
Issue 62 July 2015

Racking Mac Pros

2

Curator
Lim Cheng Soon

Contributors
Simon Kuhn
Miguel Cardona
Stanislaw Pitucha
Marek Majkowski
Mike Solomon
Artem Khurshudov
Radim Rehurek
Pete French

Proofreader
Emily Griffin

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-62

Contents
FEATURES

04 Racking Mac Pros
By SIMON KUHN & MIGUEL CARDONA

PROGRAMMING

08 I Wrote a Website in Rust and Lived to Tell the Tale
By STANISŁAW PITUCHA

11 How to Receive a Million Packets Per Second
By MAREK MAJKOWSKI

16 How I Doubled my Internet Speed with OpenWRT
By MIKE SOLOMON

18 Suddenly, a Leopard Print Sofa Appears
By ARTEM KHURSHUDOV

22 Practical Data Science in Python
By RADIM REHUREK

SPECIAL

34 Under Pressure
By PETE FRENCH

http://hackermonthly.com/issue-62

4 FEATURES

FEATURES

imgix [imgix.com] is an image
processing and delivery service
that provides a supremely flexi-

ble, high performance, ultra–reliable
solution to the problem of serving
images on the modern internet. We
operate our own hardware, run our
own datacenters, and manage our
own network infrastructure. At
imgix‘s scale, maximizing efficiency
and performance in image process-
ing is critical for success. For this
reason, we decided to incorporate
Mac Pros in planning the build of
our next generation image render-
ers. Because no existing Mac Pro
server rack suited our needs, we
designed and built our own.

Image Rendering At Scale
All of the images served by imgix
pass through our image rendering
servers. Parts of our technology are
built using OS X’s graphics frame-
works, which offer high quality
output and excellent performance.
Our current rack and system design
(R1) is built with Mac Minis, rack
mounts from MK1 and integration
by Racklive. [racklive.com]

R1 racks currently handle all of
our production traffic. The design
was appropriate for our needs —
with excellent reliability, maintain-
ability, and performance — but
we’re always looking for ways to
improve upon it. In particular, we
wanted greater power density and
network port utilization, and we
have reached the limits of the R1
design for both.

By SIMON KUHN & MIGUEL CARDONA

Racking Mac Pros
imgix’s second generation image rendering system

http://imgix.com
http://racklive.com

 5

Power Density & Port Utilization
By improving these two metrics,
we can minimize our fixed costs
per rack, which allows us to more
directly and efficiently scale based
on actual customer requirements.
For a redesign to be worthwhile,
it needed to offer substantial
improvements above R1 in these
two areas. Our targets were aggres-
sive: 70% of maximum power draw
at peak and 80% network port uti-
lization. Our R1 solution produces
37% draw and 66% port utilization.

Building on OS X technologies
means we’re dependent on Apple
hardware for this part of the service,
but we aren’t necessarily limited to
Mac Minis. Apple’s redesigned Mac
Pro seemed like an ideal replace-
ment, as long as we could reliably
operate it in a datacenter environ-
ment. This was uncharted territory
when we started this project, and
even today is pretty uncommon in
comparison to the Mac Mini.

Design
We considered various off–the–shelf
products and spoke to manufactur-
ers, but it became apparent that
no one was designing for the type
of usage we envisioned. Installing
cylindrical systems in a 19–inch
rack built for rectangles with high
density and proper airflow is harder
than it might seem. We had enough
internal expertise to get started, but
the project truly gained momen-
tum when Racklive came onboard.
They rose to the challenge, and the
finished product is unlike any other
Mac Pro solution.

Chassis
The R2 design consists of a metal
chassis which houses four Mac Pros
in a horizontal, sideways orienta-
tion with separate hot and cold
air compartments. This chassis
allows us to mount Mac Pros as we
would any other server: on rails, in
a rectangular enclosure, and with
front and rear port access. The
chassis itself is completely passive
(although it could be adapted for
fans in poorly ventilated sites). Each
system within the chassis operates
independently of the others.

6 FEATURES

Ports
Pigtail cables connect the ports on
each system to ports on the outside
of the chassis, so that there is no
tangled mess lurking inside. Power
and Ethernet are both routed to
ports on the rear, with room for a
second set of Ethernet cables if nec-
essary. The rack design also incor-
porates room for a second network
switch.

Each system has its own remotely
controllable power outlet, which
provides us with a basic level of
out–of–band management. Graph-
ics and USB may be routed to
either the front or rear of the chas-
sis. In our case, we chose the front
for a better operator experience,
because it can get pretty unpleasant
standing in the hot aisle.

Air Flow
Positioning the Mac Pros sideways
proved to be the key to obtaining
the density we wanted, but that’s
all moot if the systems can’t run
reliably due to insufficient cool-
ing. The inclusion of split hot and
cold air chambers inside the chassis
ensures that each system receives
enough airflow to operate within
acceptable ranges.

A single large channel provides
cold air to all four systems, and air
is forced through the hosts by their
own fans as well as our datacenter’s
pressurized environment. The only
way for air to pass through the
rack is via the Mac Pro’s fan, and
the channel is sufficiently large to
provide as much air as the four Mac
Pros can intake.

Only a small portion of each
system is positioned in the cool
chamber, just enough for the air
intakes to be exposed only to cold
air. The rest of each Mac Pro is
housed in the hot chamber, blocked
off with a metal plate and fitted
with gaskets to prevent air leakage.

Since the Mac Pro ventilates only
from the top, and the hot chamber
has a very large vent to the data-
center row’s hot aisle, this allows
hot air to quickly escape from the
chassis.

 7

Physical
The chassis is very heavy duty
with excellent rigidity, since it
must securely hold nearly 50
pounds of equipment. Each Mac
Pro is clamped down to prevent
unwanted movement. The chas-
sis itself may be removed from the
rack on sliding rails, although it
isn’t possible to remove just one
Mac Pro — the entire group of four
systems must be taken offline for
maintenance.

Our inability to remove single
systems is the main drawback to
this design, but it’s an acceptable
tradeoff for density because of the
way imgix’s service is architected.
Each chassis represents 9% of the
rack’s total capacity, well within
our failure tolerances. The service
is engineered to handle such a loss
without noticeable impact.

Rack
The R2 design uses our standard
46U rack, common to all of imgix’s
deployments. 11 chassis fit into a
rack, 4 Mac Pros per chassis, and
our CDUs and network switch are
mounted in the rear. The design
incorporates our rapid deployment
methodology: all of the systems,
chassis and cables are integrated and
assembled before they reach imgix’s
datacenter. Once a rack hits the
datacenter floor, it can be processing
images in as little as two hours.

We were able to develop this
completely new design without
making a single change to our exist-
ing datacenters because of our
flexible and scalable datacenter
architecture.

Once the first R2 rack has been
put through its paces, we expect
that racks of the R2 design will
power imgix’s image rendering for
the next few years.

And what of our two target
metrics? The R1 rack design was at
37% power draw and 66% network
port utilization; the R2 rack design
is currently at 81% power draw and
91% port utilization. By reducing
our overhead costs, we can respond
better and faster to service demand,
and ultimately deliver a better
product to our customers.

Conclusion
There are a number of differ-
ent ways to deploy Mac Pros in a
datacenter environment, but only
imgix’s design uniquely addresses
the particular needs of a large scale
service. We feel that the custom
chassis and rack design represent
an ideal intersection of flexibil-
ity, maintainability, and efficiency
tailored to imgix’s service needs.
We’re always looking to refine and
improve our designs, and we’re
already hard at work on revisions to
R2 as well as thinking about what
the next big thing may involve. n

Simon Kuhn has managed large scale Inter-
net services at Yahoo and Dropbox; he runs
imgix’s worldwide datacenter, networking
and systems infrastructure.

Miguel Cardona is imgix’s lead designer,
and was formerly a Visiting Professor at
the School of Design at Rochester Institute
of Technology.

imgix delivers dynamic images to your
users with unparalleled flexibility, uncom-
promising quality and incredible speed.

Reprinted with permission of the original author.
First appeared in hn.my/macpros (imgix.com)

http://hn.my/macpros

8 PROGRAMMING

PROGRAMMING

By STANISŁAW PITUCHA

I wanted to create a website
for a personal project. This is
usually a great opportunity

to learn — no time pressure, no
external requirements, etc. That
meant I could choose the language I
wanted to try out in advance (Rust)
and take it for a spin. Here’s a short
summary of the experience.

The state of webdev in Rust
Rust environment has some sup-
port for web development, but it’s
still very basic. It’s not a discov-
ery — it’s well known fact, even
documented on “Are we web yet?”
[arewewebyet.com] However
unless you need a lot of pre-pack-
aged components, you can already
write some services.

I didn’t have huge require-
ments: a read-only database-backed
website with a 2-page admin panel.
The website is not complete yet,
but I’ve done most of the pages and
now it just needs more typing, not
thinking. So here’s the usual: the
good, the bad, and the ugly.

What worked well
The basics are there. I used the Iron
framework [ironframework.io],
which provides the server part with
routers, static file handling, taking
care of connections, etc. It’s an eco-
system of its own. Jonathan Reem
manages most of the GitHub bits
with at least one contribution every
day for the last year — impressive!
Most of the useful Iron elements
are in his repos and now it looks
like HTTP2parser is on the way.

The router does its job. It sup-
ports getting values from the URL,
and it can be composed (that is,
both the Router and the Chain are
Handlers). It doesn’t support regex
matching or casting parameters to
the right type, but it’s functional.
Same goes for logging and static file
handling. No thrills, they work.

There aren’t that many template
libraries to choose from yet, but
handlebars-iron does the job.

The feeling that when the code
compiles, it will not explode at
runtime with some silly error is
really, really good. Actually the
compiler checks cover most of the
things I’d normally unit-test, so

this is probably the only non-trivial
project I wrote without checks, and
I’m OK with that. The only things
I’d like to unit-test would probably
get a package of their own and not
stay in the webapp itself.

The code seems quite compact.
There are some parts which are
verbose and they’re described later.
But ~500 LOC include all initial-
ization and config, DB entities and
operations, around 7 routes, verify-
ing arguments and passing them to
templates. That’s about as much as
I’d expect from similar projects in
Python.

What didn’t work very well

API restrictions, lifetimes…
Some things are just harder in
Rust. There were moments when
I wanted to do basic refactoring,
and the design of the libraries was
simply against me. I realize that
happens for a good reason typically,
but there are also really odd cases.

