
Issue 48  May 2014

What I Learned Coding
X-Wing vs. TIE Fighter Peter Lincroft

2  ﻿

Curator
Lim Cheng Soon

Contributors
Fejes Jozsef
Peter Lincroft
Steli Efti
Bobby Grace
Michael Bromley
Alvaro Castro-Castilla
James Greig

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Thong Le

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Thong Le [weaponix.net]

Issue 48 May 2014

What I Learned Coding
X-Wing vs. TIE Fighter Peter Lincroft

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://weaponix.net

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-48

Contents
FEATURES

04  All RGB Colors In One Image
By Fejes Jozsef

10  What I Learned Coding X-Wing
vs. TIE Fighter
By Peter Lincroft

STARTUPS

18  Startup Sales Negotiations 101
By Steli Efti

PROGRAMMING

20  How We Made Trello Boards Load Extremely Fast In A Week
By Bobby Grace

24  Confessions of an Intermediate Programmer
By Michael Bromley

28  The Best Programming Language
By Álvaro Castro-Castilla

SPECIAL

38  I Never Finished Anything
By James Greig

Illustration by Thong Le [weaponix.net]

http://hackermonthly.com/issue-48
http://weaponix.net

FEATURES

By Fejes Jozsef

All RGB Colors
In One Image

  5

I recently started visiting the
programming puzzles SE site.
[codegolf.stackexchange.com]

To a geek like me, it’s a little para-
dise: many interesting challenges,
many interesting solutions, many
like-minded people. Two days ago,
there was one particular challenge:
make a program to create an image
that contains all RGB colors exactly
once (and of course the best look-
ing one wins). A very long time
ago I made a small screen saver in
assembly which grew a colorful
coral (I may post that one day, too).
I thought something similar would
work here and maybe I’ll even get
some votes. You can see the very
first image right here. The results
completely blew my mind, they
were absolutely stunning, and of
course it was a big success. Then I
thought, let’s make a huge image,
maybe even a YouTube video from
this. But it wasn’t easy because it’s a
brutally exponential problem. Two
days of non-stop coding and mini-
mum sleeping later, here it is!

Of the four most widespread
image formats, the images have
to be in PNG format, because it
supports lossless compression and
all RGB colors. GIF doesn’t work
because it only supports at most
256 colors. JPEG doesn’t work
because it uses a lossy compression,
so some colors are slightly altered.
We need to have 100% accuracy to
represent all these different colors.
BMP’s would be fine but they don’t
do any (decent) compression. So
all the images you see below are
PNG’s, the original, raw files, which
were produced by my program.
Feel free to count the colors in
them.

The first images: 15 bits
Let’s start with some of the first
images I made. These contain 15-bit
RGB colors, with a resolution
of 256×128 (about 32 thousand
pixels). (Note: when the number
of pixels in an image is a power
of 2, then the dimensions of the
image must also be powers of 2,
but my size choices are not the only
ones possible.) Little tweaks in the
algorithm lead to somewhat or very
different images. There are endless
possibilities which I’m sure some
other people will find themselves if
they try it. These are just a very few
samples.

A bit bigger: 18 bits
All 18 bit RGB colors fit on a
512×512 image (about 260 thou-
sand pixels). It took tens of minutes
to render them with the very first
version of my program, now it only
takes a few seconds. The last three
images are used in the YouTube
video.

http://codegolf.stackexchange.com

6  FEATURES

Let’s go to YouTube: 21 bits
Next up: 21 bits, that’s 2048×1024 (about 2 million pixels). I seri-
ously had to work on those. Even with all the optimizations I could
think of (yet!), some of these took up to 8 hours to render. Let me
show you four different ones, each in an intermediate state and in
the final state.

Here’s the most basic
one. The colors are very
random. It just grows
circularly. Looks like a
flower, or staring into
infinity, or whatever.

  7

This is actually my favorite.
It differs from the previous
one because the colors are
not entirely random, they are
sorted by hue. The phrases
that come to my mind are
rainbow smoke and spilled
ink. This is the best one to
see in motion.

8  FEATURES

When you look at the end result, this one looks very much like the first one, only a little bit
blurred. What’s very different is how it grows. It uses a different algorithm that makes it look
like a coral. The best is when it is 90-95% finished, as shown here.

  9

My best idea about this topic was
to create a YouTube video of how
each of the above four pictures are
created inside the program. I never
created many interesting videos
before, but I knew that this is going
to be a hit. Sadly the images had
to be cropped (2048->1920) and
I added little black bars on the top
and bottom (1024->1080), and
of course the video compression
alters the colors slightly (and in the
case of YouTube, it also introduced
some really ugly artifacts). So this
is not technically all-RGB imagery
anymore, but it’s not the point. The
point is that this video looks spec-
tacular! I also wrote a lot of source
code to render the video frames,
then I used FFMpeg to put it all
together. Finally I chose a music
from YouTube’s free audio library.
Enough talking, watch the video
now, and be sure to watch it in HD!
[hn.my/rgbvideo]

The holy grail: 24 bits
Nowadays, most consumer grade
equipment’s and software’s limit is
to display 24 bit colors. So naturally
this was my final goal as well. It fits
on an image with 4096×4096 reso-
lution (about 16 million pixels).

The optimizations in my soft-
ware were not finished, but I was
too tired and wanted to produce

results with what I had, so I ran the
renders on a server at my company
with CPU time to spare (thank you
ArgonSoft). It all took about 50
hours. It would have taken 500 or
5000 hours with a previous version,
and maybe it would have taken
only 5 hours or 0.5 hours if I had
more time, but it doesn’t matter
now. The images are ready, so let
me present you the results. n

Fejes is an enterprise software developer
while at work, and a geek otherwise. He
believes that coding is an artform, even
without a physical manifestation like these
colorful images.

 And finally, a blend between the second and third: ordered by hue, growing like a coral. When you look at the
intermediate one, be sure that it’s shown 1:1 and not resized because that looks bad. The end result is just weird.

Reprinted with permission of the original author.
First appeared in hn.my/rgb (joco.name)

Source code of the program can be found here:
hn.my/rgbgen

Read the follow-up post here: hn.my/rgb2

Check out the “Rainbow Smoke” gallery site:
rainbowsmoke.hu

http://hn.my/rgbvideo
http://hn.my/rgb
http://hn.my/rgbgen
http://hn.my/rgb2

10  FEATURES

What I Learned Coding
X-Wing vs. TIE Fighter

By Peter Lincroft

Illustration: Thong Le [weaponix.net]

http://weaponix.net

  11

When we started the
X-Wing vs. TIE
Fighter project, our

goal was to create the first multi-
player space combat simulator to
be playable over the Internet. There
were several major problems that
we had to be overcome to accom-
plish this goal, not the least of
which was the Internet itself. I will
review the problems we faced, the
approach we took, and the results
we achieved. I hope the lessons I
learned will prove to be valuable to
those who read this paper.

The Problems We Knew About
X-Wing vs. TIE Fighter is the third
game in the Star Wars space combat
simulator series. The Internet was
definitely not one of the things that
we were thinking about when we
created the engine for the original
X-Wing game. This was the first
problem we faced. Adding Internet
capability to an existing engine is
significantly more difficult when
the engine was not designed with
the Internet in mind.

Our second problem was the
complexity of the game design.
We had always felt that one of the
strongest features of our engine was
its ability to simulate fairly com-
plex missions. We were proud to
have fairly large numbers of craft
in each mission, which had reason-
ably complex behaviors. Our goal in
creating X-Wing vs. TIE Fighter was
to create a multi-payer game that
had this same level of complexity.
We wanted to give gamers a multi-
player experience that was more
complex than “deathmatch.” This
requirement dramatically increases
the amount of data that the players
need to have in order to play the
game.

Third on our list of problems was
that we would not have a dedicated
server available; we would have to
use a peer-to-peer network model.
The expense of providing servers
with sufficient processing power
and bandwidth for our expected
audience size was considered unrea-
sonably high. And because of the
nature of the license we were work-
ing with, allowing gamers to set up
their own servers was not a viable
alternative. A peer-to-peer system
avoids the problem, but it poses
a significantly more challenging
engineering problem, because each
player must communicate with sev-
eral other players, instead of with a
single server. Because the Internet
does not have a viable multi-casting
capability, sending the same mes-
sage to three destinations requires
three times as much bandwidth as
sending it to a single destination.

The fourth problem, of course,
was the Internet itself. When we
started the project we assumed that
we would need to handle latency
that varied from 200ms to a full
second. We also knew that we
would be limited to the bandwidth
available from a 28K modem. These
two constraints were our primary
focus when we designed our net-
work model, but they would turn
out to be among the easiest prob-
lems to solve.

The Approach
Given this set of problems, we
designed a network model that we
hoped would address all of these
issues in a satisfactory way. The first
decision we made was the biggest,
and would be the source of most of
our headaches later on. We decided
that we did not want the network
model to restrict the complexity
of the missions, and we knew that

there was no way to compress all
of the data relevant to each player
into the available bandwidth. We
thought of three possible solutions
to the problem. The first alternative,
and one we knew was being used
successfully by other games, was
to send only the most “important”
data, and allow the rest of the data
to be filled in by some form of pre-
diction. The second alternative was
to only provide the data necessary
to accurately display the world. The
third alternative was to send only
the actions taken by each player,
and simulate the consequences of
those actions on each machine.

The first alternative requires the
ability to quickly determine which
data is “important,” and which data
is not. In our previous games, play-
ers were given a lot of capability to
find out what was going on in the
game. We even had a real-time map
that allowed the player to view all
of the craft in the mission simul-
taneously. In addition, the player
could use the “targeting computer”
to instantly find out the current
status of any craft in the world. If
we took the “relevance” approach
to the problem, we would have to
modify or remove these features.

The second alternative sounded
like a good possibility. The typi-
cal view from the player cockpit
would normally only display a few
objects, and if the player could see
many objects, the player would be
far away and the view would not
necessarily need to be completely
accurate. The problem was that
the player was in open space, flying
a very maneuverable craft. They
could complete a 360-degree turn
very quickly, and in that time they
would likely see almost all of the
objects in the game. We knew this
approach had been successful in

Illustration: Thong Le [weaponix.net]

http://weaponix.net

12  FEATURES

games with interior environments,
but our game could not use walls to
divide the world into manageable
chunks. We considered the pos-
sibility of introducing a “fog” which
would restrict the player’s view to
only those objects within a certain
distance, but let’s face it - that’s just
a bad idea.

