
Issue 42 November 2013

Cocktails For  
Programmers

def ruby() 
  20.times do  
    liqueur { :type => :cocoa, :name => 
:Malibu } 
    liqueur { :type => :lychee } 
  end 
  if liqueur.exist? { :type => :brandy } 
then l = :brandy else l = :cognac 
  40.times do liqueur { :type => l } end 
  lemon 
  ice 
end



2  

Curator
Lim Cheng Soon

Contributors
Ilya Zykin 
Vulpyne 
Trevor McKendrick 
Jack McDade 
Job Vranish 
Pete Keen 
Kerrick Long 
Matt Wright 
Miles Bader 
Stephane Epardaud 
Chong Kim

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

HACKEr MonTHLy is the print magazine version 
of Hacker news — news.ycombinator.com, a social news 
website wildly popular among programmers and startup 
founders. The submission guidelines state that content 
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles 
on Hacker news and print them in magazine format.  
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media
46, Taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com


 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-42

Contents
FEATURES

04 Cocktails for Programmers
By ILyA ZyKIn

10 How to Choose a Profitable Niche
By TrEVor MCKEnDrICK

SPECIAL

14 Why I Play Video Games
By JACK MCDADE

PROGRAMMING

16 Unix Commands I Wish I’d Discovered Years Earlier
By JoB VrAnISH

18 DNS: The Good Parts
By PETE KEEn 

22 FTP is so 90s. Let's deploy via Git instead! 
By KErrICK LonG 

24 How I Structure My Flask Applications
By MATT WrIGHT

29 What Makes Lua Tick
By MILES BADEr

30 What Every Web Developer Must Know About URL Encoding
By STéPHAnE éPArDAuD

36 Using Katas to Improve Your Coding
By CHonG KIM

http://hackermonthly.com/issue-42


4 FEATURES

FEATURES

A culinary project for a professional holiday, 
“Programmers Day,” celebrated on the 256th 
day of the year.

Ruby
The drink will be sweet, fragrant, and fresh. This ruby-
colored cocktail perfectly matches the ruby logo.

Ingredients
 ■ 20 mL Malibu (coconut liqueur)

 ■ 20 mL Lychee Liqueur (a fruit)

 ■ 40 mL Cognac or Brandy

 ■ 150 mL Cherry juice

 ■ Lemon

 ■ Ice

Directions
1. Add basic ingredients into a tall glass filled with ice.

2. Add lemon juice to taste.

3. Thoroughly mix until the glass is misted.

4. Garnish with a slice of orange and a maraschino 
cherry.

Code
def ruby() 
  20.times do  
    liqueur { :type => :cocoa, :name => :Malibu 
} 
    liqueur { :type => :lychee } 
  end 
  if liqueur.exist? { :type => :brandy } then l 
= :brandy else l = :cognac 
  40.times do liqueur { :type => l } end 
  lemon 
  ice 
end

Cocktails for Programmers
By ILyA ZyKIn

Code contributed by VuLPynE



 5

Python
This cocktail looks like a green python. It 
must be served fast — its froth disappears 
quickly. This drink has a fresh pineapple 
taste.

Ingredients
 ■ 50 mL White rum

 ■ 30 mL Mint Liqueur

 ■ 30 mL Pineapple Juice

 ■ Juice of half a Lemon

 ■ Sprite or 7 up

Directions
1. Shake together with ice and strain.

2. Pour into a glass and add Sprite or 7 up.

3. Garnish with a slice of lime.

Code
def python(): 
  d = Drink() 
  d.addIngredient(50, type = 'rum', name = 'white') 
  d.addIngredient(30, type = 'liqueur', name = 'mint') 
  d.addIngredient(30, type = 'juice', name = 'pineapple') 
  d.addIngredient(Lemon.unitsPerFruit() / 2.0, type = 
'juice', name = 'lemon') 
  while not d.glassOverflowed(): 
    d.addIngredient(1, type = 'soda', name = 'sprite') 
  return d



6 FEATURES

Severe Perl
Associations: severe, dry, desert, camel.

Ingredients
 ■ 30 mL Gin

 ■ 20 mL Dry Vermouth rosso

 ■ 20 mL Lemon Juice

 ■ 10 mL Syrup

Directions
1. Shake together with ice and strain.

2. Garnish with physalis.

Code
Vulpyne: Well, I don’t actually know Perl and I don’t 
feel like learning it for this. So here is my best attempt:

$%!#$#$%^@#$!@#$!@#!%$#$%^#@#$@#$@#$"gin" 
$$#%@#$$%^$%@#$/=|$"dry vermouth rosso" 
""<>.((79348*&("lemon juice"({} 
}}}{{}{$$$$"syrup"*#(*#$83 || die();

JMP (aka Assembler)

Ingredients
 ■ 20 mL Jagermeister (herbal liqueur)

 ■ 20 mL Midori (melon liqueur) + Lime

 ■ 20 mL Peach Syrup

Directions
1. Pour all the ingredients with a bar spoon in a high 

shot glass layer-by-layer.

Code
.global _start 
.text 
 
_start: 
mov $0xfeed, %rax 
mov $0x14, %rcx 
mov jager, %rdi 
cld 
rep movmd ; md = make drunk, naturally. 
mov $0x14, %rcx 
mov midori, %rdi 
rep movmd 
mov peach, %rdi 
mov $0x14, %rcx 
rep movmd 
jmp $0xfeedface 
 
:jager  
.ascii "Jagermeister" 
:midori 
.ascii "Midori" 
peach: 
.ascii "peach syrup"



 7

Profit!
Profit! should be sweet and airy. That’s how we saw 
this cocktail. 

Ingredients
 ■ 20 mL Creamy Liqueur

 ■ 20 mL Crème de Cassis

 ■ 20 mL Triple Sec

 ■ Whipped Cream

 ■ Cocoa Powder

Directions
1. Shake together with ice and strain.

2. Garnish with whipped cream and dust with cocoa 
powder (use a sifter for better results).

3. Put a cherry on top.

Epic Fail
By design, the lemon and Coke conceal the taste of 
alcohol. But if you go too far, it will be a real epic fail. 
Be careful if you want to try something like this!

Ingredients
 ■ 50 mL Vodka

 ■ 100 mL Coke

 ■ Juice of Half a Lemon

 ■ Ice

Directions:
1. Fill a glass of ice with all ingredients.

2. Thoroughly mix till the glass is misted.

3. Garnish with a lemon slice.



8 FEATURES

Memory Leak

Ingredients
 ■ 50 mL Tequila

 ■ 50 mL White rum

 ■ 50 mL Triple Sec

 ■ 50 mL Kahlua

 ■ Lime

 ■ Coke

Directions
1. Fill a glass with ice and small pieces of lime.

2. Add the rest of the ingredients and mix.

3. Garnish with a slice of lime and you’ve got tasty 
and stunning drink.

Code
struct Drink *make_drink() { 
  struct Drink *drink; 
  struct Ingredient *ingredient; 
 
  drink = malloc(sizeof(struct Drink)); 
  drink->ingredients = ingredient = 
malloc(sizeof(struct Ingredient) * 7); 
  *ingredient.amount = 50; 
  *ingredient.name = "tequila"; 
  ingredient++; 
  *ingredient.amount = 50; 
  *ingredient.name = "white rum"; 
  ingredient++; 
  *ingredient.amount = 50; 
  *ingredient.name = "triple sec"; 
  ingredient++; 
  *ingredient.amount = 50; 
  *ingredient.name = "kahlua"; 
  ingredient++; 
  addLime(ingredient++); 
  *ingredient.amount = sizeof(Glass) - 100; 
  *ingredient.name = "coke"; 
  *ingredient++; 
  memset(ingredient, 0, sizeof(struct Ingredient)); 
  return drink;     
} 
 
void free_drink(struct Drink *) { 
  free(drink); 
} ■

Ilya is a Ruby on Rails and front-end developer living in Saint-
Petersburs, Russia. In the past, he was a school teacher of infor-
matics. Ilya dreams to create a social-oriented CMS for food-
bloggers and publishes his pet projects in his GitHub account 
[github.com/the-teacher].

Vulpyne started programming on a TRS-80 when he was 9. These 
days, he mostly codes in Haskell (his poison of choice) and Python. 
Vulpyne never had any formal education and have been program-
ming professionally for about 14 years. He lives in a little cabin 
in the mountains of Colorado with his three dogs.

Additional Credits: Artem (making the cocktails), Anna Nechaeva 
(photo), Sergey Romanov (English translation), Trevor Strieber 
(English translation).

Reprinted with permission of the original author. 
First appeared in hn.my/cocktails

http://github.com/the-teacher
http://hn.my/cocktails


 9The fast and easy way to accept affiliates into your online business

AFFILIATE.IO
Visit affiliate.io/hacker for discount

Without affiliate.io...

With affiliate.io...

Just you - 7 sales/week

Affiliate #042
- Lisa, Marketing expert

Affiliate #011
- Tim, power user & ambassador

Affiliate #094
- Diana, owns 7 blogs

Affiliate #027
- Tom, industry expert

Recruit, track, and promote your business

http://affiliate.io/hacker


10 FEATURES

By TrEVor MCKEnDrICK

We can estimate how profitable an app is using 
Gross and Paid rankings. This helps us decide 

whether it’s a good niche to get into.

A Framework for Evaluating Potential Niches
When I was considering building my Spanish Bible 
app I wanted to be as sure as possible that people were 
going to be able to find it and buy it. With that in mind 
I came up with the idea of the ideal target niche.

The ideal niche:

1. Is profitable 

2. Can be found through search

3. Has crappy competitors

Today I’m going to explain how to figure out #1.

➊ Find an app that ranks #25 Paid
I found two apps in the Business category that 

have a history of ranking around #25 Paid. you can see 
their historical Paid rankings below via AppFigures: 

PDF Expert

Documents

Why #25 Paid? See step 2.

➋ Calculate the apps’ daily revenue using 
Distimo

Last year I asked the nice folks at Distimo to analyze 
how many downloads it takes an app to rank #25 Paid 
by category.

Gert Jan Spriensma, a Distimo analyst at the 
time, was nice enough to respond with this post 
[hn.my/distimo] which got picked up by TechCrunch.

you don’t even need to read the whole post, just this 
one chart:

How to Choose a  
Profitable Niche

http://hn.my/distimo


 11

 This means our two example apps are being down-
loaded roughly 90 times a day. We can estimate their 
daily revenue by multiplying their prices by 90.

 

➌ Look up Gross Ranking
Easy with AppFigures:

Eyeballing the charts it looks like their average Gross 
ranks are #13 and #50, respectively.

➍ Plot the Data
This is what we’ve collected:

 

Plotting it we get this:

 
This gives us an estimate on how much apps in the 

Business category make.

