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4 FEATURES

FEATURES

imgix [imgix.com] is an image 
processing and delivery service 
that provides a supremely flexi-

ble, high performance, ultra–reliable 
solution to the problem of serving 
images on the modern internet. We 
operate our own hardware, run our 
own datacenters, and manage our 
own network infrastructure. At 
imgix‘s scale, maximizing efficiency 
and performance in image process-
ing is critical for success. For this 
reason, we decided to incorporate 
Mac Pros in planning the build of 
our next generation image render-
ers. Because no existing Mac Pro 
server rack suited our needs, we 
designed and built our own.

Image Rendering At Scale
All of the images served by imgix 
pass through our image rendering 
servers. Parts of our technology are 
built using OS X’s graphics frame-
works, which offer high quality 
output and excellent performance. 
Our current rack and system design 
(R1) is built with Mac Minis, rack 
mounts from MK1 and integration 
by Racklive. [racklive.com]

R1 racks currently handle all of 
our production traffic. The design 
was appropriate for our needs — 
with excellent reliability, maintain-
ability, and performance — but 
we’re always looking for ways to 
improve upon it. In particular, we 
wanted greater power density and 
network port utilization, and we 
have reached the limits of the R1 
design for both.

By SIMON KUHN & MIGUEL CARDONA

Racking Mac Pros
imgix’s second generation image rendering system

http://imgix.com
http://racklive.com
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Power Density & Port Utilization
By improving these two metrics, 
we can minimize our fixed costs 
per rack, which allows us to more 
directly and efficiently scale based 
on actual customer requirements. 
For a redesign to be worthwhile, 
it needed to offer substantial 
improvements above R1 in these 
two areas. Our targets were aggres-
sive: 70% of maximum power draw 
at peak and 80% network port uti-
lization. Our R1 solution produces 
37% draw and 66% port utilization.

Building on OS X technologies 
means we’re dependent on Apple 
hardware for this part of the service, 
but we aren’t necessarily limited to 
Mac Minis. Apple’s redesigned Mac 
Pro seemed like an ideal replace-
ment, as long as we could reliably 
operate it in a datacenter environ-
ment. This was uncharted territory 
when we started this project, and 
even today is pretty uncommon in 
comparison to the Mac Mini.

Design
We considered various off–the–shelf 
products and spoke to manufactur-
ers, but it became apparent that 
no one was designing for the type 
of usage we envisioned. Installing 
cylindrical systems in a 19–inch 
rack built for rectangles with high 
density and proper airflow is harder 
than it might seem. We had enough 
internal expertise to get started, but 
the project truly gained momen-
tum when Racklive came onboard. 
They rose to the challenge, and the 
finished product is unlike any other 
Mac Pro solution.

Chassis
The R2 design consists of a metal 
chassis which houses four Mac Pros 
in a horizontal, sideways orienta-
tion with separate hot and cold 
air compartments. This chassis 
allows us to mount Mac Pros as we 
would any other server: on rails, in 
a rectangular enclosure, and with 
front and rear port access. The 
chassis itself is completely passive 
(although it could be adapted for 
fans in poorly ventilated sites). Each 
system within the chassis operates 
independently of the others.
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Ports
Pigtail cables connect the ports on 
each system to ports on the outside 
of the chassis, so that there is no 
tangled mess lurking inside. Power 
and Ethernet are both routed to 
ports on the rear, with room for a 
second set of Ethernet cables if nec-
essary. The rack design also incor-
porates room for a second network 
switch.

Each system has its own remotely 
controllable power outlet, which 
provides us with a basic level of 
out–of–band management. Graph-
ics and USB may be routed to 
either the front or rear of the chas-
sis. In our case, we chose the front 
for a better operator experience, 
because it can get pretty unpleasant 
standing in the hot aisle.

Air Flow
Positioning the Mac Pros sideways 
proved to be the key to obtaining 
the density we wanted, but that’s 
all moot if the systems can’t run 
reliably due to insufficient cool-
ing. The inclusion of split hot and 
cold air chambers inside the chassis 
ensures that each system receives 
enough airflow to operate within 
acceptable ranges.

A single large channel provides 
cold air to all four systems, and air 
is forced through the hosts by their 
own fans as well as our datacenter’s 
pressurized environment. The only 
way for air to pass through the 
rack is via the Mac Pro’s fan, and 
the channel is sufficiently large to 
provide as much air as the four Mac 
Pros can intake.

Only a small portion of each 
system is positioned in the cool 
chamber, just enough for the air 
intakes to be exposed only to cold 
air. The rest of each Mac Pro is 
housed in the hot chamber, blocked 
off with a metal plate and fitted 
with gaskets to prevent air leakage. 

Since the Mac Pro ventilates only 
from the top, and the hot chamber 
has a very large vent to the data-
center row’s hot aisle, this allows 
hot air to quickly escape from the 
chassis.
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Physical
The chassis is very heavy duty 
with excellent rigidity, since it 
must securely hold nearly 50 
pounds of equipment. Each Mac 
Pro is clamped down to prevent 
unwanted movement. The chas-
sis itself may be removed from the 
rack on sliding rails, although it 
isn’t possible to remove just one 
Mac Pro — the entire group of four 
systems must be taken offline for 
maintenance.

Our inability to remove single 
systems is the main drawback to 
this design, but it’s an acceptable 
tradeoff for density because of the 
way imgix’s service is architected. 
Each chassis represents 9% of the 
rack’s total capacity, well within 
our failure tolerances. The service 
is engineered to handle such a loss 
without noticeable impact.

Rack
The R2 design uses our standard 
46U rack, common to all of imgix’s 
deployments. 11 chassis fit into a 
rack, 4 Mac Pros per chassis, and 
our CDUs and network switch are 
mounted in the rear. The design 
incorporates our rapid deployment 
methodology: all of the systems, 
chassis and cables are integrated and 
assembled before they reach imgix’s 
datacenter. Once a rack hits the 
datacenter floor, it can be processing 
images in as little as two hours.

We were able to develop this 
completely new design without 
making a single change to our exist-
ing datacenters because of our 
flexible and scalable datacenter 
architecture.

Once the first R2 rack has been 
put through its paces, we expect 
that racks of the R2 design will 
power imgix’s image rendering for 
the next few years.

And what of our two target 
metrics? The R1 rack design was at 
37% power draw and 66% network 
port utilization; the R2 rack design 
is currently at 81% power draw and 
91% port utilization. By reducing 
our overhead costs, we can respond 
better and faster to service demand, 
and ultimately deliver a better 
product to our customers.

Conclusion
There are a number of differ-
ent ways to deploy Mac Pros in a 
datacenter environment, but only 
imgix’s design uniquely addresses 
the particular needs of a large scale 
service. We feel that the custom 
chassis and rack design represent 
an ideal intersection of flexibil-
ity, maintainability, and efficiency 
tailored to imgix’s service needs. 
We’re always looking to refine and 
improve our designs, and we’re 
already hard at work on revisions to 
R2 as well as thinking about what 
the next big thing may involve. n

Simon Kuhn has managed large scale Inter-
net services at Yahoo and Dropbox; he runs 
imgix’s worldwide datacenter, networking 
and systems infrastructure.

Miguel Cardona is imgix’s lead designer, 
and was formerly a Visiting Professor at 
the School of Design at Rochester Institute 
of Technology.

imgix delivers dynamic images to your 
users with unparalleled flexibility, uncom-
promising quality and incredible speed.

Reprinted with permission of the original author. 
First appeared in hn.my/macpros (imgix.com)

http://hn.my/macpros
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PROGRAMMING

By STANISŁAW PITUCHA

I wanted to create a website 
for a personal project. This is 
usually a great opportunity 

to learn — no time pressure, no 
external requirements, etc. That 
meant I could choose the language I 
wanted to try out in advance (Rust) 
and take it for a spin. Here’s a short 
summary of the experience.

The state of webdev in Rust
Rust environment has some sup-
port for web development, but it’s 
still very basic. It’s not a discov-
ery — it’s well known fact, even 
documented on “Are we web yet?” 
[arewewebyet.com] However 
unless you need a lot of pre-pack-
aged components, you can already 
write some services.

I didn’t have huge require-
ments: a read-only database-backed 
website with a 2-page admin panel. 
The website is not complete yet, 
but I’ve done most of the pages and 
now it just needs more typing, not 
thinking. So here’s the usual: the 
good, the bad, and the ugly.

What worked well
The basics are there. I used the Iron 
framework [ironframework.io], 
which provides the server part with 
routers, static file handling, taking 
care of connections, etc. It’s an eco-
system of its own. Jonathan Reem 
manages most of the GitHub bits 
with at least one contribution every 
day for the last year — impressive! 
Most of the useful Iron elements 
are in his repos and now it looks 
like HTTP2parser is on the way.

The router does its job. It sup-
ports getting values from the URL, 
and it can be composed (that is, 
both the Router and the Chain are 
Handlers). It doesn’t support regex 
matching or casting parameters to 
the right type, but it’s functional. 
Same goes for logging and static file 
handling. No thrills, they work.

There aren’t that many template 
libraries to choose from yet, but 
handlebars-iron does the job.

The feeling that when the code 
compiles, it will not explode at 
runtime with some silly error is 
really, really good. Actually the 
compiler checks cover most of the 
things I’d normally unit-test, so 

this is probably the only non-trivial 
project I wrote without checks, and 
I’m OK with that. The only things 
I’d like to unit-test would probably 
get a package of their own and not 
stay in the webapp itself.

The code seems quite compact. 
There are some parts which are 
verbose and they’re described later. 
But ~500 LOC include all initial-
ization and config, DB entities and 
operations, around 7 routes, verify-
ing arguments and passing them to 
templates. That’s about as much as 
I’d expect from similar projects in 
Python.

What didn’t work very well

API restrictions, lifetimes…
Some things are just harder in 
Rust. There were moments when 
I wanted to do basic refactoring, 
and the design of the libraries was 
simply against me. I realize that 
happens for a good reason typically, 
but there are also really odd cases.

One of those is described in an 
r2d2 issue — unfortunately it’s not 
possible to return the connection 
from a function without either 
creating a new type, which will also 

I Wrote a Website in Rust 
and Lived to Tell the Tale

http://arewewebyet.com
http://ironframework.io
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keep a ref-counted connection manager, or mut-bor-
rowing the whole request. Of course the latter pre-
vents getting other things from the request, like URL 
parameters. Issues like that suddenly throw a spanner 
in the works and leave you analyzing lifetimes, brows-
ing docs, trying to figure out if you’re wrong or if the 
library design really isn’t compatible with what you’re 
trying to do.

On the other hand, you end up learning a lot about 
lifetimes and borrows in practice.

Passing data in/out
Another bad part is Rust’s JSON handling. It badly 
needs macros to make things easier. Using standard 
types results in things like:

let mut data = BTreeMap::new(); 
data.insert("events".to_string(), events.to_
json()); 
let page = Template::new("events_page", data);

When I really want it to be only something like:

let data = !json_obj { "events", events }; 
let page = Template::new("events_page", data);

Fortunately the ToJson trait handles creating more 
complex objects and Vec<Event> in this case could 
serialize itself.