 The third alternative was imme-
diately attractive to us. The band-
width required to send only the
player’s actions would be constant
regardless of the complexity of
the mission. We had used a simi-
lar technique in the past to allow
players to make “recordings” of a
game that could be played back
in a “VCR” room, so we knew the
engine was compatible with the
concept. We decided to do a quick
test of this approach, and we got
our first multi-player mission work-
ing in a matter of days.

Hosting the Game
The second major decision we
made was to have one player act as
the “host” for the game. Our deci-
sion to send the player’s input only
meant that in a true peer-to-peer
system, each player would have to
send their messages to every other
player. Since there is no broadcast
or multicast capability over the
Internet, this decision meant that
every message would have to be
duplicated and sent N-1 times,
where N is the number of players in
the game. This means that the 28K
bandwidth available to the player
is really divided by the number of
players in the game.

If one player acts as the “host”
of the game, we can significantly
reduce the burden on the other
players, while only slightly increas-
ing the burden on the player that
is the host. Each player sends data

to the host, who compiles all the
data into one large packet, and then
sends a copy to each “client.” The
advantage of this approach is that
if the “host” has a faster connec-
tion, that person can support a
game containing several low-speed
players. This did eventually pay off
when the game was released, as
players with fast connections were
able to host eight-player games
with the other seven players all
playing over modem connections.

 The other major advantage of
having one player act as the “host” is
that we do not have to worry about
synchronizing the data on every
player’s machine with every other
machine. Instead, we can focus on
every player being synchronized
with the game data on the “host”
machine. We expected that this
would make “late join” easier to
implement, but unfortunately that
feature never made it into the
game.

Despite the ease with which
we got our test case working, we
did not think our job was going to
be easy. We knew this approach
would have its own problems. The
problem we anticipated with the
most anxiety was the one we had
seen many times before in our
“VCR” feature. When playing back
a recording of the player’s input,
the game would sometimes pro-
duce results that were completely
different from the original flight.
In the past, bugs in the code that
were otherwise harmless inevitably
caused these “divergence” problems.
For example, we might use a local
variable as a Boolean flag to decide
between two possible actions for
a non-player craft. If the variable
were accidentally used before
being set, the decisions would be
random depending on the value of

the variable’s location on the stack.
This type of bug was usually not
noticeable, except when playing
back a film. But when playing back
a film, the bug could cause a craft
to take a different action from the
action it had taken when the film
was recorded. This difference would
quickly “ripple” through the rest of
the game world, as craft that were
dependent on the actions of that
craft made different decisions as
well.

If this kind of thing happened
during a multi-player game, the
players would quickly be experienc-
ing two completely different simu-
lations. We hoped to deal with this
“out of sync” problem in two ways.
First, we hoped that we would be
able to find most of these bugs, and
thereby avoid the problem occur-
ring in the first place. Second, we
devised a mechanism for detecting
when the problem occurred, and
“re-syncing” the game by sending
the data that had diverged.

The big advantage of this
approach was the low bandwidth
requirements. We still had to deal
with the issue of latency. After
some quick tests we realized that
even 100ms of latency made our
controls unusable. It was incred-
ibly frustrating to try to hit a target
when there was a delay between
when you pressed the trigger and
when your weapons fired. Rather
than change the controls and the
way the game played to compen-
sate for the problem, we decided to
devise a system in which the player
would experience nearly zero
latency between their actions and
the response of their craft. The key
to making this work was to use a
technique similar to what is some-
times called “dead reckoning”.

  13

Our solution was to maintain two
simultaneous copies of the game’s
data. The first copy of the world
was based exclusively on the actual
actions taken by each player, and
was not updated until that infor-
mation was available. The second
copy always represented the state
of the game at the current time, and
was the version we would render
each frame. This second copy
of the game data wasn’t able to
account for the actions of the play-
ers because the information about
those actions was delayed by the
latency of the Internet. Instead, this
copy of the game data was based on
a prediction of what those players’
actions were likely to be. The higher
the latency of the connection, the
longer the gap of time between the
two copies, and the more inaccurate
the predicted version became.

Our approach seemed to solve
the two Internet problems we had
heard the most about: bandwidth
and latency. Bandwidth was kept to
a bare minimum by only sending
data about each player’s actions.
Latency would cause some inac-
curacy in the world (what we called
“warping”), but would not affect
the player’s flight controls. We were
pretty pleased with ourselves, and
thought we must be very clever.

 Implementing the Design
Our first step was to implement
the network model and test it on
our LAN. This process went pretty
smoothly. Our first implementa-
tion was a simple “synchronous”
version, in which all the players
would wait until all of the input
from a frame was received before
processing the simulation. This first

pass used very little bandwidth, but
would not work at all with signifi-
cant amounts of latency. It also had
the significant drawback that if one
player had a slow frame rate, all
the other players would be slowed
down to match the slowest player’s
frame rate. This was why we called
it “synchronous”: all of the players
were “synchronized” to the slowest
frame rate.

This version was fairly easy to
code because we did not implement
the “predicted” copy of the world,
and we did not even try to address
the issue of latency. Also, we used
DirectPlay, so we have very little
work to do to create a game session
and get the players joined into it.
We got this version up and running
quickly so that our mission design-
ers could begin working on multi-
player missions. We actually used

Illustration: Nige [unusualsuspex.deviantart.com]

14  FEATURES

the “synchronous” version for quite
a while. It was good enough to test
with, so finishing the network code
was considered a lower priority
than the other issues we needed
to address at that stage of devel-
opment. When we finally came
back to the network code we were
behind schedule, and that affected
some of the decisions we made later
in the process. And it meant we
were absolutely committed to the
complexity of the missions and the
user interface.

One big benefit of having imple-
mented this first version early was
that we were able to develop some
pretty effective techniques for
finding “out-of-sync” bugs. Thanks
to those techniques and the long
period of testing, we actually
found most of those bugs. We were
also able to work on the “re-sync”
mechanism, and we found that on
the LAN, we could re-sync a game
so quickly that you hardly even
noticed when an “out-of-sync” bug
had occurred.

When we came back to the net-
work code, we knew the first task
was to create a second copy of the
world that would be based on the
first copy. Unfortunately, our game
engine was not coded with this
concept in mind, and this turned
out to be much more difficult than
it should have been. However, once
we had the code working, we added
some artificial latency to our LAN
and tested it out. It worked great!

We now had a version of the
game that worked great on the
LAN. It used very little bandwidth,
and it tolerated 500ms of latency
so well you hardly even noticed it.
Brimming with confidence, we set
up a couple of systems to test it
over the Internet. And it worked!
We wouldn’t realize our mistake

until weeks later when we finally
did some real testing.

Lessons Learned (The Internet
Sucks)
First lesson: If all players dial into
the same phone number, you are
not testing the Internet. You are
testing the modems and the POP
server, but you are not testing the
Internet. It’s obvious when you
think about it. Your packets go over
the modem to the POP server, and
it sends them right back out to the
other player. The packets never get
past the POP server.

When we finally tried our game
on some real network connections, it
would fail within seconds. We were
mystified. It worked great on the
LAN, even with 500ms of artificial
latency. When we ran some diag-
nostics we discovered that we were
seeing some simply unbelievable
latencies. 5 and 10 seconds was fre-
quent, and we saw some as long as
50 seconds! Our game would simply
fall apart under those conditions.

What was actually happening was
that a packet would get lost. The
TCP protocol specifies that pack-
ets will always be delivered, and
furthermore, that they will always
be delivered in order. TCP uses a
system of acknowledgements to
verify that packets are successfully
delivered, and will re-send packets
if they are lost in transmission. The
“in order” specification means that
if a packet must be re-sent, the
packets that follow it are delayed
until the lost packet is received. The
problem is that when an Internet
connection starts dropping packets,
it becomes very likely that the re-
sent packet will also get dropped.
This means it can take several
seconds for a packet to arrive at its
destination.

Lesson two: TCP is evil. Don’t
use TCP for a game. You would
rather spend the rest of your life
watching Titanic over and over in
a theater full of 13 year old girls.
First of all, TCP refuses to deliver
any of the other packets in the
stream while it waits for the next
“in order” packet. This is why we
would see latencies in the 5-second
range. Second of all, if a packet is
having a tough time getting to its
destination, TCP will actually stop
re-sending it! The theory is that if
packets are being dropped that it’s
due to congestion. Therefore, it is
worthless to try re-sending because
that will only make the congestion
worse. So TCP will actually stop
sending packets, and start sending
occasional little test packets. When
the test packets start to get through
reliably, TCP will gradually start
sending real packets again. This
“slow re-start” algorithm explains
why we would see latencies in the
50-second range.

Lesson three: Use UDP. The
solution to this evil protocol seems
simple at first. Don’t use TCP, use
UDP instead. Unlike TCP, UDP
is an unreliable protocol. It does
nothing to guarantee that a packet
is delivered, and it does nothing to
guarantee that a packet is delivered
in order. In other words, it does
nothing. So if you really need a
packet to be delivered, you need to
handle the re-sending and acknowl-
edgements. There is one other
extremely annoying thing about
UDP. Modem connections are made
using a protocol called PPP. When
you end TCP packets over a PPP
connection, it does some very clever
compression of the Internet header
data, reducing it from 22 bytes to
3 bytes (or less). When you send
UDP packets over a PPP connection

  15

it does not perform this clever
compression and sends the entire
22-byte header over the modem. So
if you are using UDP, you shouldn’t
send small packets.

Of course, our network system
absolutely requires that every
packet be delivered. If TCP actually
worked, this would not be a prob-
lem. But TCP is hopelessly broken,
so we had to write our own proto-
col to handle acknowledgements
and re-sends. Unfortunately, we
didn’t realize that right away, and it
took us awhile to get there.

Our first step was to switch from
TCP to UDP. This was as simple
as passing a flag to DirectPlay. Of
course, now the game would fail
miserably as soon as the first packet
was dropped. So, we implemented
a simple re-sending mechanism
to handle the dropped packets.
This seemed to work a little better,
but occasionally things would go
horribly wrong exactly as they had
before. Our first guess was that
DirectPlay was actually ignoring the
flag and using TCP anyway. But our
diagnostics quickly showed us that
the problem was even more evil
than Microsoft: it was the Internet.