Will Customers Find You Via Search?
you need to find something that can be found with a 
frequently searched keyword that doesn’t have a lot of 
competitors.

This is a tough one because Apple doesn’t release 
keyword data. While there do exist tools now that 
approximate keyword search frequency, I didn’t know 
about them when I picked my niche.

one in particular that I’ve started using lately is 
Straply.com. I’ve talked to the cofounder and he calls 
it the first “Google Keyword Tool” for App Stores. The 
interface isn’t very good yet, but the data he’s col-
lecting is remarkable. It’ll tell you how often a term is 
searched and how many competitors also appear in the 
App Store Search results (ASSrs).

Do It Yourself
But I’d also recommend doing your own tried-and-true 
research. I did the following before most any App Store 
optimization tools went mainstream:

 ■ For each niche I brainstormed a bunch of keywords/
phrases. I plugged those words into the Google Key-
word Tool and clicked the “mobile only” option.

 ■ From there I selected the top 30 or so keywords. And 
I plugged those into the search bar of the App Store.

 ■ Then I go through the ASSrs.

http://Straply.com


12 FEATURES

For the top 5 or 10 results for each keyword I con-
sider a few metrics:

 ■ Does the app have a lot of reviews? How recent are 
the reviews?

 ■ When did the developer last update the app?

 ■ Are there any apps that make good money and only 
rank high in the ASSrs for a few keywords?

In an ideal world you’d find an app that has lots 
of reviews and that ranks well in the ASSrs for one 
keyword phrase, and of course is making money. That 
means the phrase is likely to be something users are 
searching for.

If a profitable app ranks well for a few keywords 
look at the other apps in the ASSrs. Do they appear to 
be making money, too? Generally, the more money the 
top results are making, the more likely the keyword is 
searched by users.

you do have to be careful here though: some apps 
will rank well for many keywords and it requires much 
more detective work to figure out which keywords are 
the ones users are actually searching.

Is The Keyword Competitive?
Simply look at the number of apps in the ASSrs for 
the keyword phrases research above.

Example below are the number of results for differ-
ent keywords with the word “calculator”:

 ■ “calculator” = 10,930

 ■ “tip calculator” = 777

 ■ “scientific calculator” = 336

 ■ “graphing calculator” = 81

I consider anything less than 100 to be great. Any-
thing over 500 is probably too much.

Are The Competitors Any Good?
Again, the App Stores are great because they give 
public reviews. you already know what users do and 
don’t like about your competitors. If you decide to get 
into that niche, you know where the improvements 
need to be made.

Also, subjectively look at competitors: does it appear 
the developer is putting time/care/love into the prod-
uct? Maybe she has become apathetic because she has 
so little competition and users can’t find anything else. 
That’s exactly how the landscape looked with Spanish 
Bibles (It’s worth noting that since then the competi-
tion has picked up significantly.)

If it looks like the competition isn’t trying very hard 
but they’re still making money, it’s likely you’ve found 
a niche worth investing some more time in. ■

Trevor started Salem Software with $500 as a side project hoping 
to just pay his rent. You can follow him on Twitter @trevmckendrick 
and read his blog at trevormckendrick.com

Reprinted with permission of the original author. 
First appeared in hn.my/niche (trevormckendrick.com)

http://twitter.com/trevmckendrick
http://trevormckendrick.com
http://hn.my/niche


Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use 
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers 
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; # 
ABSTRACT: Rotate chars by 13  letters use DDG::Goodie; triggers start => 'rot13'; handle remainder => 
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return 
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use 

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 

http://duckduckhack.com


14 SPECIAL

By JACK MCDADE

SPECIAL

I’ve been playing video games 
again. I feel fantastic and my 
head is clearer than it has been 

in a while. Here are my thoughts 
on the topic, and why I think video 
games are important and not even 
remotely a waste of time. Like 
every other guy who grew up in 
the ‘80s, I used to play video games 
all the time. Super Mario, Double 
Dragon, Zelda, Street Fighter, 
GoldenEye, you name it. Later 
came the Halo and Counter Strike 
LAn parties. In college I played 
a lot of World of Warcraft (back 
when the level cap was 60). Hell, I 
played games with some semblance 
of regularity up until I quit my job 
and started working for myself in 
2009.

It was that point when every 
hour I existed had a dollar value 
attached to it. Why play 2 hours of 
Assassin’s Creed if you could bill 
two hours of work? If you’re self-
employed you either have, or have 
had this mind-set at some point.

Why play 2 hours of Assassin’s 
Creed if you could bill two hours 
of work?

So I gave up gaming. I scoffed at 
gamers, looking down on them as 
lesser beings not dedicated enough 
to their craft. Foolish peons! you 
can’t get your time back! Perhaps 
an exaggeration, but not a large one.

So how did I go from one 
extreme to the other, and back 
again?

I started building my own 
product/app called Statamic 
[statamic.com]. A neat little (okay, 
not so little anymore) flat-file CMS. 
This became my passion (and still is 
in many ways) for many months, as 
I fanned the flames of a fragile little 
web app into a robust tool power-
ing thousands of websites across the 
internet and around the world.

I rode the emotional tidal waves 
that come with pouring all your 
energy into a product, and was 
elated by every sale, devastated by 
every refund request.

So I worked even harder, staying 
up until 4:30am regularly to fix the 
bugs, answer support tickets, build 
new features, write and rewrite 
documentation, design and rede-
sign the website. I kept it up for an 
incredible amount of time.

And then I crashed. This was 
probably somewhere around Febru-
ary or March of this year. I entered 
the fourth month of development 
on v1.5 with the end no nearer in 
sight, and I couldn’t handle the 
pressure.

Sounds familiar to some of you, 
right?

So I decided to take a few nights 
off. I needed to get my head clear 
somehow if I was ever going to 
make this thing sustainable.

Well, I couldn’t get Statamic out 
of my head. I started dream-coding, 
waking up exhausted without 
having actually accomplished any-
thing. A new low. I was becoming 
an insomniac.

So another night goes by, and 
I’m trying to stay away from my 
computer. I can’t get into any books 
for whatever reason, so I decide to 
turn on my Xbox 360 and throw 
in Borderlands 2, which had barely 
been touched since Christmas.

Boom!
Things changed almost over-

night. I had a blast playing BL2. It’s 
an awesome game, with just the 
right balance of action, humor, and 

Why I Play Video Games

http://statamic.com


 15

speed. I played until 2am every night for 
a few nights and started sleeping better. 
It kept my mind from wandering into 
“work mode” and stressing me out. I was 
able to chill out and relax for a while, 
enjoy myself, and sleep like a human 
again.

So what happened to Statamic? Did 
the product suffer?

Just the opposite. I found I had 
renewed energy, and the time I spent 
was more productive, more creative, and 
higher caliber.

I was happier supporting customers, 
more enthusiastic when promoting and 
marketing it, and we were able to get 
v1.5 roughly 6 weeks after that. We’ve 
made huge improvements to the plat-
form, sales are up, we have more users 
than ever, and we’re getting great press. 
And I’m still gaming, and loving every 
minute of it.

I ended up picking up a PS3 on 
Craigslist with 20 or so games, and have 
been plowing through them with vigor. 
My buddy and neighbor Dave is an avid 
gamer, and made a number of recom-
mendations, and I’ve been enjoying 
gaming like never before. I had missed 
out on so many incredible titles, and 
now I’m making up for lost time. I really, 
really dig games with killer storylines 
and character development, so I imme-
diately played through everything by 
naughty Dog [naughtydog.com] once I 
got my PS3.

I generally play for an hour or two 
each night after my wife goes to bed and 
sometimes a few hours on lazy Sunday 
afternoons.

This year so far I’ve beaten (in order):

 ■ Borderlands 2

 ■ Diablo III

 ■ L.A. noire

 ■ The Last of us (best game of all time)

 ■ uncharted

 ■ uncharted 2

 ■ uncharted 3

 ■ Tomb raider

 ■ Battlefield 3

And as of today I’m about halfway 
through Far Cry 3.

I’ve started a few others, but if the 
storyline doesn’t grab me or the game-
play feels too repetitive I tend to jump 
into the next game, planning to come 
back (but I don’t always):

 ■ Assassins Creed III

 ■ God of War III

 ■ Bioshock

 ■ Deadspace

 ■ Max Payne 3

 ■ red Dead redemption

So there you have it. Do what you 
will. 

Gaming clears my head, makes me 
more productive when I am working, 
and, frankly, just makes me happy. Do 
fun things. you rarely regret it. ■

Jack McDade is a self-employed designer and 
developer from Upstate New York. He founded 
Statamic, a developer and client friendly, flat-file 
CMS, and is a husband and father of two young 
boys. He's been known to play video games 
and fish in his spare time, though rarely at the 
same time.

Reprinted with permission of the original author. 
First appeared in hn.my/videogames (jackmcdade.com)

http://naughtydog.com
http://hn.my/videogames


16 PROGRAMMING

PROGRAMMING

By JoB VrAnISH

I’ve been using *nix systems for quite a while. But 
there are a few commands that I somehow over-
looked and I wish I’d discovered years earlier.

➊ man ascii
This prints out the ascii tables in octal, hexa-

decimal and decimal. I can’t believe I didn’t know 
about this one until a month ago. I’d always resorted to 
googling for the tables. This is much more convenient.

NAME 
    ascii -- octal, hexadecimal and decimal 
ASCII character sets 
  
DESCRIPTION 
    The octal set: 
  
    000 nul  001 soh  002 stx  003 etx  004 eot   
    005 enq  006 ack  007 bel  010 bs   011 ht    
    012 nl   013 vt   014 np   015 cr   016 so    
    017 si   020 dle  021 dc1  022 dc2  023 dc3   
    024 dc4  025 nak  026 syn  027 etb  030 can   
    031 em   032 sub  033 esc  034 fs   035 gs    
    036 rs   037 us

➋ cal
Pulling up a calendar on most systems is almost 

always a multi-step process by default. or you can just 
use the cal command.

> cal 
  
    August 2013 
Su Mo Tu We Th Fr Sa 
             1  2  3 
 4  5  6  7  8  9 10 
11 12 13 14 15 16 17 
18 19 20 21 22 23 24 
25 26 27 28 29 30 31

➌ xxd

> xxd somefile.bin 
  
0000000: 83ff 0010 8d01 0408 d301 0408 a540 0408  
.............@.. 
0000010: d701 0408 d901 0408 db01 0408 0000 0000  
................ 
0000020: 0000 0000 0000 0000 0000 0000 1199 0508  
................ 
0000030: df01 0408 0000 0000 e199 0508 1d9a 0508  
................ 
0000040: e501 0408 2912 0508 e901 0408 eb01 0408  
....)........... 
0000050: ed01 0408 ef01 0408 39e0 0408 55e0 0408  
........9...U... 