Apparently there’s maplit — while it’s designed for 
hashmaps/btreemaps and ToJson can’t use &str keys, 
unfortunately, it’s still an improvement. Using those 
macros, the following works (and also gets rid of the 
only mut in the handlers — yay!):

let data = btreemap!{ 
    "events".to_string() => events.to_json(), 
};

Compile times
Finally… the iteration time is just bad. It doesn’t 
matter if you’re writing some bigger piece of function-
ality, but when trying to solve some tricky compile 
error or just experimenting, waiting for more than 
5 seconds is going to bother you at first and really 
irritate after the third try. A tiny project with lots of 
dependencies (516 LOC, 63 dependency crates) takes 
13 seconds to compile — and that’s in debug mode, 
without optimizations.

After a while I started to recognize which phase of 
compilation failed based on time-to-error (unknown 
names, wrong signatures, borrows, lifetimes, warnings) 
and that after 3 seconds or after any warning showed 
up, it’s only LLVM/linker/optimizer running and there 
will be no error anymore.

What’s just ugly

Verbose parts
Compared to many static languages, the handlers look 
tidy. Compared to dynamic languages, they’re ter-
rible. Starting with how to get a numeric ID out of the 
routed URL (unwraps are safe here — if they fail that’s 
Router‘s implementation issue, not bad data):

let id_str = req.extensions.get::<Router>().
unwrap().find("id").unwrap(); 
let id = match id_str.parse::<i32>() { 
    Err(_) => return not_found(), 
    Ok(result) => result 
};

And sure, this could be something like:

let id = try!(get_url_parameter::<i32>(&req, 
"id"));

But unless you write that function, it isn’t. Same 
goes for the database connection mentioned earlier, 
which could be a macro, but cannot be a function, or 
not easily anyway:

let pool = req.get::<Read<Database>>().ok().
expect("database component not initialized"); 
let connection = pool.get().unwrap();

These really needs to be more developer-friendly 
before people start using it daily.

Weird interfaces
Some interfaces need to be easier for developers before 
web development in Rust becomes more common. 
Figuring out a plugin architecture based on compile-
time hashmap using types with associated values can 
be complicated. If your goal is just “get me the URL 
parameter,” then it’s needlessly annoying. It’s great that 
it works like this under the covers, but I don’t need to 
know about it.



10 PROGRAMMING

Import avalanche
When working with many third party components, 
which is very common in webdev, the declarations on 
the top of the file can get rather long. For example the 
main file in my project contains just the initialization 
and route handlers (all database operations, entities, 
helper functions, etc., are in other modules), yet it 
still has 30 extern/mod/use lines at the top. With line 
breaks and comments that takes over one full screen. 
And that’s when using deduplicated

use ...::{Something,Other,...}

matches on a single line.
Not the end of the world, but slightly annoying.

What’s been observed
I don’t know if these can be classified as good or bad, 
but they do give me a nice feeling.

Option
APIs usually handle Option<...> nicely. In Json, in 
database connectors, in templates, it just works where 
it should. That means there’s rarely some special casing 
involved — if you have some related table in the data-
base which may or may not have an entry you’re inter-
ested in, it’s probably going to be an Option<Entry> in 
your handler code.

That’s good, because you won’t see a ladder of spe-
cial cases checking to see whether you have something 
or not. On the other hand, you need to learn to quickly 
write/read lines of .and_then(),.err_map() and others. 
While they were new to me, I quite like this approach 
actually. For example here:

let event_id = event_name 
    .and_then({|name| Some(get_or_create_
event(&connection, &name)) }) 
    .and_then({|event| Some(event.event_id) });

Variable event_id will go directly to the template 
and I don’t care if event_name existed, if it had a 
matching event, etc. Everything’s going to be fine. Even 
the postgres connector can translate those to a NULL 
where needed.

This is very different from the guessing game of 
“does this function handle null/nil/None properly” in 
many other frameworks.

No ORM
There’s no big ORM in Rust yet. There’s r2d2 for con-
nection pools, which is very welcome. There are also 
fairly standard database connectors. But that’s about it. 
And actually, I don’t mind that much. You can write 
macros for mini-ORM (just basic SELECT, INSERT) 
and handle everything else via SQL. Traits like From<> 
help a lot, because you can just implement

impl<'a> From<&'a Row<'a>> for Event {

for your types. Then reading them back from results is 
only:

rows.iter().map(|row| Event::from(&row)).
collect()

It’s also really easy to make it generic or throw into a 
macro if it repeats too many times.

Exposing to public
Iron/Hyper are not yet ready to take internet traffic 
directly. Since Rust doesn’t have a nonblocking IO 
available in a stable form yet, you should put the server 
behind something that can handle a slow-connection-
DoS — for example Nginx.

Summary
It may look like I listed a lot more negatives than posi-
tives, but that’s just because it’s harder to talk about 
good things when they’re expected. I enjoyed the 
experience and if some other personal project comes 
up, I think I’ll use Rust again (instead of Python/Flask 
as usual).

If the project gets bigger, many things will have to be 
implemented — logging to external collectors, forward-
ing detailed errors, reporting processing/query times, 
application/schema migration control, etc. But that’s 
still in the future. Today, it’s a small, lean project, and 
Iron fulfills all the needs. n

Stanislaw is a true generalist, having done jobs around small 
embedded chips, web dev, server deployment automation, inter-
net telephony and more. Currently, he is working as an HP security 
engineer, exploring OpenStack. In the free time, he is a swing & 
blues dancer, traveling the world.

Reprinted with permission of the original author. 
First appeared in hn.my/rusttale (viraptor.info)

http://hn.my/rusttale
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Last week during a casual conversation, I over-
heard a colleague saying: “The Linux network 
stack is slow! You can’t expect it to do more 

than 50 thousand packets per second per core!”
That got me thinking. While I agree that 50kpps per 

core is probably the limit for any practical application, 
what is the Linux networking stack capable of? Let’s 
rephrase that to make it more fun:

On Linux, how hard is it to write a program that receives 
1 million UDP packets per second?

Hopefully, answering this question will be a good 
lesson about the design of a modern networking stack.

First, let us assume:

 n Measuring packets per second (pps) is much more 
interesting than measuring bytes per second (Bps). 
You can achieve high Bps by better pipelining and 
sending longer packets. Improving pps is much 
harder.

 n Since we’re interested in pps, our experiments will 
use short UDP messages. To be precise: 32 bytes of 
UDP payload. That means 74 bytes on the Ethernet 
layer.

 n For the experiments we will use two physical servers: 
“receiver” and “sender.”

 n They both have two six core 2GHz Xeon processors. 
With hyperthreading (HT) enabled that counts to 
24 processors on each box. The boxes have a multi-
queue 10G network card by Solarflare, with 11 
receive queues configured. More on that later.

 n The source code of the test programs is available 
here: udpsender, udpreceiver.

Prerequisites
Let’s use port 4321 for our UDP packets. Before we 
start we must ensure the traffic won’t be interfered 
with by the iptables:

receiver$ iptables -I INPUT 1 -p udp --dport 
4321 -j ACCEPT   
receiver$ iptables -t raw -I PREROUTING 1 -p udp 
--dport 4321 -j NOTRACK  

A couple of explicitly defined IP addresses will later 
become handy:

receiver$ for i in `seq 1 20`; do \   
       ip addr add 192.168.254.$i/24 dev eth2; \ 
          done 
sender$ ip addr add 192.168.254.30/24 dev eth3  

By MAREK MAJKOWSKI

How to Receive a Million 
Packets Per Second

Photo: flickr.com/photos/mccaffrey_uk/3208129302

http://flickr.com/photos/mccaffrey_uk/3208129302
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1. The naive approach
To start let’s do the simplest experiment. How many 
packets will be delivered for a naive send and receive?

The sender pseudo code:

fd = socket.socket(socket.AF_INET, socket.SOCK_
DGRAM)   
fd.bind(("0.0.0.0", 65400)) # select source port 
to reduce nondeterminism   
fd.connect(("192.168.254.1", 4321))   
while True:   
    fd.sendmmsg(["\x00" * 32] * 1024)

While we could have used the usual send syscall, it 
wouldn’t be efficient. Context switches to the kernel 
have a cost, and it is be better to avoid it. Fortunately 
a handy syscall was recently added to Linux: sendmmsg. 
It allows us to send many packets in one go. Let’s do 
1,024 packets at once.

The receiver pseudo code:

fd = socket.socket(socket.AF_INET, socket.SOCK_
DGRAM)   
fd.bind(("0.0.0.0", 4321))   
while True:   
    packets = [None] * 1024 
    fd.recvmmsg(packets, MSG_WAITFORONE)

Similarly, recvmmsg is a more efficient version of the 
common recv syscall.

Let’s try it out:

sender$ ./udpsender 192.168.254.1:4321   
receiver$ ./udpreceiver1 0.0.0.0:4321   
  0.352M pps  10.730MiB /  90.010Mb 
  0.284M pps   8.655MiB /  72.603Mb 
  0.262M pps   7.991MiB /  67.033Mb 
  0.199M pps   6.081MiB /  51.013Mb 
  0.195M pps   5.956MiB /  49.966Mb 
  0.199M pps   6.060MiB /  50.836Mb 
  0.200M pps   6.097MiB /  51.147Mb 
  0.197M pps   6.021MiB /  50.509Mb

With the naive approach we can do between 197k 
and 350k pps. Not too bad. Unfortunately there is 
quite a bit of variability. It is caused by the kernel shuf-
fling our programs between cores. Pinning the pro-
cesses to CPUs will help:

sender$ taskset -c 1 ./udpsender 
192.168.254.1:4321   
receiver$ taskset -c 1 ./udpreceiver1 
0.0.0.0:4321   

  0.362M pps  11.058MiB /  92.760Mb 
  0.374M pps  11.411MiB /  95.723Mb 
  0.369M pps  11.252MiB /  94.389Mb 
  0.370M pps  11.289MiB /  94.696Mb 
  0.365M pps  11.152MiB /  93.552Mb 
  0.360M pps  10.971MiB /  92.033Mb

Now, the kernel scheduler keeps the processes on 
the defined CPUs. This improves processor cache local-
ity and makes the numbers more consistent, just what 
we wanted.

