
Issue 64 September 2015

Supreme Commander – Graphics Study
Adrian Courrèges

2

Curator
Lim Cheng Soon

Contributors
Adrian Courrèges
James Somers
Joe Savage
Rudis Muiznieks
Yan Zhu
Kyle Kingsbury

Proofreader
Emily Griffin

Illustrators
Daniel Rutherford
James H.

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Daniel Rutherford [avitus12.deviantart.com]

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://doctor-g.deviantart.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-64

Contents
FEATURES

04 Supreme Commander - Graphics Study
By ADRIAN COURRÈGES

SPECIAL

14 Speed Matters
By JAMES SOMERS

PROGRAMMING

16 Writing a Game Boy Advance Game
By JOE SAVAGE

24 Exploiting Android Users
By RUDIS MUIZNIEKS

28 Backdooring Your JavaScript Using Minifier Bugs
By YAN ZHU

32 Call Me Maybe: Chronos
By KYLE KINGSBURY

Illustration: Daniel Rutherford [avitus12.deviantart.com]

http://hackermonthly.com/issue-64

4 FEATURES

FEATURES

Supreme Commander -
Graphics Study

By ADRIAN COURRÈGES

Illustration: Daniel Rutherford [avitus12.deviantart.com]

 5

Total annihilation has a special place in my
heart since it was the very first RTS I played.
It was with Command & Conquer and Star-

craft one of the best RTS’s released in the late ’90s.
Ten years later, in 2007, its successor was

released: Supreme Commander.
With Chris Taylor as the designer, Jonathan Mavor in

charge of the engine programming, and Jeremy
Soule as the music composer (some of the main fig-
ures behind the original Total Annihilation), the fans’
expectations were very high.

Supreme Commander turned out to be highly
praised by critics and players, with nice features like
the “strategic zoom” or physically realistic ballistics.

So let’s see how Moho, the engine powering
SupCom, renders a frame of the game!

Since RenderDoc [hn.my/rdoc]doesn’t support
DirectX 9 games, reverse-engineering was done with
the good old PIX. [hn.my/pix]

Terrain Structure
 Before we dig into the
frame rendering, it’s
important to first talk
about how terrains are
built in SupCom and
which technique is used.

Here is an overview
of “Finn’s Revenge,” a 1
versus 1 map.

On the left is a top-view of the entire map like it
appears in-game on the mini-map.

Below is the same map viewed from another angle:

 First, the geometry of the terrain is calculated from
a heightmap. [hn.my/heightmap]

The heightmap describes the elevation of the terrain.
A white color represents a high altitude and a dark one
a low altitude.

For our map, a 513x513 single-channel image is
used, it represents a terrain of 10x10 km in-game.
SupCom supports much larger maps, up to 81x81 km.

So we have a mesh which represents our terrain.
Then the game applies an albedo texture combined

with a normal texture to cover all these polygons.
For each map, the sea level is also specified, so the

game modulates the albedo color of the pixels under
the sea surface to give them a blue tint.

Heightmap

Tessellated Terrain

Wireframe Terrain

Albedo + Normal Textures

http://hn.my/rdoc
http://hn.my/pix
http://hn.my/heightmap

6 FEATURES

Okay, so having altitude-based texturing is nice, but
it gets limiting quite quickly.

How do we add more details and variations to our
map?

The technique used is called “Texture splatting”:
the game draws a series of additional albedo+normal
textures. Each step adds what’s called a “stratum” to
the terrain.

We already have stratum 0: the terrain with its origi-
nal albedo+color textures.

To apply the next stratum, we need some extra
information: a “splat map,” to tell us where to draw the
new albedo+normal and more importantly where not
to draw! Without such a “splat map” also called alpha-
map, applying a new stratum would completely cover
the previous stratum. The albedo and normal textures
both have their own scaling factor when they are
applied to the mesh.

Sea Level Color Modulation

 7

So we applied strata 1, 2, 3 and 4, each one relying
on 3 separate textures. The albedo and normal textures
use 3 channels (RGB) each, but the splat map uses
only one channel.

So as an optimization the 4 splat maps are combined
into a single RGBA texture.

 Now we’ve got more texture variations for our ter-
rain. It looks nice from far away, but if you zoom in,
you quickly notice the lack of high-frequency details.

This is when decals are applied: these are like small
sprites which locally modify the albedo color and the
normal of a pixel. This terrain has 861 instances of 21
unique decals.

It’s much better, but what about some vegetation?
The next step is to add to the terrain what the

engine calls “Props”: tree or rock models. For this map
there are 6026 instances of 23 unique models.

 Now the final touch: the sea surface. It is a combina-
tion of several normal maps with UV scrolling along
different directions, an environment map for reflections
and sprites for the waves near the shores.

Decals: Before

Decals: After

Decals: Highlight

Props: Before

Props: After

Props: Highlight

Sea Surface: Before

8 FEATURES

Our terrain is now ready.
Creating good heightmaps and splat maps can

be challenging for map designers, but fortunately
there are several tools to help with the task: there
is the official “Supcom Map Editor” or World
Machine [world-machine.com] with even more
advanced features.

So now that we know the theory behind the
SupCom terrains, let’s move on to an actual frame of
the game.

Frame Breakdown
This is the game frame we’ll dissect:

Frustum Culling
The game has in RAM the terrain mesh, created from
the heightmap. It is tessellated by the CPU, and the
position of each vertex is known. When the zoom level
changes, the CPU re-calculates the tessellation of the
terrain.

Our camera focuses on a scene near the shore. Ren-
dering the whole terrain would be a waste of calcula-
tion, so instead the engine extracts a submesh of the
whole terrain, only the portion visible to the player,
and feeds this small subset to the GPU for rendering.

Normal Map
First, only the normals are calculated.

A first pass computes the normals resulting from the
combination of the 5 strata (5 normal maps and 4 splat
maps).

The different normal maps are blended together, all
the operations are done in tangent space.

Sea Surface: After
Frustum Culling: Before

Frustum Culling: After

Submesh

Normal Map

Normals x5 Splatmaps

http://world-machine.com

 9

 This is done in a single draw call with 6 texture
fetches. You’ll notice the result is quite yellowish. It
contrasts with the other normal maps which tend to be
blue. And indeed: here the Blue channel is not used at
all, only the Red and Green.

But wait, a normal is a 3-component vector. How
can it be stored only with 2 components? It’s actually a
compression technique: only the X and Y components
are stored, Z can be derived from them.

For now let’s just assume the Red and Green chan-
nels contain all the information we need about the
normals.

Strata are done, now it’s the turn of the decals: ter-
rain decals and building decals are added to modulate
the stratum normals.

We still haven’t used the Blue and Alpha channels of
our render target.

So the game reads from a 512x512 texture repre-
senting the whole normals of the terrain (baked from
the original heightmap), and calculates for each pixel
its normal using a bicubic interpolation. The results are
stored in the Blue and Alpha channels.

Then the game combines these two sets of normals
(stratum/decal normals and terrain normals) into the
final normals used to calculate the lighting.

This time there’s no compression: the normals use
the 3 RGB channels, one for each component.

It might look very green, but this is because the
scene is quite flat. The result is correct: you can
take any pixel and calculate its normal vector by
doing colorRGB * 2.0 - 1.0. You can also check that
the norm of the vector is 1.

Base

Base + Terrain Decals

Base + Terrain Decals + Unit Decals

Normal Map

Red & Green: Stratum/Decal Normals
Blue & Alpha: Base Terrain Normal

Bicubic interpolation stored in Blue and Alpha.

Final Normal Map

10 FEATURES

Shadow Map
The technique used to render the shadows is the “Light
Space Perspective Shadow Maps” or LiSPSM tech-
nique. [hn.my/lspsm]

Here we just have the sun as a directional light. Each
mesh of the scene is rendered, and its distance from
the sun is stored into the Red channel of a 1024x1024
texture. The LiSPSM technique calculates the best pro-
jection space to maximize the precision of the shadow
map.

If we stop here, we would just be able to draw hard
shadows. When the units are rendered, the game actu-
ally tries to smooth out the edges of the shadows by
using some PCF sampling.

But even with PCF, there would be no way to obtain
the beautiful, smooth shadows we see on the screen-
shot, especially the smooth silhouettes of the buildings
on the ground…. So how was this achieved?

Even during the final parts of the development
process of the game, it seems the implementation
of shadows was still an on-going effort. This is what
Jonathan Mavor was saying 11 months before the game
public release:

The shadows in those shots are not finished and we do
have a little bit of work to do on them yet. […]
We are not finished with the game graphically by any
stretch at this point.
– Jonathan Mavor, February 24th 2006

Just one month after this declaration, a new ground-
breaking shadow map technique was emerging: Vari-
ance Shadow Maps or VSM. [hn.my/vsm] It was able
to render gorgeous soft shadows very efficiently.

It seems the SupCom team tried to experiment with
this new technique: decompiling the D3D bytecode
reveals a reference to a DepthToVariancePS() function
which computes a blur version of the shadow map.
Before VSM was invented, shadow maps could not be
blurred.

Here SupCom performs a 5x5 Gaussian blur (hori-
zontal and vertical pass) of the shadow map.

However in the D3D bytecode, there is no instruc-
tion about storing the depth and the squared-depth
(information required by the VSM technique). It seems
to be only a partial implementation. Maybe there was
no time to perfect the technique during the final stages
of the development, but anyway the code as-is can
already produce nice results.

Note though that the pseudo-VSM map is used only
to produce soft-shadows on the ground.

When a shadow must be drawn onto a unit, it is
done through the LiSPSM map with PCF sampling.
You can see the difference in the screenshot below
(PCF has blocky artifacts at the shadow border):

Shadowed Terrain
Thanks to the normal map and the shadow map that
were generated, it is possible to finally start rendering
the terrain: a textured mesh with lighting and shadows.

LiSPSM Blurred Shadow Map

Gaussian
Blur

http://hn.my/lspsm
http://hn.my/vsm

 11

Decals
The albedo components of the decals are drawn,
using the normal information to calculate the lighting
equation.