One of those is described in an
r2d2 issue — unfortunately it’s not
possible to return the connection
from a function without either
creating a new type, which will also

I Wrote a Website in Rust
and Lived to Tell the Tale

http://arewewebyet.com
http://ironframework.io

 9

keep a ref-counted connection manager, or mut-bor-
rowing the whole request. Of course the latter pre-
vents getting other things from the request, like URL
parameters. Issues like that suddenly throw a spanner
in the works and leave you analyzing lifetimes, brows-
ing docs, trying to figure out if you’re wrong or if the
library design really isn’t compatible with what you’re
trying to do.

On the other hand, you end up learning a lot about
lifetimes and borrows in practice.

Passing data in/out
Another bad part is Rust’s JSON handling. It badly
needs macros to make things easier. Using standard
types results in things like:

let mut data = BTreeMap::new();
data.insert("events".to_string(), events.to_
json());
let page = Template::new("events_page", data);

When I really want it to be only something like:

let data = !json_obj { "events", events };
let page = Template::new("events_page", data);

Fortunately the ToJson trait handles creating more
complex objects and Vec<Event> in this case could
serialize itself.

Apparently there’s maplit — while it’s designed for
hashmaps/btreemaps and ToJson can’t use &str keys,
unfortunately, it’s still an improvement. Using those
macros, the following works (and also gets rid of the
only mut in the handlers — yay!):

let data = btreemap!{
 "events".to_string() => events.to_json(),
};

Compile times
Finally… the iteration time is just bad. It doesn’t
matter if you’re writing some bigger piece of function-
ality, but when trying to solve some tricky compile
error or just experimenting, waiting for more than
5 seconds is going to bother you at first and really
irritate after the third try. A tiny project with lots of
dependencies (516 LOC, 63 dependency crates) takes
13 seconds to compile — and that’s in debug mode,
without optimizations.

After a while I started to recognize which phase of
compilation failed based on time-to-error (unknown
names, wrong signatures, borrows, lifetimes, warnings)
and that after 3 seconds or after any warning showed
up, it’s only LLVM/linker/optimizer running and there
will be no error anymore.

What’s just ugly

Verbose parts
Compared to many static languages, the handlers look
tidy. Compared to dynamic languages, they’re ter-
rible. Starting with how to get a numeric ID out of the
routed URL (unwraps are safe here — if they fail that’s
Router‘s implementation issue, not bad data):

let id_str = req.extensions.get::<Router>().
unwrap().find("id").unwrap();
let id = match id_str.parse::<i32>() {
 Err(_) => return not_found(),
 Ok(result) => result
};

And sure, this could be something like:

let id = try!(get_url_parameter::<i32>(&req,
"id"));

But unless you write that function, it isn’t. Same
goes for the database connection mentioned earlier,
which could be a macro, but cannot be a function, or
not easily anyway:

let pool = req.get::<Read<Database>>().ok().
expect("database component not initialized");
let connection = pool.get().unwrap();

These really needs to be more developer-friendly
before people start using it daily.

Weird interfaces
Some interfaces need to be easier for developers before
web development in Rust becomes more common.
Figuring out a plugin architecture based on compile-
time hashmap using types with associated values can
be complicated. If your goal is just “get me the URL
parameter,” then it’s needlessly annoying. It’s great that
it works like this under the covers, but I don’t need to
know about it.

10 PROGRAMMING

Import avalanche
When working with many third party components,
which is very common in webdev, the declarations on
the top of the file can get rather long. For example the
main file in my project contains just the initialization
and route handlers (all database operations, entities,
helper functions, etc., are in other modules), yet it
still has 30 extern/mod/use lines at the top. With line
breaks and comments that takes over one full screen.
And that’s when using deduplicated

use ...::{Something,Other,...}

matches on a single line.
Not the end of the world, but slightly annoying.

What’s been observed
I don’t know if these can be classified as good or bad,
but they do give me a nice feeling.

Option
APIs usually handle Option<...> nicely. In Json, in
database connectors, in templates, it just works where
it should. That means there’s rarely some special casing
involved — if you have some related table in the data-
base which may or may not have an entry you’re inter-
ested in, it’s probably going to be an Option<Entry> in
your handler code.

That’s good, because you won’t see a ladder of spe-
cial cases checking to see whether you have something
or not. On the other hand, you need to learn to quickly
write/read lines of .and_then(),.err_map() and others.
While they were new to me, I quite like this approach
actually. For example here:

let event_id = event_name
 .and_then({|name| Some(get_or_create_
event(&connection, &name)) })
 .and_then({|event| Some(event.event_id) });

Variable event_id will go directly to the template
and I don’t care if event_name existed, if it had a
matching event, etc. Everything’s going to be fine. Even
the postgres connector can translate those to a NULL
where needed.

This is very different from the guessing game of
“does this function handle null/nil/None properly” in
many other frameworks.

No ORM
There’s no big ORM in Rust yet. There’s r2d2 for con-
nection pools, which is very welcome. There are also
fairly standard database connectors. But that’s about it.
And actually, I don’t mind that much. You can write
macros for mini-ORM (just basic SELECT, INSERT)
and handle everything else via SQL. Traits like From<>
help a lot, because you can just implement

impl<'a> From<&'a Row<'a>> for Event {

for your types. Then reading them back from results is
only:

rows.iter().map(|row| Event::from(&row)).
collect()

It’s also really easy to make it generic or throw into a
macro if it repeats too many times.

Exposing to public
Iron/Hyper are not yet ready to take internet traffic
directly. Since Rust doesn’t have a nonblocking IO
available in a stable form yet, you should put the server
behind something that can handle a slow-connection-
DoS — for example Nginx.

Summary
It may look like I listed a lot more negatives than posi-
tives, but that’s just because it’s harder to talk about
good things when they’re expected. I enjoyed the
experience and if some other personal project comes
up, I think I’ll use Rust again (instead of Python/Flask
as usual).

If the project gets bigger, many things will have to be
implemented — logging to external collectors, forward-
ing detailed errors, reporting processing/query times,
application/schema migration control, etc. But that’s
still in the future. Today, it’s a small, lean project, and
Iron fulfills all the needs. n

Stanislaw is a true generalist, having done jobs around small
embedded chips, web dev, server deployment automation, inter-
net telephony and more. Currently, he is working as an HP security
engineer, exploring OpenStack. In the free time, he is a swing &
blues dancer, traveling the world.

Reprinted with permission of the original author.
First appeared in hn.my/rusttale (viraptor.info)

http://hn.my/rusttale

 11

Last week during a casual conversation, I over-
heard a colleague saying: “The Linux network
stack is slow! You can’t expect it to do more

than 50 thousand packets per second per core!”
That got me thinking. While I agree that 50kpps per

core is probably the limit for any practical application,
what is the Linux networking stack capable of? Let’s
rephrase that to make it more fun:

On Linux, how hard is it to write a program that receives
1 million UDP packets per second?

Hopefully, answering this question will be a good
lesson about the design of a modern networking stack.

First, let us assume:

 n Measuring packets per second (pps) is much more
interesting than measuring bytes per second (Bps).
You can achieve high Bps by better pipelining and
sending longer packets. Improving pps is much
harder.

 n Since we’re interested in pps, our experiments will
use short UDP messages. To be precise: 32 bytes of
UDP payload. That means 74 bytes on the Ethernet
layer.

 n For the experiments we will use two physical servers:
“receiver” and “sender.”

 n They both have two six core 2GHz Xeon processors.
With hyperthreading (HT) enabled that counts to
24 processors on each box. The boxes have a multi-
queue 10G network card by Solarflare, with 11
receive queues configured. More on that later.

 n The source code of the test programs is available
here: udpsender, udpreceiver.

Prerequisites
Let’s use port 4321 for our UDP packets. Before we
start we must ensure the traffic won’t be interfered
with by the iptables:

receiver$ iptables -I INPUT 1 -p udp --dport
4321 -j ACCEPT
receiver$ iptables -t raw -I PREROUTING 1 -p udp
--dport 4321 -j NOTRACK

A couple of explicitly defined IP addresses will later
become handy:

receiver$ for i in `seq 1 20`; do \
 ip addr add 192.168.254.$i/24 dev eth2; \
 done
sender$ ip addr add 192.168.254.30/24 dev eth3

By MAREK MAJKOWSKI

How to Receive a Million
Packets Per Second

Photo: flickr.com/photos/mccaffrey_uk/3208129302

http://flickr.com/photos/mccaffrey_uk/3208129302

12 PROGRAMMING

1. The naive approach
To start let’s do the simplest experiment. How many
packets will be delivered for a naive send and receive?

The sender pseudo code:

fd = socket.socket(socket.AF_INET, socket.SOCK_
DGRAM)
fd.bind(("0.0.0.0", 65400)) # select source port
to reduce nondeterminism
fd.connect(("192.168.254.1", 4321))
while True:
 fd.sendmmsg(["\x00" * 32] * 1024)

While we could have used the usual send syscall, it
wouldn’t be efficient. Context switches to the kernel
have a cost, and it is be better to avoid it. Fortunately
a handy syscall was recently added to Linux: sendmmsg.
It allows us to send many packets in one go. Let’s do
1,024 packets at once.

The receiver pseudo code:

fd = socket.socket(socket.AF_INET, socket.SOCK_
DGRAM)
fd.bind(("0.0.0.0", 4321))
while True:
 packets = [None] * 1024
 fd.recvmmsg(packets, MSG_WAITFORONE)

Similarly, recvmmsg is a more efficient version of the
common recv syscall.

Let’s try it out:

sender$./udpsender 192.168.254.1:4321
receiver$./udpreceiver1 0.0.0.0:4321
 0.352M pps 10.730MiB / 90.010Mb
 0.284M pps 8.655MiB / 72.603Mb
 0.262M pps 7.991MiB / 67.033Mb
 0.199M pps 6.081MiB / 51.013Mb
 0.195M pps 5.956MiB / 49.966Mb
 0.199M pps 6.060MiB / 50.836Mb
 0.200M pps 6.097MiB / 51.147Mb
 0.197M pps 6.021MiB / 50.509Mb

With the naive approach we can do between 197k
and 350k pps. Not too bad. Unfortunately there is
quite a bit of variability. It is caused by the kernel shuf-
fling our programs between cores. Pinning the pro-
cesses to CPUs will help:

sender$ taskset -c 1 ./udpsender
192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1
0.0.0.0:4321

 0.362M pps 11.058MiB / 92.760Mb
 0.374M pps 11.411MiB / 95.723Mb
 0.369M pps 11.252MiB / 94.389Mb
 0.370M pps 11.289MiB / 94.696Mb
 0.365M pps 11.152MiB / 93.552Mb
 0.360M pps 10.971MiB / 92.033Mb

Now, the kernel scheduler keeps the processes on
the defined CPUs. This improves processor cache local-
ity and makes the numbers more consistent, just what
we wanted.