2. Send more packets
While 370k pps is not bad for a naive program, it’s 
still quite far from the goal of 1Mpps. To receive more, 
first we must send more packets. How about sending 
independently from two threads:

sender$ taskset -c 1,2 ./udpsender \   
            192.168.254.1:4321 
192.168.254.1:4321 
receiver$ taskset -c 1 ./udpreceiver1 
0.0.0.0:4321   
  0.349M pps  10.651MiB /  89.343Mb 
  0.354M pps  10.815MiB /  90.724Mb 
  0.354M pps  10.806MiB /  90.646Mb 
  0.354M pps  10.811MiB /  90.690Mb

The numbers on the receiving side didn’t 
increase. ethtool -S will reveal where the packets 
actually went:

receiver$ watch 'sudo ethtool -S eth2 |grep rx'   
     rx_nodesc_drop_cnt:    451.3k/s 
     rx-0.rx_packets:     8.0/s 
     rx-1.rx_packets:     0.0/s 
     rx-2.rx_packets:     0.0/s 
     rx-3.rx_packets:     0.5/s 
     rx-4.rx_packets:  355.2k/s 
     rx-5.rx_packets:     0.0/s 
     rx-6.rx_packets:     0.0/s 
     rx-7.rx_packets:     0.5/s 
     rx-8.rx_packets:     0.0/s 
     rx-9.rx_packets:     0.0/s 
     rx-10.rx_packets:    0.0/s

Through these stats, the NIC reports that it had 
successfully delivered around 350kpps to RX queue 
number #4. The rx_nodesc_drop_cnt is a Solarflare 
specific counter saying the NIC failed to deliver 
450kpps to the kernel.
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Sometimes it’s not obvious why the packets weren’t 
delivered. In our case though, it’s very clear: the RX 
queue #4 delivers packets to CPU #4. And CPU #4 
can’t do any more work — it’s totally busy just reading 
the 350kpps. Here’s how that looks in htop:

Crash course to multi-queue NICs
Historically, network cards had a single RX queue that 
was used to pass packets between hardware and kernel. 
This design had an obvious limitation: it was impos-
sible to deliver more packets than a single CPU could 
handle.

To utilize multicore systems, NICs began to support 
multiple RX queues. The design is simple: each RX 
queue is pinned to a separate CPU, therefore, by deliv-
ering packets to all the RX queues a NIC can utilize all 
CPUs. But it raises a question: given a packet, how does 
the NIC decide to which RX queue to push it?

 Round-robin balancing is not acceptable, as it might 
introduce reordering of packets within a single con-
nection. An alternative is to use a hash from packet 
to decide the RX queue number. The hash is usually 
counted from a tuple (src IP, dst IP, src port, dst port). 
This guarantees that packets for a single flow will 
always end up on exactly the same RX queue, and 
reordering of packets within a single flow can’t happen.

In our case, the hash could have been used like this:

RX_queue_number = hash('192.168.254.30', 
'192.168.254.1', 65400, 4321) % number_of_queues  

Multi-queue hashing algorithms
The hash algorithm is configurable with ethtool. On 
our setup it is:

receiver$ ethtool -n eth2 rx-flow-hash udp4   
UDP over IPV4 flows use these fields for computing 
Hash flow key:   
IP SA   
IP DA  

This reads as: for IPv4 UDP packets, the NIC will 
hash (src IP, dst IP) addresses. i.e.:

RX_queue_number = hash('192.168.254.30', 
'192.168.254.1') % number_of_queues  

This is pretty limited, as it ignores the port numbers. 
Many NICs allow customization of the hash. Again, 
using ethtool we can select the tuple (src IP, dst IP, src 
port, dst port) for hashing:

receiver$ ethtool -N eth2 rx-flow-hash udp4 sdfn   
Cannot change RX network flow hashing options: 
Operation not supported  

Unfortunately our NIC doesn’t support it. We are 
constrained to (src IP, dst IP) hashing.

A note on NUMA performance
So far all our packets flow to only one RX queue and 
hit only one CPU. Let’s use this as an opportunity to 
benchmark the performance of different CPUs. In our 
setup the receiver host has two separate processor 
banks, each is a different NUMA node.

We can pin the single-threaded receiver to one of 
four interesting CPUs in our setup. The four options 
are:

1. Run receiver on another CPU, but on the same 
NUMA node as the RX queue. The performance as 
we saw above is around 360kpps.

2. With receiver on exactly same CPU as the RX 
queue we can get up to ~430kpps, but it creates 
high variability. The performance drops down to 
zero if the NIC is overwhelmed with packets.

3. When the receiver runs on the HT counterpart of 
the CPU handling RX queue, the performance is 
half the usual number at around 200kpps.

4. With receiver on a CPU on a different NUMA node 
than the RX queue we get ~330k pps. The numbers 
aren’t too consistent, though.
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While a 10% penalty for running on a different 
NUMA node may not sound too bad, the problem 
only gets worse with scale. On some tests I was able to 
squeeze out only 250kpps per core. On all the cross-
NUMA tests the variability was bad. The performance 
penalty across NUMA nodes is even more visible at 
higher throughput. In one of the tests I got a 4x pen-
alty when running the receiver on a bad NUMA node.

3. Multiple receive IPs
Since the hashing algorithm on our NIC is pretty lim-
ited, the only way to distribute the packets across RX 
queues is to use many IP addresses. Here’s how to send 
packets to different destination IPs:

sender$ taskset -c 1,2 ./udpsender 
192.168.254.1:4321 192.168.254.2:4321  

ethtool confirms the packets go to distinct RX 
queues:

receiver$ watch 'sudo ethtool -S eth2 |grep rx'   
     rx-0.rx_packets:     8.0/s 
     rx-1.rx_packets:     0.0/s 
     rx-2.rx_packets:     0.0/s 
     rx-3.rx_packets:  355.2k/s 
     rx-4.rx_packets:     0.5/s 
     rx-5.rx_packets:  297.0k/s 
     rx-6.rx_packets:     0.0/s 
     rx-7.rx_packets:     0.5/s 
     rx-8.rx_packets:     0.0/s 
     rx-9.rx_packets:     0.0/s 
     rx-10.rx_packets:    0.0/s

The receiving part:

receiver$ taskset -c 1 ./udpreceiver1 
0.0.0.0:4321   
  0.609M pps  18.599MiB / 156.019Mb 
  0.657M pps  20.039MiB / 168.102Mb 
  0.649M pps  19.803MiB / 166.120Mb

Hurray! With two cores busy with handling RX 
queues, and third running the application, it’s possible 
to get ~650k pps!

We can increase this number further by sending traf-
fic to three or four RX queues, but soon the applica-
tion will hit another limit. This time the rx_nodesc_
drop_cnt is not growing, but the netstat “receiver 
errors” are:

receiver$ watch 'netstat -s --udp'   
Udp:   
      437.0k/s packets received 
        0.0/s packets to unknown port received. 
      386.9k/s packet receive errors 
        0.0/s packets sent 
    RcvbufErrors:  123.8k/s 
    SndbufErrors: 0 
    InCsumErrors: 0

This means that while the NIC is able to deliver the 
packets to the kernel, the kernel is not able to deliver 
the packets to the application. In our case it is able 
to deliver only 440kpps, the remaining 390kpps + 
123kpps are dropped due to the application not receiv-
ing them fast enough.

4. Receive from many threads
We need to scale out the receiver application. The 
naive approach, to receive from many threads, won’t 
work well:

sender$ taskset -c 1,2 ./udpsender 
192.168.254.1:4321 192.168.254.2:4321   
receiver$ taskset -c 1,2 ./udpreceiver1 
0.0.0.0:4321 2   
  0.495M pps  15.108MiB / 126.733Mb 
  0.480M pps  14.636MiB / 122.775Mb 
  0.461M pps  14.071MiB / 118.038Mb 
  0.486M pps  14.820MiB / 124.322Mb

The receiving performance is down compared to 
a single threaded program. That’s caused by a lock 
contention on the UDP receive buffer side. Since both 
threads are using the same socket descriptor, they 
spend a disproportionate amount of time fighting for a 
lock around the UDP receive buffer. 

Using many threads to receive from a single descrip-
tor is not optimal.
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5. SO_REUSEPORT
Fortunately, there is a workaround recently added to 
Linux: the SO_REUSEPORT flag. When this flag is set on 
a socket descriptor, Linux will allow many processes to 
bind to the same port. In fact, any number of processes 
will be allowed to bind and the load will be spread 
across them.

With SO_REUSEPORT each of the processes will have 
a separate socket descriptor. Therefore each will own a 
dedicated UDP receive buffer. This avoids the conten-
tion issues previously encountered:

receiver$ taskset -c 1,2,3,4 ./udpreceiver1 
0.0.0.0:4321 4 1   
  1.114M pps  34.007MiB / 285.271Mb 
  1.147M pps  34.990MiB / 293.518Mb 
  1.126M pps  34.374MiB / 288.354Mb

This is more like it! The throughput is decent now!
More investigation will reveal further room for 

improvement. Even though we started four receiv-
ing threads, the load is not being spread evenly across 
them:

 Two threads received all the work and the other two 
got no packets at all. This is caused by a hashing colli-
sion, but this time it is at the SO_REUSEPORT layer.

Final words
I’ve done some further tests, and with perfectly aligned 
RX queues and receiver threads on a single NUMA 
node it was possible to get 1.4Mpps. Running receiver 
on a different NUMA node caused the numbers to 
drop achieving at best 1Mpps.

To sum up, if you want a perfect performance you 
need to:

 n Ensure traffic is distributed evenly across many RX 
queues and SO_REUSEPORT processes. In practice, the 
load usually is well distributed as long as there are a 
large number of connections (or flows).

 n You need to have enough spare CPU capacity to 
actually pick up the packets from the kernel.

 n To make the things harder, both RX queues and 
receiver processes should be on a single NUMA 
node.

While we had shown that it is technically possible 
to receive 1Mpps on a Linux machine, the application 
was not doing any actual processing of received pack-
ets — it didn’t even look at the content of the traffic. 
Don’t expect performance like that for any practical 
application without a lot more work. n

After fruitful encounters with such diverse topics as high per-
formance key value databases, distributed queueing systems, 
making real time web communication enjoyable and accelerat-
ing the time so that testing servers and protocols takes seconds, 
Marek finally settled for working on DDoS mitigation in CloudFlare 
London office, where he appreciates most the parking space for 
his motorbike.

Reprinted with permission of the original author. 
First appeared in hn.my/mpackets (cloudflare.com)

http://hn.my/mpackets
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By MIKE SOLOMON

Openwrt [openwrt.org] 
is a powerful Linux 
distribution for embed-

ded devices, such as my router, and 
this is the story of how I used it to 
double my bandwidth at no extra 
cost to myself.

How? By doubling the number of 
Internet connections I have.

My Setup

My Internet
My internet is through Comcast 
(unfortunately).

Comcast has an initiative called 
Xfinity WiFi. When you rent a 
cable modem/router combo from 
Comcast (as one of my nearby 
neighbors apparently does), in 
addition to broadcasting your own 
WiFi network, it is kind enough to 
also broadcast “xfinitywifi,” a second 
“hotspot” network metered sepa-
rately from your own.

This hotspot allows Comcast 
customers to connect with their 
credentials.

My Router
My router is a Buffalo WZR-HP-
AG300H. Crucially, this router 1) 
supports OpenWRT and 2) has two 
independent radios. I use one of 
them for my home WiFi network.

My Idea
By now, you’ve probably put two 
and two together.

I use my router’s extra radio to 
connect to the xfinitywifi hotspot, 
then load balance my outbound 
traffic across the connection I 
pay for and the bonus xfinitywifi 
connection.

