
Issue 65 October 2015

Elliptic Curve Cryptography
Andrea Corbellini

2

Curator
Lim Cheng Soon

Contributors
Andrea Corbellini
Matthias Wandel
Nate Berkopec
TJ
Bob Nystrom

Proofreader
Emily Griffin

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-65

Contents
FEATURES

04 Elliptic Curve Cryptography: a Gentle Introduction
By ANDREA CORBELLINI

SPECIAL

10 Wooden Combination Lock
By MATTHIAS WANDEL

PROGRAMMING

12 The Complete Guide to Rails Caching
By NATE BERKOPEC

22 The Ultimate OpenBSD Router
By TJ

28 The Hardest Program I’ve Ever Written
By BOB NYSTROM

http://hackermonthly.com/issue-65

4 FEATURES

FEATURES

By ANDREA CORBELLINI

Elliptic Curve Cryptography:
a Gentle Introduction

 5

Those of you who know
what public-key cryptog-
raphy is may have already

heard of ECC, ECDH or ECDSA.
The first is an acronym for Elliptic
Curve Cryptography, the others are
names for algorithms based on it.

Today, we can find elliptic curves
cryptosystems in TLS, PGP and
SSH, which are just three of the
main technologies on which the
modern web and IT world are
based. Not to mention Bitcoin and
other cryptocurrencies.

Before ECC become popular,
almost all public-key algorithms
were based on RSA, DSA, and DH,
alternative cryptosystems based
on modular arithmetic. RSA and
friends are still very important
today, and often are used alongside
ECC. However, while the magic
behind RSA and friends can be
easily explained, is widely under-
stood, and rough implementations
can be written quite easily, the
foundations of ECC are still a mys-
tery to most.

I’m going to give you a gentle
introduction to the world of elliptic
curve cryptography. My aim is not
to provide a complete and detailed
guide to ECC (the web is full of
information on the subject), but to
provide a simple overview of what
ECC is and why it is considered
secure, without losing time on long
mathematical proofs or boring
implementation details. I will also
give helpful examples together with
visual interactive tools and scripts
to play with.

Specifically, here are the topics
I’ll touch:

1. Elliptic curves over real num-
bers and the group law (covered
in this article)

2. Elliptic curves over finite fields
and the discrete logarithm
problem

3. Key pair generation and two
ECC algorithms: ECDH and
ECDSA

4. Algorithms for breaking ECC
security, and a comparison with
RSA

In order to understand what’s
written here, you’ll need to know
some basic set theory, geometry,
and modular arithmetic, and have
familiarity with symmetric and
asymmetric cryptography. Lastly,
you need to have a clear idea of
what an “easy” problem is, what a
“hard” problem is, and their roles in
cryptography.

Ready? Let’s start!

Elliptic Curves
First of all: what is an elliptic curve?
Wolfram MathWorld gives an
excellent and complete definition.
But for our aims, an elliptic curve
will simply be the set of points
described by the equation:

where 4a3 + 27b2 ≠ 0 (this is
required to exclude singular
curves). The equation above is what
is called Weierstrass normal form for
elliptic curves.

Depending on the value
of a and b, elliptic curves may
assume different shapes on the
plane. As it can be easily seen and
verified, elliptic curves are symmet-
ric about the x-axis.

For our aims, we will also need
a point at infinity (also known as
ideal point) to be part of our curve.
From now on, we will denote our
point at infinity with the symbol 0
(zero).

If we want to explicitly take into
account the point at infinity, we
can refine our definition of elliptic
curve as follows:

Different shapes for different elliptic
curves (b = 1, a varying from 2 to -3).

Types of singularities: on the left, a
curve with a cusp (y2 = x3). On the
right, a curve with a self-intersection
(y2 = x3 – 3x + 2). None of them is a
valid elliptic curve.

6 FEATURES

Groups
A group in mathematics is a set for
which we have defined a binary
operation that we call “addition”
and indicate with the symbol +. In
order for the set G to be a group,
addition must be defined so that
it respects the following four
properties:

1. Closure: if a and b are members
of G, then a + b is a member of
G;

2. Associativity: (a + b) + c = a +
(b + c);

3. There exists an identity ele-
ment 0 such that a + 0 = 0
+ a = a;

4. Every element has an inverse,
that is: for every a there exists b
such that a + b = 0.

If we add a fifth requirement:

5. Commutativity: a + b = b + a,

Then the group is called abelian
group.

With the usual notion of addi-
tion, the set of integer numbers ℤ is
a group (moreover, it’s an abelian
group). The set of natural num-
bers ℕ, however, is not a group,
as the fourth property can’t be
satisfied.

Groups are nice because, if we
can demonstrate that those four
properties hold, we get some other
properties for free. For example:
the identity element is unique; also
the inverses are unique, that is: for
every a there exists only one b such
that a + b = 0 (and we can write b
as –a). Either directly or indirectly,
these and other facts about groups
will be very important for us later.

The group law for elliptic curves
We can define a group over elliptic
curves. Specifically:

 ■ The elements of the group are
the points of an elliptic curve;

 ■ The identity element is the point
at infinity 0;

 ■ The inverse of a point P is the
one symmetric about the x-axis;

 ■ Addition is given by the follow-
ing rule: given three aligned,
non-zero points P, Q and R, their
sum is P + Q + R = 0.

Note that with the last rule, we
only require three aligned points,
and three points are aligned with-
out respect to order. This means
that, if P,Q and R are aligned, then
P + (Q + R) = Q + (P + R) = R +
(P + Q) = · · · = 0. This way, we
have intuitively proved that our
+ operator is both associative and
commutative: we are in an abelian
group.

So far, so great. But how do we
actually compute the sum of two
arbitrary points?

Geometric addition
Thanks to the fact that we are in
an abelian group, we can write
P + Q + R = 0 as P + Q = –R.
This equation, in this form, lets
us derive a geometric method to
compute the sum between two
points P and Q: if we draw a line
passing through P and Q, this line
will intersect a third point on the
curve, R (this is implied by the fact
that P, Q and R are aligned). If we
take the inverse of this point, –R,
we have found the result of P + Q.

This geometric method works
but needs some refinement. Par-
ticularly, we need to answer a few
questions:

 ■ What if P = 0 or Q = 0? Cer-
tainly, we can’t draw any line
(0 is not on the xy-plane). But
given that we have defined 0
as the identity element, P + 0
= P and 0 + Q = Q, for any P and
for any Q.

 ■ What if P = –Q? In this case,
the line going through the two
points is vertical, and does not
intersect any third point. But
if P is the inverse of Q, then we

 The sum of three aligned point is 0. Draw the line through P and Q. The
line intersects a third point R. The point
symmetric to it, –R, is the result of
P + Q.

 7

have P + Q = P + (-P) = 0 from
the definition of inverse.

 ■ What if P = Q? In this case,
there are infinitely many lines
passing through the point. Here
things start getting a bit more
complicated. But consider a
point Q’ ≠ P. What happens if
we make Q’ approach P, getting
closer and closer to it?

As Q’ tends towards P, the
line passing through P and Q’
becomes tangent to the curve.
In the light of this we can say
that P + P = –R, where R is the
point of intersection between the
curve and the line tangent to the
curve in P.

 ■ What if P ≠ Q, but there is
no third point R? We are in a
case very similar to the previ-
ous one. In fact, we are in the
case where the line passing
through P and Q is tangent to the
curve.

Let’s assume that P is the tan-
gency point. In the previous case,
we would have written P + P =
–Q. That equation now becomes
P + Q = –P. If, on the other
hand, Q were the tangency point,
the correct equation would have
been P + Q = –Q.

The geometric method is now
complete and covers all cases.
With a pencil and a ruler we are
able to perform addition involving
every point of any elliptic curve. If

you want to try, take a look at the
HTML5/JavaScript visual tool I’ve
built for computing sums on elliptic
curves! [hn.my/ectool]

Algebraic addition
If we want a computer to perform
point addition, we need to turn the
geometric method into an algebraic
method. Transforming the rules
described above into a set of equa-
tions may seem straightforward,
but actually it can be really tedious
because it requires solving cubic
equations. For this reason, here I
will report only the results.

First, let’s get rid of the most
annoying corner cases. We already
know that P + (-P) = 0, and we
also know that P + 0 = 0 + P = P.
So, in our equations, we will avoid
these two cases and we will only
consider two non-zero, non-sym-
metric points P = (xP, yP) and Q =
(xQ, yQ).

If P and Q are distinct (xP ≠ xQ),
the line through them has slope:

 The intersection of this line with
the elliptic curve is a third point
R = (xR, yR):

Or, equivalently:

 Hence (xP, yP) + (xQ, yQ) = (xR,
–yR) (pay attention at the signs and
remember that P + Q = –R).

If we wanted to check
whether this result is right,
we would have had to check
whether R belongs to the curve and
whether P, Q and R are aligned.
Checking whether the points
are aligned is trivial, checking
that R belongs to the curve is not,

 As the two points become closer
together, the line passing through
them becomes tangent to the curve.

 If our line intersects just two points,
then it means that it’s tangent to the
curve. It’s easy to see how the result of
the sum becomes symmetrical to one of
the two points.

http://hn.my/ectool

8 FEATURES

as we would need to solve a cubic
equation, which is not fun at all.

Instead, let’s play with an exam-
ple: according to our visual tool,
given P = (1, 2) and Q = (3, 4) over
the curve y2 = x3 – 7x + 10, their
sum is P + Q = –R = (-3, 2). Let’s
see if our equations agree:

Yes, this is correct!
Note that these equations work

even if one of P or Q is a tangency
point. Let’s try with P = (-1,
4) and Q = (1, 2).

We get the result P + Q = (1, -2),
which is the same result given by
the visual tool.

The case P = Q needs to be
treated a bit differently: the equa-
tions for xR and yR are the same, but
given that xP = xQ, we must use a
different equation for the slope:

Note that, as we would expect,
this expression for m is the first
derivative of:

 To prove the validity of this
result it is enough to check
that R belongs to the curve and that
the line passing through P and R has
only two intersections with the
curve. But again, we don’t prove
this fact, but instead try with an
example: P = Q = (1, 2).

Which gives us P + P = –R = (-1,
-4). Correct!

Although the procedure to derive
them can be really tedious, our
equations are pretty compact. This
is thanks to Weierstrass normal
form: without it, these equations
could have been really long and

complicated!

Scalar
multiplication
Other than addi-

tion, we can define another opera-
tion: scalar multiplication, that is:

Where n is a
natural number.
I’ve written a visual
tool for scalar mul-

tiplication, too, if you want to play
with that. [hn.my/ectool2]

Written in that form, it may
seem that computing nP requires n
additions. If n has k binary digits,
then our algorithm would be O(2k),
which is not really good. But there
exist faster algorithms.

One of them is the double and
add algorithm. Its principle of
operation can be better explained
with an example. Take n = 151. Its
binary representation is 100101112.
This binary representation can be
turned into a sum powers of two:

(We have taken each binary digit
of n and multiplied it by a power of
two.)

In view of this, we can write:

What the double and add algorithm
tells us to do is:

 ■ Take P.

 ■ Double it, so that we get 2P.

 ■ Add 2P to P (in order to get the
result of 21P + 20P).

 ■ Double 2P, so that we get 22P.

 ■ Add it to our result (so that we
get 22P + 21P + 20P).

 ■ Double 22P to get 23P.

 ■ Don’t perform any addition
involving 23P.

 ■ Double 23P to get 24P.

 ■ Add it to our result (so that we
get 24P + 22P + 21P + 20P).

 ■ …

In the end, we can compute 151
· P performing just seven doublings
and four additions.