Lesson four: UDP is better than
TCP, but it still sucks. We expected
packets to be dropped occasion-
ally, but the Internet is much worse
than that. It turned out that on
some connections, about every fifth
packet we sent would just disap-
pear into the Ethernet. When they
say UDP is unreliable, they aren’t
kidding! Our simple re-sending
mechanism just didn’t perform well
enough under these conditions. It
was quite common for a re-sent
packet to be dropped, and we saw
several cases where the original
packet and 4 or 5 re-sends of that
packet would all be dropped. We
were re-sending so many packets,
we were starting to exceed the
bandwidth of the modem, and then
the latency would start to climb,
and all hell would break loose.

Our solution was simple and
surprisingly effective. Every packet
would send a copy of the last
packet. This way if a packet were
dropped, a copy of it would arrive
with the next packet, and we could
continue on our merry way. This
would require nearly twice as much
bandwidth, but fortunately our
system required so little bandwidth
that this was acceptable. This would
only fail if two consecutive packets
were dropped, and this seemed
unlikely. If it did happen, then we

would fall back on the re-sending
code.

This seemed to work pretty well!
We finally had the game working
on the Internet! Sure the Internet
had turned out to be far worse than
we had thought, but we could deal
with it.

Lesson five: Whenever you think
the Internet can’t get any worse, it
gets worse. More extensive testing
showed that we still had some seri-
ous problems. Apparently we had
some kind of bug in our re-sending
code, because it seemed that
occasionally players would just lose
their connection and nothing would
get through. After spending endless
hours trying to find the bug in our
code, we finally realized that our
code was fine, it was the Internet
that was broken!

It turns out that sometimes the
Internet gets so bad, that practically
no packets get through at all! We
documented periods of 10 and even
20 seconds during which only 3 or
4 packets would be delivered. No
wonder TCP decides to just give
up! How can you possibly play a
game under conditions like that?
We had a major problem on our
hands. This “lost connection” phe-
nomenon was something we just
weren’t prepared to deal with.

“Whenever you think the Internet
can’t get any worse, it gets worse. ”

16  FEATURES

Fortunately, this condition is
usually pretty short, on the order
of a few seconds. We managed to
get our code to handle that by just
tweaking the re-sending code. The
player who is suffering this con-
dition will frequently have their
game stopped while we wait for the
connection to clear, but once the
condition passes, they can resume
playing.

Unfortunately, this “lost con-
nection” condition can last pretty
long, and when that happens, we
just can’t handle it, and we end up
having to disconnect that player
from the game. This isn’t really
a solution, but at least it meant
one bad connection wouldn’t ruin
everyone’s game.

One of the last refinements we
made to the game to deal with the
Internet involved dealing with the
inaccuracy of the predicted world.
Since latencies could be very long,
we need a way to deal with the
inaccuracy of the predicted world.

Our first clue that we had to
address this issue was the result of
implementing what we thought
would be an improvement. We
realized that if any one player had
trouble getting their data to the
host computer, then every player
would suffer because the host
would not send out the compiled
data packets until it had received
data from every player. We decided
that if a player failed to get their
data to the host within a reasonable
amount of time, then we would
simply drop that data and send out
the compiled packet without it.

If you follow through the con-
sequences of that action you will
realize that it creates a very evil
situation. Players normally predict
the position of their own craft with
perfect accuracy. After all, they
know exactly what they have done,
so they know exactly where they
should be. But if the host drops
their input from the “official” ver-
sion of the world which is the basis
of their predicted version of the
world, then they will actually have
to change their own position if they
are going to stay in sync with the
other players. The visual result of
changing the local player’s position
is that the position of everything in
the world, including the star-field,
will change position.

This effect, dubbed “star-field
warping,” is extremely disconcert-
ing, and makes the game practically
unplayable. We eventually compro-
mised by only dropping a player’s
data if it was extremely late, which
made this event fairly rare. How-
ever, in hindsight it might have
been better to use the same solu-
tion we eventually implemented for
the other players.

This instantaneous jump in
position, or “warp”, will always
occur for the other players, since
their position is always incorrectly
predicted. If latency is fairly low
(less than 200ms) this jumping is
not very noticeable, but as latency
increases, the inaccuracy of the
predicted world increases, and this
“warping” effect becomes more
noticeable.

To address this problem, we
implemented a “smoothing” effect.
The smoothing algorithm keeps
track of our last prediction of each
player’s position. It then takes the
current prediction and moves it
closer to the last prediction. This
effectively smoothes out the motion
of the other player’s craft, and it
looks much better, even though it is
probably less accurate.

Conclusions Drawn
The conclusion is obvious: the
Internet sucks. We were pretty
disappointed in how our game
performed over bad Internet con-
nections. But looking back on it
now, I believe we did as good a job
as anyone else, given the style of
game we were building, and the
constraints we were forced to deal
with.

The lack of a dedicated server
turned out to be a huge problem.
In cases where the “lost connec-
tion” phenomenon lasted more
than a few seconds, it was clearly
easier to send the entire state of the
world than it was to re-send all the
packets that had been lost. This was
not practical, however, because the
computer that would have to do
that would be one of the players’,
and could not spare the bandwidth.
A dedicated server could have
addressed this problem, and doing
so would have been equivalent to
allowing a player to “join” a game
that was already in progress. “Late
join” was a feature we really wanted
to have in the game, but we felt
it just wasn’t practical without a
dedicated server.

  17

 A dedicated server would also
have made it easier to support
more simultaneous players. The
latency would be cut nearly in half,
because messages would not have
to go through modems before being
re-sent to the other players, as they
do with the “host” player. In addi-
tion, a dedicated server would make
it significantly easier for a player to
evaluate the quality of their con-
nection to the game, since they
would only have to worry about
their connection to the server. With
a player acting as a host, the other
players must be concerned with
the quality of the host’s connec-
tion to the Internet, as well as their
connection.

One of the biggest problems we
faced with our network model was
the requirement that packets be
processed in order. Out-of-order
packets could be used to improve
the predicted copy of the world,
but in XVT they are not. Even if
they were, there would still be a sig-
nificant performance problem. The
problem is that when the in-order
packet finally does arrive, we must
process it, and all the out-of-order
packets that have come since. This
can be time-consuming because
the simulation must be run on each
packet.

Both of these problems would
have been much easier to address
if we had started from scratch. But
because we were modifying an
existing engine we were limited by
its capabilities. If the engine had
been able to simulate large time
steps more efficiently, that would
have helped a great deal. We were
effectively required to use a fixed
time step, and this made simulating
a long time step very inefficient.
In addition, if the engine had been
able to use out-of-order data to

improve the predictions, then the
long lag for a re-sent packet would
have been much less noticeable.

One of the advantages of our
approach to the problem is that it
is pretty much completely inde-
pendent of the game’s content. The
packets we send only contain data
about the player’s input device,
and this technique could work
virtually unchanged for almost any
kind of real-time game. The really
nice thing about this aspect of the
model is that we did not have to
worry about changing the content
of the game, requiring us to change
the network code. The fact that
no game-specific data is included
in the packets also makes it much
more difficult for players to cheat
by using “bots”. In order to give an
advantage, a “bot” would have to be
able to create a stream of input data
that is more effective than a human
player and I think this would be
extremely difficult. n

After earning his degree in Computer
Science from the University of California,
Peter went into the games industry, pass-
ing quickly through a failed start up and
a short stint at LucasFilm Games before
landing at Totally Games. At TG, he was
fortunate enough to become the lead pro-
grammer of the X-Wing and TIE Fighter
series of space combat simulators, fulfilling
a childhood dream to make a top quality
game in the Star Wars universe. After start-
ing a family, he left the games industry and
have since pursued a successful career in
high tech startup companies, most notably
BigFix, Inc., and currently Tanium, Inc.

Reprinted with permission of the original author.

This paper was originally published in the 1999
Game Developer’s Conference proceedings.

18  STARTUPS

STARTUPS

People will sometimes reach out and ask for a
discount on your product before they take the
time to sign up for a trial and use it at all. What

do you do when that happens?
Instead of debating if you should or shouldn’t offer

them a discount right away, you need to refocus their
energy on what really matters: your product!

Let’s explore the 3 core reasons why you never want
to negotiate pricing before someone had a chance to
trial your product and determine that it’s a good fit.

➊ You’re starting the relationship on the
wrong foot

People who ask you to lower your prices before having
invested any time using your product are usually
trouble.

This can often lead to winning a new customer that
is going to expect you to give 24/7 premium phone
support and prioritize features based on their needs all
while trying to pay you pennies on the dollar. If you
start the relationship by giving them everything they
ask for, don’t be surprised if they keep asking for more
in an unreasonable fashion. This is ultimately unsus-
tainable and unhealthy for both sides.

➋ They’re buying for the wrong reason
At this point they can’t tell if your product is

a good fit for them since they never used it. Your first
priority should always be to help people explore and
discover that your product is really solving their prob-
lem before negotiating what the final pricing should be.

Discounting your product upfront might help you
close some deals faster but will often lead to these
customers ultimately discovering that they should have
never bought in the first place. Always be wary of pros-
pects that don’t want to do their homework upfront.
Nothing sucks more than a new customer that cancels
immediately after having created a ton of support and
onboarding cost.

➌ You’re negotiating on price vs. value
The problem with people trying to negotiate

pricing before testing your product is that you are
forced to negotiate on price rather than value.

They didn’t have a chance to build up any desire to
buy and discover the massive value your product could
deliver to them. All of the sudden your product turns
into a commodity and your only differentiation is offer-
ing them the lowest price possible.

By Steli Efti

Startup Sales
Negotiations 101

How to Respond to Discount Inquiries

  19

➍ You’re negotiating without leverage
The more time people invest in your product

the more “invested” they become and naturally the
harder it is for them to “throw away” the time they put
into exploring your product and making it part of their
daily workflow.

You always want to postpone the most difficult/com-
plex parts of the sales negotiation till the end of the
sales cycle. That way you ensure the right amount of
momentum as you move forward in the sales process
and avoid too much upfront friction.

Here is what your response should be when some-
one asks for a discount without having tried your
product:
“Thanks for inquiring about pricing options! Why
don’t you sign up for a trial and give the product a go?
If you find out that it’s a great fit I’ll take care of you
and make sure you get a price that makes you happy.
Sound fair enough?”

This works every time. The reply you usually get will
be:

“Great! Just signed up and giving the product a go.
Thanks!”

