
Issue 53 October 2014

2

The end of procrastination
is the art of letting go.

I’ve been a lifelong
procrastinator, at least until recent
years. I would put things off until
deadline, because I knew I could
come through. I came through on
tests after cramming last minute,
I turned articles in at the deadline
after waiting until the last hour, I
got things done.

Until I didn’t. It turns out
procrastinating caused me to miss
deadlines, over and over. It stressed
me out. My work was less-than-
desirable when I did it last minute.
Slowly, I started to realize that pro-
crastination wasn’t doing me any
favors. In fact, it was causing me a
lot of grief.

But I couldn’t quit. I tried a lot of
things. I tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things Done. All are great methods,
but they only last so long. Nothing
really worked over the long term.

That’s because I wasn’t getting to
the root problem.

I hadn’t figured out the skill
that would save me from the
procrastination.

Until I learned about letting go.
Letting go first came to me when

I was quitting smoking. I had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then I learned I needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
I’m not saying I can never do these
things again once I let go of these
needs, but I let go of the idea that
they’re really necessary. I let go of
an unhealthy attachment to them.

Then I learned that distractions

and the false need to check my
email and news and other things
online were causing me prob-
lems. They were causing my
procrastination.

So I learned to let go of those too.
Here’s the process I used to let go

of the distractions and false needs
that cause procrastination:

➊ I paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ I thought about the person
I want to be, the life I want

to live. I set my intentions to do the
good work I think I should do.

➌ I watched my urges to check
things, to go to the comfort

of distractions. I saw that I wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ I realized I didn’t need
that comfort. I could be in

discomfort and nothing bad would
happen. In fact, the best things
happen when I’m in discomfort.

And then I smile, and breathe,
and let go.

And one step at a time, become
the person I want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

 3

Get 50% off your first 6 months
circleci.com/?join=hm

and help change the future of search

http://circleci.com/?join=hm
http://duckduckhack.com

Cover Illustration: Thong Le [weaponix.net]

4

Curator
Lim Cheng Soon

Contributors
Hlín Önnudóttir
Brian Guarraci
Andrew Back
Jeffrey P. Bigham
Christoffer Stjernlöf
Gershom Bazerman
Jeff LaMarche
Gustavo Duarte

Illustrator
Thong Le

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
Blurb

HACKEr MoNTHLy is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://weaponix.net
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 5

For links to Hacker News dicussions, visit hackermonthly.com/issue-53

Contents
FEATURES

06 Algorithm for Capturing Pokémon
By HLíN ÖNNUDóTTIr

13 My Name is Brian and
I Build Supercomputers in My Spare Time
By BrIAN GUArrACI, Interviewed By ANDrEw BACK

SPECIAL

16 My Half Workday as a Turker
By JEFFrEy P. BIGHAM

PROGRAMMING

20 A Gentle Introduction to Monad Transformers
By CHrISToFFEr STJErNLÖF

27 An Unreal Decision
By JEFF LAMArCHE

32 Letter to a Young Haskell Enthusiast
By GErSHoM BAzErMAN

36 How Computers Boot Up
By GUSTAvo DUArTE

http://hackermonthly.com/issue-53

6 FEATURES

FEATURES

By HLíN ÖNNUDóTTIr

Algorithm for Capturing Pokémon
Gen I Capture Mechanics

7 FEATURES

Nearly two decades after the debut of the
Pokémon video game series, the first-gen-
eration games — red, Blue and yellow —

have enjoyed a recent resurgence in popularity thanks
to the Twitch Plays Pokémon phenomenon and its
derivatives. In the time since their release, the games’
source code — originally written in z80 assembly —
has been picked apart by enthusiastic hackers, revealing
bit by bit the procedures and algorithms driving the
games’ mechanics. Here we will take an in-depth look
at the inner workings of one of the games’ most iconic
features: throwing a Poké Ball at a wild Pokémon in the
hope of capturing it.

The Algorithm
To determine the outcome of a thrown ball, the game
executes the following procedure (cleaned up and
tweaked for human presentation, of course). Note that
any time it speaks of division, it means integer division:
the result is an integer and the remainder is simply
discarded. Thus, for example, if it says “Divide 5 by 2”,
the result is simply 2, not 2.5.

1. If the ball being thrown is a Master Ball, the Poké-
mon is automatically caught. Skip the rest of the
procedure.

2. Generate a random number r1, with a range
depending on the ball used:

If it’s a Poké Ball, r1 ranges from 0 to 255
(inclusive).

If it’s a Great Ball, r1 ranges from 0 to 200
(inclusive).

If it’s an Ultra or Safari Ball, r1 ranges from 0 to
150 (inclusive).

3. Create a status variable S:

If the targeted Pokémon is asleep or frozen, S is 25.

If the targeted Pokémon is poisoned, burned or
paralyzed, S is 12.

otherwise, S is 0.

4. Subtract S from r1 (to avoid confusion with the
original r1, I will refer to the result as r*).

5. If r* is less than zero (i.e., if the generated r1 was
less than S), the Pokémon is successfully caught.
Skip the rest of the procedure.

6. Calculate the HP factor F:

1. Multiply the Pokémon’s max HP by 255 and
store the result in F.

2. Divide F by

8 if the ball used was a Great Ball.

12 otherwise.

3. Divide the Pokémon’s current HP by 4. If the
result is greater than zero, divide F by this
number and make that the new F.

4. If F is now greater than 255, make it 255 instead.

7. If the base catch rate of the Pokémon is less than
r*, the Pokémon automatically breaks free. Skip to
step 10.

8. Generate a second random number r2 ranging from
0 to 255 (inclusive).

9. If r2 is less than or equal to the HP factor F, the
Pokémon is caught. Skip the rest of the procedure.

10. The capture fails. Determine the appropriate ani-
mation to show:

1. Multiply the Pokémon’s base catch rate by 100
and store the result in a wobble approximation
variable w.

2. Divide w by a number depending on the ball
used, rounding the result down:

If it was a Poké Ball, divide by 255.

If it was a Great Ball, divide by 200.

If it was an Ultra or Safari Ball, divide by 150.

3. If the result is greater than 255, the ball
will wobble 3 times; skip the rest of this
subprocedure.

4. Multiply w by F (the HP factor calculated
above).

5. Divide w by 255.

6. Add a number if the Pokémon has a status
affliction:

If the Pokémon is asleep or frozen, add 10 to w.

If the Pokémon is poisoned, burned or para-
lyzed, add 5 to w.

8 FEATURES

7. Show the animation and message corresponding
to w:

If w is less than 10, the ball misses (“The ball
missed the Pokémon!”).

If w is between 10 and 29 (inclusive), the ball
wobbles once (“Darn! The Pokémon broke
free!”).

If w is between 30 and 69 (inclusive), the
ball wobbles twice (“Aww! It appeared to be
caught!”).

otherwise (if w is greater than or equal to 70),
the ball wobbles three times (“Shoot! It was so
close too!”).

What It Means
So what, indeed, does this algorithm actually mean for
capturing in r/B/y? How is it different from the later
games? In the rest of this discussion, I will assume you
are not using a Master Ball; that case is trivial and it
would be a bother to keep mentioning it.

well, first, we can derive a formula for the odds of
a successful capture from the algorithm. (This gets
a bit mathematical, but bear with me.) Let’s call the
Pokémon’s base catch rate C and create a ball modifier
variable B to stand for the range of r1: 256 if the ball
is a Poké Ball, 201 if the ball is a Great Ball and 151 if
the ball is an Ultra Ball. (Note that this is one higher
than the maximum numbers discussed in the algorithm
above; this is because a random number between 0 and
X inclusive can take on X+1 possible values.) Depend-
ing on where r1 falls in this range, three different
things can happen:

 n If r1 is less than the status variable S, the Pokémon
is immediately caught.

 n If r1 is greater than or equal to S, but less than or
equal to S + C, the game calculates a second random
number r2 between 0 and 255 inclusive and an HP
factor F. These numbers are then compared:

If r2 is less than or equal to F, the Pokémon is
caught.

If r2 is greater than F, the Pokémon breaks free.

 n If r1 is greater than S + C, the Pokémon breaks free.

of the total of B possible r1 values, S of them result
in the first path (auto-capture), C + 1 of them (up to a
maximum of B - S, since there are only B - S values
left) result in the second path where r2 and the HP
factor F are calculated, and the rest (if any) result in
the third path (auto-failure). we can visualize it like
this:

Now getting the formula is simple. what we want is
the sum of the two possible paths leading to the
Pokémon being successfully caught: first, the case
where r1 is within the auto-capture range (the chance
of which is S / B, since S out of B possible values of r1
give us that result), and second, the case where r1 is
within that lighter range in the middle (the chance of
which is min(C + 1, B - S) / B) and subsequently r2
<= F (the chance of which is (F + 1) / 256 - it’s F + 1
because we’re counting the r2 values from 0 to F
inclusive). This directly gives us the following:

Note that the game is not actually performing any of
these mathematical operations; the only actual arith-
metic it’s doing is within the F variable, while this is a
probabilistic formula derived from the structure of the
algorithm. That means these divisions are not integer
divisions, and this formula can be rearranged at will
without producing rounding errors or the like. Thus we
could, for instance, combine those divisions by B and
get this equivalent, perhaps somewhat cleaner formula:

 9

you’ll see that version again a bit later, but I’m stick-
ing with the former version for the explanation, as I
believe it both reflects the structure of the algorithm
better and will illustrate some aspects of its behaviour
more clearly. So here it is again with the full formula
for F included:

you probably still don’t have a very good idea what
any of this really means, but that’s okay; we’re getting
to that. Let’s go over the values in the formula and
how they ultimately affect it.

S (Status)
This is a simple variable: it is 25 if the Pokémon you’re
trying to catch is asleep or frozen, 12 if it’s poisoned,
burned or paralyzed, and 0 otherwise.

Unlike the formulas used in the more recent Poké-
mon games, the status is factored in not as a multiplier
but an addition. This leads to two interesting conclu-
sions. First, it means that status conditions essentially
give a certain baseline chance of capturing the Poké-
mon, equal to S/B — regardless of the Pokémon’s
catch rate and HP, your final chance of capturing it will
always be at least that baseline. Second, addition has a
proportionally greater influence the smaller the original
value is — think of how if you add 100 to 100, you’re
doubling it, whereas if you add 100 to 1 million, the
change is barely worth mentioning. This means that
status provides only a modest improvement to the
odds of a successful capture if your chances are already
pretty good, but makes a massive difference when
you’re trying to catch a more elusive Pokémon.

C (Capture Rate)
This is simply the base catch rate of the Pokémon spe-
cies, ranging from 3 (for legendary Pokémon) to 255
(for common Pokémon like Caterpie and Pidgey).

If you look back at the visualization image above,
the capture rate’s role in the algorithm is to determine
the size of the lighter part of the top bar: out of the B
possible values r1 can take, C + 1 of them (or more
accurately, min(C + 1, B - S), since the capture rate
window obviously can’t be bigger than all the B values
that aren’t in the status auto-capture window) will
lead to the HP factor check happening. All values of
r1 that don’t fall either within the status auto-capture
window or the capture rate window are auto-failures.

For a legendary (with capture rate 3), there are there-
fore always only four (3 + 1) possible r1 values for
which the game will look at the legendary’s HP at all,
for instance.

That capping when the capture rate is greater than
B - S has some interesting consequences, which I’ll go
into better in a bit.

B (Ball Modifier) and G (Great Ball Modifier)
Quite unlike the ball bonus multiplier of the later
games, there are two ball-related modifiers in the
r/B/y formula, both of which are primarily divisors,
meaning a lower value for them means a higher chance
of a successful capture. In the later games, a Poké Ball
has a ball bonus multiplier of 1, with a Great Ball
having a ball bonus of 1.5 and an Ultra Ball having a
ball bonus of 2, forming a straightforward linear pro-
gression from worse to better balls. In r/B/y, however,
the ball modifier B is 256 for Poké Balls, 201 for Great
Balls and 151 for Ultra Balls and Safari Balls, and
furthermore the G value in the calculation of the HP
factor (the F variable) is 8 for Great Balls but 12 for all
other balls.

