i was going to tackle my pro-
crastination problem last week-
end, but i never got around to

it.
By Sunday at 5:48 p.m., i realized

i had blown it again. throughout
the week i feel like i barely have
enough time to cook, eat, tidy up,
write an article and do the odd
errand. i lean towards the week-
end, when i have two whole days
to finally get some work done. to
improve my blog, to catch up on
my correspondence, to get some
monkeys off my back like fixing
things that need fixing, organizing
things that need organizing, tackling
things that need tackling.

But the weekends go by and i
never catch up. i don’t use the time
well. time is not what i’m short
on, even though that’s what i tell
myself all week.

Sometimes i do sit down early
in the day and pound something
out, but then i give myself a well-
deserved break and that’s usually
the end of any productivity. i end
up clicking around on the internet,
then clean up, then cook something,
then watch a bit of a documentary
online, then try to work again, then

get distracted. then i decide to wait
until after supper to do some work,
then i start reading something after
supper, then if i’m still home, it’s
already after 9:00 so i decide i’ll get
an early start the next day.

i avoid taking on the real impor-
tant stuff. i create work of second-
ary importance so that i never have
to confront the really worthwhile
things. When i get on a roll, i back
off and stay backed off. i take
breaks that turn into written-off
days. i am addicted to hanging it up
for the night, to letting myself off
the hook.

the important stuff doesn’t get
done, at least not before my pro-
crastinatory tendencies have created
an obvious, impending consequence
of not doing it, like incurring a fine,
really letting someone down, or get-
ting fired.

So much of what i want to do
isn’t terribly difficult and wouldn’t
take a lot of time to get done. Look-
ing at my projects list now i have
items like: book an appointment for
X, send in that change of address
form, phone so-and-so about y,
write a short piece for Z. And many
of them have been sitting there for

weeks or months. i have the most
bizarre aversion to tackling things.

Reaching critical levels
to some of you this is already
sounding familiar.

i have lived with this sort of “pro-
ductivity lag” most of my life, but
it only recently hit me that it’s not
just run-of-the-mill human busy-
ness. Some alarming patterns have
emerged in the past few months.
i’ve been feeling chronic stress for
the first time in years. i have been
waking up angry on a fairly regular
basis, and that’s not okay.

After a bit of poking around at
the library, it’s become clear to me
that i have a pretty serious procras-
tination issue. i also learned that
procrastination is not caused by
laziness or disorganization, but by
deeper psychological issues, which
i’ll touch on a bit later in this post.

As i said, it’s always been a
feature of my life but it’s reached a
critical point this year. the catalyst
has been a change in my job. At the
end of January i was dropped into a
new role that i neither like nor feel
prepared for. My protests were met
with, “you’ll figure it out as you

Procrastination Is
Not Laziness

 31

go along; it’s like this for every-
one at first.” i have since worked
it through, mostly, but not before
it set off a pretty bad stress cycle
that brought some ugly stuff to the
surface.

Honestly, it probably would have
been a much easier adjustment for
most people to make than it has
been for me, but my initial uncer-
tainty combined in very ugly ways
with my lifelong phobias of asking
for help, admitting ignorance, and
talking to people i don’t know on
the phone. Paralysis set in. Stress,
which has been a mostly-dormant
force in my life for the last five
years or so, became prominent
again.

once you lose track of the
specific items that are causing you
stress, you tend to regard it all as
one big ugly entity that you want to
avoid. My unaddressed duties and
grey areas at work became mixed
with my unaddressed duties and
grey areas outside of work, to create
a stifling mutant stressor that only
leaves me alone while i’m sleep-
ing. All the work i’ve done towards
learning to effect the quality of the
day can be easily short-circuited by

my procrastination habit, and that’s
what’s happening right now. it has
gone way too far and i am deter-
mined to address the bad habits
that let it get this way.

My last few experiments have
created huge changes in the way i
operate and the environment i live
in. Well i’m doing a bigger one this
time. i’m taking on a problem that
has probably taken more from me
than any other behavior. i’ve lost so
many opportunities, relationships,
advantages, sources of income and
growth. there is certainly nothing
that has caused more suffering in
my life than my propensity to avoid
achievement or competition.

For what i’m capable of, i have
been a resoundingly unproductive
person. Almost every Sunday night
i mourn another blown opportunity
to catch up, and throughout every
week i am leaning towards the next
weekend. the weeks fly by, and if
weeks are flying by, so are months.
How we spend our days is how
we spend our lives, and i’ve had
enough of this.