What’s the result you should expect?
9 out of 10 times the people that turn out to be a
bad fit will self-select during a trial and just leave. The
prospects that are a good fit will love your product so
much that they will not negotiate hard for a discount
since they now really understand its value.

Even if they do, it’s fine to give great customers a
good price because you know they are buying for all
the right reasons and will probably stay with you for a
long time.

We’ve done this thousands of times and it always
works. I hope this startup sales negotiation tactic serves
your business as much as it has ours. n

Steli Efti is the Co-Founder and CEO of Close.io, a sales commu-
nication software that empowers startups to make more sales
and close more deals.

Reprinted with permission of the original author.
First appeared in hn.my/negotiation (close.io)

http://Close.io
http://hn.my/negotiation

20  PROGRAMMING

PROGRAMMING

We made a promise with Trello: you can
see your entire project in a single glance.
That means we can show you all of your

cards so you can easily see things like who is doing
what, where a task is in the process, and so forth, just
by scrolling.

You all make lots of cards. But when the site went
to load all of your hundreds and thousands of cards
at once, boards were loading pretty slowly. Okay, not
just pretty slow, painfully slow. If you had a thousand
or so cards, it would take seven to eight seconds to
completely render. In that time, the browser was totally
locked up. You couldn’t click anything. You couldn’t
scroll. You just had to sit there.

With the big redesign, one of our goals was to make
switching boards really easy. We like to think that we
achieved that goal. But when the browser locked up
every time you switched boards, it was an awfully slow
experience. Who cared if the experience was easy? We
had to make it fast.

So I set out on a mission: using a 906 card board
on a 1400×1000 pixel window, I wanted to improve
board rendering performance by 10% every day for a
week. It was bold. It was crazy. Somebody might have
said it was impossible. But I proved that theoretical
person wrong. We more than achieved that goal. We

got perceived rendering time for our big board down to
one second.

Naturally, I kept track of my daily progress and
implementation details in Trello. Here’s the log.

Monday (7.2 seconds down to 6.7 seconds. 7%
reduction.)
Heavy styles like borders, shadows, and gradients can
really slow down a browser. So the first thing we tried
was removing things like borders on avatars, card bor-
ders, backgrounds and borders on card badges, shadows
on lists, and the like. It made a big impact, especially
for scrolling. We didn’t set out for a flat design. Our
primary objective was to make things faster, but the
result was a cleaner, simpler look.

Tuesday (6.7 seconds down to 5.9 seconds. 12%
reduction.)
On the client, we use Backbone.js to structure our app.
With Backbone.js, it’s really convenient to use views.
Really, very convenient. For every card, we gave each
member its own view. When you clicked on a member
on a card, it came up with a mini-profile and a menu
with an option to remove them from the card. All
those extra views generated a lot of useless crap for the
browser and used up a bunch of time.

By Bobby Grace

How We Made Trello
Boards Load Extremely

Fast In A Week

  21

So instead of using views for members, we now just
render the avatars and use a generic click handler that
looks for a data-idmem attribute on the element. That’s
used to look up the member model to generate the
menu view, but only when it’s needed. That made a
difference.

I also gutted more CSS.

Wednesday (5.9 seconds… to 5.9 seconds. 0%
reduction.)
I tried using the browser’s native innerHtml and
getElementByClassName API methods instead of
jQuery’s html and append. I thought native APIs might
be easier for the browser to optimize and what I read
confirmed that. But for whatever reason, it didn’t make
much of a difference for Trello.

The rest of the day was a waste. I didn’t make much
progress.

Thursday (5.9 seconds down to 960ms)
Thursday was a breakthrough. I tried two major things:
preventing layout thrashing and progressive rendering.
They both made a huge difference.

Preventing layout thrashing
First, layout thrashing. The browser does two major
things when rendering HTML: layouts, which are cal-
culations to determine the dimensions and position of
the element, and paints, which make the pixels show
up in the right spot with the correct color. Basically.
We cut out some of the paints when we removed the
heavy styles. There were fewer borders, backgrounds,
and other pixels that the browser had to deal with. But
we still had an issue with layouts.

Rendering a single card used to work like this. The
card basics like the white card frame and card name
were inserted into the DOM. Then we inserted the
labels, then the members, then the badges, and so on.
We did it this way because of another Trello promise:
real-time updates. We needed a way to atomically
render a section of a card when something changed.
For example, when a member was added it triggered
the cardView.renderMembers method so that it only
rendered the members and didn’t need to re-render the
whole card and cause an annoying flash.

Instead of building all the HTML upfront, inserting
it into the DOM, and triggering a layout just once; we
built some HTML, inserted it into the DOM, triggered
a layout, built more HTML, inserted it into the DOM,

triggered a layout, built more HTML, and so on. Mul-
tiple insertions for each card. Times a thousand. That’s
a lot of layouts. Now we render those sections before
inserting the card into the DOM, which prevents a
bunch of layouts and speeds things up.

In the old way, the card view render function looked
something like this…

render: ->
 data = model.toJSON()

 @$.innerHTML = templates.fill(
 'card_in_list',
 data
) # add stuff to the DOM, layout

 @renderMembers()
 @renderLabels()
 # add even more stuff to the DOM, layout

 @

With the change, the render function looks some-
thing like this…

render: ->
 data = model.toJSON()
 data.memberData = []

 for member in members
 memberData.push member.toJSON()

 data.labelData = []
 for labels in labels when label.isActive
 labelData.push label

 partials =
 "member": templates.member
 "label": templates.label

 @$.innerHTML = templates.fill(
 'card_in_list',
 data,
 partials
) # only add stuff to the DOM once, only one
 # layout

 @

22  PROGRAMMING

We had more layout problems, though. In the past,
the width of the list would adjust to your screen size.
So if you had three lists, it would try to fill up as much
as the screen as possible. It was a subtle effect. The
problem was that when the adjustment happened,
the layout of every list and every card would need to
be changed, causing major layout thrashing. And it
triggered often: when you toggled the sidebar, added a
list, resized the window, or what not. We tried having
lists be a fixed width so we didn’t have to do all the
calculations and layouts. It worked well so we kept it.
You don’t get the adjustments, but it was a trade-off we
were willing to make.

Progressive rendering
Even with all the progress, the browser was still lock-
ing up for five seconds. That was unacceptable, even
though I technically reached my goal. According to
Chrome DevTools’ Timeline, most of the time was
being spent in scripts. Trello developer Brett Kiefer had
fixed a previous UI lockup by deferring the initializa-
tion of jQuery UI droppables until after the board had
been painted using the queue method in the async
library. In that case, “click … long task … paint” became
“click … paint … long task.”

I wondered if a similar technique could be used for
rendering cards progressively. Instead of spending all
of the browser’s time generating one huge amount of
DOM to insert, we could generate a small amount of
DOM, insert it, generate another small amount, insert
it, and so forth, so that the browser could free up the
UI thread, paint something quickly, and prevent locking
up. This really did the trick. Perceived rendering went
down to 960ms on my 1,000 card board.

That looks something like this…

 Here’s how the code works. Cards in a list are
contained in a Backbone collection. That collection has
its own view. The card collection view render method
with the queuing technique looks like this, roughly…

 renderQueue = new async.queue (models, next) =>
 @appendSubviews(@subview(CardView, model) for
model in models)
 # _.defer aka setTimeout(fn, 0), will yield
 # the UI thread so the browser can paint.
 _.defer next
 , 1
 chunkSize = 30
 models = @getModels()
 modelChunks = []
 while models.length > 0
 modelChunks.push(models.splice(0, chunkSize))

 for models in modelChunks
 # async.queue flattens arrays so lets wrap
 # this array so it’s an array on the other end
 renderQueue.push [models]

We could probably just do a for loop with a set-
Timeout 0 and get the same effect since we know the
size of the array. But it worked, so I was happy. There
is still some slowness as the cards finish rendering on
really big boards, but compared to total browser lock-
up, we’ll accept that trade-off.

We also used the translateZ: 0 hack for a bit of
gain. With covers, stickers, and member avatars, cards
can have a lot of images. In your CSS, if you apply
translateZ: 0 to the image element, you trick the
browser into using the GPU to paint it. That frees up
the CPU to do one of the many other things it needs to
do. This browser behavior could change any day which
makes it a hack, but hey, it worked.

Friday
I made a lot of bugs that week, so I fixed them on Friday.

That was the whole week. If rendering on your web
client is slow, look for excessive paints and layouts. I
highly recommend using Chrome DevTool’s Timeline
to help you find trouble areas. If you’re in a situation
where you need to render a lot of things at once, look
into async.queue or some other progressive rendering. n

Bobby Grace is a designer and developer working at Fog Creek
Software in New York City. He is big time into computers and
eating and bouldering and raw juice.

Reprinted with permission of the original author.
First appeared in hn.my/trellofast (fogcreek.com)

http://hn.my/trellofast

  23

and help change the future of search

http://duckduckhack.com

24  PROGRAMMING

I am an intermediate programmer.
I have a pretty good grasp of

the basics. I have made enough
mistakes to have a good idea why
they were mistakes. I am aware
there is a lot that I need to know
more about. Crucially, I have some
idea of what those things are, and I
am actively and energetically work-
ing on improving.

It has taken a while for me to
get to the point where I am con-
fident enough to admit that I am
only average in ability. I no longer
feel the need to hold second-hand
opinions that I don’t really under-
stand. I’m not so afraid of being
found out when I don’t know about
something.

It hasn’t always been this way.
You might not credit it, but I used
to be something of a programming
guru.

This erroneous evaluation of my
own ability can best be attributed
to the relatively isolated environ-
ment in which I developed my
skills. Back in those days, even
owning a computer was a little bit
special; knowing how to use it even
more so.

By my own estimation, I was a
pretty knowledgeable and expe-
rienced programmer. By the time
I was barely out of my teens, I’d
written programs in C++, Pascal,
C#, JavaScript and — my crown-
ing glory — I had written a custom
e-commerce platform in PHP from
scratch (more on this later).

In reality, I was perhaps just a few
cuts above that “friend’s son who
is a whizz with websites!” I had
had no interaction with any other
programmers, so my only point of
comparison was the people around
me; people who either didn’t
bother much with computers, or
if they did they probably had five
spammy toolbars clogging up their
Internet Explorer window. People
who might well use the phrase “my
Internet is broken.”

Here is the story of how I fooled
myself into thinking I was much
better than I was.