2. Send more packets
While 370k pps is not bad for a naive program, it’s
still quite far from the goal of 1Mpps. To receive more,
first we must send more packets. How about sending
independently from two threads:

sender$ taskset -c 1,2 ./udpsender \
 192.168.254.1:4321
192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1
0.0.0.0:4321
 0.349M pps 10.651MiB / 89.343Mb
 0.354M pps 10.815MiB / 90.724Mb
 0.354M pps 10.806MiB / 90.646Mb
 0.354M pps 10.811MiB / 90.690Mb

The numbers on the receiving side didn’t
increase. ethtool -S will reveal where the packets
actually went:

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
 rx_nodesc_drop_cnt: 451.3k/s
 rx-0.rx_packets: 8.0/s
 rx-1.rx_packets: 0.0/s
 rx-2.rx_packets: 0.0/s
 rx-3.rx_packets: 0.5/s
 rx-4.rx_packets: 355.2k/s
 rx-5.rx_packets: 0.0/s
 rx-6.rx_packets: 0.0/s
 rx-7.rx_packets: 0.5/s
 rx-8.rx_packets: 0.0/s
 rx-9.rx_packets: 0.0/s
 rx-10.rx_packets: 0.0/s

Through these stats, the NIC reports that it had
successfully delivered around 350kpps to RX queue
number #4. The rx_nodesc_drop_cnt is a Solarflare
specific counter saying the NIC failed to deliver
450kpps to the kernel.

 13

Sometimes it’s not obvious why the packets weren’t
delivered. In our case though, it’s very clear: the RX
queue #4 delivers packets to CPU #4. And CPU #4
can’t do any more work — it’s totally busy just reading
the 350kpps. Here’s how that looks in htop:

Crash course to multi-queue NICs
Historically, network cards had a single RX queue that
was used to pass packets between hardware and kernel.
This design had an obvious limitation: it was impos-
sible to deliver more packets than a single CPU could
handle.

To utilize multicore systems, NICs began to support
multiple RX queues. The design is simple: each RX
queue is pinned to a separate CPU, therefore, by deliv-
ering packets to all the RX queues a NIC can utilize all
CPUs. But it raises a question: given a packet, how does
the NIC decide to which RX queue to push it?

 Round-robin balancing is not acceptable, as it might
introduce reordering of packets within a single con-
nection. An alternative is to use a hash from packet
to decide the RX queue number. The hash is usually
counted from a tuple (src IP, dst IP, src port, dst port).
This guarantees that packets for a single flow will
always end up on exactly the same RX queue, and
reordering of packets within a single flow can’t happen.

In our case, the hash could have been used like this:

RX_queue_number = hash('192.168.254.30',
'192.168.254.1', 65400, 4321) % number_of_queues

Multi-queue hashing algorithms
The hash algorithm is configurable with ethtool. On
our setup it is:

receiver$ ethtool -n eth2 rx-flow-hash udp4
UDP over IPV4 flows use these fields for computing
Hash flow key:
IP SA
IP DA

This reads as: for IPv4 UDP packets, the NIC will
hash (src IP, dst IP) addresses. i.e.:

RX_queue_number = hash('192.168.254.30',
'192.168.254.1') % number_of_queues

This is pretty limited, as it ignores the port numbers.
Many NICs allow customization of the hash. Again,
using ethtool we can select the tuple (src IP, dst IP, src
port, dst port) for hashing:

receiver$ ethtool -N eth2 rx-flow-hash udp4 sdfn
Cannot change RX network flow hashing options:
Operation not supported

Unfortunately our NIC doesn’t support it. We are
constrained to (src IP, dst IP) hashing.

A note on NUMA performance
So far all our packets flow to only one RX queue and
hit only one CPU. Let’s use this as an opportunity to
benchmark the performance of different CPUs. In our
setup the receiver host has two separate processor
banks, each is a different NUMA node.

We can pin the single-threaded receiver to one of
four interesting CPUs in our setup. The four options
are:

1. Run receiver on another CPU, but on the same
NUMA node as the RX queue. The performance as
we saw above is around 360kpps.

2. With receiver on exactly same CPU as the RX
queue we can get up to ~430kpps, but it creates
high variability. The performance drops down to
zero if the NIC is overwhelmed with packets.

3. When the receiver runs on the HT counterpart of
the CPU handling RX queue, the performance is
half the usual number at around 200kpps.

4. With receiver on a CPU on a different NUMA node
than the RX queue we get ~330k pps. The numbers
aren’t too consistent, though.

14 PROGRAMMING

While a 10% penalty for running on a different
NUMA node may not sound too bad, the problem
only gets worse with scale. On some tests I was able to
squeeze out only 250kpps per core. On all the cross-
NUMA tests the variability was bad. The performance
penalty across NUMA nodes is even more visible at
higher throughput. In one of the tests I got a 4x pen-
alty when running the receiver on a bad NUMA node.

3. Multiple receive IPs
Since the hashing algorithm on our NIC is pretty lim-
ited, the only way to distribute the packets across RX
queues is to use many IP addresses. Here’s how to send
packets to different destination IPs:

sender$ taskset -c 1,2 ./udpsender
192.168.254.1:4321 192.168.254.2:4321

ethtool confirms the packets go to distinct RX
queues:

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
 rx-0.rx_packets: 8.0/s
 rx-1.rx_packets: 0.0/s
 rx-2.rx_packets: 0.0/s
 rx-3.rx_packets: 355.2k/s
 rx-4.rx_packets: 0.5/s
 rx-5.rx_packets: 297.0k/s
 rx-6.rx_packets: 0.0/s
 rx-7.rx_packets: 0.5/s
 rx-8.rx_packets: 0.0/s
 rx-9.rx_packets: 0.0/s
 rx-10.rx_packets: 0.0/s

The receiving part:

receiver$ taskset -c 1 ./udpreceiver1
0.0.0.0:4321
 0.609M pps 18.599MiB / 156.019Mb
 0.657M pps 20.039MiB / 168.102Mb
 0.649M pps 19.803MiB / 166.120Mb

Hurray! With two cores busy with handling RX
queues, and third running the application, it’s possible
to get ~650k pps!

We can increase this number further by sending traf-
fic to three or four RX queues, but soon the applica-
tion will hit another limit. This time the rx_nodesc_
drop_cnt is not growing, but the netstat “receiver
errors” are:

receiver$ watch 'netstat -s --udp'
Udp:
 437.0k/s packets received
 0.0/s packets to unknown port received.
 386.9k/s packet receive errors
 0.0/s packets sent
 RcvbufErrors: 123.8k/s
 SndbufErrors: 0
 InCsumErrors: 0

This means that while the NIC is able to deliver the
packets to the kernel, the kernel is not able to deliver
the packets to the application. In our case it is able
to deliver only 440kpps, the remaining 390kpps +
123kpps are dropped due to the application not receiv-
ing them fast enough.

4. Receive from many threads
We need to scale out the receiver application. The
naive approach, to receive from many threads, won’t
work well:

sender$ taskset -c 1,2 ./udpsender
192.168.254.1:4321 192.168.254.2:4321
receiver$ taskset -c 1,2 ./udpreceiver1
0.0.0.0:4321 2
 0.495M pps 15.108MiB / 126.733Mb
 0.480M pps 14.636MiB / 122.775Mb
 0.461M pps 14.071MiB / 118.038Mb
 0.486M pps 14.820MiB / 124.322Mb

The receiving performance is down compared to
a single threaded program. That’s caused by a lock
contention on the UDP receive buffer side. Since both
threads are using the same socket descriptor, they
spend a disproportionate amount of time fighting for a
lock around the UDP receive buffer.

Using many threads to receive from a single descrip-
tor is not optimal.

 15

5. SO_REUSEPORT
Fortunately, there is a workaround recently added to
Linux: the SO_REUSEPORT flag. When this flag is set on
a socket descriptor, Linux will allow many processes to
bind to the same port. In fact, any number of processes
will be allowed to bind and the load will be spread
across them.

With SO_REUSEPORT each of the processes will have
a separate socket descriptor. Therefore each will own a
dedicated UDP receive buffer. This avoids the conten-
tion issues previously encountered:

receiver$ taskset -c 1,2,3,4 ./udpreceiver1
0.0.0.0:4321 4 1
 1.114M pps 34.007MiB / 285.271Mb
 1.147M pps 34.990MiB / 293.518Mb
 1.126M pps 34.374MiB / 288.354Mb

This is more like it! The throughput is decent now!
More investigation will reveal further room for

improvement. Even though we started four receiv-
ing threads, the load is not being spread evenly across
them:

 Two threads received all the work and the other two
got no packets at all. This is caused by a hashing colli-
sion, but this time it is at the SO_REUSEPORT layer.

Final words
I’ve done some further tests, and with perfectly aligned
RX queues and receiver threads on a single NUMA
node it was possible to get 1.4Mpps. Running receiver
on a different NUMA node caused the numbers to
drop achieving at best 1Mpps.

To sum up, if you want a perfect performance you
need to:

 n Ensure traffic is distributed evenly across many RX
queues and SO_REUSEPORT processes. In practice, the
load usually is well distributed as long as there are a
large number of connections (or flows).

 n You need to have enough spare CPU capacity to
actually pick up the packets from the kernel.

 n To make the things harder, both RX queues and
receiver processes should be on a single NUMA
node.

While we had shown that it is technically possible
to receive 1Mpps on a Linux machine, the application
was not doing any actual processing of received pack-
ets — it didn’t even look at the content of the traffic.
Don’t expect performance like that for any practical
application without a lot more work. n

After fruitful encounters with such diverse topics as high per-
formance key value databases, distributed queueing systems,
making real time web communication enjoyable and accelerat-
ing the time so that testing servers and protocols takes seconds,
Marek finally settled for working on DDoS mitigation in CloudFlare
London office, where he appreciates most the parking space for
his motorbike.

Reprinted with permission of the original author.
First appeared in hn.my/mpackets (cloudflare.com)

http://hn.my/mpackets

16 PROGRAMMING

By MIKE SOLOMON

Openwrt [openwrt.org]
is a powerful Linux
distribution for embed-

ded devices, such as my router, and
this is the story of how I used it to
double my bandwidth at no extra
cost to myself.

How? By doubling the number of
Internet connections I have.

My Setup

My Internet
My internet is through Comcast
(unfortunately).

Comcast has an initiative called
Xfinity WiFi. When you rent a
cable modem/router combo from
Comcast (as one of my nearby
neighbors apparently does), in
addition to broadcasting your own
WiFi network, it is kind enough to
also broadcast “xfinitywifi,” a second
“hotspot” network metered sepa-
rately from your own.