This makes it a little harder to see at a glance just
how much more effective the better balls actually are
than plain Poké Balls in r/B/y, but let’s take a good
look at the formula again.

The addition splits it into two parts: the status check
(S/B), and the HP factor check (the rest). The effect
of balls on the status check is simple to calculate. For a
Poké Ball the status check becomes S/256, for a Great
Ball it’s S/201, and for an Ultra or Safari Ball it’s S/151.
This means that compared to a Poké Ball, a Great Ball
effectively gives a 256/201 = 1.27 multiplier to the
status check, and an Ultra Ball gives a 256/151 = 1.70
multiplier to it.

The HP factor check is a bit more complicated,
since in addition to a division by B, the min(C + 1,
B - S) part means it will sometimes also contain B as a
multiplier instead of a divisor, and the HP factor itself
contains the G value within some roundings and a
cap of 255. If we ignore rounding errors and the +1,
assume that C + 1 is less than B - S and the overall cap
of 255 on the HP factor doesn’t get tripped, however,
then both B and G are basically divisors on the entire
outcome, so we can compare them in a similar way

10 FEATURES

as above. This tells us that compared to a Poké Ball,
a Great Ball effectively yields a multiplier of around
256*12 / 201*8 = 1.91 to the HP factor check, and
an Ultra Ball yields a multiplier of around 256*12 /
151*12 = 1.70.

yes, you read that right: Great Balls actually give a
higher boost to the HP factor check than Ultra Balls,
provided our assumptions hold. Ultra Balls are still
better for the status check, but if you are for instance
trying to catch a Pokémon with no status condition (in
which case the status check is always going to be zero),
then Great Balls are actually, honest-to-God better
according to this. who would’ve thought?

So, when do those simplifying assumptions actually
hold, and what happens when they don’t, anyway?
well, the min(C + 1, B - S) means that when the base
catch rate of the Pokémon is sufficiently high, the HP
factor check formula turns into this:

Suddenly B has vanished entirely as a divisor except
in the subtraction of S/B. Under these circumstances,
even the advantage the Ultra Ball did have thanks to its
lower B value is completely canceled out, and in fact
the Great Ball’s disadvantage when it comes to status
starts to be partly mitigated. To intuitively grasp what’s
going on here, let’s look yet again at the visualization
from earlier:

 The B value determines the size of the top bar.
A lower B value generally helps by making the red
auto-failure portion on the right side smaller and thus
also making the status auto-capture window and the
capture rate window proportionally bigger. However,
if the C value is so large that there are no auto-failure
values on the right side either way, then a lower B just
means the status auto-capture window, if any, becomes
proportionally bigger at the expense of the capture rate

window, where you would have had some chance to
capture the Pokémon anyway — still an improvement,
but not as much of one. And if there is no status, then
so long as B is less than or equal to C + 1, the entire
top bar is taken up by the capture rate window —
beyond that point, a lower B won’t do anything at all.

All in all, this means that the Great Ball has an even
greater advantage over the Ultra Ball for Pokémon with
high catch rates, starting at 150 and maximizing at
200+, by which time the HP factor check will be about
33% more likely to succeed for a Great Ball than an
Ultra Ball.

Don’t count your chickens just yet, though. The
other major simplifying assumption we’ve been making
in calculating the balls’ relative strengths was ignoring
the cap on the HP factor, and this will turn out to be
quite significant as well. More on that in the HP factor
section below.

F (HP Factor)
This is where the current health of the Pokémon you’re
trying to catch comes in, making it easier to capture a
Pokémon that has been weakened. To recap, the F
value is given by the following formula:

where M stands for the Pokémon’s maximum HP, H
stands for the Pokémon’s current HP, G stands for the
Great Ball modifier discussed above (8 for Great Balls,
12 otherwise), and ⌊x⌋ stands for rounding x down to
the nearest integer. A higher F value means a greater
chance of a successful capture.

First things first, let’s see what sort of value is going
to come out of this for both possible G values. If we
plug in H = M to represent a full-health Pokémon and
ignore rounding errors, we get...

yet again, incredibly enough, the Great Ball is actu-
ally better than not just the Poké Ball but also the Ultra
and Safari Balls, at least for full-health Pokémon.

 11

So what happens as you lower the Pokémon’s HP?
It’s not hard to see that the basic interaction between
the Pokémon’s maximum and current HP involved
here is M/H (M appears above the line in the fraction
while H appears below the line), which at a glance
makes sense: at full HP you’ll get 1 out of that, and
then as H drops, the value will rise. (This means the
above full-health values are the minimum possible
values the HP factor can take for their respective balls.)
But if left unchecked, it would just rise ever faster
and faster, which would lead to absurd results — the
value for 4 HP would be twice as high as for 8 HP.
That’s where the HP factor cap comes in: once you’ve
whittled the Pokémon’s HP down enough to make
the HP factor value 255, lowering its HP more will no
longer have any effect upon its catch rate. Given the
full-health values above, this means lowering the Poké-
mon’s HP can at most double your chances for the HP
factor check if you’re using a Great Ball, or triple them
when you’re using another ball - which in turn means
that despite the Great Ball’s initial advantage, the Ultra
Ball can catch up, what with the maximum being the
same for both of them.

So, just when is this cap tripped? Again, if we ignore
rounding errors, we can calculate that easily:

which means the HP factor caps when the Pokémon is
at roughly 1/2 (4/8) of its total HP for Great Balls, or
around 1/3 (4/12) of its total HP for all other balls.

...Wait, you say. Did you just say what I think you just
said?

yes, I’m afraid so. with or without status effects,
regardless of catch rates, lowering your Pokémon’s HP
below one third, or one half if you’re using a Great Ball,
does absolutely nothing to help you catch it. Continuing
to painstakingly deal tiny slivers of damage beyond that
is simply a waste of your time and effort.

For a low-health Pokémon whose HP factor has
capped, the final capture formula (regardless of the ball
used) simplifies beautifully to:

W (Wobble Approximation)
But what about the wobbling? what’s all that weird
calculation the game is doing just to figure out how
many times the ball is going to wobble?

well. Let’s analyze just what the game is doing there,
shall we? Most of the variables involved in the wobble
calculation are the same or basically the same as in the
actual capture formula, so I’ll use the same variable
names, but since the status factor in the wobble
formula is not the same (it’s 10 for sleep/freezing and 5
for poisoning/burns/paralysis instead of 25 and 12
respectively) I’ll call that S2. with this in mind, here’s
the formula the game is evaluating:

Hmm. Doesn’t this formula look just the slightest bit
familiar? No? How about if we ignore the roundings
and rearrange it just a bit...

...and note that for Poké Balls in particular,
gives a result uncannily close to the S variable from the
success formula...

...doesn’t it look just a little bit like simply a hundred
times a variation of another formula we know, with
some off-by-one errors and a cap removed?

Now, I can’t claim I know what Game Freak were
thinking when they programmed this calculation. But
I would bet money that what the game is trying to
do here with the wobbles is to calculate a percentage
approximation of its own success rate. If the ball misses,
the game estimates your chances are less than 10%,
whereas if it wobbles once it’s guessing 10-29%, twice
means 30-69% and three times means 70% or more.

The main factors to introduce serious errors in this
approximation are, firstly, that they failed to account
for the status bonus in the real formula being affected
by the ball modifier (as noted above, ((B - 1) * S2)/100
only approximates S for Poké Balls); secondly, the one
that should be added to the C value (which has some

12 FEATURES

significance for very low catch rates); and thirdly, the C
+ 1 value potentially hitting a cap. what were the pro-
grammers thinking? I’m rather inclined to think it was
simply an honest oversight. That or, more charitably,
they didn’t want to waste the additional overhead it
would take to be more accurate about it for something
so insignificant.

Notice anything interesting? This is a completely
static calculation with no random factor to it what-
soever, and that means (unlike the later games) the
number of wobbles in R/B/Y is always the same given the
Pokémon’s HP and status and the type of ball. Thus, if
you’re throwing balls at something and you’ve seen it
break out on the first wobble, you can be certain you’re
catching it for real the moment you see the ball start
to wobble a second time, unless its HP or status were
changed in between.

In Plain English
Confused by all the math talk? All right; here’s a plain,
summarized, as-few-numbers-as-possible version of the
unexpected conclusions of the algorithm. remember,
this is all stuff that applies to R/B/Y only; it does not
work this way in the later Pokémon games.

First of all, regardless of anything else, if the targeted
Pokémon has a status affliction, you get a set extra chance
to capture it depending on the status and the Pokéball
you’re using, before the game even starts checking the
Pokémon’s HP and whatnot. These chances are listed in
the following table:

Ball PSN/PAR/BRN SLP/FRZ

Poké Ball 12/256 = 4.69% 25/256 = 9.77%

Great Ball 12/201 = 5.97% 25/201 = 12.44%

Ultra Ball 12/151 = 7.95% 25/151 = 16.56%

your overall chance of capturing the Pokémon if it

has a status affliction will never be less than the chance
stated above, even if it’s a legendary at full health — this
is a check the game applies before it even looks at the HP
or catch rate, after all. This makes status by far the most
viable way of increasing your chances of getting a legend-
ary — the improvements to be made by lowering their
HP are frankly negligible in comparison. (The chance of
catching an average full-HP sleeping Mewtwo in an Ultra
Ball is 17.45%; the chance of catching an average 1-HP
sleeping Mewtwo in an Ultra Ball is 19.21%.)

Second of all, lowering a Pokémon’s HP below one
third has no effect at all on its catch rate. If you’re using
Great Balls, in fact, that cutoff point is at one half
rather than one third. Painstakingly shaving off sliv-
ers until the HP bar is one pixel wide is and always
has been a waste of time in r/B/y. when a Pokémon
is down to the cutoff point, you are twice as likely to
capture it as if it were at full health if you’re using a
Great Ball, and three times as likely if you’re using any
other ball.

Third, Great Balls are actually better than Ultra
Balls for Pokémon with no status afflictions or that have
an intrinsic catch rate of 200+, provided they’re at
around half of their health or more. The difference is
slight (but still there) for non-statused Pokémon with
low catch rates, such as legendaries, but at high catch
rates, Great Balls are very noticeably superior to Ultra
Balls, even with status afflictions. Ultra Balls, mean-
while, truly shine at catching statused Pokémon with
low intrinsic catch rates, and for low-health Pokémon
they’re always at least as good as Great Balls.

Fourth, wobbles are a loose indicator of the game’s
approximation of your chances of capturing the Pokémon
at the current status and HP with the current ball. This
approximation can be significantly flawed, especially
when status or high catch rates are involved, but I
would guess accuracy wasn’t particularly a priority
for the programmers, considering it’s just determining
how many times you’ll see a ball wobble on the screen
before a breakout. roughly:

Wobbles Message Approximated
chance of
capture

0 “The ball missed the Pokémon!” < 10%

1 “Darn! The Pokémon broke free!” 10-30%

2 “Aww! It appeared to be caught!” 30-70%

3 “Shoot! It was so close too!” >= 70%

Check out the catch rate calculator for the first-gen-
eration games here: hn.my/catchrate n

Hlín Önnudóttir is an Icelandic programmer with a bachelor’s
degree in computer science and has been a fan of the Pokémon
series since she was ten. In her free time she runs a website
dedicated to the series at dragonflycave.com

Reprinted with permission of the original author. First appeared in hn.my/pokemon (dragonflycave.com)

http://hn.my/catchrate
http://dragonflycave.com
http://hn.my/pokemon

 13

Interviewed by ANDrEw BACK

Brian Guarraci is a software engineer
at Twitter and in his spare time he’s
building a Parallella cluster with a
design that was inspired by two of
the most iconic supercomputers ever
made.

when we saw pictures
of Brian’s cluster,
we were impressed,

and when we shared these with the
community, it became apparent
that we were not the only ones! It
didn’t take long before curiosity got
the better of me and I decided to
get in touch with Brian to find out
more.