The Genesis of My Genius
When I was about nine years old,
a friend of mine had satellite TV
at his house. At home, we were
limited to the standard four UK
terrestrial channels (these were the
days before Channel Five - how did
we manage?), and I hankered after
the overwhelming choice of bad
TV that I had just witnessed. All we
needed was one of those satellite
dishes — or “satellites” as we called
them — and I, too, would be able to
watch QVC or Eurosport whenever
I wanted. Somehow dimly aware of
my nascent gift, I set about to build
my own satellite (dish)! My design
involved a fully opened umbrella
and a length of copper audio cable,
one end attached to the metal shaft
of the umbrella, the other stuffed
into my TV’s aerial socket. Admit-
tedly, my design had some flaws,
and consequently failed to deliver
the expected results. However, the
point of this anecdote is simply to
demonstrate the technical ambition
that would mark my childhood and
adolescence. Nobody else I knew
had even thought about making a
satellite.

By Michael Bromley

Confessions of an
Intermediate Programmer

  25

A few years later, I became an
early-adopter of the Internet when
my dad got a 14.4k modem at his
office. I recall spending one Satur-
day afternoon patiently waiting for
the flaming Manga logo gif to load,
each subsequent frame appearing
every minute or so. I even built
my own website using Netscape
Composer. Not yet aware of the
architecture of the Internet, I saved
my html files locally and then won-
dered when they would show up
online. This detail, however, did not
detract from the fact that nobody
else I knew had made their own
website.

By the time I reached my early
teens, I discovered the darker side
of my talent. Armed with a copy
of the Jolly Rogers Cookbook, a
couple of friends and I set about
to shake the technological (and
moral) foundations on which
mid-90s England stood. Phreaking
(that’s cracking phone systems) was
our forte. We got as far as using a
handheld acoustic coupler to make
free international calls from public
phones to American girls we’d met
on ICQ and setting up voicemail
boxes on private branch exchanges.
Schoolwork and skateboarding pre-
vented us from taking our exploits
much further. Had we not such
distractions, we’d have no doubt
been regularly making napalm,
hacking government networks and
killing men with our bare hands.
Although we failed to fully explore
the limits of our powers, the fact
was nobody else but us owned an
acoustic coupler.

Despite my numerous adventures
and misadventures with various
technologies thus far, something
was still lacking. My ideas were
always several steps beyond my
physical abilities — as highlighted

by the “satellite” episode. I needed
a way to get the contents of my
mind out into the world. I needed
a direct interface between my imag-
inings and reality.

The Fuck Generator
The true turning point came when
I was about fourteen years old. I
bought a copy of PC Plus magazine
which included a cover CD featur-
ing a full version of Borland C++
Builder. I installed it and carefully
followed the “hello world” tutorial
which was helpfully included in the
magazine.

This was it. A new world opened
up before me. The restrictions
imposed upon my imagination by
the material world were gone. My
creativity unshackled, the cathe-
drals in my mind would be made
manifest! To what lofty end should
I put this new-found tool? It was
obvious. The Fuck Generator.

As simple as it was elegant, the
Fuck Generator (fgen.exe) was a
command-line program, and my
first advance beyond “hello world.”
Upon starting, it would prompt
the user for a number. With this
number n, it would then print out
the string “fuck,” n times. Finally the
user was given the option to repeat
the exercise, or quit. Perhaps a little
limited in use, I nevertheless was
hooked on the power that I had
tasted. It is a particular joy that any
programmer will know well, to see
the machine do your bidding, no
matter how simple a task that may
be. It works, and it works because
you understand how to make it
work. And it cannot do anything
but work.

A short while later, another
edition of PC Plus included a full
version of Borland Delphi. With it,
I upgraded the concept to include

a Windows GUI and the ability to
randomly generate colourful and
sometimes surprising 4-part insults.
While the other kids at school were
passively playing PlayStation, I was
engaged upon a far more meaning-
ful and creative endeavour. I was
generating fucks.

By this point, it was quite clear
that I was destined for big things. It
was time to show the world what I
could really do.

My Magnum Opus
In the late 90s, I created a website
for a small but expanding mail-
order retailer. At first, the site was
just a few static pages — brochure-
ware — complete with a navigation
menu in a frameset and the obliga-
tory visitor counter on the home
page.

When we started getting more
and more enquiries from the web-
site, we decided to experiment with
adding e-commerce functionality.
We iterated over several off-the-
shelf packages, whose quality
ranged from utterly terrible to just
terrible. My memory of the first
version is predominated by fid-
dling about with cgi scripts and the
bizarre use of <select> elements
for almost all user interaction. A
later version was a monstrosity of
framesets and JavaScript — long
before it was anywhere near advis-
able to base your app’s functional-
ity on JavaScript. Another version
was powered by a Microsoft Access
database.

At length we came to the realisa-
tion that, if we wanted to have a
genuinely okay-ish or even decent
online shop, we’d need a custom
solution. I considered my past suc-
cess with fgen.exe and its sequel,
not to mention a string of excellent
websites I’d built by this time, case

26  PROGRAMMING

in point: my Manic Street Preach-
ers guitar tab archive website was
pretty authoritative, and a proud
member of the “Manics Web Ring”
(remember web rings?). I felt the
time had come to really see what I
was capable of. I’d build it myself.
From scratch.

From scratch?! If open-source
frameworks existed at that time, I
didn’t know about them. No — I
had my own plan. I bought a book
on PHP and MySQL, and started
to learn both technologies as I built
the new website.

As luck would have it, the book
featured as one of its central exam-
ples a very simple shopping cart
application. All the parts were there
— “category.php” would list all the
products in a category; “product.
php” would display the details of
a product with a button to add it
to the cart; and most importantly,
“cart.php”, where the real magic
would happen. This was clearly
meant to be!

I followed the example studi-
ously, faithfully implementing all
the ingenious and no-doubt cutting-
edge techniques — those handy
“mysql_” functions for data access;
string concatenation for building
queries; separating functions into
a “functions.php” file; including a
“header.php” and a “footer.php”
to maintain consistency site-wide;
shunning the bulky overhead of the
object-oriented approach (what-
ever that really meant) in favour of
lightening-fast procedural code. My
skills were increasing exponentially!

Like a one-man termite colony,
I built towers and dug labyrinthine
tunnels of code. The structure
stretched both further skywards
and deeper underground with each
new feature that I added. And add
features I did. Customer accounts,

product ratings, order histories,
reward points, voucher codes,
special offers, logging, A/B testing,
encryption of payment data, and on
and on. A sprawling maze of inter-
connected dependencies, a galaxy
of functions of all shapes and sizes,
slowly spinning around a central,
immovable hub: “cart.php.”

After about eight months of
feverish work, it was finally ready.

Now, my knowing reader, you
may be expecting me to detail how
spectacularly, horribly wrong it all
went once we flipped the switch on
our new website. I am afraid I have
to disappoint you.

It worked.

Worst Practices
Despite what I now refer to as my
“worst practices” approach, the
thing worked. Every bad tutorial,
every anti-PHP blog post — it was
all there. Spaghetti code? Check.
Inconsistent naming of data and
routines? Check. Presentation
mixed — nay, fused — with busi-
ness logic? Check. Magic numbers
and global data galore? Check.

To me, the object-oriented
approach was just a bunch of
unnecessary overhead and boiler-
plate, and I had plenty of misinfor-
mation to back me up. I knew all
about testing too — click through
your feature a few times, seems
good, upload to production! I was
dimly aware of other (fancy, overly-
complex) architectures but as far
as I was concerned, mine was a per-
fectly sensible (and probably much
faster) way of doing things.

The proof of my rightness in
all these things was the fact that I
had written, from scratch, with my
bare hands and wits, a function-
ing and full-featured e-commerce
website. Furthermore, one that

performed well and was successful
and expanding!

In my eyes, there was not much
difference between me and the
guys who wrote Amazon.com. Sure,
Amazon was quite a bit bigger, but
I saw no reason why my platform
would not scale up without a prob-
lem — especially considering the
blazingly fast procedural architec-
ture I had used.

And so I had reached a plateau
of skill as a programmer. That’s not
to say I was disinterested in learn-
ing more — I just didn’t feel an
urgency about doing so. After all,
I had built something that worked
and worked well. Surely anything
beyond that was just a bonus, the
cherry on top.

Back Down To Earth
This state of affairs prevailed, I’m
sorry to say, for several years. I
was only working on the site on a
very part-time basis, spending the
majority of my days working in a
completely different field. Over
the years of maintenance and the
occasional adding of new features, I
did develop an awareness that cer-
tain choices I had made were now
proving to be bothersome. I noticed
how long it sometimes took to find
what I was looking for in the source
files. I was perturbed by the number
of minor bugs that would emerge
in seemingly unrelated areas of the
site each time I made a change.

My learning did not completely
stagnate, but it did crawl along
pretty slowly. For example, I came
to learn that the mysql_ func-
tions that I had used were now
considered risky, to the degree
that support would be dropped in
future versions of PHP! For a long
time, I countered any fears with
the knowledge that my water-tight

  27

sanitization routines would more
than make up for that. After all,
I had tried various SQL-injection
strings in pretty much every form
input I could find, and it all seemed
hunky-dory.

One day last year I got an urgent
call — the website was down!
Every request resulted in a 500
internal server error! After the
engineer at the hosting company
had got it up and running again and
had conducted the post-mortem, it
turned out we had been the victim
of an exotic SQL injection attack,
the like of which I had never seen
before (in any of the several tutori-
als I’d read about SQL injection).

Alright, I thought, maybe it’s
time to swap over to this new-fan-
gled PDO thing I’ve been hearing
about.

My Epiphany
When I sat down to re-write all the
data-access functions, something
profound occurred. I realised that
this was going to be tough. And
I realised why it was going to be
tough.

It was going to be tough because
these functions were scattered all
over the place; because I had no
real way of knowing if I was going
to break something in some subtle
way; because the code was inconsis-
tent and I’d have to carefully study
how each instance slightly differed
from the last; because much of the
code was tightly coupled with other
parts which might also subtly break
when I made changes. In short, it
was going to be tough because of
all the bad practices and lack of
understanding that had informed
the creation of this sprawling mess
that only now revealed itself to me.

All the justifications, the defen-
sive reasoning, the ignorance started

to melt away. I had been wrong. I
was not the sublimely gifted pro-
grammer I had suspected myself to
be. I was a fake who had somehow
gotten away with it for this long!

