
Issue 47 April 2014

Don’t
End The
Week
With
Nothing
by Patrick McKenzie

2

Curator
Lim Cheng Soon

Contributors
Rick Webb
Patrick McKenzie
Tom Martin
Csaba Okrona
Padraig Brady
Hadi Hariri
Julia Evans
Steve Pear
James Long
Leo Babauta

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrators
Lorenz Hideyoshi Ruwwe
Joel Benjamin

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

HACKER MOnTHLy is the print magazine version
of Hacker news — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker news and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Joel Benjamin

Issue 47 April 2014

Don’t
End The
Week
With
Nothing
by Patrick McKenzie

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-47

Contents
FEATURES

04 The Economics of Star Trek
By RiCK WEBB

10 Don’t End The Week With
Nothing
By PATRiCK MCKEnziE

PROGRAMMING

16 A Quick Look at the Redis Source Code
By TOM MARTin

19 Git Tips From the Trenches
By CSABA OKROnA

23 Common Shell Script Mistakes
By PádRAiG BRAdy

27 Refactoring to Functional — Why Class?
By HAdi HARiRi

29 Paths to Being a Kernel Hacker
By JuLiA EvAnS

31 The Complete Guide to Centering a Div
By STEvE PEAR

SPECIAL

33 The Story of My Desk
By JAMES LOnG

39 How I Learned to Stop Procrastinating, &
Love Letting Go
By LEO BABAuTA

Illustration by Lorenz Hideyoshi Ruwwe [hideyoshi.deviantart.com]

http://hackermonthly.com/issue-47

4 FEATURES

FEATURES

By RiCK WEBB

When looking at the
economics of Star
Trek, there have

been three broad approaches in the
past:

1. Trying to shoehorn Star Trek’s
economics into the model of
parecon. This is problematic
because of the obviously hierar-
chical society of Starfleet, with
Admirals, captains, command-
ers, chancellors, governors and
whatnot, and the clear existence
of a relatively strong Federation
president, who is democratically
elected. Plus we never once see
a labor meeting, and it’s pretty
obvious personal freedom and
enrichment are important to
society.

2. Calling the Federation Com-
munist, based on comments
from Kirk in Star Trek iv on
not having any money in the
future and Picard’s speech about
the economics of the federa-
tion being significantly different
than 21st century economics
and people pursuing personal
enrichment rather than the
accumulation of wealth. The
problem with this definition
is it’s lazy ; just because they
don’t pursue the accumulation
of wealth does not mean the
Federation is communist. There
is absolutely, obviously, still pri-
vate property in the Federation:
most obviously Joseph Sisko’s
restaurant in new Orleans and
Chateau Picard, evidencing that
not just small possessions are

allowed but that the land itself is
still privately owned. One could
argue that these aren’t really
Sisko and Picard’s to own, but
they are routinely referred to as
“his” restaurant and vineyard so
we gotta go with Occam’s Razor
here and assume they do, in fact,
own them.

3. A sort-of guessing game based
on the various mentions of
Federation Credits and trying
to glean the system from every
single mention of money or
payments within the series.
This is always a pain in the ass,
especially given the original
series sometimes did things that
were pretty out there accord-
ing to later firmly established
canon, and later firmly rejected
by Roddenberry himself before

The Economics of Star Trek
The Proto-Post Scarcity Economy

 5

his death. Additionally, many of
the assumptions about Federa-
tion Credits seem iffy: are they
really currency? do they have to
be? Are they scrip? Rations? We
simply don’t know. And in any
case, trying to define the entire
economy of the Federation
— and perhaps even learning
something from it — should be
more than a matter of resolv-
ing obscure trivia references
(though of course it’s fun).

none of them seem correct.
none of them seem realistic. And
yes, let’s go for realistic here, why
not?

Let’s take a different approach
here.

What we know
Let’s start with the facts.

The Federation is clearly not a
centrally planned economy, and
therefore obviously not communist.
individual freedom of choice is very
obvious. Everyone chooses their
careers, and there are many men-
tions of this throughout the series
— witness every single time some-
one waxes nostalgic about why they
chose to enter Starfleet. Witness
Bashir going on about why he
wanted to be a doctor instead of a
tennis player. Witness Wesley drop-
ping out of Starfleet. Witness vash
being an archeologist and Kasidy
yates being a cargo ship captain.

Private ownership still exists — the
biggest examples, to me, are Sisko’s
restaurant and Chateau Picard,
but many other examples abound
from all the trinkets everyone owns
in their quarters. Crusher’s family
owns a (haunted) cottage on some
old-Scottish settlement planet. The
Maquis routinely refer to “our land,”
which they presumably owned,

and while an individual tribe may
have collectively owned the land
through a corporation, like the
Alaska native Land Claims Settle-
ment Act, or through a co-op, they
clearly “owned” the land, just like
anyone else owned land, while the
Federation was the superseding
government that could give that
territory away to another sovereign
party, much like the ceding of the
Sudetenland or Guam. Any alter-
native situation (the government
owning the land and renting it to
the settlers?) is never alluded to and
in any case the words stated (“our
land”) clearly indicate private own-
ership is still very much part of the
cultural zeitgeist. Then we have J.
J. Abram’s Star Trek and it’s pretty
unlikely that, what? The Federation
owned that shack Kirk grew up in,
that sweet Corvette or that road-
house bar? Those items sure looked
privately owned. Some spaceships
were privately owned. Finally, let’s
not forget Star Trek: Generations
when Kirk says in the nexus “This
is my house. i sold it years ago.”

next: The Federation is not true
post scarcity economy: famines rou-
tinely still exist, transportation lines
are vital in moving around goods
within the Federation. Transporta-
tion is a whole grey area in most
post-scarcity economic works, at
least the few i’ve read. The Federa-
tion might have enough food, but
at any time some planet may well
be starving or in need of medicine
that needs to come from some-
where else.

it seems pretty clear cut that
jobs are optional. They explicitly
state on many occasions that the
Federation is based on a philosophy
of self-improvement and cultural
enrichment, and in any case we
sure do run into a lot of “artists” in
the Federation. i particularly love
those hippies in TOS. The Federa-
tion seems a bit like Williamsburg
— a lot of artists who don’t need to
work. Or maybe more like the uK
at the height of its social programs
supporting artists. Let a million J.
K. Rowlings bloom. it’s a bit weird
to me that we’ve never seen people
who sit around and literally do
nothing, but then why would we?
And, of course, we’ve certainly seen
more than a few societies that are
all chilled out and not doing much
(Risa, etc.).

next: The Federation doesn’t use
money. This is basically absolute.
Kirk says it in Star Trek iv. Picard
says it several times. Quark mocks it
to Rom. Roddenberry put it down
as a hard and fast rule. no theory
of Star Trek economics can be real
while ignoring this fact. it has to
be addressed. it is the basis of all
confusion and, honestly, interest in
figuring it out at all.

Money still exists, so do banks.
Crusher buys fabric at Farpoint.
dS9 makes mention of the Bank of
Bolias, on a Federation planet. nog
loans Jake latinum.

We also know there exists such a
thing as the Federation Credit. This
presumably causes some confusion
since they are routinely referred to
like money (Kirk mentions that the
Federation has invested 122,200
credits in Spock), and things are
purchased for credits (uhura buys a
tribble, Quark occasionally accepts
them at his bar).

6 FEATURES

This would seem to be a giant
contradiction to the lack of exis-
tence of money. We’ll get to that in
a bit.

There is still a ruling class, or
classes — it is not perfectly-egali-
tarian in a communist manner. We
have admirals and presidents and
governors and colony leaders. There
are enlisted personnel in Starfleet
and officers. Some are elected, some
are appointed. Some Federation
members were even hereditary
nobilities.

There is still commerce (and
even vulcan commerce), trade,
trading vessels, and, we can
assume, corporations, in some form
(though this may not be 100%
definite — dytallix is mined for the
Federation. it isn’t 100% clear it is
in the Federation).

Some thought exercises
Let’s do a couple thought exercises.

First: if you eat a meal at Sisko’s
Creole Kitchen, do you pay? it
seems almost definite that you
don’t pay. if you paid, with any-
thing, including Federation Credits,
that would be money. you could
barter, but it seems if the entire
economy was a barter economy,
we’d hear it. no, it seems almost
certain that you go to eat at Sisko’s,
you don’t pay, and Joseph Sisko
doesn’t pay for his supplies, and his
suppliers probably don’t pay for
theirs.

next: Can everyone have any-
thing? Anything at all? is the Feder-
ation a perfect post scarcity society?
The answer seems almost certainly
no. if you went to a replicator, or a
dealer, or the utopia Planatia Fleet
yards and asked for 10 million star
ships, the answer would be no.
More concretely, when the Borg
attacked, and during the dominion

War, the Federation suffered from a
serious starship shortage.

next: imagine there’s some level
of welfare benefits in every coun-
try, including America. That’s easy.
That’s true. imagine that, as the
economy became more efficient
and wealthy, the society could
afford to give more money in wel-
fare benefits, and chooses to do so.
next, imagine that this kept hap-
pening until society could afford to
give the equivalent of something
like $10 million uS dollars at cur-
rent value to every man, woman
and child. And imagine that, over
the time that took to happen,
society got its shit together on
education, health, and the dignity
of labor. imagine if that self-same
society frowned upon the conspicu-
ous display of consumption and
there was a large amount of soci-
etal pressure, though not laws, on
people that evolved them into not
being obsessed with wealth. is any
of that so crazy? is it impossible?

i think that is basically what’s
going on on Star Trek.

A Theory of Star Trek Economics
i believe the federation is a proto-
post scarcity society evolved from
democratic capitalism. it is, essen-
tially, European socialist capitalism
vastly expanded to the point where
no one has to work unless they
want to.

it is massively productive and
efficient, allowing for the effective
decoupling of labor and salary for
the vast majority (but not all) of
economic activity. The amount of
welfare benefits available to all citi-
zens is in excess of the needs of the
citizens. Therefore, money is irrel-
evant to the lives of the citizenry,
whether it exists or not. Resources
are still accounted for and allocated

in some manner, presumably by the
amount of energy required to pro-
duce them (say Joules). And they
are indeed credited to and debited
from each citizen’s “account.” How-
ever, the average citizen doesn’t
even notice it, though the gov-
ernment does, and again, it is not
measured in currency units — defi-
nitely not Federation Credits. There
is some level of scarcity — the
Federation cannot manufacture
a million starships, for example.
This massive accounting is done by
the Federation government in the
background (witness the authority
of the Federation President over
planetary power supplies).

Because the welfare benefit is so
large, and social pressure is so strong
against conspicuous consumption,
the average citizen never pays any
attention to the amounts allocated
to them, because it’s perpetually
more than they need. But if they go
crazy and try and purchase, say, 10
planets or 100 starships, the system
simply says “no.”