Hi, Brian. Can you tell me about
the Parallella cluster you are
building?
I’m building a low-power general
purpose compute cluster. I want it
to be able to take advantage of stan-
dard distributed system packages
so that there’s a familiar developer
model. The Parallella boards are
great for computation, but since
they have relatively limited stor-
age and memory, I added two Intel
NUCs. Each NUC has 1x Intel i3,
16GB rAM, 120GB SSD, 802.11ac
wiFi and are also pretty low-power.
The NUCs run Ubuntu server and

are storage hosts and the primary
interface to the external world. The
system has 8x Parallella boards and
a shared gigabit Ethernet switch,
giving a peak performance of
around 208 GFLoPs.

 The physical assembly is inspired
by the Cray-1 and Connection
Machine supercomputers, also the
new Mac Pro. It is 16“ high, with
a 12” diameter and 3" high base.
Starting with the original motiva-
tion of creating a cooling tower
for the 8 Parallella boards (Mac
Pro style), the design expanded to
also include power transformers,
the two NUCs, a gigabit Ether-
net switch, an Arduino, and LED
strips. In the spirit of the Con-
nection Machine (CM-5), there
will be 8x Adafruit Neopixel LED
strips mounted on the outside of
the tower and each with 16 LEDs,
which will show the status of the
Parallella compute nodes.

My Name is Brian and I
Build Supercomputers in

My Spare Time

14 FEATURES

Power-wise, the system has 3
transformers: the two stock NUC
19v power supplies and an exter-
nal 180w 12v power supply for
everything else. The entire expected
power consumption is about 120w
on average: 30w * 2 (NUC) + 5w *
8 (Parallella) + 20w (LEDs).

 A 12“ x 3” PvC tube is used
to form the base. The tube has a
milled edge to support the laser-
cut disc that is the tower base. The
tower is a 13“ x 6” PvC tube with
a 140MM fan mounted at the top.
Aluminum rails are mounted inside
both the base and tower using high-
temperature epoxy. The base itself
includes the two stock AC-19v
NUC transformers, the NUCs
themselves, and 2 19v-5v DC-DC
converters providing power for the
Parallella boards and LEDs.

I spent a lot of time figuring out
how best to mount the Parallella
boards while satisfying the space
and airflow requirements. The solu-
tion I ended up with was to use a
gigabit Ethernet switch as a kind
of “spine.” In doing so, it was easy
to minimize wire lengths, provide
power, and simplify mounting.
on each side of the switch are 4x
Parallellas mounted to oxygen-free
copper bus bars. The bus bars are
then mounted to the switch using
3M industrial velcro, which is easy
to work with, very strong, and
serves to insulate the bus bars from
the metal switch case. The bus bars
are subsequently connected to the
base power supplies via standard
Molex connectors.

 Although building a system with
a round case is much harder than a
rectangular system, it is definitely
more satisfying. To my surprise,
when I first fired up the tower I was
amazed how awesome it looked and
started to think about using a clear
acrylic tower tube instead.

 15

Will the cluster have any custom hardware extensions
or modifications?
Not at the moment. I think that the possibility of
removing the HDMI controller from the FPGA and
instead having custom logic for specialized hardware
compute support is interesting, though.

What applications do you have in mind?
My current plan is to build a familiar compute cluster
setup with host HDFS, redis, and zooKeeper on the
NUCs, and then farm out tasks to the Parallella boards.
I think there’s a lot of opportunity to try different
styles of parallel computing in the system, so I will use
it as a platform for experimenting. Practically speaking,
I will use the system for machine learning and Hadoop
style tasks.

Why is parallel computing important?
For the most part, CPUs aren’t getting faster, and the
best way to get more done is to compute in parallel.
one of the things that’s cool about a Parallella cluster
is that you can perform multiple heterogeneous parallel
computing tasks all at the same time. Some nodes can
be doing image processing while other nodes are doing
machine learning. It’s a very flexible setup.

How can people follow the progress of your project?
I call this machine the Parallac, and I’m planning on
documenting any specific details at parallac.org n

Andrew Back is Parallella’s Community Manager. He leads the
UK Open Source Hardware group and is a former Open Source
evangelist for BT.

Reprinted with permission of the original author.
First appeared in hn.my/briansuper (parallella.org)

http://parallac.org
http://hn.my/briansuper

16 SPECIAL

SPECIAL

Last tuesday, I spent 4
hours, half a work day, as a
Mechanical Turk worker.

over the past 6-7 years, I’ve
spent thousands of dollars as a
requester on Mechanical Turk. I’ve
also done some small-scale turking
myself. My lifetime earnings were
only around $25 as of that morning.
while not much money, this almost
certainly puts me near the higher
end of researchers who do work on
Mechanical Turk.

I conducted a very informal
poll during a talk at the CvPr
(top computer vision confer-
ence) human computation work-
shop last week. Almost everyone
there had used Mechanical Turk,
and about half had even done a
job on Mechanical Turk. when I
asked how many had earned $2,
most hands went down, a couple
remained at $5, and none were still
up at $10. I’ve worked on Mechani-
cal Turk for a variety of reasons, but
mostly to get a better sense of how
Mechanical Turk works and under-
stand how I could best leverage it.

I think this has worked out.
For a while now, our HITs have
included clear indications of what
we expected the hourly wages
of workers to be. we’ve given

incremental feedback on our HITs,
allowed workers to keep working
when we still had more for them
to do, without bouncing them back
through the dreadful Mechanical
Turk interface to continue.

when I taught Crowd Program-
ming [programthecrowd.com]
this past Spring at CMU, the first
assignment for my class was to earn
$2 on Mechanical Turk. This turned
out to be surprisingly difficult,
time-consuming, and frustrating
for some of the top undergraduate
students in the world (by at least
one metric, they’re destined for the
highest average starting pay in a
couple years). I think it moves the
conversion in a positive direction.
Students are less likely to refer to
turkers as “lazy” and more likely to
think about the usability and trans-
parency of their tasks.

I wanted to go a step further
and experience what it might be
like if I expected to earn a living
from Amazon Mechanical Turk.
This report details my experience.
I don’t necessarily think any of
this is new. I would even venture
to guess that it’s all contained on
the forums at turkopticon.com or
turkernation.com, and to some
extent in academic papers.

My Experience
I started out pretty optimistically.
I’m a pretty smart guy, a pretty
computer-savvy guy, and I have a
fair amount of experience around
crowdsourcing. I also have had a
handful of really good experiences
on Mechanical Turk that I thought
I might be able to generalize. For
instance, I once was paid ~$5 for
writing a 500-word article about
Cisco Networking Certification
— I don’t know much about that,
but I leveraged my experience as a
professor to wax on about it for 500
words anyway.

Hour One
Because of my positive experience
bullshitting an essay, I started out
looking for HITs that paid more
than $1.00 and had the word
“write” in them.

I found a handful of HITs that
I was qualified for, but none were
offering $5. I found one that offered
$2 but wanted me to write about a
golf course I knew nothing about,
and it also wanted me to upload a
document about it to Dropbox and
then paste the link into the form
field on Mechanical Turk. That
sounded complicated. I figured
by the time I did actual research

By JEFFrEy P. BIGHAM

My Half Workday as a Turker

http://programthecrowd.com

 17

and uploaded the document, it
wouldn’t possibly be worth my
time for only $2. Looking back, I’m
not sure if I was right about that.

I found a job that was about
editing, which is close to writing, so
I took that one. It pointed me at a
2.5 page Google Doc, which I was
supposed to edit. The instructions
said to mark my edits in red type,
which turned out to be really awk-
ward (time-consuming) to do. The
document was about how to run
some Mormon fellowship meeting,
and had a bunch of errors in it. I
made a whole bunch of changes,
which took me maybe 10 minutes.
only after I clicked submit did I
remember that it only paid $0.25.
I had accidentally become an eager
beaver.

Not looking good so far!
Then I “read and responded to

messages,” which was a survey for
$1.01. This advertised 5-10 minutes
and took me 8 minutes. That’s actu-
ally pretty good.

Next, I summarized a couple
of linked articles in 50 words or
more. These paid $0.35. Some of
these articles didn’t even have 50
words in them to start with, so that
required me to embellish a little. I
installed a “word Count” Chrome
extension so I would know how
many words I had typed.

I wrote a few 350+ word articles
for $1 each about “Home remod-
elling Ideas,” “owning a Pet,” and
“Travel Insurance” to round out the
hour. These were fine. I made more
than $6/hr while working on them,
although I was working pretty hard
at it to get that much typing done
in just 10 minutes.

Hour 2
In the next hour, I started off
answering 10 really long and
confusing questions about web
sites and how and where they
were ranked on Google. I had to
follow many of the links, and fill
in about 40-50 answers in total.
It was really cognitively taxing to
switch between the various browser
windows, select and copy-paste
information, and understand the
instructions. I thought $1.00 would
be a good pay rate for this when I
started, but in the end I made less
than $6/hr on the task and I was
trying pretty hard.

I realize now that it really bugged
me when I didn’t understand the
point of a task, or why someone
was having a person do it instead of
scripting it themselves. This task in
particular seems like it would be a
great candidate for writing a simple
little browser script to harvest the
information they were interested
in. If I had some confidence that
this HIT would be around for very
long, I might even write that script
myself.

After that, I did a study about
social networks from Stanford Uni-
versity. The study only paid $0.30,
which I was pretty down about
because it took ~10 minutes, but
then this morning I got an email
saying that I had received a $1.65
bonus from them. That makes it
one of the better-paying tasks. I
can’t say that I read the instruc-
tions too carefully (who has the
time?), but I don’t remember seeing
anything about a bonus. Had I seen
the notice about the bonus, then I
might have paid more attention…
although maybe not.

Then I did a few HITs tran-
scribing text from images (human
oCr). I was only getting paid

$0.01 for doing these tasks, but
the HITs promised me a bonus if I
did a good job. I got $0.07 late last
night. Turns out that’s not nearly
enough to make it worth it. To their
credit, this was the first task that
I saw that gave me clear feedback
and incremental updates on how
much I would make.

Then I wrote an outline for an
article for $0.20. I participated in
an economic experiment for $0.10.
The HIT was pretty confusing. I
didn’t actually have to do anything,
but it looked like someone they’re
going to randomly pair me with
can decide to give me more money
if they want. Three days later I
received a bonus of $0.45. I guess I
got paired with a sucker.

Hour 3
At hour three, I started sorting
by least number of HITs. My goal
here was to find academic stud-
ies because I thought maybe they
would pay reasonably, and prob-
ably wouldn’t check too carefully
whether the HIT was done per-
fectly. It wasn’t clear how to search
for these generically, so I eventually
started searching for university
names. Most of what came up were
surveys, though, and almost all of
them paid extremely poorly.

I started doing a survey and
after about 4 minutes it kicked
me out saying that I didn’t qualify.
It warned me not to submit the
HIT because if I did so I would be
rejected. However, I was pretty
mad about this, and so I submit-
ted the HIT anyway with the
survey code: “I did 4 minutes of
the survey before it told me that
I didn’t qualify. I expect you to
approve this HIT.” I wasted some
time and found that this survey
was posted by a somewhat shady

18 SPECIAL

looking market research company
headed by a guy named Dmitry.
At the time, I was hoping Dmitry
would reject my HIT so I could go
on a tirade about how unfair it was,
and try to get him banned from
MTurk or whatever. Turns out he
actually accepted my HIT and I
earned $1.00 for those 4 minutes.
However, I suspect many workers
wouldn’t risk it.

Hour 4
At some point I got super frustrated
with all the broken or misleading
HITs. I found a video-labeling task
from the MIT Media Lab that paid
$0.07 that I could fairly reliably do
in ~30-35 seconds, and just kept
doing that one. I did almost exclu-
sively that task for the last hour or
so.

For most of hour 4 I just did
the video labeling HITs. I was too
tired to go looking for something
better. And, I got pretty good at
doing them quickly. Unfortunately,
as of almost 2 days later I’ve yet
to actually be paid for doing these
HITs, although I also haven’t been
rejected.