If this is not clear enough, here’s
a Python snippet that implements
the algorithm:

 def bits(n):
 """
 Generates the binary digits
 of n, starting from the
 least significant bit.

 bits(151) -> 1, 1, 1, 0, 1,
 0, 0, 1
 """
 while n:
 yield n & 1
 n >>= 1

def double_and_add(n, x):
 """
 Returns the result of n *
 x, computed using the

 double and add algorithm.
 """
 result = 0
 addend = x

http://hn.my/ectool2

 9

 for bit in bits(n):
 if bit == 1:
 result += addend
 addend *= 2

 return result

If doubling and adding are
both O(1) operations, then this
algorithm is O(log n) (or O(k) if
we consider the bit length), which
is pretty good. Surely much better
than the initial O(n) algorithm!

Logarithm
Given n and P, we now have at least
one polynomial time algorithm for
computing Q = nP. But what about
the other way round? What if we
know Q and P and need to find
out n? This problem is known as
the logarithm problem. We call it
“logarithm” instead of “division” for
conformity with other cryptosys-
tems (where instead of multiplica-
tion we have exponentiation).

I don’t know of any “easy”
algorithm for the logarithm prob-
lem. However, playing with mul-
tiplication, it’s easy to see some
patterns. For example, take the
curve y2 = x3 – 3x + 1 and the
point P = (0, 1). We can immedi-
ately verify that, if n is odd, nP is
on the curve on the left semiplane;
if n is even, nP is on the curve on
the right semiplane. If we experi-
mented more, we could probably
find more patterns that eventually
could lead us to write an algorithm
for computing the logarithm on
that curve efficiently.

But there’s a variant of the loga-
rithm problem: the discrete loga-
rithm problem. As we will see in
the next post, if we reduce the
domain of our elliptic curves, scalar
multiplication remains “easy,” while
the discrete logarithm becomes a
“hard” problem. This duality is the
key brick of elliptic curve cryptog-
raphy. ■

Read the next article of the series
here: [hn.my/finite]

Andrea is a software developer with a
passion for the web and the cloud. Over
the years, he has had the opportunity to
work with a large set of technologies, in
many different fields. Nowadays, he enjoys
designing cloud and cloud-based services
with focus on security, quality, scalability
and continuous delivery.

Reprinted with permission of the original author.
First appeared in hn.my/ecc (andrea.corbellini.name)

http://hn.my/finite
http://hn.my/ecc

10 SPECIAL

SPECIAL

In terms of neat mechanical things to build out of
wood, I figured a single dial sequential combina-
tion lock would be a neat thing to make. It would

be relatively simple, involve movement, and also show
people how a combination lock actually works.

 I spent some time thinking about it, and I came up
with the simplest design that would also be visually
appealing. Unlike a real lock, my priority was to show
how it actually works.

Like most real combination locks such as a Dudley
or master Combination locks, the core of this lock con-
sists of three rotors. Each rotor has a notch in it, and

when the three notches line up, some sort of bar can
drop into them, allowing the lock to be opened.

The front-most rotor is directly coupled to the dial
on the front of the lock. All the rotors have tabs stick-
ing out the front and back, so that once the front rotor
is turned by one turn, its tab hits the tab on the middle
rotor. The middle rotor’s tab in turn sticks out the back,
and with another clockwise turn of the dial catches
the tab in the last rotor. So with two turns in the same
direction, the back rotor is also engaged.

To open the lock, one turns the dial to the right until
the notch on the rear-most rotor is aligned with the bar.
The first number of the combination corresponds to
the position that the dial needs to be turned to accom-
plish this.

After the back rotor is lined up, rotation is reversed.
By turning counterclockwise one turn, one will catch
the middle rotor with the tab pushing it in the oppo-
site direction. As long as one doesn’t turn too far, only
the front and middle rotors now turn with the dial. The
dial is turned far enough to align the middle rotor.

By MATTHIAS WANDEL

Wooden Combination Lock

 11

After that, the rotation is again reversed, now turn-
ing clockwise again until the notch in the front most
rotor is lined up with the bar. The picture at left shows
all three notches lined up. The lock is ready to open.

This view shows the bar in the slots. The lock is
constructed in such a way that the bar getting into the
slots actually turns the rotors a little bit.

This view with the back panel removed better illus-
trates how the lock opens. The L-shaped part on the
left turns clock wise to open the lock. This pulls the
bolt (on the bottom) back to the left at the same time.

The notches are not quite lined up in this shot. You
can barely see the end of the bar that needs to drop
into the notches protruding through the L-shaped
bracket.

The lock isn’t actually functional without the back
panel. The shaft that the rotors sit on is part of the
back panel, so this shot just has the rotors carefully
stacked in place where they would go without their
shaft, just to illustrate.

And here’s the lock disassembled, showing all of its
parts. Really, there is not very much to it. Note that
the shaft that the rotors turn on is glued into the back
piece of the plywood. This shaft itself doesn’t turn. The
rotors are semi-loose on this shaft. Ideally, they would
turn with a bit of friction so they wouldn’t overshoot
with momentum when dialing a combination quickly.

The most complicated part is the part with the bar
that drops into the notches, and that part is really only
as complicated as it is to make the internal workings
easier to see... On a real lock, the corresponding part
would be much simpler and more robust. ■

Matthias writes about woodworking and makes woodworking.
The amount of woodworking I do is more related to a hobby,
because the bulk of the time is taken up by making videos, writ-
ing, and running the website.

Reprinted with permission of the original author.
First appeared in hn.my/woodlock (woodgears.ca)

http://hn.my/woodlock

12 PROGRAMMING

PROGRAMMING

Caching in a Rails app is
a little bit like that one
friend you sometimes

have around for dinner, but should
really have around more often.
Nearly every Rails app that’s seri-
ous about performance could use
more caching, but most Rails apps
eschew it entirely! And yet, intel-
ligent use of caching is usually the
only path to achieving fast server
response times in Rails — easily
speeding up ~250ms response times
to 50-100ms.

A quick note on definitions: this
post will only cover “application”-
layer caching. I’m leaving HTTP
caching (which is a whole other
beast, and not even necessarily
implemented in your application)
for another day.

Why don’t we cache as much as
we should?
Developers, by our nature, are very
different from end-users. We under-
stand a lot about what happens
behind the scenes in software and

web applications. We know that
when a typical webpage loads, a
lot of code is run, database queries
executed, and sometimes services
pinged over HTTP. That takes time.
We’re used to the idea that when
you interact with a computer, it
takes a little while for the computer
to come back with an answer.

End-users are completely dif-
ferent. Your web application is a
magical box. End-users have no
idea what happens inside of that
box. Especially these days, end-
users expect near-instantaneous
response from our magical boxes.
Most end-users wanted whatever
they’re trying to get out of your
web-app yesterday.

This rings of a truism. Yet, we
never set hard performance require-
ments in our user stories and
product specifications. Even though
server response time is easy to mea-
sure and target, and we know users
want fast webpages, we fail to ever
say for a particular site or feature:
“This page should return a response

within 100ms.” As a result, perfor-
mance often gets thrown to the
wayside in favor of the next user
story, the next great big feature. Per-
formance debt, like technical debt,
mounts quickly. Performance never
really becomes a priority until the
app is basically in flames every time
someone makes a new request.

In addition, caching isn’t always
easy. Cache expiration especially
can be a confusing topic. Bugs in
caching behavior tend to happen
at the integration layer, usually the
least-tested layer of your applica-
tion. This makes caching bugs
insidious and difficult to find and
reproduce.

To make matters worse, caching
best practices seem to be frequently
changing in the Rails world. Key-
based what? Russian mall caching?
Or was it doll?

By NATE BERKOPEC

The Complete Guide to
Rails Caching

Speed Up Your Rails App by 66%

 13

Benefits of Caching
So why cache? The answer is
simple. Speed. With Ruby, we don’t
get speed for free because our lan-
guage isn’t very fast to begin with.

We have to get speed from exe-
cuting less Ruby on each request.
The easiest way to do that is with
caching. Do the work once, cache
the result, serve the cached result in
the future.

But how fast do we need to be,
really?

Guidelines for human-computer
interaction have been known since
computers were first developed
in the 1960s. The response-time
threshold for a user to feel as if
they are freely navigating your
site, without waiting for the site
to load, is 1 second or less. That’s
not a 1-second response time, but
1 second “to glass” — 1 second
from the instant the user clicked or
interacted with the site until that
interaction is complete (the DOM
finishes painting).

One second “to-glass” is not a
very long time. First, figure about
50 milliseconds for network
latency (this is on desktop, latency
on mobile is a whole other dis-
cussion). Then, budget another
150ms for loading your JS and
CSS resources, building the render
tree and painting. Finally, figure at
least 250 ms for the execution of all
the JavaScript you’ve downloaded,
and potentially much more than
that if your JavaScript has a lot of
functions tied to the DOM being
ready. So before we’re even ready
to consider how long the server has
to respond, we’re already about
~500ms in the hole. In order to
consistently achieve a 1 second to
glass webpage, server responses
should be kept below 300ms. For
a 100-ms-to-glass webpage, server

responses must be kept at around
25-30ms.

Three hundred ms per request is
not impossible to achieve without
caching on a Rails app, especially if
you’ve been diligent with your SQL
queries and use of ActiveRecord.
But it’s a heck of a lot of easier if
you do use caching. Most Rails apps
I’ve seen have at least a half dozen
pages in the app that consistently
take north of 300ms to respond,
and could benefit from some
caching. In addition, using heavy
frameworks in addition to Rails,
like Spree, the popular e-com-
merce framework, can slow down
responses significantly due to all the
extra Ruby execution they add to
each request. Even popular heavy-
weight gems, like Devise or Active-
Admin, add thousands of lines of
Ruby to each request cycle.

Of course, there will always be
areas in your app where caching
can’t help — your POST endpoints,
for example. If whatever your app
does in response to a POST or PUT
is extremely complicated, cach-
ing probably won’t help you. But
if that’s the case, consider moving
the work into a background worker
instead.

Getting started
First, Rails’ official guide on cach-
ing [hn.my/rcache] is excellent
regarding the technical details of
Rails’ various caching APIs. If you
haven’t yet, give that page a full
read-through.

Later on in the article, I’m going
to discuss the different caching
backends available to you as a Rails
developer. Each has their advan-
tages and disadvantages; some are
slow but offer sharing between
hosts and servers, some are fast but
can’t share the cache at all, not

even with other processes. Every-
one’s needs are different. In short,
the default cache store, ActiveSupp
ort::Cache::FileStore is OK, but
if you you’re going to follow the
techniques used in this guide (espe-
cially key-based cache expiration),
you need to switch to a different
cache store eventually.

As a tip to newcomers to cach-
ing, my advice is to ignore action
caching and page caching. The situ-
ations where these two techniques
can be used is so narrow that these
features were removed from Rails
as of 4.0. I recommend instead
getting very comfortable with frag-
ment caching, which I’ll cover in
detail now.

Profiling Performance
Reading the Logs
Alright, you’ve got your cache store
set up and you’re ready to go. But
what to cache?

This is where profiling comes in.
Rather than trying to guess “in the
dark” what areas of your application
are performance hotspots, we’re
going to fire up a profiling tool to
tell us exactly what parts of the
page are slow.

My preferred tool for this task
is the incredible rack-mini-
profiler. [hn.my/profiler] rack-
mini-profiler provides an excel-
lent line-by-line breakdown of
where exactly all the time goes
during a particular server response.

