
Issue 44 January 2014

My Hardest Bug Ever
Dave Baggett



2  

Curator
Lim Cheng Soon

Contributors
Andy Brice 
Dave Baggett 
Adit Bhargava 
Austin Rochford 
Gabriel Gonzalez 
Joseph Wilk 
Troy Hunt 
Steve Blank 
Alina Vrabie 
Jason Heeris

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator 
Mike Smith

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

HACKER MonTHLy is the print magazine version 
of Hacker news — news.ycombinator.com, a social news 
website wildly popular among programmers and startup 
founders. The submission guidelines state that content 
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles 
on Hacker news and print them in magazine format.  
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Mike Smith

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com


 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-44

Contents
FEATURES

04 Lifestyle Programming
By AnDy BRiCE

08 My Hardest Bug Ever
By DAVE BAGGETT

PROGRAMMING

12 Lenses In Pictures
By ADiT BHARGAVA

16 The Median-of-Medians Algorithm
By AuSTin RoCHFoRD

18 From Zero To Cooperative Threads In 33 Lines Of Haskell Code 
By GABRiEL GonzALEz

22 Building Clojure Services At Scale
By JoSEPH WiLK

27 Everything You Wanted To Know About SQL Injection
By TRoy HunT

SPECIAL

34 My First Job: Fired And Rehired On Day 1
By STEVE BLAnK

36 The Zeigarnik Effect: The Scientific Key To Better Work
 By ALinA VRABiE

38 This Is Why You Shouldn’t Interrupt A Programmer
By JASon HEERiS

http://hackermonthly.com/issue-44


4 FEATURES

i am a lifestyle programmer. i 
run a one-man software prod-
uct business with the aim of 

providing myself with an interest-
ing, rewarding, flexible, and well-
paying job. i have no investors and 
no plans to take on employees, let 
alone become the next Google or 
Facebook. i don’t have my own jet 
and my face is unlikely to appear 
on the cover of newsweek any time 
soon. i am ok with that.

“Lifestyle business” is often 
used as something of an insult by 
venture capitalists. They are looking 
for the “next big thing” that is going 
to return 10x or 100x their invest-
ment. They don’t care if the major-
ity of their investments flame out 
spectacularly and messily, as long as 
a few make it really big. By invest-
ing in lots of high-risk start-ups 

they are able to reduce their overall 
risk to a comfortable level. The risk 
profile is completely different for 
the founders they invest in. As VC 
Paul Graham admits:

“There is probably at most one 
company in each [YCombinator] 
batch that will have a significant 
effect on our returns, and the rest 
are just a cost of doing business.”

ouch. The odds of being the 
“next big thing” are even slimmer 
(of the order of 0.07%). As a VC-
backed start-up the chances are that 
you will work 80+ hours a week for 
peanuts for several years and end 
up with little more than experience 
at the end of it.

“A man is a success if he gets up 
in the morning and gets to bed 
at night, and in between he 
does what he wants to do. 

— Bob Dylan

FEATURES

By AnDy BRiCE

Lifestyle  
Programming

”



 5

But high-risk, high-return ven-
tures are sexy. They sell magazines 
and advertising space. Who can 
resist the heroic story of odd-couple 
Woz and Jobs creating the most 
valuable company in the world 
from their garage? So that is what 
the media gives us, and plenty of it. 
Quietly ignoring the thousands of 
other smart and driven people who 
swung for the fences and failed. 
or perhaps succeeded, only to be 
pushed out by investors.

if you aren’t going to be satis-
fied with anything less than being a 
multi-millionaire living in a hol-
lowed out volcano, then an all-or-
nothing, VC-backed start-up crap 
shoot is probably your only option. 
And there are markets where you 
have very little chance of success 
without venture capital. But really, 
how much money do you need? is 
money going to make you happy? 
How many meals can you eat in a 
day? How many cars can you drive? 
it doesn’t sound that great to me 
when you read accounts of what it 
is like to be rich. Plenty of studies 
have shown that happiness is only 
weakly correlated with wealth once 
you can afford the necessities of life 
(food, shelter, clothing). Hedonistic 
adaption ensure that no amount 
of luxury can keep us happy for 
long. Anyway, if you are reading 
this in English on a computer, you 
probably are already rich by global 
standards.

Creating a small software busi-
ness that provides a good living 
for just yourself, or perhaps a few 
people, isn’t very newsworthy. But 
it is a lot more achievable. The 
barriers to entry have fallen. you 
no longer need thousands of dollars 
of hardware and software to start a 
software business. Just an idea, good 
development skills, and plenty of 

time and willpower. Many life-
style businesses start off with the 
founder creating the product over 
evenings and weekends, while doing 
a full-time job. i cut my expenses 
and lived off savings until my 
business started generating enough 
income for me to live on (about 6 
months). i only spent a couple of 
thousand pounds of my own money 
before the business became profit-
able. There is really no need to max 
out your credit cards or take any 
big financial risks.

So how much money do lifestyle 
businesses make? of course, it 
varies a lot. Many fail completely, 
often due to a lack of market-
ing. But i know quite a few other 
lifestyle programmers who have 
made it a successful full-time 
career. i believe many of them do 
very nicely financially. Personally, i 
have averaged a significantly higher 
income from selling my own soft-
ware than i ever did from working 
for other people, and i made a good 
wage working as a senior software 
engineer. Here is a comparison of 
my income from my last full-time 
salaried employment vs. what i 
have paid out in salary and divi-
dends from my business over the 
last 7 years.

Bear in mind that the above 
would look even more favorable if 
it took into account business assets, 
the value of the business itself, and 
the tax advantages of running a 
business vs. earning a salary.

Sure, i could hire employees and 
leverage their efforts to potentially 
make more money. Creating jobs 
for other people is a worthy thing 
to do. Companies like FogCreek 
and 37Signals have been very 
successful without taking outside 
investment. But i value my life-
style more than i value the benefits 
of having a bigger business and i 
struggle to think of what i would 
do with lots more money. i might 
end up having to talk to financial 
advisers (the horror). i would also 
end up managing other people, 
while they did all the stuff i like 
doing. i am much better at product 
development, marketing, and sup-
port than i am at management. 

if you can make enough money 
to pay the bills, being a lifestyle 
programmer is a great life. i can’t 
get fired. i make money while i 
sleep. i choose where to live. i don’t 
have to worry about making payroll 
for anyone other than myself. My 
commute is about 10 meters (to 
the end of the garden). i get to see 
my son every day before he goes 
to school and when he comes back 
home. i go to no meetings. i have 
no real deadlines. no one can tell 
me where to put my curly braces or 
force me to push out crappy soft-
ware just to meet some arbitrary 
ship date. When i’m not feeling 
very productive i go for a run or 
do some chores. i can’t remember 
the last time i set an alarm clock or 
wore a tie.



6 FEATURES

My little business isn’t going to 
fundamentally change the world 
in the way that a big company 
like Google or Facebook has. But 
it has bought me a lot of happi-
ness and fulfilment and, judging by 
the emails i get, improved the life 
of a lot of my customers as well. 
And some of those really famous 
events you hear about in the news 
(which i don’t have permission to 
name-drop) plan their seating using 
PerfectTablePlan.

of course, it isn’t all milk and 
money. The first year was very 
hard work for uncertain rewards. i 
recently happened across this post 
i made on a forum back in August 
2005, a few months after i went 
full-time:

“I work a 60-70 hour week and 
pay myself £100 at the end of it 
(that’s less than $200). I could 
make 3x more working for mini-
mum wage flipping burgers. But 
hopefully it won’t be like this 
forever…”

i still work hard. i’m not lying 
under a palm tree while someone 
else “offshore” does all the work. 
And i don’t get to spend all day 
programming. if you want to have 
any real chance of succeeding 
you need to spend plenty of time 
on marketing. Thankfully i have 
found i actually enjoy the chal-
lenge of marketing. But, because 
i don’t have employees, i have to 
do some of the crappy jobs that i 
wouldn’t choose to do otherwise, 
including: writing documenta-
tion, chasing invoices, tweaking 
the website and doing admin. And 
i answer customer support emails 
364 days a year. i take my laptop on 
holiday, but it really isn’t that bad. 
Customer support is frustrating at 
times. But it is very rewarding to 
know that lots of people are using 
my software. overall, it’s a great 
lifestyle. i don’t miss having a 9-5 
job. i wouldn’t even swap my job 
for running a bigger, “more success-
ful” company. n

Andy Brice has run his own one-man 
software product business since 2005. He 
blogs about software product and market-
ing related topics at successfulsoftware.net. 
He also runs an intensive, two day training 
course in the UK for people who want to 
start their own software product business 
(see his blog for details).

Reprinted with permission of the original author. 
First appeared in hn.my/lp (successfulsoftware.net)

http://successfulsoftware.net
http://hn.my/lp


 7

Metrics and monitoring for people 
who know what they want
We know from experience that monitoring your servers and 
applications can be painful, so we built the sort of service that 
we would want to use. Simple to set up, responsive support 
from people who know what they're talking about, and reliably 
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards            StatsD              Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com


8 FEATURES

By DAVE BAGGETT

My Hardest Bug Ever

As a programmer, you 
learn to blame your code 
first, second, and third... 

and somewhere around 10,000th 
you blame the compiler. Well down 
the list after that, you blame the 
hardware. 

This is my hardware bug story.
Among other things, i wrote the 

memory card (load/save) code for 
Crash Bandicoot. For a swaggering 
game coder, this is like a walk in 
the park; i expected it would take a 
few days. i ended up debugging that 
code for 6 weeks. i did other stuff 
during that time, but i kept coming 
back to this bug — a few hours 
every few days. it was agonizing.

The symptom was that you’d go 
to save your progress and it would 
access the memory card, and almost 
all the time, it worked normally...
but every once in a while the write 
or read would time out...for no 
obvious reason. A short write would 
often corrupt the memory card. 
The player would go to save, and 
not only would we not save, we’d 
wipe their memory card. D’oh.

After a while, our producer at 
Sony, Connie Booth, began to panic. 
We obviously couldn’t ship the 
game with that bug, and after six 
weeks i still had no clue what the 
problem was. Via Connie we put 
the word out to other PS1 devs 
— had anybody seen anything like 
this? nope. Absolutely nobody had 
any problems with the memory 
card system.