Discussion
In the end, I submitted HITs total-
ing $17.29, and received $2.17
in bonuses. This works out to an
effective hourly wage of $4.87.
As of one week later, none of my
HITs have been rejected, but only
about half have been accepted. I’ve
only received $8.50 of the $17.29
(~49%).

I can’t decide if my hourly wage
is good or bad. Also, while I think I
did a pretty good job, some of my
work very well might be rejected
anyway. I had expected Mr. Dmitry
to reject my survey (on which I
just entered “I did 4 minutes of

the survey before it told me that
I didn’t qualify. I expect you to
approve this HIT.” as my survey
code), but he didn’t.

 My pay was pretty low, but that
wasn’t the most frustrating part of
it. For me, it was the lack of trans-
parency regarding how well I was
doing, and poorly designed HITs
that were the most frustrating. I had
no idea which jobs would be good
jobs, which meant that I wasted a
lot of time on duds. when I found
a reasonable job that I could keep
doing, I kept doing it even if there
might be something better out
there, because experience taught
me that most of what was out there
would stink.

I started so many surveys, which
informed me some questions into
the survey that I didn’t qualify.
Some of these claimed to have IrB
approval, but my experience is that
generally participants are to be told
that they can quit at any time and
be compensated for the time spent.

Some surveys were conducted by
shady market research businesses.
In either case, I could have chosen
to complain, but I assume that at
best I would get my $0.15 and
maybe have the survey taken down.
I don’t personally benefit too much
from that.

So many HITs were just broken.
I’d see a post on mturk.com that
seemed promising, click it, and
then the page just wouldn’t load.
or, sometimes they’d say that the
experiment was over, even though
they hadn’t removed their HITs
from Mechanical Turk. one time I
saw a fail-whale equivalent turking
mascot that said they had enough
turkers right now and didn’t need
any more.

on the one hand, I could see
these problems pretty quickly and
move on. But, the 20 seconds it cost
me to do that — from deciding to
click on that page, to clicking on it,
to waiting to see if it would load
— ate into my working time. If I’m
targeting $6/hr, the hourly wage on
HITs that I could work on has to go
up by enough to make up for the
$0.033 cents I just lost in opportu-
nity cost while chasing a dud.

I found myself developing heu-
ristics about how long I thought
tasks would take. That made for
some weird tradeoffs. For instance,
HITs that paid less than $0.10
just weren’t worth looking at
unless they came with a clear time
estimate. There’s a high chance of
any new HIT being a dud, and so it
wasn’t worth the expected payoff
to check on low-paying HITs.

I took tasks that included a time
estimate in the title, e.g. “takes 10
minutes,” because at least then I
had some estimate of how long it
should take me.

 19

I’ll also admit to occasionally
being the so-called lazy turker.
when I saw my pay rate dipping
below $6/hour, I just tried to finish
the task as quickly as I could. I
tried to pay just enough attention
so I’d catch obvious gold standard
questions and otherwise ward off
probable rejection, but I wasn’t
doing a good job anymore. Probably
some machine learning researcher
is using me as motivation for a new
statistical correction technique as
we speak.

The problem is that by the
time I realized these HITs weren’t
worth doing, I had sunk so much
into these tasks that I felt like I
couldn’t just abandon them. I was
often already 10 minutes into a task
before I realized that I wouldn’t be
making my $6/hr. very few HITs
provided reliable feedback regard-
ing my progress.

And, holy shit, requesters don’t
know how to use qualifications.
If I click through to a task only to
find some equivalent of “this job is
only meant for Bob, if you’re not
Bob we’ll reject you,” I really might
punch someone. variations include,
“only people who took a survey on
X two months ago are eligible for
this HIT.” Presumably, the people
who posted the tasks emailed those
who were eligible to let them know
(how else would they find them?).
If so, it takes only one extra step to
assign a qualification to the HIT so
only the workers you want to do
the task can do it, and, importantly,
only those workers see it in the list
of available jobs.

These problems could be easily
fixed by requesters, although edu-
cating the many requesters on how
to avoid these problems sounds
like a pretty daunting task. In my
other research life I work on web

accessibility. It turns out to be really
difficult to get web developers to
create accessible web pages because
(i) they don’t know they should do
it, (ii) they don’t know how to do
it, and (iii) the benefits to them are
somewhat invisible. I think these
same root causes explain the prob-
lems on Mechanical Turk.

It seems like Mechanical Turk
could reasonably introduce changes
that could help with these prob-
lems. For instance, it would be
great if there was a better flagging
mechanism, and if Mechanical Turk
took it more seriously. Perhaps they
could consider charging request-
ers who post bad HITs more on
subsequent HITs. I think they could
justify this because it would likely
keep costs lower for everyone else.

we could also pretty easily create
a browser extension that would
automatically solve some of the
annoying problems. Disabling the
forms of any HIT that hasn’t been
accepted would be really easy and
help a lot. It could also simply
check to see if there is content on
the HIT page links, so I wouldn’t
have to manually click on each one.
Fixing these problems aren’t exactly
grand leaps toward the future of
work, but I think they’d impact
ordinary people quite a lot.

of course, much of what stood
out to me about this experience was
really just the failings of Amazon
Mechanical Turk. other platforms
don’t have these issues, at least not
to the same scale. Amazon doesn’t
seem to like to update Mechanical
Turk very often, however, so I’m not
holding out too much hope. As I’ve
heard rob Miller say, “The great
thing about Mechanical Turk is that
they so rarely update things that I
can still use my slides about them
from 2008.”

Conclusions
I got a lot out of spending 4 hours
working on Mechanical Turk. Not
because the experience of work-
ing itself was all that positive, but
because I feel that I learned a lot
about the worker experience. Much
of what I learned justified what
we’re already doing. I’m going to
make especially sure now that we
advertise our hourly wage in the
HIT title, and that we continue to
give incremental feedback about
payment. I hope we’ve been avoid-
ing the obvious usability problems,
but I want to take special care to
avoid them in the future.

Most of the problems I expe-
rienced seem fairly trivial to fix.
I think we need to make certain
going forward with research that
we’re not fixing issues with the site
that Amazon or requesters could
fix overnight if they were incentiv-
ized to do so. A cautionary note
is that I’m by no means an expert
worker, so it’s possible that more
experienced workers have found
ways around the problems I’ve
experienced, possibly with tools or
approaches that overcome them, or
more likely by having found ways
to avoid the worst of the HITs that
are out there. n

Jeffrey P. Bigham is an Associate Professor
in the Human-Computer Interaction Insti-
tute at Carnegie Mellon University. He uses
clever combinations of on-demand crowds
and computation to build the interactive
systems from science fiction.

Reprinted with permission of the original author.
First appeared in hn.my/turker (cs.cmu.edu)

http://hn.my/turker

20 PROGRAMMING

PROGRAMMING

Either Left or Right
Before we break into the mysterious world of monad
transformers, I want to start with reviewing a much
simpler concept, namely the Either data type. If you
aren’t familiar with the Either type, you should prob-
ably not jump straight into monad transformers — they
do require you to be somewhat comfortable with the
most common monads.

with that out of the way:
Pretend we have a function that extracts the domain

from an email address. Actually checking this prop-
erly is a rather complex topic which I will avoid, and
instead I will assume an email address can only contain
one @ symbol, and everything after it is the domain.

I’m going to work with Text values rather than
Strings. This means if you don’t have the text library,
you can either work with Strings instead, or cabal
install text. If you have the Haskell platform, you
have the text library.

we need to import Data.Text and set the Overload-
edStrings pragma. The latter lets us write string literals
(such as “Hello, world!”) and have them become Text
values automatically.

λ> :module +Data.Text
λ> :set -XOverloadedStrings

Now, figuring out how many @ symbols there are in
an email address is fairly simple. we can see that

λ> splitOn "@" ""
[""]

λ> splitOn "@" "test"
["test"]

λ> splitOn "@" "test@example.com"
["test", "example.com"]

λ> splitOn "@" "test@example@com"
["test", "example", "com"]

So if the split gives us just two elements back, we
know the address contains just one @ symbol, and we
also as a bonus know that the second element of the
list is the domain we wanted. we can put this in a file.

{-# LANGUAGE OverloadedStrings #-}

import Data.Text

-- Imports that will be needed later:
import qualified Data.Text.IO as T
import Data.Map as Map
import Control.Applicative

By CHrISToFFEr STJErNLÖF

A Gentle Introduction to
Monad Transformers

or, Values as Exceptions

 21

data LoginError = InvalidEmail
 deriving Show

getDomain :: Text -> Either LoginError Text
getDomain email =
 case splitOn "@" email of
 [name, domain] -> Right domain
 _ -> Left InvalidEmail

This draws on our previous discoveries and is pretty
self-explanatory. The function returns Right domain if
the address is valid, otherwise Left InvalidEmail, a
custom error type we use to make handling the errors
easier later on. (why this is called LoginError will be
apparent soon.)

This function behaves as we expect it to.

λ> getDomain "test@example.com"
Right "example.com"

λ> getDomain "invalid.email@example@com"
Left InvalidEmail

To deal with the result of this function immediately,
we have a couple of alternatives. The basic tool to deal
with Either values is pattern matching, in other words,

printResult' :: Either LoginError Text -> IO ()
printResult' domain =
 case domain of
 Right text -> T.putStrLn (append
"Domain: " text)
 Left InvalidEmail -> T.putStrLn "ERROR:
Invalid domain"

Testing in the interpreter shows us that

λ> printResult' (getDomain "test@example.com")
Domain: example.com

λ> printResult' (getDomain "test#example.com")
ERROR: Invalid domain

Another way of dealing with Either values is
by using the either function. either has the type
signature

either :: (a -> c) -> (b -> c) -> Either a b -> c

In other words, it “unpacks” the Either value and
applies one of the two functions to get a c value back.
In this program, we have an Either LoginError Text

and we want just a Text back, which tells us what to
print. So we can view the signature of either as

either :: (LoginError -> Text) -> (Text -> Text)
-> (Either LoginError Text -> Text)

and writing printResult with the help of either yields
a pretty neat function.

printResult :: Either LoginError Text -> IO ()
printResult = T.putStrLn . either
 (const "ERROR: Invalid domain")
 (append "Domain: ")

This function works the same way as the previous
one, except with the pattern matching hidden inside
the call to either.

Introducing Side-Effects
Now we’ll use the domain as some sort of “user token”
— a value the user uses to prove they have authen-
ticated. This means we need to ask the user for their
email address and return the associated token.

getToken :: IO (Either LoginError Text)
getToken = do
 T.putStrLn "Enter email address:"
 email <- T.getLine
 return (getDomain email)

So when getToken runs, it’ll get an email address
from the user and return the domain of the email
address.

λ> getToken
Enter email address:
test@example.com
Right "example.com"

and, importantly,

λ> getToken
Enter email address:
not.an.email.address
Left InvalidEmail

Now, let’s complete this with an authentication
system. we’ll have two users who both have terrible
passwords:

users :: Map Text Text
users = Map.fromList [("example.com",
"qwerty123"), ("localhost", "password")]

22 PROGRAMMING

with an authentication system, we can also run into
two new kinds of errors, so let’s change our LoginError
data type to reflect that.

data LoginError = InvalidEmail
 | NoSuchUser
 | WrongPassword
 deriving Show

we also need to write the actual authentication func-
tion. Here we go...

userLogin :: IO (Either LoginError Text)
userLogin = do
 token <- getToken

 case token of
 Right domain ->
 case Map.lookup domain users of
 Just userpw -> do
 T.putStrLn "Enter password:"
 password <- T.getLine

 if userpw == password
 then return token

 else return (Left WrongPassword)
 Nothing -> return (Left NoSuchUser)
 left -> return left

This beast of a function gets the email and password
from the user, checks that the email was processed
without problems, finds the user in the collection of
users, and if the passwords match, it returns the token
to show the user is authenticated.

If anything goes wrong, such as the passwords not
matching, there not being a user with the entered
domain, or the getToken function failing to process,
then a Left value will be returned.