Unix Commands I Wish I’d 
Discovered Years Earlier



 17

0000060: 71e0 0408 8de0 0408 a9e0 0408 39f7 0408  
q...........9... 
0000070: 6df7 0408 a5f7 0408 ddf7 0408 15f8 0408  
m...............

This is another command I can’t believe I didn’t 
know about until recently. xxd can generate a hex 
dump of a given file, and also convert an edited hex 
dump back into its original binary form. It can also 
output the hex dump as a C array, which is also super 
handy:

> xxd -i data.bin 
  
unsigned char data_bin[] = { 
  0x6d, 0x61, 0x64, 0x65, 0x20, 0x79, 0x6f,  
  0x75, 0x20, 0x6c, 0x6f, 0x6f, 0x6b, 0x0a 
}; 
unsigned int data_bin_len = 14;

I’ve also used it to compare binary files by generating 
a hex dump of two files and then diff’ing them. 

➍ ssh
ssh was one of the first non-trivial unIX utili-

ties that I got familiar with, but it was a while before 
I realized that it can be used for a lot more than just 
logging into remote machines.

ssh and its accompanying tools can be used for:

 ■ Copying files between computers (using scp).

 ■ X-forwarding — connect to a remote machine and 
have any gui applications started, displayed as if they 
were started locally, even if the remote machine 
doesn’t have an X server.

 ■ Port forwarding — forward a connection with a local 
port to a port on a remote machine or forward con-
nections with a port on a remote machine to a local 
port.

 ■ SoCKS proxy — forward any connections of an 
application that supports SoCKS proxies through 
the remote host. useful for more secure brows-
ing over public Wi-Fi and for getting around overly 
restrictive firewalls.

 ■ Typing a password on your local machine once, then 
using a secure identity to login to several remote 
machines without having to retype your password by 
using an ssh key agent. This is awesome.

➎ mdfind
This one is specific to mac, as there are other 

*nix equivalents. It has similar functionality to find but 
uses the Spotlight index. It allows you to search your 
entire filesystem in seconds. you can also use it to give 
you live updates when new files that match your query 
appear. I use it most often when I’m trying to find the 
obscure location where an application stores some 
critical file.

> mdfind -name homebrew 
  
/usr/local/Library/Homebrew 
/Users/job/Library/Logs/Homebrew ■

Job Vranish is a software developer at Atomic Object. He tries 
to bring modern tools and practices to embedded software 
development in an effort to make it not terrible.

Reprinted with permission of the original author. 
First appeared in hn.my/unixcommands (atomicobject.com)

http://hn.my/unixcommands


18 PROGRAMMING

Frequently i come across confusion with domain 
names. Why doesn’t my website work? Why is 
this stupid thing broken, everything I try fails, 

I just want it to work!! Invariably the question asker 
either doesn’t know what DnS is or doesn’t under-
stand how something fundamental works. More gener-
ally, people think that DnS is scary or complicated. 
This article is an attempt at quelling that fear. DnS is 
easy once you understand a few basic concepts.

What is DNS?
First things first: DnS stands for Domain name 
System. Fundamentally, it’s a globally distributed key 
value store. Servers around the world can give you the 
value associated with a key, and if they don’t know 
they’ll ask other servers for the answer.

That’s it. That’s all there is to it. you (or your web 
browser) ask for the value associated with the key www.
example.com and get back 1.2.3.4.

Basic Exploration and Fundamental Types
The great thing about the DnS is that it’s completely 
public and open, so it’s easy to poke around. Let’s do 
a little exploring, starting with this domain, petekeen.
net. note that you can run all of these examples from 
an oS X or Linux command line.

First, let’s look at a simple domain name to IP 
address mapping:

$ dig empoknor.bugsplat.info

The dig command is a veritable Swiss Army knife 
for querying DnS servers and we’ll be using it quite a 
bit. Here’s the first part of the response:

; <<>> DiG 9.7.6-P1 <<>> empoknor.bugsplat.info 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, 
id: 51539 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHOR-
ITY: 0, ADDITIONAL: 0

There’s only one interesting thing in here. We asked 
for one record and got exactly one response. Here’s the 
question we asked:

;; QUESTION SECTION: 
;empoknor.bugsplat.info. IN  A

dig defaults to asking for A records. A stands for 
address and is one of the basic fundamental types of 
records in the DnS. An A record holds exactly one IPv4 
address. There’s an equivalent record for IPv6 addresses 
named AAAA. next, let’s look at the answer our DnS 
server gave us:

;; ANSWER SECTION: 
empoknor.bugsplat.info. 300 IN  A   
192.30.32.165

This says the host empoknor.bugsplat.info. has 
exactly one A address: 192.30.32.165. The 300 is called 
the TTL value, or time to live. It’s the number of sec-
onds that this record can be cached before it needs to 
be checked again. The IN component stands for Inter-
net and is meant to disambiguate between the vari-
ous types of networks that the DnS historically was 
responsible for. The rest of the response tells you things 
about the response itself:

By PETE KEEn 

DNS: The Good Parts



 19

;; Query time: 20 msec 
;; SERVER: 192.168.1.1#53(192.168.1.1) 
;; WHEN: Fri Jul 19 20:01:16 2013 
;; MSG SIZE  rcvd: 56

Specifically, it tells you how long it took for your 
server to respond, what that server’s IP address is 
(192.168.1.1), what port dig asked (53, the default 
DnS port), when the query completed, and how many 
bytes the response contained.

As you can see, there’s an awful lot going on in a 
single DnS query. Every time you open a web page 
your browser makes literally dozens of these queries 
to resolve the web host, all of the hosts where external 
resources like images and scripts are located, etc. Every 
single resource involves at least one DnS query, which 
would involve an awful lot of traffic if DnS wasn’t 
designed to be heavily cached.

What you probably can’t see, however, is that the 
DnS server at 192.168.1.1 contacted a whole chain of 
other servers in order to answer that simple question 
of what address does empoknor.bugsplat.info map to. 
Let’s run a trace to see all of the servers that dig would 
have to contact if they weren’t already cached:

$ dig +trace empoknor.bugsplat.info 
 
; <<>> DiG 9.7.6-P1 <<>> +trace empoknor.bug-
splat.info 
;; global options: +cmd 
. 137375  IN  NS  l.root-servers.net. 
. 137375  IN  NS  m.root-servers.net. 
. 137375  IN  NS  a.root-servers.net. 
. 137375  IN  NS  b.root-servers.net. 
. 137375  IN  NS  c.root-servers.net. 
. 137375  IN  NS  d.root-servers.net. 
. 137375  IN  NS  e.root-servers.net. 
. 137375  IN  NS  f.root-servers.net. 
. 137375  IN  NS  g.root-servers.net. 
. 137375  IN  NS  h.root-servers.net. 
. 137375  IN  NS  i.root-servers.net. 
. 137375  IN  NS  j.root-servers.net. 
. 137375  IN  NS  k.root-servers.net. 
;; Received 512 bytes from 
192.168.1.1#53(192.168.1.1) in 189 ms 
 
info. 172800  IN  NS  c0.info.afilias-nst.info. 
info. 172800  IN  NS  a2.info.afilias-nst.info. 
info. 172800  IN  NS  d0.info.afilias-nst.org. 
info. 172800  IN  NS  b2.info.afilias-nst.org. 

info. 172800  IN  NS  b0.info.afilias-nst.org. 
info. 172800  IN  NS  a0.info.afilias-nst.info. 
;; Received 443 bytes from 
192.5.5.241#53(192.5.5.241) in 1224 ms 
 
bugsplat.info. 86400   IN  NS   
ns-1356.awsdns-41.org. 
bugsplat.info. 86400   IN  NS   
ns-212.awsdns-26.com. 
bugsplat.info. 86400   IN  NS   
ns-1580.awsdns-05.co.uk. 
bugsplat.info. 86400   IN  NS   
ns-911.awsdns-49.net. 
;; Received 180 bytes from 
199.254.48.1#53(199.254.48.1) in 239 ms 
 
empoknor.bugsplat.info. 300 IN  A   
192.30.32.165 
bugsplat.info. 172800  IN  NS   
ns-1356.awsdns-41.org. 
bugsplat.info. 172800  IN  NS   
ns-1580.awsdns-05.co.uk. 
bugsplat.info. 172800  IN  NS   
ns-212.awsdns-26.com. 
bugsplat.info. 172800  IN  NS   
ns-911.awsdns-49.net. 
;; Received 196 bytes from 205.251.195.143#53(20
5.251.195.143) in 15 ms

The DnS is arranged in a hierarchy. remember how 
dig inserted a single . after the hostname we asked for 
before, empoknor.bugsplat.info? Well, that . is pretty 
important and stands for the root of the hierarchy. The 
root DnS servers are run by various companies and 
governments around the world. originally there were 
only a handful of these servers, but as the Internet has 
grown more have been added, so that now there are 
notionally 13. Each one of these servers, however, has 
dozens or hundreds of physical machines hiding behind 
a single IP.

So, at the top of the trace we see the root servers, 
each represented by an NS record. An NS record maps 
a domain name, in this case the root, to a DnS server. 
When you register a domain name with a registrar like 
nameCheap or GoDaddy they create NS records for 
you.



20 PROGRAMMING

dig randomly picked one of the root server 
responses, in this case f.root-servers.net., and asked 
it what the A record for empoknor.bugsplat.info is 
and the root server responded with another set of NS 
servers. This time the ones responsible for the info top 
level domain . dig asks one of these servers for the A 
record for empoknor.bugsplat.info, gets back another 
set of NS servers, and then asks one of those servers for 
the A record for empoknor.bugsplat.info. and finally 
receives an actual answer.

Whew! That would be a heck of a lot of traffic, 
except that almost all of these entries are cached for 
a long time by every server in the chain. your com-
puter caches too, as does your browser. Most of the 
time DnS resolution will never touch the root serv-
ers because their IP addresses hardly ever change. The 
top level domains: com, net, org, etc., are also generally 
heavily cached.

Other Types
There are a few other types that you should be aware 
of. The first is MX, which maps a domain name to one or 
more email servers. Email is so important to the func-
tioning of the Internet that it gets its own record type. 
Here’s the MX records for petekeen.net:

$ dig petekeen.net mx 
 
; <<>> DiG 9.7.6-P1 <<>> petekeen.net mx 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, 
id: 18765 
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHOR-
ITY: 0, ADDITIONAL: 0 
 
;; QUESTION SECTION: 
;petekeen.net. IN  MX 
 
;; ANSWER SECTION: 
petekeen.net. 86400   IN  MX  60  
empoknor.bugsplat.info. 
petekeen.net. 86400   IN  MX  60  
teroknor.bugsplat.info. 
 
;; Query time: 272 msec 
;; SERVER: 192.168.1.1#53(192.168.1.1) 
;; WHEN: Fri Jul 19 20:33:43 2013 
;; MSG SIZE  rcvd: 93

note that this time we got two answers because 
petekeen.net has two mail servers set up. The response 
is basically the same as the response for A.