Monday i’ll formally announce
Experiment No. 11. While prepar-
ing for it i did some research on

where procrastination comes from,
which was frankly quite alarming to
me and shed a sorely-needed light
on why i have had such confound-
ing, persistent trouble with getting
ordinary things done. this post is
quite a bit longer than usual but if
you’ve had similar trouble, it might
just shake loose something that’s
been stuck for a very long time.

The real causes of procrastination
Let’s clear something up: i am not
lazy. i have no shortage of energy, i
have no interest in lounging on the
couch, i don’t have tv service, i
never wear pajamas all day. Waking
up after 7:30 is sleeping in for me,
even on a Saturday. i actually like
working.

yet i exhibit a consistent failure
to work through my day-to-day
tasks, errands and projects in any
manner than could be considered
timely. Nearly everything must
reach some sort of “scary point”
for me to finally move on it. Like
when i waited till the last possible
day to submit my lease renewal,
even though i had three months
of lead time. in the end it took
about fifteen minutes, but evidently

“Once you lose track of the specific
items that are causing you stress,
you tend to regard it all as one big
ugly entity that you want to avoid.”

32 SPECIAL

i needed to be a day away from
losing my home in order to do it.

i ended up reading one of the
more highly acclaimed books on
procrastination, Neil Fiore’s the
Now Habit. Reading the section on
the psychological causes of procras-
tination really hit home.

it turns out procrastination is
not typically a function of lazi-
ness, apathy or work ethic as it is
often regarded to be. it’s a neurotic
self-defense behavior that devel-
ops to protect a person’s sense of
self-worth.

you see, procrastinators tend
to be people who have, for what-
ever reason, developed to perceive
an unusually strong association
between their performance and
their value as a person. this makes
failure or criticism disproportion-
ately painful, which leads naturally
to hesitancy when it comes to the
prospect of doing anything that
reflects their ability — which is
pretty much everything.

But in real life, you can’t avoid
doing things. We have to earn a
living, do our taxes, have difficult
conversations sometimes. Human
life requires confronting uncer-
tainty and risk, so pressure mounts.
Procrastination gives a person a

temporary hit of relief from this
pressure of “having to do” things,
which is a self-rewarding behavior.
So it continues and becomes the
normal way to respond to these
pressures.

Particularly prone to serious pro-
crastination problems are children
who grew up with unusually high
expectations placed on them. their
older siblings may have been high
achievers, leaving big shoes to fill, or
their parents may have had neurotic
and inhuman expectations of their
own, or else they exhibited excep-
tional talents early on, and there-
after “average” performances were
met with concern and suspicion
from parents and teachers.

this was the part that made
my heart sink when i read it. Not
that anybody was trying to make
things difficult for me, but i grew
up feeling high expectations from
the adults in my life and myself. For
most of my schooling, i was always
in advanced programs, always aced
everything, and when i got anything
less than an A, people asked me
what was wrong.

i also noticed other kids didn’t
get this treatment. they were con-
gratulated for getting Bs and even
Cs. So from the feedback i got, i

learned that a report card (of mine)
with five As and a B was indica-
tive of a shortcoming somewhere,
not success. i’ve written about this
before so i won’t get into it here,
but suffice it to say that i learned
that the downsides of being imper-
fect are far greater than the upsides
of being perfect.

Perfectionism breeds pessimism
it was a major revelation to me
when i recognized a year ago that
despite my preference for and sensi-
tivity to the positive aspects of life,
i am a pessimist — i have come to
give potential downsides far more
weight than potential upsides. this
means that pushing projects ahead
is — on the balance — a bad deal,
because unless i’m pretty damn
perfect there is much more pain to
be had in doing that than pleasure.

this is obviously an inaccurate
presumption, and i’m intellectually
aware of that, but when it comes
down to confronting it “in the field,”
it’s amazing how tricky the mind
can be. i have a lifetime of habits
routing me away from striving for
prizes in life, and towards protect-
ing myself.

“Procrastination is a neurotic self-defense
behavior that develops to protect a person’s
sense of self-worth.”

 33

For a procrastinator of my kind,
perfection (or something negligi-
bly close to it) thereby becomes
the only result that allows one to
be comfortable with himself. A
procrastinator becomes dispropor-
tionately motivated by the pain
of failure. So when you consider
taking anything on, the promise
of praise or benefit from doing
something right are overshadowed
by the (disproportionately greater)
threat of getting something wrong.
Growing up under such high
expectations, people learn to associ-
ate imperfection or criticism with
outright failure, and failure with
personal inadequacy.