This hotspot allows Comcast
customers to connect with their
credentials.

My Router
My router is a Buffalo WZR-HP-
AG300H. Crucially, this router 1)
supports OpenWRT and 2) has two
independent radios. I use one of
them for my home WiFi network.

My Idea
By now, you’ve probably put two
and two together.

I use my router’s extra radio to
connect to the xfinitywifi hotspot,
then load balance my outbound
traffic across the connection I
pay for and the bonus xfinitywifi
connection.

Obviously this is a pretty specific
scenario, but if you have:

1. A hotspot you have credentials
for within range

2. A router that supports both
OpenWRT

3. That same router has a spare
radio

How to set this up

1. Install OpenWRT
Find your router on Open-
WRT’s table of hardware and
follow the instructions to install it,
[hn.my/toh] getting your WiFi and
network set up as usual.

2. Install multi-wan software in
OpenWRT
Open your router’s web inter-
face and navigate to /cgi-bin/
luci/admin/system/packages and
install luci-app-mwan3. This (along
with its dependencies) allows you
to support multiple internet con-
nections with round-robin load
balancing between them (with con-
nection pinning for HTTPS).

3. Authenticate a MAC address
with xfinitywifi
The xfinitywifi hotspot requires
authentication, not via WPA2 or
other normal network security, but
with a Comcast login. It remembers
this login by way of your MAC
address. Unfortunately, it is not
very easy to authenticate directly
through the router, so instead we
will authenticate a MAC address
through a computer, then switch

How I Doubled my Internet
Speed with OpenWRT

http://openwrt.org
http://hn.my/toh

 17

the apparent MAC address the
router uses.

1. Generate a fake MAC address.
Here’s one: 02:67:1c:16:1f:21

2. Spoof your MAC address (for
your wireless adapter) on your
computer. Be sure to find out
how to do it on your Linux/
Mac/Windows system. Remem-
ber to record your old MAC
address.

3. With your MAC address
spoofed, connect to xfinity-
wifi and enter your Comcast
credentials

Disconnect from xfinitywifi and
restore your original MAC address

4. Connect the router to xfinitywifi
In your OpenWRT web (LuCI)
interface at /cgi-bin/luci/admin/
network/wireless, press Scan on
your available radio, and select Join
Network for xfinitywifi. Name
it wan2 and add it to the wan firewall
group. Save & Apply your settings.

Now, go to /cgi-bin/luci/
admin/network/network/wan2 and
go to the Advanced Settings tab.
Paste your fake and authenticated
MAC address into the “Override
MAC address” field. Save & Apply
your settings.

5. Prepare mwan3 for a wireless
WAN
In your OpenWRT web (LuCI)
interface at cgi-bin/luci/admin/
network/network/wan/, click the
Advanced Settings tab and enter 10
under Use gateway metric and Save
your settings.

At cgi-bin/luci/admin/net-
work/network/wan2/, click the
Advanced Settings tab and enter 20
under Use gateway metric and Save
your settings.

In your OpenWRT web (LuCI)
interface at /cgi-bin/luci/
admin/network/mwan/advanced/
networkconfig, you will see your
network config file. Paste this sec-
tion at the bottom, adjusting as
necessary with settings from your
xfinitywifi connection:

config route 'default_wan2'
 option interface 'wan2'
 option target '0.0.0.0'
 option netmask '0.0.0.0'
 option gateway '192.168.1.1'
 option metric '20'

Normally this last step is not nec-
essary, but for some reason mwan3
seems to need it to work with wire-
less networks.

Submit your changes.

Check it!
Go to cgi-bin/luci/admin/
network/mwan and you should see
both networks green!

At least you will if you’re the
luckiest person ever. More likely
you’ll run into problems, check out
the mwan docs [hn.my/mwan] and
Google around.

Another good test is to go
to What is my IP [whatismyip.com]
and refresh several times and ensure
you see two different IP addresses.

Good luck! n

Mike Solomon is a software engineer in
San Francisco. He works at Twitter (@msol)
on distributed systems and backend Scala
services. He writes sometimes at msol.io

Reprinted with permission of the original author.
First appeared in hn.my/speed2x (msol.io)

http://hn.my/mwan
http://whatismyip.com
http://msol.io
http://hn.my/speed2x

18 PROGRAMMING

By ARTEM KHURSHUDOV

If you have been around all the
machine learning and artificial
intelligence stuff, you surely

have already seen this:

Let’s look for a moment at the
top-right picture. There’s a leopard,
recognized with substantial con-
fidence, and then two much less
probable choices are jaguar and
cheetah.

And this is, if you think about it
for a bit, kinda cool. Do you know
how to tell apart those three big
and spotty kitties? Because I totally

don’t. There must be
differences, of course —
maybe something subtle
and specific that only
a skilled zoologist can
perceive, like general body
shape or jaw size, or tail
length — or maybe is
it context/background,
because leopards inhabit
forests and are more likely
to be found lying on a
tree, when cheetahs live
in savanna? Either way,
for a machine learning
algorithm, this looks very
impressive to me. So,

is that the famous deep learning
approach? Are we going to meet
human-like machine intelligence
soon?

Well...turns out, maybe not so
fast.

Just a little zoological fact
Let’s take a closer look at these
three kinds of big cats again. Here’s
the jaguar, for example:

 It’s the biggest cat on both
Americas, which also has a curious
habit of killing its prey by punctur-
ing their skull and brain (that’s not
really the little fact we’re look-
ing for). It’s the most massive cat
in comparison with leopard and
cheetah, and its other distinguish-
ing features are dark eyes and larger
jaw. Well, that actually looks pretty
fine-grained.

Suddenly, a Leopard Print
Sofa Appears

 Or, if you haven’t, there are some deep convolu-
tional network result samples from ILSVRC2010,
by Hinton and Krizhevsky

 19

Suspicion grows
Now, I have a little bit of a bad feeling about it. What if this is the only
thing our algorithm does — just treating these three pictures like shapeless
pieces of texture, knowing nothing about leopard’s jaw or paws, its body
structure at all? Let’s test this hypothesis by running a pre-trained con-
volutional network on a very simple test image. We’re not trying to apply
any visual noise, artificial occlusion or any other tricks to mess with image
recognition — that’s just a simple image, which I’m sure everyone who
reads this page will recognize instantly.

Here it is:

 We’re going to use Caffe [caffe.berkeleyvision.org] and its pre-trained
CaffeNet model, which is actually different from Hinton and Krizhevsky’s
AlexNet, but the principle is the same, so it will do just fine. And here we
go:

import numpy as np
import matplotlib.pyplot as plt

caffe_root = '../'
import sys
sys.path.insert(0, caffe_root + 'python')

import caffe

MODEL_FILE = '../models/bvlc_reference_caffenet/deploy.prototxt'
PRETRAINED = '../models/bvlc_reference_caffenet/bvlc_reference_
caffenet.caffemodel'
IMAGE_FILE = '../sofa.jpg'

caffe.set_mode_cpu()
net = caffe.Classifier(MODEL_FILE, PRETRAINED,
 mean=np.load(caffe_root + 'python/caffe/
imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1),
 channel_swap=(2, 1, 0),
 raw_scale=255,
 image_dims=(500, 500))
input_image = caffe.io.load_image(IMAGE_FILE)
prediction = net.predict([input_image])
plt.plot(prediction[0])
print 'predicted class:', prediction[0].argmax()
plt.show()

Then, the leopard. It’s a bit
smaller than the jaguar and gener-
ally more elegant, considering, for
example, its smaller paws and jaw.
And also yellow eyes. Cute.

 And the smallest of the pack, the
cheetah, that actually looks quite
different from the previous two.
Has a generally smaller, long and
slim body, and a distinctive face
pattern that looks like two black
tear trails running from the corners
of its eyes.

And now for the part I’ve pur-
posely left out: black spotty print
pattern. It’s not completely random,
as you might think it is — rather,
black spots are combined into small
groups called “rosettes.” You can see
that jaguar rosettes are large, dis-
tinctive, and contain a small black
spot inside, while leopard rosettes
are significantly smaller. As for the
cheetah, its print doesn’t contain
any, just a scatter of pure black
spots.

See how those three prints actually
differ.

20 PROGRAMMING

Here’s the result:

 >> predicted class: 290

But wait, maybe that’s just
CaffeNet thing? Let’s check some-
thing third-party:

 n Clarifai [clarifai.com] (those guys
did great on the latest ImageNet
challenge)

 n Brand new Stephen Wolfram’s
ImageIdentify [imageidentify.com]

 Okay, I cheated a bit: on the
last picture the sofa is rotated by
90 degrees, but that’s really simple
transformation that should not
change the recognition output
so radically. I’ve also tried Micro-
soft and Google services and noth-
ing has beaten rotated leopard print

sofa. Interesting result, considering
all the “{Somebody}’s Deep Learn-
ing Project Outperforms Humans In
Image Recognition” headlines that’s
been around for a while now.

Why is this happening?
Now, here’s a guess. Imagine a
simple supervised classifier, with-
out going into model specifics, that
accepts a bunch of labeled images
and tries to extract some inner
structure (a set of features) from
that dataset to use for recogni-
tion. During the learning process,
a classifier adjusts its parameters
using prediction/recognition error,
and here’s when dataset size and
structure matter. For example, if a
dataset contains 99 leopards and
only one sofa, the simplest rule that
tells a classifier to always output
“leopard” will result in 1% recogni-
tion error while staying not intel-
ligent at all.

And that seems to be exactly
the case, both for our own visual
experience and for ImageNet
dataset. Leopard sofas are rare
things. There simply aren’t enough
of them to make difference for a
classifier; and black spot texture
makes a very distinctive pattern
that is otherwise specific to a
leopard category. Moreover, being
faced with different classes of big
spotted cats, a classifier can benefit
from using these texture patterns,
since they provide simple distin-
guishing features (compared with
the others like the size of the jaw).
So, our algorithm works just like it’s
supposed to. Different spots make
different features, there’s little
confusion with other categories and
the sofa example is just an anomaly.
Adding enough sofas to the data-
set will surely help (and then the
size of the jaw will matter more, I

guess), so there’s no problem at all,
it’s just how learning works.

Or is it?

What we humans do
Remember your first school year,
when you learned digits in your
math class.

When each student was given
a heavy book of MNIST database,
hundreds of pages filled with end-
less hand-written digit series, 60000
total, written in different styles,
bold or italic, distinctly or sketchy.
The best students were also given
an appendix, “Permutation MNIST,”
that contained the same digits, but
transformed in lots of different
ways: rotated, scaled up and down,
mirrored and skewed. And you had
to scan through all of them to pass
a math test, where you had to rec-
ognize just a small subset of length
10000. And just when you thought
the nightmare was over, a language
class began, featuring not ten rec-
ognition categories, but twenty-six
instead.