However, we don’t even have
to use rack-mini-profiler or even
any other profiling tools if we’re
too lazy and don’t want to. Rails
provides a total time for page gen-
eration out of the box in the logs. .
It’ll look something like this:

Completed 200 OK in 110ms
(Views: 65.6ms | ActiveRecord:
19.7ms)

http://hn.my/rcache
http://hn.my/profiler

14 PROGRAMMING

The total time (110ms in this
case) is the important one. The
amount of time spent in Views is
a total of the time spent in your
template files (index.html.erb
for example). But this can be a
little misleading, thanks to how
ActiveRecord::Relations lazily
loads your data. If you’re defin-
ing an instance variable with an
ActiveRecord::Relation, such as @
users = User.all, in the con-
troller, but don’t do anything
with that variable until you
start using its results in the view
(e.g., @users.each do ...), then
that query (and reification into
ActiveRecord objects), will be
counted in the Views number.
ActiveRecord::Relations are lazily
loaded, meaning the database query
isn’t executed until the results are
actually accessed (usually in your
view).

The ActiveRecord number here
is also misleading. As far as I can
tell from reading the Rails source,
this is not the amount of time spent
executing Ruby in ActiveRecord
(building the query, executing the
query, and turning the query results
into ActiveRecord objects), but
only the time spent querying the
database (the actual time spent in
DB). Sometimes, especially with
very complicated queries that use
a lot of eager loading, turning the
query result into ActiveRecord
objects takes a lot of time, and that
may not be reflected in the Acti-
veRecord number here.

And where’d the rest of the time
go? Rack middleware and controller
code mostly. But to get a millisec-
ond-by-millisecond breakdown
of exactly where your time goes
during a request, you’ll need rack-
mini-profiler and the flamegraph
extension.

Using that tool, you’ll be able
to see exactly where every mil-
lisecond of your time goes during
a request on a line-by-line basis.
I’m working on a guide for
using rack-mini-profiler.

Production Mode
Whenever I profile Rails apps for
performance, I always do it in
production mode. Not on produc-
tion, of course, but with RAILS_
ENV=production. Running in
production mode ensures that my
local environment is close to what
the end-user will experience, and
also disables code reloading and
asset compilation, two things which
will massively slow down any Rails
request in development mode. Even
better if you can use Docker to
perfectly mimic the configuration
of your production environment.
For instance, if you’re on Heroku,
Heroku recently released some
Docker images to help you, but
usually virtualization is a mostly
unnecessary step in achieving
production-like behavior. Mostly,
we just need to make sure we’re
running the Rails server in produc-
tion mode.

As a quick refresher, here’s what
you usually have to do to get a Rails
app running in production mode on
your local machine:

export RAILS_ENV=production
rake db:reset
rake assets:precompile
SECRET_KEY_BASE=test rails s

In addition, where security and
privacy concerns permit, I always
test with a copy of production data.
All too often, database queries
in development (like User.all)
return just 100 or so sample rows,
but in production, trigger mas-
sive 100,000 row results that can
bring a site crashing to its knees.
Either use production data or make
your seed data as realistic as pos-
sible. This is especially important
when you’re making extensive use
of includes and Rails’ eager loading
facilities.

Setting a Goal
Finally, I suggest setting a maximum
acceptable average response time,
or MAART, for your site. The great
thing about performance is that it’s
usually quite measurable — and
what gets measured, gets man-
aged! You may need two MAART
numbers: one that is achievable in
development with your developer
hardware, and one that you use
in production with production
hardware.

Unless you have an extremely
1-to-1 production/development
setup, using virtualization to con-
trol cpu and memory access, you
simply will not be able to duplicate
performance results across those
two environments (though you can
come close). That’s OK. Don’t get
tripped up by the details. You just
need to be sure that your page per-
formance is in the right ballpark.

As an example, let’s say we want
to build a 100ms-to-glass web
app. That requires server response
times of 25-50ms. So I’d set my
MAART in development to be
25ms, and in production, I’d slacken
that to about 50ms. My develop-
ment machine is a little faster
than a Heroku dyne (my typical

What the flamegraph looks like in
rack-mini-profiler

 15

deployment environment), so I give
it a little extra time on production.

I’m not aware of any tools yet
to do automated testing against
your maximum acceptable average
response time. We have to do that
(for now) manually using bench-
marking tools.

Apache Bench
So, how do we decide what our
site’s actual average response time is
in development? I’ve only described
to you how to read response times
from the logs, so is the best way to
hit “refresh” in your browser a few
times and take your best guess at
the average result? Nope.

This is where benchmarking tools
like wrk and Apache Bench come
in. Apache Bench, or ab, is my favor-
ite, so I’ll quickly describe how to
use it. You can install it on Home-
brew with brew install ab.

Start your server in production
mode, as described earlier. Then fire
up Apache Bench with the follow-
ing settings:

ab -t 10 -c 10 http://
localhost:3000/

Obviously, you’ll need to change
that URL out as appropriate. The
-t option controls how long we’re
going to benchmark for (in sec-
onds), and -c controls the number
of requests that we’ll try at the
same time. Set the -c option based
on your production load. If you
have more than an average of 1
request per second (per server), it
would be good to increase the -c
option approximately according to
the formula of (Production requests
per minute / production servers
or dynes) * 2. I usually test with
at least -c 2 to flush out any weird
threading/concurrency errors I
might have accidentally committed.

Here’s some example output
from Apache Bench, abridged for
clarity:

...
Requests per second: 161.04
[#/sec] (mean)
Time per request: 12.419
[ms] (mean)
Time per request: 6.210
[ms] (mean, across all concur-
rent requests)
...

Percentage of the requests
served within a certain time
(ms)
 50% 12
 66% 13
 75% 13
 80% 13
 90% 14
 95% 15
 98% 17
 99% 18
 100% 21 (longest request)

The “time per request” would be
the number we compare against
our MAART. If you also have a
95th percentile goal (95 percent
of requests must be faster than X),
you can get the comparable time
from the chart at the end, next to
“95%”. Neat, huh?

For a full listing of things you
can do with Apache Bench, check
out the man page. Notable other
options include SSL support, Kee-
pAlive, and POST/PUT support.

Of course, the great thing about
this tool is that you can also use it
against your production server. If
you want to benchmark heavy loads
though, it’s probably best to run it
against your staging environment
instead, so that your customers
aren’t affected.

From here, the workflow is
simple: I don’t cache anything
unless I’m not meeting my
MAART. If my page is slower than
my set MAART, I dig in with rack-
mini-profiler to see exactly which
parts of the page are slow.

In particular, I look for areas
where a lot of SQL is being
executed unnecessarily on every
request, or where a lot of code is
executed repeatedly.

Caching techniques
Key-based cache expiration
Writing and reading from the cache
is pretty easy. Again, if you don’t
know the basics of it, check out the
Rails Guide on this topic. The com-
plicated part of caching is knowing
when to expire caches.

In the old days, Rails developers
used to do a lot of manual cache
expiration, with Observers and
Sweepers. Nowadays, we try to
avoid these entirely, and instead
use something called key-based
expiration.

Recall that a cache is simply a
collection of keys and values, just
like a Hash. In fact, we use hashes
as caches all the time in Ruby. Key-
based expiration is a cache expira-
tion strategy that expires entries in
the cache by making the cache key
contain information about the value
being cached, such that when the
object changes (in a way that we
care about), the cache key for the
object also changes. We then leave
it to the cache store to expire the
(now unused) previous cache key.
We never expire entries in the
cache manually.

In the case of an ActiveRecord
object, we know that every time
we change an attribute and save
the object to the database, that
object’s updated_at attribute

16 PROGRAMMING

changes. So we can use updated_
at in our cache keys when caching
ActiveRecord objects. Each time
the ActiveRecord object changes,
it’s updated_at changes, busting our
cache. Thankfully, Rails knows this
and makes it very easy for us.

For example, let’s say I have a
Todo item. I can cache it like this:

<% todo = Todo.first %>
<% cache(todo) %>
 ... a whole lot of work here
...
<% end %>

When you give an ActiveRecord
object to cache, Rails realizes this
and generates a cache key that looks
a lot like this:

views/todos/123-
20120806214154/7a1156131a6928cb
0026877f8b749ac9

The views bit is self-explanatory.
The todos part is based on the
Class of the ActiveRecord object.
The next bit is a combination of
the id of the object (123 in this
case) and the updated_at value
(some time in 2012). The final bit
is what’s called the template tree
digest. This is just an md5 hash of
the template that this cache key
was called in. When the template
changes (e.g., you change a line in
your template and then push that
change to production), your cache
busts and regenerates a new cache
value. This is super convenient,
otherwise we’d have to expire all
of our caches by hand when we
changed anything in our templates!

Note here that changing anything
in the cache key expires the cache.
So if any of the following items
change for a given Todo item, the
cache will expire and new content
will be generated:

 ■ The class of the object (unlikely)

 ■ The object’s id (also unlikely,
since that’s the object’s primary
key)

 ■ The object’s updated_at attri-
bute (very likely, because that
changes every time the object is
saved)

 ■ Our template changes (possible
between deploys)

Note that this technique
doesn’t actually expire any cache
keys, it just leaves them unused.
Instead of manually expiring entries
from the cache, we let the cache
itself push out unused values when
it begins to run out of space. Or
the cache might use a time-based
expiration strategy that expires our
old entries after a period of time.

You can give an Array
to cache and your cache key will
be based on a concatenated version
of everything in the Array. This is
useful for different caches that use
the same ActiveRecord objects.
Maybe there’s a todo item view
that depends on the current_user:

<% todo = Todo.first %>
<% cache([current_user, todo])
%>
 ...a whole lot of work here...
<% end %>

Now if the current_user gets
updated or if our todo changes,
this cache key will expire and be
replaced.

Russian Doll Caching
Don’t be afraid of the fancy name;
the DHH-named caching technique
isn’t very complicated at all.

We all know what Russian dolls
look like: one doll contained inside
another. Russian doll caching is just
like that. We’re going to stack cache

fragments inside each other. Let’s
say we have a list of Todo elements:

<% cache('todo_list') %>

 <% @todos.each do |todo| %>
 <% cache(todo) do %>
 <li class="todo"><%=
todo.description %>
 <% end %>
 <% end %>

<% end %>

But there’s a problem with my
above example code. Let’s say I
change an existing todo’s descrip-
tion from “walk the dog” to “feed
the cat.” When I reload the page,
my todo list will still show “walk
the dog” because, although the
inner cache has changed, the outer
cache (the one that caches the
entire todo list) has not! That’s not
good. We want to re-use the inner
fragment caches, but we also want
to bust the outer cache at the same
time.

Russian doll caching is simply
using key-based cache expira-
tion to solve this problem. When
the “inner” cache expires, we also
want the outer cache to expire. If
the outer cache expires, though,
we don’t want to expire the inner
caches. Let’s see what that would
like in our todo_list example above:

<% cache(["todo_list", @
todos.map(&:id), @todos.
maximum(:updated_at)]) %>

 <% @todos.each do |todo| %>
 <% cache(todo) do %>
 <li class="todo"><%=
todo.description %>
 <% end %>
 <% end %>

<% end %>

 17

Now, if any of the @todos change (which will change
@todos.maximum(:updated_at)) or an Todo is deleted
or added to @todos (changing @todos.map(&:id)), our
outer cache will be busted. However, any Todo items
which have not changed will still have the same cache
keys in the inner cache, so those cached values will be
re-used. Neat, right? That’s all there is to it!

In addition, you may have seen the use of
the touch option on ActiveRecord associations. Calling
the touch method on an ActiveRecord object updates’
the record’s updated_at value in the database. Using
this looks like:

class Corporation < ActiveRecord::Base
 has_many :cars
end

class Car < ActiveRecord::Base
 belongs_to :corporation, touch: true
end

class Brake < ActiveRecord::Base
 belongs_to :car, touch: true
end

@brake = Brake.first

calls the touch method on @brake, @brake.car,
and @brake.car.corporation.
@brake.updated_at, @brake.car.updated_at and
@brake.car.corporation.updated_at
will all be equal.
@brake.touch

changes updated_at on @brake and saves as
usual. @brake.car and @brake.car.corporation
get "touch"ed just like above.
@brake.save

@brake.car.touch
@brake is not touched. @brake.car.corporation
is touched.