About the only thing you can do 
when you run out of ideas debug-
ging is divide and conquer: keep 
removing more and more of the 
errant program’s code until you’re 
left with something relatively small 
that still exhibits the problem. you 
keep carving parts away until the 
only stuff left is where the bug is.

The challenge with this in the 
context of, say, a video game is that 
it’s very hard to remove pieces. 
How do you still run the game if 
you remove the code that simulates 
gravity in the game? or renders the 
characters? 

What you have to do is replace 
all modules with stubs that pretend 
to do the real thing, but actually do 
something completely trivial that 
can’t be buggy. you have to write 
new scaffolding code just to keep 
things working at all. it is a slow, 
painful process.

Long story short: i did this. i kept 
removing more and more hunks of 
code until i ended up, pretty much, 
with nothing but the startup code — 
just the code that set up the system 
to run the game, initialized the 
rendering hardware, etc. of course, i 
couldn’t put up the load/save menu 
at that point because i’d stubbed 
out all the graphics code. But i could 
pretend the user used the (invisible) 
load/save screen and asked it to save 
and then write to the card.

i ultimately ended up with a 
pretty small amount of code that 
exhibited the problem — but still 
randomly! Most of the time, it 
would work, but every once in a 
while, it would fail. Almost all of 
the actual Crash code had been 
removed, but it still happened. 
This was really baffling: the code 
that remained wasn’t really doing 
anything.



 9

At some moment — it was prob-
ably 3am — a thought entered my 
mind. Reading and writing (i/o) 
involves precise timing. Whether 
you’re dealing with a hard drive, 
a compact flash card, a Bluetooth 
transmitter — whatever — the low-
level code that reads and writes has 
to do so according to a clock. 

The clock lets the hardware device 
— which isn’t directly connected 
to the CPu — stay in sync with the 
code the CPu is running. The clock 
determines the Baud Rate — the 
rate at which data is sent from one 
side to the other. if the timing gets 
messed up, the hardware or the 
software — or both — get confused. 
This is really, really bad, and usually 
results in data corruption.

What if something in our setup 
code was messing up the timing 
somehow? i looked again at the 
code in the test program for timing-
related stuff, and noticed that we 
set the programmable timer on the 
PS1 to 1kHz (1000 ticks/second). 
This is relatively fast; it was run-
ning at something like 100Hz in its 
default state when the PS1 started 
up. Most games, therefore, would 
have this timer running at 100Hz.

Andy, the lead (and only other) 
developer on the game, set the 
timer to 1kHz so that the motion 
calculations in Crash would be 
more accurate. Andy likes overkill, 
and if we were going to simulate 
gravity, we ought to do it as high-
precision as possible!

But what if increasing this timer 
somehow interfered with the 
overall timing of the program, and 
therefore with the clock used to set 
the baud rate for the memory card?

i commented the timer code out. 
i couldn’t make the error happen 
again. But this didn’t mean it was 
fixed; the problem only happened 
randomly. What if i was just getting 
lucky?

As more days went on, i kept 
playing with my test program. The 
bug never happened again. i went 
back to the full Crash code base, 
and modified the load/save code to 
reset the programmable timer to 
its default setting (100 Hz) before 
accessing the memory card, then 
put it back to 1kHz afterwards. We 
never saw the read/write problems 
again.

But why?
i returned repeatedly to the test 

program, trying to detect some 
pattern to the errors that occurred 
when the timer was set to 1kHz. 
Eventually, i noticed that the errors 
happened when someone was play-
ing with the PS1 controller. Since i 
would rarely do this myself — why 
would i play with the controller 
when testing the load/save code? — 
i hadn’t noticed it. But one day one 
of the artists was waiting for me 
to finish testing — i’m sure i was 
cursing at the time — and he was 
nervously fiddling with the control-
ler. it failed. “Wait, what? Hey, do 
that again!”



Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use 
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers 
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; # 
ABSTRACT: Rotate chars by 13  letters use DDG::Goodie; triggers start => 'rot13'; handle remainder => 
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return 
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use 

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 

10 FEATURES

once i had the insight that the 
two things were correlated, it was 
easy to reproduce: start writing to 
memory card, wiggle controller, 
corrupt memory card. Sure looked 
like a hardware bug to me.

i went back to Connie and told 
her what i’d found. She relayed this 
to one of the hardware engineers 
who had designed the PS1. “impos-
sible,” she was told. “This cannot be 
a hardware problem.” i told her to 
ask if i could speak with him.

He called me and, in his broken 
English and my (extremely) broken 
Japanese, we argued. i finally said, 
“just let me send you a 30-line 
test program that makes it happen 
when you wiggle the controller.” 
He relented. This would be a waste 
of time, he assured me, and he was 
extremely busy with a new project, 
but he would oblige because we 
were a very important developer 
for Sony. i cleaned up my little test 
program and sent it over.

The next evening (we were in LA 
and he was in Tokyo, so it was eve-
ning for me when he came in the 
next day) he called me and sheep-
ishly apologized. it was a hardware 
problem.

i’ve never been totally clear on 
what the exact problem was, but 
my impression from what i heard 
back from Sony HQ was that set-
ting the programmable timer to a 
sufficiently high clock rate would 
interfere with things on the moth-
erboard near the timer crystal. one 
of these things was the baud rate 
controller for the memory card, 
which also set the baud rate for the 
controllers. i’m not a hardware guy, 
so i’m pretty fuzzy on the details.

But the gist of it was that cross-
talk between individual parts on 
the motherboard, and the combina-
tion of sending data over both the 
controller port and the memory 
card port while running the timer 
at 1kHz would cause bits to get 
dropped... and the data lost... and 
the card corrupted.

This is the only time in my 
entire programming life that i’ve 
debugged a problem caused by 
quantum mechanics. n

Dave Baggett was the first employee at 
Naughty Dog and one of two programmers 
on Crash Bandicoot. Dave now focuses on 
curing inbox overload at his new startup, 
Inky.

Reprinted with permission of the original author. 
First appeared in hn.my/bugs (quora.com)

Illustration by Mike Smith.

http://duckduckhack.com
http://hn.my/bugs


Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use 
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers 
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; # 
ABSTRACT: Rotate chars by 13  letters use DDG::Goodie; triggers start => 'rot13'; handle remainder => 
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return 
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use 

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 

http://duckduckhack.com


12 PROGRAMMING

PROGRAMMING

By ADiT BHARGAVA

you should know what a functor is 
before reading this article. Read this 
[hn.my/functors] to learn about functors.

Suppose you want to make a game:

  data Point = Point { _x, _y   :: Double } 
  data Mario = Mario { _location :: Point } 
 
  player1 = Mario (Point 0 0)

ok, now how would you move this player?

  moveX (Mario (Point xpos ypos)) val = Mario 
(Point (xpos + val) ypos)

instead, lenses allow you to write something like this:

  location.x `over` (+10) $ player1

or this is the same thing:

  over (location . x) (+10) player1

Lenses allow you to selectively modify just a part of 
your data:

Much clearer! 
location is a lens. And x is a lens. Here i composed 

these lenses together to modify a sub-part of player1.

Fmap
you probably know how fmap works, Doctor Watson:

Well old chap, what if you have nested functors 
instead?

you need to use two fmaps!

 now, you probably know how function composition 
works:

 

Lenses In Pictures

http://hn.my/functors


 13

What about function composition composition?

 “if you want to do function composition where a 
function has two arguments,” says Sherlock, “you need 
(.).(.)!”

“That looks like a startled owl,” exclaims Watson.
“indeed. Let’s see why this works.”
The type signature for function composition is:

  (.) :: (b -> c) -> (a -> b) -> (a -> c)

Which looks a heck of a lot like fmap!

  fmap :: (a -> b) -> f a -> f b

in fact, if you replace a -> with f it’s exactly fmap!
And guess what! a -> is a functor! it’s defined like 

this:

  instance Functor ((->) r) where 
   fmap = (.)

So for functions, fmap is just function composition! 
(.).(.) is the same as fmap . fmap!

  (.).(.) :: (b -> c) -> (a1 -> a2 -> b) -> (a1 
-> a2 -> c) 
  fmap . fmap :: (a -> b) -> f (f1 a) -> f (f1 b)

There’s a pattern happening here: fmap . fmap and 
(.) . (.) both allow us to go “one level deeper.” in 
fmap it means going inside one more layer of func-
tors. in function composition your functor is r ->, so 
it means you can pass in one more argument to your 
function.

Setters
Suppose you have a function double like so:

  double :: Int -> Maybe Int 
  double x = Just (x * 2)

you can apply it to a list with traverse:

So you pass in a traversable and a function that 
returns a value wrapped in a functor. you get back a 
traversable wrapped in that functor. As usual, you can 
go one level deeper by composing traverse:

  traverse :: (a -> m b) -> f a -> m (f b) 
  traverse.traverse :: (a -> m b) -> f (g a) -> 
m (f (g b))

traverse is more powerful than fmap though 
because it can be defined with traverse:

  fmapDefault :: Traversable t => (a -> b) -> t 
a -> t b 
  fmapDefault f = runIdentity . traverse (Iden-
tity . f)



14 PROGRAMMING

using fmapDefault, let’s make a function called over. 
over is just like fmapDefault except we pass traverse 
in too:

  over :: ((a -> Identity b) -> s -> Identity t) 
-> (a -> b) -> s -> t 
  over l f = runIdentity . l (Identity . f) 
 
  -- over traverse f == fmapDefault f

 We’re so close to lenses! “Mmm, i can taste the 
lenses, Watson,” drools Sherlock, “Lenses allow you to 
compose functors, folds and traversals together. i can 
feel those functors and folds mixed up in my mouth 
right now!”

i’ll make a quick type alias here:

  type Setter s t a b = (a -> Identity b) -> s 
-> Identity t

now we can write over more cleanly:

  over :: Setter s t a b -> (a -> b) -> s -> t 
 
  -- same as: 
  over :: ((a -> Identity b) -> s -> Identity t) 
-> (a -> b) -> s -> t

1. over takes a Setter

2. And a transformation function

3. And a value to apply it to

4. Then it uses the setter to modify just a part of the 
value with the function.

Remember Mario? now this line makes more sense:

  location.x `over` (+10) $ player1

location . x is a setter. And guess what: location 
and x are setters too! Just like composing fmap or (.) 
allows you to go “one level deeper,” you can compose 
setters and go one level deeper into your nested data! 
Cool!

Folds
So we are one step closer to making lenses. We just 
made setters, which allow us to compose functors.