My folly had been thrown into
sharp relief, and though this was
a blow to my ego, it was also an
incredibly valuable lesson. I learned
first-hand — and painfully — why
there is a right way and a wrong
way to do things. It’s not just a
matter of taste or fad. It’s not a
matter of who has the clever-
est arguments. The right way has
real-world ramifications which will
make your life (and the lives of
others who touch your code) better.
The wrong way leads to frustra-
tion and wasted time. I won’t try
to address here the thorny issue of
what exactly constitutes “the right
way.” Suffice it to say it wasn’t what
I had been doing.

The Real Sin
I did implement PDO. At the same
time, I started using PHPUnit for
the first time. Attempting to retro-
fit that kind of code with unit tests
is not something I would like to
repeat.

Nowadays I make a conscious
effort to push myself and learn
more whenever I can. I am reading
the books that programmers are
supposed to have read. I’m follow-
ing blogs. I’m listening to podcasts.
I’m watching conference videos. I’m
attending and even giving talks at
local user groups. I’m working on
side-projects to challenge myself to
learn brand new technologies. I’m
trying to learn the right way to do
things.

For all you who are also engaged
upon this task, there is an impor-
tant factor in our favour. Being that
programming is such an utterly

abstract endeavour, the material-
world limitations that characterize
so many other fields simply do not
apply. Here, the limiting factor is
oneself.

I’ll close this story with some
true words of wisdom. At the time
I began drafting this blog post, I
was just finishing the book Code
Complete Second Edition by Steve
McConnell. Towards the very end
of the book, at the bottom of page
825, he writes something that
perfectly articulates the exact senti-
ment I had in mind when writing
this post. Perhaps it is telling that
he was able communicate in two
sentences what took me a couple of
thousand words:

“It’s no sin to be a beginner or an
intermediate. It’s no sin to be a
competent programmer instead of a
leader. The sin is in how long you
remain a beginner or an intermedi-
ate after you know what you have
to do to improve.”

n

Michael Bromley is a reformed program-
ming guru, now learning how to write
software properly. He lives in Vienna with
his wife and son. You can reach him via
@michlbrmly

Reprinted with permission of the original author.
First appeared in hn.my/confession (michaelbromley.co.uk)

http://twitter.com/michlbrmly
http://hn.my/confession

28  PROGRAMMING

By Álvaro Castro-Castilla

Every once in a while, someone, somewhere,
decides it’s time to write yet another post
on what the best programming language is,

the mighty properties of a forgotten language, or the
new language that does it right. So my time has come.
Finally, I get to say what I think about programming
languages.

The Best
Programming

Language

How to Stop Worrying and Love the Code

  29

First of all, a disclaimer: unless you’ve developed in
30+ languages, and suffered the code of others in all
(or most) of them, you can’t really be objective. So yes,
I’m biased. Like most of the people writing about this
topic. Actually, I believe that this topic becomes absurd
as soon as you are well-versed in many languages.

TL;DR: The Great Languages
I hereby declare these languages to be The Great Lan-
guages within the realms of my blog.

■■ Assembly: the language of the machine.

■■ C: the systems language.

■■ JavaScript: the language of the web.

■■ Scheme: the lightweight, embeddable and extremely
flexible language that compiles to both C and
JavaScript.

Most of the code examples are from RosettaCode.org

Ada
I’ve always been curious about the idea of designing a
language around memory safety. That makes sense for
applications in real-time operating systems and criti-
cal systems in general. Probably if you are considering
using this language you don’t need to read this, and
you come from a highly specialized background. This is
one of the languages that you use once you know what
you are doing, and then you don’t have many options
either. Some bits of Ada:

function Best_Shuffle(S: String) return String is
 T: String(S'Range) := S;
 Tmp: Character;
 begin
 for I in S'Range loop
 for J in S'Range loop
 if I /= J and S(I) /= T(J) and S(J)
/= T(I) then
 Tmp := T(I);
 T(I) := T(J);
 T(J) := Tmp;
 end if;
 end loop;
 end loop;
 return T;
 end Best_Shuffle;

It looks safe, right? ;)

Bourne (Again) Shell
I always think: do I really need to write this Linux
script in a shell language? Is it really necessary? It
doesn’t matter if you don’t write your scripts in shell,
because eventually you’ll deal with one of these scripts
face to face, and you’ll wonder how they did it in
the Bare Metal Age, pre-stackoverflow. Anyway, with
the right book, you’ll start thinking that the language
just needs some make-up (and consistency). There is
nothing amazing about this language, nothing that will
expand your mind or make you more productive, or
that justifies it from the business point of view. It is just
pervasive in the *nix world. Nevertheless, it’s a must
for system administration, and it isn’t as bad as it looks.
It’s a bit like JavaScript, you need to know the good
practices more than with other languages.

When would I use Unix Shell?

■■ OSX/Linux/POSIX system administration

■■ For task automatization

■■ To unlock command-line superpowers

Some Bourne Shell code. Enjoy those boolean
expressions!

#!/usr/bin/env sh

l="1"
while ["$l" -le 5]
 do
 m="1"
 while ["$m" -le "$l"]
 do
 printf "*"
 m=`expr "$m" + 1`
 done
 echo
 l=`expr "$l" + 1`
done

C
Well, you have to respect C, even if you don’t like it.
It’s arguably one of The Great Languages. The language
that programs machine reality (not models of). It’s
the father of UNIX, all the languages of the capital
C, and the lingua franca of systems development. It’s
been battle-tested, time-tested and hype-tested. The
plethora of tools available for developing, debugging,
profiling and supporting C development make it for all

http://RosettaCode.org

30  PROGRAMMING

its defects as a language (not so many, in my opinion).
It’s a language that really achieved its purpose: become
a general-purpose Assembly language for every proces-
sor. Nowadays, it is the de-facto Assembly for even the
strangest architecture, and it has become very hard to
make better hand-crafted code than that generated by
C compilers.

It is thus a powerful tool, but one that needs to
be mastered. The language shows no mercy, and you
always need to know what you are doing. That is what
makes C the language for understanding the machine.
There is beauty in this, and there is a practical side too:
there are things that just can’t be done without the
kind of low-level that C provides. C programmers must
understand very well what they are doing, leading to
very solid software in the long run. If there is some-
thing that could debunk C is a low-level language with
great support for concurrency. Or maybe a mythical
language with the properties of Haskell and the perva-
siveness of C.

C++
A monster. It was my first language, and I didn’t really
understand how it was screwing my productivity and
limiting my skills until I tried many others. The bad
reputation of C++ is promoted by some well-known
programmers, and I agree completely. C++ seems
as if Bjarne Stoustrup took every single feature he
could think of and added it to C. The cognitive load
it imposes might make you more than 80% less pro-
ductive. Think of it this way: you have a brain of X
capacity, and that capacity is limited, doesn’t matter
how much capacity you have, and you want to leave
as much as possible of it for the important things. The
wise thing to do would be to reduce the amount of
brain power used for the language per se, and use the
most of that brain for solving the problem and encod-
ing an algorithm. If the language is complex, no matter
how smart you are, you’ll need to use more of your
brain for the syntax and the semantics of the language
and less to efficiently projecting your ideas onto code.

I think C++ is the quintessential example of too
much complexity for not that much gain. I agree,
building large programs in C is difficult (but arguably
an option, look at the Linux Kernel). Go, Rust and D
are better languages by all measures, except for the fact
that C++ is what the world actually uses.

C#
Enterprise language that aims at reducing any kind of
programmer creativity that might hinder its replace-
ability in any large organization. Object-oriented,
statically typed, verbose, with heavy libraries and lots
of boilerplate. You can see Microsoft’s hand behind
this creation. But don’t get me wrong, it is not a bad
language. It just isn’t sexy, which precisely is what
Microsoft wanted in the first place. At least, it is a radi-
cal improvement when compared with Visual Basic. I
would use it for:

■■ Windows development.

■■ Game development (well, mostly because Microsoft
forces developers, but I would still prefer good ol’ C/
C++).

■■ There are huge things going on in this language: Uni-
ty3D, Xamarin, .NET, XNA.

Objective-C
I have a much better opinion of Objective-C than of
C++ (and C#). It’s syntactically ugly, but I like it as a
language. It’s got a great set of libraries based on Next-
Step, with the plus of being a real improvement upon
C, without growing too much out of control and bring-
ing ambiguities in keywords with its parent language.
As I said, it’s a bit ugly and difficult to read, especially
when nesting functions, but definitely its beauty resides
in its conceptual approach, not in its syntax. See this
nested call:

char bytes[] = "some data";
NSString *string = [[NSString alloc]
initWithBytes:bytes length:9 encoding:NSASCIIStr
ingEncoding];

This is beautiful code for a son of C language,
making use of Objective-C’s so-called blocks.

#import <Foundation/Foundation.h>

typedef NSArray *(^SOfN)(id);

SOfN s_of_n_creator(int n) {
 NSMutableArray *sample = [[NSMutableArray
alloc] initWithCapacity:n];
 __block int i = 0;
 return ^(id item) {
 i++;

  31

 if (i <= n) {
 [sample addObject:item];
 } else if (rand() % i < n) {
 sample[rand() % n] = item;
 }
 return sample;
 };
}

int main(int argc, const char *argv[]) {
 @autoreleasepool {

NSCountedSet *bin = [[NSCountedSet alloc] init];
 for (int trial = 0; trial < 100000; trial++)
{
 SOfN s_of_n = s_of_n_creator(3);
 NSArray *sample;
 for (int i = 0; i < 10; i++) {
 sample = s_of_n(@(i));
 }
 [bin addObjectsFromArray:sample];
 }
 NSLog(@"%@", bin);

 }
 return 0;
}

Clojure
Being a Scheme programmer I have respect for Clo-
jure: it’s a so-called modern Lisp, with some unique
features. I’d say Clojure’s strong points are Java
interoperability and concurrency utilities in the core
language. It’s a sibling of Scala, but differs in their
flavor: lisp vs. hybrid OOP/functional, making Clojure
less popular due to the excess of parentheses. Choos-
ing one of these two for a project is a matter of taste,
because neither are proven technologies with a long
track record of successful production applications, as
compared with Java or PHP, although they both stand
on the shoulders of JVM. Another thing to take into
consideration for any JVM-base language is the startup
time of the virtual machine: it doesn’t seem like a very
lightweight solution for small tasks. These are the situa-
tions where I would use Clojure:

■■ Web development. There are good options for this,
and the Clojure community seems very active in this
area.