So, are you going to say that was
not the case?

It’s an interesting thing: looks
like we don’t really need a huge
dataset to learn something new. We
perceive digits as abstract concepts,
Plato’s ideal forms, or actually
rather a spatial combinations of
ones, like “a straight line,” “a circle,”
“an angle.” If an image contains two
small circles placed one above the
other, we recognize an eight; but
when none of the digit-specific ele-
ments are present, we consider the
image to be not a digit at all. This
is something a supervised classifier
never does — instead, it tries to put
the image into the closest category,
even if likeness is negligible.

Maybe MNIST digits is not a
good example — after all, we all

 Whoops.

http://clarifai.com
http://imageidentify.com

 21

have seen a lot of them in school,
maybe enough for a huge dataset.
Let’s get back to our leopard print
sofa. Have you seen a lot of leop-
ards in your life? Maybe, but I’m
almost sure that you’ve seen “faces”
or “computers” or “hands” a lot
more often. Have you actually seen
such a sofa before — even once?
Can’t be one hundred percent
confident for myself, but I think I
have not. And nevertheless, despite
this total lack of visual experience,
I don’t consider the image above a
spotty cat in a slightest bit.

Convolutional networks make it
worse

Deep convolutional network are
long-time ImageNet champions. No
wonder; they are designed to pro-
cess images, after all. If you are not
familiar with the concept of CNNs,
here’s a quick reminder: they are
locally-connected networks that use
a set of small filters as local feature
detectors, convolving them across
the entire image, which makes
these features translation-invariant
(which is often a desired property).
This is also a lot cheaper than trying
to put an entire image (represented
by 1024x768=~800000 naive pixel
features) into a fully-connected
network. There are other operations
involved in CNNs feed-forward
propagation step, such as subsam-
pling or pooling, but let’s focus on
convolution step for now.

Leopards (or jaguars) are com-
plex 3-dimensional shapes with
quite a lot of degrees of freedom

(considering all the body parts that
can move independently). These
shapes can produce a lot of differ-
ent 2d contours projected on the
camera sensor: sometimes you can
see a distinct silhouette featuring a
face and full set of paws, and some-
times it’s just a back and a curled
tail. Such complex objects can be
handled by a CNN very efficiently
by using a simple rule: “take all
these little spotty-pattern features
and collect as many matches as pos-
sible from the entire image.” CNNs
local filters ignore the problem of
having different 2d shapes by not
trying to analyze leopard’s spatial
structure at all — they just look for
black spots, and, thanks to nature,
there are a lot of them in any leop-
ard picture. The good thing here is
that we don’t have to care about
object’s pose and orientation, and
the bad thing is that, well, we are
now vulnerable to some specific
kinds of sofas.

And this is really not good.
CNN’s usage of local features
allows for transformation invari-
ance, but this comes with the
price of not knowing the object’s
structure nor its orientation. CNN
cannot distinguish between a cat
sitting on the floor and a cat sitting
on the ceiling upside down, which
might be good for Google image
search but for any other application
involving interactions with actual
cats, it’s not.

If that doesn’t look convincing,
take a look at Hinton’s paper from
2011 [hn.my/hinton] where he
says that convolutional networks
are doomed precisely because
of the same reason. The rest of
the paper is about an alterna-
tive approach, his capsule theory
[hn.my/capsule], which is definitely
worth reading, too.

We’re doing it wrong
Maybe not all wrong, and of
course. Convolutional networks
are extremely useful things, but
think about it: sometimes it almost
looks like we’re already there. We’re
using huge datasets like ImageNet,
organize competitions and chal-
lenges, where we, for example,
have decreased MNIST recognition
error rate from 0.87 to 0.23 (in
three years) — considering that no
one really knows what error rate a
human brain can achieve. There’s a
lot of talk about GPU implemen-
tations — like it’s just a matter of
computational power now, and
the theory is all fine. It’s not. And
the problem won’t be solved by
collecting even larger datasets and
using more GPUs, because leopard
print sofas are inevitable. There’s
always going to be an anomaly;
lots of them, actually, considering
all the things painted in different
patterns. Something has to change.
Good recognition algorithms have
to understand the structure of the
image and to be able to find its
elements like paws or face or tail,
despite the issues of projection and
occlusion.

So I guess, there’s still a lot of
work to be done. n

Artem is a Python developer and a Ph.D.
student (machine learning and computer
vision) from Krasnodar, Russia. He is cur-
rently working on currently working on
AirTribune.com

Reprinted with permission of the original author.
First appeared in hn.my/leopard (rocknrollnerd.github.io)

http://hn.my/hinton
http://hn.my/capsule
http://AirTribune.com

22 PROGRAMMING

By RADIM REHUREK

Practical Data Science
in Python

The goal of this article is to demonstrate
some high level, introductory concepts
behind (text) machine learning. The concepts

are accompanied by concrete code examples in this
notebook, which you can run yourself (after installing
IPython, see below), on your own computer.

The code examples build a working, executable
prototype: an app to classify phone SMS messages in
English (well, the “SMS kind” of English...) as either
“spam” or “ham” (=not spam).

 The language used throughout will be Python, a
general purpose language helpful in all parts of the
pipeline: I/O, data wrangling and preprocessing, model
training, and evaluation. While Python is by no means
the only choice, it offers a unique combination of flex-
ibility, ease of development, and performance, thanks
to its mature scientific computing ecosystem. Its vast,
open source ecosystem also avoids the lock-in (and
associated bitrot) of any single specific framework or
library.

End-to-end example: automated spam filtering

In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import csv
from textblob import TextBlob
import pandas
import sklearn
import cPickle
import numpy as np

from sklearn.feature_extraction.text import
CountVectorizer, TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC, LinearSVC
from sklearn.metrics import classification_
report, f1_score, accuracy_score, confusion_
matrix
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import StratifiedK-
Fold, cross_val_score, train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.learning_curve import
learning_curve

Step 1: Load data, look around
Skipping the real first step (fleshing out specs, find-
ing out what it is we want to be doing — often highly
non-trivial in practice!), let’s download the dataset
we’ll be using in this demo. Go to hn.my/spam and
download the zip file. Unzip it under data subdirectory.
You should see a file called SMSSpamCollection, about
0.5MB in size:

$ ls -l data
total 1352
-rw-r--r--@ 1 kofola staff 477907 Mar 15 2011
SMSSpamCollection
-rw-r--r--@ 1 kofola staff 5868 Apr 18 2011
readme
-rw-r-----@ 1 kofola staff 203415 Dec 1 15:30
smsspamcollection.zip

http://hn.my/spam

 23

This file contains a collection of more than 5 thou-
sand SMS phone messages (see the readme file for
more info):

In [2]:
messages = [line.rstrip() for line in open('./
data/SMSSpamCollection')]
print len(messages)

5574

A collection of texts is also sometimes called
“corpus”. Let’s print the first ten messages in this SMS
corpus:

In [3]:
for message_no, message in
enumerate(messages[:10]):
 print message_no, message

0 ham Go until jurong point, crazy.. Available
only in bugis n great world la e buffet... Cine
there got amore wat...
1 ham Ok lar... Joking wif u oni...
2 spam Free entry in 2 a wkly comp to win FA
Cup final tkts 21st May 2005. Text FA to 87121 to
receive entry question(std txt rate)T&C's apply
08452810075over18's
3 ham U dun say so early hor... U c already
then say...
4 ham Nah I don't think he goes to usf, he
lives around here though
5 spam FreeMsg Hey there darling it's been 3
week's now and no word back! I'd like some fun
you up for it still? Tb ok! XxX std chgs to
send, £1.50 to rcv
6 ham Even my brother is not like to speak with
me. They treat me like aids patent.
7 ham As per your request 'Melle Melle (Oru
Minnaminunginte Nurungu Vettam)' has been set
as your callertune for all Callers. Press *9 to
copy your friends Callertune
8 spam WINNER!! As a valued network customer
you have been selected to receivea £900 prize
reward! To claim call 09061701461. Claim code
KL341. Valid 12 hours only.
9 spam Had your mobile 11 months or more? U R
entitled to Update to the latest colour mobiles
with camera for Free! Call The Mobile Update Co
FREE on 08002986030

We see that this is a TSV (“tab separated values”)
file, where the first column is a label saying whether
the given message is a normal message (“ham”) or
“spam”. The second column is the message itself.

This corpus will be our labeled training set. Using
these ham/spam examples, we’ll train a machine learn-
ing model to learn to discriminate between ham/spam
automatically. Then, with a trained model, we’ll be
able to classify arbitrary unlabeled messages as ham or
spam.

 Instead of parsing TSV (or CSV, or Excel...) files
by hand, we can use Python’s pandas library to do the
work for us:

In [4]:
messages = pandas.read_csv('./data/SMSSpamCol-
lection', sep='\t', quoting=csv.QUOTE_NONE,
 names=["label", "message"])
print messages

 label message
0 ham Go until jurong point, crazy..
1 ham Ok lar... Joking wif u oni...
2 spam Free entry in 2 a wkly comp to ...
3 ham U dun say so early hor...
4 ham Nah I don't think he goes to usf...
5 spam FreeMsg Hey there darling it's...
6 ham Even my brother is not like to...
7 ham As per your request 'Melle Melle...
8 spam WINNER!! As a valued network ...
...
5567 ham Huh y lei...
5568 spam REMINDER FROM O2: To get 2.50...
5569 spam This is the 2nd time we have trie...
5570 ham Will ü b going to esplanade fr home?
5571 ham Pity, * was in mood for that. So...

24 PROGRAMMING

5572 ham The guy did some bitching but I'd...
5573 ham Rofl. Its true to its name

[5574 rows x 2 columns]

With pandas, we can also view aggregate statistics
easily:

In [5]:
messages.groupby('label').describe()

Out[5]:

How long are the messages?

In [6]:
messages['length'] = messages['message'].
map(lambda text: len(text))
print messages.head()

 label message length
0 ham Go until jurong point, crazy... 111
1 ham Ok lar... Joking wif u oni... 29
2 spam Free entry in 2 a wkly comp ... 155
3 ham U dun say so early hor... U ... 49
4 ham Nah I don't think he goes to... 61

In [7]:
messages.length.plot(bins=20, kind='hist')

Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x10dd7a90>

In [8]:
messages.length.describe()

Out[8]:
count 5574.000000
mean 80.604593
std 59.919970
min 2.000000
25% 36.000000
50% 62.000000
75% 122.000000
max 910.000000
Name: length, dtype: float64

What is that super long message?