Turns out, we can do the same thing for folds. First, 
we define foldMapDefault:

  foldMapDefault :: (Traversable t, Monoid m) => 
(a -> m) -> t a -> m 
  foldMapDefault f = getConst . traverse (Const 
. f)

it looks very similar to our definition of fmapDefault 
above! We end up getting a new type alias called Fold:

  type Fold s t a b = forall m. Monoid m => (a 
-> Const m b) -> s -> Const m t

Which looks pretty similar to a Setter:

  type Setter s t a b = (a -> Identity b) -> s 
-> Identity t

Since the signatures of Fold and Setter are so similar, 
we should be able to combine them into one type alias. 
And we sure can!

  type Lens s t a b = forall f. Functor f => (a 
-> f b) -> s -> f t

 



 15

Lenses
Setters are for functors and Folds are for folds, but 
lenses are a more general type. They allow us to com-
pose functors, functions, folds and traversals together! 
Here’s an example:

Don’t you hate when you fmap over a tuple, and it 
only affects the second part?

  > fmap (+10) (1, 2) 
  (1,12)

What if you want it to apply to both parts? Write a 
lens!

  > both f (a,b) = (,) <$> f a <*> f b

And use it:

  > both `over` (+10) $ (1, 2) 
  (11,12)

And lenses can be composed to go deeper! Here we 
apply the function to both parts of both parts:

  > (both . both) `over` (+2) $ ((1, 2), (3, 4)) 
  ((3,4),(5,6))

And we can also compose them with setters or folds!

Conclusion
Lenses can be really handy if you have a lot of nested 
data. Their derivation had some pretty cool parts too! 
Here’s the full derivation. [hn.my/derivation] n

Adit thinks everyone should try Haskell so he is trying to make 
it more accessible! He has been doodling for ten years. The rest 
of his blog is at adit.io

Reprinted with permission of the original author. 
First appeared in hn.my/lenses (adit.io)

http://hn.my/derivation
http://adit.io
http://hn.my/lenses


16 PROGRAMMING

in this article, we consider 
the problem of selecting the 
i-th smallest element from 

an unsorted list of n elements. 
Somewhat surprisingly, there is an 
algorithm that solves this problem 
in linear time. This surprising algo-
rithm is one of my favorites.

We will arrive at this algo-
rithm gradually by considering 
progressively more sophisticated 
approaches to this problem.

The naive approach to this 
problem is simply to sort the list 
and choose the i-th element. This 
approach gives us an upper bound 
of O(n log n) on the complexity 
of this problem’s solution. This 
approach does, however, seem to 
be overkill. We don’t need to know 
all of the order statistics in order to 
solve the problem, which is what 
sorting the list gives us.

in order to prove the plausibility 
of a more efficient algorithm, it is 
instructive to consider a special case 
of the selection problem, finding 
the smallest element in the list. it is 
immediately clear that this problem 
may be solved in linear time by 
iterating over the list while keeping 
track of the smallest element seen 
so far.

Finally, we arrive at the median-
of-medians algorithm, which solves 
the general selection problem in 
linear time. The idea behind the 
algorithm is similar to the idea 
behind quicksort.

1. Select a pivot element, and par-
tition the list into two sublists, 
the first of which contains all 
elements smaller than the pivot, 
and the second of which con-
tains all elements greater than 
the pivot.

2. Call the index of the pivot in 
the partitioned list k. if k = i, 
then return the pivot element.

3. if i < k, recurse into the sublist 
of elements smaller than the 
pivot, looking for the i-th small-
est element.

4. if i > k, recurse into the sub-
list of elements larger than the 
pivot, looking for the (i − k − 
1)-th smallest element.

nothing in the above outline is 
terribly deep; it’s just a straightfor-
ward divide-and-conquer approach 
to solving the selection problem. 
The clever part of the algorithm is 
the choice of pivot element.

it is not hard to see that, much 
like quicksort, if we naively choose 
the pivot element, this algorithm 
has a worst case performance of 
O(n2). Continuing the parallel with 
quicksort, if we choose a random 
pivot, we get expected linear time 
performance, but still a worst case 
scenario of quadratic time.

To guarantee the linear running 
time of our algorithm, however, 
we need a strategy for choosing 
the pivot element that guarantees 
that we partition the list into two 
sublists of relatively comparable 
size. obviously the median of the 
values in the list would be the opti-
mal choice, but if we could find the 
median in linear time, we would 
already have a solution to the 
general selection problem (consider 
this a small exercise).

By AuSTin RoCHFoRD

The Median-of-Medians 
Algorithm



 17

The median-of-medians algo-
rithm chooses its pivot in the fol-
lowing clever way.

1. Divide the list into sublists of 
length five. (note that the last 
sublist may have length less than 
five.)

2. Sort each sublist and determine 
its median directly.

3. use the median of medians 
algorithm to recursively deter-
mine the median of the set of 
all medians from the previous 
step. (This step is what gives the 
algorithm its name.)

4. use the median of the medians 
from step 3 as the pivot.

The beauty of this algorithm is 
that it guarantees that our pivot is 
not too far from the true median. 
To find an upper bound on the 
number of elements in the list 
smaller than our pivot, first con-
sider the half of the medians from 
step 2 which are smaller than the 
pivot. it is possible for all five of 
the elements in the sublists cor-
responding to these medians to be 
smaller than the pivot, which leads 
to an upper bound of           such 
elements. now consider the half 
of the medians from step 2 which 
are larger than the pivot. it is only 
possible for two of the elements in 
the sublists corresponding to these 
medians (the elements smaller 
than the median) to be smaller 
than the pivot, which leads to an 
upper bound of       such elements. 
in addition, the sublist containing 
the pivot contributes exactly two 
elements smaller than the pivot. it 
total, we may have at most

elements smaller than the pivot, 
or approximately 70% of the list. 
The same upper bound applies 
the number of elements in the 
list larger than the pivot. it is this 
guarantee that the partitions cannot 
be too lopsided that leads to linear 
run time.

Since step 3 of the divide-and-
conquer strategy involves recursion 
on a list of size      , the run time T 
of this algorithm satisfies the fol-
lowing recurrence inequality.

The final O(n) term comes 
from partitioning the list. it can be 
shown inductively that this inequal-
ity implies linear run time for the 
median-of-medians algorithm. 

An interesting application of 
the median-of-median algorithms 
is balanced quicksort, which uses 
the algorithm to pick a good pivot, 
resulting in worst-case O(n log n) 
run time. n

Austin is a math PhD student turned data 
scientist.

5

2

⌈n

5

⌉
+

⌈n

5

⌉
+ 2 =

7

2

⌈n

5

⌉
+ 2 ≤ 7n

10
+ 6

T (n) ≤ T
(⌈

n
5

⌉)
+ T

(
7n
10 + 6

)
+ O(n)

Reprinted with permission of the original author. 
First appeared in hn.my/medians (austinrochford.com)

5

2
�n
5
�

�n
5
�

�n
5
�

http://hn.my/medians


18 PROGRAMMING

By GABRiEL GonzALEz

Haskell differentiates itself from most 
functional languages by having deep cultural 
roots in mathematics and computer science, 

which gives the misleading impression that Haskell is 
poorly suited for solving practical problems. However, 
the more you learn Haskell, the more you appreciate 
that theory is often the most practical solution to many 
common programming problems. This article will under-
score this point by mixing off-the-shelf theoretical build-
ing blocks to create a pure user-land threading system.

The Type
Haskell is a types-first language, so we will begin by 
choosing an appropriate type to represent threads. First 
we must state in plain English what we want threads 
to do: 

 n Threads must extend existing sequences of 
instructions 

 n Threads must permit a set of operations: forking, 
yielding control, and terminating. 

 n Threads should permit multiple types of schedulers 

now we translate those concepts into Haskell: 

 n When you hear “multiple interpreters/schedulers/
backends” you should think “free” (as in “free object”)

 

 n When you hear “sequence of instructions” you 
should think: “monad”

 n When you qualify that with “extend” you should 
think: “monad transformer”

Combine those words together and you get the cor-
rect mathematical solution: a “free monad transformer.”

Syntax trees
“Free monad transformer” is a fancy mathematical 
name for an abstract syntax tree where sequencing 
plays an important role. We provide it with an instruc-
tion set and it builds us a syntax tree from those 
instructions.

We said we want our thread to be able to fork, 
yield, or terminate, so let’s make a data type that forks, 
yields, or terminates: 

{-# LANGUAGE DeriveFunctor #-} 
 
data ThreadF next = Fork  next next 
                  | Yield next 
                  | Done 
                  deriving (Functor)

ThreadF represents our instruction set. We want 
to add three new instructions, so ThreadF has three 
constructors, one for each instruction: Fork, Yield, and 
Done.

From Zero To Cooperative 
Threads In 33 Lines Of 

Haskell Code 



 19

our ThreadF type represents one node in our syntax 
tree. The next fields of the constructors represent 
where the children nodes should go. Fork creates two 
execution paths, so it has two children. Done terminates 
the current execution path, so it has zero children. 
Yield neither branches nor terminates, so it has one 
child. The deriving (Functor) part just tells the free 
monad transformer that the next fields are where the 
children should go.

now the free monad transformer, FreeT, can build 
a syntax tree from our instruction set. We will call this 
tree a Thread: 

import Control.Monad.Trans.Free  -- from the 
`free` package 
 
type Thread = FreeT ThreadF

An experienced Haskell programmer would read the 
above code as saying "A Thread is a syntax tree built 
from ThreadF instructions."

Instructions
now we need primitive instructions. The free package 
provides the liftF operation which converts a single 
instruction into a syntax tree one node deep: 

yield :: (Monad m) => Thread m () 
yield = liftF (Yield ()) 
 
done :: (Monad m) => Thread m r 
done = liftF Done 
 
cFork :: (Monad m) => Thread m Bool 
cFork = liftF (Fork False True)

you don’t need to completely understand how that 
works, except to notice that the return value of each 
command corresponds to what we store in the child 
fields of the node: 

 n The yield command stores () as its child, so its 
return value is () 

 n The done command has no children, so the compiler 
deduces that it has a polymorphic return value (i.e. 
r), meaning that it never finishes 

 n The cFork command stores boolean values as chil-
dren, so it returns a Bool 

cFork gets its name because it behaves like the fork 
function from C, meaning that the Bool return value 
tells us which branch we are on after the fork. if we 
receive False then we are on the left branch and if we 
receive True then we are on the right branch.