■■ When you want to use the JVM technology with-
out the Java thing. Both programmer happiness and
productivity will improve.

■■ Exploratory programming that could grow into pro-
duction code. This is actually an area where Lisp’s
nature really shines, but Clojure relies on the Java
stack, exposing a lot of production code to it.

■■ Android development? Android development GUI
development model relies heavily on class inheri-
tance (meaning that you don’t actually use it as a
plug-in library; it forces you to follow a certain struc-
ture). It can be done, but it certainly isn’t as natural
as direct Java inheritance.

Some classical Clojure code:

(defn divides? [k n] (= (rem n k) 0))

(defn prime? [n]
 (if (< n 2)
 false
 (empty? (filter #(divides? % n) (take-while
#(<= (* % %) n) (range 2 n))))))

And a simple queue definition in the lisp way.

(defn make-queue []
 (atom []))

(defn enqueue [q x]
 (swap! q conj x))

(defn dequeue [q]
 (if (seq @q)
 (let [x (first @q)]
 (swap! q subvec 1)
 x)
 (throw (IllegalStateException. "Can't pop an
empty queue."))))

(defn queue-empty? [q]
 (empty? @q))

D
I used to love D. D is like C++ done right. D1 felt
like a low-level-oriented Python. Like a pythonized
C or something like that. It’s awesome: you feel
development speed, focusing on the algorithms and
not the language, but you don’t sacrifice low-level

32  PROGRAMMING

control when you need it. D2 brought a lot more of
the complexity of C++, with the innovative touch of
Andrei Alexandrescu. That made part of the commu-
nity unhappy, albeit D2’s focus on concurrency. D2 is
not a clean language any more, but feels more like an
experimental language with lots of untested features. I
like it though, but I think its features pale in compari-
son with C++’s pervasiveness (once you have a more
complex language). And also I think Go took the place
that was once D’s destiny. Walter and Andrei can’t
compete with Google, even if they can move faster and
implement really cool things in the language. You can
like D (as I sort of do), but I don’t see a bright future
for it. Just stick with C++ or go to Go for better native
concurrency support. So, when would I use D?

■■ For developing a project from scratch, being able to
interface C and to some extent, C++. You have to
think in advance what those interfaces are going to
be like, though. For instance, I wouldn’t recommend
it if you need to use a C++ GUI library, because that
normally means dealing with C++ inheritance from
within and that will throw all the advantages away.
Just do this if you need C++ for a plug-in library
(creating objects and using its functions, but no tem-
plating or C++ inheritance).

■■ If you need low-level programming with fast bina-
ries. Again, doing your own thing, like a standalone
program.

■■ If you want better native support for concurrency in
the language.

Let’s see some idiomatic D2, with pure functions,
and immutable declarations.

uint grayEncode(in uint n) pure nothrow {
 return n ^ (n >> 1);
}

uint grayDecode(uint n) pure nothrow {
 auto p = n;
 while (n >>= 1)
 p ^= n;
 return p;
}

void main() {
 import std.stdio;
 " N N2 enc dec2 dec".writeln;

 foreach (immutable n; 0 .. 32) {
 immutable g = n.grayEncode;
 immutable d = g.grayDecode;
 writefln("%2d: %5b => %5b => %5b: %2d",
n, n, g, d, d);
 assert(d == n);
 }
}

The max element of a list.

[9, 4, 3, 8, 5].reduce!max.writeln;

It is definitely more expressive and a cleaner lan-
guage than C++, by far.

Erlang
This is a very specific-purpose language. Erlang’s web
page describes it very clearly: […] build massively scal-
able soft real-time systems with requirements on high
availability. Some of its uses are in telecoms, banking,
e-commerce, computer telephony and instant messag-
ing. Erlang’s runtime system has built-in support for
concurrency, distribution and fault tolerance. Erlang has
been proven for, and it’s behind some very demand-
ing applications such as WhatsApp. The code itself
feels very functional, and its syntax is clean and very
readable.

Take a look at the code for a simple concurrent
program:

-module(hw).
-export([start/0]).

start() ->
 [spawn(fun() -> say(self(), X) end) || X <-
['Enjoy', 'Rosetta', 'Code']],
 wait(2),
 ok.

say(Pid,Str) ->
 io:fwrite("~s~n",[Str]),
 Pid ! done.

wait(N) ->
 receive
 done -> case N of
 0 -> 0;
 _N -> wait(N-1)
 end
 end.

  33

Go
I haven’t used this personally. Yet. But it’s clear that
this is Google’s take on making a C with the good
parts of C++ and better than both in its concurrency
support. It has better features than C++, and it is way
simpler. It has no unsafe pointer arithmetic, closures
and first-class functions, and garbage collection. Go
might become the server language in the future. So,
when would I try Go?

■■ For server applications that need very high reliability
and performance. This includes web apps.

■■ For highly-concurrent code that requires low-level
control (otherwise, I’d stick to Erlang).
Go concurrent code:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

func main() {
 words := []string{"Enjoy", "Rosetta",
"Code"}
 rand.Seed(time.Now().UnixNano())
 q := make(chan string)
 for _, w := range words {
 go func(w string) {
 time.Sleep(time.Duration(rand.
Int63n(1e9)))
 q <- w
 }(w)
 }
 for i := 0; i < len(words); i++ {
 fmt.Println(<-q)
 }
}

Haskell
This language truly feels as a more advanced think-
ing tool than the others in this list. It has libraries for
almost any need and it has a hard-core community.
Arguably it’s a language with a high barrier of entry. It
will expand your mind, and surround you with some
of the brightest minds in the programming languages
communities, in my opinion.

I think Haskell is well worth learning, even if you
don’t build any real program with it. Being a relatively
obscure language, I chose to classify it as reasonable
since it is actually used in several areas, and especially
in the financial industry. Haskell’s code tends to be very
compact and expressive, albeit a bit abstract, in the
sense that you need lots of functions that are actually
conceptual operations rather than steps of a process.
I personally don’t like its syntax (I think it has way
too much syntax), but at least it serves a purpose and
doesn’t feel like clutter (I’m looking at you, Perl!). This
language feels beautiful and coherent. Take a look by
yourself:

binarySearch :: Integral a => (a -> Ordering) ->
(a, a) -> Maybe a
binarySearch p (low,high)
 | high < low = Nothing
 | otherwise =
 let mid = (low + high) `div` 2 in
 case p mid of
 LT -> binarySearch p (low, mid-1)
 GT -> binarySearch p (mid+1, high)
 EQ -> Just mid

Java
The same as C#, but for the Java Virtual Machine. It
was there first (in fact C# copied it), and it’s sort of
“the standard” object-oriented language in the indus-
try. It’s used for everything, from web apps to games.
Almost everything except embedded device software,
and perhaps high performance parallel computation
software. It serves as the foundation for many other
languages (specifically its virtual machine). Take a
look at Processing for an interesting project, where a
wrapper language (just sugar-coated Java) is used for
education and digital art. When would I personally
recommend you use Java?

■■ Mostly when you want to access a very large pool of
developers and knowledge base, i.e., you want the
software to be maintained by someone else.

■■ When you need a multiplatform virtual machine
present in as many devices as possible.

34  PROGRAMMING

JavaScript
The lingua franca of the 2010s, the language of the
web. The funny thing is that while it was previously
seen as a very defective and limited language, a more
recent wave of programmers have shown the world
that, following a set of good practices and using various
techniques, it actually turns out to be a great language.
Especially if you take into account all the libraries and
implementations that make up for JavaScript’s design
mistakes or missing features (such as a module system).
Thanks to this, we even have JavaScript for the server,
which brought this beautiful symmetry backend/fron-
tend to life, finally.

There is a lot of research and effort put into improv-
ing JavaScript performance and derivative languages
that compile to JavaScript. This actually proves that
community is one of the greatest (if not the greatest)
assets a language could have. The funny thing is, you
see myriads of libraries doing the same thing over and
over, making it one of the most competitive arenas for
a library developer. See examples as Grunt vs. Gulp, or
the battalions of competing JavaScript derivatives (Cof-
feescript, Typescript, Livescript…). It’s crazy out there.

OCaml
It’s sort of like Haskell, but it feels like it’s more will-
ing to bend to the programmer’s desires. When there
is need, some compromises to its purity are made
in benefit of easier solutions, for instance when the
procedural/object-oriented approach seems to work
best. There are companies using it, I guess just for this
benefit over Haskell. Take a look at this little snippet:

let n_arrays_iter ~f = function
 | [] -> ()
 | x::xs as al ->
 let len = Array.length x in
 let b = List.for_all (fun a -> Array.
length a = len) xs in
 if not b then invalid_arg "n_arrays_iter:
arrays of different length";
 for i = 0 to pred len do
 let ai = List.map (fun a -> a.(i)) al in
 f ai
 done

Looks almost like Haskell, right? But then you have
the imperative flavor in that for loop…

PHP
Don’t just assume PHP is horrible. Be a good Spartan
and inflict yourself the joy of PHP. The good thing is:
if you enjoy programming in PHP, then you are a true
programmer. And it’s the language of the cheap free-
lance work. When would I use PHP?

■■ If you want to have the largest pool of web develop-
ers available.

■■ That’s it, no other reason.

Python
A pretty language. I definitely like its whitespace-based
block structure: you don’t need ugly semicolons all the
time. I like this so much that I tend to write my JavaS-
cript this way. But this is very much a matter of taste,
and as a matter of fact is the very reason many people
don’t like the language. It’s a clean language that tries
to take the burden of the syntax off of your shoul-
ders. While it is debatable that it succeeds at this, the
language is definitely supported by a great community,
which put it in a very strong position when compared
to its pal Ruby. It’s always hard to choose between
these two languages, although Python seems more
widespread, and a more sensible choice for a variety of
fields and applications. When would I use Python?

■■ Web development.

■■ Scientific computing and data analysis.

■■ System administration and tools.

■■ Game/3d application scripting.

■■ Cross-platform support.

Ruby
Ruby on Rails. The single reason this language could
ever be part of this list. Of course, nowadays it’s easy
to see it in many other projects, but it all began with
Rails. Before that, Ruby was an obscure programming
language from Japan. This is a perfect example of how
a killer app/framework spawned a great community
which in turn made more killer apps/frameworks and
made the language popular even though the place for
this sort of language was supposedly taken.