We can use the above behavior to elegantly expire
our Russian Doll caches:

<% cache @brake.car.corporation %>
 Corporation: <%= @brake.car.corporation.name
%>
 <% cache @brake.car %>
 Car: <%= @brake.car.name %>
 <% cache @brake %>
 Brake system: <%= @brake.name %>
 <% end %>
 <% end %>
<% end %>

With this cache structure (and the touch relation-
ships configured as above), if we call @brake.car.
save, our two outer caches will expire (because their
updated_at values changed) but the inner cache
(for @brake) will be untouched and reused.

Which cache backend should I use?
There are a few options available to Rails developers
when choosing a cache backend:

 ■ ActiveSupport::FileStore This is the default. With
this cache store, all values in the cache are stored on
the filesystem.

 ■ ActiveSupport::MemoryStore This cache store puts
all of the cache values in, essentially, a big thread-
safe Hash, effectively storing them in RAM.

 ■ Memcache and dalli dalli is the most popular
client for Memcache cache stores. Memcache was
developed for LiveJournal in 2003 and is explicitly
designed for web applications.

 ■ Redis and redis-store redis-store is the most popu-
lar client for using Redis as a cache.

 ■ LRURedux is a memory-based cache store, like
ActiveSupport::MemoryStore, but it was explicitly
engineered for performance by Sam Saffron, co-
founder of Discourse.

Let’s dive into each one one-by-one, comparing
some of the advantages and disadvantages of each. At
the end, I’ve prepared some performance benchmarks
to give you an idea of some of the performance trad-
eoffs associated with each cache store.

18 PROGRAMMING

ActiveSupport::FileStore
FileStore is the default cache imple-
mentation for all Rails applications
for as far back as I can tell. If you
have not explicitly set config.
cache_store in production.rb (or
whatever environment), you are
using FileStore.

FileStore simply stores all of your
cache in a series of files and folders
(in tmp/cache by default).

Advantages
FileStore works across processes.
For example, if I have a single
Heroku dyne running a Rails app
with Unicorn and I have 3 Unicorn
workers, each of those 3 Unicorn
workers can share the same cache.
So if worker 1 calculates and
stores my todolist cache from an
earlier example, worker 2 can use
that cached value. However, this
does not work across hosts (since,
of course, most hosts don’t have
access to the same filesystem). So,
again, on Heroku, while all of the
processes on each dyne can share
the cache, they cannot share across
dynos.

Disk space is cheaper than RAM.
Hosted Memcache servers aren’t
cheap. For example, a 30MB Mem-
cache server will run you a few
bucks a month. But a 5GB cache?
That’ll be $290/month, please.
Ouch. But disk space is a heckuva
lot cheaper than RAM, so if you
access to a lot of disk space and
have a huge cache, FileStore might
work well for that.

Disadvantages
Filesystems are slow(ish). Accessing
the disk will always be slower than
accessing RAM. However, it might
be faster than accessing a cache
over the network (which we’ll get
to in a minute).

Caches can’t be shared across
hosts. Unfortunately, you can’t
share the cache with any Rails
server that doesn’t also share
your filesystem (across Heroku
dynes, for example). This makes
FileStore inappropriate for large
deployments.

Not an LRU cache. This is
FileStore’s biggest flaw. FileStore
expires entries from the cache
based on the time they were writ-
ten to the cache, not the last time
they were recently used/accessed.
This cripples FileStore when deal-
ing with key-based cache expira-
tion. Recall from our examples
above that key-based expiration
does not actually expire any cache
keys manually. When using this
technique with FileStore, the cache
will simply grow to maximum size
(1GB!) and then start expiring
cache entries based on the time
they were created. If, for example,
your todo list was cached first,
but is being accessed 10 times per
second, FileStore will still expire
that item first! Least-Recently-Used
cache algorithms (LRU) work much
better for key-based cache expi-
ration because they’ll expire the
entries that haven’t been used in a
while first.

Crashes Heroku dynos. Another
nail in FileStore’s coffin is its com-
plete inadequacy for the ephemeral
filesystem of Heroku. Accessing
the filesystem is extremely slow on
Heroku for this reason and actually
adds to your dynes’ “swap memory.”
I’ve seen Rails apps slow to a total
crawl due to huge FileStore caches
on Heroku that take ages to access.
In addition, Heroku restarts all
dynes every 24 hours. When that
happens, the filesystem is reset,
wiping your cache!

When should I use
ActiveSupport::FileStore?
Reach for FileStore if you have low
request load (1 or 2 servers) and still
need a very large cache (>100MB).
Also, don’t use it on Heroku.

ActiveSupport::MemoryStore
MemoryStore is the other main
implementation provided for us
by Rails. Instead of storing cached
values on the filesystem, MemoryS-
tore stores them directly in RAM in
the form of a big Hash.

ActiveSupport::MemoryStore,
like all of the other cache stores on
this list, is thread-safe.

Advantages
 ■ It’s fast. One of the best-per-
forming caches on my bench-
marks (below).

 ■ It’s easy to set up. Simply
change config.cache_
store to :memory_store. Tada!

Disadvantages
 ■ Caches can’t be shared across
processes or hosts. Unfortunately,
the cache cannot be shared across
hosts (obviously), but it also can’t
even be shared across processes
(for example, Unicorn workers or
Puma clustered workers).

 ■ Caches add to your total RAM
usage. Obviously, storing data
in memory adds to your RAM
usage. This is tough on shared
environments like Heroku where
memory is highly restrained.

When should I use
ActiveSupport::MemoryStore?
If you have one or two servers, with
a few workers each, and you’re stor-
ing very small amounts of cached
data (<20MB), MemoryStore may
be right for you.

 19

Memcache and dalli
Memcache is probably the most
frequently used and recommended
external cache store for Rails apps.
Memcache was developed for
LiveJournal in 2003, and is used in
production by sites like Wordpress.
org, Wikipedia, and YouTube.

While Memcache benefits from
having some absolutely enormous
production deployments, it is under
a somewhat slower pace of devel-
opment than other cache stores
(because it’s so old and well-used, if
it ain’t broke, don’t fix it).

Advantages
Distributed, so all processes and
hosts can share. Unlike FileStore
and MemoryStore, all processes and
dynos/hosts share the exact same
instance of the cache. We can maxi-
mize the benefit of caching because
each cache key is only written once
across the entire system.

Disadvantages
 ■ Distributed caches are sus-
ceptible to network issues and
latency. Of course, it’s much,
much slower to access a value
across the network than it is to
access that value in RAM or on
the filesystem. Check my bench-
marks below for how much of
an impact this can have. In some
cases, it’s extremely substantial.

 ■ Expensive. Running FileStore
or MemoryStore on your own
server is free. Usually, you’re
either going to have to pay to set
up your own Memcache instance
on AWS or via a service like
Memcachier.

 ■ Cache values are limited to 1MB.
In addition, cache keys are lim-
ited to 250 bytes.

When should I use Memcache?
If you’re running more than 1-2
hosts, you should be using a distrib-
uted cache store. However, I think
Redis is a slightly better option, for
the reasons I’ll outline below.

Redis and redis-store
Redis, like Memcache, is an in-
memory, key-value data store. Redis
was started in 2009 by Salvatore
Sanfilippo, who remains the project
lead and sole maintainer today.

In addition to redis-store, there’s
a new Redis cache gem on the
block: readthis. It’s under active
development and looks promising.

Advantages
 ■ Distributed, so all processes and
hosts can share. Like Mem-
cache, all processes and dynos/
hosts share the exact same
instance of the cache. We can
maximize the benefit of caching
because each cache key is only
written once across the entire
system.

 ■ Allows different eviction poli-
cies beyond LRU. Redis allows
you to select your own eviction
policies, which gives you much
more control over what to do
when the cache store is full.
For a full explanation of how to
choose between these policies,
check out the excellent Redis
documentation.

 ■ Can persist to disk, allowing hot
restarts. Redis can write to disk,
unlike Memcache. This allows
Redis to write the DB to disk,
restart, and then come back up
after reloading the persisted DB.
No more empty caches after
restarting your cache store!

Disadvantages
 ■ Distributed caches are sus-
ceptible to network issues and
latency. Of course, it’s much,
much slower to access a value
across the network than it is to
access that value in RAM or on
the filesystem. Check my bench-
marks below for how much of
an impact this can have. In some
cases, it’s extremely substantial.

 ■ Expensive. Running FileStore or
MemoryStore on your own server
is free. Usually, you’re either
going to have to pay to set up
your own Redis instance on AWS
or via a service like Redis.

 ■ While Redis supports several
data types, redis-store only sup-
ports. Strings This is a failure
of the redis-store gem rather
than Redis itself. Redis supports
several data types, like Lists, Sets,
and Hashes. Memcache, by com-
parison, only can store Strings. It
would be very interesting to be
able to use the additional data
types provided by Redis (which
could cut down on a lot of
marshaling/serialization).

When should I use Redis?
If you’re running more than 2 serv-
ers or processes, I recommend using
Redis as your cache store.

20 PROGRAMMING

Cache Benchmarks
Who doesn’t love a good benchmark? All of the
benchmark code is available here on GitHub.
[hn.my/cachebench]

Fetch
The most often-used method of all Rails cache stores
is fetch. If this value exists in the cache, read the value.
Otherwise, we write the value by executing the given
block. Benchmarking this method tests both read and
write performance. i/s stands for “iterations/second.”

LruRedux::ThreadSafeCache: 337353.5 i/s
ActiveSupport::Cache::MemoryStore: 52808.1
i/s - 6.39x slower
ActiveSupport::Cache::FileStore: 12341.5 i/s
- 27.33x slower
ActiveSupport::Cache::DalliStore: 6629.1 i/s
- 50.89x slower
ActiveSupport::Cache::RedisStore: 6304.6 i/s
- 53.51x slower
ActiveSupport::Cache::DalliStore at pub-mem-
cache-13640.us-east-1-1.2.ec2.garantiadata.
com:13640: 26.9 i/s - 12545.27x slower
ActiveSupport::Cache::RedisStore at pub-
redis-11469.us-east-1-4.2.ec2.garantiadata.com:
25.8 i/s - 13062.87x slower

Wow! So here’s what we can learn from those
results:

 ■ LRURedux, MemoryStore, and FileStore are so fast
as to be basically instantaneous.

 ■ Memcache and Redis are still very fast when the
cache is on the same host.

 ■ When using a host far away across the network,
Memcache and Redis suffer significantly, taking
about ~50ms per cache read (under extremely heavy
load). This means two things: when choosing a Mem-
cache or Redis host, choose the one closest to where
your servers are and benchmark its performance.
Second, don’t cache anything that takes less than
~10-20ms to generate by itself.

Full-stack in a Rails app
For this test, we’re going to try caching some content
on a webpage in a Rails app. This should give us an idea
of how much time reading/writing a cache fragment
takes when we have to go through the entire request
cycle as well.

Essentially, all the app does is set @cache_key to a
random number between 1 and 16, and then render
the following view:

<% cache(@cache_key) do %>
 <p><%= SecureRandom.base64(100_000) %></p>
<% end %>

Average response time in ms - less is better
The below results were obtained with Apache Bench.
The result is the average of 10,000 requests made to a
local Rails server in production mode.