 Water Reflection
 We have the sea

on the right of
our scene, so if
a robot is sitting
in the middle
of the water we

should be able to see its reflection on the sea surface.
A classic trick exists to render the reflection of a

surface: an additional pass is performed, and just before
applying the camera transformation, the vertical axis
is scaled by -1 so the entire scene becomes symmetric
with regards to the water surface (just like a mirror)

which is exactly the transformation needed to render
the reflection. SupCom uses this technique and renders
all the mirrored unit meshes into a reflection map.

Mesh Rendering
All the units are then rendered one by one. For the veg-
etation, geometry instancing is used to render multiple
trees in one draw call. The sea is rendered using a single
quad, with a pixel shader fetching several normal maps,
a refraction map (the scene rendered up until now), a
reflection map (just generated above), and a skybox for
additional reflection.

Base

Base + Terrain Decals

Base + Terrain Decals + Unit Decals

Meshes 0%

Meshes 30%

12 FEATURES

Notice in the last image the small black artifacts of
the sea near the screen border: it’s because the sam-
pling of the surface of the water is disrupted to create
an illusion of movement. Sometimes the disruption
brings texels from outside the viewport within the
viewport. But such information does not exist, hence
the black areas.

During the game, the UI actually hides these artifacts
under a thin border covering the edges of the viewport.

Mesh Structure
Each unit in SupCom is rendered in a single draw call.
A model is defined by a set of textures:

 ■ An albedo map

 ■ A normal map

 ■ A “specular map” which actually contains much
more information than the specular. It’s an RGBA
texture with:

Red: Reflection. How much the environment map
is reflected.

Green: Specular. In regards to the sun light.

Blue: Brightness. Used later to control the bloom.

Alpha: Team Color. It modulates the unit albedo
depending on the team color.

Particles
All the particles are then rendered and the health bars
of each unit are also added.

Meshes 60%

Meshes 100%

Base Scene

Base Scene + Particles

Base Scene + Particles + Health Bars

 13

Bloom
Time to make things shine! But how do we get
the “brightness information” since we’re working
with LDR buffers?

The brightness map is actually contained within the
alpha channel, it was being built at the same time the
previous meshes were drawn.

A downscaled copy of the frame is created, the alpha
channel is used to make only the bright areas stand out
and two successive Gaussian blurs are performed.

The blurred buffer is then drawn on top of the origi-
nal scene with additive blending.

User Interface
We’re done concerning the main scene. The UI is finally
rendered, and it is beautifully optimized: single draw
call to render the entire interface. 1158 triangles are
pushed at once to the GPU.

The pixel shader reads from a single 1024x1024
texture which acts like a texture atlas. When another
unit is selected, the UI is modified, the texture atlas is
regenerated on-the-fly to pack a new set of sprites.

And we’re done for the frame! ■

Adrian Courrèges is a software engineer working in Tokyo on
several game-related fields, ranging from network to real-time
graphics and console code. He founded his own indie studio
[breakingbyte.com] and has a passion for development and
reverse-engineering. Follow him on Twitter at @ado_tan

Bloom: Before

Bloom: After

Reprinted with permission of the original author.
First appeared in hn.my/supcom (adriancourreges.com)

http://breakingbyte.com
http://twitter.com/@ado_tan
http:// hn.my/supcom

14 SPECIAL

SPECIAL

The obvious benefit to
working quickly is that
you’ll finish more stuff

per unit time. But there’s more to it
than that. If you work quickly, the
cost of doing something new will
seem lower in your mind. So you’ll
be inclined to do more.

The converse is true, too. If every
time you write a blog post it takes
you six months, and you’re sitting
around your apartment on a Sunday
afternoon thinking of stuff to do,
you’re probably not going to think
of starting a blog post, because it’ll
feel too expensive.

What’s worse, because you blog
slowly, you’re liable to continue
blogging slowly — simply because
the only way to learn to do some-
thing fast is by doing it lots of times.

This is true of any to-do list that
gets worked off too slowly. A mal-
aise creeps into it. You keep adding
items that you never cross off. If
that happens enough, you might
one day stop putting stuff onto the
list.

* * *

I’ve noticed that if I respond to
people’s emails quickly, they send
me more emails. The sender learns
to expect a response, and that
expectation spurs them to write.
That is, speed itself draws emails
out of them, because the projected
cost of the exchange in their mind
is low. They know they’ll get some-
thing for their effort. It’ll happen so
fast they can already taste it.

It’s now well known on the web
that slow server response times
drive users away. A slow web-
site feels broken. It frustrates the
visitor’s desire. Probably it deprives
them of some dopaminergic reward.

Google famously prioritized
speed as a feature. They realized
that if search is fast, you’re more
likely to search. The reason is that
it encourages you to try stuff, get
feedback, and try again. When a
thought occurs to you, you know
Google is already there. There is
no delay between thought and
action, no opportunity to lose the
impulse to find something out. The
projected cost of googling is nil. It
comes to feel like an extension of
your own mind.

It is a truism, too, in workplaces,
that faster employees get assigned
more work. Of course they do.
Humans are lazy. They want to
preserve calories. And it’s exhaust-
ing merely thinking about giving
work to someone slow. When
you’re thinking about giving work
to someone slow, you run through
the likely quagmire in your head;
you visualize days of halting prog-
ress. You imagine a resource — this
slow person — tied up for a while.
It’s wearisome, even in the thinking.
Whereas the fast teammate — well,
their time feels cheap, in the sense
that you can give them something
and know they’ll be available again
soon. You aren’t “using them up” by
giving them work. So you route as
much as you can through the fast
people. It’s ironic: your company’s
most valuable resources — because
they finish things quickly — are the
easiest to consume.

The general rule seems to be:
systems which eat items quickly
are fed more items. Slow systems
starve.

By JAMES SOMERS

Speed Matters
Why Working Quickly Is More

Important Than It Seems

 15

Two more quick examples.
What’s true of individual people
turns out also to be true of whole
organizations. If customers find out
that you take two months to frame
photos, they’ll go to another frame
shop. If contributors discover that
you’re slow to merge pull requests,
they’ll stop contributing. Unrespon-
sive systems are sad. They’re like
buildings grown over with moss.
They’re a kind of memento mori.
People would rather be reminded
of life. They’ll leave for places that
get back to them quickly.

Even now, I’m working in a
text editor whose undo feature,
for whatever reason, has suddenly
become slow. It’s killing me. It
disinclines me, for one thing, from
undoing stuff. But it’s also probably
subtly changing the way I work. I
feel like I can’t rely on undo. So if I
want to delete something but think
I might want it later, I’m copying
it to the bottom of the file, like it’s
the 1980s. All this because undo
is so slow that it might as well not
exist. Undo, when it’s fast, is an
incredible feature; at any moment,
you can dip into the past, borrow
something, and zip back. But now it
feels like a dead end.

Part of the activation energy
required [hn.my/activation] to start
any task comes from the picture
you get in your head when you
imagine doing it. It may not be that
going for a run is actually costly;
but if it feels costly, if the picture
in your head looks like a slog, then
you will need a bigger expenditure
of will to lace up.

Slowness seems to make a special
contribution to this picture in our
heads. Time is especially valuable.
So as we learn that a task is slow, an
especial cost accrues to it. When-
ever we think of doing the task
again, we see how expensive it is
and bail.

That’s why speed matters.

* * *

The prescription must be that if
there’s something you want to do a
lot of and get good at — like write,
or fix bugs — you should try to do
it faster.

That doesn’t mean be sloppy.
But it does mean, push yourself to
go faster than you think is healthy.
That’s because the task will come
to cost less in your mind; it’ll have
a lower activation energy. So you’ll
do it more. And as you do it more
(as long as you’re doing it deliber-
ately), you’ll get better. Eventually
you’ll be both fast and good.

Being fast is fun. If you’re a fast
writer, you’ll constantly be play-
ing with new ideas. You won’t be
bogged down in a single dread
effort. And because your to-do
list gets worked off, you’ll always
be thinking of more stuff to add
to it. With more drafts in the
works, more of the world will pop
alive. You will feel flexible and
capable and practiced so that when
something demanding and long
arrives on your desk, you won’t
back down afraid.

Now, as a disclaimer, I should
remind you of the rule that anyone
writing a blog post advising
against X is himself the worst Xer
there is. At work, I have a history
of painful languished projects, and
I usually have the most overdue
assignments of anyone on the team.
As for writing, well, I have been
working on this little blog post, on
and off, no joke, for six years. ■

James Somers is a writer and programmer
based in New York. He works at Genius.

Reprinted with permission of the original author.
First appeared in hn.my/speed (jsomers.net)

http://hn.my/activation

16 PROGRAMMING

PROGRAMMING

By JOE SAVAGE

I spent a lot of time as a kid
playing (generally pretty ter-
rible) games on my Game

Boy. Having never written code
for anything other than “regular”
general purpose computers before,
I’ve been wondering recently: how
easy is it to write a Game Boy
(Advance) game?

For those unfamiliar, the Game
Boy Advance (GBA) was a popular
handheld games console produced
by Nintendo (pictured below). This
thing is kitted out with a 240x160
(3:2) 15-bit color LCD display,
along with six face buttons and a
directional pad for input.

On the inside, the GBA’s CPU
contains a 32-bit ARM7tdmi RISC
core (operating at 16.78 MHz).
Along with regular 32-bit ARM
instructions, this chip can also exe-
cute 16-bit Thumb [hn.my/thumb]
instructions. The Thumb instruction
set is essentially just a 16-bit encod-
ing for some of the most common
32-bit ARM instructions, which we
can use to save space.

In terms of memory, the device
has 130 KB of embedded memory
within the CPU (96 KB of which
is used for VRAM, 32 KB of which
is for general usage, and 2 KB of
which are used elsewhere), and
256 KB of RAM external to the
CPU. The system also has 16 KB
of System ROM, which is used to
store the BIOS. There are also some
additional details in all this regard-
ing backwards compatibility of the
Game Boy Advance with the Game
Boy Color, but we’re not going to
discuss them here.