The other record type that you should be familiar 
with is CNAME, which stands for Canonical name and 
maps one name onto another. Let’s look at the response 
we get for a CNAME:

$ dig www.petekeen.net 
 
; <<>> DiG 9.7.6-P1 <<>> www.petekeen.net 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, 
id: 16785 
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHOR-
ITY: 0, ADDITIONAL: 0 
 
;; QUESTION SECTION: 
;www.petekeen.net. IN  A 
 
;; ANSWER SECTION: 
www.petekeen.net. 86400   IN  CNAME   empoknor.
bugsplat.info. 
empoknor.bugsplat.info. 300 IN  A   
192.30.32.165 
 
;; Query time: 63 msec 
;; SERVER: 192.168.1.1#53(192.168.1.1) 
;; WHEN: Fri Jul 19 20:36:58 2013 
;; MSG SIZE  rcvd: 86

The first thing to notice is that we get back two 
answers. The first says that www.petekeen.net maps 
to empoknor.bugsplat.info. The second gives the A 
record for that server. one way to think about a CNAME 
is as an alias for another domain name.

Why CNAME is Messed Up
CNAMEs are incredibly useful, but they have one very 
important gotcha: if a CNAME exists for a particular 
name, that is the only record allowed for that name. no 
MX, no A, no NS, no nothing. This is because the DnS 
substitutes the CNAME’s target for its own value, so every 
record valid for the target is also valid for the CNAME. 
This is why you can’t have a CNAME on a root domain 
like petekeen.net, because you generally have to have 
other records for that domain like MX.



 21

Querying Other Servers
Let’s say for sake of argument that you messed up 
a DnS configuration. you think you’ve fixed the 
problem, but you don’t want to wait for the cache to 
expire to see. With dig you can actually query one of a 
number of public DnS servers instead of your default 
server like this:

$ dig www.petekeen.net @8.8.8.8

The @ symbol followed by an IP address or hostname 
tells dig to query that server on the default DnS port. 
I use this a lot to query Google’s public DnS servers or 
Level 3’s sort-of-public servers at 4.2.2.2.

Common Situations

Redirect bare domain to www
Almost always you’ll want to redirect a bare domain 
like iskettlemanstillopen.com to www.iskettle-
manstillopen.com. registrars like namecheap and 
DnSimple call this a urL redirect. In namecheap 
you would set up a urL redirect like this:

 The @ stands for the root domain iskettlemanstil-
lopen.com. Let’s look at the A record for that domain:

$ dig iskettlemanstillopen.com 
;; QUESTION SECTION: 
;iskettlemanstillopen.com. IN  A 
 
;; ANSWER SECTION: 
iskettlemanstillopen.com. 500   IN  A   
192.64.119.118

That IP is owned by namecheap and is running a 
small web server that just serves up an HTTP-level 
redirect to http://www.iskettlemanstillopen.com:

$ curl -I iskettlemanstillopen.com 
curl -I iskettlemanstillopen.com 
HTTP/1.1 302 Moved Temporarily 
Server: nginx 
Date: Fri, 19 Jul 2013 23:53:21 GMT 
Content-Type: text/html 
Connection: keep-alive 
Content-Length: 154 
Location: http://www.iskettlemanstillopen.com/

CNAME to Heroku or Github
notice in the screenshot above that there’s a second 
row defining a CNAME. In this case, www.iskettleman-
stillopen.com maps to an application running on 
Heroku. you’ll have to set up Heroku with a similar 
domain mapping, of course:

$ heroku domains 
=== warm-journey-3906 Domain Names 
warm-journey-3906.herokuapp.com 
www.iskettlemanstillopen.com

Github is similar, except that the mapping lives in a 
file called CNAME at the root of your pages, as described 
in their documentation.

Wildcards
Most DnS servers allow you to set up DnS wild-
cards. For example, I have a wildcard CNAME set up for 
*.empoknor.bugsplat.info that maps to empoknor.
bugsplat.info. That way I can host arbitrary things on 
empoknor and not have to create new DnS entries for 
them every time:

$ dig randomapp.empoknor.bugsplat.info 
 
;; QUESTION SECTION: 
;randomapp.empoknor.bugsplat.info. IN   A 
 
;; ANSWER SECTION: 
randomapp.empoknor.bugsplat.info. 300 IN CNAME  
empoknor.bugsplat.info. 
empoknor.bugsplat.info. 15  IN  A   
192.30.32.165

Wrap Up
Hopefully this gives you a good beginning understand-
ing of what DnS is and how to go about exploring and 
verifying your configuration. ■

Pete Keen is a software developer currently residing in Ann Arbor. 
He recently published a book titled Mastering Modern Payments: 
Using Stripe with Rails and writes articles about a variety of 
technology issues at petekeen.net

Reprinted with permission of the original author. 
First appeared in hn.my/dnsgood (petekeen.net)

http://petekeen.net 
http://hn.my/dnsgood (petekeen.net)


22 PROGRAMMING

First, create a directory on your server and 
initialize an empty git repository. I like to serve 
my websites from ~/www/, so that’s what I’ll do 

in this example.

mkdir ~/www/example.com && cd ~/www/example.com 
git init

next, let’s set up your server’s git repo to nicely 
handle deployment via git push.

git config core.worktree ~/www/example.com 
git config receive.denycurrentbranch ignore

Finally, we’ll set up a post-receive hook for git 
to check out the master branch so your web server 
can serve files from that branch. (remember, ^D is 
Control+D, or whatever your shell’s EoT character is).

cat > .git/hooks/post-receive 
#!/bin/sh 
git checkout -f 
^D 
chmod +x .git/hooks/post-receive

Keep in mind that you can add whatever you like to 
the post-receive hook if you have a build process. For 
example, one of my sinatra projects uses the following 
post-receive hook:

#!/bin/sh 
git checkout -f 
bundle install 
touch ~/www/example.com/tmp/restart.txt

Back on your local machine, let’s get your git repo 
ready for deployment.

cd ~/www-dev/example.com 
git remote add origin \ 
ssh://user@example.com/home/user/www/example.com

For the first push to your server, run the following 
command:

git push origin master

now, whenever you want to deploy changes you’ve 
made locally, simply run the following command!

git push ■

With five years of experience in a combination of back- and front-
end web development, an eye for user interface design, and a 
passion for learning, Kerrick bridges the gap between design and 
programming. He strives to make the web usable and accessible 
to all with open source, web standards, and good user experience.

By KErrICK LonG 

FTP is so 90s.  
Let's deploy via Git instead! 

Reprinted with permission of the original author. 
First appeared in hn.my/ftp (coderwall.com)

http://hn.my/ftp


Metrics and monitoring for people 
who know what they want
We know from experience that monitoring your servers and 
applications can be painful, so we built the sort of service that 
we would want to use. Simple to set up, responsive support 
from people who know what they're talking about, and reliably 
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards            StatsD              Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com


24 PROGRAMMING

By MATT WrIGHT

Flask [flask.pocoo.org] 
has been my preferred web 
framework as of late. I think 

it has a great core feature set, and 
Armin, the main author, has done 
well to keep its API minimal and 
easy to digest even for developers 
that are relatively new to Python. 
However, given that it is a rather 
minimal framework, it can often be 
difficult to decide how to structure 
an application after it reaches a cer-
tain level of complexity. It tends to 
be a common question that comes 
up in the #pocoo IrC channel.

In this article I intend to share 
how I structure Flask applications. 
To help support this article I’ve 
written a very basic application that 
I’ve arbitrarily named overholt. 
[hn.my/overholt]

 High Level Concepts

Platform vs. Application
Web applications can encapsulate 
a lot of different functionality. 
Most commonly when you think 
of a web application you probably 
think of a user interface rendered 
as HTML and JavaScript and 
displayed to a user in the browser. 
However, web applications can be 

infinitely more complicated. For 
instance, an application can expose 
a JSon API designed specifically 
for a Backbone.js front end applica-
tion. There could also be a tailored 
JSon API for the native ioS or 
Android application. The list goes 
on. So when starting a project I try 
to think of it as a platform instead 
of an application. A platform con-
sists of one or more applications. As 
a side note, this concept is not quite 
apparent in the overholt applica-
tion source code.

A Flask application is a collec-
tion of views, extensions, and 
configuration
This concept supports the previous. 
I look for logical contexts within 
the larger scope of my platform. In 
other words, I try to find patterns 
in the endpoints I will be expos-
ing to various clients. Each of these 
contexts has slightly different con-
cerns and thus I encapsulate their 
functionality and configuration into 
individual Flask applications. These 
applications can reside in the same 
code repository or can be separated. 
When it comes time to deploy the 
applications I then have the option 
to deploy them individually or 

combine them using Werkzeug’s 
DispatcherMiddleware. In the case 
of overholt, the platform consists 
of two Flask applications which 
are organized into separate Python 
packages: overholt.api and over-
holt.frontend.

Application logic is structured in 
logical packages and exposes an 
API of its own
I try to think of the application 
logic as a core “library” for my 
platform. Some developers call this 
a “service” layer. regardless of what 
you call it, this layer sits on top of 
the data model and exposes an API 
for manipulating the data model. 
This allows me to encapsulate 
common routines that may be exe-
cuted in multiple contexts within 
the platform. using this approach 
also tends to lead to “thinner” view 
functions. In other words it allows 
me to keep my view functions 
small and focused on transforming 
request data into objects that my 
the service layer expects in its API. 
Application logic within overholt 
is primarily located in the overholt.
users, overholt.products, and 
overholt.stores Python packages.

How I Structure My  
Flask Applications

http://flask.pocoo.org
http://hn.my/overholt


 25

View functions are the layer 
between an HTTP request and the 
application logic
A view function is where an HTTP 
request meets the application logic. 
In other frameworks this layer 
is often called a “controller” or a 
“handler” and sometimes even a 
“command.” It is here that the data 
in the HTTP request is able to be 
accessed and used in conjunction 
with the API exposed by the appli-
cation logic. The view function then 
renders a response according to the 
results of the application logic that 
was used. View functions within 
overholt are organized using 
Blueprints. Each Blueprint has its 
own module within the applica-
tion’s Python package. An example 
of such a module is overholt.api.
products or overholt.frontend.
dashboard.

Patterns and Conventions
Flask tends not to push any patterns 
or conventions on the developer. 
This is one of the things I like most 
about Flask compared to large 
frameworks like Django and rails. 
However, any developer not willing 
to establish patterns and conven-
tions for their Flask apps would 
be doing themselves or any other 
developers working on the project 
a disservice. Without patterns or 
conventions your applications will 
lose architectural integrity and be 
difficult for others to understand. 
After working with Flask for almost 
two years now I’ve settled on a few 
patterns and conventions of my 
own. The following is an overview 
of what I commonly use.