We can combine cFork and done to re-implement a 
more traditional Haskell-style fork, using the conven-
tion that the left branch is the “parent” and the right 
branch is the “child”: 

import Control.Monad 
 
fork :: (Monad m) => Thread m a -> Thread m () 
fork thread = do 
    child <- cFork 
    when child $ do 
        thread 
        done

The above code calls cFork and then says “if i am the 
child, run the forked action and then stop;  otherwise 
proceed as normal.”

Free monads
notice that something unusual happened in the last 
code snippet. We assembled primitive Thread instruc-
tions like cFork and done using do notation and we got 
a new Thread back. This is because Haskell lets us use 
do notation to assemble any type that implements the 
Monad interface and our free monad transformer type 
automatically deduces the correct Monad instance for 
Thread. Convenient!

Actually, our free monad transformer is not being 
super smart at all. When we assemble free monad 
transformers using do notation, all it does is con-
nect these primitive one-node-deep syntax trees (i.e. 
the instructions) into a larger syntax tree. When we 
sequence two commands like:

 do yield 
   done

... this desugars to just storing the second command 
(i.e. done) as a child of the first command (i.e. yield).



20 PROGRAMMING

The scheduler
now we’re going to write our own thread scheduler. 
This will be a naive round-robin scheduler: 

import Data.Sequence -- Queue with O(1) head and      
                     -- tail operations 
 
roundRobin :: (Monad m) => Thread m a -> m () 
roundRobin t = go (singleton t)   
-- Begin with a single thread 
  where 
    go ts = case (viewl ts) of 
        -- The queue is empty: we're done! 
        EmptyL   -> return () 
 
        -- The queue is non-empty:  
        -- Process the first thread 
        t :< ts' -> do 
            x <- runFreeT t  -- Run this   
    -- thread's effects 
            case x of 
                -- New threads go to the back of  
   -- the queue 
                Free (Fork t1 t2) -> go (t1 <|  
     (ts' |> t2)) 
 
                -- Yielding threads go to the  
                -- back of the queue 
                Free (Yield   t') -> go (ts' |>  
                                     t') 
 
                -- Thread done: Remove the       
                -- thread from the queue 
                Free  Done        -> go ts' 
                Pure  _           -> go ts'

... and we’re done! no really, that’s it! That’s the whole 
threading implementation.

User-land threads
Let’s try out our brave new threading system. We’ll 
start off simple: 

mainThread :: Thread IO () 
mainThread = do 
    lift $ putStrLn "Forking thread #1" 
    fork thread1 
    lift $ putStrLn "Forking thread #1" 
    fork thread2 
 
thread1 :: Thread IO () 
thread1 = forM_ [1..10] $ \i -> do 
    lift $ print i 
    yield 
 
thread2 :: Thread IO () 
thread2 = replicateM_ 3 $ do 
    lift $ putStrLn "Hello" 
    yield

Each of these threads has type Thread IO (). Thread 
is a “monad transformer,” meaning that it extends an 
existing monad with additional functionality. in this 
case, we are extending the IO monad with our user-land 
threads, which means that any time we need to call IO 
actions we must use lift to distinguish IO actions from 
Thread actions.

When we call roundRobin we unwrap the Thread 
monad transformer, and our threaded program col-
lapses to a linear sequence of instructions in IO: 

>>> roundRobin mainThread :: IO () 
Forking thread #1 
Forking thread #1 
1 
Hello 
2 
Hello 
3 
Hello 
4 
5 
6 
7 
8 
9 
10



 21

Moreover, this threading system is pure! We can 
extend monads other than IO, yet still thread effects. 
For example, we can build a threaded Writer com-
putation, where Writer is one of Haskell’s many pure 
monads: 

import Control.Monad.Trans.Writer 
 
logger :: Thread (Writer [String]) () 
logger = do 
    fork helper 
    lift $ tell ["Abort"] 
    yield 
    lift $ tell ["Fail"] 
 
helper :: Thread (Writer [String]) () 
helper = do 
    lift $ tell ["Retry"] 
    yield 
    lift $ tell ["!"]

This time roundRobin produces a pure Writer action 
when we run logger: 

roundRobin logger :: Writer [String] ()

... and we can extract the results of that logging 
action purely, too: 

execWriter (roundRobin logger) :: [String]

notice how the type evaluates to a pure value, a list 
of Strings in this case. yet, we still get real threading of 
logged values:

 >>> execWriter (roundRobin logger) 
["Abort","Retry","Fail","!"]

Conclusion
you might think i’m cheating by off-loading the real 
work onto the free library, but all the functionality i 
used from that library boils down to 12 lines of very 
generic and reusable code (see the Appendix). This 
is a recurring theme in Haskell: when we stick to the 
theory we get reusable, elegant, and powerful solutions 
in a shockingly small amount of code.

The inspiration for this article was a computer sci-
ence paper written by Peng Li and Steve zdancewic 
titled A Language-based Approach to unifying Events 
and Threads [hn.my/unify]. The main difference is that 
i converted their continuation-based approach to a 
simpler free monad approach. n

Gabriel Gonzalez builds search tools for biology and designs 
stream computing and analytics software. He currently works 
at UCSF where he is completing his PhD in biochemistry and 
biophysics. He blogs about his work on haskellforall.com and you 
can reach him at Gabriel439@gmail.com

Reprinted with permission of the original author. 
First appeared in hn.my/cooperative (haskellforall.com)

http://hn.my/unify
http://haskellforall.com
http://hn.my/cooperative


22 PROGRAMMING

By JoSEPH WiLK

At soundcloud i’ve been experimenting 
over the last year with how we build the 
services that power a number of heavily 

loaded areas across our site. All these services have 
been built in Clojure with bits of Java tacked on the 
sides. Here are some of my personal thoughts on how 
to build Clojure services:

Netflix or Twitter
 At some point when you require a sufficient level of 
scaling you turn to the open source work of Twitter 
with Finagle [hn.my/finagle] or netflix with Hystrix 
[hn.my/hystrix]/RxJava [hn.my/rxjava]. netflix libs 
are written in Java while Twitter’s are written in Scala. 
Both are easy to use from any JVM-based language, 
but the Finagle route will bring in an extra dependency 
on Scala. i’ve heard little from people using interop 
between Clojure & Scala and that extra Scala depen-
dency makes me nervous. Further, i like the simplicity of 
netflix’s libs, and they have been putting a lot of effort 
into pushing support for many JVM-based languages.

Hence with Clojure, netflix projects are my prefer-
ence. (i should add we do use Finagle with Scala at 
SoundCloud as well).

Failure, Monitoring & Composition Complexity
in a service reliant on other services, databases, caches 
any other external dependencies, it’s a guarantee at 
some-point some of those will fail. When working 
with critical services we want to gracefully provide a 
degraded service. 

While we can think about degrading gracefully in the 
case of failure, ultimately we want to fix what’s broken 
as soon as possible. An eye into the runtime system 
allows us to monitor exactly what’s going on and take 
appropriate action. 

your service needs to call other services. Dependent 
on those service results, you might need to call other 
services which in turn might require calls to other 
services. Composing service calls is hard to get right 
without a tangle of complex code. 

Fault Tolerance
How should we build fault tolerance into our Clojure 
services?

Single thread pool
Consider you have this line within a service response:

{:body @(future (client/get "http://soundcloud.
com/blah/wah")) :status 200}

now http://soundcloud.com/blah/wah goes down 
and those client requests start getting blocked on the 
request. in Clojure all future calls acquire a thread 
from the same thread pool. in our example the service 
is blocked up, is pilling new requests onto the blocked 
pool and we are in trouble.

My first solution to this problem was to intro-
duce circuit breakers [hn.my/circuitbreaker]. i also 
stop using @ to dereference futures and used deref 
[hn.my/deref]which supports defaults and timeouts.

Building Clojure Services  
At Scale

http://hn.my/finagle
http://hn.my/hystrix
http://hn.my/rxjava
http://hn.my/circuitbreaker
http://hn.my/deref


 23

(defncircuitbreaker :blah-http {:timeout 30 
:threshold 2}) 
 
(def future-timeout 1000) 
(def timeout-value nil) 
 
(defn http-get [url] 
  (with-circuit-breaker :blah-http { 
    :connected (fn [] (client/get "http://sound-
cloud.com/blah/wah")) 
    :tripped (fn [] nil)})) 
 
{:body (http-get http://www.soundcloud.com/blah/
wah) :status 200}

Problem solved. now even though the thread 
pool may become blocked we back off the following 
requests and avoid pilling more work onto the blocked 
thread pool.

This worked pretty well, but then we decided we 
would go even further in gracefully degrading. Why 
don’t we serve from a cache on failure? Slightly stale 
data is better than none.

(defn http-get [url] 
  (with-circuit-breaker :blah-http { 
    :connected (fn [] (client/get "http://sound-
cloud.com/blah/wah")) 
    :tripped (fn [] (memcache/get client 
url))}))

now consider (client/get "http://soundcloud.
com/blah/wah") starts failing, the thread pool gets 
blocked up, the circuit trigger flips and (memcache/get 
client url) is now fighting to get threads from the 
blocked thread pool.

Pants.

Scheduling over thread pools: Hystrix
Hystrix [hn.my/hystrix] is a netflix library, which i 
think of as circuit breakers on steroids.

 Hystrix is a latency and fault tolerance library 
designed to isolate points of access to remote systems, 
services and 3rd party libraries, stop cascading failure 
and enable resilience in complex distributed systems 
where failure is inevitable.

Dave Ray [darevay.com] has been doing lots of 
excellent work on producing Clojure bindings for 
Hystrix.

Hystrix gives me 2 big wins:

1. Separation of thread pools
Hystrix creates a separate thread pool for each Clo-

jure namespace. if one thread pool becomes blocked 
due to a failure, then a circuit breaker can be triggered 
with a fallback that uses a different thread pool.

This however does come with a cost:

1. We have a performance hit due to moving to a 
scheduling-based method for executing Hystrix 
commands.

2. We cannot use Clojure’s concurrency primitives 
(futures/promises/agents).

Here is an example of our service rewritten with 
Hystrix:

(ns example 
  (:require [[com.netflix.hystrix.core :as hys-
trix]])) 
 
(hystrix/defcommand http-get 
  {:hystrix/fallback-fn (fn [url] (memcache-get 
url)} 
  [url] 
  (client/get url)) 
 
(hystrix/defcommand memcache-get 
  {:hystrix/fallback-fn (constantly nil)} 
  [url] 
  (memcache/get client key)) 
 
(defn http-get [url] 
   {:body (http/get "http://soundcloud.com/blah/
wah") :status 200})

Beautiful. Just adding the defcommand brings us fault 
tolerance with no other changes to the shape of our 
code.