Along with all this internal
memory, the GBA is typically
loaded with some form of game
cartridge. These typically consist of
some ROM (to store instructions,
read-only data, etc.), and some form
of mutable storage (typically SRAM,
Flash Memory, or EEPROM). As
the Game Pak ROM is connected
via a 16-bit wide bus, it makes sense
to use 16-bit Thumb instructions
rather than 32-bit ARM instructions
most of the time in game code.

A GBA Game Pak [reinerziegler.de]

All of the memory sections we’ve
discussed, along with I/O hardware
registers (to control graphics, sound,
DMA, etc.), are mapped into
memory, giving a memory layout
something like the following:

 ■ 0x00000000 – 0x00003FFF: 16 KB
System ROM (executable, but
not readable)

 ■ 0x02000000 – 0x02030000: 256
KB EWRAM (general purpose
RAM external to the CPU)

 ■ 0x03000000 – 0x03007FFF: 32 KB
IWRAM (general purpose RAM
internal to the CPU)

Writing a
Game Boy Advance Game

Illustration: James H. [blueamnesiac.deviantart.com]

http://hn.my/thumb
http://reinerziegler.de

 17

 ■ 0x04000000 – 0x040003FF: I/O
Registers

 ■ 0x05000000 – 0x050003FF: 1 KB
Color Palette RAM

 ■ 0x06000000 – 0x06017FFF: 96 KB
VRAM (Video RAM)

 ■ 0x07000000 – 0x070003FF: 1 KB
OAM RAM (Object Attribute
Memory – discussed later)

 ■ 0x08000000 – 0x????????: Game
Pak ROM (0 to 32 MB)

 ■ 0x0E000000 – 0x????????: Game
Pak RAM

These sections have varying bus
widths and read/write widths (e.g.,
you can’t write individual bytes
into VRAM!), and some sections
are mirrored in memory at multiple
points. There is also some extra
complexity to this in reality, but
this is the main structure that we’ll
need to build a basic GBA game.

With this knowledge of the
memory structure of the device, the
plan to make a “Hello, World!” GBA
ROM is as follows: write some
Thumb code for our Game Pak
ROM which sets display parameters
in I/O registers as appropriate for
some particular display mode, and
then write some graphical data into
VRAM that we want to display.
With some of the theory about the
device out of the way, let’s actually
try to build something.

Setting Up A Development
Environment
To begin executing our plan to
build a GBA ROM, we need to
know a bit about the ROM format.
Without going too far into the
details, GBA ROMs begin with a
standard header. This should start
with a four byte ARM instruction
to branch to the start address of

our program, followed by some
“magic” bytes representing the
Nintendo logo.

Additionally, in this header there
is some data about the game (its
title, etc.), and a “check” value for
this data. We will need to ensure
that the header is perfectly correct
if we want our ROM to execute
properly (particularly if we’re
aiming to execute on an actual
device rather than an emulator).

Thankfully, most of the details of
ROM creation can be handled by
a good toolchain. I use the devki-
tARM toolchain myself (one of the
devkitPro toolchains, based on the
GCC toolchain), which makes the
process extremely easy. Essentially,
once the toolchain is set up, we
can turn some C code into a GBA
ROM in four steps:

1. Cross-compile our C code to
Thumb instructions for the
GBA’s CPU, creating a Thumb
object file with our ROM code.

2. Link our object file into an exe-
cutable using a specific “specs”
file to control the behavior of
the linking. Typically the specs
file includes a link script (to
specify segment locations [most
mutable data will get stored in
IWRAM, “const” data in ROM,
etc.] and alignments for correct
compilation for the GBA), and
some other object files (usually,
a standard ROM header, startup
routines, program initialization
and termination code, etc.).

3. Strip our executable file of
information we don’t need
(executable header, symbol and
relocation information, etc.), to
get a near-complete ROM file.

4. Run a utility on the ROM file
from the previous step to fix its

header (ensure that the Nin-
tendo logo data in the header is
correct, set any “check” values as
appropriate, etc.)

With the version of the toolchain
I have on my machine running OS
X, I can run the following com-
mands (providing I have /opt/
devkitpro/devkitARM/bin in my
PATH environment variable) to
compile a C file into a GBA ROM
(as we described above):

1. arm-none-eabi-gcc -c main.c
-mthumb-interwork -mthumb
-O2 -o main.o

2. arm-none-eabi-gcc main.o
-mthumb-interwork -mthumb
-specs=gba.specs -o main.elf

3. arm-none-eabi-objcopy -v -O
binary main.elf main.gba

4. gbafix main.gba

There are also some additional
flags you might want to pass in for
the first step (the compilation). I’d
recommend -fno-strict-aliasing,
for example, as we’ll be dealing
with raw memory and pointers a
lot and don’t really want C’s strict
aliasing rule to bite us. You might
also find it beneficial to write a
Makefile or shell script with these
commands to make ROM compila-
tion easier — these details seem a
little unnecessary to include in this
post though.

With a process for ROM compi-
lation from C established, let’s test
it out. To help out any readers that
are getting bored from the theory,
I’ll present the code for our “Hello,
World” GBA ROM first and then
discuss is afterwards.

18 PROGRAMMING

int main(void) {
 // Write into the I/O registers,
 // setting video display parameters.
 volatile unsigned char *ioram = (unsigned
char *)0x04000000;
 ioram[0] = 0x03;
 // Set the 'video mode' to 3 (in which
 // BG2 is a 16 bpp bitmap in VRAM)
 ioram[1] = 0x04; // Enable BG2 (BG0 = 1,
BG1 = 2, BG2 = 4, ...)

 // Write pixel colours into VRAM
 volatile unsigned short *vram = (unsigned
short *)0x06000000;
 vram[80*240 + 115] = 0x001F; // X = 115,
Y = 80, C = 000000000011111 = R
 vram[80*240 + 120] = 0x03E0; // X = 120,
Y = 80, C = 000001111100000 = G
 vram[80*240 + 125] = 0x7C00; // X = 125,
Y = 80, C = 111110000000000 = B

 // Wait forever
 while(1);
 return 0;
}

The code above is relatively simple, and should result
in a horizontal set of three pixels being drawn in the
middle of the GBA screen — one red, one green, and
one blue:

Now, time to explain the code. Firstly, we write some
display parameters to the memory mapped I/O regis-
ters. In particular, the first 16 bits of this memory is a
display control register (often called DISPCNT). The
first three bits of this register indicate the video mode,
and the 11th bit indicates whether background #2
(BG2) is enabled or not. Thus by writing the values we
do, we set the video mode to mode 3 and enable BG2.

Why do we need to do this? Well, first because of the
video mode. It turns out that video mode 3 is a mode
in which we can write bitmap data into VRAM, and
BG2 will display this bitmap (hence, why we also want
to enable BG2). You might also be wondering why I’ve
chosen to use video mode 3 rather than another video
mode. The reason for this is that video modes 0 to 2 are
much more difficult to explain.

As I mentioned earlier, the LCD on the GBA can
display 15-bit colors. Therefore, we can express GBA
colors using a 15-bit long color format. For data align-
ment reasons, though, the GBA uses a 16-bit color
format. Specifically, the format is as follows: ?BBBBB-
GGGGGRRRRR. So that’s an unused bit, followed by five
bits of blue, five bits of green, and then five bits of red.

Using this format, and with knowledge of how
video mode 3 treats VRAM as a 240x160 bitmap, our
“Hello, World” ROM simply writes some color values
at specific pixel offsets. For example, as we’re assuming
that unsigned short is 16-bits in size, vram[80*240 +
120] skips 80 horizontal lines of 240 pixels, and then
accesses the middle pixel on that horizontal line. Note,
by the way, that all the memory accesses for interfac-
ing with hardware in the code occur through vola-
tile pointers. This prevents the compiler optimizing
out what it might think are useless memory operations.

Writing A Pong-esque Game
With the basics out of the way, let’s build something
a little more interesting. We’re still going to hack the
solution together rather than building a bunch of
project infrastructure and helper functions, but we’ll
make use of some more advanced features of the GBA’s
graphics rendering. In particular, we’ll depart from
drawing using the bitmap video modes.

While drawing in the GBA’s bitmap video modes
(modes 3, 4, and 5) is very easy, for many games it’s
not really practical. Our 240x160 bitmap itself takes
up the majority of VRAM just to fill the screen once,
and pushing around so many pixels every frame can be
computationally expensive, too (we might not be able
to afford this if we’re aiming to render our game at a
reasonable framerate). Thus, we have video modes 0, 1,
and 2.

There is a fair amount of complexity wrapped up
in these modes, so we’re only going to attempt to run
through the most important pieces. Instead of operat-
ing on individual pixels, the GBA’s first three video
modes operate on tiles. A tile is an 8x8 bitmap. These

 19

exist in 4 and 8 bits per pixel (bpp)
variants, but here we’ll be using the
4bpp type. Thus, the tiles we’ll be
using have a size of 32 bytes (8 * 8
* 4 = 256 bits).

If you’re wondering how we’re
supposed to fit 15-bit color values
for each pixel in 4 (or 8) bits, we
don’t. Instead of referring directly
to colors, the pixel values in tiles
refer to colors within a particular
color palette. We can define color
palettes by writing color values into
the color palette memory we men-
tioned earlier (0x05000000). This
can store 512 sets of 16 bits (hence,
512 colors), which essentially
means that we can store 2 palettes
of 256 colors, or 32 palettes of 16
colors.

A visual example of a paletted tile

In the case of our 4bpp 8x8
tile bitmaps, we’ll treat the color
palette memory as 32 palettes of
16 colors. This way, we can use our
four bits for each pixel to specify
the color index (within some
palette of 16 colors) for this pixel.
When using tile-based video modes,
tiles are sectioned in VRAM into
“tile blocks” or “charblocks.” Each
tile block is 16 KB in size, so we
can fit 512 4bpp tiles in a tile block,
and 6 tile blocks in VRAM.