Application Factories
The factory pattern is the first pat-
tern to be implemented and used in 
any of my Flask applications. There 
is a small amount of documenta-
tion regarding application factories 
already. While the documentation is 
limited in scope, I believe it is there 
to encourage the usage of this pat-
tern. That being said, there is not an 
established convention for imple-
menting a factory method. Chances 
are your app will have its own 
unique requirements and thus your 
factory method should be tailored 
accordingly. regardless of your 
implementation the factory method 
is, in my opinion, indispensable 
as it gives you more control over 
the creation of your application in 
different contexts such as in your 
production environment or while 
running tests.

Within the overholt source code 
you will find three different fac-
tory methods. There is one factory 
for each application and an addi-
tional factory which is shared by 
the individual application factories. 
The shared factory instantiates 
the application and configures the 
application with options that are 
shared between apps. The individ-
ual app factories further configure 
the application with options that 
are more specific to their use. For 
example, the api application factory 
registers a custom JSONEncoder 
class and custom error handlers that 
render JSon responses. Whereas 
the frontend application factory 
initializes an assets pipeline and 
custom error handlers for HTTP 
responses.

Blueprints
Blueprints are crucial to my Flask 
applications as they allow me to 
group related endpoints together. 
I honestly couldn’t live without 
Blueprints. The Flask documenta-
tion [hn.my/blueprints] provides 
the best overview of what Blue-
prints are and why they are useful. 
There isn’t much else I can describe 
about Blueprints themselves that 
Armin hasn’t already. In the con-
text of the overholt source code, 
each application package contains 
various modules containing Blue-
print instances. The API application 
contains three Blueprints located 
at overholt.api.products, over-
holt.api.stores and overholt.
api.users. The frontend applica-
tion contains but one Blueprint 
located at overholt.frontend.
dashboard. All Blueprint modules 
are located in the same package as 
the application which allows me to 
use a simple method of registering 
them on their respective applica-
tion. Within the shared applica-
tion factory you should notice the 
register_blueprints helper method. 
This method simply scans all the 
modules in the application package 
for Blueprint instances and registers 
them on the app instance.

Services
Services are how I follow my third 
high level concept: “Application 
logic is structured in logical pack-
ages and exposes an API of its own.” 
They are responsible for connecting 
and interacting with any external 
data sources. External data sources 
include (but are not limited to) 
such things as the application 
database, Amazon’s S3 service, or 
an external rESTful API. In general 
each logical area of functionality 

http://hn.my/blueprints


26 PROGRAMMING

(products, stores, and users) con-
tains one or more services depend-
ing on the required functionality. 
Within the overholt source code 
you will find a base class for services 
that manage a specific SQLAl-
chemy model. Furthermore, this 
base class is extended and addi-
tional methods are added to expose 
an API that supports the required 
functionality. The best example of 
this is the overholt.stores.Stor-
esService class. Instances of service 
classes can instantiate at will, but as 
a convenience instances are consoli-
dated into the overholt.services 
module.

API Errors/Exceptions
Dealing with errors in a rEST-
ful API can be kind of annoying 
at times, but Flask makes it truly 
simple. Armin has already written 
a little bit about implementing API 
exceptions which I recommend 
you read. My implementation is 
not quite the same as his, but that’s 
the beauty of Flask. overholt has a 
base error class and a slightly more 
specific error class related to form 
processing. Perhaps you recognize 
these errors if you view the source 
referenced in the application facto-
ries section. More specifically, the 
API application registers error han-
dlers for these errors and returns a 
JSon response depending on the 
error that was raised. Dig around 
the source and see if you can find 
where they are raised.

View Decorators
Decorators in Python are very 
useful functional programming 
tools. In the context of a Flask 
application they are extremely 
useful for view functions. The Flask 
documentation provides a few 
examples [hn.my/viewdec] of some 
useful view decorators. Within 

the overholt source there are two 
examples of view decorators that 
I commonly use. Each is tailored 
for using Blueprints and specific to 
each of the two applications. Take 
a look at the API view decorator. 
[hn.my/viewapi] This type of view 
decorator allows me to add all the 
other common decorators to my 
view methods. This prevents me 
from having to repeat decorators, 
such as @login_required, across 
all the API views. Additionally, 
the decorator serializes the return 
value of my view methods to JSon. 
This also allows me to simply 
return objects that can be encoded 
by the API application’s custom 
JSONEncoder.

Middleware
WSGI middlewares are pretty 
handy and can be used for all sorts 
of things. I have one middleware 
class that I always copy from proj-
ect to project called HTTPMethod-
OverrideMiddleware. you can find 
it in the overholt.middleware 
module. This middleware allows 
an HTTP client to override the 
request method. This is useful for 
older browsers or HTTP clients 
that don’t natively support all the 
modern HTTP verbs such as PUT, 
DELETE and HEAD.

JSON Serialization
If you’ve ever developed a JSon 
API you’ll inevitably need to 
have control over how objects are 
represented as a JSon document. 
As mentioned earlier, the API 
application uses a custom JSONEn-
coder instance. This encoder adds 
additional support for objects that 
include the JSonSerializer mixin. 
This mixin defines a few “magic” 
variables which allow me to be 
explicit about the fields or attri-
butes that are visible, hidden, or 

modified before being encoded as 
JSon. I simply need to extend this 
mixin, override the magic variables 
with my options and include the 
new, extended mixin in the data 
model’s inheritance chain. Exam-
ining any of the model modules 
within the overholt.stores, over-
holt.products, or overholt.users 
packages will illustrate how this 
mixin is used.

Database Migrations
In addition to using SQLAlchemy 
I always use Alembic. [alembic.
readthedocs.org] Alembic is a nice 
database migration tool made spe-
cifically for SQLAlchemy by Mike 
Bayer, the author of SQLAlchemy. 
What’s nice about Alembic is that 
it includes a feature to autogenerate 
database versions from the model 
metadata. If you examine the alem-
bic.env module you should notice 
the application specific imports. 
Further down is where the appli-
cation’s database urI and model 
metadata is handed off to Alembic. 

Configuration
Configuration is always important 
for an application, especially for 
sensitive details such as API keys 
and passwords. I always provide 
a default configuration file that is 
checked into the project repository 
so that a developer can get up and 
running as quick as possible. This 
file contains default values that 
are specific to the virtual machine 
settings specified in the Vagrantfile. 
This default file is used to config-
ure any apps created by the shared 
application factory. Additionally, 
the factory method attempts to 
override any default settings from 
a settings.cfg file located in the 
application’s instance folder. This 
additional file can be created by any 
developer working on the project 

http://hn.my/viewdec
http://hn.my/viewapi
http://alembic.readthedocs.org
http://alembic.readthedocs.org


 27

to tweak any settings to be more 
specific to their local develop-
ment environment. When it comes 
time to deploy the application to a 
development or production server 
the settings.cfg file will be cre-
ated by the deployment tool, such 
as Chef or Fabric.

Management Commands
Management commands often 
come in handy when developing or 
managing your deployed applica-
tion. The Flask-Script extension 
makes setting up management 
commands pretty easy. Commands 
are useful in many ways such as 
manipulating data or managing the 
database. It’s really up to you and 
your application’s needs. over-
holt contains a simple manage.py 
module at the top level of the proj-
ect. There are three commands for 
managing users. As my applications 
grow, management commands tend 
to as well.

Asynchronous Tasks
running code asynchronously is 
a common way of improving the 
responsiveness of a web applica-
tion. Celery [celeryproject.org] is, 
arguably, the de facto library for 
doing this with Python. Similar 
to creating Flask apps, I also use 
a factory method for creating my 
Celery apps. The thing to note 
about this factory method is that it 
specifies a custom task class. This 
custom class creates an application 
context before any task is run. This 
is necessary because task methods 
will most likely be using code that 
is shared by the web application. 
More specifically, a task might 
query or modify the database via 
the Flask-SQLAlchemy exten-
sion which requires an application 
context to be present when inter-
acting with the database. Beyond 

this, tasks queued from within view 
functions. overholt contains just a 
few example tasks to illustrate how 
they might be used.

Frontend Assets
When it comes to frontend assets, 
I always use webassets in conjunc-
tion with the Flask-Assets exten-
sion. These libraries allow me to 
create logical bundles of assets that, 
once compiled and minified, offers 
optimized versions for web brows-
ers to keep the download times to 
a minimum. When it comes time 
to deploy the assets, there are two 
approaches. The first is simply 
to compile the assets locally and 
commit them to the project reposi-
tory. The other is to compile the 
assets on the web server when the 
application is deployed. The first 
option has the advantage of not 
having to configure your web server 
with various tools (CoffeeScript, 
LESS, SASS, etc.) to compile the 
assets. The second option keeps 
compiled files out of the project 
repository and could potentially 
prevent an error resulting from 
someone forgetting to compile new 
assets.

Testing
Testing your Flask applications is 
“important.” I’ve quoted the word 
“important,” though, and that’s 
because tests, while very useful, 
should not be your first concern. 
regardless, when it comes time 
to write tests it should be rela-
tively easy to do so. Additionally, I 
rarely write unit tests for my Flask 
applications. I generally only write 
functional tests. In other words, I’m 
testing that all application end-
points work as expected with valid 
and invalid request data.

Tools
In the Python world there are 
countless testing tools and librar-
ies, and it’s often difficult to decide 
which ones to use. The only thing I 
strive for is to find the right balance 
of fewest dependencies and ease of 
testing. That being said, I’ve found 
that it’s pretty easy to get by using 
only the following tools:

nose [nose.readthedocs.org]
running tests is a breeze with nose. 
It has a lot of options, and there is 
a wide variety of plugins that you 
may find useful. This library also 
seems to be widely used in the 
community, so I’ve settled on it as 
my preferred, top-level test tool.

factory_boy  
[factoryboy.readthedocs.org]
Without test data/fixtures it will be 
difficult to test any app. factory_boy 
is a nice library that makes it trivial 
to create test data from the applica-
tion’s models. Lately I’ve been using 
an older version and configured it 
to support SQAlchemy. However, 
as of writing this, there is a newer 
version on the horizon that will 
support SQLAlchemy out of the 
box.

http://celeryproject.org
http://nose.readthedocs.org
http://factoryboy.readthedocs.org


28 PROGRAMMING

mock [mock.readthedocs.org]
I use this library the leas,t but it still 
comes in handy from time to time. This 
is why you’ll see it listed in the require-
ments.txt file but not yet used in the 
tests.

Structure
Without exception my Flask projects 
always contain a package named tests 
where all test-related code is placed. In 
the top level of the test package you 
will see a few base classes for test cases. 
Base classes are extremely useful for 
testing because there is inevitably always 
repeated code in tests.