See the Hystrix Clojure adapter for all the possible 
configurations: hn.my/hystrixclj

2. Monitoring
Hystrix supports exposing metrics on all circuit break-
ers within a process. it exposes these calls through an 
event stream.

How you expose that Hystrix event stream depends 
slightly on which web server you are using with your 
Clojure app.

http://hn.my/hystrix
http://darevay.com
http://hn.my/hystrixclj


24 PROGRAMMING

Netty and Hystrix Event Streams (without servlets)
[hn.my/hystrixeventstreamclj]

(:require [hystrix-event-stream-clj.core as hystrix-event]) 
(defroutes app (GET "/hystrix.stream" (hystrix-event/stream))

Jetty and Hystrix Event Streams (with servlets)
if they are using Jetty you will need to change your 
app to add your main web app as a servlet. Then we 
can also add the Hystrix event stream servlet.

(ns sc-clj-kit.hystrix.jetty 
  (:import [com.netflix.hystrix.contrib.metrics.eventstream HystrixMetricsStreamServlet]) 
  (:import [org.eclipse.jetty.server Server]) 
  (:import [org.eclipse.jetty.servlet ServletContextHandler]) 
  (:import [org.eclipse.jetty.servlet ServletHolder]) 
  (:import [org.eclipse.jetty.server.bio SocketConnector]) 
  (:import [org.eclipse.jetty.server.ssl SslSocketConnector]) 
 
  (:import (org.eclipse.jetty.server Server Request) 
           (org.eclipse.jetty.server.handler AbstractHandler) 
           (org.eclipse.jetty.server.nio SelectChannelConnector) 
           (org.eclipse.jetty.server.ssl SslSelectChannelConnector) 
           (org.eclipse.jetty.util.thread QueuedThreadPool) 
           (org.eclipse.jetty.util.ssl SslContextFactory) 
           (javax.servlet.http HttpServletRequest HttpServletResponse)) 
  (:require 
   [compojure.core          :refer :all] 
   [ring.adapter.jetty      :as jetty] 
   [ring.util.servlet :as servlet])) 
 
(defn run-jetty-with-hystrix-stream [app options] 
  (let [^Server server (#'jetty/create-server (dissoc options :configurator)) 
        ^QueuedThreadPool pool (QueuedThreadPool. ^Integer (options :max-threads 50))] 
    (when (:daemon? options false) (.setDaemon pool true)) 
    (doto server (.setThreadPool pool)) 
    (when-let [configurator (:configurator options)] 
      (configurator server)) 
    (let [hystrix-holder  (ServletHolder. HystrixMetricsStreamServlet) 
          app-holder (ServletHolder. (servlet/servlet app)) 
          context (ServletContextHandler. server "/" ServletContextHandler/SESSIONS)] 
      (.addServlet context hystrix-holder "/hystrix.stream") 
      (.addServlet context app-holder "/")) 
    (.start server) 
    (when (:join? options true) (.join server)) 
    server)) 
 
(defroutes app (GET "/hello" {:status 200 :body "Hello"}) 
 
(run-jetty-with-hystrix app {:port http-port :join? false})

http://hn.my/hystrixeventstreamclj


 25

Aggregation and discovery
While you can monitor a single process using Hystrix 
in our example, we have many processes serving an 
endpoint. To aggregate all these Hystrix metric services 
we use Turbine. [hn.my/turbine]

Physical endpoints for a service at SoundCloud are 
discovered using DnS lookup. We configured Turbine 
to use this method to auto discover which machines 
are serving an endpoint.

(ns sc-turbine.discovery 
  (:import [org.xbill.DNS Type] 
           [com.netflix.turbine.discovery InstanceDiscovery Instance]) 
  (:require [clj-dns.core :refer :all])) 
 
(gen-class 
   :name ScInstanceDiscovery 
   :implements [com.netflix.turbine.discovery.InstanceDiscovery]) 
 
(defn -getInstanceList [this] 
  (map (fn [instance] 
         (Instance. (str (:host instance) ":" (:port instance)) "example-prod" true)) 
       (map (fn [answer] {:host (-> answer .getTarget str) :port (.getPort answer)}) 
            (:answers (dns-lookup "" Type/SRV)))))

And the config.properties:

InstanceDiscovery.impl=ScInstanceDiscovery 
turbine.aggregator.clusterConfig=example-prod 
turbine.instanceUrlSuffix=/hystrix.stream

Putting this all together our monitoring looks like 
this:

 

Pretty graphs: Hystrix Dashboard
Finally we run the Hystrix Dashboard and watch our 
circuit breakers live.

 

http://hn.my/turbine


26 PROGRAMMING

Complexity & Composition
Working with many services, composition of service 
calls becomes hard to think and write about. Callbacks 
try to solve this but nested callbacks leave us with a 
mess.

RxJava [hn.my/rxjava] tries to solve this using the 
Reactive Functional model. While RxJava provides lots 
of features, i see it primarily as a way of expressing 
concurrent actions as a directed graph which provides 
a single callback on success or failure. The graph is 
expressed in terms or maps/reduces/filters/etc. — 
things we are familiar with in the functional world.

To separate the request thread from the response 
thread we use RxJava with netty [netty.io] and Aleph. 
[hn.my/aleph]

Here is a very simple example firing 2 concurrent 
requests and then joining the results into a single map 
response:

;;Hystrix integrates with RxJava and can return 
Observables for use with Rx. 
(defn- find-user-observable [id] (hystrix/observe 
#'find-user id)) 
 
(defn- meta-data [user-urn] 
  (let [user-observable (-> (find-user-observable 
id) (.map (λ [user] ...))) 
        meta-observable (-> (find-user-meta-
observable id) (.map (λ [subscription] ...)))) 
    (-> (Observable/zip user-observable 
                        meta-observable 
                        (λ [& maps] {:user 
(apply merge maps)}))))

The function meta-data returns an observerable 
which we subscribe to and using Aleph return the 
resulting JSon to a channel.

(defn- subscribe-request [channel request] 
  (let [id (get-in request [:route-params :id])] 
    (-> (meta-data id) 
        (.subscribe 
          #(enqueue channel {:status 200 :body 
%})) 
          #(logging/exception %)))))) 
 
(defroutes app 
  (GET "/users/:id" [id] (wrap-aleph-handler 
subscribe-request)))

The shape of the RxJava Clojure bindings is still 
under development.

That single thread pool again…
With RxJava we are also in a situation where we 
cannot use Clojure’s future. in order for RxJava to 
block optimally we don’t want to use a single thread 
pool. Hence we use Hystrix as our means of providing 
concurrency.

Clojure services at scale
i’m very happy with the shape of these services run-
ning at SoundCloud. in production they are performing 
very well under heavy load with useful near real-time 
monitoring. in part thanks to netflix’s hard work there 
is no reason you cannot write elegant Clojure services 
at scale. n

Joseph Wilk is an engineer at SoundCloud helping shape the 
future of sound.

Reprinted with permission of the original author. 
First appeared in hn.my/clojureservice (josephwilk.net)

http://hn.my/rxjava
http://netty.io
http://hn.my/aleph
http://hn.my/clojureservice


27 PROGRAMMING

Put on your black hats folks, 
it’s time to learn some 
genuinely interesting things 

about SQL injection. now remem-
ber — y’all play nice with the bits 
and pieces you’re about to read, ok?

SQL injection is a particularly 
interesting risk for a few different 
reasons:

1. it’s getting increasingly harder 
to write vulnerable code due to 
frameworks that automatically 
parameterise inputs — yet we 
still write bad code.

2. you’re not necessarily in the 
clear just because you use stored 
procedures or a shiny oRM 
(you’re aware that SQLi can 
still get through these, right?) 
— we still build vulnerable apps 
around these mitigations.

3. it’s easily detected remotely by 
automated tools which can be 
orchestrated to crawl the web 
searching for vulnerable sites — 
yet we’re still putting them out 
there.

it remains number one on the 
oWASP Top 10 for a very good 
reason — it’s common, it’s very easy 

to exploit and the impact of doing so 
is severe. one little injection risk in 
one little feature is often all it takes 
to disclose every piece of data in the 
whole system — and i’m going to 
show you how to do this yourself 
using a raft of different techniques.

i demonstrated how to protect 
against SQLi a couple of years back 
when i wrote about the oWASP 
Top 10 for .nET developers so i’m 
not going to focus on mitigation 
here, this is all about exploiting. 
But enough of the boring defending 
stuff, let’s go break things!

All your datas are belong to us 
(if we can break into the query 
context)
Let’s do a quick recap on what it 
is that makes SQLi possible. in a 
nutshell, it’s about breaking out of 
the data context and entering the 
query context. Let me visualise this 
for you; say you have a uRL that 
includes a query string parameter 
such as “id=1” and that parameter 
makes its way down into a SQL 
query such as this:

The entire uRL probably looked 
something like this:

 Pretty basic stuff, but where it 
starts to get interesting is when 
you can manipulate the data in the 
uRL such that it changes the value 
passed to the query. ok, changing 
“1” to “2” will give you a different 
widget and that’s to be expected, 
but what if you did this:

http://widgetshop.com/
widget/?id=1 or 1=1

That might then persist through 
to the database server like so:

SELECT * FROM Widget WHERE ID = 
1 OR 1=1

What this tells us is that the 
data is not being sanitised — in 
the examples above the iD should 
clearly be an integer yet the value 
“1 oR 1=1” has been accepted. 
More importantly, however, because 
this data has simply been appended 
to the query, it has been able to 
change the function of the state-
ment. Rather than just selecting a 
single record, this query will now 

By TRoy HunT

Everything You Wanted To 
Know About SQL Injection



28 PROGRAMMING

select all records as the “1=1” state-
ment will always be true. Alterna-
tively, we could force the page to 
return no records by changing “or 
1=1” to “and 1=2” as it will always 
be false, hence no results. Between 
these two alternatives we can easily 
assess if the app is at risk of an 
injection attack.