The theoretical set of 6 tile
blocks in VRAM are split into two
groups. The first four (0 - 3) can
be used for backgrounds, and the
last two (4 and 5) can be used for
sprites. Similarly, the 32 palettes
of 16 colors in palette memory
are split into 16 palettes for

backgrounds and 16 palettes for
sprites. Since we’re not going to
deal with backgrounds in our game,
we’re only interested in tile blocks
4 and 5 in VRAM (i.e., those start-
ing at addresses 0x6010000 and 0x6
014000), and color palette block 1
(address 0x5000200).

So, say that we’ve loaded some
tiles into tile block 4. What can we
do with this?

Well, the whole point of us
dealing with tiles in this case is to
create sprites which use them.

A sprite, in Computer Graph-
ics, is a 2D image that fits within a
larger scene. It turns out that the
GBA has hardware that can render
“objects” (i.e., sprites) for you, and
these objects get rendered such
that the object can move around
without leaving a trail of modified
pixels. Providing that objects are
enabled (bit 13 in the display con-
trol I/O register is set), an object
can be created from a particular
set of tiles by writing the object’s
attributes into the GBA’s Object
Attribute Memory (OAM). In this
case, as we’re looking to make a
“pong”-esque game, we’ll probably
want at least two sprites: a paddle
and a ball. Any particular “object”
has three sets of 16-bit attributes:

 ■ Attribute 0: includes, among
other things, the y coordinate
of the object, the shape of the
object, and the color mode of the
object’s tiles (4bpp or 8bpp).

 ■ Attribute 1: includes, among other
things, the x coordinate of the
object, and the size of the object.

 ■ Attribute 2: includes, among
other things, the base tile index
of the object, and the color pal-
ette the object should use (when
in 4bpp mode).

The specifics of these values can
be viewed elsewhere, but essen-
tially, the y coordinates are the
lowest 8 bits of attribute 0, the x
coordinates are the lowest 9 bits
of attribute 1, and the color mode
defaults to 4bpp (i.e. zero = 4bpp).

The “shape” and “size” bits of an
object define its form, and differ-
ent combinations of these four
bits result in different final shapes
(entities more complex than this
system are made up of multiple
smaller objects). If an object should
be larger than one tile in size, it will
use different tiles for its appearance
depending on the mapping mode
that is set (the 7th bit of the display
control I/O register). It’s easiest for
us to use the 1D mapping mode, so
if an object is bigger than one tile,
it will fill itself using the tiles that
follow its “base tile” in memory.

With sprites explained, we’re
almost ready to start building. We
want to use video mode 0 for this
program, in which BG0 - BG3
operate in “regular” mode (we
can’t perform affine transforma-
tions on them). Now we just need
to feed the input from the GBA’s
directional pad into some primi-
tive physics code, put that all inside
some sort of game loop, and we
have ourselves a game!

The last pieces of this puzzle are
both in I/O registers. The input
state of the device can simply be
read from the KEYINPUT I/O reg-
ister (0x04000130), and we can use
the particulars of how this is laid
out to create masks on this state to
determine whether particular keys
have been pressed. As for the game
loop... unfortunately, this requires
one last piece of theory.

A typical game loop consists of a
draw period, and an update period;
in this case, we can’t just choose

20 PROGRAMMING

when these occur ourselves, though.
If we decide to change what we
want to display when the Game
Boy is halfway through drawing an
object, we might get screen tearing
(as half of the object was drawn
with one set of data, and the other
half with another). As a result, we
need some way to synchronize our
drawing and updating with the
GBA’s display refresh cycle.

The device gives us a little time
to update after every horizontal
line (or “scanline”) that it draws, but
gives us even more time (around
5ms) after it’s finished drawing
to the whole screen. In this case,
we’ll just use the time available
after drawing to the entire screen
to do our updates. This period is
called a “V-Blank” (as opposed to a
“V-Draw”, when the screen is still
being drawn vertically).

To check how far the device
has drawn vertically at current,
we can check the 8 bit value
in the VCOUNT I/O register
(at 0x04000006), which continues
increasing during the V-Blank as
if scanlines were still being drawn
(thus, has a range from 0 to 227).
If the count is greater than or equal
to 160, we’re in a V-Blank. Thus, if
we wait for a V-Draw to end before
we begin the “update” stage of our
game loop, we have a primitive
form of synchronization.

With this synchronization, we
finally have enough information to
build our game. In this case, I’ve
chosen to build a single-player
pong-esque game (with extremely
primitive physics), the commented
source code of which follows.

typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef uint16 rgb15;
typedef struct object_attributes {
 uint16 attribute_zero;
 uint16 attribute_one;
 uint16 attribute_two;
 uint16 pad;
} __attribute__((aligned(4))) object_attributes;
typedef uint32 tile4bpp[8];
typedef tile4bpp tile_block[512];

#define SCREEN_WIDTH 240
#define SCREEN_HEIGHT 160

#define MEM_IO 0x04000000
#define MEM_PAL 0x05000000
#define MEM_VRAM 0x06000000
#define MEM_OAM 0x07000000

#define REG_DISPLAY (*((volatile uint32 *)(MEM_IO)))
#define REG_DISPLAY_VCOUNT (*((volatile uint32 *)(MEM_IO +
0x0006)))
#define REG_KEY_INPUT (*((volatile uint32 *)(MEM_IO +
0x0130)))

#define KEY_UP 0x0040
#define KEY_DOWN 0x0080
#define KEY_ANY 0x03FF

#define OBJECT_ATTRIBUTE_ZERO_Y_MASK 0xFF
#define OBJECT_ATTRIBUTE_ONE_X_MASK 0x1FF

#define oam_memory ((volatile object_attributes *)MEM_OAM)
#define tile_memory ((volatile tile_block *)MEM_VRAM)
#define object_palette_memory ((volatile rgb15 *)(MEM_PAL +
0x200))

// Form a 16-bit BGR GBA colour from three component values
// (hopefully, in range).
static inline rgb15 RGB15(int r, int g, int b) { return r | (g <<
5) | (b << 10); }

// Set the position of an object to specified x and y coordinates
// (hopefully, in range).
static inline void set_object_position(volatile object_attributes
*object, int x, int y) {
 object->attribute_zero = (object->attribute_zero &

 21

~OBJECT_ATTRIBUTE_ZERO_Y_MASK) | (y & OBJECT_ATTRIBUTE_ZERO_Y_MASK);
 object->attribute_one = (object->attribute_one & ~OBJECT_ATTRIBUTE_ONE_X_MASK) | (x &
OBJECT_ATTRIBUTE_ONE_X_MASK);
}

// Clamp 'value' in the range 'min' to 'max' (inclusive).
static inline int clamp(int value, int min, int max) { return (value < min ? min : (value > max ?
max : value)); }

int main(void) {
 // Write the tiles for our sprites into the 4th tile block in VRAM.
 // Particularly, four tiles for an 8x32 paddle sprite, and 1 tile for an 8x8 ball sprite.
 // 0x1111 = 0001000100010001 [4bpp = colour index 1, colour index 1, colour index 1, colour
index 1]
 // 0x2222 = 0002000200020002 [4bpp = colour index 2, colour index 2, colour index 2, colour
index 2]
 // NOTE: We're using our own memory writing code here to avoid the byte-granular writes that
 // something like 'memset' might make (GBA VRAM doesn't support byte-granular writes).
 volatile uint16 *paddle_tile_memory = (uint16 *)tile_memory[4][1];
 for (int i = 0; i < 4 * (sizeof(tile4bpp) / 2); ++i) { paddle_tile_memory[i] = 0x1111; }
 volatile uint16 *ball_tile_memory = (uint16 *)tile_memory[4][5];
 for (int i = 0; i < (sizeof(tile4bpp) / 2); ++i) { ball_tile_memory[i] = 0x2222; }

 // Write the colour palette for our sprites into the first palette of
 // 16 colours in colour palette memory (this palette has index 0).
 object_palette_memory[1] = RGB15(0x1F, 0x1F, 0x1F); // White
 object_palette_memory[2] = RGB15(0x1F, 0x00, 0x1F); // Magenta

 // Create our sprites by writing their object attributes into OAM memory.
 volatile object_attributes *paddle_attributes = &oam_memory[0];
 paddle_attributes->attribute_zero = 0x8000; // This sprite is made up of 4bpp tiles and has
 // the TALL shape.
 paddle_attributes->attribute_one = 0x4000; // This sprite has a size of 8x32 when the TALL
 // shape is set.
 paddle_attributes->attribute_two = 1; // This sprite's base tile is the first tile in tile
 // block 4, and this sprite should use colour palette 0.
 volatile object_attributes *ball_attributes = &oam_memory[1];
 ball_attributes->attribute_zero = 0; // This sprite is made up of 4bpp tiles and has the
 // SQUARE shape.
 ball_attributes->attribute_one = 0; // This sprite has a size of 8x8 when the SQUARE shape
 // is set.
 ball_attributes->attribute_two = 5; // This sprite's base tile is the fifth tile in tile
 // block 4, and this sprite should use colour palette 0.