A person who does not have this
neurosis might wish they didn’t
make a mistake, whereas the neu-
rotic procrastinator perceives the
error as being a reflection of their
character. in other words, most
people suffer mainly the practical
consequences of mistakes (such
as finishing with a lower grade, or
having to redo something) with
only minor self-esteem implica-
tions, while neurotic procrastinators
perceive every mistake they make
as being a flaw in them.

So what they are motivated to
do is to avoid finishing anything,
because to complete and submit
work is to subject yourself (not just
your work) to scrutiny. to move
forward with any task is to subject
yourself to risks that appear to the
subconscious to be positively deadly
because part of you is convinced
that it is you that is at stake, not
just your time, resources, patience,
options or other secondary consid-
erations. to the fear center of your
brain, by acting without guarantees
of success (and there are none), you
really are facing annihilation.

A backlog of avoided tasks
accumulates, and each one repre-
sents another series of threats to
your self-worth should you tackle
them. So the fear mounts, knowing
that there is a minefield of threats
between you and the fulfillment of
your responsibilities. you feel like
you must do something and can’t
do that thing simultaneously, which
can only lead to a burning resent-
ment of the people or forces that
put you in that impossible place
— your employer, your society,
or yourself. A victim mentality
emerges.

Because it is rewarding on the
short term, procrastination eventu-
ally takes on the form of an addic-
tion to the temporary relief from
these deep-rooted fears. Procrasti-
nators get an extremely gratifying
“hit” whenever they decide to let
themselves off the hook for the
rest of the day, only to wake up to
a more tightly squeezed day with
even less confidence.

once a pattern of procrastination
is established, it can be perpetuated
for reasons other than the fear of
failure. For example, if you know
you have a track record of taking
weeks to finally do something that
might only take two hours if you
weren’t averse to it, you begin
to see every non-simple task as
a potentially endless struggle. So
a modest list of 10-12 medium-
complexity to-dos might represent
to you an insurmountable amount
of work, so it feels hopeless just to
start one little part of one task. this
hones a hair-trigger overwhelm
response, and life gets really dif-
ficult really easily.

“The promise of benefit from doing something
right are overshadowed by the threat of
getting something wrong.”

34 SPECIAL

All I want
As i mentioned, on Monday i will
begin Experiment 11, which is
direct attack on my procrastination
problem. i’ll give you the details
then about how i’m going to go
about it.

All my experiments must have
a clear aim. “Dealing with my pro-
crastination problem” is too vague
a goal here. i have to define what
specific change i want to make.

What i want to get out of it is
very simple. i want to be able to do
something many (most?) people do
every day, and would never con-
sider it a problem:

i want to write down what i’m
going to do the next day, and actu-
ally do it.

i am really good at the first half
of that. Planning is something i do
very well. i have planned the next
day (or week) thousands of times.
i’ve taped it to my door or bath-
room mirror. i’ve set alarms, made
promises, left trails of instructional
sticky notes all through my apart-
ment. But i am not sure if i’ve ever
executed one of these plans all the
way through. Honestly, in my 30
years i cannot think of one time i
ever did. i will do anything but the
5 to 10 items i thought would be
smart ones to do.

it’s hard to pinpoint exactly why
i’ll do anything but what i planned,
but it’s not that they’re necessarily
difficult tasks. Sometimes they’re so
easy that i don’t feel any urge to do
them right away, and therefore can
justifiably do something even easier,
like check my email, watch online
documentaries, or try a new recipe.

My adversary is the unconscious
reactive part of my mind, and by
now it’s a world-class expert at
manipulating me. it’s like being a
prison guard for Hannibal Lecter.
Sure he’s locked up, but he’s
Hannibal Lecter.

So that’s my simple, humble
dream in life: to list a few things
i’d like to get done and go ahead
and do them. i could take over the
world, if i could only learn to do
that. n

David is the author of Raptitude, a street-
level look at the human experience —
what makes human beings do what they
do, and what that means in real life. He
write sabout how to make sense of the
earth’s most ridiculous animal, how to get
better at being one of them.

Reprinted with permission of the original author.
First appeared in hn.my/procras (raptitude.com)

http://hn.my/procras

Power your app with the fastest-growing
cloud database service in the world.

http://mongolab.com

36 SPECIAL

i’m a college student study-
ing abroad at the university
of Pennsylvania, studying a

mixture of CS, Physics, and Music.
Eager to learn about the field, i
decided to take a course CiS551:
Network and Computer Security
this semester. this is the story of
how as part of the course, i com-
promised the security of one of
my fellow students through social
engineering techniques.