This is the essence of SQL injec-
tion — manipulating query execu-
tion with untrusted data — and it 
happens when developers do things 
like this:

query = "SELECT * FROM Widget 
WHERE ID = "+ Request.
QueryString["ID"]; 
// Execute the query...

of course what they should 
be doing is parameterising the 
untrusted data, but i’m not going to 
go into that here. instead, i want to 
talk more about exploiting SQLi.

ok, so that background covers 
how to demonstrate that a risk is 
present, but what can you now do 
with it? Let’s start exploring some 
common injection patterns.

Joining the dots: Union query-
based injection
Let’s take an example where 
we expect a set of records to be 
returned to the page. in this case, 
it’s a list of widgets of “Typeid” 1 on 
a uRL like this:

http://widgetshop.com/
Widgets/?TypeId=1

The result on the page then looks 
like so:

Shiny 
Round 
Fuzzy

 

We’d expect that query to look 
something like this once it hits the 
database:

SELECT Name FROM Widget WHERE 
TypeId = 1

But if we can apply what i’ve 
outlined above, namely that we 
might be able to just append SQL 
to the data in the query string, we 
might be able to do something like 
this:

http://widgetshop.com/
Widgets/?TypeId=1 union all 
select name from sysobjects 
where xtype='u'

Which would then create a SQL 
query like so:

SELECT Name FROM Widget WHERE 
TypeId = 1 union all select 
name from sysobjects where 
xtype='u'

now keep in mind that the 
sysobjects table is the one that lists 
all the objects in the database and 
in this case we’re filtering that list 
by xtype “u” or in other words, user 
tables. When an injection risk is 
present that would mean the fol-
lowing output:

Shiny 
Round 
Fuzzy 
Widget 
User

This is what’s referred to as a 
union query-based injection attack 
as we’ve simply appended an addi-
tional result set to the original and 
it has made its way out directly into 
the HTML output — easy! now 
that we know there’s a table called 
“user” we could do something like 
this:

http://widgetshop.com/
Widgets/?TypeId=1 union all 
select password from [user]

SQL Server gets a bit uppity 
if the table name of “user” is not 
enclosed in square brackets given 
the word has other meanings in the 
DB sense. Regardless, here’s what 
that gives us:

Shiny 
Round 
Fuzzy 
P@ssw0rd

 of course the union ALL 
statement only works when the first 
SELECT statement has the same 
number of columns as the second. 
That’s easily discoverable though; 
you just try going with a bit of 
“union all select ‘a’” then if that fails 
“union all select ‘a’, ‘b’” and so on. 
Basically you’re just guessing the 
number of columns until things 
work.

We could go on and on down 
this path and pull back all sorts of 
other data, but let’s move on to the 
next attack. There are times when 
a union-based attack isn’t going 
to play ball either due to sanitisa-
tion of the input or how the data 
is appended to the query or even 
how the result set is displayed to 
the page. To get around that we’re 
going to need to get a bit more 
creative.



 29

Making the app squeal: Error-based injection
Let’s try another pattern — what if we did this:

http://widgetshop.com/widget/?id=1 or x=1

Hang on, that’s not valid SQL syntax. The “x=1” piece 
won’t compute, at least not unless there’s a column 
called “x,” so won’t it just throw an exception? Precisely 
— in fact, it means you’ll see an exception like this:

 This is an ASP.nET error and other frameworks have 
similar paradigms, but the important thing is that the 
error message is disclosing information about the inter-
nal implementation, namely that there is no column 
called “x.” Why is this important? it’s fundamentally 
important because once you establish that an app is 
leaking SQL exceptions, you can do things like this:

http://widgetshop.com/
widget/?id=convert(int,(select top 1 name from 
sysobjects where id=(select top 1 id from 
(select top 1 id from sysobjects where xtype='u' 
order by id) sq order by id DESC))) 

That’s a lot to absorb and i’ll come back to it in more 
detail. The important thing is though that it will yield 
this result in the browser: 

 And there we have it. We’ve now discovered that 
there is a table in the database called “Widget.” you’ll 
often see this referred to as “Error-based SQL injection” 
due to the dependency on internal errors. Let’s decon-
struct the query from the uRL:

convert(int, ( 
    select top 1 name from sysobjects where id=( 
      select top 1 id from ( 
        select top 1 id from sysobjects where 
xtype='u' order by id 
      ) sq order by id DESC 
    ) 
  ) 
)

Working from the deepest nesting up, get the first 
record iD from the sysobjects table after ordering by 
iD. From that collection, get the last iD (this is why it 
orders in descending) and pass that into the top select 
statement. That top statement is then only going to 
take the table name and try to convert it to an integer. 
The conversion to integer will almost certainly fail 
(please people, don’t name your tables “1” or “2” or any 
other integer for that matter!) and that exception then 
discloses the table name in the ui.

Why three select statements? Because it means we 
can go into that innermost one and change “top 1” to 
“top 2” which then gives us this result:

 now we know that there’s a table called “user” in 
the database. using this approach we can discover all 
the column names of each table (just apply the same 
logic to the syscolumns table). We can then extend that 
logic even further to select data from table columns:

 in the screen above, i’d already been able to dis-
cover that there was a table called “user” and a column 
called “Password.” All i needed to do was select out of 
that table (and again, you can enumerate through all 
records one by one with nested select statements), and 
cause an exception by attempting to convert the string 
to an int (you can always append an alpha char to the 
data if it really is an int then attempt to convert the 
whole lot to an int which will cause an exception). 

But there’s a problem with all this — it was only 
possible because the app was a bit naughty and 
exposed internal error messages to the general public. 
in fact the app quite literally told us the names of the 
tables and columns and then disclosed the data when 
we asked the right questions, but what happens when 
it doesn’t? i mean what happens when the app is cor-
rectly configured so as not to leak the details of internal 
exceptions?

This is where we get into “blind” SQL injection 
which is the genuinely interesting stuff.



30 PROGRAMMING

Hacking blind
in the examples above (and indeed in many precedents 
of successful injection attacks), the attacks are depen-
dent on the vulnerable app explicitly disclosing internal 
details either by joining tables and returning the data 
to the ui or by raising exceptions that bubble up to the 
browser. Leaking of internal implementations is always 
a bad thing and as you saw earlier, security misconfigu-
rations such as this can be leveraged to disclose more 
than just the application structure; you can actually 
pull data out through this channel as well.

A correctly configured app should return a message 
more akin to this one here when an unhandled excep-
tion occurs:

 This is the default error page from a brand new ASP.
nET app with custom errors configured, but again, 
similar paradigms exist in other technology stacks. now 
this page is exactly the same as the earlier ones that 
showed the internal SQL exceptions but rather than 
letting them bubble up to the ui they’re being hidden 
and a friendly error message shown instead. Assum-
ing we also couldn’t exploit a union-based attack, the 
SQLi risk is entirely gone, right? not quite…

Blind SQLi relies on us getting a lot more implicit or, 
in other words, drawing our conclusions based on other 
observations we can make about the behaviour of the 
app that aren’t quite as direct as telling us table names 
or showing column data directly in the browser by way 
of unions or unhandled exceptions. of course this now 
begs the question — how can we make the app behave 
in an observable fashion such that it discloses the infor-
mation we had earlier without explicitly telling us?

We’re going to look at two approaches here: bool-
ean-based and time-based.

 

Ask, and you shall be told: Boolean-based 
injection
This all comes down to asking the right questions of 
the app. Earlier on, we could explicitly ask questions 
such as “What tables do you have” or “What columns 
do you have in each table” and the database would 
explicitly tell us. now we need to ask a little bit differ-
ently, for example like this:

http://widgetshop.com/widget/?id=1 and 1=2

Clearly this equivalency test can never be true — 
one will never be equal to two. How an app at risk of 
injection responds to this request is the cornerstone of 
blind SQLi and it can happen in one of two different 
ways.

Firstly, it might just throw an exception if no record 
is returned. often developers will assume that a record 
referred to in a query string exists because it’s usu-
ally the app itself that has provided the link based on 
pulling it out of the database on another page. When 
there’s no record returned, things break. Secondly, the 
app might not throw an exception but then it also 
won’t display a record either because the equivalency 
is false. Either way, the app is implicitly telling us that 
no records were returned from the database.

now let’s try this:

1 and 
( 
  select top 1 substring(name, 1, 1) from sysob-
jects where id=( 
    select top 1 id from ( 
      select top 1 id from sysobjects where 
xtype='u' order by id 
    ) sq order by id desc 
  ) 
) = 'a'

Keeping in mind that this entire block replaces just 
the query string value, so instead of “?id=1” it becomes 
“?id=1 and…” it’s actually only a minor variation on 
the earlier requests intended to retrieve table names. 
in fact, the main difference is that rather than attempt-
ing to cause an exception by converting a string to an 
integer, it’s now an equivalency test to see if the first 
character of the table name is an “a” (we’re assuming 
a case-insensitive collation here). if this request gives 
us the same result as “?id=1” then it confirms that the 
first table in sysobjects does indeed begin with an “a” 
as the equivalency has held true. if it gives us one of 



 31

the earlier mentioned two scenarios (an error or shows 
no record), then we know that the table doesn’t begin 
with an “a” as no record has been returned.

now all of that only gives us the first character of 
the table name from sysobjects. When you want the 
second character then the substring statement needs to 
progress to the next position:

select top 1 substring(name, 2, 1) from sysob-
jects where id=(

you can see it now starts at position 2 rather than 
position 1. of course this is laborious; as well as enu-
merating through all the tables in sysobjects you end 
up enumerating through all the possible letters of the 
alphabet until you get a hit then you have to repeat the 
process for each character of the table name. There is, 
however, a little shortcut that looks like this:

1 and 
( 
  select top 1 ascii(lower(substring(name, 1, 
1))) from sysobjects where id=( 
    select top 1 id from ( 
      select top 1 id from sysobjects where 
xtype='u' order by id 
    ) sq order by id desc 
  ) 
) > 109

There’s a subtle but important difference here in 
that what’s it doing is rather than checking for an 
individual character match, it’s looking for where that 
character falls in the ASCii table. Actually, it’s first 
lowercasing the table name to ensure we’re only deal-
ing with 26 characters (assuming alpha-only naming, 
of course), then it’s taking the ASCii value of that 
character. in the example above, it then checks to see 
if the character is further down the table than the 
letter “m” (ASCii 109) and then of course the same 
potential outcomes as described earlier apply (either a 
record comes back or it doesn’t). The main difference 
is that rather than potentially making 26 attempts at 
guessing the character (and consequently making 26 
HTTP requests), it’s now going to exhaust all possi-
bilities in only 5 — you just keep halving the possible 
ASCii character range until there’s only one possibility 
remaining.