 // Initialize our variables to keep track of the state of the paddle and ball,
 // and set their initial positions (by modifying their attributes in OAM).
 const int player_width = 8, player_height = 32, ball_width = 8, ball_height = 8;
 int player_velocity = 2, ball_velocity_x = 2, ball_velocity_y = 1;
 int player_x = 5, player_y = 96;

22 PROGRAMMING

 int ball_x = 22, ball_y = 96;
 set_object_position(paddle_attributes, player_x, player_y);
 set_object_position(ball_attributes, ball_x, ball_y);

 // Set the display parameters to enable objects, and use a 1D object->tile mapping.
 REG_DISPLAY = 0x1000 | 0x0040;

 // Our main game loop
 uint32 key_states = 0;
 while (1) {
 // Skip past the rest of any current V-Blank, then skip past the V-Draw
 while(REG_DISPLAY_VCOUNT >= 160);
 while(REG_DISPLAY_VCOUNT < 160);

 // Get current key states (REG_KEY_INPUT stores the states inverted)
 key_states = ~REG_KEY_INPUT & KEY_ANY;

 // Note that our physics update is tied to the framerate rather than a fixed timestep.
 int player_max_clamp_y = SCREEN_HEIGHT - player_height;
 if (key_states & KEY_UP) { player_y = clamp(player_y - player_velocity, 0, player_
max_clamp_y); }
 if (key_states & KEY_DOWN) { player_y = clamp(player_y + player_velocity, 0, player_
max_clamp_y); }
 if (key_states & KEY_UP || key_states & KEY_DOWN) { set_object_position(paddle_attri-
butes, player_x, player_y); }

 int ball_max_clamp_x = SCREEN_WIDTH - ball_width, ball_max_clamp_y = SCREEN_HEIGHT -
ball_height;
 if ((ball_x >= player_x && ball_x <= player_x + player_width) && (ball_y >= player_y
&& ball_y <= player_y + player_height)) {
 // This is not good physics / collision handling code.
 ball_x = player_x + player_width;
 ball_velocity_x = -ball_velocity_x;
 } else {
 if (ball_x == 0 || ball_x == ball_max_clamp_x) { ball_velocity_x = -ball_
velocity_x; }
 if (ball_y == 0 || ball_y == ball_max_clamp_y) { ball_velocity_y = -ball_
velocity_y; }
 }
 ball_x = clamp(ball_x + ball_velocity_x, 0, ball_max_clamp_x);
 ball_y = clamp(ball_y + ball_velocity_y, 0, ball_max_clamp_y);
 set_object_position(ball_attributes, ball_x, ball_y);
 }

 return 0;
}

 23

And there we have it, our basic game is complete!
Would it work on a real Game Boy Advance? Uh,
maybe. If I’ve made no mistakes, it should work
properly, but it’s entirely possible that I’ve messed up
somewhere along the line.

Conclusion
This article turned out to be a lot longer than I
expected. There’s a lot more to GBA development
than is detailed in this post, too. Like any platform, it
has its interesting features and its quirks. If you’d like to
know more about GBA development, or about any of
the device specifics in this article, I found the following
resources invaluable:

 ■ Nintendo’s AGB Programming Manual
[hn.my/gbaman]

 ■ GBATEK [hn.my/gbatek]

 ■ CowBiteSpec [hn.my/cowbitespec]

 ■ Tonc [hn.my/tonc] ■

Joe Savage is a computer science student and software developer
from England, interested in a wide variety of areas ranging from
reverse engineering to game development. He writes about
technical topics on his blog at reinterpretcast.com

Our Game Boy Advance
game running in an
emulator.

Reprinted with permission of the original author.
First appeared in hn.my/gba (reinterpretcast.com)

http://hn.my/gbaman
http://hn.my/gbatek
http://hn.my/cowbitespec
http://hn.my/tonc
http://reinterpretcast.com
http://hn.my/gba

24 PROGRAMMING

By RUDIS MUIZNIEKS

A Dark Past
I’m going to tell you about some
stuff I’ve done that I’m not par-
ticularly proud of. This happened
during a period of my life when I
was working for a company in the
advertising industry. The company
already had a pretty strong handle
on the email and display advertis-
ing markets, but the team I was
hired into was a newer group whose
job was to break into the desktop
advertising game.

It may not be immediately
apparent to you what I mean by
“desktop advertising,” but I can
guarantee that you’ve run into it at
some point before. Every time your
Grandma calls you up on the week-
end complaining that her computer
is running slow, and you fire up her
copy of Internet Explorer 7 to find
that she’s got twenty different tool-
bars installed, you’ve encountered
the kind of thing my team was
working on. Every time you’ve tried
to install some open source soft-
ware through a Google link, didn’t
pay attention to checkboxes in the
installer, and ended up with half
a dozen useless registry scanners,
disk cleaners, and so-called “anti-
malware” programs unintentionally
installed on your computer, you
may have me to thank for that.

By way of apology, if you ever
meet me in real life, I’ll buy you a
beer. I promise. Just please try to
resist the urge to punch me. I am
very sorry for my involvement in
everything that you are about to
read.

As morbidly interesting as the
desktop side of things might be, I’m
going to tell you a little bit about
what we eventually branched into
after the desktop business had
settled into a stable channel of
revenue for the company. Namely,
mobile advertising.

First Attempts
The advertising industry is largely
driven by plagiarism — you look
for a money-making model that’s
working well for someone else,
then copy it. If you get in early
enough and “drive a truck through
it,” as one of my managers used
to say, you stand to make a lot of
money before rising competition
turns it into a race to the bottom
and profits dry up. That’s how we
approached advertising on mobile
at first.

Our first product was an “app-a-
day” app for iOS that offered users
a free app every day (the implica-
tion being that the offered app
would otherwise not be free). There

was another app called AppGratis
that was doing pretty well and we
wanted some of that action.

Our app was a flop straight out
of the gate. The development phi-
losophy while I was there involved
pumping out production-ready
products within a day or two. If
something was going to take longer
than that to get into the wild, then
it wasn’t worth doing. This meant
that most of what we did (includ-
ing this first iOS effort) was a buggy
mess. The idea was that we would
throw this low-effort proof-of-
concept at the wall and see where it
stuck best, then quickly iterate and
fine-tune it to maximize profits.

This one didn’t really stick at all.
Probably due to the fact that all of
our “offers” were games and apps
that a) nobody wanted and b) were
already free on the app store. We
didn’t make any effort to provide
actual value to users, and we didn’t
provide any value to the publish-
ers because nobody was using our
app. The whole thing ended up
being moot anyway, because shortly
after we got into the App Store,
Apple yanked AppGratis and basi-
cally banned all “app-a-day” style
apps forever. Pay attention and
you’ll soon discover that this is the
start of a common pattern.

Exploiting Android Users

 25

Our struggles with Apple’s iron
fist and how long it took to get new
changes into the App Store left a
sour taste, so we decided to move
on to Android. The big money on
Android at the time came in the
form of push-ads. These were the
ads that would appear in your
notification center, even when the
app that generated them wasn’t
running. A company called Air-
Push more or less had the market
cornered on push-ads, so we set out
to emulate them and carve out our
own little corner.

Since my company already had
a vast supply of ads through its
email and display channels, it was
pretty easy for me to churn out
a quick proof-of-concept SDK
for Android that would tap our
existing ad feeds and push them
into the user’s notification center.
From there on it became a game
of attracting developers to use our
network and optimizing the SDK
and ads to maximize profits. It went
okay, but developer acquisition was
a problem we never really cracked,
probably due to our unwillingness
to actually put any effort or qual-
ity control into anything that we
did (improving the quality or “feel”
of a product didn’t directly lead to
increased profits, so it was generally
frowned upon and discouraged).

And then Google dropped the
ban-hammer. Push-ads were out-
lawed. This cut deep enough into
profits that it was no longer worth
spending time or resources on
supporting the ad network, so we
basically moved on.

The Collision of Two Worlds
This is when we strayed from the
usual path of identifying an existing
market to jump into and actually
developed something that was, as
far as I know, pretty novel. As I
mentioned earlier, we had already
developed desktop advertising into
a thriving channel of the business,
so we came up with a way to piggy-
back mobile distribution into our
existing desktop distribution model.

Once again I pumped out a quick
and dirty proof-of-concept — this
time in the form of a Windows app,
which we would distribute through
our desktop installer network as
another checkbox for people to
miss. This new app would sit in the
user’s system tray, silently running
in the background.

What did that app do, you ask?
If you have an Android and have

spent any time looking for apps
in Google’s App Store from your
desktop computer, you may have
noticed that there is an “Install”
button which, when you are signed
in, lets you install apps directly on
your phone. You click the button
on your desktop, the app automagi-
cally appears on your phone. You
can probably guess where this is
going.

Web browsers don’t really do a
great job of protecting their cook-
ies on your computer. They’ll go
to hell and back protecting them
from web-based attacks, cross-site
scripting, injected iframes, etc. But
once you’re actually on someone’s
computer — once they’ve trusted
and executed your code — getting
their cookies is trivial. IE stores
them as a bunch of plain-text files
in the user’s directory, and Firefox
and Chrome store them in unpro-
tected plain-text SQLite databases
(or did at the time, anyway).

So my new little desktop app,
which was quickly distributed to
millions of unsuspecting checkbox-
ignoring users, would “borrow” their
existing Google session by reading
their browser cookies, then invis-
ibly “click” that App Store install
button for them on apps that were
paying us for distribution. We
started off with opt-in screens and
notifications, letting the user know
that they have signed up for our
free “app discovery” platform and
we just sent them a new app, but
we quickly learned that if the user
became aware of what was going
on at any point in the process,
they would remove our app and
we’d lose them as a user (a-duh!).
Over time, those notification and
opt-in screens were “optimized”
away as much as possible. They
already “agreed” to our 23 page
EULA when they were trying to
install Paint.NET but accidentally
clicked the wrong download button
anyway, right?

Calling it an “app discovery” plat-
form soon took on a new meaning
for us. Usually that’s biz-speak for
a service that helps users discover
new apps that they want to use,
but normally wouldn’t find because
they’re buried too deep in the App
Store. In our case, it meant users
would wake up in the morning and
“discover” new apps on their phone
with no idea how they got there.

Several of the first apps we
pushed were our own tracking apps
that would allow us to call home
and gather statistics about our users.
The nature of the product meant
that those apps had to be available
through the Google App Store —
you can probably imagine what the
comments and ratings looked like
on those apps. I certainly learned a
few new profanities and insults. I

26 PROGRAMMING

also learned how good Google is at
banning developer accounts. A par-
ticularly low point for me was talk-
ing to a Google employee through
a newly-generated VOIP phone
number under an assumed name,
trying to activate a new developer
account with a pre-paid credit
card and a made-up address several
states away. Logging in and manag-
ing the developer account had to be
done remotely through an Amazon
EC2 instance, since our office’s IP
address was perma-banned.