Citizens have no financial need
to work, as their benefits are more
than enough to provide a com-
fortable life, and there is, clearly,
universal health care and education.
The Federation has clearly taken
the plunge to the other side of peo-
ple’s fears about European socialist
capitalism: yes, some people might
not work. So What? Good for them.
We think most still will.

 7

However, if they so choose they
can also get a job. Many people do
so for personal enrichment, soci-
etal pressure or through a desire
to promote social welfare. Are
those jobs paid? i would assume
that yes, those jobs are “paid,” in
the sense that your energy alloca-
tion is increased in the system,
though, again, your allocation is
large enough that you wouldn’t
even really notice it. Why do i say
this? The big challenge here is how
does society get someone to do the
menial jobs that cannot be done in
an automated manner. Why would
anyone? There are really only two
options: there is some small, incre-
mental increase in your hypotheti-
cal maximum consumption, thus
appealing to the subconscious in
some primal way, or massive soci-
etal pressure has ennobled those
jobs in a way that we don’t these
days. i opt for the former since
it grounds everything in market
economics, albeit on a bordering-
on-infinitesimal manner, and that
stands to reason, since that’s how
people talk in Star Trek. They talk
about individual fulfillment, buying,
selling, etc. no one was ever guilt-
tripped into joining Starfleet, save
by maybe their family.

There is almost zero mention of
central planning. it’s a capitalistic
society, its benefits are just through
the roof. Also, market economics
= crowdsourced. That is, it’s not
centrally planned. it’s democratic.
it’s the only mechanism we know
of to allocate resources that isn’t
centrally planned. The alterna-
tive is that all allocations are done
algorithmically through a computer
and the economy is completely
decoupled from market forces, but
that’s still basically central plan-
ning, and infinitely more complex

than assuming there is still some
semblance of market underpin-
ning, much like we stayed on the
gold standard for far longer than we
needed to and we still have pennies
even though we don’t need them.
it’s a vestige of the past. it’s the
constitutional monarchy.

Either way, presumably, you take
whatever job you want, and your
benefits allocations are adjusted
accordingly. But by and large you
just don’t care, because the base
welfare allocation is more than
enough. Some people might care,
some people might still care about
wealth, such as Carter Winston.
More power to them. They can go
try and be “rich” in some non-Fed-
eration-issued currency. But most
people just don’t care. After all, if
you were effectively “wealthy” why
would you take a job to become
wealthy? it pretty much becomes
the least likely reason to take a job.

So, behind the scenes there is a
massive internal accounting and cal-
culation going on — the economics
still happen. They just aren’t based
on a currency unit, and people
don’t acquire things based upon a
currency value. People just acquire
things from replicators, from restau-
rants such as Sisko’s or coffee shops
like Cosimo’s, or, presumably, get
larger things from dealerships or
factories. This could still be called
“buying,” as a throwback.

Two points here: first, the
accounting is done in energy units,
so that there is no need for cur-
rency. And why not? Resource
allocation is mainly about energy
anyhow, doubly so if it’s only robots
building most things. And secondly,
if you never had money, never saw
it, and it didn’t physically exist to
measure things, you’d pretty much
tell people, like a certain 20th

century oceanographer, that you
don’t have money in the 24th cen-
tury, regardless of some automated
accounting. This jibes with Federa-
tion people knowing what money
is — because other societies have
it — but saying they don’t use it.
Because they don’t.

However, you could still buy and
sell things. you could take a thing
from a replicator and go to some-
one else and “buy” something else
with it. Why couldn’t you? it’s a
free society. it’s essentially barter.
Kirk may well have sold his house
for a year’s supply of Romulan ale.

Or Federation Credits.
it is tempting to argue here that

the massive accounting system
uses a unit called the Federation
Credit, but i don’t believe that’s
the case. if it were, the credit would
be too much like money because
a) accounting is done in it, b) it is
issued by a governing body (like a
fiat currency) and c) it is fungible,
i.e. you can already buy things with
it and if you could buy things with
it And a and b were true, it would
pretty much be a currency. This
would fly in the face of Roddenber-
ry’s absolute diktat that the Federa-
tion has no currency.

i’m going to make a bold new
theory here. Federation units are
“Federation” the same way that
American Cheese is American. it
is simply descriptive. Currency
was invented long before capital-
ism as a means to disintermediate
trades: you wanted my grain, i
didn’t want your cows, i wanted
farmer Ted’s grapes. Rather than
make every trade a 3, 4 or 5 way
trade, we made a little certificate
we all agreed was worth something
to us and us only. This need would
still occasionally crop up in the
Federation, even without money.

8 FEATURES

i believe the Federation unit is
a private currency, developed by
third parties to facilitate complex
trades or trades outside the Federa-
tion. i believe that the Federation
unit is not actually underwritten or
issued by the Federation. i think it
is more akin to the Calgary dollar
or the Chiemgauer. Or bitcoin. This
would solve so many problems. it
would make it unequivocally true
that the Federation doesn’t use
money. it would give people a unit
to use as reference when they say
things are expensive. it would be a
thing citizen’s could acquire, if they
wanted to, through barter originally,
then allowing them to use them
to purchase things (like Tribbles
or Holosuites) from people who
elected to take them, since taking
them is optional (witness Quark’s
vacillations on whether he accepts
them or not). it would make a nice
proxy for talking about investment
levels, such as when Kirk said how
much the Federation had invested
in Spock.

Foreign Reserves
Additionally, i believe that the Fed-
eration acts like any current sover-
eign nation state and holds foreign
reserves of currencies of other
nations. it’s assumed that not all
foreign trade is done through barter.
The federation itself probably holds
foreign reserves in foreign currency
just as China holds uS dollars and
England keeps a reserve of Euros.
Sisko at one point tells Quark he
could have charged rent for the
bar, but he chose not to. Presum-
ably that would have been paid in
latinum. Presumably the Federa-
tion would have just held onto it
as foreign reserves. All evidence,
in fact, points to the fact that the
Federation operates as a nation and

uses foreign reserves exactly as we
do now. The Chinese government
holds uS dollars but you don’t
hear a Chinese person say “we use
dollars.” This is a bit confusing by
the episode in which the Federa-
tion offers 1.5 million Federation
Credits for use of the Barzanian
wormhole, but it doesn’t have to be
contradictory. Federation Credits
had value to the Barzanians, so the
Federation could simply procure
them from the issuer with its for-
eign reserves of other currencies at
market rate.

The Individual Can Have Money
An individual of the Federation
can procure latinum by barter for
goods, labor or, presumably Federa-
tion Credits, if they had them. i
assume that there’s probably some
black market value for Federation
Credits just like any other currency,
sovereign issued or not (you can
buy a Lewes Pound on eBay right
now for $7.98). Perhaps it’s more
legitimate and the units are traded
on a commodities exchange. it
really doesn’t matter. As a Federa-
tion Citizen i can have gold pressed
latinum, Federation Credits, Frangs,
darseks, isiks, Leks, or Quatloos in
my wallet. i can have a wallet. i can
buy things with Self Sealing Stem
Bolts if i want. But none of that is
in conflict with the fact that the
Federation has no unit of currency,
has no money, and my society is
predominantly concerned with soci-
etal good and self-improvement.

Then there’s the matter of
Quark’s bar. What’s up with that?
He never seems to charge anyone
for drinks, but is obsessed with
money, and you can buy holo-
suites in latinum or Federation
Credits, and you can bet on the
dabo table with Latinum. At first i
thought there was a whole com-
plex thing where Quark doesn’t
charge Starfleet personnel because
he made the mental calculation it
was cheaper to give them drinks
for free and keep accepting free
rent from Sisko, but then i realized
that doesn’t really work because
he charges them for the Holosuites
and dabo tables. Then i realized:
Quark’s is like any other casino.
The drinks are free: they are a loss
leader against the higher profits of
the dabo Table and Holosuites.

The Proto Post Scarcity Economy
The thing i love most about this
theory is that it seems plausible for
our future. Tom Paris said that a
new world economy takes shape in
the 22nd century. That might be a
smidge optimistic but we already
have a world economy, in one sense,
so the new one could be something
only incrementally different from
this one. Money went the way of
the dinosaur, he said, and Ft. Knox
was turned into a museum. Most of
us are already off the gold standard,
and it’s certainly not inconceivable
in another 180 years we don’t use
paper money at all, and a single cur-
rency has dominated the planet —
the dollar is already close — and it
slowly fades into the background.

From there, perhaps a cultural
shift takes place as we realize that
“everyone in a job” isn’t the same as
a full economy, and we start to look
for models beyond capitalism that
aren’t all communist hoo-ha.

 9

i sort of love that Star Trek forces
us to think about a society that has
no money but still operates with
individual freedom and without
central planning. i love that democ-
racy is still in place. i love that
people can still buy and sell things.
it’s real. it’s a more realistic vision
of post-capitalism than i have seen
anywhere else. Scarcity still exists
to some extent, but society pro-
duces more than enough to satisfy
everyone’s basic needs. The frustrat-
ing thing is that we pretty much
do that now, we just don’t allocate
properly. And allocating properly
cannot be done via central planning.

The only real “out there” require-
ment in all of this is a governmental
layer higher than the nation, and
indeed, higher than the planet.
This doesn’t seem insane, i sup-
pose, if we were to suddenly find
ourselves not alone in the universe.
And indeed we already have some
measure of international govern-
ment now. Moreover, the Federa-
tion clearly adheres to the “laws
made as close to home as possible”
routine, since as far as we can tell
the Federation president really only
has authority over Starfleet, Foreign
Relations, power allocation, and
accounting. virtually every other
law we encounter in the Federation
happens at the individual planet or
colony level.

it’s interesting to me because
these are things we’re going to have
to reckon with, i believe, in my
lifetime. if robots do all the dirty
work, and the uS is hugely rich,
does every single person really need
a job? Are we going to let all of that
money pile up in the 0.1% ruling
elite, or can it be distributed to
everyone? does wealth being dis-
tributed to the people in an equal
manner mean communism abso-
lutely? Of course it doesn’t. The uS
isn’t communist. The uK isn’t com-
munist. denmark isn’t communist.
What happens when the surplus is
more than enough? n

Rick Webb is co-founder of The Barbarian
Group and served as its COO. Since then,
he’s worked at Tumblr and Soundcloud. He
is currently a venture partner at Quotidian
Ventures, an early-stage fund operating in
New York City.

Reprinted with permission of the original author.
First appeared in hn.my/startrek (medium.com)

Illustration by Lorenz Hideyoshi Ruwwe.

http://hn.my/startrek

10 FEATURES

By PATRiCK MCKEnziE

Don’t End The Week
With Nothing

 11

usually i concentrate
more on the needs of
established software

businesses, but recently i’ve been
asked for some advice by people
who are still in the trenches work-
ing at a traditional day job.