This function is not something we want to deal with.
It’s big, it’s bulky, it has several layers of nesting: it’s not
the Haskell we know and love.

Sure, it’s possible to rewrite it using function calls to
either and maybe, but that wouldn’t help very much.
The real reason the code is this ugly is that we’re trying
to mix both Either and IO, and they don’t seem to
blend well.

The core of the problem is that the IO monad is
designed for dealing with IO actions, and it’s terrible at
handling errors. on the other hand, the Either monad
is great at handling errors, but it can’t do IO. So let’s

explore what happens if you imagine a monad that is
designed to both handle errors and IO actions.

Too good to be true? read on and find out.

We Can Make Our Own Monads
we keep coming across the IO (Either e a) type,
so maybe there is something special about that. what
happens if we make a Haskell data type out of that
combination?

data EitherIO e a = EitherIO {
 runEitherIO :: IO (Either e a)
}

what did we get just by doing this? Let’s see:

λ> :type EitherIO
EitherIO :: IO (Either e a) -> EitherIO e a

λ> :type runEitherIO
runEitherIO :: EitherIO e a -> IO (Either e a)

So already we have a way to go between our own
type and the combination we used previously! That’s
gotta be useful somehow.

Implementing Instances for Common Typeclasses
This section might be a little difficult if you’re new to
the language and haven’t had a lot of exposure to the
internals of how common typeclasses work. you don’t
need to understand this section to continue read-
ing the article, but I strongly suggest you put on your
to-do list to learn enough to understand this section.
It touches on many of the core components of what
makes Haskell Haskell and not just another functional
language.

But before we do anything else, let’s make EitherIO
a functor, an applicative, and a monad, starting with the
functor, of course.

instance Functor (EitherIO e) where
 fmap f ex = wrapped
 where
 unwrapped = runEitherIO ex
 fmapped = fmap (fmap f) unwrapped
 wrapped = EitherIO fmapped

This may look a little silly initially, but it does make
sense. First, we “unwrap” the EitherIO type to expose
the raw IO (Either e a) value. Then we fmap over
the inner a, by combining two fmaps. Then we wrap
the new value up in EitherIO again, and return the

 23

wrapped value. If you are a more experienced Haskell
user, you might prefer the following, equivalent, defini-
tion instead.

instance Functor (EitherIO e) where
 fmap f = EitherIO . fmap (fmap f) .
runEitherIO

In a sense, that definition makes it more clear that
you are just unwrapping, running a function on the
inner value, and then wrapping it together again.

The two other instances are more of the same, really.
Creating them is a mostly mechanical process of fol-
lowing the types and unwrapping and wrapping our
custom type. I challenge the reader to come up with
these instances on their own before looking below how
I did it, because trying to figure these things out will
improve your Haskell abilities in the long run.

In any case, explaining them gets boring, so I’ll just
show you the instances as an experienced Haskell user
might write them.

instance Applicative (EitherIO e) where
 pure = EitherIO . return . Right
 f <*> x = EitherIO $ liftA2 (<*>) (runEitherIO
f) (runEitherIO x)

instance Monad (EitherIO e) where
 return = pure
 x >>= f = EitherIO $ runEitherIO x >>= either
(return . Left) (runEitherIO . f)

If your definitions look nothing like these, don’t
worry. As long as your definitions give the correct
results, they are just as good as mine. There are many
ways to write these definitions, and none is better than
the other as long as all are correct.

Using EitherIO
Now that our EitherIO type is a real monad, we’ll try
to put it to work! If we change the type signature of
our getToken function, we’ll run into problems quickly,
though.

getToken :: EitherIO LoginError Text
getToken = do
 T.putStrLn "Enter email address: "
 input <- T.getLine
 return (getDomain input)

we get three type errors from this function alone
now! In order:

1. T.putStrLn "email" returns IO (), but we want
EitherIO LoginError ()

2. T.getLine returns IO Text, we want EitherIO Log-
inError Text.

3. getDomain input returns Either LoginError Text,
we want EitherIO LoginError Text.

Converting Either e a to EitherIO e a isn’t terribly
difficult. we have two functions to help us with that.

return :: Either e a -> IO (Either e a)
EitherIO :: IO (Either e a) -> EitherIO e a

with both of those, we can take the getDomain func-
tion call and fit it in the new getToken function, like so:

EitherIO (return (getDomain input))

remember this line, because we’re going to put it
into the function soon enough. But first, let’s find out
how to convert the two IO a values to an EitherIO e
a. Again, we will use the EitherIO function. For the
rest, it’s useful to know your functors. If you do, you’ll
realize that

fmap Right :: IO a -> IO (Either e a)

so our IO actions would both be

EitherIO (fmap Right (T.putStrLn "email"))
EitherIO (fmap Right (T.getLine))

with these three lines, the getToken function is now
written as

getToken :: EitherIO LoginError Text
getToken = do
 EitherIO (fmap Right (T.putStrLn "Enter email
address:"))
 input <- EitherIO (fmap Right T.getLine)
 EitherIO (return (getDomain input))

But this looks even more horrible than it was before!
relax. we’ll take a detour to clean this up slightly.

24 PROGRAMMING

Do You Even Lift?
The more general pattern here is that we have two
kinds of functions: those that return IO something, and
those that return Either something. we want to use
both of those in our EitherIO monad. Converting a
“lesser” monad to a “more powerful” one, like we want
to do here, is often called lifting the lesser operation
into the more powerful monad.

we can define two lift operations to do exactly this
for our case.

liftEither :: Either e a -> EitherIO e a
liftEither x = EitherIO (return x)

liftIO :: IO a -> EitherIO e a
liftIO x = EitherIO (fmap Right x)

with these two functions, the getToken function in
turn is a little more clean.

getToken :: EitherIO LoginError Text
getToken = do
 liftIO (T.putStrLn "Enter email address:")
 input <- liftIO T.getLine
 liftEither (getDomain input)

If you try to run this in the interpreter, you’ll get
a nasty type error. The reason is that the interpreter
expects something of type IO a, but getToken has type
EitherIO e a, so we need to convert it back to IO a
when we run it in the interpreter. Fortunately, we had a
function that does just that — runEitherIO.

λ> runEitherIO getToken
Enter email address:
test@example.com
Right "example.com"

we’ll also want to do the same conversion for user-
Login, of course. First we change the type signature,
and then we fix the values that are of the wrong type. If
you haven’t been paying 100% attention, the new look
of userLogin might surprise you.

userLogin :: EitherIO LoginError Text
userLogin = do
 token <- getToken
 userpw <- maybe (liftEither (Left NoSuchUser))
 return (Map.lookup token users)
 password <- liftIO (T.putStrLn "Enter your
password:" >> T.getLine)

 if userpw == password
 then return token
 else liftEither (Left WrongPassword)

where did all the nesting go? It’s gone. All the nest-
ing was there simply because we had to handle a bunch
of error cases in the IO monad. The IO monad is not
meant to handle error cases, so you have to do it manu-
ally. our EitherIO monad on the other hand, is built
both to handle errors and to perform IO actions, so
we get the best of both worlds. we just have to signal
when errors occur, and the EitherIO monad takes care
of the rest.

If we want to, say, print the result of this, we’ll need
a print function similar to the one we had previously.

printResult :: Either LoginError Text -> IO ()
printResult res =
 T.putStrLn $ case res of
 Right token -> append "Logged in with
token: " token
 Left WrongPassword -> "Invalid email address
entered."
 Left NoSuchUser -> "No user with that
email exists."
 Left InvalidEmail -> "Wrong password."

This function, just like the previous one, takes an
Either value, so we’ll need to “unwrap” our result
before we send it over.

λ> runEitherIO userLogin >>= printResult
Enter email address:
test@example.com
Enter your password:
qwerty123
Logged in with token: example.com

λ> runEitherIO userLogin >>= printResult
Enter email address:
test@127.0.0.1
No user with that email exists.

As you can see, we’ve got a lot of convenience
already, being able to just signal errors and let our
EitherIO monad take care of them just like it takes
care of IO actions.

 25

Signaling Errors
But how are we signaling errors, really? It turns out
that to signal something like WrongPassword, we have
to return

liftEither (Left WrongPassword)

and that’s not very tidy. we can easily make a function

throwE :: e -> EitherIO e a
throwE x = liftEither (Left x)

when we have this function, userLogin gets even
better.

userLogin :: EitherIO LoginError Text
userLogin = do
 token <- getToken
 userpw <- maybe (throwE NoSuchUser)
 return (Map.lookup token
users)
 password <- liftIO $ T.putStrLn "Enter your
password:" >> T.getLine

 if userpw == password
 then return token
 else throwE WrongPassword

throwE? What Is This, Java?
No, of course not. But I did choose that name delib-
erately. what we have with our EitherIO monad is
looking more and more like exceptions in languages
like Java, Python, C++ and so on. And that’s not a bad
way to view it.

However, there are some differences. one big dif-
ference is that our “exceptions” are just normal values
that are being returned from the function, while more
traditional (Java, Python) exceptions are interruptions
of normal control flow. Another difference is that our
“exceptions” are checked by the type system, so we
can’t forget to catch our exceptions.

ExceptIO
But let’s entertain that idea further. what happens if
we just say goodbye to Either and talk about excep-
tions instead? First, we’ll need to rename our EitherIO
monad:

data ExceptIO e a = ExceptIO {
 runExceptIO :: IO (Either e a)
}

It still works the same as before, it’s just been
renamed. The names need to be changed throughout
the code, but other than that, the code still works.

Gotta Catch ’Em All
So if we can throw what basically amounts to
exceptions...

yes! Keep going!
Can we also...
yes?
...catch them?
oh, I’m so happy you asked! of course we can. And

it’s really simple, too! we need to define a function that
does the catching. Call it catchE, so it looks similar to
throwE.

catchE :: ExceptIO e a -> (e -> ExceptIO c a) ->
ExceptIO c a
catchE throwing handler =
 ExceptIO $ do
 result <- runExceptIO throwing
 case result of
 Left failure -> runExceptIO (handler fail-
ure)
 success -> return success

This unwraps the throwing computation and
inspects its result. If it was successful, it just returns it
right back without doing anything. If it was a failure,
it runs the handler with the error as an argument, and
returns the result of that instead.

we can use this to spice up our application a little.
we’ll start by writing two exception handlers — one
that catches just a single exception, and one that
catches all exceptions.

26 PROGRAMMING

wrongPasswordHandler :: LoginError -> ExceptIO
LoginError Text
wrongPasswordHandler WrongPassword = do
 liftIO (T.putStrLn "Wrong password, one more
chance.")
 userLogin
wrongPasswordHandler err = throwE err

The wrongPasswordHandler handles only the Wrong-
Password exception, and rethrows everything else. It
responds to a WrongPassword exception by running
the userLogin function again to give the user a second
chance.

The other exception handler will respond to excep-
tions by printing an error message and then re-throw-
ing the exception to abort the current execution.

printError :: LoginError -> ExceptIO LoginError
a
printError err = do
 liftIO . T.putStrLn $ case err of
 WrongPassword -> "Wrong password. No more
chances."
 NoSuchUser -> "No user with that email
exists."
 InvalidEmail -> "Invalid email address
entered."

 throwE err

we’ll create a third function where we use these
exceptions.

loginDialogue :: ExceptIO LoginError ()
loginDialogue = do
 let retry = userLogin `catchE` wrongPassword-
Handler
 token <- retry `catchE` printError
 liftIO $ T.putStrLn (append "Logged in with
token: " token)

Note in particular how we “wrap” exception handlers
around each other. In the innermost layer is the user-
Login computation, which gets wrapped by the wrong-
PasswordHandler handler, and then that entire package
gets wrapped by the printError handler. you need to
wrap your handlers in the order you expect them to
catch exceptions from underneath each other.

Going General
There is just one, tiny, little thing I want to change in
our ExceptIO type. Currently, we’re stuck with only
being able to combine IO and exceptions. what if we
wanted to combine exceptions with database transac-
tions, or lists, or some other kind of monad? we can
make the other monad an argument to our exception
monad.