It was around that time I started
looking for a new job.

No Excuses
The stuff I worked on in that job
was complete horseshit. It provided
absolutely zero value to any-
body. It existed and was expressly
optimized for the sole purpose
of exploiting non-tech-savvy
computer users to generate unde-
served profits. We all very much
understood that our “users” were
generally unaware that they were
a source of revenue for us (this
was considered a good thing), and
it was often joked about. I knew
this the whole time I was work-
ing there, and I felt shitty about it,
but for a couple years not shitty
enough to keep me from selling out
for a reasonable paycheck, three
free lunches every week, and good
benefits.

I’ve since moved to a new state, a
new job, and a different (less soul-
sucking) industry, and feel really,
really good about that decision. I’m
now working on things that actu-
ally provide value to the users. If
there’s a moral to this story, I’m
not entirely sure what it should be.
Maybe that “will it pay the bills?”
shouldn’t be your only consid-
eration when exploring new job
opportunities. “Could I live with
myself?” should be somewhere up
there too.

I have no idea if any of the things
I helped build are still alive out
there. When I left, we still had
problems identifying good users
to push our desktop app to–it had
to be someone who owned an
Android, was logged into Google
on their desktop, and had enabled
the ability to push apps from the
App Store to their phone. This is a
small segment of the total universe
of desktop users, meaning that
even though we were able to make
insane amounts of money off the
users we got, we weren’t able to get
that many users. With the never-
ending Google account closures to
boot, it wouldn’t surprise me if that
product was eventually tossed into
the heap along with our other failed
endeavors to make way for the next
million-dollar-idea. Though, the
last thing they had me working on
before I left was reverse-engineer-
ing how iTunes installed apps in the
hopes of developing a similar distri-
bution model for iOS. We knew it
was possible because there were a
couple Chinese products out there
that could push signed apps directly
to iOS devices already.

I’ll end this article by once again
apologizing for everything I did
while working there. It is a definite
fact that I made thousands (at least)
of people’s lives a little bit worse
through my efforts, and that still
bugs me. But that’s okay — hope-
fully it means I managed to escape
with my conscience still somewhat
intact.

So please, tell your Grandma I’m
sorry. And to upgrade her browser. ■

Rudis is a software engineer currently
working in the healthcare industry.

Reprinted with permission of the original author.
First appeared in hn.my/exdroid (codeword.xyz)

http://hn.my/exdroid

 27

http://www.hostedgraphite.com

28 PROGRAMMING

By YAN ZHU

In addition to unforgettable life experiences
and personal growth, one thing I got out of
DEF CON 23 was a copy of POC||GTFO

0x08 [hn.my/pocorgtfo] from Travis Goodspeed. The
coolest article I’ve read so far in it is “Deniable Back-
doors Using Compiler Bugs,” in which the authors
abused a pre-existing bug in CLANG to create a
backdoored version of sudo that allowed any user to
gain root access. This is very sneaky, because nobody
could prove that their patch to sudo was a backdoor by
examining the source code; instead, the privilege esca-
lation backdoor is inserted at compile-time by certain
(buggy) versions of CLANG.

That got me thinking about whether you could use
the same backdoor technique on JavaScript. JS runs
pretty much everywhere these days (browsers, serv-
ers, Arduinos and robots, maybe even cars someday)
but it’s an interpreted language, not compiled. How-
ever, it’s quite common to minify and optimize JS to
reduce file size and improve performance. Perhaps that
gives us enough room to insert a backdoor by abusing a
JS minifier.

Part I: Finding a good minifier bug
Question: Do popular JS minifiers really have bugs that
could lead to security problems?

Answer: After about 10 minutes of searching, I
found one in UglifyJS, [hn.my/uglifyjs] a popular mini-
fier used by jQuery to build a script that runs on some-
thing like 70% of the top websites on the Internet. The
bug itself, [hn.my/bug751] fixed in the 2.4.24 release,
is straightforward but not totally obvious, so let’s walk
through it.

UglifyJS does a bunch of things to try to reduce file
size. One of the compression flags that is on by-default
will compress expressions such as:

!a && !b && !c && !d

That expression is 20 characters. Luckily, if we
apply De Morgan’s Law, we can rewrite it as:

!(a || b || c || d)

which is only 19 characters. Sweet! Except that De
Morgan’s Law doesn’t necessarily work if any of the
subexpressions has a non-Boolean return value. For
instance,

!false && 1

will return the number 1. On the other hand,

!(false || !1)

simply returns true.

Backdooring Your JavaScript
Using Minifier Bugs

http://hn.my/pocorgtfo
http://hn.my/uglifyjs
http://hn.my/bug751

 29

So if we can trick the minifier into erroneously
applying De Morgan’s law, we can make the program
behave differently before and after minification! Turns
out it’s not too hard to trick UglifyJS 2.4.23 into doing
this, since it will always use the rewritten expression if
it is shorter than the original. (UglifyJS 2.4.24 patches
this by making sure that subexpressions are Boolean
before attempting to rewrite.)

Part II: Building a backdoor in some hypothetical
auth code
Cool, we’ve found the minifier bug of our dreams.
Now let’s try to abuse it!

Let’s say that you are working for some company,
and you want to deliberately create vulnerabilities in
their Node.js website. You are tasked with writing some
server-side JavaScript that validates whether user auth
tokens are expired. First you make sure that the Node
package uses uglify-js@2.4.23, which has the bug that
we care about.

Next you write the token validation function, insert-
ing a bunch of plausible-looking config and user valida-
tion checks to force the minifier to compress the long
(not-)Boolean expression:

function isTokenValid(user) {
 var timeLeft =
 !!config && // config object exists
 !!user.token && // user object has
 // a token
 !user.token.invalidated &&
 // token is not explicitly invalidated
 !config.uninitialized &&
 // config is initialized
 !config.ignoreTimestamps &&
 // don't ignore timestamps
 getTimeLeft(user.token.expiry);
 // > 0 if expiration is in the future

 // The token must not be expired
 return timeLeft > 0;
}

function getTimeLeft(expiry) {
 return expiry - getSystemTime();
}

Running uglifyjs -c on the snippet above produces
the following:

function isTokenValid(user){var
timeLeft=!(!config||!user.token||user.token.
invalidated||config.uninitialized||config.
ignoreTimestamps||!getTimeLeft(user.
token.expiry));return timeLeft>0}func-
tion getTimeLeft(expiry){return
expiry-getSystemTime()}

In the original form, if the config and user checks
pass, timeLeft is a negative integer if the token is
expired. In the minified form, timeLeft must be a
Boolean (since “!” in JS does type-coercion to Bool-
eans). In fact, if the config and user checks pass,
the value of timeLeft is always true unless get-
TimeLeft coincidentally happens to be 0.

Voila! Since true > 0 in JavaScript (yay for type
coercion!), auth tokens that are past their expiration
time will still be valid forever.

Part III: Backdooring jQuery
Next let’s abuse our favorite minifier bug to write some
patches to jQuery itself that could lead to backdoors.
We’ll work with jQuery 1.11.3, which is the current
jQuery 1 stable release as of this writing.

jQuery 1.11.3 uses grunt-contrib-uglify 0.3.2 for
minification, which in turn depends on uglify-js ~2.4.0.
So uglify-js@2.4.23 satisfies the dependency, and we
can manually edit package.json in grunt-contrib-uglify
to force it to use this version.

There are only a handful of places in jQuery where
the DeMorgan’s Law rewrite optimization is triggered.
None of these cause bugs, so we’ll have to add some
ourselves.

30 PROGRAMMING

Backdoor Patch #1:
First let’s add a potential backdoor in jQuery’s .html()
method. The patch [hn.my/jpatch] looks weird
and superfluous, but we can convince anyone that
it shouldn’t actually change what the method does.
Indeed, pre-minification, the unit tests pass.

After minification with uglify-js@2.4.23, jQuery’s
.html() method will set the inner HTML to “true”
instead of the provided value, so a bunch of tests fail.

However, the jQuery maintainers are probably
using the patched version of uglifyjs. Indeed, tests pass
with uglify-js@2.4.24, so this patch might not seem too
suspicious.

Cool. Now let’s run grunt to build jQuery with
this patch and write some silly code that triggers the
backdoor:

<html>
 <script src="../dist/jquery.min.js"></
script>
 <button>click me to see if this site is
safe</button>
 <script>
 $('button').click(function(e) {
 $('#result').html('false!!');
 });

 </script>
 <div id='result'></div>
</html>

Here’s the result of clicking that button when we
run the pre-minified jQuery build:

 As expected, the user is warned that the site is not
safe. Which is ironic, because it doesn’t use our mini-
fier-triggered backdoor.

Here’s what happens when we instead use the mini-
fied jQuery build:

 Now users will totally think that this site is safe
even when the site authors are trying to warn them
otherwise.

http://hn.my/jpatch

 31

Backdoor Patch #2:
The first backdoor might be too easy to detect, since
anyone using it will probably notice that a bunch of
HTML is being set to the string “true” instead of the
HTML that they want to set. So our second backdoor
patch [hn.my/jpatch2] is one that only gets triggered in
unusual cases.

 Basically, we’ve modified jQuery.event.remove
(used in the .off() method) so that the code path that
calls special event removal hooks never gets reached
after minification. (Since spliced is always Boolean,
its length is always undefined, which is not > 0.) This
doesn’t necessarily change the behavior of a site unless
the developer has defined such a hook.

Say that the site we want to backdoor has the fol-
lowing HTML:

<html>
 <script src="../dist/jquery.min.js"></script>
 <button>click me to see if special event
handlers are called!</button>
 <div>FAIL</div>
 <script>
 // Add a special event hook for onclick removal
 jQuery.event.special.click.remove =
function(handleObj) {
 $('div').text('SUCCESS');
 };
 $('button').click(function myHandler(e)
{
 // Trigger the special event hook
 $('button').off('click');
 });
 </script>
</html>

If we run it with unminified jQuery, the removal
hook gets called as expected:

But the removal hook never gets called if we use the
minified build:

 Obviously this is bad news if the event removal
hook does some security-critical function, like checking
if an origin is whitelisted before passing a user’s auth
token to it.