 ■ Redis/redis-store (remote) 47.763

 ■ Memcache/Dalli (remote) 43.594

 ■ With caching disabled 10.664

 ■ Memcache/Dalli (localhost) 5.980

 ■ Redis/redis-store (localhost) 5.004

 ■ ActiveSupport::FileStore 4.952

 ■ ActiveSupport::MemoryStore 4.648

Some interesting results here, for sure! Note that the
difference between the fastest cache store (MemoryS-
tore) and the uncached version is about 6 milliseconds.
We can infer, then, that the amount of work being
done by SecureRandom.base64(100_000) takes about 6
milliseconds. Accessing the remote cache, in this case, is
actually slower than just doing the work!

The lesson? When using a remote, distributed cache,
figure out how long it actually takes to read from the
cache. You can find this out via benchmarking, like I
did, or you can even read it from your Rails logs. Make
sure you’re not caching anything that takes longer to
read than it does to write!

Conclusions
Hopefully, this article has given you all you need to
know to get out there and use caching more in your
Rails apps. It really is the key to extremely performant
Rails sites. ■

Nate Berkopec is a Ruby on Rails developer in NYC. Over the years,
he’s seen a lot of slow Rails apps, so nowadays he writes about
Rails performance at nateberkopec.com

Reprinted with permission of the original author.
First appeared in hn.my/railsc (nateberkopec.com)

http://hn.my/cachebench
http://hn.my/railsc

 21

http://www.hostedgraphite.com

22 PROGRAMMING

By TJ

Friends don’t let friends use consumer network-
ing equipment. The consumer-grade home
routers are particularly bad. They’re proprietary,

have security issues, and offer very little flexibility. Why
would you let something like that sit between you and
the internet? This tutorial will show you how to build
your own gateway, based on OpenBSD and PF, and
take back control of the network. Let’s get started.

 Hardware
This is a list of hardware I’ll be using (although nothing
in this tutorial is specific to it).

 ■ A Soekris net6501 with power supply

 ■ A low profile USB drive or mSATA SSD for the OS

 ■ Four CAT6 cables, green is my favorite color

 ■ A USB to serial converter and null modem cable (if
you want to install via serial console)

Buy whatever hardware you want, just make sure the
network cards are supported beforehand. The board
I chose uses Intel NICs that are known to have good
BSD support.

Background
First, let’s define what a router is, since everyone has
different requirements. I’ve got three computers that
need to share my internet connection. One of them is
a server that I’d like to be able to SSH into remotely,
but otherwise I don’t want any of the systems exposed
to the internet. The router will be doing the following
things:

 ■ Performing Network Address Translation

 ■ Giving my server and laptop static IPs, based on their
MAC address

 ■ Handing out IP addresses via DHCP to everyone else

 ■ Doing local DNS caching for the LAN and encrypt-
ing all outgoing DNS lookups

 ■ Allowing incoming SSH connections to my server
and the router itself

 ■ Automatically emailing me when there’s a security
patch I need to apply

This ultimate router will be running nothing
more than OpenBSD. Almost everything I’m using
is included in the base system. I’m going to assume
you’re capable of installing the OS on your machine. If
you want a fully-encrypted installation, see our tuto-
rial for that. [hn.my/fde] If you have a serial cable,
install it that way. [hn.my/sercon] Combining FDE and
serial requires some additional steps though. [hn.my/
serconx] You can also install over PXE if that’s your
thing. The hardware I chose has four NICs, which show
up in the OS as em0, em1, em2 and em3. I’m going to
be using the first one as the external interface and the
other three as the internal interfaces for the LAN. This
particular board also has a PCIe x1 slot that can be
used for expansion.

The Ultimate
OpenBSD Router

http://hn.my/fde
http://hn.my/sercon
http://hn.my/serconx
http://hn.my/serconx

 23

Networking
The setup detailed here is an “all-in-one” solu-
tion. All the clients will be directly connected to
the gateway, without the need for a switch. This is
done by bridging your internal NICs with the virtual
ethernet interface.

echo dhcp > /etc/hostname.em0
echo up > /etc/hostname.em1
echo up > /etc/hostname.em2
echo up > /etc/hostname.em3
echo 'inet 192.168.1.1 255.255.255.0
192.168.1.255' > /etc/hostname.vether0
vi /etc/hostname.bridge0

Add the following:

add vether0
add em1
add em2
add em3
blocknonip vether0
blocknonip em1
blocknonip em2
blocknonip em3
up

We need to allow IP forwarding and adjust a
couple other values for network throughput. Note that
we’re not actually enabling any of these options just
yet. They’ll be applied after our first reboot.

vi /etc/sysctl.conf

Add the following:

net.inet.ip.forwarding=1
net.inet.ip.redirect=0
kern.bufcachepercent=50
net.inet.ip.ifq.maxlen=1024
net.inet.tcp.mssdflt=1440
kern.securelevel=2

 ■ net.inet.ip.forwarding lets traffic pass through
the interfaces when needed. This is the
only required sysctl change, the others are just
recommendations.

 ■ net.inet.ip.redirect disables sending IP redirects.

 ■ kern.bufcachepercent tells the kernel how much
memory it can use for cache.

 ■ net.inet.ip.ifq.maxlen should generally be 256 times
the number of NICs you have — four in this case.

 ■ net.inet.tcp.mssdflt should match the “max-mss”
value in our firewall config. A value of 1440 is a good
general rule for most networks, but you can adjust it
to be higher or lower depending on your needs (or
disable it entirely).

 ■ kern.securelevel locks the securelevel to the highest
setting and prevents changes to the firewall rules.
You might want to hold off on this until you have
a firewall configuration in place that you’re happy
with.

DHCP
Users need to have IP addresses, so we’ll need to tell
the DHCP server to start on boot and give them one.

echo 'dhcpd_flags="vether0"' >> /etc/rc.conf.
local
vi /etc/dhcpd.conf

Take this example and modify it for your needs:

option domain-name-servers 192.168.1.1;
subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 range 192.168.1.4 192.168.1.254;
 host meimei {
 fixed-address 192.168.1.2;
 hardware ethernet 00:00:00:00:00:00;
 }
 host suigintou {
 fixed-address 192.168.1.3;
 hardware ethernet 11:11:11:11:11:11;
 }
}

You can specify any IP range you want to use and
any DNS servers you want to use. By default, I want
all clients to query the local DNS resolver that we’ll
set up in just a minute. This will speed up repeated
lookups and is handy to have. Use the MAC addresses
of your computers if you want static IPs.

24 PROGRAMMING

DNS
Setting up a local DNS caching server is pretty easy.
We’ll be using unbound, which is part of the base
system, along with DNSCrypt to keep our lookups
private.

echo 'unbound_flags=""' >> /etc/rc.conf.local
vi /var/unbound/etc/unbound.conf

Something like this should do:

server:
 interface: 192.168.1.1
 interface: 127.0.0.1
 do-ip6: no
 access-control: 192.168.1.0/24 allow
 do-not-query-localhost: no
 hide-identity: yes
 hide-version: yes

forward-zone:
 name: "."
 forward-addr: 127.0.0.1@40

Now we’ll set up dnscrypt-proxy. It’s not part of the
base system, so we’ll need to install it from ports or
packages.

export PKG_PATH=http://ftp.openbsd.org/pub/
OpenBSD/`uname -r`/packages/`uname -m`/
pkg_add dnscrypt-proxy
echo 'pkg_scripts="dnscrypt_proxy"' >> /etc/
rc.conf.local
echo 'dnscrypt_proxy_flags="-l /dev/null -R
opendns -a 127.0.0.1:40"' >> /etc/rc.conf.local
echo 'nameserver 127.0.0.1' > /etc/resolv.conf

You can edit /etc/dhclient.conf’s “supersede domain-
name-servers” section so it doesn’t overwrite your local
nameserver...

echo 'supersede domain-name-servers
127.0.0.1;' >> /etc/dhclient.conf

...or use a more “forceful” approach:

chflags schg /etc/resolv.conf

The dnscrypt-proxy port won’t use any server by
default; you need to specify one with the “-R” flag. I’m
using OpenDNS in this example, but you can check
the included documentation [hn.my/dnscrypt] for a list
of supported resolvers.

Firewall Rules
The centerpiece of this entire guide is the file
/etc/pf.conf. Like in some of the previous sections,
there’s another tutorial [hn.my/pf] for more in-depth
explanation and advanced rulesets.

vi /etc/pf.conf

For my needs, I ended up with:

int_if="{ vether0 em1 em2 em3 }"
broken="224.0.0.22 127.0.0.0/8 192.168.0.0/16
172.16.0.0/12 \
 10.0.0.0/8 169.254.0.0/16 192.0.2.0/24 \
 198.51.100.0/24, 203.0.113.0/24, \
 169.254.0.0/16 0.0.0.0/8 240.0.0.0/4
255.255.255.255/32"
set block-policy drop
set loginterface egress
set skip on lo0
match in all scrub (no-df random-id max-mss
1440)
match out on egress inet from !(egress:network)
to any nat-to (egress:0)
antispoof quick for (egress)
block in quick on egress from { $broken no-route
urpf-failed } to any
block in quick inet6 all
block out quick inet6 all
block return out quick log on egress proto { tcp
udp } from any to any port 53
block return out quick log on egress from any to
{ no-route $broken }
block in all
pass out quick inet keep state
pass in on $int_if inet
pass in on $int_if inet proto { tcp udp } from
any to ! 192.168.1.1 port 53 rdr-to 192.168.1.1
pass in on egress inet proto tcp to (egress)
port 222 rdr-to 192.168.1.2
pass in on egress inet proto tcp from any to
(egress) port 2222

In this example, we would be running SSH on port
2222 and the server would be running SSH on port
222, both open to the internet. Adjust to your needs.

http://hn.my/dnscrypt
http://hn.my/pf

 25

Final Tweaks
Since I’m using a flash drive for the OS, I want
to minimize the number of writes to it. I’ll
append the “noatime” flag to the mount point and
enable soft updates. You may also want to consider
using mfs or tmpfs for /var and /tmp.

vi /etc/fstab

Assuming my root device is “sd0” (yours might not
be), my fstab will look like this:

/dev/sd0a / ffs rw,noatime,softdep 1 1

Finally, a sound server isn’t the most useful thing for
a router, so let’s disable it.

echo 'sndiod_flags=NO' >> /etc/rc.conf.local
reboot

At this point, you should be able to plug in some
computers to the other ethernet ports and everything
will work. They’ll be assigned IP addresses and granted
access to the internet, while being protected by the
firewall. If that’s all you want, you’re done! I’d recom-
mend subscribing to the openbsd-announce mailing
list to get notifications when a new security patch or
version of the OS is released.

Outgoing SMTP
It’s possible to configure the router to send you nightly
emails using nothing but smtpd and an email account.
I’m using a throwaway gmail account for this example,
but you can obviously use any mail server. Make sure
your system’s hostname is in present in /etc/hosts:

grep 127 /etc/hosts
127.0.0.1 localhost bsdnow.tv

Add the email account you’ll be sending the mail
from.

echo 'gmail youruser@gmail.com:yourpassword' >
/etc/mail/secrets
chmod 640 /etc/mail/secrets
chown root:_smtpd /etc/mail/secrets
makemap /etc/mail/secrets

Move the default smtpd configuration to a backup
file and create a new one.

mv /etc/mail/smtpd.conf /etc/mail/smtpd.conf.
orig
vi /etc/mail/smtpd.conf

Add the following, changing the server to whatever
you used:

listen on lo0
table aliases db:/etc/mail/aliases.db
table secrets db:/etc/mail/secrets.db
accept for local alias <aliases> deliver to mbox
accept for any relay via tls+auth://gmail@smtp.
gmail.com:587 auth <secrets>

Finally, enable it on startup.

echo 'smtpd_flags=""' >> /etc/rc.conf.local
/etc/rc.d/smtpd start

Now you should be able to take the output of any
command and send it with your email account. We can
test it by doing something like this:

echo 'Woah, my router can send emails! Nice
tutorials as always dude!' | mail feedback@
bsdnow.tv

You can pipe any command or script’s output to an
email, send it off and then check what’s going on in the
morning. It can be used for firewall logs, automatically
checking for updates and patches, or really anything
you can think of.