Then we’ll also have to change the name from
ExceptIO to ExceptT. why the T, you ask? Because it’s a
monad transformer.

Congratulations! you made it all the way. you’ve cre-
ated and used your first monad transformer. That’s no
small feat. n

Christoffer is a 22 year old ICT student in Stockholm, Sweden. His
passions are mainly programming and teaching, which is why he
enjoys writing about programming concepts. Three years ago,
Christoffer picked up Haskell as the primary language for personal
projects, and after the initial hump he has not looked back.

Reprinted with permission of the original author.
First appeared in hn.my/monad (github.com)

http://hn.my/monad

 27

Two months ago, I made
the decision to throw
out months of work on

one of our game development
projects. For republic Sniper
[republicsniper.com], we made
a fresh start, turning our back on
months of work and switching to
a new game engine: Unreal Engine
4 [unrealengine.com]. It wasn’t an
easy decision to make. None of the
code or shaders we wrote for Unity
could be brought over to UE4, and
there’s a fair bit of work involved
in bringing over the 3D models and
image assets we’ve created.

we’ve now been using UE4 in
anger for a couple of months, and
one thing has become very clear: we
made the right decision. The pace
of development has increased sub-
stantially since making the switch,
and the latest builds look much
better. Much more importantly, the
republic Sniper team is happy with
their tools and once again feel good
about what we’re creating.

Our Blue Period
By June of this year, the team had
become frustrated with our Unity
workflow and wanted to explore
other options. once we started,
it didn’t take long to see that the
best alternative — and possibly the
only viable alternative for us — was
the Unreal Engine. After a few
weeks of experimenting, reading

documentation, and test driving
the latest version (UE4), we were
convinced that we needed to make
the switch.

That doesn’t mean the decision
was made without trepidation. we
had a lot invested in the Unity ver-
sion of republic Sniper, and walk-
ing away from it was more than a
little scary.

By JEFF LAMArCHE

An Unreal Decision

A wIP in-engine screenshot of the last Unity version of republic Sniper before we
made the switch

http://unrealengine.com

28 PROGRAMMING

Fear of the Sunk Cost
In a past life, I spent about a
decade as a consultant working in
Enterprise computing. I traveled
constantly and did programming,
database, and integration work for
very large corporate and govern-
mental entities.

In that role, I repeatedly saw
bad decisions — often to the tune
of tens of millions of dollars —
being made simply because a large
investment of time and money had
already been made pursuing that
bad decision. on many projects, I
watched people stick by decisions
long after everyone on the project
knew it was a bad one.

The funny thing about the sunk
cost fallacy is that when you’re
an outsider — with no skin in the
game — it’s really obvious when it’s
time to cut losses and try something
new. when it’s not your money,
reputation, or job on the line, the
tough choices are a hell of a lot
easier.

I didn’t have the luxury of being
an outsider with republic Sniper.
when I started to realize that, per-
haps, Unity wasn’t the right choice
for us, I didn’t really want to accept
it. It took a couple of months and

required exuberant lobbying by cer-
tain members of the team for me to
authorize the switch.

 The Unity Fit Problem
Unity is a very capable tool, and a
lot of really good games have been
made with it. we absolutely could
have finished republic Sniper
using Unity. we could have pushed
through our frustrations and deliv-
ered a respectable game.

only…nobody on the team
would’ve been happy making a
respectable game.

The First Sign of Trouble
I first started questioning our use
of Unity early this year. As we
started to explore just what we
could accomplish in a mobile
game, we started having significant
problems. The Unity Editor is still
— in 2014 — a 32-bit application.
while the theoretical memory limit
of a 32-bit Mac App is 4 GB, on
a machine with dual GPUs, you
actually only get an application
heap of about 2.7 GB of rAM in
practice. when a 32-bit app hits
that memory limit, you start getting
erratic behavior and crashes that
give you very little information

about what happened. while 2.7
GB may sound like quite a lot of
memory, we found ourselves hitting
the limit regularly.

I wasted weeks of time figuring
out the problem. In the process, I
lost a substantial amount of work
to memory crashes. I filed dozens
of bug reports, but none of them
yielded a satisfactory response from
Unity’s tech support. Nearly every
ticket was closed with no acknowl-
edgement that maybe a 32-bit
application in 2014 — 8 years after
Apple stopped shipping 32-bit-only
computers — might be anything
less than perfectly reasonable. No
matter how many times I asked, I
got no hint of when a 64-bit editor
might be coming out. All of my
interactions with Unity tech sup-
port left me frustrated and feeling,
frankly, like they didn’t care all that
much.

The Real Problem
There were other technical issues
along the way, though none as
severe as the constant memory-
related crashes. yet, the technical
issues were not what made us start
looking for alternatives. Nor was
it Unity’s weak customer service
responses to our legitimate frustra-
tions. our team just wasn’t finding
it easy to collaborate. we weren’t
gelling as a cohesive team, and we
often felt like the tools were work-
ing against us.

A wIP in-engine shot of the current republic Sniper training range in UE4

 29

Every time we pulled code
updates from source control or
switched target platforms, Unity
would take at least forty-five
minutes to open our project, and
considerably longer on less power-
ful hardware. The solution to this
problem — a problem that screams
design flaw — was for us to use the
Unity Cache Server at an additional
$500 per seat.

Being able to use version control
effectively or to switch platform
targets on a large project without
having to wait for an hour is an
add-on feature, not included with
the Professional license?

yes.
But really, that was just one

symptom of a larger problem. The
real issue was that Unity seems
to have been built for very small
development teams. while repub-
lic Sniper isn’t a huge project, we
have seven regular project members
and a number of other contributors.

There are upsides to Unity’s
approach: It allows tiny teams to
create things that used to be impos-
sible for small teams to build. Unity
has enabled some truly phenomenal
indie games, many of which were
created by a single developer.

Unity is also a very developer-
centric toolset. our game artists
honestly hated working in the

Unity Editor and felt like second-
class participants in the game
development process. They were
constantly waiting on a developer
to write a shader or component for
them, and the tools felt alien. we
had constant bottlenecks and were
never happy with the look and feel
we could achieve, despite a lot of
time and effort invested into the art
design and production.

Enter Unreal
I’ve known about the Unreal
Engine for a very long time. Indeed,
many of the games that inspired
me to create games display the
Unreal Engine logo when launched.
Despite that, we didn’t even
consider using Unreal when we
started republic Sniper. The UDK
(the previous version of the Unreal
Engine dev tools) took 25% of your
gross income after the first $50,000.
when you added that 25% to the
30% taken by the app store, it
meant we’d be losing more than
half of our gross income. The other
big obstacle was that the UDK tools
were windows only. MartianCraft
is a shop of (mostly) dyed-in-the-
wool Mac folk who’d rather not
spend their days using windows.

when UE4 came out with a
license cost of $19.95 per month
per seat plus 5% of gross, a Mac

version of the tools, and full access
to the underlying source code, we
decided to take a long, hard look
at it.

UE4’s physically-based render-
ing is gorgeous. It runs well on
ioS devices and looks absolutely
fantastic on the latest generation of
hardware. The editor and tools are
very artist-friendly. More impor-
tantly, UE4 has two options for
programming: C++ and a visual
programming language called Blue-
print. [hn.my/blueprint]

Blueprint
I’d never been a fan of visual
programming languages before,
so I didn’t pay much attention to
Blueprint at first. But when one of
our code-phobic artists sent me a
small game level, complete with
programmed interactions, that he
had put together after a couple of
days of tinkering, I was curious.

The way Epic has designed
Blueprint and C++ in UE4 to work
together is pretty amazing. you can
write a C++ class and then subclass
it in Blueprint. you can expose
C++ methods to use as Blueprint
nodes. Almost everything you can
do in C++, you can do in Blueprint.
Although there is a small perfor-
mance hit with Blueprint, it’s rarely
enough of a hit to be an issue. Both

An in-engine shot from the catwalkswIP shot of the shooting stalls on the training level

http://hn.my/blueprint

30 PROGRAMMING

languages are first-class citizens in
the engine, and there are very few
tasks that require C++. For some
tasks (especially tasks with complex
algorithms), C++ will likely be the
better choice for experienced pro-
grammers, but almost nothing has
to be done in C++.

And that is incredibly empowering.
For visual thinkers, Blueprint just

makes a lot more sense than lines of
text-based code. It’s also a lot less
intimidating. In fact, Blueprint has
enabled our game artists to accom-
plish many tasks by themselves
that would’ve required a developer
when we were using Unity. This
has made us much more efficient
and faster as a team. while people
still specialize, most tasks can be
handled by anyone on the team.
The logic for opening a door, for
example, might be written by a
programmer, but it might also be
put in place by a level designer or
modeler. It can even be started by
a level designer then polished and
tweaked later by a developer who
can also make it more efficient.

Goodbye Shading Language
UE4’s physically-based material
system produces great results, and
the way you build shaders for it is
similar to Blueprint. UE4 uses a
visual node-based material system
much like those familiar to our 3D
artists from other applications. The
artists never have to see cryptic
GLSL or HLSL code. There’s no
ShaderLab or CG or a need to
wait for a shader programmer’s
help to get the look they want. The
whole material system is visual, it
all makes sense to artists, and the
results are jaw-droppingly fantastic
in the hands of a good artist.

Miscellany
Although we’ve barely scratched
the surface of what UE4 can do
in the few months we’ve been
using it on republic Sniper, we’re
constantly finding little unexpected
treats — things that are easier than
we expected. Building an ioS app,
for example, doesn’t require export-
ing our project to Xcode and then
compiling and code signing. we
can build within the Unreal Editor
and deploy test builds directly to a
device for testing. Heck, even those

black sheep on our team who work
on windows can build for ioS with
Unreal.

Unreal also has much better
built-in tools for most common
game development tasks, includ-
ing great tools for creating physics
assets (ragdolls), designing character
AI, and doing dynamic level loading
and unloading. Lightmap baking is
considerably faster and the interface
is far more intuitive than Unity’s.

The Downsides
It’s not all grins and giggles, though.
UE4 is a relatively new toolset
with a lot of brand new, completely
rewritten functionality, and there
have been bumps along the way.
There are a few parts of UE4 that
simply feel unfinished and we’re
still climbing a learning curve as we
adjust to a UE4-based workflow.
we’ve opened many bug reports
over the last couple of months.
Fortunately, Epic has been respon-
sive to our bug reports and seems
eager to make UE4 meet our needs.
The UE4 development community
has been helpful and supportive as
well, and we’ve seen regular feature
releases and bug fix releases since
we started using it.

Since UE4 is the first release of
the Unreal Engine to really go after
small- and medium-sized game
shops, there’s currently no compari-
son between the new UE4 Mar-
ketplace and Unity’s Asset Store.
The Unity Asset Store is a thriving
marketplace with a lot of great
tools and content. It will be quite
some time before the UE4 Market-
place has a comparable amount of
content. This hasn’t been a problem
for us because we have our own
content creation team for republic
Sniper and most of the Asset Store
items we bought for Unity were to

An in-engine shot of one of the rifles available in the game: the LT-4 “Hellfire”
Tactical Sniper rifle

 31

accomplish tasks that UE4 handles
natively.

The single biggest issue for us
with UE4 has been the perfor-
mance of the Mac editor, which lags
considerably behind the windows
version when running on the same
hardware. This is a little frustrat-
ing, since the introduction of the
Mac editor was one of the draws
that lead us towards UE4. Mac
performance is bad enough that
it’s painful to run the UE4 Editor
on a laptop or an older desktop. I
find the performance quite accept-
able on my Late 2013 Mac Pro, but
when I work on my 2012 retina
MacBook Pro, or at home on my
Mid-2010 Mac Pro, I resort to boot-
camp and the windows version of
the Unreal Editor to get work done.

The Final Word on UE4
There’s no such thing as a flawless
or perfect set of development tools
— UE4 is no exception. However,
despite a few rough edges, I’m
incredibly happy with the switch.
UE4 is a professional toolkit in all
respects, honed over more than
sixteen years and dozens of AAA
game titles. Despite that, it’s also an
extraordinarily approachable tool-
set. UE4 allows us to create a game
that lives up to our expectations
and we’re really excited once again
to be making this game.