One thing I’ve heard from many Ruby developers
and I had experienced myself, is the actual joy that
comes from using it. In other words, it’s the contrary of
a frustrating language, although I don’t know if this is

  35

something from the language or Rails itself. The guys at
metasploit seemed to have it very clear since the begin-
ning as well.

Scala
Seems to be winning the race for the best JVM-based
language award. I’m pretty sure that most of it comes
from a familiar syntax, when compared with Clojure,
the other big contender. As in Clojure, the reason this
language is in this list is because its easy interfacing
with Java make it a viable choice for a real project.
Look at this small snippet generating the Hofstadter Q
sequence:

object HofstadterQseq extends App {
 val Q: Int => Int = n => {
 if (n <= 2) 1
 else Q(n-Q(n-1))+Q(n-Q(n-2))
 }
 (1 to 10).map(i=>(i,Q(i))).
foreach(t=>println("Q("+t._1+") = "+t._2))
 println("Q("+1000+") = "+Q(1000))
}

Scheme
This is probably a controversial language to be on this
list, but I have an explanation. The three main issues
associated with this language are:

1.	 Lack of one true implementation and multiple
competing ones of dubious quality.

2.	 Lack of libraries.

3.	 Poor performance.

Well, the first one is partially true (there are too
many implementations), but there are only a hand-
ful of good ones and you need to choose the one that
best fits you. The second is also partially true: there
are libraries, but they are scattered. There are some
projects that offer alternatives, and lots of tiny projects
out there. The fragmentation of the language is made
obvious when looking for support code: you need to
make it work with your implementation. However, this
is often not so difficult or time-consuming, and most
importantly, if you use Scheme implementations with
good FFI support, such as Gambit or Chicken Scheme,
you have easy access to all those libraries in C. I actu-
ally do it, and it works great, contrary to what you may
think. Finally, poor performance. This one is actually

completely false. Implementations such as Gambit are
very fast, and you have plenty of options for optimiza-
tion (starting from algorithmic optimization, global
Scheme compiler declarations, and of course, C code
that can be easily interwoven with the Scheme code
when necessary).

Yes, I’m fanatical about Scheme, however, I admit
it has one deadly weakness: it’s an awful language for
sharing code, with a not-so-good community. It’s so
flexible that every single programmer wants its own
little perfect solution to the task. It’s the complete
opposite to Java: great for individual/small-team
projects, prototyping and exploratory programming,
unproven for large teams. But in those situations, is
perfectly fine, and you can actually ride an extremely
fast and pleasant development cycle. Lastly, another
very interesting feature of the language: you can easily
compile to JavaScript with one of the Scheme-to-Js
compilers, so you could enjoy the same kind of symme-
try that you get when developing with Node.js on the
server. The following are concrete examples where I’d
use this language:

■■ For exploratory programming, when I don’t exactly
know where I’m heading.

■■ For fast prototyping of ideas that don’t really require
a large library only available in languages like Python
or Ruby.

■■ For scripting large programs or platforms developed
in C/C++.

■■ For building an application with large portions that
need to be written from scratch.

■■ For games and OpenGL/ES-based multiplatform
applications.

Here you have three examples of Scheme code. You
actually have to implement these functions yourself as
they are not directly available across all implementa-
tions, even though they are rather useful and common
enough. These would work across all implementations
(provided they are R5RS-compatible).

36  PROGRAMMING

;;! Recursive map that applies function to each
node
(define (map** f l)
 (cond
 ((null? l) '())
 ((not (pair? l)) (f l))
 (else
 (cons (f (map** f (car l))) (f (map** f (cdr
l)))))))

;;! Explicit currying of an arbitrary function
(define (curry fun arg1 . args)
 (if (pair? args)
 (let ((all-args (cons arg1 args)))
 (lambda x
 (apply fun (append all-args x))))
 (lambda x
 (apply fun (cons arg1 x)))))

;;! Implementation of filter, with the match
macro
(define (filter p lst)
 (match lst
 ('() '())
 (((? p) . tl) (cons (car lst) (filter/match p
tl)))
 ((hd . tl) (filter/match p tl))))

If you solve the issue of a minimal development
framework (yourself or via projects like Scheme
Spheres, [schemespheres.org] then you are on a
flywheel.

Conclusion
I started this long post with my selection of choice.
Programming is a beautiful craft that I love whole-
heartedly, so I admit that I’m heavily biased according
to my personal experience. Choosing a programming
language for a task or project is sometimes difficult, as
so many variables take place. In my opinion, there are
three that prevail, in this order:

1.	 Is the project aimed at production, or belongs to a
sufficiently large organization with a culture or bias
towards a programming language?

2.	 Is the task at hand sufficiently special to require a
programming language with very specific features?

3.	 Do you love or want to try developing in that pro-
gramming language?

That’s how I approach this issue. Even though some-
times I break the rules… n

Álvaro Castro-Castilla is an architect-civil engineer, digital artist
and software developer. In his trajectory he has been playing
with and within the frontiers of these disciplines, exploring and
creating worlds that can be built with code.

Reprinted with permission of the original author.
First appeared in hn.my/bestpro (fourthbit.com)

http://schemespheres.org
http://hn.my/bestpro

  37

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

38  SPECIAL

SPECIAL

I’ll often come up with an idea
that I get excited about.

Then I brainstorm a catchy
name for it, check the availability
of urls and social media accounts,
maybe even set up a landing page.
It gives me a big rush, and I imagine
a dazzlingly bright future ahead for
the concept.

And then the idea crawls up and
dies inside of me.

Why?
Because I don’t actually do

anything.
To finish things, you need to fall

in love with the part of the pro-
cess that’s harder to love — the bit
where you roll up your sleeves and
do the damn thing.

Maybe that’s why it’s got another
much tougher sounding name:
execution.

The human brain is a brilliant
idea-generating machine. In the past
we had to convert our ideas into
solutions just to stay alive: to make
sure that we had enough food... or
didn’t get eaten. But now, in the
safety of our comfortable, hygienic,
homogenized 21st century lives,
it’s all too easy to fall asleep on our
true potential.

Wake Up and Smell the Hard
Work
Your idea doesn’t mean diddly-
squat until it’s out in the world.
And to do that is going to take
some hard manual labor.

So to stay on track, you’ll need to
engage with the execution process
as much as the idea itself.

None of my various bright ideas
— a social network for sneaker
collectors, customizable artwork of
your bicycle, a recipe sharing plat-
form, a book about designers turned
entrepreneur (OK, that last one I
am actually set on doing) — have
come to fruition yet.

And whilst CycleLove (and its
sister shop CycleLux) might be
building momentum, I still have
a huge hang-up about creating
the eBooks or information-based
content about cycling or whatever
it is that I’ve been talking about
for months and months. It’s still a
blog, not a business, and costing me
money instead of making it.

I chickened out of the work.
You need graft, or grit, or gump-

tion, or whatever you want to call it.
Whether it’s by actually blog-

ging on your blog, or starting your
startup, value is created by doing.

It’s easier to sit around and talk
about building a startup than it is
to actually start a startup. And it’s
fun to talk about. But over time, the
difference between fun and fulfilling
becomes clear. Doing things is really
hard — it’s why, for example,
you can generally tell people what
you’re working on without NDAs,
and most patents never matter.
The value, and the difficulty, comes
from execution
— Sam Altman

Dial Down the Resolution(s)
When I looked back at the list of
goals I’d set out for 2013 the other
day, I felt pretty embarrassed. Espe-
cially as it’s published in plain sight
on the internet. I didn’t come close
to achieving any of my resolutions.
Not one thing on the list.

But I know that beating yourself
up about this kind of stuff is stupid.
(Make changes, not criticisms).

So…I haven’t made any New
Year’s resolutions this year.

You don’t want high resolutions
anyhow — you want low resolution.

You want to let go of the fear of
fucking up, of it not being perfect,
of what other people think, of
things that probably won’t ever
happen, and just crank that stuff
out, baby.

Instead of Trying to Finish Every-
thing, Try to Finish One Thing.
Today if possible.
And then another...
And another...
And...
(I think I just finished this article).

What are you going to finish
today? n

James Greig is a London-based graphic
designer/writer [greig.cc] and the founder
of CycleLove [cyclelove.net]

By James Greig

Reprinted with permission of the original author.
First appeared in hn.my/anyth (greig.cc)

http://greig.cc
http://cyclelove.net
http://hn.my/anyth

  39

http://mailjet.com

40  SPECIAL

The end of procrastination
is the art of letting go.

I’ve been a lifelong
procrastinator, at least until recent
years. I would put things off until
deadline, because I knew I could
come through. I came through on
tests after cramming last minute,
I turned articles in at the deadline
after waiting until the last hour, I
got things done.

Until I didn’t. It turns out
procrastinating caused me to miss
deadlines, over and over. It stressed
me out. My work was less-than-
desirable when I did it last minute.
Slowly, I started to realize that pro-
crastination wasn’t doing me any
favors. In fact, it was causing me a
lot of grief.

But I couldn’t quit. I tried a lot of
things. I tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things Done. All are great methods,
but they only last so long. Nothing
really worked over the long term.

That’s because I wasn’t getting to
the root problem.

I hadn’t figured out the skill
that would save me from the
procrastination.

Until I learned about letting go.
Letting go first came to me when

I was quitting smoking. I had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then I learned I needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
I’m not saying I can never do these
things again once I let go of these
needs, but I let go of the idea that
they’re really necessary. I let go of
an unhealthy attachment to them.

Then I learned that distractions

and the false need to check my
email and news and other things
online were causing me prob-
lems. They were causing my
procrastination.

So I learned to let go of those too.
Here’s the process I used to let go

of the distractions and false needs
that cause procrastination:

➊ I paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ I thought about the person
I want to be, the life I want

to live. I set my intentions to do the
good work I think I should do.

➌ I watched my urges to check
things, to go to the comfort

of distractions. I saw that I wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ I realized I didn’t need
that comfort. I could be in

discomfort and nothing bad would
happen. In fact, the best things
happen when I’m in discomfort.

And then I smile, and breathe,
and let go.

And one step at a time, become
the person I want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

	FEATURES
	All RGB Colors In One Image
	What I Learned Coding X-Wing vs. TIE Fighter

	STARTUPS
	Startup Sales Negotiations 101

	PROGRAMMING
	How We Made Trello Boards Load Extremely Fast In A Week
	Confessions of an Intermediate Programmer
	The Best Programming Language

	SPECIAL
	I Never Finished Anything