There’s absolutely nothing wrong
with day jobs. Most people have
them. They’re an honest living.
Some people really enjoy the
particular one that they have. if
your day job is right for you, that
is wonderful and i will not second-
guess your decision.

Many people nurse dreams of
entrepreneurship because their
day job is not quite right for them.
Here’s my story.

i used to be a salaryman at a
Japanese mega corporation. The
social expectation is that the com-
pany insulates the employee from
all risk, and in turn, the employee
swears themselves body and soul to
the company.

i worked 70 to 90 hour weeks for
three years. This isn’t particularly
out of the ordinary for white collar
employees in Japan. it didn’t strike
me while i was a salaryman that i
was going to continue doing it until
retirement, largely because the
amount of work was killing me, and
i worked after those hours on my
own projects.

Somebody asked me recently
how i managed to stay motivated
to work for the 91st through 95th
hours every week. Answer: because
i wanted to end the week with
something.

Applied Capitalism For Fun And
Profit
i’m a capitalist. A friend of mine
is a devoted Marxist. i think we
mutually agree that, considering
any particular employee, it is in
that employee’s personal interest to
stop selling hours of labor and start
renting access to his accumulated
capital as soon as humanly possible.

i don’t mean just monetary
capital — having $100,000 in your
401k is awesome but that’s not the
type which is really interesting to
me, simply because rates of return
on that sort of capital are so low.
There are many types of capital
that are no less real just because
you can’t conveniently reduce them
to a number.

Human capital: the skills you’ve
built up over time and the value
you’re able to create as a result of
them.

Social capital: the ability to call
on someone who trusts you and
have them do something in your
interest, like e.g. recommend you to
a job.

Reputational capital: the way
your name rings out in rooms you
aren’t even in, simply when your
topic of expertise comes up. (Hope-
fully in a good way!)

A lot of day jobs structurally
inhibit capital formation. if i were
a Marxist i’d say “And this is an
intended consequence of Capital’s
desire to keep Labor subservient
to it,” but i honestly think it’s true
even without anybody needing to
twirl their mustache.

There’s a great line from Jack
Welch to the effect of “you work
for a week, collect your paycheck
on Friday, and then you and the
company are even.” Corporate
America has embraced it with
a vengeance. i’m too young to

remember an America where “com-
pany loyalty” wasn’t a punch line.

if company loyalty were a bank-
able proposition (and it might
still be at some places — i know a
smaller company or two where “we
treat our employees like family”
means exactly what it says on the
tin), you’d get a wee bit of capital
every week you worked. That’s one
more week towards your boss’ good
impression of you. One more week
towards your pension. One more
week towards that gold watch.

Japanese salarymen still have that
sort of arrangement.

At some point at my ex-
employer, i realized that i couldn’t
possibly work at a salaryman job
until retirement, because it was
going to be the death of me. (i
won’t belabor that period of my
life because it was pretty rough, but
suffice it to say if you pull 6 months
of 90 hour weeks, towards the end
of it the periodic blackouts start to
get a little distressing.)

Once i came to the conclusion
that i’d probably quit, and therefore
discounted the till-your-death-do-
us-part slow accumulation of firm-
specific capital, i realized something
which is fundamentally true of a lot
of day jobs. nothing i did at the job
mattered, in the long run.

Sure, in the short run, i was
writing XML files and Java classes
which, knock on wood, successfully
let my employers ship an examina-
tion management system to their
client (a major university). i was
a really effective Turing machine
which accepted emails and tickets
as input and delivered (occasion-
ally) working code and Excel files
as output. But no matter how much
i spun, nothing about my situa-
tion ever changed. i worked my
week, got to the end of it, and had

12 FEATURES

nothing to show. The next week
there would be more emails and
more tickets, exactly like the week
before. The week after that would
be more of the same. And abso-
lutely nothing about my life would
change. i’d end the week with
nothing.

Don’t end the week with noth-
ing. Prefer to work on things you
can show. Prefer to work where
people can see you. Prefer to work
on things you can own.

Prefer Working On Things You
Can Show
One of the reasons developers
have embraced OSS so much is
because it gives you portable capital
between companies: if your work
is sitting on GitHub, even if you
leave one job, you can take it with
you to your next job. Previously
this happened pretty widely but
generally under the table. (is there
any programmer who does not have
a snippets folder or their own pri-
vate library for scratching that one
particular itch?) One of the great
wrinkles that OSS throws into this
is that OSS is public by default, and
that’s game changing.

Why? Because when your work
is in public, you can show it to
people. That’s often the best way to
demonstrate that you’re capable of
doing work like it.

Telling people you can do great
work is easy: any idiot can do it,
and many idiots do. Having people
tell people you do great work is an
improvement. it suffers because
measuring individual productiv-
ity on a team effort is famously
difficult, and people often have no
particular reason to trust the repre-
sentations of the people doing the
endorsements.

(Quick: if you had credible evi-
dence that a mid-level engineering
manager at a company you’ve never
heard of in nagoya thought i was
a really effective employee, would
that make you markedly more
likely to hire me? Right, without
the context of knowing him, that
recommendation is almost useless.)

Work you can show off, though,
is prima facie evidence of your
skills. After your portfolio includes
it, your ability to sell your skills gets
markedly better. Given that most
people’s net worth is almost 100%
invested in their personal capital
(i.e. if you’re a young engineer the
net present value of all future salary
absolutely swamps everything in
your bank account), this is a fairly
radical improvement in your pres-
ent situation for not a very radical
change in how you go about things.

Thus my first piece of advice:
if you have the choice between
multiple jobs, all else being equal,
pick the one where you are able to
show what you’ve worked on. This
could mean working on a language
stack where work byproducts are
customarily OSSed (e.g. Rails)
versus one which isn’t (e.g. C#).
This could mean working on par-
ticular projects within the organiza-
tion which like external visibility
(e.g. Android) rather than projects
which don’t (e.g. AdWords plumb-
ing — presumably Google will pay
you a lot of money to do that, but
consider it compensation for not
being able to talk about it). This
could mean working in industries
which default to being open rather
than those which default to being
closed.

OSS isn’t nearly the only way
to be able to show what you’ve
worked on. in the creative indus-
tries, where the end product is

customer-visible, people keep very
close eye on whose name ends up
in the credits. Academics spend lots
of time worrying about citation
counts and directed graphs.

More prosaically, establish an
expectation early that you’re simply
going to talk about what you’re
doing. i think at Fog Creek / Stack
Exchange they call this “producing
artifacts” — conference presenta-
tions, blog posts, OSSed software,
and the like, centered around the
work. Even at very open companies
there exists a lot of secret sauce,
but most of the valuable work of
the company is not particularly
sensitive, and much of it has widely
generalizable lessons. Write about
those lessons as you learn them. if
at all possible, publish what you
write. Even if it is published to an
audience of no one, you will be able
to point people back to it later.

Some of my most effective
writing in terms of career growth
was back in 2006 through 2008,
when i was struggling through not
understanding anything i was doing,
and where i — quite literally —
had less readers than my younger
brother’s blog on writing superhero
novels. Why was toiling in internet-
obscurity still valuable? Because
i was able to point to particular
experiments that i started in 2008,
and then point to the follow-ups
in 2009 and 2010, which showed
those experiments were really suc-
cessful. The failures and false starts
aren’t extremely interesting to most
people, but having some successes
under your belt credibly demon-
strates that you’re capable of either
reproducing them in the future or
experimenting your way to new
successes in your new environment.

 13

If you cannot build things you
can show at work, you should
build things you can show out-
side of work. Companies in our
industry are gradually becoming
more reasonable about iP assign-
ment clauses — there’s less of the
“we own everything you think of
at any point in your employment”
nonsense these days. Even at my
very straight-laced Japanese mega-
corp, they were willing to write an
exception into the employment
contract for a) OSS work that i
did outside of company hours and
b) Bingo Card Creator. i offered
them this in exchange: “if you let
me continue working on these, i’m
going to learn lots of skills which i
can put to the use of the company.
normally you invest lots of money
sending engineers to conferences
and professional training. This is
even better for you: i’ll learn more
with no operating expenditure and
no decrease in billing efficiency.”
That’s an offer you can make to
substantially any employer.

i prefer being upfront with
people rather than doing the “it is
easier to ask for forgiveness than
ask for permission” route a lot of
folks suggest. Sure, you can just roll
the dice and pretend your employer
is unlikely to notice your side
project. unfortunately, the odds
of them noticing your side project
go up sharply if the side project is
ever successful, and then your lack
of forthrightness about it give you
unbounded liability extending far
into the future. Just ask. The worst
they can say is no.

you might consider asking in the
context of a more general compen-
sation discussion than just “Hey
boss, can i work on OSS?” That
way, if they say “no side projects,”
you’ll say “OK, in lieu of the side

projects, i’ll need more money.” it’s
easier to be sticklers for the stock
agreements when there’s absolutely
no cost to the company to insist
on the usual boilerplate, but minor
concessions on the boilerplate are
often easier than concessions on
things which actually appear on the
company’s books.

Prefer To Work Where People
Can See You
i used to phrase this as “work in
public,” but when people think
about folks who work in public,
they think of rock stars and figure
“Well, i’ll never be a rock star.”

vanishingly few people in our
industry have the profile of rock
stars. They can still have substan-
tial profile among the audience of
“people professionally relevant to
them.” That might be as tightly
scoped as “people with hiring
authority for front-end developers
in my metro area,” which might be
a set of, what, a couple of dozen
folks?

How do you develop that profile?
i’d suggest, all things being equal,
working at places and on projects
which have above-average visibility.

Many engineering projects are
deep in the bowels of late-stage
industrial capitalism. Then there’s
writing the Facebook mobile app.
i have no clue what engineers
actually worked on the Facebook
mobile app, but i’m betting that if i
were a Silicon valley hiring man-
ager in iOS or Android develop-
ment i’d a) know their names and
b) have them at or near the top of
my personal poach list.

Side note: A poach list is my
informal name for “people who, if
i had infinite money and they had
no other commitments, i’d hire
to work on a particular project.” i

have several mental poach lists —
the best people i know on Rails
programming, on A/B testing, on
writing email, etc. When people ask
me for advice on what to do about
those topics, i often say “you know
who is really great at this? <%=
poach_list.pop() %> you cannot
possibly waste your time taking
them out to coffee.” Brokering
coffee dates cannot possibly work
out poorly for the people who go to
them. (My interest? Helping people
out is fun, and — funny enough —
people often seem to remember
when you get them a job or a key
employee.)

you don’t have to optimize for
“sexy” projects. you know, sexy
projects: i don’t know how to
describe them but i know it when i
see it. Most engineering work isn’t
intrinsically sexy. i would, however,
optimize for impact and visibility.

don’t try to make a career out of
optimizing the SQL queries to dis-
play a preference page on a line of
business app at a company that no
one has ever heard of. That is not
the straightforward path to having
other people learn you are capable
of doing meaningful work. instead,
work at higher profile companies/
organizations — AmaGooFaceSoft,
startups or small companies with
anomalously high profile (locally,
nationally, whatever), or in posi-
tions where by your nature you’re
exposed to lots of people.

i have a few friends who are
developer evangelists, which is a
funny job created at APi compa-
nies where your brief is basically
“Go demo our product to a group
of developers. now, do that again,
every day, for the next several
years.” Sentiment on the actual job
is decidedly mixed.