In [9]:
print list(messages.message[messages.length >
900])

["For me the love should start with attraction.i
should feel that I need her every time around
<...>
she is with me.I would like to say a lot..will
tell later.."]

Is there any difference in message length between
spam and ham?

In [10]:
messages.hist(column='length', by='label',
bins=50)

Out[10]:
array([<matplotlib.axes._subplots.AxesSubplot
object at 0x11270da50>,
 <matplotlib.axes._subplots.AxesSubplot
object at 0x1126c7750>], dtype=object)

 25

Good fun, but how do we make a computer under-
stand the plain text messages themselves? Or can it
under such malformed gibberish at all?

Step 2: Data preprocessing
In this section we’ll massage the raw messages
(sequence of characters) into vectors (sequences of
numbers).

The mapping is not 1-to-1; we’ll use the bag-of-
words approach, where each unique word in a text will
be represented by one number.

As a first step, let’s write a function that will split a
message into its individual words:

In [11]:
def split_into_tokens(message):
 message = unicode(message, 'utf8') # con-
vert bytes into proper unicode
 return TextBlob(message).words

Here are some of the original texts again:

In [12]:
messages.message.head()

Out[12]:
0 Go until jurong point, crazy...
1 Ok lar... Joking wif u oni...
2 Free entry in 2 a wkly comp to win...
3 U dun say so early hor... U c already...
4 Nah I don't think he goes to usf, he...
Name: message, dtype: object

...and here are the same messages, tokenized:

In [13]:
messages.message.head().apply(split_into_tokens)

Out[13]:
0 [Go, until, jurong, point, crazy...
1 [Ok, lar, Joking, wif, u, oni]
2 [Free, entry, in, 2, a, wkly, comp, to,
3 [U, dun, say, so, early, hor, U, c,
4 [Nah, I, do, n't, think, he, goes, to, usf,
NLP questions:

 n Do capital letters carry information?

 n Does distinguishing inflected form (“goes” vs. “go”)
carry information?

 n Do interjections, determiners carry information?

In other words, we want to better “normalize” the
text.

With textblob, we’d detect part-of-speech
(POS) tags with:

In [14]:
TextBlob("Hello world, how is it going?").tags
list of (word, POS) pairs

Out[14]:
[(u'Hello', u'UH'),
 (u'world', u'NN'),
 (u'how', u'WRB'),
 (u'is', u'VBZ'),
 (u'it', u'PRP'),
 (u'going', u'VBG')]

and normalize words into their base form (lemmas)
with:

In [15]:
def split_into_lemmas(message):
 message = unicode(message, 'utf8').lower()
 words = TextBlob(message).words
 # for each word, take its "base form"= lemma
 return [word.lemma for word in words]

messages.message.head().apply(split_into_lemmas)

Out[15]:
0 [go, until, jurong, point, crazy,
1 [ok, lar, joking, wif, u, oni]
2 [free, entry, in, 2, a, wkly, comp, to,
3 [u, dun, say, so, early, hor, u, c,
4 [nah, i, do, n't, think, he, go, to, usf,
Name: message, dtype: object

Better. You can probably think of many more ways
to improve the preprocessing: decoding HTML entities
(those & and < we saw above); filtering out stop
words (pronouns, etc.); adding more features, such as a
word-in-all-caps indicator, and so on.

26 PROGRAMMING

Step 3: Data to vectors
Now we’ll convert each message, represented as a list
of tokens (lemmas) above, into a vector that machine
learning models can understand.

Doing that requires essentially three steps, in the
bag-of-words model:

1. Counting how many times a word occurs in each
message (term frequency)

2. Weighting the counts, so that frequent tokens get
lower weight (inverse document frequency)

3. Normalizing the vectors to unit length to abstract
from the original text length (L2 norm)

Each vector has as many dimensions as there are
unique words in the SMS corpus:

In [16]:
bow_transformer =
CountVectorizer(analyzer=split_into_lemmas).
fit(messages['message'])
print len(bow_transformer.vocabulary_)

8874

Here we used scikit-learn (sklearn), a powerful
Python library for teaching machine learning. It con-
tains a multitude of various methods and options.

Let’s take one text message and get its bag-
of-words count as a vector, putting to use our
new bow_transformer:

In [17]:
message4 = messages['message'][3]
print message4

U dun say so early hor... U c already then
say...

In [18]:
bow4 = bow_transformer.transform([message4])
print bow4
print bow4.shape

 (0, 1158) 1
 (0, 1899) 1
 (0, 2897) 1
 (0, 2927) 1
 (0, 4021) 1
 (0, 6736) 2

 (0, 7111) 1
 (0, 7698) 1
 (0, 8013) 2
(1, 8874)

So, nine unique words in message nr. 4, two of them
appear twice, the rest only once. Sanity check: what are
these words that appear twice?

In [19]:
print bow_transformer.get_feature_names()[6736]
print bow_transformer.get_feature_names()[8013]

say
u

The bag-of-words counts for the entire SMS corpus
are a large, sparse matrix:

In [20]:
messages_bow = bow_transformer.
transform(messages['message'])
print 'sparse matrix shape:', messages_bow.shape
print 'number of non-zeros:', messages_bow.nnz
print 'sparsity: %.2f%%' % (100.0 * messages_
bow.nnz / (messages_bow.shape[0] * messages_bow.
shape[1]))

sparse matrix shape: (5574, 8874)
number of non-zeros: 80272
sparsity: 0.16%

And finally, after the counting, the term weighting
and normalization can be done with TF-IDF, using
scikit-learn’s TfidfTransformer:

In [21]:
tfidf_transformer = TfidfTransformer().
fit(messages_bow)
tfidf4 = tfidf_transformer.transform(bow4)
print tfidf4

 (0, 8013) 0.305114653686
 (0, 7698) 0.225299911221
 (0, 7111) 0.191390347987
 (0, 6736) 0.523371210191
 (0, 4021) 0.456354991921
 (0, 2927) 0.32967579251
 (0, 2897) 0.303693312742
 (0, 1899) 0.24664322833
 (0, 1158) 0.274934159477

 27

What is the IDF (inverse document frequency) of
the word “u”? Of word “university”?

In [22]:
print tfidf_transformer.idf_[bow_transformer.
vocabulary_['u']]
print tfidf_transformer.idf_[bow_transformer.
vocabulary_['university']]

2.85068150539
8.23975323521

To transform the entire bag-of-words corpus into
TF-IDF corpus at once:

In [23]:
messages_tfidf = tfidf_transformer.
transform(messages_bow)
print messages_tfidf.shape

(5574, 8874)

There are a multitude of ways in which data can
be proprocessed and vectorized. These two steps, also
called “feature engineering,” are typically the most time
consuming and unsexy parts of building a predictive
pipeline, but they are very important and require some
experience. The trick is to evaluate constantly: analyze
model for the errors it makes, improve data clean-
ing and preprocessing, brainstorm for new features,
evaluate....

Step 4: Training a model, detecting spam
With messages represented as vectors, we can finally
train our spam/ham classifier. This part is pretty
straightforward, and there are many libraries that real-
ize the training algorithms.

We’ll be using scikit-learn here, choosing the Naive
Bayes classifier to start with:

In [24]:
%time spam_detector = MultinomialNB().
fit(messages_tfidf, messages['label'])

CPU times: user 4.51 ms, sys: 987 µs, total:
5.49 ms
Wall time: 4.77 ms

Let’s try classifying our single random message:

In [25]:
print 'predicted:', spam_detector.predict(tfidf4)

[0]
print 'expected:', messages.label[3]

predicted: ham
expected: ham

Hooray! You can try it with your own texts, too.
A natural question is to ask, how many messages do

we classify correctly overall?

In [26]:
all_predictions = spam_detector.
predict(messages_tfidf)
print all_predictions

['ham' 'ham' 'spam' ..., 'ham' 'ham' 'ham']

In [27]:
print 'accuracy', accuracy_
score(messages['label'], all_predictions)
print 'confusion matrix\n', confusion_
matrix(messages['label'], all_predictions)
print '(row=expected, col=predicted)'

accuracy 0.969501255831
confusion matrix
[[4827 0]
 [170 577]]
(row=expected, col=predicted)

In [28]:
plt.matshow(confusion_matrix(messages['label'],
all_predictions), cmap=plt.cm.binary,
interpolation='nearest')
plt.title('confusion matrix')
plt.colorbar()
plt.ylabel('expected label')
plt.xlabel('predicted label')

Out[28]:
<matplotlib.text.Text at 0x11643f6d0>

From this confu-
sion matrix, we can
compute precision
and recall, or their
combination (har-
monic mean) F1:

28 PROGRAMMING

In [29]:
print classification_report(messages['label'],
all_predictions)

 precision recall f1-score support

 ham 0.97 1.00 0.98 4827
 spam 1.00 0.77 0.87 747
avg/total 0.97 0.97 0.97 5574

There are quite a few possible metrics for evaluating
model performance. Which one is the most suitable
depends on the task. For example, the cost of mispre-
dicting “spam” as “ham” is probably much lower than
mispredicting “ham” as “spam.”

Step 5: How to run experiments?
In the above evaluation, we committed a cardinal sin.
For simplicity of demonstration, we evaluated accuracy
on the same data we used for training. Never evaluate
on the same dataset you train on! Bad! Incest!

Such evaluation tells us nothing about the true pre-
dictive power of our model. If we simply remembered
each example during training, the accuracy on training
data would trivially be 100%, even though we wouldn’t
be able to classify any new messages.

A proper way is to split the data into a training/
test set, where the model only ever sees the training
data during its model fitting and parameter tuning.
The test data is never used in any way — thanks to this
process, we make sure we are not cheating, and that
our final evaluation on test data is representative of
true predictive performance.

In [30]:
msg_train, msg_test, label_train, label_test = \
 train_test_split(messages['message'],
messages['label'], test_size=0.2)

print len(msg_train), len(msg_test), len(msg_
train) + len(msg_test)

4459 1115 5574

So, as requested, the test size is 20% of the entire
dataset (1115 messages out of total 5574), and the
training is the rest (4459 out of 5574).