Obviously this is a pretty specific 
scenario, but if you have:

1. A hotspot you have credentials 
for within range

2. A router that supports both 
OpenWRT

3. That same router has a spare 
radio

How to set this up

1. Install OpenWRT
Find your router on Open-
WRT’s table of hardware and 
follow the instructions to install it, 
[hn.my/toh] getting your WiFi and 
network set up as usual.

2. Install multi-wan software in 
OpenWRT
Open your router’s web inter-
face and navigate to /cgi-bin/
luci/admin/system/packages and 
install luci-app-mwan3. This (along 
with its dependencies) allows you 
to support multiple internet con-
nections with round-robin load 
balancing between them (with con-
nection pinning for HTTPS).

3. Authenticate a MAC address 
with xfinitywifi
The xfinitywifi hotspot requires 
authentication, not via WPA2 or 
other normal network security, but 
with a Comcast login. It remembers 
this login by way of your MAC 
address. Unfortunately, it is not 
very easy to authenticate directly 
through the router, so instead we 
will authenticate a MAC address 
through a computer, then switch 

How I Doubled my Internet 
Speed with OpenWRT

http://openwrt.org
http://hn.my/toh
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the apparent MAC address the 
router uses.

1. Generate a fake MAC address. 
Here’s one: 02:67:1c:16:1f:21

2. Spoof your MAC address (for 
your wireless adapter) on your 
computer. Be sure to find out 
how to do it on your Linux/
Mac/Windows system. Remem-
ber to record your old MAC 
address.

3. With your MAC address 
spoofed, connect to xfinity-
wifi and enter your Comcast 
credentials

Disconnect from xfinitywifi and 
restore your original MAC address

4. Connect the router to xfinitywifi
In your OpenWRT web (LuCI) 
interface at /cgi-bin/luci/admin/
network/wireless, press Scan on 
your available radio, and select Join 
Network for xfinitywifi. Name 
it wan2 and add it to the wan firewall 
group. Save & Apply your settings.

Now, go to /cgi-bin/luci/
admin/network/network/wan2 and 
go to the Advanced Settings tab. 
Paste your fake and authenticated 
MAC address into the “Override 
MAC address” field. Save & Apply 
your settings.

5. Prepare mwan3 for a wireless 
WAN
In your OpenWRT web (LuCI) 
interface at cgi-bin/luci/admin/
network/network/wan/, click the 
Advanced Settings tab and enter 10 
under Use gateway metric and Save 
your settings.

At cgi-bin/luci/admin/net-
work/network/wan2/, click the 
Advanced Settings tab and enter 20 
under Use gateway metric and Save 
your settings.

In your OpenWRT web (LuCI) 
interface at /cgi-bin/luci/
admin/network/mwan/advanced/
networkconfig, you will see your 
network config file. Paste this sec-
tion at the bottom, adjusting as 
necessary with settings from your 
xfinitywifi connection:

config route 'default_wan2' 
  option interface 'wan2' 
  option target '0.0.0.0' 
  option netmask '0.0.0.0' 
  option gateway '192.168.1.1' 
  option metric '20'

Normally this last step is not nec-
essary, but for some reason mwan3 
seems to need it to work with wire-
less networks.

Submit your changes.

Check it!
Go to cgi-bin/luci/admin/
network/mwan and you should see 
both networks green!

At least you will if you’re the 
luckiest person ever. More likely 
you’ll run into problems, check out 
the mwan docs [hn.my/mwan] and 
Google around.

Another good test is to go 
to What is my IP [whatismyip.com] 
and refresh several times and ensure 
you see two different IP addresses.

Good luck! n

Mike Solomon is a software engineer in 
San Francisco. He works at Twitter (@msol) 
on distributed systems and backend Scala 
services. He writes sometimes at msol.io

Reprinted with permission of the original author. 
First appeared in hn.my/speed2x (msol.io)

http://hn.my/mwan
http://whatismyip.com
http://msol.io
http://hn.my/speed2x
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By ARTEM KHURSHUDOV

If you have been around all the 
machine learning and artificial 
intelligence stuff, you surely 

have already seen this:

Let’s look for a moment at the 
top-right picture. There’s a leopard, 
recognized with substantial con-
fidence, and then two much less 
probable choices are jaguar and 
cheetah.

And this is, if you think about it 
for a bit, kinda cool. Do you know 
how to tell apart those three big 
and spotty kitties? Because I totally 

don’t. There must be 
differences, of course — 
maybe something subtle 
and specific that only 
a skilled zoologist can 
perceive, like general body 
shape or jaw size, or tail 
length — or maybe is 
it context/background, 
because leopards inhabit 
forests and are more likely 
to be found lying on a 
tree, when cheetahs live 
in savanna? Either way, 
for a machine learning 
algorithm, this looks very 
impressive to me. So, 

is that the famous deep learning 
approach? Are we going to meet 
human-like machine intelligence 
soon?

Well...turns out, maybe not so 
fast.

Just a little zoological fact
Let’s take a closer look at these 
three kinds of big cats again. Here’s 
the jaguar, for example:

 It’s the biggest cat on both 
Americas, which also has a curious 
habit of killing its prey by punctur-
ing their skull and brain (that’s not 
really the little fact we’re look-
ing for). It’s the most massive cat 
in comparison with leopard and 
cheetah, and its other distinguish-
ing features are dark eyes and larger 
jaw. Well, that actually looks pretty 
fine-grained.

Suddenly, a Leopard Print 
Sofa Appears

 Or, if you haven’t, there are some deep convolu-
tional network result samples from ILSVRC2010, 
by Hinton and Krizhevsky
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Suspicion grows
Now, I have a little bit of a bad feeling about it. What if this is the only 
thing our algorithm does — just treating these three pictures like shapeless 
pieces of texture, knowing nothing about leopard’s jaw or paws, its body 
structure at all? Let’s test this hypothesis by running a pre-trained con-
volutional network on a very simple test image. We’re not trying to apply 
any visual noise, artificial occlusion or any other tricks to mess with image 
recognition — that’s just a simple image, which I’m sure everyone who 
reads this page will recognize instantly.

Here it is:

 We’re going to use Caffe [caffe.berkeleyvision.org] and its pre-trained 
CaffeNet model, which is actually different from Hinton and Krizhevsky’s 
AlexNet, but the principle is the same, so it will do just fine. And here we 
go:

import numpy as np 
import matplotlib.pyplot as plt 
 
caffe_root = '../' 
import sys 
sys.path.insert(0, caffe_root + 'python') 
 
import caffe 
 
MODEL_FILE = '../models/bvlc_reference_caffenet/deploy.prototxt' 
PRETRAINED = '../models/bvlc_reference_caffenet/bvlc_reference_
caffenet.caffemodel' 
IMAGE_FILE = '../sofa.jpg' 
 
caffe.set_mode_cpu() 
net = caffe.Classifier(MODEL_FILE, PRETRAINED, 
                       mean=np.load(caffe_root + 'python/caffe/
imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1), 
                       channel_swap=(2, 1, 0), 
                       raw_scale=255, 
                       image_dims=(500, 500)) 
input_image = caffe.io.load_image(IMAGE_FILE) 
prediction = net.predict([input_image]) 
plt.plot(prediction[0]) 
print 'predicted class:', prediction[0].argmax() 
plt.show()

Then, the leopard. It’s a bit 
smaller than the jaguar and gener-
ally more elegant, considering, for 
example, its smaller paws and jaw. 
And also yellow eyes. Cute.

 And the smallest of the pack, the 
cheetah, that actually looks quite 
different from the previous two. 
Has a generally smaller, long and 
slim body, and a distinctive face 
pattern that looks like two black 
tear trails running from the corners 
of its eyes.

And now for the part I’ve pur-
posely left out: black spotty print 
pattern. It’s not completely random, 
as you might think it is — rather, 
black spots are combined into small 
groups called “rosettes.” You can see 
that jaguar rosettes are large, dis-
tinctive, and contain a small black 
spot inside, while leopard rosettes 
are significantly smaller. As for the 
cheetah, its print doesn’t contain 
any, just a scatter of pure black 
spots.

 

See how those three prints actually 
differ.
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Here’s the result:

 >> predicted class: 290

But wait, maybe that’s just 
CaffeNet thing? Let’s check some-
thing third-party:

 n Clarifai [clarifai.com] (those guys 
did great on the latest ImageNet 
challenge)

 n Brand new Stephen Wolfram’s 
ImageIdentify [imageidentify.com]

 Okay, I cheated a bit: on the 
last picture the sofa is rotated by 
90 degrees, but that’s really simple 
transformation that should not 
change the recognition output 
so radically. I’ve also tried Micro-
soft and Google services and noth-
ing has beaten rotated leopard print 

sofa. Interesting result, considering 
all the “{Somebody}’s Deep Learn-
ing Project Outperforms Humans In 
Image Recognition” headlines that’s 
been around for a while now.

Why is this happening?
Now, here’s a guess. Imagine a 
simple supervised classifier, with-
out going into model specifics, that 
accepts a bunch of labeled images 
and tries to extract some inner 
structure (a set of features) from 
that dataset to use for recogni-
tion. During the learning process, 
a classifier adjusts its parameters 
using prediction/recognition error, 
and here’s when dataset size and 
structure matter. For example, if a 
dataset contains 99 leopards and 
only one sofa, the simplest rule that 
tells a classifier to always output 
“leopard” will result in 1% recogni-
tion error while staying not intel-
ligent at all.

And that seems to be exactly 
the case, both for our own visual 
experience and for ImageNet 
dataset. Leopard sofas are rare 
things. There simply aren’t enough 
of them to make difference for a 
classifier; and black spot texture 
makes a very distinctive pattern 
that is otherwise specific to a 
leopard category. Moreover, being 
faced with different classes of big 
spotted cats, a classifier can benefit 
from using these texture patterns, 
since they provide simple distin-
guishing features (compared with 
the others like the size of the jaw). 
So, our algorithm works just like it’s 
supposed to. Different spots make 
different features, there’s little 
confusion with other categories and 
the sofa example is just an anomaly. 
Adding enough sofas to the data-
set will surely help (and then the 
size of the jaw will matter more, I 

guess), so there’s no problem at all, 
it’s just how learning works.

Or is it?

What we humans do
Remember your first school year, 
when you learned digits in your 
math class.

When each student was given 
a heavy book of MNIST database, 
hundreds of pages filled with end-
less hand-written digit series, 60000 
total, written in different styles, 
bold or italic, distinctly or sketchy. 
The best students were also given 
an appendix, “Permutation MNIST,” 
that contained the same digits, but 
transformed in lots of different 
ways: rotated, scaled up and down, 
mirrored and skewed. And you had 
to scan through all of them to pass 
a math test, where you had to rec-
ognize just a small subset of length 
10000. And just when you thought 
the nightmare was over, a language 
class began, featuring not ten rec-
ognition categories, but twenty-six 
instead.

So, are you going to say that was 
not the case?