14 FEATURES

An observation: every devel-
oper evangelist i know goes into
a much better job right after they
quit being an evangelist. This is
not true of other engineering jobs
with checkered reputations, like e.g.
The Build Guy. Why do developer
evangelists get upgrades but The
Build Guy(s) do not? My bet is
because evangelists literally spent
years meeting thousands of people
and showing them “Hey, i’m going
to live code in front of you while
also making my employers fat
stacks of money. you run a com-
pany and could use both engineers
and money. you should probably
remember my name, you know, just
in case.” The Build Guy(s) suffers in
under-appreciated solitude, except
when maven bottoms out or Ruby-
Gems goes down and it is somehow
The Build Guy’s fault.

if you cannot gain exposure at
your day job, try to get some expo-
sure outside of it. network actively.
Go to local meetups of techni-
cal folks, but also go to the (often
separate) events where the business
side of your industry talks shops.
Speak at conferences. Take the
things you have created (see above)
and actively show them to people
to solicit feedback. you don’t have
to have an audience of thousands
for an audience to be worthwhile
— for landing a new job, having an
audience of one hiring manager is
a darn sight better than having no
audience at all. Blog and collect an
email list. it’s old and hackneyed
advice but it freaking works, par-
ticularly when you can compound
improvements over years.

Amy Hoy has a great meta-
phor for this: “stacking the bricks.”
[hn.my/bricks] Seen from the
outside, you might say “That person
with an impressive career? it’s like
they have a sheer wall made out of
awesome. i could not hope to ever
have a wall like that.” Seen from
the inside, it looks like one day of
delivering a single good conference
talk, a few weeks spent writing an
OSS library, another day writing
the definitive blog post on getting
multiple Ruby versions playing
together, a few months shipping a
product used by many people, an
hour recording a podcast. Brick by
brick, stone by stone, the wall gets
higher.

Prefer To Work On Things You
Can Keep
The employer/employee relation-
ship is generally “you give us an
hour and, in return, we give you
some consideration for that hour.”
As an employee, you very rarely get
to keep hours, bank them against
the future, or have them redound to
your benefit years later.

i’m not generally a fan of the Sili-
con valley model, but i’ll say this in
their defense: widespread employee
ownership of the enterprise is one
of the single best innovations in the
history of capitalism. non-manage-
rial employees own plus or minus
20% of Twitter, Facebook, etc.
They own plus or minus “rounding
error” of almost all other publicly
traded companies, with very rare
exceptions.

i think that’s an improvement
on the “no shared stake” model of
employment, but i don’t think it is
the last word in it. For one thing, it
over-concentrates employee wealth
with one company. As an employee,
your short-term cash flow

generation is tied to the continued
health of your employer. if a large
portion of your net worth is tied to
their stock, you’re magnifying the
impact of a secular or firm-specific
shock should one occur. (This is,
relatedly, why i’m not a fan of
buying the stock of an employer in
a company-sponsored dRiP or iRA.
you’ve got plenty of exposure to
their future already without buying
more of it with your own money.)

The explicit understanding
among professional investors is that
90% of all shares of early-stage start-
ups are worthless. it seems more
than a little self-serving for profes-
sional investors to tell employees
“While our general partners would
laugh us out of the room if we
suggested betting the entire fund
on a single investment, even if we
thought it was a sure thing, you are
going the be the lucky ones and you
should certainly have 99% of your
net worth tied up in the illiquid
shares of one particular company.”

So if not hard assets directly
awarded by employers, then what?

Well, obviously, sock away money
like every financial advisor ever will
tell you to. (Here’s everything you
need to know: buy broad market
index funds in your tax-advantaged
accounts. if that sounds too compli-
cated, get a vanguard target retire-
ment fund where the number most
closely matches the approximate
time you’ll retire.)

There’s another, harder option
with higher returns: the side proj-
ect. you can “buy” them with sweat
equity, one bead at a time. They
provide you with many benefits,
including the direct financial ben-
efits (if you sell things to people
for money, you get money, which
can be useful), the compounded
benefits of investing the financial

http://hn.my/bricks

 15

benefits (my first $2,000 from
Bingo Card Creator turned into
Chipotle stock at an average price
of $50 a share — don’t buy stocks,
buy index funds, but that decision
worked out pretty decently for me).

There’s also intangible — but
no less real — benefits to having
an artifact which is yours. This
is one reason why, while i love
OSS, i would suggest people not
immediately throw their OSS on
GitHub. That makes it very easy
for developers to consume your
code, but it does not make it easy
for you to show the impact of that
code to other people, particularly to
non-technical stakeholders. To the
extent that people’s lives are mean-
ingfully improved by your code,
the credit (and observable cita-
tions) often goes to GitHub rather
than going to you. if you’re going
to spend weeks or months of time
writing meaningful OSS libraries,
make a stand-alone web presence
for them.

Example: my A/Bingo was once
probably the best option for Rails
A/B testing, by dint of being the
only serious option for Rails A/B
testing. it is a little old in the tooth
now, but being The A/B Testing
Guy got me several consulting gigs.
The effort to make documenta-
tion, a quick start guide, a logo, and
a branded web presence beats the
heck out of having a junior engineer
at a potential client just git clone
my GitHub uRL and never have
my work exposed to a decision
maker there at all.

if you want to learn more about
the actual mechanics of build-
ing a side project, my blog covers
it in a lot of detail. For a much
briefer overview of it, i really
recommend Jason Cohen’s pre-
sentation at MicroConf 2013
[hn.my/microconf]. His formula is
“Predictable acquisition of recurring
revenue with an annual pre-pay
option with a product which solves
a demonstrable, enduring pain
point for a business.” That idea is
developed at the above link for an
hour, and a lot of the advice given
is specific and wildly actionable. i
highly recommend it.

Consumption Is Sometimes
Valuable, But Creation Moves
You Forward
i’ll close with my usual advice to
peers: reading this was valuable
(knock on wood). Watching Jason’s
video is valuable. Rolling up your
sleeves and actually shipping some-
thing is much, much more valuable.
if you take no other advice from
me ever, ship something. you’ll
learn more shipping a failure than
you’ll learn from reading about a
thousand successes. And you stand
an excellent chance of shipping a
success — people greatly overesti-
mate how difficult this is.

Just don’t end the week with
nothing. n

Patrick McKenzie is a small software
developer. He made Bingo Card Creator
and Appointment Reminder. He blogs
at kalzumeus.com/blog and teaches
people how to sell more software at
training.kalzumeus.com

Reprinted with permission of the original author.
First appeared in hn.my/week (kalzumeus.com)

Illustration by Joel Benjamin.

http://hn.my/microconf
http://kalzumeus.com/blog
http://training.kalzumeus.com
http://hn.my/week

16 PROGRAMMING

PROGRAMMING

By TOM MARTin

Having been writing predominantly Java and
Scala for the last 7 years, my C skills are
pretty rusty. in fact they’re practically non-

existent. Apart from the occasional hack i’ve not had
the occasion to write much C since university. There is
a widely held opinion that reading other people’s code
is an excellent way to learn, particularly if those people
are experts or if the codebase is held in high regard in
terms of its quality. i’ve decided to take a look at one
such codebase.

 Redis [redis.io] is an open source data structure
server written in AnSi C. “data structure server” is
another way of saying really, really neat key-value
store. not only can you store simple values like strings
against keys but also hashes (or maps, or dicts even),
lists, sets and sorted sets. We use Redis a lot at Top10
[top10.com], mostly for indexing hotels in (near) real
time depending on their availability and price for the
dates the user is searching on. i’ve also discovered that
it has a pretty easily understandable code base, even
for a C newbie like myself. The code is cleanly written,
relatively small (around 45,000 lines of code), mostly
single threaded, and with few dependencies. The
dependencies are all included with the source making
building it as simple as cloning the repo and typing
make.

i decided to dive straight in to the code by adding
a new command to Redis. Something simple that will
give me an idea of how Redis handles a command and
dispatches a response. A command rand that accepts
a single integer argument max and returns a random
integer between 0 and max (exclusively). not an ideal

use of a key value store but implementing it should
be instructive. i certainly won’t be submitting a pull
request!

Disclaimer — as mentioned before I’m by no means an
expert in C so take all the code and interpretation of
code here on those terms. Also I’m linking to the unstable
branch of Redis on github so the links may be just that —
unstable. You’ll probably get more out of this post if you
clone the Redis source yourself and follow along in your
favorite editor, particularly if you compile and run the
code changes found here.

The command table is found near the very top
of src/redis.c. it is an array of instances of the
redisCommand struct. redisCommand is defined in src/
redis.h but there’s a very handy block comment
explaining each of its fields above the declaration of
redisCommandTable. Here is the definition of the get
command:

{"get",getCommand,2,"r",0,NULL,1,1,1,0,0},

The first field “get” is the name of the command.
The second is a pointer to the function that imple-
ments the command (you can see the implementation
in t_string.c).

The third field is the command’s arity (number of
arguments it accepts). Specifying this means the com-
mand lookup and execution code can pre-validate a
request before passing control by calling the function
pointer. This reduces the error handling code neces-
sary in each of the command functions. The argument
count appears to include the name of the command

A Quick Look at the Redis
Source Code

http://redis.io
http://top10.com

 17

itself so the get command accepts two arguments: its
name and the name of the key whose value should be
fetched.

The fourth field, set to “r”, is specifying that the com-
mand is read only and doesn’t modify any keys’ value
or state. There are a whole bunch of one-letter flags
that you can specify in this string that are explained in
detail in the nearby block comment. The field follow-
ing this string should always be set to zero, and will be
computed later. it’s simply a bitmask representation of
the information implied by the string.

The sixth field is NULL because it is only necessary
when you need complex logic to tell Redis which argu-
ments of the command are actually keys. A key implies
a reference to a value stored in Redis as opposed to
simple value parameters such as our max argument.
This allows Redis to extract the values of the keys (and
check that they exist) before calling the command
implementation. if this field were used it would be a
pointer to a function that would return an integer array
of argument indexes (zunionInterGetKeys in db.c is
an example of this). in the case of the get command
though (and most other commands) this information
can be conveyed with the next 3 integer fields. There
is only one argument to getCommand and it is a key.
Therefore the first argument that is a key is at index
1, the last argument that is a key is at index 1, and the
step increment to find all the keys is; 1,1,1.