For example, if greater than 109 then it must be 
between “n” and “z” so you split that (roughly) in half 
and go greater than 115. if that’s false then it must 
be between “n” and “s” so you split that bang in half 
and go greater than 112. That’s true so there are only 
three chars left which you can narrow down to one in a 
max of two guesses. Bottom line is that the max of 26 
guesses (call it average of 13) is now done in only 5 as 
you simply just keep halving the result set.

By constructing the right requests the app will 
still tell you everything it previously did in that very 
explicit, rich error message way. it’s just that it’s now 
being a little coy and you have to coax the answers out 
of it. This is frequently referred to as “Boolean-based” 
SQL injection and it works well where the previ-
ously demonstrated “union-based” and “Error-based” 
approaches won’t fly. But it’s also not fool proof; let’s 
take a look at one more approach and this time we’re 
going to need to be a little more patient.

Disclosure through patience: Time-based blind 
injection
Everything to date has worked on the presumption 
that the app will disclose information via the HTML 
output. in the earlier examples the union-based and 
error-based approaches gave us data in the browser that 
explicitly told us object names and disclosed internal 
data. in the blind boolean-based examples we were 
implicitly told the same information by virtue of the 
HTML response being different based on a true versus 
a false equivalency test. But what happens when this 
information can’t be leaked via the HTML either 
explicitly or implicitly?

Let’s imagine another attack vector using this uRL:

http://widgetshop.com/Widgets/?OrderBy=Name

in this case it’s pretty fair to assume that the query 
will translate through to something like this:

SELECT * FROM Widget ORDER BY Name

Clearly we can’t just start adding conditions directly 
into the oRDER By clause (although there are 
other angles from which you could mount a boolean-
based attack), so we need to try another approach. A 
common technique with SQLi is to terminate a state-
ment and then append a subsequent one, for example 
like this:



32 PROGRAMMING

http://widgetshop.com/
Widgets/?OrderBy=Name;SELECT DB_NAME()

That’s a pretty innocuous one (although certainly 
discovering the database name can be useful), a more 
destructive approach would be to do something like 
“DRoP TABLE Widget.” of course the account the 
web app is connecting to the database with needs the 
rights to be able to do this. The point is that once you 
can start chaining together queries then the potential 
really starts to open up.

Getting back to blind SQLi though, what we need to 
do now is find another way to do the earlier boolean-
based tests using a subsequent statement and the way 
we can do that is to introduce a delay using the WAiT-
FoR DELAy syntax. Try this on for size:

Name; 
IF(EXISTS( 
  select top 1 * from sysobjects where id=( 
    select top 1 id from ( 
      select top 1 id from sysobjects where 
xtype='u' order by id 
    ) sq order by id desc 
  ) and ascii(lower(substring(name, 1, 1))) > 
109 
))  
WAITFOR DELAY '0:0:5'

This is only really a slight variation of the earlier 
examples in that rather than changing the number of 
records returned by manipulating the WHERE clause, 
it’s now just a totally new statement that looks for 
the presence of a table at the end of sysobjects begin-
ning with a letter greater than “m” and if it exists, the 
query then takes a little nap for 5 seconds. We’d still 
need to narrow down the ASCii character range and 
we’d still need to move through each character of the 
table name and we’d still need to look at other tables 
in sysobjects (plus of course then look at syscolumns 
and then actually pull data out), but all of that is 
entirely possible with a bit of time. 5 seconds may be 
longer than needed or it may not be long enough; it 
all comes down to how consistent the response times 
from the app are because ultimately this is all designed 
to manipulate the observable behaviour which is how 
long it takes between making a request and receiving a 
response.

This attack — as with all the previous ones — could, 
of course, be entirely automated as it’s nothing more 
than simple enumerations and conditional logic. of 
course it could end up taking a while but that’s a rela-
tive term; if a normal request takes 1 second and half 
of the 5 attempts required to find the right character 
return true then you’re looking at 17.5 seconds per 
character. Say 10 chars in an average table name is 
about 3 minutes a table and there are maybe 20 tables 
in a DB. Within one hour, you’ve discovered every 
table name in the system. And that’s if you’re doing all 
this in a single-threaded fashion.

It doesn’t end there…
This is one of those topics with a heap of different 
angles, not least of which is because there are so many 
different combinations of database, app framework and 
web server not to mention a whole gamut of defences 
such as web application firewalls. An example of where 
things can get tricky is if you need to resort to a time-
based attack yet the database doesn’t support a delay 
feature. For example, an Access database (yes, some 
people actually do put these behind websites!) one 
approach here is to use what’s referred to as heavy 
queries or in other words, queries which by their very 
nature will cause a response to be slow.

The other thing worth mentioning about SQLi is 
that two really significant factors play a role in the 
success an attacker has exploiting the risk: The first is 
input sanitisation in terms of what characters the app 
will actually accept and pass through to the database. 
often we’ll see very piecemeal approaches where, for 
example, angle brackets and quotes are stripped but 
everything else is allowed. When this starts happen-
ing the attacker needs to get creative in terms of how 
they structure the query so that these roadblocks are 
avoided. And that’s kind of the second point — the 
attacker’s SQL prowess is vitally important. This goes 
well beyond just your average TSQL skills of SELECT 
FRoM, the proficient SQL injector understands 
numerous tricks to both bypass the input sanitisation 
and select data from the system in such a way that it 
can be retrieved via the web ui. For example, little 
tricks like discovering a column type by using a query 
such as this:

http://widgetshop.com/Widget/?id=1 union select 
sum(instock) from widget



 33

in this case, error-based injection 
will give tell you exactly what type 
the “inStock” column is when the 
error bubbles up to the ui (and no 
error will mean it’s numeric):

 or once you’re totally fed up 
with the very presence of that 
damned vulnerable site still being 
up there on the web, a bit of this:

http://widgetshop.com/
Widget/?id=1;shutdown

But injection goes a lot further 
than just pulling data out via HTTP. 
For example, there are vectors that 
will grant the attacker shell on the 
machine. or take another tangent 
— why bother trying to suck stuff 
out through HTML when you 
might be able to just create a local 
SQL user and remotely connect 
using SQL Server Management 
Studio over port 1433? But hang on 
— you’d need the account the web 
app is connecting under to have the 
privileges to actually create users 
in the database, right? yep, and 
plenty of them do, in fact you can 
find some of these just by searching 
Google (of course there is no need 
for SQLi in these cases, assum-
ing the SQL servers are publicly 
accessible).

Lastly, if there’s any remaining 
doubt as to both the prevalence 
and impact of SQLi flaws in today’s 
software, just last week there was 
news of what is arguably one of 
the largest hacking schemes to date 
which (allegedly) resulted in losses 
of $300 million:

The indictment also suggests that 
the hackers, in most cases, did not 
employ particularly sophisticated 
methods to gain initial entry into 
the corporate networks. The papers 
show that in most cases, the breach 
was made via SQL injection flaws 
— a threat that has been thor-
oughly documented and understood 
for well over a decade.

Perhaps SQLi is not quite as well 
understood as some people think. n

Troy Hunt is an Aussie Developer Security 
Microsoft MVP specialising in web security 
and working to help developers learn their 
XSS from their CSRF from their XFO. He’s 
a frequent blogger at troyhunt.com, the 
author of the free eBook “OWASP Top 10 for 
.NET developers” and regular conference 
speaker. Most recently he’s completed his 
second Pluralsight course “Hack Yourself 
First: How to go on the Cyber-Offence” 
where Troy intends to turn web develop-
ers of all kinds into self-hacking machines!

Reprinted with permission of the original author. 
First appeared in hn.my/sqli (troyhunt.com)

http://troyhunt.com
http://hn.my/sqli


34 SPECIAL

SPECIAL

Entrepreneurs tend to view 
adversity as opportunity.

You’re Hired, You’re Fired
My first job in Silicon Valley: i was 
hired as a lab technician at ESL to 
support the training department. i 
packed up my life in Michigan and 
spent five days driving to Califor-
nia to start work. (Driving across 
the u.S. is an adventure; every-
one ought to do it. it makes you 
appreciate that the Silicon Valley 
technology-centric culture-bubble 
has little to do with the majority of 
Americans.)

 With my offer letter in-hand, 
i reported to ESL’s Human 
Resources (HR) department. i was 
met by a very apologetic manager 
who said, “We’ve been trying to get 
ahold of you for the last week. The 
manager of the training department 
who hired you wasn’t authorized 
to do so — and he has been fired. i 
am sorry there really isn’t a job for 
you.”

i was stunned. i had quit my job, 
given up my apartment, packed 
everything i owned in the back of 

my car, knew no one else in Silicon 
Valley and had about $200 in cash. 
This could be a bad day. i caught 
my breath and thought about it for 
a minute and said, “How about i go 
talk to the new training manager? 
Could i work here if he wanted to 
hire me?” Taking sympathy on me, 
the HR person made a few calls, 
and said, “Sure, but he doesn’t have 
the budget for a lab tech. He’s look-
ing for a training instructor.”

You’re Hired Again
Three hours and a few more meet-
ings later i discovered the training 
department was in shambles. The 
former manager had been fired 
because:

1. ESL had a major military con-
tract to deploy an intelligence 
gathering system to Korea

2. They needed to train the Army 
Security Agency on maintenance 
of the system

3. The 10-week training course (6 
hours a day) hadn’t been written

4. The class was supposed to start 
in 6 weeks

As i talked to the head of training 
and his boss, i pointed out that the 
clock was ticking down for them, i 
knew the type of training military 
maintenance people need, and i 
had done some informal teaching in 
the Air Force. i made them a pretty 
good offer — hire me as a training 
instructor at the salary they were 
going to pay me as a lab techni-
cian. out of desperation and with a 
warm body right in front of them, 
they realized i was probably better 
than nothing. So i got hired for the 
second time at ESL, this time as a 
training instructor.

The good news is that i had just 
gotten my first promotion in Silicon 
Valley, and i hadn’t even started 
work.