Don’t read this as a condemna-
tion of Unity. we’re still using Unity
for another game project and have
no intention of switching it to UE4.
Unity is a great fit for that proj-
ect, just like UE4 is a great fit for
republic Sniper. A year ago, Unity
was the undisputed leader among
an anemic set of game engines for
indies and small game studios. Now,
we have two strong options with
their own strengths and weakness.

For some projects, either tool will
work well. For other projects, one
may be a substantially better fit.

As a company that does both
in-house and contract game devel-
opment, having more options is a
great thing. we believe strongly in
using the best tool for any given job.
The more good tools we have avail-
able, the more likely we are to find
the right tool.

Epic’s decision to go after Unity’s
market also means increased com-
petition. That competition will
push both companies to make
better tools. That’s a good thing for
game developers and ultimately for
people who play games. n

Jeff is an author, speaker, software devel-
oper and teacher. His first book, Begin-
ning iPhone Development, stands as the
all-time best-selling book on learning to
develop for the iPhone and iPad.

About MartianCraft: MartianCraft is build-
ing the future today. Working with our cli-
ents we have shaped elections, redefined
the newspaper, and delivered joy to mil-
lions. We aren’t just mobile natives, we
helped spark the revolution.

Reprinted with permission of the original author.
First appeared in hn.my/unreal (martiancraft.com)

http://hn.my/unreal

32 PROGRAMMING

By GErSHoM BAzErMAN

The following letter is not about what
“old hands” know and newcomers do
not. Instead, it is about lessons that
we all need to learn more than once,
and remind ourselves of. It is about
tendencies that are common, under-
standable, and come with the flush of
excitement of learning any new thing
that we understand is important. It’s
about the difficulty, always, in trying
to decide how best to convey that
excitement and sense of importance to
others in a way that they will listen.
It is written more specifically, but only
because I have found that if we don’t
talk specifics as well as generalities,
the generalities make no sense. This
holds for algebraic structures, and it
holds for other, vaguer concepts no
less. It is a letter full of things I want
to remember, as well as advice I
want to share. I expect I will want to
remind myself of it when I encounter
somebody who is wrong on the inter-
net, which, I understand, may occur
on rare occasion.

you’ve recently entered
the world of strongly
typed functional pro-

gramming, and you’ve decided it is
great. you’ve written a program or
two or a library or two, and you’re
getting the hang of it. you hop on
IrC and hear new words and ideas
every day. There are always new
concepts to learn, new libraries
to explore, new ways to refactor
your code, new typeclasses to make
instances of.

Now, you’re a social person, and
you want to go forth and share all
the great things you’ve learned.
And you have learned enough to
distinguish some true statements
from some false statements, and
you want to go and slay all the false
statements in the world.

Is this really what you want to
do? Do you want to help people?
Do you want to teach people new
wonderful things? Do you want to
share the things that excite you? or
do you want to feel better about
yourself, confirm that you are pro-
gramming better, confirm that you
are smarter and know more, or reas-
sure yourself that your adherence
to a niche language is ok by striking
out against the mainstream? of
course, you want to do the former.
But a part of you probably secretly
wants to do the latter, because in
my experience that part is in all of
us. It is our ego: it drives us to great
things, but it also can hold us back,
make us act like jerks, and, worst of
all, stand in the way of communi-
cating with others about what we
truly care about.

Haskell wasn’t built on great
ideas, although it has those. It was
built on a culture of how ideas are
treated. It was not built on slaying
others’ dragons, but on finding our
own way; not tearing down rotten
ideas (no matter how rotten) but
showing by example how we didn’t
need those ideas after all.

In functional programming, our
proofs are not by contradiction,
but by construction. If you want to
teach functional programming, or
preach functional programming, or
even just have productive discus-
sions as we all build libraries and
projects together, it will serve you
well to learn that ethic.

you know better than the next
developer, or so you think. This
is because of something you have
learned. So how do you help them
want to learn it, too? you do not
tell them this is a language for
smart people. you do not tell them
you are smart because you use this
language. you tell them that types
are for fallible people, like we all
are. They help us reason and catch
our mistakes, because while soft-
ware has grown more complex,
we’re still stuck with the same old
brains. If they tell you they don’t
need types to catch errors, tell them
that they must be much smarter
than you, because you sure do. But
even more, tell them that all the
brainpower they use to not need
types could turn into even greater,
bigger, and more creative ideas if
they let the compiler help them.

This is not a language for clever
people, although there are clever
things that can be done in this
language. It is a language for simple
things and clever things alike; some-
times we want to be simple, and
sometimes we want to be clever.
But we don’t give bonus points for
being clever. Sometimes, it’s just

Letter to a Young Haskell Enthusiast

 33

fun, like solving a crossword puzzle
or playing a tricky Bach prelude, or
learning a tango. we want to keep
simple things simple so that tricky
things are possible.

It is not a language that is “more
mathematical” or “for math” or
“about math.” yes, in a deep formal
sense, programming is math. But
when someone objects to this, this
is not because they are a dumb
person, a bad person, or a mali-
cious person. They object because
they have had a bad notion of math
foisted on them. “Math” is the thing
that people wield over them to tell
them they are not good enough,
that they cannot learn things, that
they don’t have the mindset for
it. That’s a dirty lie. Math is not
calculation — that’s what comput-
ers are for. Nor is math just abstract
symbols. Nor is math a prerequisite
for Haskell. If anything, Haskell
might be what makes somebody
find math interesting at all. our
equation should not be that math is
hard, and so programming is hard.
rather, it should be that program-
ming can be fun, and this means
that math can be fun, too. Some
may object that programming is not
only math, because it is engineering
as well, and creativity, and practical
tradeoffs. But, surprisingly, these
are also elements of the practice of
math, if not the textbooks we are
given.

I have known great Haskell pro-
grammers, and even great computer
scientists who know only a little
linear algebra maybe, or never both-
ered to pick up category theory.
you don’t need that stuff to be a
great Haskell programmer. It might
be one way. The only thing you
need category theory for is to take
great categorical and mathemati-
cal concepts from the world and

import them back to programming,
and translate them along the way
so that others don’t need to make
the same journey you did. And you
don’t even need to do that, if you
have patience, because somebody
else will come along and do it for
you, eventually.

The most important thing
(though not hardest part) about
teaching and spreading knowledge
is to emphasize that this is for
everyone. Nobody is too young,
too inexperienced, too old, too set
in their ways, too excitable, insuf-
ficiently mathematical, etc. Believe
in everyone, attack nobody, even
the trolliest.* Attacking somebody
builds a culture of sniping and
argumentativeness. It spreads to
the second trolliest, and so forth,
and then eventually to an innocent
bystander who just says the wrong
thing to spark bad memories of the
last big argument.

The hardest thing, and the
second most important, is to put
aside your pride. If you want to
teach people, you have to empa-
thize with how they think and feel.
If your primary goal is to spread
knowledge, then you must be
relentlessly self-critical of anything
you do or say that gets in the way
of that. And you don’t get to judge
that: others do. And you must just
believe them. I told you this was
hard. So if somebody finds you off-
putting, that’s your fault. If you say
something and somebody is hurt or
takes offense, it is not their fault for
being upset or feeling bad. This is
not about what is abstractly hurt-
ful in a cosmic sense; it is about the
fact that you have failed, concretely,
to communicate as you desired. So
accept the criticism, apologize for
giving offense (not just for having
upset someone but also for what

you did to hurt them), and attempt
to learn why they feel how they
feel.

Note that if you have made
somebody feel crummy, they may
not be in a mood to explain why or
how, because their opinion of you
has already plummeted. So don’t
declare that they must or should
explain themselves to you, although
you may politely ask. remember
that knowledge does not stand
above human behavior. often, you
don’t need to know exactly why a
person feels the way they do, only
that they do, so you can respect
that. If you find yourself demand-
ing explanations, ask yourself, if you
knew this thing, would that change
your behavior? How? If not, then
learn to let it go.

remember also that they were
put off by your actions, not by your
existence. It is easy to miss this
distinction and react defensively.
“Fight-or-flight” stands in the way
of clear thinking and your ability to
empathize; try taking a breath and
maybe a walk until the adrenaline
isn’t derailing your true intentions.

will this leave you satisfied?
That depends. If your goal is to
understand everything and have
everybody agree with regards to
everything that is in some sense
objectively true, it will not. If your
goal is to have the widest, nicest,
most diverse, and most fun Haskell
community possible, and to inter-
act in an atmosphere of mutual
respect and consideration, then it
is the only thing that will leave you
satisfied.

If you make even the most
modest (to your mind) mistake, be
it in social interaction or technical
detail, be quick to apologize and
retract, and do so freely. what is
there to lose? only your pride. who

34 PROGRAMMING

keeps track? only you. what is
there to gain? Integrity, and ulti-
mately that integrity will feel far
more fulfilling than the cheap pass-
ing thrills of cutting somebody else
down or deflecting their concerns.

Sometimes it may be, for what-
ever reason, that somebody doesn’t
want to talk to you, because at
some point your conversation
turned into an argument. Maybe
they did it, maybe you did it,
and maybe you did it together. It
doesn’t matter. Learn to walk away.
Learn from the experience how
to communicate better, how to
avoid that pattern, how to always
be more positive, friendly, and
forward-looking. Take satisfaction in
the effort in that. Don’t talk about
them behind their back, because
that will only fuel your own bad
impulses. Instead, think about how
you can change.

your self-esteem doesn’t need
your help. you may feel you need
to prove yourself, but you don’t.
other people, in general, have
better things to do with their time
than judge you, even when you
may sometimes feel otherwise. you
know you’re talented, that you have
learned things, and built things, and
that this will be recognized in time.
Nobody else wants to hear it from
you. The more they hear it, the
less they will believe it; the more it
will distract from what you really
want, which is not to feed your ego,
not to be great, but to accomplish
something great, or even just to
find others to share something great
with. In fact, if anyone’s self-esteem
should be cared for, it is that of
the people you are talking to. The
more confident they are in their
capacity and their worth, the more
willing they will be to learn new
things, and to acknowledge that
their knowledge, like all of ours,

is limited and partial. you must
believe in yourself to be willing to
learn new things, and if you want to
cultivate more learners, you must
cultivate that self-belief in others.

Knowledge is not imposing.
Knowledge is fun. Anyone, given
time and inclination, can acquire
it. Don’t only lecture, but continue
to learn, because there is always
much more than you know. (And
if there wasn’t, wow, that would
be depressing, because what would
there be to learn next?) Learn to
value all opinions, because they
all come from experiences, and all
those experiences have something
to teach us. Dynamic typing advo-
cates have brought us great leaps in
JIT techniques. If you’re interested
in certain numerical optimizations,
you need to turn to work pioneered
in C++ or Fortran. Like you, I
would rather write in Haskell. But
it is not just the tools that matter
but the ideas, and you will find they
come from everywhere.

In fact, we have so much to learn
that we direct our learning by set-
ting up barriers — declaring certain
tools, fields, languages, or communi-
ties not worth our time. This isn’t
because they have nothing to offer,
but it is a crutch for us to shortcut
evaluating too many options at
once. It is fine, and in fact necessary,
to narrow the scope of your knowl-
edge to increase its depth. But be
glad that others are charting other
paths! who knows what they will
bring back from those explorations.

If somebody is chatting about
programming on the internet,
they’re already ahead of the pack,
already interested in craft and
knowledge. you may not share
their opinions, but you have things
to learn from one another, always.
Maybe the time and place aren’t
right to share ideas and go over

disputes. That’s ok. There will be
another time and place, or maybe
there won’t be. There is a big
internet full of people, and you
don’t need to be everybody’s friend
or everybody’s mentor. you should
just avoid being anybody’s enemy,
because your time and theirs is too
precious to waste it on hard feelings
instead of learning new cool stuff.