Let’s recap the entire pipeline up to this point, put-
ting the steps explicitly into scikit-learn’s Pipeline:

In [31]:
def split_into_lemmas(message):
 message = unicode(message, 'utf8').lower()
 words = TextBlob(message).words
 # for each word, take its "base form" =
lemma
 return [word.lemma for word in words]

pipeline = Pipeline([
 ('bow', CountVectorizer(analyzer=split_into_
lemmas)), # strings to token integer counts
 ('tfidf', TfidfTransformer()), # integer
counts to weighted TF-IDF scores
 ('classifier', MultinomialNB()), # train on
TF-IDF vectors w/ Naive Bayes classifier
])

A common practice is to partition the training set
again, into smaller subsets; for example, 5 equally sized
subsets. Then we train the model on four parts and
compute accuracy on the last part (called “validation
set”). Repeated five times (taking a different part for
evaluation each time), we get a sense of model “stabil-
ity.” If the model gives wildly different scores for differ-
ent subsets, it’s a sign something is wrong (bad data or
bad model variance). Go back, analyze errors, re-check
input data for garbage, re-check data cleaning.

In our case, everything goes smoothly though:

In [32]:
scores = cross_val_score(pipeline, # steps to
convert raw messages into models
 msg_train, # training data
 label_train, # training labels
 cv=10, # split data randomly into 10
parts: 9 for training, 1 for scoring
 scoring='accuracy', # which scoring
metric?
 n_jobs=-1, # -1 = use all cores = faster
)
print scores

[0.93736018 0.96420582 0.94854586 0.94183445
 0.96412556 0.94382022 0.94606742 0.96404494
 0.94831461 0.94606742]

The scores are indeed a little bit worse than when
we trained on the entire dataset (5574 training exam-
ples, accuracy 0.97). They are fairly stable, though:

 29

In [33]:
print scores.mean(), scores.std()

0.9504386476 0.00947200821389

A natural question is, how can we improve this
model? The scores are already high here, but how
would we go about improving a model in general?

Naive Bayes is an example of a high bias - low vari-
ance classifier (aka, simple and stable, not prone to
overfitting). An example from the opposite side of the
spectrum would be Nearest Neighbour (kNN) clas-
sifiers, or Decision Trees, with their low bias but high
variance (easy to overfit). Bagging (Random Forests)
as a way to lower variance, by training many (high-
variance) models and averaging.

In other words:

 n high bias: classifier is opinionated. Not as much
room to change its mind with data, it has its own
ideas. On the other hand, not as much room it can
fool itself into overfitting either (picture on the left).

 n low bias: classifier more obedient, but also more neu-
rotic. Will do exactly what you ask it to do, which, as
everybody knows, can be a real nuisance (picture on
the right).

In [34]:
def plot_learning_curve(estimator, title, X, y,
ylim=None, cv=None,
 n_jobs=-1, train_
sizes=np.linspace(.1, 1.0, 5)):
 """
 Generate a simple plot of the test and tran-
ing learning curve.

 Parameters

 estimator : object type that implements the
"fit" and "predict" methods
 An object of that type which is cloned
for each validation.

 title : string
 Title for the chart.

 X : array-like, shape (n_samples, n_fea-
tures)
 Training vector, where n_samples is the
number of samples and
 n_features is the number of features.

 y : array-like, shape (n_samples) or (n_sam-
ples, n_features), optional
 Target relative to X for classification
or regression;
 None for unsupervised learning.

 ylim : tuple, shape (ymin, ymax), optional
 Defines minimum and maximum yvalues plot-
ted.

 cv : integer, cross-validation generator,
optional
 If an integer is passed, it is the
number of folds (defaults to 3).
 Specific cross-validation objects can be
passed, see
 sklearn.cross_validation module for the
list of possible objects

 n_jobs : integer, optional
 Number of jobs to run in parallel
(default 1).
 """
 plt.figure()
 plt.title(title)
 if ylim is not None:
 plt.ylim(*ylim)
 plt.xlabel("Training examples")
 plt.ylabel("Score")
 train_sizes, train_scores, test_scores =
learning_curve(
 estimator, X, y, cv=cv, n_jobs=n_jobs,
train_sizes=train_sizes)
 train_scores_mean = np.mean(train_scores,
axis=1)
 train_scores_std = np.std(train_scores,
axis=1)
 test_scores_mean = np.mean(test_scores,
axis=1)

30 PROGRAMMING

 test_scores_std = np.std(test_scores,
axis=1)
 plt.grid()

 plt.fill_between(train_sizes, train_scores_
mean - train_scores_std,
 train_scores_mean + train_
scores_std, alpha=0.1,
 color="r")
 plt.fill_between(train_sizes, test_scores_
mean - test_scores_std,
 test_scores_mean + test_
scores_std, alpha=0.1, color="g")
 plt.plot(train_sizes, train_scores_mean,
'o-', color="r",
 label="Training score")
 plt.plot(train_sizes, test_scores_mean,
'o-', color="g",
 label="Cross-validation score")

 plt.legend(loc="best")
 return plt

In [35]:
%time plot_learning_curve(pipeline, "accuracy
vs. training set size", msg_train, label_train,
cv=5)

CPU times: user 382 ms, sys: 83.1 ms, total: 465 ms
Wall time: 28.5 s

Out[35]:
<module 'matplotlib.pyplot' from '/Volumes/work/
workspace/vew/sklearn_intro/lib/python2.7/site-
packages/matplotlib/pyplot.pyc'>

(We’re effectively training on 64% of all available
data: we reserved 20% for the test set above, and the
5-fold cross validation reserves another 20% for valida-
tion sets => 0.8*0.8*5574=3567 training examples
left.)

Since performance keeps growing, both for training
and cross validation scores, we see our model is not
complex/flexible enough to capture all nuance, given
little data. In this particular case, it’s not very pro-
nounced, since the accuracies are high anyway.

At this point, we have two options:

1. Use more training data to overcome low model
complexity

2. Use a more complex (lower bias) model to start
with in order to get more out of the existing data

Over the last few years, as massive training data
collections become more available, and as machines
get faster, approach #1 is becoming more and more
popular (simpler algorithms, more data). Straightfor-
ward algorithms, such as Naive Bayes, also have the
added benefit of being easier to interpret (compared
to some more complex, black-box models, like neural
networks).

Knowing how to evaluate models properly, we
can now explore how different parameters affect the
performance.

 31

Step 6: How to tune parameters?
What we’ve seen so far is only a tip of the iceberg:
there are many other parameters to tune. One example
is what algorithm to use for training.

We’ve used Naive Bayes above, but scikit-learn sup-
ports many classifiers out of the box: Support Vector
Machines, Nearest Neighbours, Decision Trees, Ens-
amble methods...

We can ask: What is the effect of IDF weighting on
accuracy? Does the extra processing cost of lemmatiza-
tion (vs. just plain words) really help?

Let’s find out:

In [37]:
params = {
 'tfidf__use_idf': (True, False),
 'bow__analyzer': (split_into_lemmas, split_
into_tokens),
}

grid = GridSearchCV(
 pipeline, # pipeline from above
 params, # parameters to tune via cross
validation
 refit=True, # fit using all available data at
the end, on the best found param combination
 n_jobs=-1, # number of cores to use for
parallelization; -1 for "all cores"
 scoring='accuracy', # what score are we
optimizing?
 cv=StratifiedKFold(label_train, n_folds=5),
what type of cross validation to use)

In [38]:
%time nb_detector = grid.fit(msg_train, label_
train)
print nb_detector.grid_scores_

CPU times: user 4.09 s, sys: 291 ms, total: 4.38 s
Wall time: 20.2 s
[mean: 0.94752, std: 0.00357, params: {'tfidf__
use_idf': True, 'bow__analyzer': <function
split_into_lemmas at 0x1131e8668>}, mean:
0.92958, std: 0.00390, params: {'tfidf__use_
idf': False, 'bow__analyzer': <function split_
into_lemmas at 0x1131e8668>}, mean: 0.94528,
std: 0.00259, params: {'tfidf__use_idf': True,
'bow__analyzer': <function split_into_tokens
at 0x11270b7d0>}, mean: 0.92868, std: 0.00240,
params: {'tfidf__use_idf': False, 'bow__ana-
lyzer': <function split_into_tokens at
0x11270b7d0>}]

(best parameter combinations are displayed first:
in this case, use_idf=True and analyzer=split_into_
lemmas take the prize).

32 PROGRAMMING

A quick sanity check:

In [39]:
print nb_detector.predict_proba(["Hi mom, how
are you?"])[0]
print nb_detector.predict_proba(["WINNER! Credit
for free!"])[0]

[0.99383955 0.00616045]
[0.29663109 0.70336891]

The predict_proba returns the predicted probability
for each class (ham, spam). In the first case, the mes-
sage is predicted to be ham with > 99% probability,
and spam with < 1%. So if forced to choose, the model
will say “ham”:

In [40]:
print nb_detector.predict(["Hi mom, how are
you?"])[0]
print nb_detector.predict(["WINNER! Credit for
free!"])[0]

ham
spam

And overall scores on the test set, the one we haven’t
used at all during training:

In [41]:
predictions = nb_detector.predict(msg_test)
print confusion_matrix(label_test, predictions)
print classification_report(label_test,
predictions)

[[973 0]
 [46 96]]
 precision recall f1-score support

 ham 0.95 1.00 0.98 973
 spam 1.00 0.68 0.81 142
avg/total 0.96 0.96 0.96 1115

This is then the realistic predictive performance we
can expect from our spam detection pipeline, when
using lowercase with lemmatization, TF-IDF and Naive
Bayes for classifier.

Let’s try with another classifier: Support Vector
Machines (SVM). SVMs are a great starting point
when classifying text data, getting state of the art
results very quickly and with pleasantly little tuning
(although a bit more than Naive Bayes):

In [42]:
pipeline_svm = Pipeline([
 ('bow', CountVectorizer(analyzer=split_into_
lemmas)),
 ('tfidf', TfidfTransformer()),
 ('classifier', SVC()), # <== change here
])

pipeline parameters to automatically explore
and tune
param_svm = [
 {'classifier__C': [1, 10, 100, 1000], 'classi-
fier__kernel': ['linear']},
 {'classifier__C': [1, 10, 100, 1000], 'clas-
sifier__gamma': [0.001, 0.0001], 'classifier__
kernel': ['rbf']},
]

grid_svm = GridSearchCV(
 pipeline_svm, # pipeline from above
 param_grid=param_svm, # parameters to tune
via cross validation
 refit=True, # fit using all data, on the best
detected classifier
 n_jobs=-1, # number of cores to use for
parallelization; -1 for "all cores"
 scoring='accuracy', # what score are we
optimizing?
 cv=StratifiedKFold(label_train, n_folds=5),
what type of cross validation to use
)

In [43]:
%time svm_detector = grid_svm.fit(msg_train,
label_train) # find the best combination from
param_svm
print svm_detector.grid_scores_

CPU times: user 5.24 s, sys: 170 ms, total: 5.41
s
Wall time: 1min 8s
[mean: 0.98677, std: 0.00259, params: {'clas-
sifier__kernel': 'linear', 'classifier__C': 1},
mean: 0.98654, std: 0.00100, params: {'classi-
fier__kernel': 'linear', 'classifier__C': 10},
<...>
mean: 0.97040, std: 0.00587, params: {'classi-
fier__gamma': 0.0001, 'classifier__kernel': 'rbf',
'classifier__C': 1000}]

 33

So apparently, linear kernel with C=1 is the best
parameter combination.