Bandwidth Throttling
If you have to share your internet connection with
other users, it’s quite possible that they will hog
all your bandwidth if you let them. Fortunately, pf
provides a way to assign packets to different queues,
giving them specific bandwidth limitations. There are
two approaches to throttling: setting a maximum limit
a connection can use, or reserving a minimum amount
that it will always have access to. Since we’re nice, we’ll
just reserve a minimum amount for certain types of
traffic that are particularly annoying to use while all
the bandwidth is being hoarded. You probably don’t
want your interactive SSH session lagging because of
your friend torrenting. Being forced to wait ten seconds
for a website to load because someone is uploading a
video of their cat is also unacceptable. For this exam-
ple, we’ll just focus on SSH, FTP(S) and HTTP(S)
traffic. The pf.conf manpage has additional details for
all the different things you can do with queueing. We’ll
assume you have a twenty megabit connection, but
you can adjust the numbers up or down to suite your
needs.

26 PROGRAMMING

queue limits on em0 bandwidth 20M
queue shell parent limits bandwidth 1M min 1M
queue ftp parent limits bandwidth 8M max 8M
queue web parent limits bandwidth 5M min 5M max
10M default

Our example protocols each get assigned to their
own queue. One megabit will always be reserved for
SSH traffic to prevent any frustrating delays between
typing in an interactive session and getting a response.
FTP(S) traffic will be choked to a max of eight mega-
bits. Web traffic will always have five megabits reserved
for it, but will also be able to use up to ten megabits,
depending on how much is available. Add the pass lines
for them:

pass out quick inet proto tcp from any to any
port 22 set queue shell
pass out quick inet proto tcp from any to any
port { 20 21 989 990 } set queue ftp
pass out quick inet proto tcp from any to any
port { 80 443 } set queue web

With throttling enabled, the full pf.conf would look
something like this:

int_if="{ vether0 em1 em2 em3 }"
broken="224.0.0.22 127.0.0.0/8 192.168.0.0/16
172.16.0.0/12 \
 10.0.0.0/8 169.254.0.0/16 192.0.2.0/24
\
 198.51.100.0/24, 203.0.113.0/24, \
 169.254.0.0/16 0.0.0.0/8 240.0.0.0/4
255.255.255.255/32"
set block-policy drop
set loginterface egress
set skip on lo0
match in all scrub (no-df random-id max-mss
1440)
match out on egress inet from !(egress:network)
to any nat-to (egress:0)
queue limits on em0 bandwidth 20M
queue shell parent limits bandwidth 1M min 1M
queue ftp parent limits bandwidth 8M max 8M
queue web parent limits bandwidth 5M min 5M max
10M default
antispoof quick for (egress)
block in quick on egress from { $broken no-route
urpf-failed } to any
block in quick inet6 all
block out quick inet6 all

block return out quick log on egress proto { tcp
udp } from any to any port 53
block return out quick log on egress from any to
{ no-route $broken }
block in all
pass out quick inet proto tcp from any to any
port 22 set queue shell
pass out quick inet proto tcp from any to any
port { 20 21 989 990 } set queue ftp
pass out quick inet proto tcp from any to any
port { 80 443 } set queue web
pass out quick inet keep state
pass in on egress inet proto tcp to (egress)
port 222 rdr-to 192.168.1.2
pass in on egress inet proto tcp from any to
(egress) port 2222 flags S/SA synproxy state
pass in on $int_if inet
pass in on $int_if proto { tcp udp } from any to
! 192.168.1.1 port 53 rdr-to 192.168.1.1

If you want to throttle both download and upload,
you could do it on a per-interface basis. For example,
limit the outbound interface (em0) for download and
the internal interfaces (em1-3) for upload. With pf’s
powerful syntax, you can get creative and combine
this with certain IPs or hostnames. It’s possible to limit
a specific user’s connection to a video streaming site
based on their UID and destination address, add groups
that have no limits whatsoever or really anything else
you can think of.

Bandwidth Statistics
Monitoring how much bandwidth is being used is
a common feature of many routers. The same thing
can be done on an OpenBSD box quite easily. We’ll
install the “vnstat” daemon and tell it to monitor each
interface.

pkg_add vnstat
vnstat -u -i em0
vnstat -u -i em1
vnstat -u -i em2
vnstat -u -i em3
chown _vnstat /var/db/vnstat/*

If you only care about WAN traffic statistics, just
enable it for the egress interface, which is em0 in my
case. Next, make any changes you want to the configu-
ration file:

vi /etc/vnstat.conf

 27

I like to make things a bit more human-readable:

--- vnstat.conf Sat May 2 21:15:35 2015
+++ vnstat.conf Sat May 2 21:13:32 2015
@@ -28,7 +28,7 @@
 # how units are prefixed when traffic is shown
 # 0 = IEC standard prefixes (KiB/MiB/GiB/TiB)
 # 1 = old style binary prefixes (KB/MB/GB/TB)
-UnitMode 0
+UnitMode 1

 # output style
 # 0 = minimal & narrow, 1 = bar column visible
@@ -37,11 +37,11 @@
 OutputStyle 3

 # used rate unit (0 = bytes, 1 = bits)
-RateUnit 1
+RateUnit 0

 # maximum bandwidth (Mbit) for all interfaces,
0 = disable feature
 # (unless interface specific limit is given)
-MaxBandwidth 100
+MaxBandwidth 0

 # interface specific limits
 # example 8Mbit limit for 'ethnone':

Be sure to add the rc.d script to your startup items,
alongside dnscrypt-proxy.

grep scripts /etc/rc.conf.local

pkg_scripts="dnscrypt_proxy vnstatd"

Finally, start the daemon.

/etc/rc.d/vnstatd start

Wait a few minutes and it should start collecting
data.

Power Management
You may also want to enable apmd to save power if
your hardware supports it. It will scale the CPU down
during idle times and turn it up when the load reaches
a certain point. Check the man page for a few different
options.

echo 'apmd_flags="-A"' >> /etc/rc.conf.local
/etc/rc.d/apmd start

You can check what level (with 0 being the lowest,
100 being the highest) the CPU is running at with:

sysctl hw.setperf

Try different levels and apmd settings to find the bal-
ance you’re most comfortable with. Always running it
on the lowest setting might limit the data throughput
too much, but it will really depend on what hardware
you’re using.

 Thanks for reading. ■

TJ is the writer and producer of BSD NOW, a weekly BSD Postcast.

Reprinted with permission of the original author.
First appeared in hn.my/bsdr (bsdnow.tv)

http://hn.my/bsdr

28 PROGRAMMING

By BOB NYSTROM

The Hardest Program I’ve
Ever Written

The hardest program I’ve
ever written, once you
strip out the whitespace,

is 3,835 lines long. That handful
of code took me almost a year to
write. Granted, that doesn’t take
into account the code that didn’t
make it. The commit history shows
that I deleted 20,704 lines of code
over that time. Every surviving line
has about three fallen comrades.

If it took that much thrashing
to get it right, you’d expect it to
do something pretty deep right?
Maybe a low-level hardware inter-
face or some wicked graphics demo
with tons of math and pumping
early-90s-style techno? A likely-
to-turn-evil machine learning AI
Skynet thing?

Nope. It reads in a string and
writes out a string. The only differ-
ence between the input and output
strings is that it modifies some of
the whitespace characters. I’m talk-
ing, of course, about an automated
code formatter. [hn.my/dartstyle]

Introducing dartfmt
I work on the Dart programming
language. [dartlang.org] Part of
my job is helping make more Dart
code, readable, idiomatic, and
consistent, which is why I ended up
writing our style guide. That was a
good first step, but any style guide
written in English is either so brief
that it’s ambiguous, or so long that
no one reads it.

Go’s “gofmt” tool showed a
better solution: automatically
format everything. Code is easier to
read and contribute to because it’s
already in the style you’re used to.
Even if the output of the formatter
isn’t great, it ends those intermi-
nable soul-crushing arguments on
code reviews about formatting.

Of course, I still have to sell users
on running the formatter in the first
place. For that, having great output
really does matter. Also, I’m pretty
picky with the formatting in my
own code, and I didn’t want to tell
users to use a tool that I didn’t use
myself.

Getting that kind of quality
means applying pretty sophisticated
formatting rules. That in turn makes
performance difficult. I knew bal-
ancing quality and speed would be
hard, but I didn’t realize just how
deep the rabbit hole went.

I have finally emerged back into
the sun, and I’m pleased with what
I brought back. I like the output,
and the performance is solid. On
my laptop, it can blow through over
two million lines of code in about
45 seconds, using a single core.

Why is formatting hard?
At this point, you’re probably
thinking, “Wait. What’s so hard
about formatting?” After you’ve
parsed, can’t you just walk the
AST and pretty-print it with some
whitespace?

If every statement fit within the
column limit of the page, yup. It’s
a piece of cake. (I think that’s what
gofmt does.) But our formatter also
keeps your code within the line
length limit. That means adding line
breaks (or “splits” as the formatter
calls them), and determining the
best place to add those is famously
hard. [hn.my/k27]

http://hn.my/dartstyle
http://dartlang.org
http://hn.my/k27

 29

Check out this guy:

experimentalBootstrap = document.
querySelectorAll('link').any((link) =>
 link.attributes['rel'] == 'import' &&
 link.attributes['href'] ==
POLYMER_EXPERIMENTAL_HTML);

There are thirteen places where a line break is pos-
sible here according to our style rules. That’s 8,192
different combinations if we brute force them all [1].
The search space we have to cover is exponentially
large, and even ranking different solutions is a subtle
problem. Is it better to split before the .any()? Why or
why not?

In Dart, we made things harder on ourselves. We
have anonymous functions, lots of higher-order func-
tions, and — until we added async and await — used
futures for concurrency. That means lots of callbacks
and lots of long method chains. Some Dart users really
dig a functional style and appear to be playing a game
where whoever crams the most work before a single
semicolon wins.

Here’s real code from an amateur player:

_bindAssignablePropsOn.forEach((String event-
Name) => node
 .addEventListener(eventName, (_) => zone.
run(() => bindAssignableProps
 .forEach((propAndExp) => propAndExp[1].
assign(
 scope.context,
jsNode[propAndExp[0]])))));

Yeah, that’s four nested functions. 1,048,576 ways
to split that one. Here’s one of the best that I’ve found.
This is what a pro player brings to the game:

return doughnutFryer
 .start()
 .then((_) => _frostingGlazer.start())
 .then((_) => Future.wait([

 _conveyorBelts.start(),
 sprinkleSprinkler.start(),
 sauceDripper.start()
]))
 .catchError(cannotGetConveyorBeltRunning)
 .then((_) => tellEveryoneDonutsAreJustAbout-
Done())
 .then((_) => Future.wait([
 croissantFactory.start(),
 _giantBakingOvens.start(),
 butterbutterer.start()
])
 .catchError(_handleBakingFailures)
 .timeout(scriptLoadingTimeout,
onTimeout: _handleBakingFailures)
 .catchError(cannotGetConveyorBeltRu
nning))
 .catchError(cannotGetConveyorBeltRunning)
 .then((_) {
 _logger.info("Let's eat!");
});

That’s a single statement, all 565 characters of it.
There are about 549 billion ways we could line break
it.