Conclusion
The backdoor examples that I’ve illustrated are pretty
contrived, but the fact that they can exist at all should
probably worry JS developers. Although JS minifiers
are not nearly as complex or important as C++ compil-
ers, they have power over a lot of the code that ends up
running on the web.

It’s good that UglifyJS has added test cases
for known bugs, but I would still advise anyone who
uses a non-formally verified minifier to be wary. Don’t
minify/compress server-side code unless you have to,
and make sure you run browser tests/scans against code
post-minification.

Now, back to reading the rest of POC||GTFO. ■

Yan, AKA bcrypt, is a Technology Fellow at the Electronic Frontier
Foundation and a security engineer at a Large Tech Company in
San Francisco. Before that, she dropped out of high school, got
her B.S. from MIT in Physics, and briefly worked on experimental
tests of quantum gravity for my PhD at Stanford before dropping
out of that too.

Reprinted with permission of the original author.
First appeared in hn.my/backdoor (zyan.scripts.mit.edu)

http://hn.my/jpatch2
http://hn.my/backdoor

32 PROGRAMMING

By KYLE KINGSBURY

Chronos is a distributed task scheduler (cf.
cron) [hn.my/chronos] for the Mesos cluster
management system. [mesos.apache.org]

In this edition of Jepsen, we’ll see how simple net-
work interruptions can permanently disrupt a
Chronos+Mesos cluster.

Chronos relies on Mesos, which has two flavors
of node: master nodes and slave nodes. Ordinarily in
Jepsen we’d refer to these as “primary” and “secondary”
or “leader” and “follower” to avoid connotations of, well,
slavery, but the master nodes themselves form a cluster
with leaders and followers, and terms like “executor”
have other meanings in Mesos, so I’m going to use the
Mesos terms here.

Mesos slaves connect to masters and offer resources
like CPU, disk, and memory. Masters take those
offers and make decisions about resource allocation
using frameworks like Chronos. Those decisions are
sent to slaves, which actually run tasks on their respec-
tive nodes. Masters form a replicated state machine
with a persistent log. Both masters and slaves rely on
Zookeeper for coordination and discovery. Zookeeper
is also a replicated persistent log.

Chronos runs on several nodes, and uses Zookeeper
to discover Mesos masters. The Mesos leading master
offers CPU, disk, etc., to Chronos, which in turn
attempts to schedule jobs at their correct times. Chro-
nos persists job configuration in Zookeeper and may
journal additional job state to Cassandra. Chronos has
its own notion of leader and follower nodes, indepen-
dent from both Mesos and Zookeeper.

There are, in short, a lot of moving parts here, which
leads to the question at the heart of every Jepsen
test: will it blend?

Designing a test
Zookeeper will run across all 5 nodes. [hn.my/chronos1]
Our production Mesos installation separates con-
trol from worker nodes, so we’ll run Mesos mas-
ters [hn.my/chronos2] on n1, n2, and n3, and Mesos
slaves [hn.my/chronos3] on n4 and n5. Finally, Chro-
nos will run across all 5 nodes. [hn.my/chronos4]
We’re working with Zookeeper version 3.4.5+dfsg-2,
Mesos 0.23.0-1.0.debian81, and Chronos 2.3.4-1.0.81.
debian77 — the most recent packages available in
Wheezy and the Mesosphere repos as of August, 2015.

Jepsen works by generating random operations and
applying them to the system, building up a concurrent
history of operations. We need a way to create new,
randomized jobs and to see what runs have occurred
for each job. To build new jobs, we’ll write a state-
ful generator [hn.my/chronos5] which emits jobs
with a unique integer :name, a :start time, a repeti-
tion :count, a run :duration, an :epsilon window
allowing jobs to run slightly late, and finally, an :inter-
val between the start of each window.

This may seem like a complex way to generate tasks,
and indeed earlier generators were much simpler.
However, they led to failed constraints. Chronos takes
a few seconds to spin up a task, which means that a
task could run slightly after its epsilon window. To
allow this minor fault we add an additional epsilon-
forgiveness as padding, allowing Chronos to fudge
its guarantees somewhat. Chronos also can’t run
tasks immediately after their submission, so we have
a small head-start delaying the beginning of a job.
Finally, Chronos tries not to run tasks concurrently,
which bounds the interval between targets. We ensure
that the interval is large enough that the task could

Call Me Maybe: Chronos

http://hn.my/chronos
http://mesos.apache.org
http://hn.my/chronos1
http://hn.my/chronos2
http://hn.my/chronos3
http://hn.my/chronos4
http://hn.my/chronos5

 33

run at the end of the target’s epsilon window, plus that
epsilon forgiveness, [hn.my/chronos6] and still com-
plete running before the next window begins.

Once jobs are generated, we transform them into
a suitable JSON representation [hn.my/chronos7]
and make an HTTP POST to submit them to Chro-
nos. [hn.my/chronos8] Only successfully acknowl-
edged jobs are required for the analysis to pass.

We need a way to identify which tasks ran and at
what times. Our jobs will open a new file and write
their job ID and current time, [hn.my/chronos9] sleep
for some duration, then, to indicate successful comple-
tion, write the current time again to the same file. We
can reconstruct the set of all runs by parsing the files
from all nodes. [hn.my/chronos10] Runs are consid-
ered complete if they wrote a final timestamp. In this
particular test, all node clocks are perfectly synchro-
nized, so we can simply union times from each node
without correction.

With the basic infrastructure in place, we’ll write
a client [hn.my/chronos11] which takes add-job
and read operations and applies them to the clus-
ter. As with all Jepsen clients, this one is specialized
via (setup! client test node) into a client bound
to a specific node, ensuring we route requests to both
leaders and non-leaders.

Finally, we bind together [hn.my/chronos12] the
database, OS, client, and generators into a single test.
Our generator emits add-job operations with a 30
second delay between each, randomly staggered by up
to 30 seconds. Meanwhile, the special nemesis process
cycles between creating and resolving failures every
200 seconds. This phase proceeds for a few seconds,
after which the nemesis resolves any ongoing failures
and we allow the system to stabilize. Finally, we have a
single client read the current runs.

In order to evaluate the results, we need a checker,
which examines the history of add-job and read opera-
tions, and identifies whether Chronos did what it was
supposed to.

How do you measure a task scheduler?
What does it mean for a cron system to be correct?

The trivial answer is that tasks run on time. Each
task has a schedule, which specifies the times — call
them “targets” — at which a job should run. The sched-
uler does its job if, for every target time, the task is run.

Since we aren’t operating in a real-time environ-
ment, there will be some small window of time during
which the job should run — call that epsilon. And
because we can’t control how long tasks run for, we
just want to ensure that the run begins somewhere
between the target time t and t + epsilon. We’ll
allow tasks to complete at their leisure.

Because we can only see runs that have already
occurred, not runs from the future, we need to limit
our targets to those which must have completed by the
time the read began.

Since this is a distributed, fault-tolerant system, we
should expect multiple, possibly concurrent runs for
a single target. If a task doesn’t complete successfully,
we might need to retry it–or a node running a task
could become isolated from a coordinator, forcing the
coordinator to spin up a second run. It’s a lot easier to
recover from multiple runs than no runs!

So, given some set of jobs acknowledged by Chronos,
and a set of runs for each job, we expand each job into
a set of targets, [hn.my/chronos13] attempt to map
each target to some run, [hn.my/chronos14] and con-
sider the job valid if every target is satisfied.

Assigning values to possibly overlap-
ping bins is a constraint logic problem. We can
use Loco, [hn.my/loco] a wrapper around the Choco
constraint solver [hn.my/choco] to find a unique
mapping from targets to runs. [hn.my/chronos15] In
the degenerate case when targets don’t overlap, we
can simply sort both targets and runs and riffle them
together. [hn.my/chronos16] This approach is handy
for getting partial solutions when the entire constraint
problem can’t be satisfied.

This allows us to determine whether a set of runs
satisfies a single job. To check multiple jobs, we
simply group all runs by their job ID and solve each
job independently, [hn.my/chronos17] and consider
the system valid if every job is satisfied by its runs.

Finally, we have to transform the history of opera-
tions [hn.my/chronos18] — all those add-job opera-
tions followed by a read-into a set of jobs and a set of
runs, and identify the time of the read so we can com-
pute the targets that should have been satisfied. We
can use the mappings of job targets to runs to compute
overall correctness results, and to build graphs showing
the behavior of the system over time.

With our test framework in place, it’s time to go
exploring!

http://hn.my/chronos6
http://hn.my/chronos7
http://hn.my/chronos8
http://hn.my/chronos9
http://hn.my/chronos10
http://hn.my/chronos11
http://[hn.my/chronos12
http://hn.my/chronos13
http://hn.my/chronos14
http://hn.my/loco
http://hn.my/choco
http://hn.my/chronos15
http://hn.my/chronos16
http://hn.my/chronos17
http://hn.my/chronos18

34 PROGRAMMING

Results
To start, Chronos error messages are less than helpful.
In response to an invalid job, perhaps due to a mal-
formed date, for instance, it simply returns HTTP 400
with an empty body.