For our final project, the class was
divided up into two sets of teams,
attack and defense. About halfway
through the project, defense and
attack switched. the role of the
defense teams was to construct a
secure network chat client. in plain
English, they had to write a piece
of software that would allow two
people to communicate over the
internet without fear of wiretap-
ping. the aim of the attack side
was to disrupt or compromise their
system.

For me the excitement came
from the attack side. We had
learned in class about “social
engineering attacks” as a powerful
offensive security tool. the basic
premise according to Wiki is “the
art of manipulating people into
performing actions or divulging

confidential information.” A trick
of a con-man. this was a perfect
opportunity for me to actually
try putting such a technique into
practice whilst still remaining well
within the bounds of morality and
legality. i asked for permission and
was soon granted it. the eagle was
a’ go.

Phase 1: Information Gathering
First we cross referenced the list of
emails on the defense team against
the Penn Directory Database. once
we gained full names and school,
we cross referenced this against
publicly available data using a com-
bination of data mining tools and
lookups on social networks such as
Facebook and Linkedin. these were
used to build profiles, including
photos of potential targets. in our
attack proposal we also listed social
engineering to warn them of it.

Phase 2: Gaining Rapport/Trust
the next phase of the social
engineering attack involved mul-
tiple steps. the plan was to place a
mole outside the classroom in the
engineering building posing as a
recruiter from a prestigious com-
pany, offering summer internships!
First up was obtaining a domain

name and email address for use
in the attack. We picked X (name
redacted) to be the company we
would replicate as they are known
for being secretive and security
focused. We thus registered Xre-
cruting.com and had the address
forward to X.com for authentic
looks, while using emails registered
to that domain for our purposes.

Next i waited around the engi-
neering buildings looking for a
junior administrative assistant or
janitor and upon finding one, con-
vinced them that i needed a Penn
Lanyard urgently for my senior
design presentation as i had for-
gotten mine. i was soon granted a
lanyard and next the team photo-
shopped an X badge with the face
of our “recruiter” (another Penn stu-
dent) in order to simulate authen-
ticity. We also printed advertising
posters to place outside the class-
room for further realism. We then
placed our mole outside the 551
classroom dressed up in an X t-shirt
(purchased online) with the fake
badge, the posters, and a laptop set
up with a survey. our representa-
tive advertised summer internships
in security. A number of students
from the class fell for it and entered
their information in the survey.

The Attack
By SHAANAN CoHNEy

 37

Next we gained further rapport
by reaching out to the targets via
email. First we initiated contact
asking for basic details, a resume,
etc.:

“This is Joseph from X, we met
earlier today. The team and I are
very eager to find a candidate that
fits our openings here… “

it wasn’t long before our
target replied, eager to seize the
opportunity:

“…please find attached herewith
my resume for your kind perusal…
I have fair bit of knowledge in
Networks and Network Security.”

the game was on, he was falling
for it! However, it was one thing to
have his trust, but for us to actually
use it in some way, we needed to
push this further.

Phase 3: Exploitation
to exploit our position of power
we had many options, some of
which would be pushing the assign-
ment over the edge. With this level
of trust it would be feasible to
gain access to information protect-
ing online accounts, a very scary
thought. However, we decided
to go down a different route and
instead convinced them of the need

to review their source code for
recruitment purposes. this allowed
us to analyze their code for poten-
tial exploits.

“My team operates mainly on a
Java codebase. Do you have any
experience in the area?

We’ll also get you to submit a
few simple coding exercises and
perhaps the code from a previous
project to see if you’re a good fit.”

 We exchanged a few more
emails back and forth, but it wasn’t
really getting anywhere. i decided
to press a little harder being rela-
tively sure of his trust:

“…In looking into specifically
which project you would be work-
ing on, it would also be good to
know if you had any experience
in crypto protocols and defensive
infrastructure. In regards to this
I have two questions. Firstly, is
there a professor I could contact
in regards to the syllabus and,
secondly is there anything that
matches this description that you
have engaged in as far as you
know…?
Could you possibly let me know
feasible times in the next week for
an interview?

Also, are there any current proj-
ects in Java you are working on
for which a codebase is available
for our engineers to review? Even
a work in progress is fine. We’re
really interested in seeing material
and your personal projects from
this course given the nature of the
internship….”