There are also a few modules in this 
package. one being tests.settings 
which is a testing-specific configuration 
module. This module is passed to each 
application’s factory method to over-
ride any default settings. The tests.
factories module contains factory 
classes which utilize the aforementioned 
factory_boy library. Lastly you’ll find the 
tests.utils module. This module will 
hold all reusable test utilities. For now it 
contains a simple function to generate a 
basic HTTP auth header and a test case 
mixin class that has many useful asser-
tion and request methods.

Also within the top level tests pack-
age are two other packages, tests.
api and tests.frontend which map 
to the two applications that are part of 
overholt. Within the top level of each 
package is another base class which 
inherits from tests.OverholtAppTest-
Case. This class can then be modified to 
add common testing code for the respec-
tive application. Each application then 
has a varying amount of test modules 
that group the testing of endpoints. For 
instance, the tests.api.product_tests 
module contains the ProductApiTest-
Case class which tests all the product-
related endpoints of the API application.

Documentation
The last and most commonly neglected 
part of any project is documentation. 
Sometimes you can get away with a 
small rEADME file. The overholt proj-
ect happens to contain a small rEADME 
file that explains how to setup the local 
development environment. However, 
rEADME files are not necessarily sus-
tainable as a project’s complexity grows. 
When this is the case I always turn to 
Sphinx. [sphinx-doc.org]

All documentation files reside in 
the docs folder. These files can then 
be used by Sphinx to generate HTML 
(and other formats). There are also a 
lot of extensions out there for Sphinx. 
The extension I most commonly use is 
sphinxcontrib-httpdomain. This exten-
sion is geared specifically for document-
ing HTTP APIs and even has the ability 
to generate documentation for a Flask 
application. you can see this extension in 
action in the overholt API documenta-
tion file.

Wrap Up
I believe that the age-old saying “there is 
more than one way to skin a cat” holds 
true to developing any application, let 
alone a web application with Flask. The 
approach outlined here is based on my 
personal experience developing, what I 
would consider, relatively large applica-
tions with Flask. What works for me 
might not work for you, but I’d like to 
think there is some useful information 
here for developers getting into Flask. ■ 

Matt Wright is a software and devops engineer 
at ChatID [chatid.com]. Prior to ChatID he has 
worked as a developer for a variety of companies 
which include Local Projects [localprojects.net] 
and Rokkan [rokkan.com]. In his spare he 
maintains a variety of extensions for Flask and 
chronicles his work experiences on his blog at 
mattupstate.com

Reprinted with permission of the original author. 
First appeared in hn.my/flask (mattupstate.com)

http://mock.readthedocs.org
http://sphinx-doc.org
http://chatid.com
http://localprojects.net
http://rokkan.com
http://mattupstate.com
http://hn.my/flask


 29

➊ Is very small, both source 
and binary, an order of mag-

nitude or more smaller than many 
more popular languages (Python, 
etc.). Because the Lua source code 
is so small and simple, it’s perfectly 
reasonable to just include the entire 
Lua implementation in your source 
tree, if you want to avoid adding an 
external dependency.

➋ Is very fast. The Lua inter-
preter is much faster than 

most scripting languages (again, an 
order of magnitude is not uncom-
mon), and LuaJIT2 is a very good 
JIT compiler for some popular CPu 
architectures (x86, ppc). using 
LuaJIT can often speed things up 
by another order of magnitude, and 
in many cases, the result approaches 
the speed of C. LuaJIT is also a 
“drop in” replacement for standard 
Lua: no application or user code 
changes are required to use it.

➌ Has LPEG. LPEG is a “Pars-
ing Expression Grammar” 

library for Lua, which allows very 
easy, powerful, and fast parsing, 
suitable for both large and small 
tasks; it’s a great replacement for 
yacc/lex/hairy-regexps. [I wrote 
a parser using LPEG and LuaJIT, 
which is much faster than the yacc/
lex parser I was trying emulate, and 
was very easy and straight-forward 
to create.] LPEG is an add-on pack-
age for Lua, but it is well-worth 
getting (it’s one source file).

➍ Has a great C-interface, 
which makes it a pleasure 

to call Lua from C, or call C from 
Lua. For interfacing large/complex 
C++ libraries, one can use SWIG, 
or any one of a number of interface 
generators (one can also just use 
Lua’s simple C interface with C++ 
of course).

➎ Has liberal licensing (“BSD-
like”), which means Lua 

can be embedded in proprietary 
projects if you wish, and is GPL-
compatible for FoSS projects.

➏ Is very, very elegant. It’s not 
lisp, in that it’s not based 

around cons-cells, but it shows 
clear influences from languages like 
scheme, with a straight-forward and 
attractive syntax. Like scheme (at 
least in its earlier incarnations), it 
tends towards “minimal” but does 
a good job of balancing that with 
usability. For somebody with a lisp 
background (like me!), a lot about 
Lua will seem familiar, and “make 
sense,” despite the differences.

➐ Has a simple, attractive, and 
approachable syntax. This 

might not be such an advantage 
over lisp for existing lisp users but 
might be relevant if you intend to 
have end-users write scripts.

➑ Has a long history, and 
responsible and profes-

sional developers who have shown 
good judgment in how they’ve 
evolved the language over the last 2 
decades.

➒ Has a vibrant and friendly 
user-community. ■

Miles is a long-time user and developer of 
free software.

By MILES BADEr

What Makes Lua Tick

Lua:

Reprinted with permission of the original author. 
First appeared in hn.my/lua (lua-users.org)

http://hn.my/lua


30 PROGRAMMING

By STéPHAnE éPArDAuD

This article describes common misconcep-
tions about uniform resource Locator 
(urL) encoding, then attempts to clarify 

urL encoding for HTTP, before presenting frequent 
problems and their solutions. While this article is not 
specific to any programming language, we illustrate the 
problems in Java and finish by explaining how to fix 
urL encoding problems in Java, and in a web applica-
tion at several levels.

Introduction
There are a number of technologies we use every day 
when we browse the web. There is the data itself (the 
web pages) obviously, the formatting of this data, and 
the transport mechanism which allows us to retrieve 
this data. Then there is the foundation, the root, the 
thing that makes the web a web: links from one page to 
the other. These links are urLs.

General URL syntax
Everyone by now has seen a urL at least once in his 
life. Take “http://www.google.com” for instance. This 
is a urL. A urL is a uniform resource Locator and 
is really a pointer to a web page (in most cases). urLs 
actually have a very well-defined structure since the 
first specification in 1994.

We can extract detailed information about the 
“http://www.google.com” urL:

Part  Data 
Scheme  http 
Host address www.google.com

If we look at a more complex urL such as 
“https://bob:bobby@www.lunatech.com:8080/
file;p=1?q=2#third” we can extract the following 
information:

Part      Data 
Scheme  https 
User  bob 
Password bobby 
Host address www.lunatech.com 
Port  8080 
Path  /file 
Path params p=1 
Query params q=2 
Fragment third

The Scheme (here http and https (secure HTTP)) 
define the structure of the rest of the urL. Most inter-
net urL schemes have a common first part which indi-
cates the user, password, host name and port, followed 
by a scheme-specific part. This common part deals with 
authentication and being able to know where to con-
nect in order to request data.

What Every Web 
Developer Must Know 
About URL Encoding



 31

HTTP URL syntax
For HTTP urLs (with the http or https schemes), the 
scheme-specific part of the urL defines the path to 
the data, followed by an optional query and fragment. 

The path part consists of a hierarchical view similar 
to a file system hierarchy with folders and files. The 
path starts with a “/” character, then each folder is sepa-
rated from one another by a “/” again until we reach 
the file. For example “/photos/egypt/cairo/first.jpg” has 
four path segments: “photos”, “egypt”, “cairo” and “first.
jpg”, which can be extrapolated as: the “first.jpg” file in 
the “cairo” folder, which is in the “egypt” folder located 
in the “photos” folder at the root of the web site.

Each path segment can have optional path param-
eters (also called matrix parameters) which are located 
at the end of the path segment after a “;”, and separated 
by “;” characters. Each parameter name is separated 
from its value by the “=” character like this: “/file;p=1” 
which defines that the path segment “file” has a path 
parameter “p” with the value “1”. These parameters are 
not often used — let’s face it — but they exist none-
theless, and we’ve even found a very good justification 
for their use in a yahoo rESTful API document:

Matrix parameters enable the application to retrieve 
part of a collection when calling an HTTP GET opera-
tion. See Paging a Collection for an example. Because 
matrix parameters can follow any collection path seg-
ment in a URI, they can be specified on an inner path 
segment.

After the path segments we can find the query 
which is separated from the path with a “?” character, 
and contains a list (separated by “&”) of parameter 
names and values separated by “=”. For example “/
file?q=2” defines a query parameter “q” with the value 
“2”. This is used a lot when submitting HTML forms, 
or when calling applications such as Google search.

Last in an HTTP urL is the fragment which is used 
to refer not to the whole HTML page but to a specific 
part within that file. When you click on a link and the 
browser automatically scrolls down to display a part 
which was not visible from the top of the page, you 
have clicked a urL with a fragment part.

URL grammar
The http urL scheme was first defined in rFC 1738 
(actually even before in rFC 1630) and while the http 
urL scheme has not been redefined, the whole urL 
syntax has been generalized into uniform resource 

Identifiers (urIs) from a specification that has been 
extended a few times to accommodate for evolutions.

There is a grammar which defines how urLs are 
assembled, and how parts are separated. For instance, 
the “://” part separates the scheme from the host part. 
The host and path fragments parts are separated by 
“/”, while the query part follows a “?”. This means that 
certain characters are reserved for the syntax. Some 
are reserved for all urIs, while some are only reserved 
for specific schemes. All reserved characters that are 
used in a part where they are not allowed (for instance 
a path segment — a file name for example — which 
would contain a “?” character) must be urL-encoded.

urL-encoding is the transformation of a character 
(“?”) into a harmless representation of this character 
which has no syntactic meaning in the urL. This is 
done by converting the character into a sequence of 
bytes in a specific character encoding, then writing 
these bytes in hexadecimal preceded by “%”. A ques-
tion mark in urL-encoding is therefore “%3F”.

We can write a urL pointing to the “to_be_or_not_
to_be?.jpg” image as such: “http://example.com/to_be_
or_not_to_be%3F.jpg” which makes sure that nobody 
would think there might be a query part in there.

Most browsers nowadays display the urLs by 
decoding (converting percent-encoded bytes back to 
their original characters) them first, while keeping 
them encoded when fetching them for the network. 
This means users are almost never aware of such 
encoding.

Developers or web page authors, on the other hand, 
have to be aware of it, because there are many pitfalls.

Common pitfalls of URLs
If you are working with urLs, it pays to know some 
of the most common traps you should avoid. Here we 
give a non-exhaustive list of some of those traps.