Ultimately, this is what the formatter does. It applies
some fairly sophisticated ranking rules to find the best
set of line breaks from an exponential solution space.
Note that “best” is a property of the entire statement
being formatted. A line break changes the indenta-
tion of the remainder of the statement, which in turn
affects which other line breaks are needed. Sorry,
Knuth. No dynamic programming this time [2].

I think the formatter does a good job, but how it
does it is a mystery to users. People get spooked when
robots surprise them, so I thought I would trace the
inner workings of its metal mind. And maybe try to
justify to myself why it took me a year to write a pro-
gram whose behavior in many ways is indistinguishable
from cat.

[1] Yes, I really did brute force all of the combinations at first.
It let me focus on getting the output correct before I wor-
ried about performance. Speed was fine for most state-
ments. The other few wouldn’t finish until after the heat
death of the universe.

[2] For most of the time, the formatter did use dynamic
programming and memoization. I felt like a wizard when
I first figured out how to do it. It worked fairly well, but
was a nightmare to debug.

It was highly recursive, and ensuring that the keys to
the memoization table were precise enough to not cause
bugs but not so precise that the cache lookups always fail
was a very delicate balancing act. Over time, the amount
of data needed to uniquely identify the state of a sub
problem grew, including things like the entire expression
nesting stack at a point in the line, and the memoization
table performed worse and worse.

30 PROGRAMMING

How the formatter sees your code
As you’d expect from a program that works on source
code, the formatter is structured much like a compiler.
It has a front end that parses your code and converts
that to an intermediate representation [3]. It does some
optimization and clean up on that [4], and then the IR
goes to a back end [5] that produces the final output.
The main objects here are chunks, rules, and spans.

Chunks
A chunk is an atomic unit of formatting. It’s a contigu-
ous region of characters that we know will not contain
any line breaks. Given this code:

format /* comment */ this;

We break it into these chunks: format /* comment
*/ this;.

Chunks are similar to a token in a conventional
compiler, but they tend to be, well, chunkier. Often,
the text for several tokens ends up in the same chunk,
like this and ; here. If a line break can never occur
between two tokens, they end up in the same chunk [6].

Chunks are mostly linear. For example, given an
expression like:

some(nested, function(ca + ll))

We chunk it to the flat list: some(nested, func-
tion(ca + ll)).

We could treat an entire source file like a single flat
sequence of chunks, but it would take forever and a
day to line break the whole thing [7]. With things like
long chains of asynchronous code, a single “statement”
may be hundreds of lines of code containing several
nested functions or collections that each contain their
own piles of code.

We can’t treat those nested functions or collection
literals entirely independently because the surround-
ing expression affects how they are indented. That in
turn affects how long their lines are. Indent a function
body two more spaces and now its statements have two
fewer spaces before they hit the end of the line.

Instead, we treat nested block bodies as a separate
little list of chunks to be formatted mostly on their
own but subordinate to where they appear. The chunk
that begins one of these literals, like the { preceding a
function or map, contains a list of child block chunks
for the contained block. In other words, chunks do
form a tree, but one that only reflects block nesting, not
expressions.

The end of a chunk marks the point where a split
may occur in the final output, and the chunk has
some data describing it [8]. It keeps track of whether a
blank line should be added between the chunks (like
between two class definitions), how much the next line
should be indented, and the expression nesting depth
at that point in the code.

[3] The IR evolved constantly. Spans and rules were later
additions. Even the way chunks tracked indentation
changed frequently. Indentation used to be stored in
levels, where each level was two spaces, then directly in
spaces. Expression nesting went through a number of
representations.

In all of this, the IR’s job is to balance being easy for
the front-end to produce while being efficient for the
back end to consume. The back end really drives this.
The IR is structured to be the right data structure for the
algorithm the back end wants to use.

[4] Comments were the one of the biggest challenges. The
formatter initially assumed there would be no newlines in
some places. Who would expect a newline, say, between
the keywords in abstract class? Alas, there’s nothing
preventing a user from doing:

abstract // Oh, crap. A line comment.
class Foo {}

So I had to do a ton of work to make it resilient in the
face of comments and newlines appearing in all sorts of
weird places. There’s no single clean solution for this, just
lots of edge cases and special handling.

[5] The back end is where all of the performance challenges
come from, and it went through two almost complete
rewrites before it ended up where it is today.

[6] I started from a simpler formatter written by a teammate
that treated text, whitespace, and splits all as separate
chunks. I unified those so that each chunk included non-
whitespace text, line split information, and whitespace
information if it didn’t split. That simplified a lot.

[7] When I added support for better indentation of nested
functions that broke the code that split source into
separately splittable regions. For a while, a single top-level
statement would be split as a single unit, even if it con-
tained nested functions with hundreds of lines of code. It
was… not fast.

[8] Ideally, the split information in a chunk would describe
the split before the chunk’s text. This would avoid the
pointless split information on the last chunk, and also
solve annoying special-case handling of the indentation
before the very first chunk.

I’ve tried to correct this mistake a number of times, but
it causes a near-infinite number of off-by-one bugs and I
just haven’t had the time to push it all the way through
and fix everything.

 31

The most important bit of data about the split is the
rule that controls it [9].

Rules
Each potential split in the program is owned by a rule.
A single rule may own the splits of several chunks. For
example, a series of binary operators of the same kind
like a + b + c + d uses a single rule for the splits after
each + operator.

A rule controls which of its splits break and which
don’t. It determines this based on the state that the
rule is in, which it calls its value. You can think of a
rule like a dial and the value is what you’ve turned it
to. Given a value, the rule will tell you which of its
chunks get split.

The simplest rule is a “hard split” rule. It says that its
chunk always splits, so it only has one value: 0. This is
useful for things like line comments where you always
need to split after it, even in the middle of an expres-
sion [10].

Then there is a “simple” split rule. It allows two
values: 0 means none of its chunks split and 1 means
they all do. Since most splits are independent of the
others, this gets used for most of the splits in the
program.

Beyond that, there are a handful of special-case
rules. These are used in places where we want to more
precisely control the configuration of a set of splits. For
example, the positional argument list in a function list
is controlled by a single rule. A function call like:

function(first, second, third)

Will have splits after function(, first,, second,, and
third). They are all owned by a single rule that only
allows the following configurations:

// 0: Don't split at all.
function(first, second, third)
// 1: Split before the first.
function(
 first, second, third)

// 2: Split before only the last argument.
function(first, second,
 third)

// 3: Split before only the middle argument.
function(first,
 second, third)

// 4: Split before all of them.
function(
 first,
 second,
 third)

Having a single rule for this instead of individual
rules for each argument lets us prohibit things like:

function(
 first, second,
 third)

Constraints
Grouping a range of splits under a single rule helps us
prevent split configurations we want to avoid like this,
but it’s not enough. There are more complex con-
straints we want to enforce like: “if a split occurs inside
a list element, the list should split too”. That avoids
output like this:

[first, second +
 third, fourth]

[9] Rules are a relatively recent addition. Originally each
chunk’s split was handled independently. You could
specify some relations between them like “if this chunk
splits then this other one has to as well”, but you could
not express things like “only one of these three chunks
may split”

Eventually, I realized the latter is what I really needed
to get argument lists formatting well, so I conceived of
rules as a separate concept and rewrote the front and line
splitter to work using those.

[10] At first, I thought hard splits weren’t needed. Any place
a mandatory newline appears (like between two state-
ments) is a place where you could just break the list of
chunks in two and line split each half independently.
From the line splitter’s perspective, there would be no
hard splits.

Which would work… except for line comments:

some(expression,
 // with a line comment
 rightInTheMiddleOfIt);

This has to be split as a single unit to get the expres-
sion nesting and indentation correct, but it also contains a
mandatory newline after the line comment.

32 PROGRAMMING

Here, the list and the + expression have their own
rules, but those rules need to interact. If the + takes
value 1, the list rule needs to as well. To support this,
rules can constrain each other. Any rule can limit the
values another rule is allowed to take based on its own
value. Typically, this is used to make a rule inside a
nested expression force the rules surrounding itself to
split when it does [11].

Finally, each rule has a cost. This is a numeric penalty
that applies when any of that rule’s chunks are split.
This helps us determine which sets of splits are better
or worse than others [12].

Rule costs are only part of how overall fitness is cal-
culated. Most of the cost calculation comes from spans.

Spans
A span marks a series of contiguous chunks that we
want to avoid splitting. I picture it like a rubber band
stretching around them. If a split happens in any of
those chunks, the span is broken. When that happens,
the solution is penalized based on the cost of the span.

Spans can nest arbitrarily deeply. In an expression
like:

function(first(a, b), second(c, d))

There will be spans around a, b and c, d to try
to keep those argument lists from splitting, but also
another span around first(a, b), second(c, d) to
keep the outer argument list from splitting.

If a split occurs between a, and b, the a, b span
splits, but so does the first(a, b), second(c, d) one.
However, if a split occurs after first(a, b), then the a,
b span is still fine. In this way, spans teach the format-
ter to prefer splitting at a higher level of nesting when
possible since it breaks fewer nested spans.

Parsing source to chunks
Converting your raw source code to this representa-
tion is fairly straightforward. The formatter uses the
wonderful analyzer package to parse your code to an
AST. This gives us a tree structure that represents every
single byte of your program. Unlike many ASTs, it even
includes comments.

Once we have that, the formatter does a top-down
traversal of the tree. As it walks, it writes out chunks,
rules, and spans for the various grammar productions.
This is where the formatting “style” is determined.

There’s no rocket science here, but there are a lot
of hairy corner cases. Comments can appear in weird
places. We have to handle weird things like:

function(argument, // comment
 argument)

Here, we normally would have a split after the first
argument owned by an argument list rule. But the line
comment adheres to the , and has a hard split after it,
so we need to make sure the argument list rule handles
that.

Whitespace is only implicitly tracked by the AST
so we have to reconstitute it in the few places where
your original whitespace affects the output. Having a
detailed test suite really helps here.

Once we’ve visited the entire tree, the AST has been
converted to a tree of chunks and a bunch of spans
wrapped around pieces of it.

Formatting chunks
We’ve got ourselves a big tree of chunks owned by a
slew of rules. Earlier, I said a rule is like a knob. Now
we get to dial them in.

Doing this naïvely is infeasible. Even a small source
file contains hundreds of individual rules and the set of
possible solutions is exponential in the number of rules.

[11] There used to be a separate class for a “multisplit” to
directly handle forcing outer expressions to split when
inner ones did. Once rules came along, they also needed
to express constraints between them, and eventually
those constraints were expressive enough to be able to
handle the multisplit behavior directly and multisplits
were removed.

[12] I spent a lot of time tuning costs for different gram-
mar productions to control how tightly bound different
expressions were. The goal was to allow splits at the
places where the reader thought code was “loosest”, so
stuff like higher precedence expressions would have
higher costs.

Tuning these costs was a nightmare. It was like a hang-
ing mobile where tweaking one cost would unbalance all
of the others. On more than one occasion, I found myself
considering making them floating point instead of inte-
gers, a sure sign of madness.

It turns out spans are what you really want in order
to express looseness. Nested infix operators then fall out
naturally because you have more spans around the deeper
nested operands. The parse tree gives it to you for free.

These days, almost every chunk and span has a cost
of 1, and it’s the quantity of nested spans and contained
chunks that determine where it splits.

 33

The first thing we do is divide the chunk list into
regions we know can’t interfere with each other. These
are roughly “lines” of code. So with:

first(line);
second(line);

We know that how we split the first statement has
no effect on the second one. So we run through the
list of chunks and break them into shorter lists when-
ever we hit a hard split that isn’t nested inside an
expression.