The last two fields of a redisCommand represent met-
rics about the command, are set by Redis and should
always be initialized to 0.

Let’s add our rand command to the bottom of the
table:

 {"rand",randCommand,2,"rRl",0,NULL,0,0,0,0,0}

 The command is called “rand”, randCommand is the
pointer to the implementation (not implemented
yet) and it takes 2 arguments (the name and max).
As for the flags — it’s read only (r), returns random,
non-deterministic output (R) and can be called while
Redis is still loading the database (l). There are no key
arguments.

The next step is to add the randCommand function
prototype to src/redis.h. A Redis command imple-
mentation takes one argument, a redisClient struct
that represents the command arguments but can also
be used to send the response to the actual client:

 void randCommand(redisClient *c);

 This prototype ought to be placed in src/redis.h
near the all the other command prototypes. Grepping
for this line:

/* Commands prototypes */

will help you find where.
Let’s add an empty implementation to src/redis.c:

void randCommand(redisClient *c) {
}

i added mine near to the infoCommand definition.
now let’s run make

 > make

and run the server we’ve built (hint: if you usually have
an instance of Redis running locally now would be a
good time to stop it):

 > src/redis-server

 And let’s run a Redis client in another terminal and
try out our command:

 > redis-cli

 First let’s try out the error handling:

 redis 127.0.0.1:6379> rand
(error) ERR wrong number of arguments for 'rand'
command

 Good to see the arity checking working. Let’s
specify an argument this time:

 redis 127.0.0.1:6379> rand 1

 … and Redis hangs. i suppose that should have been
expected given that we’re not responding with any-
thing from the randCommand function. Let’s ctrl-c the
server and get back to the source.

We want to respond with a number so i dug around
looking for an example of how to do that and found
the zcardCommand in src/t_zset.c. This command
uses addReplyLongLong to reply to the client with a
response that is a 64-bit integer (a long long). Let’s try
that:

void randCommand(redisClient *c) {
 addReplyLongLong(c,3);
}

18 PROGRAMMING

now when we make again and run the command:

redis 127.0.0.1:6379> rand 1
(integer) 3
 redis 127.0.0.1:6379> rand 2
(integer) 3
 redis 127.0.0.1:6379> rand 3
(integer) 3

 OK, so it’s not very random but it’s a start. Let’s
parse our max argument from the command now and
return a random value limited by max:

void randCommand(redisClient *c) {
 long max;

 if (getLongFromObjectOrReply(c,c-
>argv[1],&max,NULL) != REDIS_OK)
 return;

 addReplyLongLong(c,random() % max);
}

 Whilst Redis uses primitive types and C strings
throughout the codebase, it also has its own internal
object system for representing strings, longs and more
complex types in a more generic fashion. An example
of Redis’s use of these objects is the representation
of each command’s arguments. Each command argu-
ment is stored as a Redis object in the argv array on the
redisClient instance c. To get a Redis object as a long
i found an example in the getrangeCommand function
in src/t_string.c that uses the getLongFromObjectOr-
Reply function from src/object.c.

getLongFromObjectOrReply takes a redisClient
instance, checks that the object in its second parameter
is an object that represents a long, places the value of
that long at the pointer specified by its third parameter
and returns REDIS_OK. if the argument is not a long (or
overflows) it will return REDIS_ERR. The beauty of this
method is that if we receive REDIS_ERR we can just
return from our randCommand function as any necessary
error response will have already been sent to the client.
Let’s try out our command again:

redis 127.0.0.1:6379> rand 10
(integer) 9
redis 127.0.0.1:6379> rand notanumber
(error) ERR value is not an integer or out of
range
redis 127.0.0.1:6379> rand 10

(integer) 3
redis 127.0.0.1:6379> rand 10
(integer) 1
redis 127.0.0.1:6379> rand 100
(integer) 43
redis 127.0.0.1:6379> rand 100
(integer) 55
redis 127.0.0.1:6379> rand 100
(integer) 86

 Looks pretty good! rand is an entirely pointless
command but i learned quite a bit about Redis from
implementing it and i hope you did too by following
along. n

Tom is a developer from London. He mostly writes Scala code for
Space Ape Games. [spaceapegames.com]

Reprinted with permission of the original author.
First appeared in hn.my/redissource (heychinaski.com)

http://spaceapegames.com
http://hn.my/redissource

 19

After a few years with git everyone has their
own bag o’ tricks — a collection of bash
aliases, one liners and habits that make his

daily work easier.
i’ve gathered a handful of these with varying com-

plexity hoping that it can give a boost to you. i will
not cover git or vCS basics at all; i’m assuming you’re
already a git-addict.

So fire up your favorite text editor and bear with me.

Check which branches are merged
After a while if you branch a lot you’ll see your git
branch -a output is polluted like hell (if you haven’t
cleaned up). it’s all the more true if you’re in a team.
So, from time to time you’ll do the Big Spring Cleaning
only to find it hard to remember which branch you can
delete and which you shouldn’t. Well, just check out
your mainline branch (usually master) and:

$ git checkout master
$ git branch --merged

to see all the branches that have already been merged
to the current branch (master in this case).

you can do the opposite of course:

$ git branch --no-merged

How about deleting those obsolete branches right
away?

$ git branch --merged | xargs git branch -d

Alternative: use GitHub’s Pull request ui if you’ve
been a good sport and always used pull requests.

Find something in your entire git history
Sometimes you find yourself in the situation that
you’re looking for a specific line of code that you don’t
find with plain old grep — maybe someone deleted or
changed it with a commit. you remember some parts
of it but have no idea where and when you committed
it. Fortunately git has your back on this. Let’s fetch all
commits ever and then use git’s internal grep subcom-
mand to look for your string:

$ git rev-list --all | xargs git grep '<YOUR
REGEX>'
$ git rev-list --all | xargs git grep -F '<YOUR
STRING>' # if you don't want to use regex

Fetch a file from another branch without chang-
ing your current branch
Local cherry-picking. Gotta love it. imagine you’re
experimenting on your current branch and you sud-
denly realize you need a file from the oh-so-distant
branch. What do you do? yeah, you can stash, git
checkout, etc., but there’s an easier way to merge a
single file in your current branch from another:

$ git checkout <OTHER_BRANCH> -- path/to/file

By CSABA OKROnA

Git Tips From the Trenches

20 PROGRAMMING

See which branches had the latest commits
Could also be useful for a spring cleaning — checking
how “old” those yet unmerged branches are. Let’s find
out which branch hadn’t been committed to in the
last decade. Git has a nice subcommand, “for-each-ref”
which can print information for each ref (duh) — the
thing is that you can both customize the output format
and sort!

$ git for-each-ref --sort=-commit-
terdate --format='%(refname:short)
%(committerdate:short)'

it will output branches and tags, too.
This deserves an alias, don’t you think?

$ git config --global alias.spring-
cleaning "for-each-ref --sort=-com-
mitterdate --format='%(refname:short)
%(committerdate:short)'"

Making typos?
Git can autocorrect you.

$ git config --global help.autocorrect 1
$ git dffi
WARNING: You called a Git command named 'dffi',
which does not exist.
Continuing under the assumption that you meant
'diff' in 0.1 seconds automatically...

Autocomplete, anyone?
if you download this file [hn.my/gitcomplete] and
modify your .bash_profile by adding:

source ~/.git-completion.bash

Git will now autocomplete your partial command if
you press TAB. neat.

Hate remnant whitespace?
Let git strip it for you. use the mighty .gitattributes
file in the root of your project and say in it:

* filter=stripWhitespace

Or say you don’t want this for all files (*), only scala
sources:

*.scala filter=stripWhitespace

But the filter is not defined yet, so chop-chop:

$ git config filter.stripWhitespace.clean
strip_whitespace

(Actually there are two types of filters: clean and
smudge. Clean runs right before pushing, smudge is
run right after pulling)

We still have to define what strip_whitespace is, so
create a script on your PATH and of course make it
executable:

#!/usr/bin/env ruby
STDIN.readlines.each do |line|
 puts line.rstrip
end

you could also do this as a pre-commit hook, of
course.

Recovering lost data
The rule of thumb is that if you lost data but com-
mitted/pushed it somewhere, you’re probably able to
recover it. There are basically two ways:

reflog
Any change you make that affects a branch is recorded
in the reflog. See:

$ git log -g
commit be5de4244c1ef863e454e3fb7765c7e0559a6938
Reflog: HEAD@{0} (Csaba Okrona <xxx@xx.xx>)
Reflog message: checkout: moving from master to
master
Author: Robin Ward <xxx@xx.xx>
Date: Fri Nov 8 15:05:14 2013 -0500

 FIX: Pinned posts were not displaying at the
top of categories.

if you see your lost commit(s) there, just do a
simple:

$ git branch my_lost_data [SHA-1]

Where SHA-1 is the hash after the “commit” part.
now merge your lost data into your current branch:

$ git merge my_lost_data

http://hn.my/gitcomplete

 21

git-fsck

$ git fsck --full

This gives you all the objects that aren’t referenced
by any other object (orphans). you can fetch the
SHA-1 hash and do the same dance as above.

A nicer, one-line log
Get a color-coded, one-line-per-commit log showing
branches and tags:

$ git log --oneline --decorate
355459b Fix more typos in server locale
b95e74b Merge pull request #1627 from awesomero-
bot/master
40aa62f adding highlight & fade to linked topic
15c29fd (tag: v0.9.7.3, tag: latest-release)
Version bump to v0.9.7.3
c753a3c We shouldn't be matching on the `cre-
ated_at` field. Causes tests to randomly fail.
dbd2332 Public user profile page shows if the
user is suspended and why.

Highlight word changes in diff
Bored of the full-line highlights? This only highlights
the changed words, nicely inline. Try:

$ git diff --word-diff

A shorter, pro git status
Showing only the important things.

$ git status -sb
master...origin/master
?? _posts/2014-02-01-git-tips-the-trenches.md
?? images/git-beginner-share.png
?? images/git-beginner.jpg

Bored of setting up tracking branches by hand?
Make git do this by default:

$ git config --global push.default tracking

This sets up the link to the remote if it exists with
the same branch name when you push.

Pull with rebase, not merge
To avoid those nasty merge commits all around.

$ git pull --rebase

Or do it automatically for any branch you’d like:

$ git config branch.master.rebase true

Or for all branches:

$ git config --global branch.autosetuprebase
always

Find out which branch has a specific change

$ git branch --contains [SHA-1]

if you want to include remote tracking branches, add
“-a”.