It’s an interesting thing: looks 
like we don’t really need a huge 
dataset to learn something new. We 
perceive digits as abstract concepts, 
Plato’s ideal forms, or actually 
rather a spatial combinations of 
ones, like “a straight line,” “a circle,” 
“an angle.” If an image contains two 
small circles placed one above the 
other, we recognize an eight; but 
when none of the digit-specific ele-
ments are present, we consider the 
image to be not a digit at all. This 
is something a supervised classifier 
never does — instead, it tries to put 
the image into the closest category, 
even if likeness is negligible.

Maybe MNIST digits is not a 
good example — after all, we all 

 Whoops.

http://clarifai.com
http://imageidentify.com
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have seen a lot of them in school, 
maybe enough for a huge dataset. 
Let’s get back to our leopard print 
sofa. Have you seen a lot of leop-
ards in your life? Maybe, but I’m 
almost sure that you’ve seen “faces” 
or “computers” or “hands” a lot 
more often. Have you actually seen 
such a sofa before — even once? 
Can’t be one hundred percent 
confident for myself, but I think I 
have not. And nevertheless, despite 
this total lack of visual experience, 
I don’t consider the image above a 
spotty cat in a slightest bit.

Convolutional networks make it 
worse

Deep convolutional network are 
long-time ImageNet champions. No 
wonder; they are designed to pro-
cess images, after all. If you are not 
familiar with the concept of CNNs, 
here’s a quick reminder: they are 
locally-connected networks that use 
a set of small filters as local feature 
detectors, convolving them across 
the entire image, which makes 
these features translation-invariant 
(which is often a desired property). 
This is also a lot cheaper than trying 
to put an entire image (represented 
by 1024x768=~800000 naive pixel 
features) into a fully-connected 
network. There are other operations 
involved in CNNs feed-forward 
propagation step, such as subsam-
pling or pooling, but let’s focus on 
convolution step for now.

Leopards (or jaguars) are com-
plex 3-dimensional shapes with 
quite a lot of degrees of freedom 

(considering all the body parts that 
can move independently). These 
shapes can produce a lot of differ-
ent 2d contours projected on the 
camera sensor: sometimes you can 
see a distinct silhouette featuring a 
face and full set of paws, and some-
times it’s just a back and a curled 
tail. Such complex objects can be 
handled by a CNN very efficiently 
by using a simple rule: “take all 
these little spotty-pattern features 
and collect as many matches as pos-
sible from the entire image.” CNNs 
local filters ignore the problem of 
having different 2d shapes by not 
trying to analyze leopard’s spatial 
structure at all — they just look for 
black spots, and, thanks to nature, 
there are a lot of them in any leop-
ard picture. The good thing here is 
that we don’t have to care about 
object’s pose and orientation, and 
the bad thing is that, well, we are 
now vulnerable to some specific 
kinds of sofas.

And this is really not good. 
CNN’s usage of local features 
allows for transformation invari-
ance, but this comes with the 
price of not knowing the object’s 
structure nor its orientation. CNN 
cannot distinguish between a cat 
sitting on the floor and a cat sitting 
on the ceiling upside down, which 
might be good for Google image 
search but for any other application 
involving interactions with actual 
cats, it’s not.

If that doesn’t look convincing, 
take a look at Hinton’s paper from 
2011 [hn.my/hinton] where he 
says that convolutional networks 
are doomed precisely because 
of the same reason. The rest of 
the paper is about an alterna-
tive approach, his capsule theory 
[hn.my/capsule], which is definitely 
worth reading, too.

We’re doing it wrong
Maybe not all wrong, and of 
course. Convolutional networks 
are extremely useful things, but 
think about it: sometimes it almost 
looks like we’re already there. We’re 
using huge datasets like ImageNet, 
organize competitions and chal-
lenges, where we, for example, 
have decreased MNIST recognition 
error rate from 0.87 to 0.23 (in 
three years) — considering that no 
one really knows what error rate a 
human brain can achieve. There’s a 
lot of talk about GPU implemen-
tations — like it’s just a matter of 
computational power now, and 
the theory is all fine. It’s not. And 
the problem won’t be solved by 
collecting even larger datasets and 
using more GPUs, because leopard 
print sofas are inevitable. There’s 
always going to be an anomaly; 
lots of them, actually, considering 
all the things painted in different 
patterns. Something has to change. 
Good recognition algorithms have 
to understand the structure of the 
image and to be able to find its 
elements like paws or face or tail, 
despite the issues of projection and 
occlusion.

So I guess, there’s still a lot of 
work to be done. n

Artem is a Python developer and a Ph.D. 
student (machine learning and computer 
vision) from Krasnodar, Russia. He is cur-
rently working on currently working on 
AirTribune.com

Reprinted with permission of the original author. 
First appeared in hn.my/leopard (rocknrollnerd.github.io)

http://hn.my/hinton
http://hn.my/capsule
http://AirTribune.com
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By RADIM REHUREK

Practical Data Science  
in Python

The goal of this article is to demonstrate 
some high level, introductory concepts 
behind (text) machine learning. The concepts 

are accompanied by concrete code examples in this 
notebook, which you can run yourself (after installing 
IPython, see below), on your own computer.

The code examples build a working, executable 
prototype: an app to classify phone SMS messages in 
English (well, the “SMS kind” of English...) as either 
“spam” or “ham” (=not spam).

 The language used throughout will be Python, a 
general purpose language helpful in all parts of the 
pipeline: I/O, data wrangling and preprocessing, model 
training, and evaluation. While Python is by no means 
the only choice, it offers a unique combination of flex-
ibility, ease of development, and performance, thanks 
to its mature scientific computing ecosystem. Its vast, 
open source ecosystem also avoids the lock-in (and 
associated bitrot) of any single specific framework or 
library.

End-to-end example: automated spam filtering

In [1]: 
%matplotlib inline 
import matplotlib.pyplot as plt 
import csv 
from textblob import TextBlob 
import pandas 
import sklearn 
import cPickle 
import numpy as np 

from sklearn.feature_extraction.text import 
CountVectorizer, TfidfTransformer 
from sklearn.naive_bayes import MultinomialNB 
from sklearn.svm import SVC, LinearSVC 
from sklearn.metrics import classification_
report, f1_score, accuracy_score, confusion_
matrix 
from sklearn.pipeline import Pipeline 
from sklearn.grid_search import GridSearchCV 
from sklearn.cross_validation import StratifiedK-
Fold, cross_val_score, train_test_split  
from sklearn.tree import DecisionTreeClassifier  
from sklearn.learning_curve import 
learning_curve

Step 1: Load data, look around
Skipping the real first step (fleshing out specs, find-
ing out what it is we want to be doing — often highly 
non-trivial in practice!), let’s download the dataset 
we’ll be using in this demo. Go to hn.my/spam and 
download the zip file. Unzip it under data subdirectory. 
You should see a file called SMSSpamCollection, about 
0.5MB in size:

$ ls -l data 
total 1352 
-rw-r--r--@ 1 kofola  staff  477907 Mar 15  2011 
SMSSpamCollection 
-rw-r--r--@ 1 kofola  staff    5868 Apr 18  2011 
readme 
-rw-r-----@ 1 kofola  staff  203415 Dec  1 15:30 
smsspamcollection.zip

http://hn.my/spam
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This file contains a collection of more than 5 thou-
sand SMS phone messages (see the readme file for 
more info):

In [2]: 
messages = [line.rstrip() for line in open('./
data/SMSSpamCollection')] 
print len(messages)

5574

A collection of texts is also sometimes called 
“corpus”. Let’s print the first ten messages in this SMS 
corpus:

In [3]: 
for message_no, message in 
enumerate(messages[:10]): 
    print message_no, message

0 ham Go until jurong point, crazy.. Available 
only in bugis n great world la e buffet... Cine 
there got amore wat... 
1 ham Ok lar... Joking wif u oni... 
2 spam Free entry in 2 a wkly comp to win FA 
Cup final tkts 21st May 2005. Text FA to 87121 to 
receive entry question(std txt rate)T&C's apply 
08452810075over18's 
3 ham U dun say so early hor... U c already 
then say... 
4 ham Nah I don't think he goes to usf, he 
lives around here though 
5 spam FreeMsg Hey there darling it's been 3 
week's now and no word back! I'd like some fun 
you up for it still? Tb ok! XxX std chgs to 
send, £1.50 to rcv 
6 ham Even my brother is not like to speak with 
me. They treat me like aids patent. 
7 ham As per your request 'Melle Melle (Oru 
Minnaminunginte Nurungu Vettam)' has been set 
as your callertune for all Callers. Press *9 to 
copy your friends Callertune 
8 spam WINNER!! As a valued network customer 
you have been selected to receivea £900 prize 
reward! To claim call 09061701461. Claim code 
KL341. Valid 12 hours only. 
9 spam Had your mobile 11 months or more? U R 
entitled to Update to the latest colour mobiles 
with camera for Free! Call The Mobile Update Co 
FREE on 08002986030

We see that this is a TSV (“tab separated values”) 
file, where the first column is a label saying whether 
the given message is a normal message (“ham”) or 
“spam”. The second column is the message itself.

This corpus will be our labeled training set. Using 
these ham/spam examples, we’ll train a machine learn-
ing model to learn to discriminate between ham/spam 
automatically. Then, with a trained model, we’ll be 
able to classify arbitrary unlabeled messages as ham or 
spam.

 Instead of parsing TSV (or CSV, or Excel...) files 
by hand, we can use Python’s pandas library to do the 
work for us:

In [4]: 
messages = pandas.read_csv('./data/SMSSpamCol-
lection', sep='\t', quoting=csv.QUOTE_NONE, 
                     names=["label", "message"]) 
print messages

     label                               message 
0      ham        Go until jurong point, crazy..  
1      ham         Ok lar... Joking wif u oni... 
2     spam    Free entry in 2 a wkly comp to ...  
3      ham             U dun say so early hor...  
4      ham   Nah I don't think he goes to usf... 
5     spam     FreeMsg Hey there darling it's... 
6      ham     Even my brother is not like to...  
7      ham   As per your request 'Melle Melle... 
8     spam      WINNER!! As a valued network ... 
...    ...                                   ... 
5567   ham                          Huh y lei... 
5568  spam      REMINDER FROM O2: To get 2.50... 
5569  spam  This is the 2nd time we have trie... 
5570   ham  Will ü b going to esplanade fr home? 
5571   ham  Pity, * was in mood for that. So... 
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5572   ham  The guy did some bitching but I'd... 
5573   ham  Rofl. Its true to its name 
 
[5574 rows x 2 columns]

With pandas, we can also view aggregate statistics 
easily:

In [5]: 
messages.groupby('label').describe()

Out[5]:

How long are the messages?

In [6]: 
messages['length'] = messages['message'].
map(lambda text: len(text)) 
print messages.head()

  label                          message  length 
0   ham  Go until jurong point, crazy...     111 
1   ham    Ok lar... Joking wif u oni...      29 
2  spam  Free entry in 2 a wkly comp ...     155 
3   ham  U dun say so early hor... U ...      49 
4   ham  Nah I don't think he goes to...      61

In [7]: 
messages.length.plot(bins=20, kind='hist')

Out[7]: 
<matplotlib.axes._subplots.AxesSubplot at 0x10dd7a90>

In [8]: 
messages.length.describe()

Out[8]: 
count    5574.000000 
mean       80.604593 
std        59.919970 
min         2.000000 
25%        36.000000 
50%        62.000000 
75%       122.000000 
max       910.000000 
Name: length, dtype: float64

What is that super long message?