{:orig-content-encoding nil, :request-
time 121 :status 400 :headers {"Server"
"Jetty(8.y.z-SNAPSHOT" "Connection" "close"
"Content-Length" "0" "Content-Type" "text/
html;charset=ISO-8859-1" "Cache-Control" "must-
revalidate,no-cache,no-store"} :body ""}

Chronos can also crash when proxying requests to
the leader, causing invalid HTTP responses:

org.apache.http.ConnectionClosedException: Pre-
mature end of Content-Length delimited message
body (expected: 1290; received: 0)

Or the brusque:

org.apache.http.NoHttpResponseException: n3:4400
failed to respond

Or the delightfully enigmatic:

{:orig-content-encoding nil, :trace-redirects
["http://n4:4400/scheduler/iso8601"] :request-
time 19476 :status 500 :headers {"Server"
"Jetty(8.y.z-SNAPSHOT" "Connection" "close"
"Content-Length" "1290" "Content-Type" "text/
html;charset=ISO-8859-1" "Cache-Control" "must-
revalidate,no-cache,no-store"} :body "<html>\n
<head>\n <meta http-equiv=\"Content-Type\"
content=\"text/html;charset=ISO-8859-1\"/>\n
<title>Error 500 Server Error</title>\n </
head>\n> <body>\n <h2>HTTP ERROR: 500</h2>\n
<p>Problem accessing /scheduler/iso8601.
Reason:\n <pre> Server Error</pre></p>\n <hr
/><i><small>Powered by Jetty://</small></i>\n \n
\n ... \n</html>\n"}

In other cases, you may not get a response from
Chronos at all, because Chronos’ response to certain
types of failures — for instance, losing its Zookeeper
connection — is to crash the entire JVM and wait
for an operator or supervising process, e.g. upstart, to
restart it. This is particularly vexing because the Meso-
sphere Debian packages for Chronos don’t include a
supervisor, and service chronos start isn’t idem-
potent, which makes it easy to run zero or dozens of
conflicting copies of the Chronos process.

Chronos is the only system tested under Jepsen
which hard-crashes in response to a network partition.
The Chronos team asserts that allowing the process to
keep running would allow split brain behavior, making
this expected, if undocumented behavior. As it turns
out, you can also crash the Mesos master with a net-
work partition, and Mesos maintainers say this is not
how Mesos should behave, so this “fail-fast” philosophy
may play out differently depending on what Mesos
components you’re working with.

If you schedule jobs with intervals that are too
frequent (even if they don’t overlap), Chronos can fail
to run jobs on time. The scheduler loop can’t handle
granularities finer than --schedule_horizon, which is,
by default, 60 seconds. Lowering the scheduler horizon
to 1 second allows Chronos to satisfy all executions for
intervals around 30 seconds — so long as no network
failures occur.

However, if the network does fail (for instance, if
a partition cleanly isolates two nodes from the other
three), Chronos will fail to run any jobs — even after
the network recovers.

This plot shows targets and runs for each job over
time. Targets are thick bars, and runs are narrow, darker
bars. Green targets are satisfied by a run beginning
in their time window, and red targets show where a
task should have run but didn’t. The Mesos master dies
at the start of the test and no jobs run until a failover
two minutes later.

The gray region shows the duration of a network
partition isolating [n2 n3] from [n1 n4 n5]. Chronos
stops accepting new jobs for about a minute just after
the partition, then recovers. ZK can continue running
in the [n1 n4 n5] component, as can Chronos, but
Mesos, to preserve a majority of its nodes [n1 n2 n3],
can only allow a leading master in [n2 n3]. Isolating
Chronos from the Mesos master prevents job execu-
tion during the partition. Hence every target during the
partition is red.

 35

This isn’t the end of the world, but it does illustrate
the fragility of a system with three distinct quorums,
all of which must be available and connected to one
another. But there will always be certain classes of
network failure that can break a distributed scheduler.
What one might not expect, however, is that Chronos
never recovers when the network heals. It continues
accepting new jobs, but won’t run any jobs at all for
the remainder of the test; every target is red even after
the network heals. This behavior persists even when
we give Chronos 1500+ seconds to recover.

 The timeline here is roughly:

 ■ 0 seconds: Mesos on n3 becomes leading master

 ■ 15 seconds: Chronos on n1 becomes leader

 ■ 224 seconds: A partition isolates [n1 n4] from [n2
n3 n5]

 ■ 239 seconds: Chronos on n1 detects ZK connection
loss and does not crash

 ■ 240 seconds: A few rounds of elections; n2 becomes
Mesos leading master

 ■ 270 seconds: Chronos on n3 becomes leader and
detects n2 as Mesos leading master

 ■ 375 seconds: The partition heals

 ■ 421 seconds: Chronos on n1 recovers its ZK connec-
tion and recognizes n3 as new Chronos leader

This is bug #520: [hn.my/bug520] after Chronos
fails over, it registers with Mesos as an entirely new
framework instead of re-registering. Mesos assumes the
original Chronos framework still owns every resource
in the cluster, and refuses to offer resources to the
new Chronos leader. Why did the first leader consume
all resources when it only needed a small fraction of
them? I’m not really sure.

I0812 12:13:06.788936 12591 hierarchical.
hpp:955] No resources available to allocate!

Studious readers may also have noticed that in
this test, Chronos leader and non-leader nodes
did not crash when they lost their connections, but
instead slept and reconnected at a later time. This con-
tradicts [hn.my/bug522] the design statements made
in #513, [hn.my/bug513] where a crash was expected
and necessary behavior. I’m not sure what lessons to
draw from this, other than that operators should expect
the unexpected.

As a workaround, the Chronos team recommended
setting --offer_timeout (I chose 30secs) to allow
Mesos to reclaim resources from the misbehaving
Chronos framework. They also recommend automati-
cally restarting both Chronos and Mesos processes;
both can recover from some kinds of partitions, but
others cause them to crash.

With these changes in place, Mesos may be able to
recover some jobs but not others. Just after the parti-
tion resolves, it runs most (but not all!) jobs outside
their target times. For instance, Job 14 runs twice in too
short a window, just after the partition ends. Job 9, on
the other hand, never recovers at all.

 Or maybe you’ll get some jobs that run during a
partition, followed by a wave of failures a few minutes
after resolution and sporadic scheduling errors later on.

 I’m running out of time to work on Chronos and
can’t explore much further, but you can follow the
Chronos team’s work in #511. [hn.my/bug511]

http://hn.my/bug520
http://hn.my/bug522
http://hn.my/bug513
http://hn.my/bug511

36 PROGRAMMING

Recommendations
In general, the Mesos and Chronos documentation is
adequate for developers but lacks operational guidance;
for instance, it omits that Chronos nodes are fragile by
design and must be supervised by a daemon to restart
them. The Mesosphere Debian packages don’t provide
these supervisory daemons; you’ll have to write and
test your own.

Similar conditions (e.g., a network failure) can lead
to varied failure modes: for instance, both Mesos and
Chronos can sleep and recover from some kinds of net-
work partitions isolating leaders from Zookeeper, but
not others. Error messages are unhelpful and getting
visibility into the system is tricky.

In Camille Fournier’s excellent talk on consensus
systems, [hn.my/consensus] she advises that “Zoo-
keeper Owns Your Availability.” Consensus systems are
a necessary and powerful tool, but they add complexity
and new failure modes. Specifically, if the consensus
system goes down, you can’t do work anymore. In
Chronos’s case, you’re not just running one consensus
system, but three. If any one of them fails, you’re in for
a bad time. An acquaintance notes that at their large
production service, their DB has lost 2/3 quorum nodes
twice this year.

Transient resource or network failures can com-
pletely disable Chronos. Most systems tested with
Jepsen return to some sort of normal operation within
a few seconds to minutes after a failure is resolved. In
no Jepsen test has Chronos ever recovered completely
from a network failure. As an operator, this fragility
does not inspire confidence.

Production users confirm that Chronos handles node
failure well, but can get wedged when ZK becomes
unavailable.

If you are evaluating Chronos, you might con-
sider shipping cronfiles directly to redundant nodes
and having tasks coordinate through a consen-
sus system. It could be simpler and more reliable,
depending on your infrastructure reliability and
need for load-balancing. Several engineers suggest
that Aurora [aurora.apache.org] is more robust, though
more difficult to set up than Chronos. I haven’t evalu-
ated Aurora yet, but it’s likely worth looking in to.

If you already use Chronos, I suggest you:

 ■ Ensure your Mesos and Chronos processes are sur-
rounded with automatic-restart wrappers

 ■ Monitor Chronos and Mesos uptime to detect restart
loops

 ■ Ensure your Chronos schedule_horizon is shorter
than job intervals

 ■ Set Mesos’ --offer_timeout to some reasonable (?)
value

 ■ Instrument your jobs to identify whether they ran or
not

 ■ Ensure your jobs are OK with being run outside
their target windows

 ■ Ensure your jobs are OK with never being run at all

 ■ Avoid network failures at all costs

I still haven’t figured out how to get Chronos to
recover from a network failure; presumably some cycle
of total restarts and clearing ZK can fix a broken cluster
state, but I haven’t found the right pattern yet. When
Chronos fixes this issue, it’s likely that it will still refuse
to run jobs during a partition. Consider whether you
would prefer multiple or zero runs during network
disruption; if zero is OK, Chronos may still be a good
fit. If you need jobs to keep running during network
partitions, you may need a different system. ■

This work is a part of my research at Stripe, where we’re
trying to take systems reliability more seriously. My
thanks to Siddarth Chandrasekaran, Brendan Taylor,
Shale Craig, Cosmin Nicolaescu, Brenden Matthews,
Timothy Chen, and Aaron Bell, and to their respective
teams at Stripe, Mesos, and Mesosphere for their help in
this analysis. I’d also like to thank Caitie McCaffrey, Kyle
Conroy, Ines Sombra, Julia Evans, and Jared Morrow for
their feedback.

Kyle Kingsbury believes Black Lives Matter.

Reprinted with permission of the original author.
First appeared in hn.my/achronos (aphyr.com)

http://hn.my/consensus
http://aurora.apache.org
http://hn.my/achronos

 37

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

http://pivotaltracker.com

	FEATURES
	Supreme Commander - Graphics Study

	SPECIAL
	Speed Matters

	PROGRAMMING
	Writing a Game Boy Advance Game
	Exploiting Android Users
	Backdooring Your JavaScript Using Minifier Bugs
	Call Me Maybe: Chronos