Check which changes from a branch are already
upstream

$ git cherry -v master

Show the last commit with matching message

$ git show :/regex

Write notes for commits

$ git notes add

you can share them by pushing — for more see
hn.my/gitnotes

More cautious git blame
Before you play the blame game, make sure you check
you’re right with:

$ git blame -w # ignores white space
$ git blame -M # ignores moving text
$ git blame -C # ignores moving text into other
files n

Csaba loves building things and is always seeking new challenges
and smart people. This thriving led him to Prezi where he’s doing
backend and frontend web development. As a process freak he is
really keen on development methodologies and is a huge fan of
Kanban. Prior to joining Prezi, Csaba practiced full-stack develop-
ment and IT management as the CTO of Árukereső in Budapest.

Reprinted with permission of the original author.
First appeared in hn.my/trench (ochronus.com)

http://hn.my/gitnotes
http://hn.my/trench

22 PROGRAMMING

By PádRAiG BRAdy

i’ve written a few shell scripts [pixelbeat.org/
scripts] in my time and have read many more, and
i see the same issues cropping up again and again

(unfortunately even in my own scripts sometimes).
While there are lots of shell programming pitfalls,

at least the interpreter will tell you immediately about
them. The mistakes i describe below, generally mean
that your script will run fine now, but if the data
changes or you move your script to another system,
then you may have problems.

i think part of the reason shell scripts tend to have
lots of issues is that commonly one doesn’t learn shell
scripting like “traditional” programming languages.
instead, scripts tend to evolve from existing interac-
tive command line use, or are based on existing scripts
which themselves have propagated the limitations of
ancient shell script interpreters.

it’s definitely worth spending the relatively small
amount of time required to learn the shell script
language correctly, if one uses Linux/BSd/Mac OS X
desktops or servers, where it is commonly used.

Inappropriate use
Shell is the main domain specific language designed to
manipulate the uniX abstractions for data and logic,
i.e., files and processes. So in addition to being useful at
the command line, its use permeates any uniX system.
Correspondingly, please be wary of writing scripts that
deviate from these abstractions and have significant
data manipulation in the shell process itself. While flex-
ible, shell is not designed as a general purpose language
and becomes unwieldy when not leveraging the various

uniX tools effectively. A good knowledge of the vari-
ous uniX tools goes hand in hand with effective shell
programming.

Stylistic issues
First i’ll mention some ways to clean up shell scripts
without changing their functionality. note: i use
a shortcut form of the conditional operator below
(and in my shell scripts), when doing simple condi-
tional operations, as it’s much more concise. So i use
["$var" = "find"] && echo "found" instead of the
equivalent:

if ["$var" = "find"]; then
 echo "found"
fi

[x"$var" = x"find"] && echo found
The use of x"$var" was required in case var is "" or
“-hyphen”. Thinking about this for a moment should
indicate that the shell can handle both of these cases
unambiguously, and if it doesn’t, it’s a bug. This bug
was probably fixed about 20 years ago, so stop propa-
gating this nonsense, please! Shell doesn’t have the
cleanest syntax to start with, so polluting it with stuff
like this is horrible.

[! -z "$var"] && echo "var not empty"
This is a double negative, and is very prevalent in shell
scripts for some reason.

Just test the string directly like ["$var"] && echo
"var not empty"

Common Shell Script
Mistakes

http://pixelbeat.org/scripts
http://pixelbeat.org/scripts

 23

["$var"] || var="value"
Setting a variable if it’s not previously set is a common
idiom and can be more succinctly expressed as:

: ${var="value"}.

note: if you want to set a variable if it’s empty or
unset, use : ${var:="value"}.

These are portable to the vast majority of shells.

redundant use of $?
For example:

pidof program
if [$? = 1]; then
 echo "program not found"
fi

note: this is not just stylistic. Consider what happens
if “pidof” returns 2.

instead just test the exit status of the process directly
as in these examples:

if ! pidof program; then
 echo "program not found"
fi

if grep -qF "string" file; then
 echo 'file contains "string"'
fi

Needless shell logic
We’ll expand on this below, but we should do as little
in shell as possible, over its domain of connecting pro-
cess to files. For example the following common shell
idiom of testing for files and directories can often be
pushed into the programs themselves. instead of:

[! -d "$dir"] && mkdir "$dir"
[-f "$file"] && rm "$file"

do:

mkdir -p "$dir" #also creates a hierarchy for
you
rm -f "$file" #also never prompts

note also Google’s shell style guide , which as per
other Google style guides has very sensible advice.
[hn.my/shellstyle]

Robustness
Globbing
in the example below to count the lines in each file,
there is a common mistake.

for file in `ls *`; do
 wc -l $file
done

Perhaps the idiom above stems from a common
system where the shell does not do globbing, but in
any case it’s neither scalable nor robust. it’s not robust
because it doesn’t handle spaces in file names as word
splitting is done. Also it redundantly starts an ls process
to list the files. On some systems this form can over-
flow static command line buffers when there are many
files. Shell script is a language designed to operate on
files, so it has this functionality built in!

for file in *; do
 wc -l "$file"
done

notice how we just use the “*” directly, which
prevents the redundant “ls” process from starting and
doesn’t do word splitting on file names containing
spaces. This is still slow, since we use shell looping and
start a “wc” process per file, so we’ll come back to this
example in the performance section below.

Stopping automatically on error
Often don’t want a script to proceed if some com-
mands fail. But checking the status of each command
can become very messy and error-prone. instead,
execute set -e at the top of the script, which usually
just works as expected, terminating the script when
any command fails (that is not already part of a condi-
tional, etc.).

Cleaning up temp files
One should always try to avoid temp files for perfor-
mance/maintainability reasons, and instead use pipes if
at all possible to pass data between processes. Tempo-
rary files can be slow as they’re usually written to disk.
Plus, you must clean them up when your script exits,
possibly in unexpected ways. The general method for
cleaning up temp files if you really do need them is to
use traps as follows:

http://hn.my/shellstyle

24 PROGRAMMING

#!/bin/sh

tf=/tmp/tf.$$

cleanup() {
 rm -f $tf
}

trap "cleanup" EXIT

touch $tf
echo "$tf created"
sleep 10 #Can Ctrl-C and temp file will still be
removed
#temp file auto removed on exit

Echoing errors
if you just echo "Error occurred" then you will not
be able to pipe or redirect any normal output from
your script independently. it’s much more standard
and maintainable to output errors to stderr like echo
"Error occurred" >&2. note: you can echo multiple
lines together as in the following example:

echo "\
Usage: $(basename $0) option1
more info
even more" >&2

Portability
There are two aspects to portability for shell scripts.
There’s the shell language itself, and there are the vari-
ous tools being called by the script. We’ll just consider
the former here. To support really old implementa-
tions of shell script, one can test with the heirloom,
for example. But for a contemporary list of portable
shell capabilities, see the The Open Group spec, which
describes the POSiX standard. Check out the Autoconf
info on shell portability, which lists details you need to
consider when writing very portable shell scripts, and
the ubuntu dash conversion info.

it’s much better to test scripts directly in a POSiX
compliant shell if possible. The “bash --posix” option
doesn’t suffice, because it still accepts some “bash-
isms”. However, the “dash” shell, the default interpreter
of shell scripts on ubuntu, is very good in this regard.
One should be testing with this shell anyway due to
the popularity of ubuntu, and dash is easy to install on
Fedora.

Bashisms
“bash” is the most common interactive shell used on
uniX systems, and consequently, syntax specific to
“bash” is often used in shell scripts. i’ve never needed
to resort to bash-specific constructs in my scripts. if
you find yourself doing complex string manipulations
or loops in bash, then you should probably consider
existing uniX tools instead, or a more general script-
ing language like python.

["$var" == "find"] && echo "found"
Shell script can’t assign variable values in conditional
constructs, so the double equals is redundant. More-
over it gives a syntax error on older busybox (ash) and
dash at least, so avoid it.

echo {not,portable}
Brace expansion is not portable. it’s most useful at the
interactive prompt, and can easily be worked around in
scripts.

Signal specifications
Be wary when specifying signals to the trap builtin,
as mentioned above. i was even caught by this in my
timeout script. That script handles the “CHLd” signal,
which, for bash at least, can be specified as “sigchld”,
“SiGCHLd”, “chld”, “17” or “CHLd”, only the last of
which is portable.

echo $(seq 15) $((0x10))
The command above containing both $(command
substitution) and an $((arithmetic expression)) is por-
table. Traditionally one did command substitution using
backquotes like “seq 15”. That’s awkward to nest, how-
ever, and it’s not very readable in the presence of other
quoting. $((arithmetic expressions)) can also be handy
for quick calculations, rather than spawning off “bc” or
“expr”. Bash supports the non-portable form of $[1+1]
for arithmetic expressions, which you should avoid.

 25

echo --help
i’ve used echo in all the examples above for conve-
nience, but one should be wary about using it, espe-
cially if you pass variable parameters. “echo” implemen-
tations vary on how they handle escaped characters
and options, so one really should use “printf” instead, as
it has a more standard implementation across systems.

Performance
We’ll expand here on our globbing example to illus-
trate some performance characteristics of the shell
script interpreter. Comparing the “bash” and “dash”
interpreters for this example where a process is
spawned for each of 30,000 files, shows that dash can
fork the “wc” processes nearly twice as fast as “bash”.

$ time dash -c 'for i in *; do wc -l "$i">/dev/
null; done'
real 0m14.440s
user 0m3.753s
sys 0m10.329s

$ time bash -c 'for i in *; do wc -l "$i">/dev/
null; done'
real 0m24.251s
user 0m8.660s
sys 0m14.871s

Comparing the base looping speed by not invoking
the “wc” processes shows that dash’s looping is nearly 6
times faster!

$ time bash -c 'for i in *; do echo "$i">/dev/
null; done'
real 0m1.715s
user 0m1.459s
sys 0m0.252s

$ time dash -c 'for i in *; do echo "$i">/dev/
null; done'
real 0m0.375s
user 0m0.169s
sys 0m0.203s

The looping is still relatively slow in either shell as
demonstrated previously, so for scalability we should
use more functional techniques so iteration is per-
formed in compiled processes.

$ time find -type f -print0 | wc -l --files0-
from=- | tail -n1
 30000 total
real 0m0.299s
user 0m0.072s
sys 0m0.221s

The above script is by far the most efficient solu-
tion. it illustrates the point that one should do as
little aspossible in shell script and aim to use it just to
connect the existing logic available in the rich set of
utilities on a uniX system.