In [9]: 
print list(messages.message[messages.length > 
900])

["For me the love should start with attraction.i 
should feel that I need her every time around 
<...> 
she is with me.I would like to say a lot..will 
tell later.."]

Is there any difference in message length between 
spam and ham?

In [10]: 
messages.hist(column='length', by='label', 
bins=50)

Out[10]: 
array([<matplotlib.axes._subplots.AxesSubplot 
object at 0x11270da50>, 
       <matplotlib.axes._subplots.AxesSubplot 
object at 0x1126c7750>], dtype=object)
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Good fun, but how do we make a computer under-
stand the plain text messages themselves? Or can it 
under such malformed gibberish at all?

Step 2: Data preprocessing
In this section we’ll massage the raw messages 
(sequence of characters) into vectors (sequences of 
numbers).

The mapping is not 1-to-1; we’ll use the bag-of-
words approach, where each unique word in a text will 
be represented by one number.

As a first step, let’s write a function that will split a 
message into its individual words:

In [11]: 
def split_into_tokens(message): 
    message = unicode(message, 'utf8')  # con-
vert bytes into proper unicode 
    return TextBlob(message).words

Here are some of the original texts again:

In [12]: 
messages.message.head()

Out[12]: 
0    Go until jurong point, crazy...  
1    Ok lar... Joking wif u oni... 
2    Free entry in 2 a wkly comp to win... 
3    U dun say so early hor... U c already... 
4    Nah I don't think he goes to usf, he... 
Name: message, dtype: object

...and here are the same messages, tokenized:

In [13]: 
messages.message.head().apply(split_into_tokens)

Out[13]: 
0    [Go, until, jurong, point, crazy... 
1    [Ok, lar, Joking, wif, u, oni] 
2    [Free, entry, in, 2, a, wkly, comp, to, 
3    [U, dun, say, so, early, hor, U, c, 
4    [Nah, I, do, n't, think, he, goes, to, usf, 
NLP questions:

 n Do capital letters carry information?

 n Does distinguishing inflected form (“goes” vs. “go”) 
carry information?

 n Do interjections, determiners carry information?

In other words, we want to better “normalize” the 
text.

With textblob, we’d detect part-of-speech 
(POS) tags with:

In [14]: 
TextBlob("Hello world, how is it going?").tags  
# list of (word, POS) pairs

Out[14]: 
[(u'Hello', u'UH'), 
 (u'world', u'NN'), 
 (u'how', u'WRB'), 
 (u'is', u'VBZ'), 
 (u'it', u'PRP'), 
 (u'going', u'VBG')]

and normalize words into their base form (lemmas) 
with:

In [15]: 
def split_into_lemmas(message): 
    message = unicode(message, 'utf8').lower() 
    words = TextBlob(message).words 
    # for each word, take its "base form"= lemma  
    return [word.lemma for word in words] 
 
messages.message.head().apply(split_into_lemmas)

Out[15]: 
0    [go, until, jurong, point, crazy, 
1    [ok, lar, joking, wif, u, oni] 
2    [free, entry, in, 2, a, wkly, comp, to, 
3    [u, dun, say, so, early, hor, u, c,  
4    [nah, i, do, n't, think, he, go, to, usf, 
Name: message, dtype: object

Better. You can probably think of many more ways 
to improve the preprocessing: decoding HTML entities 
(those &amp; and &lt; we saw above); filtering out stop 
words (pronouns, etc.); adding more features, such as a 
word-in-all-caps indicator, and so on.
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Step 3: Data to vectors
Now we’ll convert each message, represented as a list 
of tokens (lemmas) above, into a vector that machine 
learning models can understand.

Doing that requires essentially three steps, in the 
bag-of-words model:

1. Counting how many times a word occurs in each 
message (term frequency)

2. Weighting the counts, so that frequent tokens get 
lower weight (inverse document frequency)

3. Normalizing the vectors to unit length to abstract 
from the original text length (L2 norm)

Each vector has as many dimensions as there are 
unique words in the SMS corpus:

In [16]: 
bow_transformer = 
CountVectorizer(analyzer=split_into_lemmas).
fit(messages['message']) 
print len(bow_transformer.vocabulary_)

8874

Here we used scikit-learn (sklearn), a powerful 
Python library for teaching machine learning. It con-
tains a multitude of various methods and options.

Let’s take one text message and get its bag-
of-words count as a vector, putting to use our 
new bow_transformer:

In [17]: 
message4 = messages['message'][3] 
print message4

U dun say so early hor... U c already then 
say...

In [18]: 
bow4 = bow_transformer.transform([message4]) 
print bow4 
print bow4.shape

  (0, 1158) 1 
  (0, 1899) 1 
  (0, 2897) 1 
  (0, 2927) 1 
  (0, 4021) 1 
  (0, 6736) 2 

  (0, 7111) 1 
  (0, 7698) 1 
  (0, 8013) 2 
(1, 8874)

So, nine unique words in message nr. 4, two of them 
appear twice, the rest only once. Sanity check: what are 
these words that appear twice?

In [19]: 
print bow_transformer.get_feature_names()[6736] 
print bow_transformer.get_feature_names()[8013]

say 
u

The bag-of-words counts for the entire SMS corpus 
are a large, sparse matrix:

In [20]: 
messages_bow = bow_transformer.
transform(messages['message']) 
print 'sparse matrix shape:', messages_bow.shape 
print 'number of non-zeros:', messages_bow.nnz 
print 'sparsity: %.2f%%' % (100.0 * messages_
bow.nnz / (messages_bow.shape[0] * messages_bow.
shape[1]))

sparse matrix shape: (5574, 8874) 
number of non-zeros: 80272 
sparsity: 0.16%

And finally, after the counting, the term weighting 
and normalization can be done with TF-IDF, using 
scikit-learn’s TfidfTransformer:

In [21]: 
tfidf_transformer = TfidfTransformer().
fit(messages_bow) 
tfidf4 = tfidf_transformer.transform(bow4) 
print tfidf4

  (0, 8013) 0.305114653686 
  (0, 7698) 0.225299911221 
  (0, 7111) 0.191390347987 
  (0, 6736) 0.523371210191 
  (0, 4021) 0.456354991921 
  (0, 2927) 0.32967579251 
  (0, 2897) 0.303693312742 
  (0, 1899) 0.24664322833 
  (0, 1158) 0.274934159477
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What is the IDF (inverse document frequency) of 
the word “u”? Of word “university”?

In [22]: 
print tfidf_transformer.idf_[bow_transformer.
vocabulary_['u']] 
print tfidf_transformer.idf_[bow_transformer.
vocabulary_['university']]

2.85068150539 
8.23975323521

To transform the entire bag-of-words corpus into 
TF-IDF corpus at once:

In [23]: 
messages_tfidf = tfidf_transformer.
transform(messages_bow) 
print messages_tfidf.shape

(5574, 8874)

There are a multitude of ways in which data can 
be proprocessed and vectorized. These two steps, also 
called “feature engineering,” are typically the most time 
consuming and unsexy parts of building a predictive 
pipeline, but they are very important and require some 
experience. The trick is to evaluate constantly: analyze 
model for the errors it makes, improve data clean-
ing and preprocessing, brainstorm for new features, 
evaluate....

Step 4: Training a model, detecting spam
With messages represented as vectors, we can finally 
train our spam/ham classifier. This part is pretty 
straightforward, and there are many libraries that real-
ize the training algorithms.

We’ll be using scikit-learn here, choosing the Naive 
Bayes classifier to start with:

In [24]: 
%time spam_detector = MultinomialNB().
fit(messages_tfidf, messages['label'])

CPU times: user 4.51 ms, sys: 987 µs, total: 
5.49 ms 
Wall time: 4.77 ms

Let’s try classifying our single random message:

In [25]: 
print 'predicted:', spam_detector.predict(tfidf4)

[0] 
print 'expected:', messages.label[3]

predicted: ham 
expected: ham

Hooray! You can try it with your own texts, too.
A natural question is to ask, how many messages do 

we classify correctly overall?

In [26]: 
all_predictions = spam_detector.
predict(messages_tfidf) 
print all_predictions

['ham' 'ham' 'spam' ..., 'ham' 'ham' 'ham']

In [27]: 
print 'accuracy', accuracy_
score(messages['label'], all_predictions) 
print 'confusion matrix\n', confusion_
matrix(messages['label'], all_predictions) 
print '(row=expected, col=predicted)'

accuracy 0.969501255831 
confusion matrix 
[[4827    0] 
 [ 170  577]] 
(row=expected, col=predicted)

In [28]: 
plt.matshow(confusion_matrix(messages['label'], 
all_predictions), cmap=plt.cm.binary, 
interpolation='nearest') 
plt.title('confusion matrix') 
plt.colorbar() 
plt.ylabel('expected label') 
plt.xlabel('predicted label')

Out[28]: 
<matplotlib.text.Text at 0x11643f6d0>

From this confu-
sion matrix, we can 
compute precision 
and recall, or their 
combination (har-
monic mean) F1:
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In [29]: 
print classification_report(messages['label'], 
all_predictions)

         precision    recall  f1-score   support 
 
    ham       0.97      1.00      0.98      4827 
   spam       1.00      0.77      0.87       747 
avg/total     0.97      0.97      0.97      5574

There are quite a few possible metrics for evaluating 
model performance. Which one is the most suitable 
depends on the task. For example, the cost of mispre-
dicting “spam” as “ham” is probably much lower than 
mispredicting “ham” as “spam.”

Step 5: How to run experiments?
In the above evaluation, we committed a cardinal sin. 
For simplicity of demonstration, we evaluated accuracy 
on the same data we used for training. Never evaluate 
on the same dataset you train on! Bad! Incest!

Such evaluation tells us nothing about the true pre-
dictive power of our model. If we simply remembered 
each example during training, the accuracy on training 
data would trivially be 100%, even though we wouldn’t 
be able to classify any new messages.

A proper way is to split the data into a training/
test set, where the model only ever sees the training 
data during its model fitting and parameter tuning. 
The test data is never used in any way — thanks to this 
process, we make sure we are not cheating, and that 
our final evaluation on test data is representative of 
true predictive performance.

In [30]: 
msg_train, msg_test, label_train, label_test = \ 
    train_test_split(messages['message'], 
messages['label'], test_size=0.2) 
 
print len(msg_train), len(msg_test), len(msg_
train) + len(msg_test)

4459 1115 5574

So, as requested, the test size is 20% of the entire 
dataset (1115 messages out of total 5574), and the 
training is the rest (4459 out of 5574).