Finally we struck gold! A few
hours later the following appeared
in my inbox:

“Please find attached herewith 2
Java source code files. (server.java
and client.java)

These are for a basic chat system
application. Further, I and my
group would be adding some
encryption techniques in it (I’ll
send you those once we start
working on it and progress to some
level).”

And later:

“Hi Joseph,

Please find attached herewith 2
Java code files for a chat system
with AES encryption.

Thanks.
Regards.”

“With this level of trust it would
be feasible to gain access to
information protecting online
accounts, a very scary thought.”

38 SPECIAL

in the final copy they submitted they
had hard coded their AES key, this
would be easier than i thought! How-
ever this wasn’t quite good enough. it
would still be difficult to intercept their
communication, much less read their
messages.

Next i simulated a discussion between
the professor and X granting access to
the “recruiter” to come visit the demo.

“I have some exciting news and a
question for you. I have been informed
by Professor Smith that the class has
upcoming demos on attack/defense and
focusing on network vulnerabilities. I
have his permission and now I need
yours, to come and watch you demo
live….”

“——– Original Message ——–Subject:
Re: CIS551 Security Recruitment
From: X <X@cis.upenn.edu>
Date: Sun, April 21, 2013 11:41 am

To: “joseph@Xrecruiting.com” <joseph@
Xrecruiting.com>

Hi Joseph

I’d be happy to let you and your team
come visit my students on Monday
during Network Security demos they
are undertaking using chat systems they
have coded.”

the target replied with the affirma-
tive, very eagerly inviting our recruiter
in.

“Yes absolutely. You are most welcome.
It’s this Monday at 4pm in Engineering
Building.

 Hope to see you there.”

“My contact no. is REDACTED if
you need any help with location or
anything.”

today being demo day, the stage was
all set, and our fake recruiter was again
in place. i had given her my new Wi-Fi
enabled camera to stream a screencap of
the enemies messages direct from their
screen as they typed, to where my team
was sitting a few meters away.

throughout the demo my team acted
as all the other attack teams had, using
DDoS, ARP Poisoning and other standard
network attacks, to try to compromise
their server. However we really had a
trump card. Both their encryption key
and better yet, the plaintext of their
messages.

After launching our usual slew of
attacks on their code (most of which
worked anyway), we closed the demo
and went to meet the other team. When
asked if we had any more attacks, i
motioned to the recruiter to pass me the
camera and as she handed it over, our
opponents faces took on stunned looks.
it took a good few minutes to convince
them of the depth of our attack. Suc-
cessfully executing this was such an
amazing feeling.

i’ve not yet received my grade for the
course, but i feel that more than any-
thing this was a fantastic learning experi-
ence before i head out soon to look for a
position in industry or for higher study.
n

Shaanan Cohney is a third year Computer Sci-
ence and Mathematical Physics student studying
at the University of Pennsylvania on exchange
from the University of Melbourne. In his spare
time he is working on a Diploma of Music, and
spending many hours toying around with secu-
rity systems, both physical and digital.

Reprinted with permission of the original author.
First appeared in hn.my/attack (shaanan.cohney.info)

http://hn.my/attack

 39The fast and easy way to accept affiliates into your online business

AFFILIATE.IO
Visit affiliate.io/hacker for discount

Without affiliate.io...

With affiliate.io...

Just you - 7 sales/week

Affiliate #042
- Lisa, Marketing expert

Affiliate #011
- Tim, power user & ambassador

Affiliate #094
- Diana, owns 7 blogs

Affiliate #027
- Tom, industry expert

Recruit, track, and promote your business

http://affiliate.io/hacker

YOUR APP

YOUR DATA YOUR DATA
YOUR
DATA

YOUR
DATA

"BUILD REALTIME APPS IN 5 MINUTES"

www.pusher.com

PUSHER

YOUR DATA

YOUR APP

YOUR DATA YOUR DATA
YOUR
DATA

YOUR
DATA

"BUILD REALTIME APPS IN 5 MINUTES"

www.pusher.com

PUSHER

YOUR DATA

YOUR APP

YOUR DATA YOUR DATA
YOUR
DATA

YOUR
DATA

"BUILD REALTIME APPS IN 5 MINUTES"

www.pusher.com

PUSHER

YOUR DATA

http://pusher.com

	FEATURES
	Indescribable Numbers
	You Are Dangerously Bad At Cryptography

	PROGRAMMING
	Breaking a Toy Hash Function
	How to Learn Emacs
	Nginx for Developers: An Introduction

	STARTUPS
	The Unprofitable SaaS Business Model Trap

	SPECIAL
	Procrastination Is Not Laziness
	The Attack