Which character encoding?
urL-encoding does not define any particular character 
encoding for percent-encoded bytes. Generally ASCII 
alphanumeric characters are allowed unescaped, but 
for reserved characters and those that do not exist in 
ASCII (the French “œ” from the word “nœud” — “knot” 
— for instance), we have to wonder which encoding to 
use when converting them to percent-encoded bytes.



32 PROGRAMMING

of course the world would be easier if they were 
just unicode, because every character exists in this 
set, but this is a set — a list if you will — and not an 
encoding per se. unicode can be encoded using several 
encodings such as uTF-8 or uTF-16 (there are sev-
eral others), but then the problem is still there: which 
encoding should urLs (generally urIs) use?

The standards do not define any way by which a 
urI might specify the encoding it uses, so it has to be 
deduced from the surrounding information. For HTTP 
urLs it can be the HTML page encoding or HTTP 
headers. This is often confusing and a source of many 
errors. In fact, the latest version of the urI standard 
defines that new urI schemes use uTF-8, and that host 
names (even on existing schemes) also use this encod-
ing, which really rouses my suspicion: can the host 
name and the path parts really use different encodings?

The reserved characters are different for each part
yes they are. yes they are. yes they are.

For HTTP urLs, a space in a path fragment part has 
to be encoded to “%20” (not, absolutely not “+”), while 
the “+” character in the path fragment part can be left 
unencoded.

now in the query part, spaces may be encoded to 
either “+” (for backwards compatibility: do not try to 
search for it in the urI standard) or “%20” while the 
“+” character (as a result of this ambiguity) has to be 
escaped to “%2B”.

This means that the “blue+light blue” string 
has to be encoded differently in the path and 
query parts: “http://example.com/blue+light%20
blue?blue%2Blight+blue”. From there you can deduce 
that encoding a fully constructed urL is impossible 
without a syntactical awareness of the urL structure.

Suppose the following Java code to construct a urL:

String str = "blue+light blue"; 
String url = "http://example.com/" + str + "?" + 
str;

Encoding the urL is not a simple iteration of char-
acters in order to escape those that fall outside of the 
reserved set: we have to know which reserved set is 
active for each part we want to encode.

This means that most urL-rewriting filters would be 
wrong if they decide to take a urL substring from one 
part into another without proper encoding care. It is 
impossible to encode a urL without knowing about its 
specific parts.

The reserved characters are not what you think they are
Most people ignore that “+” is allowed in a path part 
and that it designated the plus character and not a 
space. There are other surprises:

 ■ “?” is allowed unescaped anywhere within a query 
part,

 ■ “/” is allowed unescaped anywhere within a query 
part,

 ■ “=” is allowed unescaped anywhere within a path 
parameter or query parameter value, and within a 
path segment,

 ■ “:@-._~!$&'()*+,;=” are allowed unescaped anywhere 
within a path segment part,

 ■ “/?:@-._~!$&'()*+,;=” are allowed unescaped any-
where within a fragment part.

While this is slightly nuts and “http://example.
com/:@-._~!$&'()*+,=;:@-._~!$&'()*+,=:@-
._~!$&'()*+,==?/?:@-._~!$'()*+,;=/?:@-
._~!$'()*+,;==#/?:@-._~!$&'()*+,;=” is a valid HTTP 
urL, this is the standard.

For the curious, the previous urL expands to:

Part   Value 
Scheme   http 
Host   example.com 
Path   /:@-._~!$&'()*+,= 
Path parameter name :@-._~!$&'()*+, 
Path parameter value :@-._~!$&'()*+,== 
Query parameter name /?:@-._~!$'()* ,; 
Query parameter value /?:@-._~!$'()* ,;== 
Fragment  /?:@-._~!$&'()*+,;=

nuts.



 33

A URL cannot be analyzed after decoding
The syntax of the urL is only meaningful before it is 
urL-decoded: after urL-decoding, reserved characters 
may appear. 

For example “http://example.com/
blue%2Fred%3Fand+green” has the following parts 
before decoding:

Part   Value 
Scheme   http 
Host   example.com 
Path segment  blue%2Fred%3Fand+green 
Decoded Path segment blue/red?and+green

Thus, we are looking for a file called “blue/
red?and+green”, not for the “red?and+green” file of the 
“blue” folder.

If we decode it to “http://example.com/blue/
red?and+green” before analysis the parts would give:

Part   Value 
Scheme   http 
Host   example.com 
Path segment  Blue 
Path segment  Red 
Query parameter name and green

This is clearly wrong: analysis of reserved characters 
and urL parts has to be done before urL-decoding. 
The implication is that urL-rewriting filters should 
never decode a urL before attempting to match it if 
reserved characters are allowed to be urL-encoded 
(which may or may not be the case depending on your 
application).

Decoded URLs cannot be reencoded to the same form
If you decode “http://example.com/
blue%2Fred%3Fand+green” to “http://example.com/
blue/red?and+green” and proceed to encode it (even 
with an encoder which knows about each syntacti-
cal urL part) you will get “http://example.com/blue/
red?and+green” because that is a valid urL. It just 
happens to be very different from the original urL we 
decoded.

Handling URLs correctly in Java
When you have mastered your black belt in urL-fu 
you will notice that there are still quite a few Java-spe-
cific pitfalls when it comes to urLs. The road to urL 
handling correctness is not for the faint of heart.

Do not use java.net.URLEncoder or java.net.URLDe-
coder for whole URLs
We are not kidding. These classes are not made to 
encode or decode urLs, as their API documentation 
clearly says:

Utility class for HTML form encoding. This class 
contains static methods for converting a String to the 
application/x-www-form-urlencoded MIME format. For 
more information about HTML form encoding, consult 
the HTML specification.

This is not about urLs. At best it resembles the 
query part encoding. It is wrong to use it to encode 
or decode entire urLs. you would think the standard 
JDK had a standard class to deal with urL encoding 
properly (part by part, that is) but either it is not there, 
or we have not found it, which lures a lot of people 
into using URLEncoder for the wrong purpose.

Do not construct URLs without encoding each part
As we have already stated: fully constructed urLs 
cannot be urL-encoded.

Take the following code for instance:

String pathSegment = "a/b?c"; 
String url = "http://example.com/" + 
pathSegment;

It is impossible to convert “http://example.com/a/
b?c” back to what it should have been if “a/b?c” was 
meant to be a path segment, because it happens to be a 
valid urL. We have already explained this earlier.

Here is the proper code:

String pathSegment = "a/b?c"; 
String url = "http://example.com/" 
            + URLUtils.
encodePathSegment(pathSegment);

We are now using a utility class URLUtils which we 
had to make ourselves for lack of finding an exhaus-
tive one available online fast enough. The previous 
code will give you the properly encoded urL “http://
example.com/a%2Fb%3Fc”.



34 PROGRAMMING

note that the same applies to the query string:

String value = "a&b==c"; 
String url = "http://example.com/?query=" + 
value;

This will give you “http://example.
com/?query=a&b==c” which is a valid urL, but not 
the “http://example.com/?query=a%26b==c” we 
wanted.

Do not expect URI.getPath() to give you structured 
data
Since once a urL has been decoded, syntactical infor-
mation is lost, the following code is wrong:

URI uri = new URI("http://example.com/
a%2Fb%3Fc"); 
for(String pathSegment : uri.getPath().
split("/")) 
  System.err.println(pathSegment);

It would first decode the path “a%2Fb%3Fc” into 
“a/b?c”, then split it where it should not have been split 
into path segment parts.

The correct code of course uses the undecoded path:

URI uri = new URI("http://example.com/
a%2Fb%3Fc"); 
 
for(String pathSegment : uri.getRawPath().
split("/")) 
  System.err.println(URLUtils.decodePathSegment(
pathSegment));

Do note that path parameters will still be present: 
deal with them if required.

Do not expect Apache Commons HTTPClient’s URI 
class to get this right
The Apache Commons HTTPClient 3’s urI class 
uses Apache Commons Codec’s URLCodec for urL-
encoding, which is wrong as their API documentation 
mentions since it is just as wrong as using java.net.
URLEncoder. not only does it use the wrong encoder, 
but it also decodes each part as if they all had the same 
reserved set.

Fixing URL encoding at every level in a web 
application
We have had to fix quite a few urL-encoding issues in 
our application lately, from support in Java down to the 
lower level of urL rewriting. We will list here a few of 
changes which were required.

Always encode URLs as you build them
In our HTML files, we replaced all occurrences of this:

var url = "#{vl:encodeURL(contextPath + '/view/' 
+ resource.name)}";

with:

var url = "#{contextPath}/view/#{vl:encodeURLPat
hSegment(resource.name)}";

And similarly for query parameters.

Make sure your URL-rewrite filters deal with URLs 
correctly
url rewrite Filter is a urL rewriting filter we use 
in Seam to transform pretty urLs into application-
dependent urLs.

For example, we use it to rewrite http://beta.
visiblelogistics.com/view/resource/Foo/bar into 
http://beta.visiblelogistics.com/resources/details.
seam?owner=Foo&name=bar. 

obviously this involves taking some strings from one 
urL part to another, which means we have to decode 
from the path segment part and reencode as a query 
value part.

our initial rule looked as follows:

<urlrewrite decode-using="utf-8"> 
 <rule> 
  <from>^/view/resource/(.*)/(.*)$</from> 
  <to encode="false">/resources/details.
seam?owner=$1&name=$2</to> 
 </rule> 
</urlrewrite>

It turns out that there are only two ways to deal with 
urL-decoding in url rewrite Filter: either every urL 
is decoded prior to doing the rule matching (the <to> 
patterns), or it is disabled and each rule has to deal 
with decoding. In our opinion the latter is the sanest 
option, especially if you move urL parts around, and/
or want to match path segments which may contain 
urL-encoded path separators.



 35

Within the replacement pattern (the <to> pat-
terns) you can then deal with urL encoding/decod-
ing using the inline functions escape(String) and 
unescape(String).

As of this writing, url rewrite Filter Beta 3.2 con-
tains several bugs and limitations which blocked our 
progress towards urL-correctness:

 ■ urL decoding was done using java.net.URLDecoder 
(which is wrong),

 ■ the escape(String) and unescape(String) inline 
functions used java.net.URLDecoder and java.net.
URLEncoder (which is not specific enough and will 
only work for entire query strings, beading in mind 
any “&” or “=” will not be encoded).

We therefore made a big patch fixing a few 
issues like urL decoding, and adding the inline 
functions escapePathSegment(String) and 
unescapePathSegment(String).