Let’s recap the entire pipeline up to this point, put-
ting the steps explicitly into scikit-learn’s Pipeline:

In [31]: 
def split_into_lemmas(message): 
    message = unicode(message, 'utf8').lower() 
    words = TextBlob(message).words 
    # for each word, take its "base form" = 
lemma  
    return [word.lemma for word in words] 
 
pipeline = Pipeline([ 
    ('bow', CountVectorizer(analyzer=split_into_
lemmas)),  # strings to token integer counts 
    ('tfidf', TfidfTransformer()),  # integer 
counts to weighted TF-IDF scores 
    ('classifier', MultinomialNB()),  # train on 
TF-IDF vectors w/ Naive Bayes classifier 
])

A common practice is to partition the training set 
again, into smaller subsets; for example, 5 equally sized 
subsets. Then we train the model on four parts and 
compute accuracy on the last part (called “validation 
set”). Repeated five times (taking a different part for 
evaluation each time), we get a sense of model “stabil-
ity.” If the model gives wildly different scores for differ-
ent subsets, it’s a sign something is wrong (bad data or 
bad model variance). Go back, analyze errors, re-check 
input data for garbage, re-check data cleaning.

In our case, everything goes smoothly though:

In [32]: 
scores = cross_val_score(pipeline,  # steps to 
convert raw messages into models 
       msg_train,  # training data 
       label_train,  # training labels 
       cv=10,  # split data randomly into 10 
parts: 9 for training, 1 for scoring 
       scoring='accuracy',  # which scoring 
metric? 
       n_jobs=-1,  # -1 = use all cores = faster 
       ) 
print scores

[ 0.93736018  0.96420582  0.94854586  0.94183445   
  0.96412556  0.94382022  0.94606742  0.96404494   
  0.94831461  0.94606742]

The scores are indeed a little bit worse than when 
we trained on the entire dataset (5574 training exam-
ples, accuracy 0.97). They are fairly stable, though:
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In [33]: 
print scores.mean(), scores.std()

0.9504386476 0.00947200821389

A natural question is, how can we improve this 
model? The scores are already high here, but how 
would we go about improving a model in general?

Naive Bayes is an example of a high bias - low vari-
ance classifier (aka, simple and stable, not prone to 
overfitting). An example from the opposite side of the 
spectrum would be Nearest Neighbour (kNN) clas-
sifiers, or Decision Trees, with their low bias but high 
variance (easy to overfit). Bagging (Random Forests) 
as a way to lower variance, by training many (high-
variance) models and averaging.

In other words:

 n high bias: classifier is opinionated. Not as much 
room to change its mind with data, it has its own 
ideas. On the other hand, not as much room it can 
fool itself into overfitting either (picture on the left).

 n low bias: classifier more obedient, but also more neu-
rotic. Will do exactly what you ask it to do, which, as 
everybody knows, can be a real nuisance (picture on 
the right).

In [34]: 
def plot_learning_curve(estimator, title, X, y, 
ylim=None, cv=None, 
                        n_jobs=-1, train_
sizes=np.linspace(.1, 1.0, 5)): 
    """ 
    Generate a simple plot of the test and tran-
ing learning curve. 
 
    Parameters 
    ---------- 
    estimator : object type that implements the 
"fit" and "predict" methods 
        An object of that type which is cloned 
for each validation. 

 
    title : string 
        Title for the chart. 
 
    X : array-like, shape (n_samples, n_fea-
tures) 
        Training vector, where n_samples is the 
number of samples and 
        n_features is the number of features. 
 
    y : array-like, shape (n_samples) or (n_sam-
ples, n_features), optional 
        Target relative to X for classification 
or regression; 
        None for unsupervised learning. 
 
    ylim : tuple, shape (ymin, ymax), optional 
        Defines minimum and maximum yvalues plot-
ted. 
 
    cv : integer, cross-validation generator, 
optional 
        If an integer is passed, it is the 
number of folds (defaults to 3). 
        Specific cross-validation objects can be 
passed, see 
        sklearn.cross_validation module for the 
list of possible objects 
 
    n_jobs : integer, optional 
        Number of jobs to run in parallel 
(default 1). 
    """ 
    plt.figure() 
    plt.title(title) 
    if ylim is not None: 
        plt.ylim(*ylim) 
    plt.xlabel("Training examples") 
    plt.ylabel("Score") 
    train_sizes, train_scores, test_scores = 
learning_curve( 
        estimator, X, y, cv=cv, n_jobs=n_jobs, 
train_sizes=train_sizes) 
    train_scores_mean = np.mean(train_scores, 
axis=1) 
    train_scores_std = np.std(train_scores, 
axis=1) 
    test_scores_mean = np.mean(test_scores, 
axis=1) 
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    test_scores_std = np.std(test_scores, 
axis=1) 
    plt.grid() 
 
    plt.fill_between(train_sizes, train_scores_
mean - train_scores_std, 
                     train_scores_mean + train_
scores_std, alpha=0.1, 
                     color="r") 
    plt.fill_between(train_sizes, test_scores_
mean - test_scores_std, 
                     test_scores_mean + test_
scores_std, alpha=0.1, color="g") 
    plt.plot(train_sizes, train_scores_mean, 
'o-', color="r", 
             label="Training score") 
    plt.plot(train_sizes, test_scores_mean, 
'o-', color="g", 
             label="Cross-validation score") 
 
    plt.legend(loc="best") 
    return plt

In [35]: 
%time plot_learning_curve(pipeline, "accuracy 
vs. training set size", msg_train, label_train, 
cv=5)

CPU times: user 382 ms, sys: 83.1 ms, total: 465 ms 
Wall time: 28.5 s

Out[35]: 
<module 'matplotlib.pyplot' from '/Volumes/work/
workspace/vew/sklearn_intro/lib/python2.7/site-
packages/matplotlib/pyplot.pyc'>

(We’re effectively training on 64% of all available 
data: we reserved 20% for the test set above, and the 
5-fold cross validation reserves another 20% for valida-
tion sets => 0.8*0.8*5574=3567 training examples 
left.)

Since performance keeps growing, both for training 
and cross validation scores, we see our model is not 
complex/flexible enough to capture all nuance, given 
little data. In this particular case, it’s not very pro-
nounced, since the accuracies are high anyway.

At this point, we have two options:

1. Use more training data to overcome low model 
complexity

2. Use a more complex (lower bias) model to start 
with in order to get more out of the existing data

Over the last few years, as massive training data 
collections become more available, and as machines 
get faster, approach #1 is becoming more and more 
popular (simpler algorithms, more data). Straightfor-
ward algorithms, such as Naive Bayes, also have the 
added benefit of being easier to interpret (compared 
to some more complex, black-box models, like neural 
networks).

Knowing how to evaluate models properly, we 
can now explore how different parameters affect the 
performance.
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Step 6: How to tune parameters?
What we’ve seen so far is only a tip of the iceberg: 
there are many other parameters to tune. One example 
is what algorithm to use for training.

We’ve used Naive Bayes above, but scikit-learn sup-
ports many classifiers out of the box: Support Vector 
Machines, Nearest Neighbours, Decision Trees, Ens-
amble methods...

We can ask: What is the effect of IDF weighting on 
accuracy? Does the extra processing cost of lemmatiza-
tion (vs. just plain words) really help?

Let’s find out:

In [37]: 
params = { 
    'tfidf__use_idf': (True, False), 
    'bow__analyzer': (split_into_lemmas, split_
into_tokens), 
} 
 
grid = GridSearchCV( 
    pipeline,  # pipeline from above 
    params,  # parameters to tune via cross 
validation 
    refit=True,  # fit using all available data at 
the end, on the best found param combination 
    n_jobs=-1,  # number of cores to use for 
parallelization; -1 for "all cores" 
    scoring='accuracy',  # what score are we 
optimizing? 
    cv=StratifiedKFold(label_train, n_folds=5),  
# what type of cross validation to use)

In [38]: 
%time nb_detector = grid.fit(msg_train, label_
train) 
print nb_detector.grid_scores_

CPU times: user 4.09 s, sys: 291 ms, total: 4.38 s 
Wall time: 20.2 s 
[mean: 0.94752, std: 0.00357, params: {'tfidf__
use_idf': True, 'bow__analyzer': <function 
split_into_lemmas at 0x1131e8668>}, mean: 
0.92958, std: 0.00390, params: {'tfidf__use_
idf': False, 'bow__analyzer': <function split_
into_lemmas at 0x1131e8668>}, mean: 0.94528, 
std: 0.00259, params: {'tfidf__use_idf': True, 
'bow__analyzer': <function split_into_tokens 
at 0x11270b7d0>}, mean: 0.92868, std: 0.00240, 
params: {'tfidf__use_idf': False, 'bow__ana-
lyzer': <function split_into_tokens at 
0x11270b7d0>}]

(best parameter combinations are displayed first: 
in this case, use_idf=True and analyzer=split_into_
lemmas take the prize).
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A quick sanity check:

In [39]: 
print nb_detector.predict_proba(["Hi mom, how 
are you?"])[0] 
print nb_detector.predict_proba(["WINNER! Credit 
for free!"])[0]

[ 0.99383955  0.00616045] 
[ 0.29663109  0.70336891]

The predict_proba returns the predicted probability 
for each class (ham, spam). In the first case, the mes-
sage is predicted to be ham with > 99% probability, 
and spam with < 1%. So if forced to choose, the model 
will say “ham”:

In [40]: 
print nb_detector.predict(["Hi mom, how are 
you?"])[0] 
print nb_detector.predict(["WINNER! Credit for 
free!"])[0]

ham 
spam

And overall scores on the test set, the one we haven’t 
used at all during training:

In [41]: 
predictions = nb_detector.predict(msg_test) 
print confusion_matrix(label_test, predictions) 
print classification_report(label_test, 
predictions)

[[973   0] 
 [ 46  96]] 
         precision    recall  f1-score   support 
 
    ham       0.95      1.00      0.98       973 
   spam       1.00      0.68      0.81       142 
avg/total     0.96      0.96      0.96      1115

This is then the realistic predictive performance we 
can expect from our spam detection pipeline, when 
using lowercase with lemmatization, TF-IDF and Naive 
Bayes for classifier.

Let’s try with another classifier: Support Vector 
Machines (SVM). SVMs are a great starting point 
when classifying text data, getting state of the art 
results very quickly and with pleasantly little tuning 
(although a bit more than Naive Bayes):

In [42]: 
pipeline_svm = Pipeline([ 
    ('bow', CountVectorizer(analyzer=split_into_
lemmas)), 
    ('tfidf', TfidfTransformer()), 
    ('classifier', SVC()),  # <== change here 
]) 
 
# pipeline parameters to automatically explore 
and tune 
param_svm = [ 
  {'classifier__C': [1, 10, 100, 1000], 'classi-
fier__kernel': ['linear']}, 
  {'classifier__C': [1, 10, 100, 1000], 'clas-
sifier__gamma': [0.001, 0.0001], 'classifier__
kernel': ['rbf']}, 
] 
 
grid_svm = GridSearchCV( 
    pipeline_svm,  # pipeline from above 
    param_grid=param_svm,  # parameters to tune 
via cross validation 
    refit=True,  # fit using all data, on the best 
detected classifier 
    n_jobs=-1,  # number of cores to use for 
parallelization; -1 for "all cores" 
    scoring='accuracy',  # what score are we 
optimizing? 
    cv=StratifiedKFold(label_train, n_folds=5),  
# what type of cross validation to use 
)

In [43]: 
%time svm_detector = grid_svm.fit(msg_train, 
label_train) # find the best combination from 
param_svm 
print svm_detector.grid_scores_

CPU times: user 5.24 s, sys: 170 ms, total: 5.41 
s 
Wall time: 1min 8s 
[mean: 0.98677, std: 0.00259, params: {'clas-
sifier__kernel': 'linear', 'classifier__C': 1}, 
mean: 0.98654, std: 0.00100, params: {'classi-
fier__kernel': 'linear', 'classifier__C': 10}, 
<...> 
mean: 0.97040, std: 0.00587, params: {'classi-
fier__gamma': 0.0001, 'classifier__kernel': 'rbf', 
'classifier__C': 1000}]
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So apparently, linear kernel with C=1 is the best 
parameter combination.