Disk seeks
it is worth giving special attention to this, since disk
seeks are so expensive, and since shell script is designed
to deal with files which commonly reside on disks. if
you check for the presence of 2 files with [-e FOO -o
-e BAR], then the check isn’t short circuited and 2
disk seeks are performed. The bash -format of [-e FOO
|| -e BAR] does short circuit the second test; how-
ever, it’s better to use the [-e FOO] || [-e BAR]
conditional format, which is both portable and efficient.
Traditionally this last example would have used 2 pro-
cesses, one for each of the “[”. But modern shells imple-
ment “[” internally, so there is no such overhead. n

Pádraig Brady is a long time open source contributor and is a
maintainer of the GNU coreutils project. He currently works for
Red Hat on the OpenStack project.

Reprinted with permission of the original author.
First appeared in hn.my/shellmistake (pixelbeat.org)

http://hn.my/shellmistake

26 PROGRAMMING

By HAdi HARiRi

In College
Teacher: We are surrounded by
objects in the real world. These can
be cars, houses, etc. That’s why it’s
very easy to associate real world
objects with classes in Object Ori-
ented Programming.

2 weeks later
Jake: i’m having a bit of hard time
with these objects. Can you give me
some guidance?

Teacher: Sure. There’s actually a
couple of more or less formal pro-
cesses to help you, but to sum it up,
look for nouns. And verbs are like
methods that can be performed on
the class. The behavior, so to speak.

Jake: Well, that seems reasonable.
Thanks!

Jake graduates.

Jake’s on the job
Phil: Hey, Jake. i’ve been looking
at this class of yours. it’s a little bit
too big.

Jake: Sorry. And what’s the issue
with that?

Phil: Well, the thing is, it’s got too
many responsibilities. it does too
much.

Jake: And?

Phil: Well, think about it. if it does
too much, it means that it touches
many parts of the system. So the
probability of having to touch the
class when changing code is higher,
which means more probability of
breaking things. Plus, 1000 lines of
code in a single class is harder to
understand than 30 lines.

Jake: yeah. Makes sense.

Phil: Break these up into smaller
classes. That way each class does
only one thing and one thing alone.

A year later
Mary: Jake, i’m just reviewing this
class of yours, there’s not much
behavior in it.

Jake: yeah, well, i wasn’t sure if
that behavior belonged in the Cus-
tomer class or to the Accounts class,
so i placed it in this other class
called CustomerService.

Mary: OK. Fair enough. But the
Customer class isn’t really a class
anymore. it’s more of a dTO.

Jake: dTO?

Mary: yes, a data Transfer Object.
it’s like a class but without
behavior.

Jake: So like a structure? A record?

Mary: yes. Kind of. So just make
sure your classes have behavior.
Otherwise, they’re not really classes.
They’re dTO’s.

Jake: OK.

2 years later
Mathew: Jake, looking at this class.
it’s tightly coupled to a specific
implementation.

Jake: Huh?

Mathew: Well, you’re creating an
instance of Repository inside the
Controller. How you going to test
it?

Jake: Hmm. Fire up a demo
database?

Refactoring to Functional
— Why Class?

 27

Mathew: no. What you need to do
is first off, program to an interface
not a class. That way you don’t
depend on a specific implementa-
tion. Then, you need to use depen-
dency injection to pass in a specific
implementation, so that when you
want to change the implementation
you can.

Jake: Makes sense.

Mathew: And in production, you
can use an ioC Container to wire
up all instances of the different
classes.

3 years later
Francis: Jake. you’re passing in too
many dependencies into this class.

Jake: yeah, but the ioC Container
handles that.

Francis: yes, i know. But just
because it does, it doesn’t make
it right. your class is still tightly
coupled to too many other classes
(even though the implementations
can vary). Try and keep it to 1 to 3
maximum.

Jake: OK. Makes sense. Thanks.

4 years later
Anna: Jake. This class, why did you
name it utils?

Jake: Well, i didn’t really know
where to place that stuff cause i
don’t know where it really belongs.

Anna: OK. it’s just that we already
have a class for that. it’s called
RandomStuff.

Over a beer…
Jake: you know, Pete, i’ve been
thinking. They teach us that we
need to think in terms of objects
and identify these with nouns
among other techniques. We then
need to make sure that we name
them correctly, that they’re small,
that they only have a single respon-
sibility and that they can’t have too
many dependencies injected into
them. And now they’re telling us
that we should try and not maintain
state because it’s bad for concur-
rency. i’m beginning to wonder,
why the hell have classes at all?

Pete: don’t be silly, Jake. Where
else are you going to put functions
if you don’t have classes?

Pete: Another beer?

until next time. n

Hadi Hariri is a Software Developer, cur-
rently working at JetBrains. His passions
include Web Development and Software
Architecture. He has written a few books
and have been speaking at conferences
for over a decade, on things he’s passion-
ate about.

Reprinted with permission of the original author.
First appeared in hn.my/whyclass (hadihariri.com)

http://hn.my/whyclass

28 PROGRAMMING

By JuLiA EvAnS

i once tried asking for advice
about how to get started with
kernel programming, and was

basically told:

1. if you don’t need to understand
the kernel for your work, why
would you try?

2. you should subscribe to the
Linux kernel mailing list
[lkml.org] and just try really
hard to understand.

3. if you’re not writing code that’s
meant to be in the main Linux
kernel, you’re wasting your time.

This was really, really, really not
helpful to me. So here are a few
possible strategies for learning
about how operating systems and
the Linux kernel work on your own
terms, while having fun. i still only
know a few things, but i know more
than i did before :)

For most of these paths, you’ll
need to understand some C, and
a bit of assembly (at least enough
to copy and paste). i had written
a few small C programs, and took
a course in assembly that i had
almost entirely forgotten.

Path 1: Write your own OS
This might seem to be a pretty
frightening path. But actually
it’s not! i started with rustboot
[hn.my/rustboot], which, crucially,
already worked and did things.
Then i could do simple things like
making the screen blue instead
of red, printing characters to the
screen, and move on to trying to get
keyboard interrupts to work.

MikeOS [hn.my/os] also looks
like another fun thing to start with.
Remember that your operating
system doesn’t have to be big and
professional — if you make it turn
the screen purple instead of red and
then maybe make it print a limer-
ick, you’ve already won.

you’ll definitely want to use an
emulator like qemu [qemu.org] to
run your OS in. The OSdev wiki
[wiki.osdev.org] is also a useful
place — they have FAQs for a lot of
the problems you’ll run into along
the way.

Path 2: Write some kernel
modules!
if you’re already running Linux,
writing a kernel module that
doesn’t do anything is pretty easy.

Here’s the source for a module
[hn.my/hello] that prints “Hello,
hacker school!” to the kernel log.
it’s 18 lines of code. Basically you
just register an init and a cleanup
function and you’re done. i don’t
really understand what the __init
And __exit macros do, but i can
use them!

Writing a kernel module that
does do something is harder. i
did this by deciding on a thing
to do (for example, print a mes-
sage for every packet that comes
through the kernel), and then
read some Kernel newbies
[kernelnewbies.org], googled a lot,
and copied and pasted a lot of code
to figure out how to do it. There
are a couple of examples of kernel
modules i wrote in this kernel-
module-fun repository. [github.com
/jvns/kernel-module-fun]

Paths to Being a
Kernel Hacker

http://lkml.org
http://hn.my/rustboot
http://hn.my/os
http://qemu.org
http://wiki.osdev.org
http://hn.my/hello
http://kernelnewbies.org
http://github.com/jvns/kernel-module-fun
http://github.com/jvns/kernel-module-fun

 29

Path 3: Do a Linux kernel internship!
The Linux kernel participates in the GnOME Out-
reach Program for Women. [hn.my/outreach] This is
amazing and fantastic and delightful. What it means
is that if you’re a woman and want to spend 3 months
working on the kernel, you can get involved in kernel
development without any prior experience, and get
paid a bit ($5000).

it’s worth applying if you’re at all interested — you
get to format a patch for the kernel, and it’s fun. Sarah
Sharp, a Linux kernel developer, coordinates this
program and she is pretty inspiring. you should read
her blog post about how 137 patches got accepted
into the kernel during the first round. [hn.my/137]
These patches could be yours! Look at the application
instructions! [kernelnewbies.org/OPWApply]

if you’re not a woman, Google Summer of Code is
similar.

Path 4: Read some kernel code
This sounds like terrible advice — “Want to understand
how the kernel works? Read the source, silly!”

But it’s actually kind of fun! you won’t understand
everything. i felt kind of dumb for not understanding
things, but then every single person i talked to was like
“yeah, it’s the Linux kernel, of course!”

My friend dave recently pointed me to LXR
[lxr.linux.no], where you can read the kernel source
and it provides lots of helpful cross-referencing links.
For example, if you wanted to understand the chmod
system call, you can go look at the chmod_common
definition in the Linux kernel! livegrep.com is also really
nice for this.

Here’s the source for chmod_common, with some com-
ments from me:

static int chmod_common(struct path *path,
umode_t mode)
{
 struct inode *inode = path->dentry->d_inode;
 struct iattr newattrs;
 int error;

 // No idea what this does
 error = mnt_want_write(path->mnt);
 if (error)
 return error;

 // Mutexes! Prevent race conditions! =D
 mutex_lock(&inode->i_mutex);

 // Check for permission to use chmod
 error = security_path_chmod(path, mode);
 if (error)
 goto out_unlock;
 // I guess this changes the mode!
 newattrs.ia_mode = (mode & S_IALLUGO) |
(inode->i_mode & ~S_IALLUGO);
 newattrs.ia_valid = ATTR_MODE | ATTR_CTIME;
error = notify_change(path->dentry, &newattrs);
out_unlock:
 mutex_unlock(&inode->i_mutex);
// We're done, so the mutex is over!
 mnt_drop_write(path->mnt); // ???
 return error;
}

i find this is a fun time and helps demystify the
kernel for me. Most of the code i read i find pretty
opaque, but some of it (like this chmod code) is a little
bit understandable. n

Julia Evans likes programming, playing with data, and finding
out why things that seem scary actually aren’t. It turns out that
the Linux kernel is a fun time!

Reprinted with permission of the original author.
First appeared in hn.my/kernelhacker (jvns.ca)

http://hn.my/outreach
http://hn.my/137
http://kernelnewbies.org/OPWApply
http://lxr.linux.no
http://livegrep.com
http://hn.my/kernelhacker

30 PROGRAMMING

By STEvE PEAR

Every new developer inevi-
tably finds that centering
a div isn’t as obvious as

you’d expect. Centering what’s
inside a div is easy enough by giving
the text-align property a value of
center, but then things tend to get a
bit sticky. When you get to center-
ing a div vertically, you can end up
in a world of CSS hurt.

The aim of this article is to show
how, with a few CSS tricks, any div
can be centered; horizontally, verti-
cally or both. And within the page
or a div.

Centering a div in a page, basic
This method works with just about
every browser, ever.

CSS
.center-div
{
 margin: 0 auto;
 width: 100px;
}

The value auto in the margin
property sets the left and right mar-
gins to the available space within
the page. The thing to remember
is your centered div must have a
width property.