This advice is not a one-time
proposition. Every time we learn
something new and want to share
it, we face these issues all over
again — the desire to proclaim, to
overturn received wisdom all at
once — and the worse the received
wisdom, the more vehemently we
want to strike out. But if we are
generous listeners and attentive
teachers, we not only teach better
and spread more knowledge, but
also learn more, and enjoy ourselves
more in the process. To paraphrase
rilke’s “Letter to a young Poet”:
Knowledge is good if it has sprung
from necessity. In this nature of its
origin lies the judgment of it: there
is no other. n

Gershom Bazerman is is an organizer of the
NY Haskell Users Group, the NY Homotopy
Type Theory Reading group, and a member
of the Haskell.org committee. He has writ-
ten a number of widely used Haskell pack-
ages, most notably the JMacro library for
programmatic generation of JavaScript.

Reprinted with permission of the original author.
First appeared in hn.my/younghaskell (comonad.com)

http://hn.my/younghaskell

 35

I’ll often come up with an idea
that I get excited about.

Then I brainstorm a catchy
name for it, check the availability
of urls and social media accounts,
maybe even set up a landing page.
It gives me a big rush, and I imagine
a dazzlingly bright future ahead for
the concept.

And then the idea crawls up and
dies inside of me.

why?
Because I don’t actually do

anything.
To finish things, you need to fall

in love with the part of the pro-
cess that’s harder to love — the bit
where you roll up your sleeves and
do the damn thing.

Maybe that’s why it’s got another
much tougher sounding name:
execution.

The human brain is a brilliant
idea-generating machine. In the past
we had to convert our ideas into
solutions just to stay alive: to make
sure that we had enough food... or
didn’t get eaten. But now, in the
safety of our comfortable, hygienic,
homogenized 21st century lives,
it’s all too easy to fall asleep on our
true potential.

Wake Up and Smell the Hard
Work
your idea doesn’t mean diddly-
squat until it’s out in the world.
And to do that is going to take
some hard manual labor.

So to stay on track, you’ll need to
engage with the execution process
as much as the idea itself.

None of my various bright ideas
— a social network for sneaker
collectors, customizable artwork
of your bicycle, a recipe sharing
platform, a book about designers
turned entrepreneur (oK, that last

one I am actually set on doing) —
have come to fruition yet.

And whilst CycleLove (and its
sister shop CycleLux) might be
building momentum, I still have
a huge hang-up about creating
the eBooks or information-based
content about cycling or whatever
it is that I’ve been talking about
for months and months. It’s still a
blog, not a business, and costing me
money instead of making it.

I chickened out of the work.
you need graft, or grit, or gump-

tion, or whatever you want to call
it.

whether it’s by actually blog-
ging on your blog, or starting your
startup, value is created by doing.

It’s easier to sit around and talk
about building a startup than it
is to actually start a startup. And
it’s fun to talk about. But over
time, the difference between fun
and fulfilling becomes clear. Doing
things is really hard — it’s why,
for example, you can generally tell
people what you’re working on
without NDAs, and most patents
never matter. The value, and the
difficulty, comes from execution
— Sam Altman

Dial Down the Resolution(s)
when I looked back at the list of
goals I’d set out for 2013 the other
day, I felt pretty embarrassed. Espe-
cially as it’s published in plain sight
on the internet. I didn’t come close
to achieving any of my resolutions.
Not one thing on the list.

But I know that beating yourself
up about this kind of stuff is stupid.
(Make changes, not criticisms).

So…I haven’t made any New
year’s resolutions this year.

you don’t want high resolu-
tions anyhow — you want low

resolution.
you want to let go of the fear of

fucking up, of it not being perfect,
of what other people think, of
things that probably won’t ever
happen, and just crank that stuff
out, baby.

Instead of Trying to Finish Every-
thing, Try to Finish One Thing.
Today if possible.
And then another...
And another...
And...
(I think I just finished this article).

what are you going to finish
today? n

James Greig is a London-based graphic
designer/writer [greig.cc] and the founder
of CycleLove [cyclelove.net]

http://greig.cc
http://cyclelove.net
http://mailjet.com

36 PROGRAMMING

By GUSTAvo DUArTE

BootIng Is an involved,
hacky, multi-stage affair —
fun stuff. Here’s an outline

of the process:

 Things start rolling when you
press the power button on the
computer (no! do tell!). once the
motherboard is powered up, it
initializes its own firmware (the
chipset and other tidbits) and tries
to get the CPU running. If things
fail at this point (e.g., the CPU is
busted or missing) then you will
likely have a system that looks
completely dead except for rotating
fans. A few motherboards manage
to emit beeps for an absent or
faulty CPU, but the zombie-with-
fans state is the most common
scenario based on my experience.
Sometimes USB or other devices
can cause this to happen: unplug-
ging all non-essential devices is a

possible cure for a system that was
working and suddenly appears dead
like this. you can then single out the
culprit device by elimination.

If all is well, the CPU starts run-
ning. In a multi-processor or multi-
core system one CPU is dynami-
cally chosen to be the bootstrap
processor (BSP) that runs all of
the BIoS and kernel initialization
code. The remaining processors,
called application processors (AP)
at this point, remain halted until
later on when they are explicitly
activated by the kernel. Intel CPUs
have been evolving over the years,
but they’re fully backwards com-
patible. That means that modern
CPUs can behave like the original
1978 Intel 8086, which is exactly
what they do after power up. In
this primitive power up state, the
processor is in real mode with

memory paging disabled. This is
like ancient MS-DoS where only
1 MB of memory can be addressed
and any code can write to any place
in memory; there’s no notion of
protection or privilege.

Most registers in the CPU have
well-defined values after power up,
including the instruction pointer
(EIP) which holds the memory
address for the instruction being
executed by the CPU. Intel CPUs
use a hack whereby even though
only 1MB of memory can be
addressed at power up, a hidden
base address (an offset, essentially)
is applied to EIP so that the first
instruction executed is at address
0xFFFFFFF0 (16 bytes short of the
end of 4 gigs of memory and well
above one megabyte). This magical
address is called the reset vector
and is standard for modern Intel
CPUs.

The motherboard ensures that
the instruction at the reset vector
is a jump to the memory loca-
tion mapped to the BIoS entry
point. This jump implicitly clears
the hidden base address present
at power up. All of these memory
locations have the right contents
needed by the CPU thanks to the

How Computers Boot Up

 37

memory map kept by the chip-
set. They are all mapped to flash
memory containing the BIoS since
at this point the rAM modules
have random crap in them. An
example of the relevant memory
regions is shown below:

The CPU then starts executing
BIoS code, which initializes some
of the hardware in the machine.
Afterwards the BIoS kicks off the
Power-on Self Test (PoST) which
tests various components in the
computer. Lack of a working video
card fails the PoST and causes the

BIoS to halt and emit beeps to
let you know what’s wrong, since
messages on the screen aren’t an
option. A working video card takes
us to a stage where the computer
looks alive: manufacturer logos
are printed, memory starts to be
tested, and angels blare their horns.
other PoST failures, like a miss-
ing keyboard, lead to halts with an
error message on the screen. The
PoST involves a mixture of testing
and initialization, including sorting
out all the resources — interrupts,
memory ranges, I/o ports — for
PCI devices. Modern BIoSes that
follow the Advanced Configura-
tion and Power Interface build a
number of data tables that describe
the devices in the computer; these
tables are later used by the kernel.

After the PoST the BIoS wants
to boot up an operating system,
which must be found somewhere:
hard drives, CD-roM drives,
floppy disks, etc. The actual order in
which the BIoS seeks a boot device
is user configurable. If there is no
suitable boot device the BIoS halts
with a complaint like “Non-System
Disk or Disk Error.” A dead hard
drive might present with this symp-
tom. Hopefully this doesn’t happen
and the BIoS finds a working disk
allowing the boot to proceed.

The BIoS now reads the first
512-byte sector (sector zero) of the
hard disk. This is called the Master
Boot record, and it normally con-
tains two vital components: a tiny
oS-specific bootstrapping program
at the start of the MBr followed by
a partition table for the disk. The
BIoS, however, does not care about
any of this. It simply loads the
contents of the MBr into memory
location 0x7c00 and jumps to that
location to start executing whatever
code is in the MBr.

38 PROGRAMMING

 The specific code in the MBr
could be a windows MBr loader,
code from Linux loaders such as
LILo or GrUB, or even a virus.
In contrast the partition table is
standardized: it is a 64-byte area
with four 16-byte entries describing
how the disk has been divided up
Traditionally Microsoft MBr code
takes a look at the partition table,
finds the (only) partition marked
as active, loads the boot sector for
that partition, and runs that code.
The boot sector is the first sector of
a partition, as opposed to the first
sector for the whole disk. If some-
thing is wrong with the partition
table you would get messages like
“Invalid Partition Table” or “Missing
operating System.” This message
does not come from the BIoS but
rather from the MBr code loaded
from disk. Thus the specific mes-
sage depends on the MBr flavor.

Boot loading has gotten more
sophisticated and flexible over time.
The Linux boot loaders Lilo and
GrUB can handle a wide variety
of operating systems, file systems,
and boot configurations. Their MBr
code does not necessarily follow the
“boot the active partition” approach
described above. But functionally
the process goes like this:

1. The MBr itself contains the first
stage of the boot loader. GrUB
calls this stage 1.

2. Due to its tiny size, the code in
the MBr does just enough to
load another sector from disk
that contains additional boot-
strap code. This sector might
be the boot sector for a parti-
tion, but could also be a sector
that was hard-coded into the
MBr code when the MBr was
installed.

3. The MBr code plus code loaded
in step 2 then read a file contain-
ing the second stage of the boot
loader. In GrUB this is GrUB
Stage 2, and in windows Server
this is c:\NTLDr. If step 2 fails
in windows you’d get a message
like “NTLDr is missing.” The
stage 2 code then reads a boot
configuration file (e.g., grub.conf
in GrUB, boot.ini in windows).
It then presents boot choices to
the user or simply goes ahead in
a single-boot system.

4. At this point the boot loader
code needs to fire up a kernel.
It must know enough about
file systems to read the kernel
from the boot partition. In
Linux this means reading a file
like “vmlinuz-2.6.22-14-server”
containing the kernel, loading
the file into memory, and jump-
ing to the kernel bootstrap code.
In windows Server 2003 some
of the kernel start-up code is
separate from the kernel image

itself and is actually embedded
into NTLDr. After performing
several initializations, NTDLr
loads the kernel image from file
c:\windows\System32\ntoskrnl.
exe and, just as GrUB does,
jumps to the kernel entry point.

5. There’s a complication worth
mentioning. The image for a
current Linux kernel, even
compressed, does not fit into the
640K of rAM available in real
mode. My vanilla Ubuntu kernel
is 1.7 MB compressed. yet the
boot loader must run in real
mode in order to call the BIoS
routines for reading from the
disk, since the kernel is clearly
not available at that point. The
solution is the venerable unreal
mode. This is not a true proces-
sor mode, but rather a technique
where a program switches back
and forth between real mode
and protected mode in order
to access memory above 1MB
while still using the BIoS. If you
read GrUB source code, you’ll
see these transitions all over
the place (look under stage2/
for calls to real_to_prot and
prot_to_real). At the end of this
sticky process the loader has
stuffed the kernel in memory, by
hook or by crook, but it leaves
the processor in real mode when
it’s done. n

Gustavo Duarte founded his first start up
as a freshman in high school, building a
web-based stock market analysis tool in
Brazil. He sold that company at 18 and
emigrated to the US, and now divides his
time between the two countries develop-
ing software, authoring technical material,
and riding snow and waves. He can be
reached at gustavo@duartes.org

Reprinted with permission of the original author.
First appeared in hn.my/bootup (duartes.org)

http://hn.my/bootup

http://pivotaltracker.com

40 PROGRAMMING

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

	FEATURES
	Algorithm for Capturing Pokémon
	My Name is Brian and I Build Supercomputers in My Spare Time

	SPECIAL
	My Half Workday as a Turker

	PROGRAMMING
	A Gentle Introduction to Monad Transformers
	An Unreal Decision
	Letter to a Young Haskell Enthusiast
	How Computers Boot Up