Sanity check again:

In [44]: 
print svm_detector.predict(["Hi mom, how are 
you?"])[0] 
print svm_detector.predict(["WINNER! Credit for 
free!"])[0]

ham 
spam

In [45]: 
print confusion_matrix(label_test, svm_detector.
predict(msg_test)) 
print classification_report(label_test, svm_
detector.predict(msg_test))

[[965   8] 
 [ 13 129]] 
         precision    recall  f1-score   support 
 
    ham       0.99      0.99      0.99       973 
   spam       0.94      0.91      0.92       142 
avg / total   0.98      0.98      0.98      1115

This is then the realistic predictive performance we 
can expect from our spam detection pipeline when 
using SVMs.

Step 7: Productionalizing a predictor
With basic analysis and tuning done, the real work 
(engineering) begins.

The final step for a production predictor would be 
training it on the entire dataset again, to make full use 
of all the data available. We’d use the best parameters 
found via cross validation above, of course. This is very 
similar to what we did in the beginning, but this time 
having insight into its behavior and stability. Evaluation 
was done honestly on distinct train/test subset splits.

The final predictor can be serialized to disk, so that 
the next time we want to use it, we can skip all training 
and use the trained model directly:

In [46]: 
# store the spam detector to disk after training 
with open('sms_spam_detector.pkl', 'wb') as 
fout: 
    cPickle.dump(svm_detector, fout) 

 
# ...and load it back, whenever needed, possibly 
on a different machine 
svm_detector_reloaded = cPickle.load(open('sms_
spam_detector.pkl'))

The loaded result is an object that behaves identi-
cally to the original:

In [47]: 
print 'before:', svm_detector.
predict([message4])[0] 
print 'after:', svm_detector_reloaded.
predict([message4])[0]

before: ham 
after: ham

Another important part of a production implemen-
tation is performance. After a rapid, iterative model 
tuning and parameter search as shown here, a well-
performing model can be translated into a different 
language and optimized. Would trading a few accuracy 
points give us a smaller, faster model? Is it worth opti-
mizing memory usage, perhaps using mmap to share 
memory across processes?

Note that optimization is not always necessary; 
always start with actual profiling.

Other things to consider here, for a production pipe-
line, are robustness (service failover, redundancy, load 
balancing), monitoring (including auto-alerts on anom-
alies) and HR fungibility (avoiding “knowledge silos” of 
how things are done, arcane/lock-in technologies, black 
art of tuning results). These days, even the open source 
world can offer viable solutions in all of these areas. 
All the tools shown today are free for commercial use 
under OSI-approved open source licenses. n

Radim cut his IT teeth on C64 (BASIC 2.0 and assembly) in the early 
90s. After the usual journey through Windows (.NET competition, 
C#), he ended up using and developing for UNIXy systems — 
mostly Debian and OS X. His fondness of low-level optimization 
(graphics and AI game programmer, C++)  eventually transitioned 
into high-level optimization of business solutions and processes.
Radim has been running his own freelance & consulting business 
[radimrehurek.com], helping companies develop scalable systems 
for search and text analysis. Radim holds a Project Management 
and Situational Leadership management certificates from the 
Center for Leader Studies in Prague.

Reprinted with permission of the original author. 
First appeared in hn.my/dspy (radimrehurek.com)
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SPECIAL

By PETE FRENCH

Under 
Pressure



So, sunday morning, 
a time for relaxing 
after going out the 
night before, right? 

Márcia and I had indeed gone out 
last night. Some very kind friends 
volunteered to babysit Tiago for 
the evening so we could go and 
see The Birthday Massacre play, 
as we hadn’t been out in a while. 
They entertained him with some 
science demos using dry-ice, which 
he loved, and they even left some 
of it behind so that we could do 
some more this morning for fun. 
Indeed, he was very keen, and as 
soon as he had finished breakfast he 
said “Daddy, can we do some more 
experiments please?”

“Sure,” I said, and went to get the 
dry-ice. At which point I started to 
realize that I may have done some-
thing a little foolish!

Dry-ice is solid carbon dioxide. 
At minus seventy nine degrees 
Celsius, it is a little on the chilly 
side, so to keep it from vanishing 
overnight I had put the remaining 
crystals into a small thermos flask. I 
went to get this, and because some 
might have turned to gas overnight 
I went onto the balcony to release 
the pressure before opening it 
entirely. But the little valve was 
jammed. “Odd,” I thought, and tried 
to loosen the whole top. Again, 
no luck. At which point I realized 
that either the extreme cold, or 
the pressure inside the flask had 
jammed the top.

OK, so the top is jammed. Is this 
a problem? Quick calculation in my 
head: dry-ice expands by about 850 
times when it turns to gas. Based on 
the amount I put in, and the size of 
the flask, that’s going to be roughly 
a hundred atmospheres when it all 
sublimes. Which is inevitable as the 
flask isn’t going to keep it at minus 

seventy nine forever. The chances 
of a small domestic thermos flask 
being able to resist a hundred atmo-
spheres of pressure without ruptur-
ing? Well, that’s pretty much zero.

I looked at the flask with that 
awful sinking feeling you get when 
you realize you have created some-
thing which is inevitably going to 
explode at some point in the future, 
and there’s nothing you can do 
about it.

So, let’s ring the dry ice people...
Well, I can’t be the first person 
to do this, surely? Indeed a quick 
google shows that the thermos’ 
webpage explicitly says to not put 
dry ice in one as it may cause the 
top “to eject forcefully” — a lovely 
piece of understatement there. So I 
found a dry-ice supplier in London 
and rang them to ask what to do.

“I dunno mate,” the man on the 
helpline said, “You are the first 
person we have had who has ever 
done this.” I asked what he would 
suggest.

“Try ringing the fire brigade?” 

So, let’s ring the fire brigade
I rang the fire brigade. “Uh, how 
do you expect us to be able to 
help you?” said the woman on the 
phone. I replied that I assumed the 
fire brigade encountered potentially 
exploding cylinders all the time and 
would have some way of handling 
the situation. “Oh yes,” she said 
“We call the police to have them 
cordoned off, and then we get well 
away from them.” Ah, not quite 
what I had expected. “Maybe you 
could try burying it in the garden?” 
she said helpfully. “I live in a flat," I 
replied.

So, let’s ring the police
Actually, I really didn’t want to do 
that. It occurred to me that Isling-
ton police were unlikely to have 
any form of containment for my 
small exploding flask problem and 
might have to call someone like the 
bomb squad. I baulked at escalating 
the problem that far unless abso-
lutely necessary.

What I really needed was advice 
from a friend who would under-
stand the physics of the situation, 
wouldn’t be surprised in the slight-
est at being asked for help, and with 
a proven track record of patiently 
handling my somewhat misguided 
and potentially dangerous schemes.

So let’s ring Steer
Ah, finally some useful advice. 
Someone who does the calcula-
tion in their own head, comes to 
the same numbers as me and the 
same “oh, shit!” conclusion. Yes, it’s 
going to go bang, most likely at the 
valve end first. We discussed a few 
solutions: burying it in the window 
box is not a good idea, we can’t get 
it cooled back down, he doesn’t 
have any emergency contacts at the 
universities, and I wouldn’t want 
to carry it across town anyway. I 
wasn’t sure how much longer it 
would last and had no way of calcu-
lating it.

“What about throwing it into the 
canal?” I suggested

“It’ll float,” he said.
This is true. But then I thought 

“not if I weight it down with 
something,” We have tiles left over 
from the kitchen. Maybe if I put 
them in a bag with the flask? Yes, 
that should work, as long as there’s 
no air trapped in the bag in an odd 
pocket, it should sink nicely and 
go bang at the bottom of the canal 
where it can’t hurt anyone.
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Thus a plan was formed....

The other big run in London on 
April 26, 2015 
I wrapped the flask in a Toys-R-Us 
bag with a load of ceramic tiles and 
wrapped it all round with parcel 
tape. It made a heavy cylindrical 
bundle, and I arranged it with the 
dangerous end pointing away from 
me. I then placed it in front of me, 
and started to run down Packington 
Street towards the canal.

Let’s just say I was not feeling 
particularly calm about this by this 
point. The flask had been warming 
outside for a good hour now, and 
the weight of the tiles made it hard 
to hold away from my body, plus 
I had to keep zig-zagging to avoid 
pointing the bit which was going to 
explode at people coming up the 
street towards me. Thus, weaving 
left and right, I sprinted down the 
hill, through the Packington Estate, 
and to the edge of the canal, where 
I hurled the bag into the center of 
the canal with a splash.

..And there it floated...
“Noooo!!!!” Steer’s words about 

making sure there were no air 
pockets trapped in the back sud-
denly came into my head so very 
clearly.

“Sink! Please sink!” I cried at the 
bag.

People were staring at me a bit 
by now. The canal is a crowded 
place on a Sunday morning, and I 
suspect my behavior was somewhat 
out of the ordinary. I sat by the 
canal. The bag was too far out to 
retrieve and starting to drift in the 
direction of the houseboats moored 
on the other side. Oh god, I started 
to realize quite how much worse 
the phone call to the police was 
now going to have to be.

But then, very slowly, one end of 
the bag began to bubble, the other 
end raised into the air, and in the 
style of Titanic, it slipped almost 
vertically below the surface of the 
water and sank to the bottom.

I stared at the water for a long 
while. I texted Steer and Márcia let 
them know I was OK and that it 
had worked. I was about to stand 
up and head home when a curious 
thing happened. The surface of the 
canal started bubbling over the spot 
where the bag had sunk and contin-
ued to do so.

More air trapped in the bag? No, 
it went on and on, a continuous 
stream of bubbles. I realized that 
the flask must have just ruptured, 
maybe a minute and a half after 
throwing it into the water. That’s 
how close I was to having it 
explode in my hands.

I watched the bubbles until they 
finally finished, and (trembling a 
little bit I have to admit) I walked 
home. n

Pete has been around on the net over the 
last 20 years under the nickname of “-bat.”, 
or as “minusbat”. He blogs at minusbat.
livejournal.com

Reprinted with permission of the original author. 
First appeared in hn.my/thermos (minusbat.livejournal.com)
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