The bad news is that i had 6 
weeks to write a 10-week course on 
three 30-foot vans full of direction-
finding electronics plus a small 
airplane stuffed full of receivers. 
“And, oh by the way, can you write 
the manuals for the operators while 
you’re at it?” Since there was very 
little documentation, my time was 
split between the design engineers 
who built the system and the test 

By STEVE BLAnK

My First Job:  
Fired And Rehired On Day 1



 35

and deployment team getting the 
system ready to go overseas. As i 
poured over the system schematics, 
i figured out how to put together 
a course to teach system theory, 
operations and maintenance.

Are You Single?
After i was done teaching each day, 
i continued to write the opera-
tions manuals and work with the 
test engineers. (i was living the 
dream — working 80-hour weeks 
and all the technology i could drink 
with a fire hose.) Two weeks before 
the class was over, the head of the 
deployment team asked, “Steve, are 
you single?” yes. “Do you like to 
travel?” Sure. “Why don’t you come 
to Korea with us when we ship 
the system overseas?” uh, i think i 
work for the training department. 
“oh, don’t worry about that, we’ll 
get you temporarily assigned to us 
and then you can come back as a 
Test Engineer/Training instructor 
and work on a much more interest-
ing system.” More interesting than 
this? Sign me up.

“You’re Not So Smart, You Just 
Show Up a Lot”
While this was going on, my room-
mate (who i knew from Ann Arbor 
where he got his master’s degree 
in computer science) couldn’t 
figure out how i kept getting these 
increasingly more interesting jobs. 
His theory, he told me, was this: 
“you’re not so smart, you just show 
up a lot in a lot of places.” i wore it 
as a badge of honor.

But over the years i realized his 
comment was actually an astute 
observation about the mental mind-
set of an entrepreneur, and therein 
lies the purpose of this post.

Congratulations, You’re Now in 
Charge of Your Life
Growing up at home, our parents 
tell us what’s important and how 
to prioritize. in college we have a 
set of classes and grades needed 
to graduate. (or in my case the 
military set the structure of what 
constituted success and failure.) in 
most cases until you’re in your early 
20s, someone else has planned a 
defined path of what you’re going 
to do next.

When you move out on your 
own, you don’t get a memo that 
says, “Congratulations, you’re now 
in charge of your life.” Suddenly 
you are in charge of making up 
what you do next. you have to face 
dealing with uncertainly.

 Most normal people (normal 
as defined as being someone other 
than an entrepreneur) seek to mini-
mize uncertainty and risk, and take 
a job with a defined career path 
like lawyer, teacher or firefighter. A 
career path is a continuation of the 
direction you’ve gotten at home 
and school — do these things and 
you’ll get these rewards. 

Even with a career path you’ll 
discover that you need to champion 
your own trajectory down that 
path. no one will tell you that you 
are in a dead-end job. no one will 
say when it’s time to move on. no 
one will tell you that you are better 
qualified for something elsewhere. 
no one will say work less and go 
home and spend time with your 
partner and/or family. And many 
end up near the end of their careers 
trapped, saying, “i wish i could 
have… i think i should have…”

Non-Linear Career Path
But entrepreneurs instinctually real-
ize that the best advocate for their 
careers is themselves and that there 
is no such thing as a linear career 
path. They recognize they are going 
to have to follow their own internal 
compass and embrace the uncer-
tainty as part of the journey.

in fact, using uncertainty as your 
path is an advantage entrepreneurs 
share. Their journey will have them 
try more disconnected paths than 
someone on a traditional career 
track. And one day all the seem-
ingly random data and experience 
they’ve acquired will end up as 
an insight in building something 
greater than the sum of the parts.

Steve Job’s 2005 Stanford com-
mencement speech still says it best:

Stay Hungry, Stay Foolish.

Lessons Learned
 n Trust your instincts

 n Showing up a lot increases your 
odds

 n Trust that the dots in your career 
will connect

 n Have a passion for Doing some-
thing rather than Being a title on 
a business card. n

Steve Blank is a retired serial entre-
preneur and the author of Four Steps 
to the Epiphany [hn.my/foursteps] as 
well at the The Startup Owners Manual 
[hn.my/startupowners]. Today he teaches 
entrepreneurship to both at U.C. Berkeley, 
Stanford University, U.C.S.F and Colum-
bia University. He’s the architect of the 
National Science Foundation Innovation 
Corps. He blogs about entrepreneurship 
at steveblank.com

Reprinted with permission of the original author. 
First appeared in hn.my/firedhired (linkedin.com)

http://steveblank.com
http://hn.my/firedhired


36 SPECIAL

if you, like us, are constantly 
looking for more efficient ways 
to work, then you will really 

appreciate what the zeigarnik 
effect has to offer. it carries the 
name of Bluma zeigarnik, a Lith-
uanian-born psychologist who first 
described this effect in her doc-
toral thesis in the late 1920s. Some 
accounts have it that zeigarnik 
noticed this effect while she was 
watching waiters in a restaurant. 
The waiters seemed to remember 
complex orders that allowed them 
to deliver the right combination of 
food to the tables, yet the infor-
mation vanished as the food was 
delivered. zeigarnik observed that 
the uncompleted orders seemed 
to stick in the waiters’ minds until 
they were actually completed.

 zeigarnik didn’t leave it at that, 
though. Back in her laboratory, she 
conducted studies in which subjects 
were required to complete vari-
ous puzzles. Some of the subjects 
were interrupted during the tasks. 
All the subjects were then asked to 
describe what tasks they had done. 
it turns out that adults remembered 
the interrupted tasks 90% better 
than the completed tasks, and that 
children were even more likely to 
recall the uncompleted tasks. in 
other words, uncompleted tasks will 
stay on your mind until you finish 
them!

if you look around you, you will 
start to notice the zeigarnik effect 
pretty much everywhere. it is espe-
cially used in media and advertis-
ing. Have you ever wondered why 
cliffhangers work so well or why 
you just can’t get yourself to stop 
watching that series on netflix (just 
one more episode)?

As writer Ernest Hemingway 
once said about writing a novel, 
“it is the wait until the next day 
that is hard to get through.” But 
the zeigarnik effect can actually be 
used to positively impact your work 
productivity.

The Zeigarnik effect and 
productivity
now you’re probably wondering 
how the zeigarnik effect improves 
productivity. Since we experience 
intrusive thoughts about uncom-
pleted tasks, the key to productivity 
is working in focused periods of 
time, while avoiding multi-tasking 
and disruptions. Getting a task 
done means peace of mind, while 
the intrusive thoughts mean that 
you will experience anxiety when 
leaving a task unfinished to focus on 
something else. Since multi-tasking 
is simply diverting your attention 
from one task to another (basically 
making the new task an interrup-
tion), your brain won’t allow you 

 By ALinA VRABiE

The Zeigarnik Effect:  
The Scientific Key To  

Better Work



 37

to fully focus on the new task 
because you have left the previ-
ous one uncompleted. That is why 
productivity techniques such as the 
Pomodoro technique work so well. 
of course, another key element is 
adapting the time spent on focused 
work to the task at hand; some 
tasks will require a longer period of 
focused work than others.

Good news for procrastinators
The zeigarnik effect means good 
news for procrastinators: you are 
less likely to procrastinate once you 
actually start a task. you’re more 
inclined to finish something if you 
start it. So how do you actually get 
started? it depends on what kind 
of procrastinator you are. if you’re 
likely to procrastinate because 
you’re faced with a big project, 
then don’t think about starting with 
the hardest chunk of work. Start 
with what seems manageable in the 
moment. you’ll be more likely to 
finish the task simply because you 
started. The zeigarnik effect shows 
us that the key to beating procras-
tination is starting somewhere… 
anywhere.

Reward expectancy & the Zei-
garnik effect: why the 8-hour 
work day doesn’t work
A study published in the Journal 
of Personality in 2006 showed that 
the zeigarnik effect is undermined 
by reward expectancy. The study 
had subjects working on a task, 
interrupting them before the task 
was finished. While one group of 
subjects was told that they would 
receive an amount of money for 
participating in the study, the other 
group wasn’t told anything. The 
result was that 86% of the sub-
jects who didn’t know about the 
reward chose to return to the task 

after they were interrupted, while 
only 58% of the subjects who were 
expecting the reward returned to 
the task. As the study was over and 
the reward was there, they found 
no reason to return to the task. 
What’s more, the subjects who 
were expecting the reward actually 
spent less time on the task once 
they did return to it.

Compare this to the 8-hour 
work day. The end of the work-day 
is just like the interruption in the 
study: once the 8 hours are done, 
the task is interrupted. And the 
pay for the 8 hours of work is the 
expected reward. The above study 
shows that reward expectancy 
actually undermines the zeigarnik 
effect, and that rewarding task 
performance can lead to early task 
disengagement. in other words, the 
8 hour work-day actually makes us 
unattached to our work. A great 
way to fight this sort of compla-
cency is offering flexible work 
arrangements for your employees 
and offering rewards in the way of 
a healthy work-life balance. n

Alina is addicted to discovering life hacks 
and sharing them with others. If she can 
simplify your life in any way, then her mis-
sion is accomplished. She enjoys commu-
nication in all its forms and is passionate 
about constantly improving her writing 
process. From Romania, but has a Latin 
American heart.

Reprinted with permission of the original author. 
First appeared in hn.my/zeigarnik (sandglaz.com)

http://hn.my/zeigarnik


38 SPECIAL

By JASon HEERiS

This Is Why You Shouldn’t Interrupt 
A Programmer

Jason is a physicist and engineer currently working as a DSP 
engineer. He also used to be involved in politics, but now devote 
his spare time to his altruistic-yet-misunderstood scheme to 
destroy the sun [heeris.id.au/sol].

Reprinted with permission of the original author. 
First appeared in hn.my/interrupt (heeris.id.au)

http://heeris.id.au/sol
http://hn.my/interrupt


39 SPECIAL

By JASon HEERiS

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly


40 SPECIAL

http://circleci.com/?join=hackermonthly

	FEATURES
	Lifestyle Programming
	My Hardest Bug Ever

	PROGRAMMING
	Lenses In Pictures
	The Median-of-Medians Algorithm
	From Zero To Cooperative Threads In 33 Lines Of Haskell Code 
	Building Clojure Services At Scale
	Everything You Wanted To Know About SQL Injection

	SPECIAL
	My First Job: Fired And Rehired On Day 1
	The Zeigarnik Effect: The Scientific Key To  Better Work
	This Is Why You Shouldn't Interrupt A Programmer