We can now write the almost correct:

<urlrewrite decode-using="null"> 
 <rule> 
  <from>^/view/resource/(.*)/(.*)$</from> 
  <-- Line breaks inserted for readability --> 
  <to encode="false">/resources/details.seam 
         ?owner=${escape:${unescapePath:$1}} 
         &name=${escape:${unescapePath:$2}}</to> 
 </rule> 
</urlrewrite>

It is only almost correct because our patch still lacks 
a few things:

 ■ the inline escaping/unescaping functions should be 
able to specify the encoding as either fixed (this is 
already done) or by determining it from the HTTP 
call (not supported yet),

 ■ the old escape(String) and unescape(String) inline 
functions were left intact and still call java.net.
URLDecoder which is wrong as it will not escape “&” 
or “=”,

 ■ we need to add more part-specific encoding/decod-
ing functions,

 ■ we need to add a way to specify the decoding behav-
ior per-rule as opposed to globally in <urlrewrite>.

As soon as we get the time, we will send a second 
patch.

Using Apache mod-rewrite correctly
Apache mod-rewrite is an Apache web server module 
for urL-rewriting which we use to proxy all our 
http://beta.visiblelogistics.com/foo traffic to http://our-
internal-server:8080/vl/foo for instance.

This is the last thing to fix, and just like url rewrite 
Filter, it defaults to decoding the urL for us, and reen-
coding the rewritten urL for us, which is wrong, as 
decoded urLs cannot be reencoded.

There is one way to get around this, however. Since 
we are not switching one urL part for another in our 
case, we do not need to decode a path part and reen-
code it into a query part. For example: do not decode 
and do not reencode.

We accomplished it by using THE_REQUEST for urL-
matching which is the full HTTP request (including 
the HTTP method and version) undecoded. We just 
take the urL part after the host, change the host and 
prepend the /vl prefix, and tada:

... 
 
# This is required if we want to allow URL-
encoded slashes a path segment 
AllowEncodedSlashes On 
 
# Enable mod-rewrite 
RewriteEngine on 
 
# Use THE_REQUEST to not decode the URL, since 
we are not moving 
# any URI part to another part so we do not need 
to decode/reencode 
 
RewriteCond %{THE_REQUEST} "^[a-zA-Z]+ /(.*) 
HTTP/\d\.\d$" 
RewriteRule ^(.*)$ http://our-internal-
server:8080/vl/%1 [P,L,NE] ■

From deep into the Nice mountains, Stéphane works for Red Hat 
on the Ceylon project. Passionate hacker in Java, C, Perl or Scheme. 
A web standards and database enthusiast, he implemented 
among other things a WYSIWYG XML editor, a multi-threading 
library in C, a mobile-agent language in Scheme (compiler and 
virtual machines), and some Web 2.0 RESTful services and rich 
web interfaces with JavaScript and HTML 5.

Reprinted with permission of the original author. 
First appeared in hn.my/urlencoding (lunatech.com)

http://hn.my/urlencoding


36 PROGRAMMING

By CHonG KIM

There is an experiment 
from richard Held and 
Alan Hein who raised 

kittens in total darkness. For a short 
period during the day, the kittens 
were placed in a carousel appara-
tus where the lights were turned 
on. one basket allowed the kitten 
to see and interact with its envi-
ronment (the active kitten). The 
other had a hole for the head so 
the kitten (the passive kitten) can 
have the same visual experience but 
without the interaction.

 At the end of the experiment, 
the passive kitten was functionally 
blind whereas the active kitten was 
normal.

This idea has stuck with me — 
the idea that you need to interact 
with your environment. you are 
functionally blind when you only 
have book knowledge. I need to 
code (and code a lot) to really get 
that knowledge at the instinctive 
level.

It is also important to do things 
quickly to develop fluency. Fluency 
allows you the freedom from the 
mechanics of what you are doing so 
you can focus on the main ideas.

First Kata Experiment
When I joined 8th Light, 
I came across katas. The 
idea of a kata is to prac-
tice coding by doing it 
repetitively. you build 
muscle memory in the 
mechanics of coding — 
setting up the editor, 
reacting to errors, letting 
your fingers get used to 
the controls. Initially I 
thought it was an amus-

ing little activity. Then I started 
to wonder if I can do a kata on 
something more than coin-changer 
or roman numerals, something with 
a little more substance. I thought it 

could be possible to write tic-tac-
toe as a kata. My main goal is to 
develop a workflow so I can write 
it in under an hour. I also wanted to 
record myself and bought Screen-
flow. After all, the kata is meant to 
be a performance.

I did my first tic-tac-toe kata in 
ruby, a language I know well. I 
used rSpec as my testing frame-
work, something I was less familiar 
with.

In the beginning I spent a lot of 
time setting up my testing envi-
ronment and researching the web 
when I got stuck. For example, I 
forgot to add an “it” block in rSpec, 
which generated an error message 
I couldn’t understand. I worked 
around it by making the test pass. 
I didn’t figure it out until the next 
day when a co-worker (Meagan) 
pointed it out after she saw the 
video of my kata.

I saw myself steadily improve in 
my next version of the kata. I made 
6 attempts before I was finally able 
to do it in less than an hour. I was 
able to interpret error messages 
better. I was able to set up my test-
ing environment faster. I improved 
my code by finding more elegant 

Using Katas to Improve 
Your Coding



 37

ways to solve a problem. For 
instance, if I wanted to separate a 
list into groups of 3, I would write:

lst.group_by.with_index {|e,i| 
i/3}.values

After having written it several 
times, I thought there was probably 
a better way. I finally came up with:

lst.each_slice(3).to_a

I don’t know if I would have 
revisited this problem if it weren’t 
for the kata.

I also saw the effect when I 
forgot to add a test. This brings 
another important point. I saw 
probably every type of error/bug 
because each time I do a kata, I 
make different mistakes. you get a 
richer experience from it. you’re 
able to focus on the source of the 
error/bug rather than wonder about 
the correctness of your code; after 
all, your code is similar to your 
previous versions so you know 
it should have worked. you can 
always use diff to compare your 
versions if you get completely 
stuck.

Since the kata is repetitive, it 
allows you to reflect on how you 
use your editor. you wonder if there 
is a better way to get from one 
point to another. you can test out 
new keystrokes and see if it makes a 
difference.

In the end, I would say the kata 
has vastly improved my workflow.

Using Kata to Learn a New 
Language
I tried another experiment. What 
would it be like to use a kata to 
learn a new language? Would I be 
able to do get it done under an 
hour? I tried it out with Haskell.

I’ve heard people mention 
Haskell so I wanted to give it a 
go. The first step was to find a 
resource to read up on it. I read 
through Learn you A Haskell 
[learnyouahaskell.com]. After a few 
days, I was ready to start coding. 
Just like the passive kitten, I was 
functionally blind. I knew about 
Haskell, but I couldn’t code it. I 
needed to interact with the lan-
guage. What better way than to do 
a kata?

I already had a set of routines 
I wanted to code and I knew the 
algorithm. The only thing standing 
in my way was the language, and 
the kata gave me a controlled envi-
ronment so I could focus on it. It 
also gave me a good way to reflect 
on the problems I encountered. 
Since my errors were recorded, I 
didn’t have to remember things I 
needed to look into or remember 
what error messages led me to a 
particular fix. It’s like having super-
human memory.

After I got the setup for test-
ing out of the way (using HSpec), 
syntax became my main problem. 
Every time I wrote something, I 
would get parse errors. I would 
backtrack to a simpler form until I 
got it to work. After about an hour, 
I was only able to write a construc-
tor. I also had to set up guard (for 
automatic testing), which took up 
a good chunk of time. I kept my 
recordings to about an hour for the 
rest of my katas whether I finished 
or not.

“The only thing standing in my way was the 
language, and the kata gave me a controlled 
environment so I could focus on it.”

http://learnyouahaskell.com


38 PROGRAMMING

When I reviewed the video of my 
first kata, I saw long pauses where 
I was thinking about a particular 
issue. Then I saw myself researching 
and eventually solving the prob-
lem. The video reinforced every-
thing I had learned. I didn’t have 
to take notes or remember how 
the problem originated. It was all 
recorded for me. This allowed me 
the freedom to try new techniques 
and go beyond my comfort zone. I 
can always review it and see where 
things went wrong.

When you learn a new language, 
you have a feeling that you know 
enough to do small things but 
you have the uneasy feeling that 
your knowledge is tenuous, that it 
can slip away from you if you’re 
not paying attention. That feeling 
started to evaporate on the second 
kata. I developed idioms so I could 
do things automatically. That gave 
me a base to build on. By the third 
kata, the video showed a steep 
increase in my performance. I was 
no longer hesitating and going off 
to Google. I was still making a lot 
of errors, but they were different 
errors. The ones I had encountered 
before were quickly dismissed since 
I had already solved it in the past.

Since I was new to the language, 
I was not able to complete the pro-
gram in the early katas. It did give 
me good research points when I fin-
ished recording. I knew that I could 
at least get to the same point as the 
previous kata. I needed just a little 
bit more knowledge to go further. It 
is very encouraging when you can 
see yourself actually improve over 
each version.

It took me 10 tries before I was 
able to get a complete working 
version of my code. I was able to do 
it just a little over my hour target. 
I sped up the time on my Screen-
flow so it played for a bit over 16 
minutes. When I tried uploading it 
to youTube, it got rejected because 
they had a limit of 15 minutes. I 
knew I had to shave off 20 min-
utes so my video could run in 14 
minutes. I was already typing as fast 
as I could. Then I realized that I 
could use the abbreviate command 
in vim. I made it so when I typed 
“p”, it would type out “position” 
and that would save me keystrokes. 
I would add these abbreviations as 
I went along. I spent my off-kata 
time looking into shortcuts in vim.

I did some unrecorded katas to 
test out some new key bindings 
and some config changes for vim. 
My 13th kata was the charm. I was 
able to finish in a little under 50 
minutes, which reduced my time-
compressed video to 14 minutes. 
I uploaded it to youTube and was 
approved finally. [hn.my/tictactoe]

I encourage everyone to try using 
katas to improve their workflow. 
you’ll be amazed at what you can 
get accomplished. ■

Chong Kim is a Software Craftsman. He 
is interested in programming, math and 
chess.

Reprinted with permission of the original author. 
First appeared in hn.my/kata (8thlight.com)

http://hn.my/tictactoe
http://hn.my/kata


https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly


40 PROGRAMMING

You push it,
we test it,
& deploy it.

CircleCI is offering a special discount for Hacker Monthly readers. Follow the URL below and 
take advantage of a 50% discount for your first three months.

https://circleci.com?=hackermonthly

http://circleci.com

	FEATURES
	Cocktails for Programmers
	How to Choose a Profitable Niche

	SPECIAL
	Why I Play Video Games

	PROGRAMMING
	Unix Commands I Wish I’d Discovered Years Earlier
	DNS: The Good Parts
	FTP is so 90s. Let's deploy via Git instead! 
	How I Structure My Flask Applications
	What Makes Lua Tick
	What Every Web Developer Must Know About URL Encoding
	Using Katas to Improve Your Coding