Centering a div within a div,
old-school
This works with almost every
browser.

CSS
.outer-div
{
 padding: 30px;
}
.inner-div
{
 margin: 0 auto;
 width: 100px;
}

HTML
<div class="outer-div">
 <div class="inner-div">
 </div>
</div>

The margin auto trick strikes
again. The inner div must have a
width property.

Centering a div within a div with
inline-block
With this method the inner div
doesn’t require a set width. it works
with all reasonably modern brows-
ers, including iE 8.

CSS
.outer-div
{
 padding: 30px;
 text-align: center;
}
.inner-div
{
 display: inline-block;
 padding: 50px;
}

HTML
<div class="outer-div">
 <div class="inner-div">
 </div>
</div>

The text-align property only
works on inline elements. The
inline-block value displays the inner
div as an inline element as well as a
block, so the text-align property in
the outer div centers the inner div.

The Complete Guide to
Centering a Div

 31

Centering a div within a div,
horizontally and vertically
This uses the margin auto trick to
center a div both horizontally and
vertically. it works with all modern
browsers.

CSS
.outer-div
{
 padding: 30px;
}
.inner-div
{
 margin: auto;
 width: 100px;
 height: 100px;
}

HTML
<div class="outer-div">
 <div class="inner-div">
 </div>
</div>

 The inner div must have a width
and height property. This doesn’t
work if the outer div has a fixed
height.

Centering a div at the bottom of
a page
This uses margin auto and an
absolute-positioned outer div. it
works with all modern browsers.

CSS
.outer-div
{
 position: absolute;
 bottom: 70px;
 width: 100%;
}
.inner-div
{
 margin: 0 auto;
 width: 100px;
 height: 100px;
 background-color: #ccc;
}

HTML
<div class="outer-div">
 <div class="inner-div">
 </div>
</div>

The inner div must have a width
property. The gap from the very
bottom of the page is set in the
outer div’s bottom property.

Centering a div in a page, hori-
zontally and vertically
This uses margin auto again and
an absolute-positioned outer div. it
works with all modern browsers.

CSS
.center-div
{
 position: absolute;
 margin: auto;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 width: 100px;
 height: 100px;
 background-color: #ccc;
}

The div must have a width and
height property. n

Steve Pear is the proprietor and lead devel-
oper at Tipue, a small web development
studio based in North London.

Reprinted with permission of the original author.
First appeared in hn.my/centerdiv (tipue.com)

http://hn.my/centerdiv

32 SPECIAL

SPECIAL

By JAMES LOnG

i’ve been searching for the
perfect desk for the past few
years. it took a while to even

figure out what that is. i tried a few
standing setups, but found that i’d
rather “opt in” to standing and only
do it a few hours a day at most. My
desk needed to be sturdy, beautiful,
and just the right size.

The stingy and stubborn side of
me kicked in whenever i shopped
around. The desks that came close
to what i wanted were over $400.
Eventually, i decided to just build
my own. The problem was that i
had no idea how to build it. This is
a story about tackling the unknown
and persisting until it’s done.

That was almost two years ago,
and as of this summer, i finally
finished my desk. it’s exactly what i
want and much cheaper too.

 Although i started playing
around two years ago, the above
desk took just 2 months to make
with about one night a week.
The wood cost about $150, and i
spent about the same on tools but
i am already using them on other
projects. Sure, you could go out and
spend $75 dollars on something
that mostly works, but i wanted
a desk that i’ll have for years and
years and also looks beautiful.

it’s 5' long, 25" deep, and 32"
tall. it came out a little taller than
expected because i put feet screws
in the bottom of the legs so that i
could make the table even. Those
screws added almost an inch. i just
have to raise my chair a little bit
though.

My innovation was a ledge in the
back to hold all of your cords. note
in the above picture that there is
only a single cord behind the desk:
the power strip. Everything else is
hidden.

 you can do this too, with a little
patience. i knew nothing about
woodworking when i started. i wish
i could write a full tutorial, but i
don’t have time. Here are a few
tips:

 n Oak is a good hard wood for
desks. Get the lumber yard to
plane the boards for you, trust
me. it’s extremely important that
all edges are completely flat and
edges are 90°.

The Story of My Desk

The final product

 33

 n it was surprisingly hard to find untreated 4x4s for
the legs (i thought Lowes and such places had
untreated, but they don’t). Even at the specialty
lumber yard, i could only find cedar, so my desk legs
are cedar. Turns out cedar is really light though, so
that’s nice!

 n you’ll need lots of clamps. Pipe clamps are best for
joining long boards together, like the desk top.

 n i used dowels to strengthen joints, but i think it was
more work than necessary. dowel holes need to
100% aligned, so i had to use a doweling jig and it
was just annoying. For the desk top, you can prob-
ably just use wood glue and join them (sounds crazy,

All the cords sit hidden on this ledge, making the desk look
nice and clean

My first prototype wooden desk. Learned how to glue boards
together and drill dowel holes. Without aprons, it wobbled.

but the glue really is most of the join strength). For
the base, you need something, and the cheapest and
easiest is probably the Kreg jig. i resisted it because
it’s a newer thing and i wanted to see how the old
ways worked. now i know.

 n At first i thought i could make a desk top and just
put 4 legs on it. you can’t. you need “aprons” to
make the desk really sturdy. These are just long oak
boards that connect the 4x4 legs together, establish-
ing the base. The top sits on top and is connected
to the aprons with Rockler table top fasteners (you
need to cut a shallow ridge on the inside of the
aprons).

 n Stains and finishes are complicated. i used a General
Finish stain and Waterlox as a sealer. 2 coats of stain
and 4 coats of Waterlox (it’s a tung oil so it needs
several).

 n i also made a major mistake by staining the desk
when it was hot and humid outside, and became
gummy and was hard to wipe. it also took forever for
the Waterlox oil to dry (about a week).

youTube and Google are your friends. i did extensive
research for each step of the process. There are some
great youTube videos that show how experienced
woodworkers achieve results. The Patrick Hosey Work-
shop: Farmhouse Table was one of my favorite videos
which doesn’t explain much but shows a lot of details.

34 SPECIAL

My boards weren’t planed, and there’s no replacement for a
joiner and planer. A friend has a local shop and helped me get
them planed and straight.

The boards were connected with dowels (using a doweling
jig to drill the holes) and a bunch of wood glue, and clamped
with pipe clamps.

Joining the two end pieces. you can see the dowel holes.

The two end pieces joined. The pipe clamps are bending but
i fixed that after i took the picture.

Ridges cut into the aprons for the table top fasteners. i used a
circular saw so it was difficult.

 35

i actually built 2 tables
before this. i built the first one
2 years ago and it was just a
butcherblock top with a steel
base i constructed by drilling
holes and bolting it together.
it was horribly wobbly. Last
winter i finally committed to
building a wooden desk.

 i built a desk out
of cheap wood as a
prototype to learn
the basics. Finally,
i mustered up the
courage to buy nice
wood and cut into it.
The rest of the story
is told in the pic-

tures. it’s been a great process
to start from scratch, and force
myself to learn something new.
For me, it’s a reminder that
you can achieve something if
you persist. it’s too easy to give
up with the excuse “i don’t
know how to do this,” but you
can learn.

i used dowels and wood glue to join the aprons
with the legs

The final base. The left apron is on the inside
because it will have a ledge to hold all the cords
in the back.

First coat of stain. The color is red mahogany. i can’t believe i did this
when it was humid outside, as it became kind of gummy.

Second coat of stain.
i used a milder brown
color for this coat.

36 SPECIAL

The final color (before finishing). it’s slightly splotchy
because i did this when it was humid.

The final top, after a few coats of Waterlox finish.

The final base, stained and finished the same as the top.

The back ledge will hold all the cords and other untidy stuff
out of sight.

The desk in action.

James Long works for Mozilla as an apps engineer, helping
develop the web as a platform. He loves diving into complicated
problems and figuring out solutions, whether it’s programming,
design, or making the best espresso. He also likes teaching
people to code.

Reprinted with permission of the original author.
First appeared in hn.my/deskstory (jlongster.com)

http://hn.my/deskstory

 37

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

38 SPECIAL

By LEO BABAuTA

How I Learned to Stop
Procrastinating, & Love Letting Go

The end of procrastination
is the art of letting go.

i’ve been a lifelong
procrastinator, at least until recent
years. i would put things off until
deadline, because i knew i could
come through. i came through on
tests after cramming last minute,
i turned articles in at the deadline
after waiting until the last hour, i
got things done.

until i didn’t. it turns out
procrastinating caused me to miss
deadlines, over and over. it stressed
me out. My work was less-than-
desirable when i did it last minute.
Slowly, i started to realize that pro-
crastination wasn’t doing me any
favors. in fact, it was causing me a
lot of grief.

But i couldn’t quit. i tried a lot of
things. i tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things done. All are great methods,
but they only last so long. nothing
really worked over the long term.

That’s because i wasn’t getting to
the root problem.

i hadn’t figured out the skill
that would save me from the
procrastination.

until i learned about letting go.
Letting go first came to me when

i was quitting smoking. i had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then i learned i needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
i’m not saying i can never do these
things again once i let go of these
needs, but i let go of the idea that
they’re really necessary. i let go of
an unhealthy attachment to them.

Then i learned that distrac-
tions and the false need to check
my email and news and other
things online were causing me
problems. They were causing my
procrastination.

So i learned to let go of those too.
Here’s the process i used to let go

of the distractions and false needs
that cause procrastination:

➊ i paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ i thought about the person
i want to be, the life i want

to live. i set my intentions to do the
good work i think i should do.

➌ i watched my urges to check
things, to go to the comfort

of distractions. i saw that i wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ i realized i didn’t need
that comfort. i could be in

discomfort and nothing bad would
happen. in fact, the best things
happen when i’m in discomfort.

And then i smile, and breathe,
and let go.

And one step at a time, become
the person i want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Reprinted with permission of the original author.
First appeared in hn.my/letgo (zenhabits.net)

“People have a hard time letting go
of their suffering. Out of a fear of the
unknown, they prefer suffering that
is familiar. — Thich Nhat Hanh”

http://hn.my/letgo

 39

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

40 SPECIAL

and help change the future of search

http://duckduckhack.com

	FEATURES
	The Economics of Star Trek
	Don't End The Week With Nothing

	PROGRAMMING
	A Quick Look at the Redis Source Code
	Git Tips From the Trenches
	Common Shell Script Mistakes
	Refactoring to Functional–Why Class?
	Paths to Being a Kernel Hacker
	The Complete Guide to Centering a Div

	SPECIAL
	The Story of My Desk
	How I Learned to Stop Procrastinating, & Love Letting Go
	By Leo Babauta