Sanity check again:

In [44]:
print svm_detector.predict(["Hi mom, how are
you?"])[0]
print svm_detector.predict(["WINNER! Credit for
free!"])[0]

ham
spam

In [45]:
print confusion_matrix(label_test, svm_detector.
predict(msg_test))
print classification_report(label_test, svm_
detector.predict(msg_test))

[[965 8]
 [13 129]]
 precision recall f1-score support

 ham 0.99 0.99 0.99 973
 spam 0.94 0.91 0.92 142
avg / total 0.98 0.98 0.98 1115

This is then the realistic predictive performance we
can expect from our spam detection pipeline when
using SVMs.

Step 7: Productionalizing a predictor
With basic analysis and tuning done, the real work
(engineering) begins.

The final step for a production predictor would be
training it on the entire dataset again, to make full use
of all the data available. We’d use the best parameters
found via cross validation above, of course. This is very
similar to what we did in the beginning, but this time
having insight into its behavior and stability. Evaluation
was done honestly on distinct train/test subset splits.

The final predictor can be serialized to disk, so that
the next time we want to use it, we can skip all training
and use the trained model directly:

In [46]:
store the spam detector to disk after training
with open('sms_spam_detector.pkl', 'wb') as
fout:
 cPickle.dump(svm_detector, fout)

...and load it back, whenever needed, possibly
on a different machine
svm_detector_reloaded = cPickle.load(open('sms_
spam_detector.pkl'))

The loaded result is an object that behaves identi-
cally to the original:

In [47]:
print 'before:', svm_detector.
predict([message4])[0]
print 'after:', svm_detector_reloaded.
predict([message4])[0]

before: ham
after: ham

Another important part of a production implemen-
tation is performance. After a rapid, iterative model
tuning and parameter search as shown here, a well-
performing model can be translated into a different
language and optimized. Would trading a few accuracy
points give us a smaller, faster model? Is it worth opti-
mizing memory usage, perhaps using mmap to share
memory across processes?

Note that optimization is not always necessary;
always start with actual profiling.

Other things to consider here, for a production pipe-
line, are robustness (service failover, redundancy, load
balancing), monitoring (including auto-alerts on anom-
alies) and HR fungibility (avoiding “knowledge silos” of
how things are done, arcane/lock-in technologies, black
art of tuning results). These days, even the open source
world can offer viable solutions in all of these areas.
All the tools shown today are free for commercial use
under OSI-approved open source licenses. n

Radim cut his IT teeth on C64 (BASIC 2.0 and assembly) in the early
90s. After the usual journey through Windows (.NET competition,
C#), he ended up using and developing for UNIXy systems —
mostly Debian and OS X. His fondness of low-level optimization
(graphics and AI game programmer, C++) eventually transitioned
into high-level optimization of business solutions and processes.
Radim has been running his own freelance & consulting business
[radimrehurek.com], helping companies develop scalable systems
for search and text analysis. Radim holds a Project Management
and Situational Leadership management certificates from the
Center for Leader Studies in Prague.

Reprinted with permission of the original author.
First appeared in hn.my/dspy (radimrehurek.com)

http://radimrehurek.com
http://hn.my/dspy

34 SPECIAL

SPECIAL

By PETE FRENCH

Under
Pressure

So, sunday morning,
a time for relaxing
after going out the
night before, right?

Márcia and I had indeed gone out
last night. Some very kind friends
volunteered to babysit Tiago for
the evening so we could go and
see The Birthday Massacre play,
as we hadn’t been out in a while.
They entertained him with some
science demos using dry-ice, which
he loved, and they even left some
of it behind so that we could do
some more this morning for fun.
Indeed, he was very keen, and as
soon as he had finished breakfast he
said “Daddy, can we do some more
experiments please?”

“Sure,” I said, and went to get the
dry-ice. At which point I started to
realize that I may have done some-
thing a little foolish!

Dry-ice is solid carbon dioxide.
At minus seventy nine degrees
Celsius, it is a little on the chilly
side, so to keep it from vanishing
overnight I had put the remaining
crystals into a small thermos flask. I
went to get this, and because some
might have turned to gas overnight
I went onto the balcony to release
the pressure before opening it
entirely. But the little valve was
jammed. “Odd,” I thought, and tried
to loosen the whole top. Again,
no luck. At which point I realized
that either the extreme cold, or
the pressure inside the flask had
jammed the top.

OK, so the top is jammed. Is this
a problem? Quick calculation in my
head: dry-ice expands by about 850
times when it turns to gas. Based on
the amount I put in, and the size of
the flask, that’s going to be roughly
a hundred atmospheres when it all
sublimes. Which is inevitable as the
flask isn’t going to keep it at minus

seventy nine forever. The chances
of a small domestic thermos flask
being able to resist a hundred atmo-
spheres of pressure without ruptur-
ing? Well, that’s pretty much zero.

I looked at the flask with that
awful sinking feeling you get when
you realize you have created some-
thing which is inevitably going to
explode at some point in the future,
and there’s nothing you can do
about it.

So, let’s ring the dry ice people...
Well, I can’t be the first person
to do this, surely? Indeed a quick
google shows that the thermos’
webpage explicitly says to not put
dry ice in one as it may cause the
top “to eject forcefully” — a lovely
piece of understatement there. So I
found a dry-ice supplier in London
and rang them to ask what to do.

“I dunno mate,” the man on the
helpline said, “You are the first
person we have had who has ever
done this.” I asked what he would
suggest.

“Try ringing the fire brigade?”

So, let’s ring the fire brigade
I rang the fire brigade. “Uh, how
do you expect us to be able to
help you?” said the woman on the
phone. I replied that I assumed the
fire brigade encountered potentially
exploding cylinders all the time and
would have some way of handling
the situation. “Oh yes,” she said
“We call the police to have them
cordoned off, and then we get well
away from them.” Ah, not quite
what I had expected. “Maybe you
could try burying it in the garden?”
she said helpfully. “I live in a flat," I
replied.

So, let’s ring the police
Actually, I really didn’t want to do
that. It occurred to me that Isling-
ton police were unlikely to have
any form of containment for my
small exploding flask problem and
might have to call someone like the
bomb squad. I baulked at escalating
the problem that far unless abso-
lutely necessary.

What I really needed was advice
from a friend who would under-
stand the physics of the situation,
wouldn’t be surprised in the slight-
est at being asked for help, and with
a proven track record of patiently
handling my somewhat misguided
and potentially dangerous schemes.

So let’s ring Steer
Ah, finally some useful advice.
Someone who does the calcula-
tion in their own head, comes to
the same numbers as me and the
same “oh, shit!” conclusion. Yes, it’s
going to go bang, most likely at the
valve end first. We discussed a few
solutions: burying it in the window
box is not a good idea, we can’t get
it cooled back down, he doesn’t
have any emergency contacts at the
universities, and I wouldn’t want
to carry it across town anyway. I
wasn’t sure how much longer it
would last and had no way of calcu-
lating it.

“What about throwing it into the
canal?” I suggested

“It’ll float,” he said.
This is true. But then I thought

“not if I weight it down with
something,” We have tiles left over
from the kitchen. Maybe if I put
them in a bag with the flask? Yes,
that should work, as long as there’s
no air trapped in the bag in an odd
pocket, it should sink nicely and
go bang at the bottom of the canal
where it can’t hurt anyone.

 35

36 SPECIAL

Thus a plan was formed....

The other big run in London on
April 26, 2015
I wrapped the flask in a Toys-R-Us
bag with a load of ceramic tiles and
wrapped it all round with parcel
tape. It made a heavy cylindrical
bundle, and I arranged it with the
dangerous end pointing away from
me. I then placed it in front of me,
and started to run down Packington
Street towards the canal.

Let’s just say I was not feeling
particularly calm about this by this
point. The flask had been warming
outside for a good hour now, and
the weight of the tiles made it hard
to hold away from my body, plus
I had to keep zig-zagging to avoid
pointing the bit which was going to
explode at people coming up the
street towards me. Thus, weaving
left and right, I sprinted down the
hill, through the Packington Estate,
and to the edge of the canal, where
I hurled the bag into the center of
the canal with a splash.

..And there it floated...
“Noooo!!!!” Steer’s words about

making sure there were no air
pockets trapped in the back sud-
denly came into my head so very
clearly.

“Sink! Please sink!” I cried at the
bag.

People were staring at me a bit
by now. The canal is a crowded
place on a Sunday morning, and I
suspect my behavior was somewhat
out of the ordinary. I sat by the
canal. The bag was too far out to
retrieve and starting to drift in the
direction of the houseboats moored
on the other side. Oh god, I started
to realize quite how much worse
the phone call to the police was
now going to have to be.

But then, very slowly, one end of
the bag began to bubble, the other
end raised into the air, and in the
style of Titanic, it slipped almost
vertically below the surface of the
water and sank to the bottom.

I stared at the water for a long
while. I texted Steer and Márcia let
them know I was OK and that it
had worked. I was about to stand
up and head home when a curious
thing happened. The surface of the
canal started bubbling over the spot
where the bag had sunk and contin-
ued to do so.

More air trapped in the bag? No,
it went on and on, a continuous
stream of bubbles. I realized that
the flask must have just ruptured,
maybe a minute and a half after
throwing it into the water. That’s
how close I was to having it
explode in my hands.

I watched the bubbles until they
finally finished, and (trembling a
little bit I have to admit) I walked
home. n

Pete has been around on the net over the
last 20 years under the nickname of “-bat.”,
or as “minusbat”. He blogs at minusbat.
livejournal.com

Reprinted with permission of the original author.
First appeared in hn.my/thermos (minusbat.livejournal.com)

http://minusbat.livejournal.com
http://minusbat.livejournal.com
http://hn.my/thermos

 37

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

38 SPECIAL

http://www.hostedgraphite.com

	FEATURES
	Racking Mac Pros

	PROGRAMMING
	I Wrote a Website in Rust and Lived to Tell the Tale
	How to Receive a Million Packets Per Second
	How I Doubled my Internet Speed with OpenWRT
	Suddenly, a Leopard Print Sofa Appears
	Practical Data Science
in Python

	SPECIAL
	Under Pressure