Each of these shorter chunk lists is fed to the line
splitter. Its job is to pick the best set of values for all
the rules used by the chunks in the line. In most cases,
this is trivial: if the whole line fits on the page, every
rule gets set to zero — no splits — and we’re done.

When a line doesn’t fit, the splitter has to figure out
which combination of rule values produces the best
result. That is:

1. The one with the fewest characters that go over the
column limit.

2. The one with the lowest cost, based on which rules
and spans were split.

Calculating the cost for a set of rule values is pretty
easy, but there are still way too many permutations to
brute force it. If we can’t brute force it, how do we do
it?

How line splitting works
I’m a college dropout so my knowledge of algorithms
was fairly, um, rudimentary. So before I interviewed at
Google, I spent two days in a hotel room cramming as
many of them — mostly graph traversal — in my head
as I could. At the time, I thought graphs would never
come up in the interviews…

Then I had multiple interview questions that
reduced down to doing the right kind of traversal over
a graph. At the time, I thought this stuff would never
be relevant to my actual job…

Then I spent the past few years at Google discover-
ing that damn near every program I have to write can

be reduced down to some kind of graph search. I wrote
a package manager where dependencies are a transitive
closure and version constraint solving is graph based.
My hobby rogue like uses graphs for path finding.
Graphs out the wazoo. I can do BFS in my sleep now.

Naturally, after several other failed approaches, I
found that line splitting can be handled like a graph
search problem [13]. Each node in the graph represents
a solution — a set of values for each rule. Solutions
can be partial: some rules may be left with their values
unbound.

From a given partial solution (including the initial
“no rules bound” one), there are edges to new partial
solutions. Each binds one additional rule to a value. By
starting from an empty solution and walking this graph,
we eventually reach complete solutions where all of
the rules have been bound to values.

Graph search is great if you know where your des-
tination is and you’re trying to find the best path. But
we don’t actually know that. We don’t know what the
best complete solution is. (If we did, we’ve been done
already!)

Given this, no textbook graph search algorithm is
sufficient. We need to apply some domain knowledge
— we need to take advantage of rules and conditions
implicit in the specific problem we’re solving.

After a dozen dead ends, I found three (sort of four)
that are enough to get it finding the right solution
quickly:

Bailing early
We are trying to minimize two soft constraints at the
same time:

1. We want to minimize the number of characters that
overflow the line length limit. We can’t make this
a hard constraint that there is no overflow because
it’s possible for a long identifier or string literal to
overflow in every solution. In that case, we still need
to find the one that’s closest to fitting.

2. We want to find the lowest cost — the fewest split
rules and broken spans.

[13] I had known that clang-format worked this way for a long
time, but I could never wrap my head around how to
apply it to dartfmt’s richer chunk/rule/span system.

I took a lot of walks along the bike trail next to work
trying to think through a way to get graph search work-
ing when the two numbers being optimized (overflow

characters and cost) are in direct opposition, and we don’t
even know what the goal state looks like. It took a long
time before it clicked. Even then, it didn’t work at all
until I figured out the right heuristics to use to optimize
it.

34 PROGRAMMING

The first constraint dominates the second: we’ll
prefer a solution with any cost if it fits one more char-
acter in. In practice, there is almost always a solution
that does fit, so it usually comes down to picking the
lowest cost solution [14].

We don’t know a priori what the cost of the winning
solution will be, but we do know one useful piece of
information: forcing a rule to split always increases the
cost.

If we treat any unbound rule as being implicitly
unsplit [15], that means the starting solution with
everything unbound always has the lowest cost (zero).
We can then explore outward from there in order of
increasing cost by adding one rule at a time.

This is a basic best-first search: we keep a running
queue of all of the partial solutions we’ve haven’t
explored yet, sorted from lowest cost to highest. Each
iteration, we pop a solution off.

If the solution completely fits in the page width,
then we know we’ve won the overflow constraint.
Since we’re exploring in order of increasing cost, we
also know it’s the lowest cost. So, ta-da!, we found the
winner and can stop exploring. Otherwise, if it has
any unbound rules, we enqueue new solutions, each of
which binds one of those to a value.

We basically explore the entire solution space in
order of increasing cost. As soon as we find a solution
that fits in the page, we stop.

Avoiding dead ends
The above sounds pretty promising, but it turns out
that there can be an imperial ton of “low-cost but
overflowing” solutions. When you’re trying to format
a really long line, there are plenty of ways it cannot fit,

and this algorithm will try basically all of them. After
all, they’re low cost since they don’t have many splits.

We need to avoid wasting time tweaking rules that
aren’t part of the problem. For example, say we’re
looking at a partial solution like this:

// Blog-friendly 40-char line limit: |
function(
 firstCall(a, b, c, d, e, f, g, h),
 secondCall("very long argument string
here"));

There are a bunch of ways we can split the argu-
ments to firstCall(), but we don’t need to. Its line
already fits. The only line we need to worry about is the
secondCall() one.

So, when we are expanding a partial solution, we
only bind rules that have chunks on overflowing lines.
If all of a rule’s chunks are on lines that already fit, we
don’t mess with it. In fact, we don’t even worry about
rules on any overflowing line but the first. Since tweak-
ing the first line will affect the others, there’s no reason
to worry about them yet [16].

This dramatically cuts down “branchiness” of the
graph. Even though a partial solution may have dozens
of unbound rules, usually only a couple are on long
lines and only those get explored.

Pruning redundant branches
This gets us pretty far, but the splitter can still go off
the deep end in some cases. The problem is that within
large statements, you still run into cases where how
you format part of the statement is mostly independent
of later parts.

Take something like:

[14] 14 For a long time, overflow and cost were treated as
a single fitness function. Every overflow character just
added a very high value to the cost to make the splitter
strongly want to avoid them.

Splitting overflow out as a separate metric turned out
to be key to getting the graph search to work because it
let us order the solutions by cost independently of over-
flow characters.

[15] I went back and forth on how an unbound rule should
implicitly behave. Treating it as implicitly split gives you
solutions with fewer overflow characters sooner. Treating
it as unsplit gives you lower costs.

[16] Oh, God. I tried a million different ways to reduce the
branchiness before I hit on only looking at rules in the
first long line. I’m still amazed that it works.

I could also talk about how controlling branchiness lets
us avoid reaching the same state from multiple different
paths. After all, it’s a graph, but everything I’ve described
talks about it like it’s a tree. By carefully controlling how
we extend partial solutions, we ensure we only take a
single path to any given complete solution.

Before I got that working, I had to keep a “visited” set
to make sure we didn’t explore the same regions twice,
but just maintaining that set was a big performance sink.

 35

// Blog-friendly 40-char line limit: |
new Compiler(
 assertions: options.has('checked-mode'),
 annotations: options.has('annotations'),
 primitives: options.has('primitives'),
 minify: options.has('minify'),
 preserve: options.has('preserve'),
 liveAnalysis: check(options.has('live'),
options.has('analysis')),
 multi: options.has('multi'),
 sourceMap: options.has('source-map'));

Each of those named arguments can be split in a
few different ways. And, since those are less nested
— which means fewer split spans — than that nasty
liveAnalysis: line, it will try every combination of all
of them before it finally gets down to the business of
splitting that check() call.

The best way to split the liveAnalysis: line is the
best way to split it regardless of how we split asser-
tions: or annotations:. In other words, there are big
branches of the solution space that initially differ in
irrelevant ways, but eventually reconvene to roughly
the same solution. We traverse every single one of
them.

What we need is a way to prune entire branches of
the solution space. Given two partial solutions A and B,
if we could say not just “A is better than B” but “every
solution we can get to from A will be better than every
solution we can get to from B” then we can discard B
and the entire branch of solutions stemming from it.

It took some work, but I finally figured out that you
could do this in many cases. Given two partial solu-
tions, if one has a lower cost than the other and:

 ■ They have the same set of unbound rules (but their
bound rules have different values, obviously).

 ■ None of their bound rules are on the same line as an
unbound rule.

 ■ None of their bound rules place constraints on an
unbound rule.

If all of those are true, then the one with a lower
cost will always lead to solutions that also have a lower
cost. Its entire branch wins. We can discard the other
solution and everything that it leads to. Once I got
this working, the formatter could line split damn near
anything in record time [17].

An escape hatch
Alas, that “damn near” is significant. There are still a
few cases where the formatter takes a long time. I’ve
only ever seen this on machine-generated code. Stuff
like:

[17] Discarding overlapping branches is the last macro-opti-
mization I did and its behavior is very subtle. Correctly
detecting when two partial solutions overlap took a lot
of iteration. Every time I thought I had it, one random
weird test would fail where it accidentally collapsed two
branches that would eventually diverge.

That bullet list was paid for in blood, sweat, and tears.
I honestly don’t think I could have figured them out at all
until late in the project when I had a comprehensive test
suite.

36 PROGRAMMING

class ResolutionCopier {
 @override
 bool visitClassDeclaration(ClassDeclaration node) {
 ClassDeclaration toNode = this._toNode as ClassDeclaration;
 return javaBooleanAnd(
 javaBooleanAnd(
 javaBooleanAnd(
 javaBooleanAnd(javaBooleanAnd(javaBooleanAnd(
 javaBooleanAnd(javaBooleanAnd(
 javaBooleanAnd(javaBooleanAnd(javaBooleanAnd(
 _isEqualNodes(node.documentationComment,
 toNode.documentationComment),
 _isEqualNodeLists(
 node.metadata, toNode.metadata)),
 _isEqualTokens(node.abstractKeyword,
 toNode.abstractKeyword)), _isEqualTokens(
 node.classKeyword, toNode.classKeyword)),
 _isEqualNodes(
 node.name, toNode.name)), _isEqualNodes(
 node.typeParameters, toNode.typeParameters)),
 _isEqualNodes(
 node.extendsClause, toNode.extendsClause)),
 _isEqualNodes(
 node.withClause, toNode.withClause)), _isEqualNodes(
 node.implementsClause, toNode.implementsClause)),
 _isEqualTokens(node.leftBracket, toNode.leftBracket)),
 _isEqualNodeLists(
 node.members,
 toNode.members)),
 _isEqualTokens(
 node.rightBracket,
 toNode.rightBracket));
 }
}

Yeah, welcome to my waking nightmare.
Unsurprisingly, code like this bogs down the
formatter. I want dartfmt to be usable in
things like presubmit scripts where it will
have a ton of weird code thrown at it and it
must complete in a reliable amount of time.

So there is one final escape hatch. If the
line splitter tries, like, 5,000 solutions and
still hasn’t found a winner yet, it just picks
the best it found so far and bails.

In practice, I only see it hit this case on
generated code. Thank God.

Finally, output
Once the line splitter has picked values for all of the rules, the
rest is easy. The formatter walks the tree of chunks, printing their
text. When a rule forces a chunk to split, it outputs a newline (or
two), updates the indentation appropriately and keeps trucking.

The end result is a string of (I hope!) beautifully formatted
Dart code. So much work just to add or remove a few spaces! ■

Robert Nystrom has programmed professionally for twenty years. He’s worked
on games, music applications, the web, and programming languages. The
common thread, if there is one, is that he’s most excited by making software
that magnifies the creativity of others, whether that’s other programmers
using his code, or end users using his apps. Robert lives with his wife and
two daughters in Seattle where you are most likely to find him cooking for
his friends and plying them with good beer.

Reprinted with permission of the original author. First appeared in hn.my/hard (stuffwithstuff.com)

http:// hn.my/hard

 37

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

http://pivotaltracker.com

	FEATURES
	Elliptic Curve Cryptography: a Gentle Introduction

	SPECIAL
	Wooden Combination Lock

	PROGRAMMING
	The Complete Guide to
Rails Caching
	The Ultimate
OpenBSD Router
	The Hardest Program I've Ever Written

